Solar-powered water pumping system

dc.contributor.author● Abdelrahman Braik
dc.contributor.author● Bisan Nazzal
dc.date.accessioned2023-01-29T10:19:25Z
dc.date.available2023-01-29T10:19:25Z
dc.date.issued2023-01-03
dc.description.abstractThe economy of Palestine depends mainly on agriculture, this requires different types of irrigation, which is practised at different levels around the world. With the increase in crop yields, irrigation systems continue to consume large amounts of traditional energy such as electricity and fuel. With the rise in diesel prices and the difficulty of transporting it to remote places, the need for a system that reduces this has increased significantly. The photovoltaic system is ideal, especially in areas with no electrical network. A solar-powered automatic irrigation system provides a sustainable solution to enhance water use efficiency in agricultural fields by using a renewable energy system that protects the environment from emissions. This photovoltaic (PV) irrigation system will contribute to social and economic development. It is the proposed solution to the energy crisis for Palestinian farmers. In this project, the following main points will be discussed: 1. Methods for designing and sizing photovoltaic pumping system in Nablus and Tulkarm 2. PVsyst software 3. Estimating the Optimum Tilt Angles for South-Facing Surfaces in Palestine. 4. The difference in emissions produced with the two systems. 5. Savings($). The water volume power increased by 2.13% monthly, 1.6% quarterly, 1.4 semi-annually, and 0% annually in Nablus, when the tilt angle was changed. In Tulkarm the water volume power increased 3.41% monthly, 2.78% quarterly, 2.85% semi-annually, and 0% annually. When the Photovoltaic (PV) system was used instead of the diesel generators, the yearly savings for Nablus were $12,586 and were $12,338 for Tulkarm. Emissions produced by the Photovoltaic (PV) pumping system are 0Kg CO2 per year compared to the massive amount of emissions produced by the diesel generator, being 27,506.4Kg CO2 per year.
dc.identifier.urihttps://hdl.handle.net/20.500.11888/18173
dc.language.isoen
dc.supervisorSalameh Abdelfattah
dc.titleSolar-powered water pumping system
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Presentation.pptx
Size:
2.62 MB
Format:
Microsoft Powerpoint XML
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: