Cantor Set in Measure Theory
dc.contributor.advisor | Dr. Abdallah A. Hakwati - Supervisor | |
dc.contributor.advisor | Dr. Jasser H. Sarsour - Co-Supervisor | |
dc.contributor.author | Alaa Jamal Moustafa Yaseen | |
dc.date.accessioned | 2017-05-03T09:32:29Z | |
dc.date.available | 2017-05-03T09:32:29Z | |
dc.date.issued | 2005 | |
dc.description.abstract | This thesis is a survey for the using of Cantor sets and in measure theory. It is proved that and are measurable and have zero measure. Following that it is shown that the measure of is positive and the measure of is zero. Also it is shown that there exists a subset of such that is non-measurable. At the end of this thesis it is shown that there is no subset such that is Bernstein in. | en |
dc.description.abstract | وC1/هذه الرسالة عبارة عن بحث في استخدام مجموعات الكانتور 3 أنهما لهما قياس وقياسهم يساوي صفرC1/ و 2 C1/ في نظرية القياس، تم برهان أن 3 C1/ 2وبعد ذلك تم اثبات أن القياس ل موجب وأن القياس ل C1/ 3 + C1/3C1/ جزية من 3 A يساوي صفر، وأيضا تم اثبات أنه يوجد مجموعة C1/ 2 + C1/ 2ليس لها قياس . A + A بحيث تكون المجموعة جزئية من B وفي نهاية الرسالة تم برهان أنه لا يوجد مجموعة1/ 2 2 1/ 2.[ بيرنشتاين في [ 0,1.5 B + B بحيث تكون B ⊂ C U 1 C | ar |
dc.identifier.uri | https://hdl.handle.net/20.500.11888/8550 | |
dc.title | Cantor Set in Measure Theory | en |
dc.title | مجموعات الكانتور في نظرية القياس | ar |
dc.type | Thesis |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- cantor_set_in_measure_theory.pdf
- Size:
- 692.7 KB
- Format:
- Adobe Portable Document Format
- Description: