
An-Najah National University 
Faculty of Graduate Studies 

 

 

 

Cantor Set in Measure Theory 
 
 
 
 
 

BY 
Alaa Jamal Moustafa Yaseen 

 

 

 

Supervised By 

Dr. Abdallah A. Hakwati 

Co-Supervisor 

Dr. Jasser H. Sarsour 
 
 
 
 
 
 

Submitted in Partial Fulfillment of the Requirements for the Degree of 
Master of Science in Mathematics, Faculty of Gradated Studies, at An-
Najah National University , Nablus, Palestine. 

2005 

 





 iii
 

Acknowledgements 
 

I would like to express my deep gratitude to Dr. Abdallah 

Elhakawati and Professor Jasser H. Sarsour for their true effort in 

supervising and directing me to come with this thesis. 

  Also not to forget every one who made an effort to make this thesis 

possible. Finally I would like to express my deep thanks to my family for 

their encouragement and support.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv
 

Contents 

 Page 
Acknowledgment iii 
Table of content iv 
Abstract  v 
Introduction -------------------------------------------------------------  1 
  
Chapter One:  Preliminaries ---------------------------------------- 3 
1.1 Cardinality ----------------------------------------------------------  4 
1.2 Topological properties --------------------------------------------  6 
1.3 Algebra of Sets -----------------------------------------------------  9 
1.4  Measure and Measurable Space ---------------------------------  9 
  
Chapter Tow: Cantor Sets ------------------------------------------ 12 
2.1 Introduction to Cantor Sets ---------------------------------------  13 
2.2 Ternary Representation of Numbers ----------------------------  14 
2.3 Properties of Cantor Middle Third Set 3/1C -------------------- 20 
  
Chapter Three: Measure and Cantor Sets ------------------------ 25 
3.1 Measure of Cantor Sets -------------------------------------------  26 
3.2 Measure Zero Set With Non-measurable Sum ----------------  32 
3.3 Applications of the Cantor Middle Half Set 2/1C  --------------  40 
  
References ---------------------------------------------------------------  46 
 ب الملخص باللغة العربية
 



 v
 

Cantor Set in Measure Theory 
BY 

Alaa Jamal Moustafa Yaseen 

Supervised By 

Dr. Abdallah A. Hakwati 

Co-Supervisor  
Dr. Jasser H. Sarsour  

Abstract 

 This thesis is a survey for the using of Cantor sets 3/1C  and 

2/1C  in measure theory. It is proved that 3/1C  and 2/1C  are 

measurable and have zero measure. Following that it is shown 
that the measure of 3/13/1 CC +  is positive and the measure of  

2/12/1 CC +  is zero. Also it is shown that there exists a subset A  of  

3/1C  such that AA +  is non measurable. At the end of this thesis it 

is shown that there is no subset 2/12/1 2
1 CCB U⊂  such that BB +  

is Bernstein in ]5.1,0[ . 

 

 



Introduction 

   This thesis will concentrate on the study of the behavior of some 

sets in measure theory. Measure theory is a basis of modern theories of 

integration. Lebesgue measure is a special case of it. Four main sets will be 

discussed in this thesis: 

)(i  Uncountable sets with zero measure. 

)(ii  Set with zero measure but its algebraic sum has a positive measure. 

)(iii  Set with zero measure, and also its algebraic sum has zero measure. 

)(iv  Measure zero set with non-measurable sum. 

Thus algebraic sum can't characterize measure zero sets. 

 To achieve this study we need to look at surprising sets which are  

the Cantor sets.  The Cantor set which was defined by Cantor is a set of 

length zero which contains uncountably many points. A perfect set does 

not have to contain an open set. Therefore, the Cantor set shows that closed 

subsets of the real line can be more complicated than intuition might at first 

suggest. It is in fact often used to construct difficult, counter-intuitive 

objects in analysis. For example the measure of the Cantor middle third set 

3/1C  is zero and its sum has positive measure. While the measure of the 

Cantor middle half set 2/1C  is zero and its sum also has zero measure. 

Moreover there exists a set 3/1CA⊆   such that AA +  is non-measurable. 

The contents of this thesis are divided into three chapters. In the first 

one we give some basic definitions and preliminary results that are used in 

subsequent chapters. In the beginning of the second chapter we will study, 
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in detail, the construction of the Cantor middle third and half sets. Finally 
we will discuss the properties of the cantor middle third 3/1C sets.  

In chapter three we will discuss the measure of the cantor sets and 

will be introduced to the Cantor sets has positive measure. Following that 
we will define a set A , subset of the 3/1C , which has zero measure, but 

AA +  is non-measurable. Finally we will present an application of the 

2/1C  such that ]5.1,0[2/12/1 =+ CC , furthermore there is no subset 

2/12/1 2
1 CCB ∪⊂   such that BB +  is Bernstein in ]5.1,0[ . 
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Chapter One 

Preliminaries 

In this chapter, we shall give necessary facts and definitions of 

cardinal numbers, dense sets, Borel sets, lebesgue measure, and connected 

space. The purpose of this chapter is to clarify terminology and notations 

that we shall use throughout this thesis. 

1.1 Cardinality 

In this section we shall give required definitions and facts a bout 

cardinality of sets. 

1.1.1 Definition  

 Two sets A  and B  are equivalent if and only if there exists a one-to-

one function from A  onto B . A  and B  are also said to be in one-to-one 

correspondence, and we write BA ≈ . (See [4], p. 93) 

 We shall use the symbol kN  to denote the set },,3,2,1{ kL . Each kN  

may be thought of as the standard set with k  elements since we shall 

compare the sizes of other sets with them. 

1.1.2 Definition 

 A set S  is finite if and only if φ=S  or S   is equivalent to kN  for 

some natural number k . In the case φ=S , we say φ  has cardinal number 

zero and write 0=φ . If S  is equivalent to kN , then S  has cardinal 

number k  and we write kS = .  

 A set S  is infinite if and only if it is not finite. (See [4], p. 93) 
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 1.1.3 Definition 

 A set S  is denumerable if and only if it is equivalent to the set of 

natural numbers N . A denumerable set S  has cardinal number ℵ0 and 
write =S ℵ0. If a set is finite or denumerable, it is countable, otherwise 

the set is uncountable.  The symbol ℵ0 is the first infinite cardinal 

number. Other infinite cardinal numbers are associated with uncountable 

sets. 

 The interval )1,0(  is an example of an uncountable set. The cardinal 

number of )1,0(  is defined to be c (which stands for continuum). 

(See [4], p.97, 99) 

1.1.4 Remark 

 N2  where N  is a set of all natural numbers is the set of all functions 
}1,0{: →Nf . So the cardinal number of N2  is the cardinal number of 

the set of functions }1,0{: →Nf . Therefore N2  = c. (See [2], p. 9) 

1.1.5 Fact 

 It is will known that <n ℵ0< c for all Nn∈ . And there are no sets 
A  for which ℵ0 < A < c. (See [2], p. 8, and 9) 

 1.1.6 Definition 

 A set Λ  is a directed set if and only if there is a relation ≤  on Λ  

satisfying: 

)a  λλ ≤  for each Λ∈λ , 

)b  if 21 λλ ≤  and 32 λλ ≤  then 31 λλ ≤ , 
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)c  if Λ∈21 ,λλ  then there is some Λ∈3λ  with 31 λλ ≤ , 32 λλ ≤ . 

The relation ≤  is referred to as directed on Λ . (See [2], p.73) 

1.1.7 Definition 

       A net in a set X  is a function XP →Λ:  where Λ  is some directed set. 
The point )(λP  is denoted λx , and we denote the net as )( λx .(See[2],p.73) 

1.2 Topological Properties 

 The topology in our thesis is the standard topology for the real 

numbers R  and in this section we will give basic definitions of topological 

properties. 

1.2.1 Definition 

 If X  is a topological space and XE ⊂ , the closure of E  in X  is 
the set KXKEclE :{)( ⊂∩==  is closed and }KE ⊂ , also the interior of 

E  in X  is the set  GXGEIntE :{)( ⊂∪==o  is open and }EG ⊂ . 

 (See [2], p. 25, 27) 

1.2.2 Definition  

 Let ),( τX  be topological space. A set D  is dense in X  if and only 

if XDclX = . Also a set XE ⊂  is said to be nowhere dense, if 

φ=o)( EclX . That is EclX  has empty interior.  (See [2, 5], p.109, 306)  

1.2.3 Definition 

 A point Rx∈  is a cluster point (or a point of accumulation) of  
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a subset RS ⊆  if each ε -neighborhood ),( εεε +−= xxv   of x  contains 

at least one point of S  distinct from x . 

 S ′  is the set which contains all cluster points of S . (See [6], p.59) 

1.2.4 Note 

 If φ≠′S , then S  is not a finite set. 

1.2.5 Definition 

 A space X  is disconnected if and only if there are disjoint non-

empty open sets H  and K  in X  such that KHX ∪= . We then say that 

X  is disconnected by H  and K . 

 When no such disconnected exists, X  is connected. (See [2], p.191) 

1.2.6 Definition 

 If  Xx∈ , the largest connected subset xC  of X  containing x  is 

called a component of x . It exists being just the union of all connected 

subsets of X   containing x . (See [2], p.194) 

1.2.7 Definition 

 A space X  is totally disconnected if and only if the component in 

X  are the points. Equivalently X  is totally disconnected if and only if the 

only nonempty connected subsets of X  are the one point sets.  

(See [2], p. 210) 
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1.2.8 Definition 

 A space X  is compact if and only if each open cover of X  has a 

finite subcover. (See [2], p.116) 

1.2.9 Proposition 

A subset S  of real numbers is compact if and only if it is closed and 

bounded. (See [6], p. 186) 

1.2.10 Proposition 

Suppose }{ jA  is a collection of sets such that each jA  is non-empty, 

compact, and jj AA ⊂+1 . Then jAA ∩=  is non-empty. (See [7], p.2) 

1.2.11 Definition  

 A metric space is an ordered pair ),( ρM  consisting of a set  M  

together with a function RMM →×:ρ  satisfying for all Mzyx ∈,, : 

a) 0),( ≥yxρ , 

b) 0),( =xxρ  ; 0),( =yxρ  implies yx = , 

c) ),(),( xyyx ρρ = , 

d) ),(),(),( yxzyyx ρρρ ≥+  

The function ρ  is called a metric on M . (See [2], p. 16) 
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1.3 Algebra of Sets 

1.3.1 Definition 

 A collection   of subsets of X  is called an algebra of sets or a 

Boolean algebra if  

)(i  BA∪  is in   whenever A  and B  are in  .  

)(ii AX \  is in   whenever A  is .(See [1], p. 17) 

1.3.2 Definition 

 An algebra   of sets is called a σ -algebra if every union of a 
countable collection of sets in  is again in . That is if >< iA  is a 

sequence of sets, then U
∞

=1i
iA  must again belong to . (See [1], p.18) 

1.3.3 Definition 

 The smallest σ -algebra, which contains all of the open sets, is called 

Borel algebra. And the Borel set is an element of a Borel algebra  .  

(See [1], p. 52)  

1.4 Measure and Measurable Space 

1.4.1 Definition 

 By a measurable space we mean a couple ,(X ) consisting of a set 

X  and a σ -algebra   of subsets of X . A subset A  of X  is called 

measurable (or measurable with respect to ) if ∈A . (See [1], p. 253) 
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1.4.2 Definition 

 A set function is a function that associates an extended real number 

to each set in some collection of sets. (See [1], p.54)  

1.4.3 Definition 

 A set function m  that assigns to each set E  in some collection Μ  of 

sets of real numbers a nonnegative extended real number mE  called the 

measure of E . (See [1], p. 54) 

1.4.4 Definition 

 For any set A  of real numbers consider the countable collection }{ nI  

of open intervals that cover A , we define the Lebesgue outer measure A∗µ  

by =∗ Aµ  inf {∑ )( nIL      such that nIA ∪⊆ }.(See [1], p. 56) 

1.4.5 Definition 

 A set E of real numbers is said to be lebesgue measurable if for each 
set Aof real numbers we have )()( cEAEAA ∩+∩= ∗∗∗ µµµ .  

 (See [1], p. 58) 

For any sets EBA ,,  and L,3,2,1: =iEi  we have the following 

properties: 

i) 0=∗ϕµ . 

ii) If BA⊂  then BA ∗∗ ≤ µµ . 

iii) If U
∞

=

⊂
1i

iEE  then ∑∞

=
∗∗ ≤ 1i EE µµ . (See [1], p. 288) 

1.4.6 Definition 

 Let µ  be a measure on an algebra  and ∗µ  the induced outer 

measure. We define the inner measure ∗µ  induced by µ  by setting 
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)],\(sup[ EAAA ∗
∗ −= µµµ  Where the supremum is taken over all sets 

∈A   for which ∞<∗ )\( EAµ .(See [1], p.317) 

1.4.7 Definition 

 A bounded set E is said to be measurable if EE ∗
∗ = µµ .  

(See [1], p. 318) 

1.4.8 Lemma 

Let E  be any bounded subset in the real numbers R , then  
EE ∗

∗ ≤ µµ . If E  belongs to an algebra , then EE ∗
∗ = µµ . 

 (See [1], p. 318) 

1.4.9 Proposition 

 Let E  and F  be disjoint sets, then 

FEFEFEFEFE ∗∗∗∗
∗∗∗∗ +≤∪≤+≤∪≤+ µµµµµµµµ )()(  

  (See [1], p. 320) 

1.4.10 Note 

 Let E  be any bounded subset in the real numbers, and µ  is 

Lebesgue measure on R ,  

then =∗Eµ  sup{ FEFF ,: ⊂µ  closed} (See [1], p. 323) 

1.4.11 Proposition  

 If A  is countable, then 0)( =Aµ . (See [1], p.58) 
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Chapter Tow 

Cantor Sets 

2.1 Introduction to Cantor Sets 

 In the years 1871-1884 Georg Cantor invented the theory of infinite 

sets. In the process Cantor constructed a set which is called a "Cantor" set. 

 To construct the Cantor set, take a line and remove the middle third. 

There are two line segments left. Take the remaining two pieces and 

remove their middle thirds. Repeat this process infinite number of times. 

The resulting collection of points is called a "Cantor" set. Indeed repeatedly 

removing the middle third of every piece, we could also keep removing any 

other fixed percentage (other than 0 % and 100 %) from the middle. The 

resulting sets are all homeomorphic to the Cantor set, i.e. these sets are 

topologically the same. 

 The Cantor set is an unusual object. The deletion process produces 

an infinite set of points. On the other hand these points are uncountable, 

also it has no interior point.(See [10], [11]) 

2.1.1 Remark  

 The Cantor set C  is a totally disconnected compact metric space. 

(See [2], p. 217) 

 Our study will be concentrated on Cantor middle third set 3/1C  and 

Cantor middle half set 2/1C . 
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Cantor Middle Third set 3/1C : 

Beginning with the unit interval ]1,0[=I , define closed subsets 

L⊃⊃ 21 AA  in I  as follows: we obtain 1A  by removing the interval 

)3/2,3/1(  from I , 2A  is then obtained by removing from 1A  the open 

intervals (1/9,2/9) and (7/9,8/9). In general, having nn AA ,1−  is obtained by 

removing the open middle thirds from each of the 12 −n  closed intervals that 
make up 1−nA . The cantor middle third set is the subspace nAC ∩=3/1  

of I . (See [2], p. 121) 

Cantor mMiddle Half Set 2/1C : 

 Start with the unit interval ]1,0[0 =F . Remove the (open) middle 

half-resulting in ]1,4/3[]4/1,0[1 ∪=F . Then repeat the process removing 

the middle half of each of the intervals that remain. At stage n  we get  a set 

nF  that is the union of n2  intervals each being of length n−4 . These are 

nested: L⊃⊃⊃ 210 FFF , so their intersection I
∞

=
=

0
2/1

n
nFC , is called the 

cantor middle half set.  (See [8], p.315) 

2.2 Ternary Representation of Numbers 

2.2.1 Definition 

For any ]1,0[∈x , x  can be represented in the scale of some integer 

1>b  as baaax ).0( 321 L= , where every ia  is one of the integers 

1,,0 −bL . Also x  can be represented by a convergent series as:  

∑
∞

=

=
1i

i
i

b
a

x  }1,,0{: −∈ bai L  for every L,2,1=i .  
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The integer b  is called the base of the scale. For 2=b  it is called a binary 

expansion; and for 3=b  it is called a ternary expansion (See [9], p.941)  

2.2.2 Definition  

 Let ]1,0[, ∈yx  in base b  expansion. Then yx, will be called 

equivalent with respect to base b  expansion and we write x  ∼ b  y  if and 

only if there is a b  expansion of x  and a b  expansion of y  such that the 

two expansions disagree on only finitely many digits.  

(See [3], p.788) 

Rational with Respect to the Base b :  

Let ]1,0[∈x , then there  exist a sequence >< nx , where 

}1,,1,0{ −∈ bxn L , and ∑
∞

=

=
1i

i
i

b
x

x . If the expansion of x  ends in a 

sequence of zeros, then there exists Nm∈  such that 0=ix  for all 

mi > , hence ∑
=

=
m

i
i
i

b
x

x
1

  : }1,,1,0{ −∈ bxi L . 

Since for all r  we have r
ri

i bb
b 11

1
=

−∑
∞

+=

, then 

)
1

()1()(
1

1

1
m

m

mi
i

m

i
i
i

b
x

b
b

b
x

x
−

+
−

+= ∑∑
∞

+=

−

=

 

Therefore x  has two possible base b  expansions one ending in asserting of 
0’s and the other ending in asserting of )1( −b ’s. In the case 4=b  we will 

say that x  is quaternary rational, and according to the  (2.2.2 Definition) all 

such quaternary rationals are equivalents. (See [3], p.788) 
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Ternary Rational: 

 Let ]1,0[∈x , then there  exist a sequence >< nx , where 

}2,1,0{∈nx , and ∑
∞

=

=
1 3i

i
ix

x . If the expansion of x  ends in a sequence of 

zeros, then there exists Nm∈  such that 0=ix  for all mi > , hence 

∑
=

=
m

i
i
ix

x
1 3

  : }2,1,0{∈ix . So )
3

1
()

3
2()

3
(

1

1

1
m

m

mi
i

m

i
i
i xx

x
−

++= ∑∑
∞

+=

−

=

 

Therefore x  has two possible ternary expansions one ending in asserting of 

0’s and the other ending in asserting of 2’s. In this case we will say that x  

is ternary rational, and according to the (2.2.2 Definition) all such ternary 

rationals are equivalents. (See [3], p. 6) 

2.2.3 Remark 

        Let ]1,0[∈x . If we represent x  as a quaternary expansion, then x  has 

a unique representation except when x  is quaternary rational. (See [6], p. 

60) 

2.2.4 Proposition 

 The Cantor middle third set is precisely the set of points in the 

interval I  having a ternary expansion without 1's. (See [2], p. 121) 

Proof 

Let's focus on the ternary representations of the decimals between 0 and 1. 

Since, in base three, 1/3 is equivalent to 0.1, and 2/3 is equivalent to 0.2. 

We see that in the first stage of the construction (when we removed the 

middle third of the unit interval) we actually removed all of the real 

numbers whose ternary decimal representation have a 1 in the first decimal 
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place, except for 0.1 itself. (Also, 0.1 is equivalent to 0.0222... in base 

three, so if we choose this representation we are removing all the ternary 

decimals with 1 in the first decimal place.) In the same way, the second 

stage of the construction removes all those ternary decimals that have a 1 in 

the second decimal place. The third stage removes those with a 1 in the 

third decimal place, and so on. (By noticing that 1/9 is equivalent to 0.01 

and 2/9 is equivalent to 0.02 in base three.) 

Thus, after every thing has been removed, the numbers that are left – that 

is, the numbers making up the Cantor set – are precisely those whose 

ternary decimal representations consist entirely of 0’s and 2’s. Then the 

Cantor middle third set 3/1C  is precisely the set of points in the interval I  

having a ternary expansion without 1’s i.e. ∑
∞

=

=
1 3i

i
ix

x  : 2,0=ix  for all i .  

2.2.5 Proposition 

 The Cantor set 2/1C  is precisely the set of points in the interval I  

having a quaternary expansion without 1's and 2's. (See [8], p.316) 

Proof  

 Since in base four expansion, 4/1  is equivalent to 1.0  and 4/3  is 

equivalent 3.0 . We see that in the first stage of construction (when we 

removed the middle half of the unit interval) we actually remove all 

elements ]1,0[∈x   such that 3.01.0 << x , that is we remove all of the real 

numbers whose four decimal representation is 1 and 2 in first decimal 

place, except for 0.1 itself. (Also 0.1 is equivalent to 0.0333 . . . in base 

four, so we choose the representation in which we are removing all the four 

decimals with 1 and 2 in the first decimal place). In the same way, the 
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second stage of the construction removes all those fourth decimals that 

have a 1 and 2 in the second decimal place. The third stage removes those 

with a 1 and 2 in the third decimal place, and so on. (By noticing that 1/16 

is equivalent to 0.01 and 3/16 is equivalent to 0.03 in base four expansion). 
finally all numbers left, making up the Cantor middle half set 2/1C  are 

precisely those whose four decimal representations which consist entirely 

of 0's and 3's. Thus 2/1C  is the set of points, x , in the unit interval such 

that there is a base four expansion of x  that uses only zeros and threes.  

That is L,3,2,13,0:4/ =∀== ∑ ixxx i
i

i .  

The Cantor middle third set 3/1C  at least contains the endpoints of 

all of the intervals that make up each of the sets nA , that is since by 

removing open middle thirds, then for every Nn∈ , nA∈0 and hence 

3/10 C∈ . The same argument shows that 3/11 C∈ . In fact, if y  is the 

endpoint of some closed interval of some particular set nA , then it is also 

an endpoint of one of the intervals of 1+nA  for all n . 

2.2.6 Proposition  

 Each of the Cantor middle third set 3/1C  and Cantor middle half set 

2/1C  is   1) Closed,              2) Dense in it self,           3) and of no interior.   

(See [2], p. 217) 

Proof 

It is enough to prove it for the Cantor middle third set 3/1C  because 

the other proof for 2/1C  is similar.   

1) Cantor middle third set is closed  
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From the construction of the Cantor middle third set  

3/1C  = nA∩ , since each sets nA can be written as a finite union of 
n2 closed intervals, each of which has a length of n3/1 , as follows:  

• ]1,0[0 =A  

• ]1,3/2[]3/1,0[1 ∪=A    

• ]1,9/8[]9/7,9/6[]9/3,9/2[]9/1,0[2 ∪∪∪=A   

• ...  

Since nA  is a finite union of closed sets, nA  is a closed set for all Nn∈ , 

then 3/1C  is an intersection of closed sets, therefore 3/1C  is a closed set.  

2) Cantor middle third set is dense in itself 

All endpoints of every subinterval will be contained in 3/1C . Take 

any nACx ∩=∈ 3/1  then x  is in nA  for all n , so x  must be contained in 

one of the n2  intervals that comprise the set nA . Define nx  to be the left 

endpoint of that subinterval (if x  is equal to that endpoint, then let nx  be 

the right endpoint of that subinterval). Since each subinterval has length 
n3/1 , we have:  

n
nxx 3/1<− . Hence, the sequence )( nx  converges to x , and since all 

endpoints of the subintervals are contained in the Cantor set, we have 
found a sequence of numbers not equal to x contained in 3/1C that 

converges to x . Therefore, x  is a limit point of 3/1C .  But since x  was 

arbitrary, every point of 3/1C  is a limit point of it. Thus  3/1C  is dense in 

itself.  
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3) 3/1C  has no interior point 

Assume that there exists )( 3/1CIntx∈ , then there exists an  0>ε  such that 

3/1),( Cxx ⊂+− εε . Choose Nn∈  such that ε<−n3 , then 

nAxx ⊄+− ),( εε . Therefore 3/1),( Cxx ⊄+− εε , and this contradicts 

that 3/1IntCx∈ . Therefore 3/1C  has no interior point. 

2.2.7 Corollary 

3/1C  does not contain any open set 

2.3 Properties of Cantor Middle Third Set 3/1C  

2.3.1 Proposition 

 The Cantor middle third sets 3/1C , and 2/1C  are compact  

(See [2], p. 216) 

Proof 

From (2.2.5 Proposition part 1) 3/1C   is closed, also it is bounded. 

Since by (1.2.9 Proposition) every closed bounded subset of the real 
numbers is compact, then 3/1C  is compact  

And similarly 2/1C  is also compact. 

2.3.2 Proposition 

 The Cantor middle third sets 3/1C , and 2/1C  are uncountable. 

(See [2], p. 217) 

Proof 
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 By using Binary expansion for all ]1,0[∈y , and ternary expansion 

for all 3/1Cx∈  define the function  

 ]1,0[: 3/1 →Cf  

∑ ∑→ i
i

i
i yx

23
, where ii xy =  if 0=ix  and  1=iy  if 2=ix  

We have f  is one-to-one and onto. Since ]1,0[  is uncountable, then 3/1C  is 

also uncountable. Similarly, 2/1C  is uncountable also.  

2.3.3 Lemma 

 Let x  ∈ (0,2) then x  has c many representations 

bax +=  such that ba,  ∈ )1,0( . 

Proof 

 Let )2,0(∈x  be arbitrary. Let =δ  min }
2

,1
2

{ xx
− .  

Then for all 2/0 δε << , we have [ ε+2x , ε−2x  ]⊂  (0,1) and 

xxx =−++ εε 22 .Since we have uncountably number of ε , So x  

has c many representations. 

2.3.4 Proposition   

 The Cantor set 3/1C when added to itself gives the interval ]2,0[ . 

(See [1], p.783) 

Proof 

Since ],1,0[3/1 ⊆C  then 3/13/1 CC +  ⊆  [0,2] … … … … … )(∗  
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 Let x  ∈ [0,2] be arbitrary and let 2xc = , therefore c  ∈ [0,1], so by using 

ternary representation of c there exists a sequence >< ic  such that 

∑∞

=
= 1 3i i

ic
c         : 2,1,0=ic . 

Since ]2,0[∈x , then 0=x , 2 or 20 << x  

 If x  = 0, or 2 then we are done because 0 and 1 3/1C∈  and  

0+ 0= 0  also 1+1=2. 

 Now if x  ∈ (0,2), then by (2.3.3 Lemma) we have c many 

representation of x .  

Let ccbax +=+=  such that ba,   ∈ (0,1),  

Using the ternary representation for ,,ba and c we have 

∑ ∑== i
i

i
i bbaa 3/,3/  2,1,0,: =ii ba  ∀  L,3,2,1=i  

Then ∑ ∑∑∑ +=+= i
i

i
i

i
i

i
i ccbax 3333  

                                               ∑ += i
ii cc 3)(  

If ic = 0 then ii ba =  = 0 

If  ic  = 1 then ia  = 0 and ib  =2 or 

                        ia  = 2 and ib  = 0 

If ic  = 2 then ii ba =  = 2. 

Then we get  

∑ ∑+= i
i

i
i bax 33 , Such that ia  and ib  ≠ 1 for all i ,  
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So  ∑ i
ia 3  and ∑ i

ib 3  are in the Cantor middle third set. 

That is  x∀  ∈ [0,2] we have bax +=  such that a  and b  in the Cantor 

middle third set. 

Therefore [0,2] ⊆ 3/13/1 CC +  … … … … … … … … … )(∗∗  

From )(∗  and )(∗∗  we get ]2,0[3/13/1 =+CC . 

2.3.5 Definition  

 A subset P  of R  is perfect set if  it is closed and dense in itself:  

i.e., each point of  P  is an accumulation point of P ; that is: P  is perfect in 

R  if and only if PP ′= . (See [2], p. 216) 

2.3.6 Remark  

Every closed interval ],[ ba , ba ≠  is a perfect set. 

2.3.7 Proposition 

 Every non-empty perfect set is uncountable. (See [7], p. 165) 

Proof 

 If P  is perfect, it consists of accumulation points, and therefore can 

not be finite. Therefore it is either countable or uncountable. Suppose P  
was countable and could be written as },,,{ 321 LxxxP =  

The interval )1,1( 111 +−= xxU  is a neighborhood of 1x . Since 1x  must be 

an accumulation point of P , Therefore there are infinitely many elements 
of P  contained in 1U . 
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Take one of those elements, say 2x  and take a neighborhood 2U   of 2x  

such that ),( 222 δδ +−= xxU  where 

)1(,)1(,min{2/1 121212 −−+−−= xxxxxxδ }. Then the closure 

)( 2U is contained in 1U  and 1x  2clU∉ . Again, 2x  is an accumulation point 

of P , so that the neighborhood 2U  contains infinitely many elements of 

P . 

Select an element, say 3x , and by the same argument take a neighborhood  

3U  of 3x  such that closure ( )3U  is contained in 2U and 32 clUx ∉  so 1x  

and 2x  are not contained in closure )( 3U . 

Continue in that fashion to find sets nU  and points nx  such that: 

•  Closure nn UU ⊂+ )( 1  

•  jx  is not contained in nU  for all nj <<0  

•  nx  is contained in nU  

Now consider the set  (∩=V  closure ( )) PU n ∩  

Since each set (closure ))( PU n ∩  is closed and bounded, it is compact. 

 Also, by construction, (closure ())( 1 ⊂∩+ PU n closure ))( PU n ∩ . 

Therefore, by (1.2.10 proposition),V  is not empty. Also Vxn ∉  because 

1+∉ nn Ux  for all integer numbers n . But V  is non-empty, therefore  P  is 

not countable. 

2.3.8 Note  

 The Cantor middle third set 3/1C  as well as 2/1C  is closed and dense 

in itself, then it is a perfect set, hence is uncountable. 
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Chapter Three 

Measure and Cantor Sets 

 Different measurable sets can be seen in mathematics, measurable 
sets, non-measurable sets, and measure zero sets. We sow that  3/1C  is 

uncountable with zero measure but ( 3/13/1 CC + ) has positive measure. 

While 2/1C  and ( 2/12/1 CC + ) have zero measures. Another Cantor set with 

positive measure will be studied. Also we will define a set A , subset of 

3/1C  with measure zero, but AA +  is non-measurable. Finally we will see 

applications of 2/1C . 

3.1 Measure of Cantor Sets 

3.1.1 Proposition  

 The Cantor set 3/1C  is measurable and has measure zero.  

(See [1], p. 64) 

Proof 

 Since nAC ∩=3/1 , then 3/1C  is a countable intersection of closed 

sets, therefore 3/1C  is a Borel set, so 3/1C  is measurable. 

From the construction of 3/1C  we have for every stage n  > 0 we remove 
12 −n  disjoint intervals from each previous set each having length n3/1 . 

Therefore we will removed a total length of  

  ∑∑
∞

=

−
∞

=

− =
1

1

1

1 )3/2(
3
1

3
12

n

n
n

n

n  

                                          ∑
∞

=

=
0

)3/2(3/1
n

n             
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                                          = 1
3/21

1
3
1

=⎟
⎠
⎞

⎜
⎝
⎛

−
 

from the unit interval [0,1].  

Then 3/1C  is obtained by removing a total length 1 from the unit interval 

]1,0[ , so 1)\( 3/1 =CIµ . Since )\()()( 3/13/1 CICI µµµ += , then 

011)\()()( 3/13/1 =−=−= CIIC µµµ  

Therefore the set 3/1C  is measurable and has zero measure.             

3.1.2 Remark 

 The measure of the 3/1C  is zero, but 0)( 3/13/1 ≠+ CCµ , since 

]2,0[3/13/1 =+ CC  .  

3.1.3 Proposition 

 The Cantor 2/1C  is measurable and has zero measure. 

Proof 

 Since nFC ∩=2/1 , that is 2/1C  is countable intersection of closed 

sets, therefore it is Borel set. Hence 2/1C  is measurable  

From the construction of 2/1C  we have for stage n  > 0 we remove 12 −n  

disjoint interval from each previous set each having length n)4/2( . 

Therefore we will remove a total length of  

 ∑∑
∞

=

−
∞

=

− =
1

1

1

1 )
4
2(

4
2

4
22

n

n
n

n

n  

                    ∑
∞

=

=
0

)
2
1(

2
1

n

n  
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                     ⎟
⎠
⎞

⎜
⎝
⎛

−
=

2/11
1

2
1   =1          

from the unit interval ]1,0[ .Then 2/1C  is obtained by removing a total 

length 1 from the unit interval ]1,0[ . and 1)\( 2/1 =CIµ , Then 

.011)\()()( 2/12/1 =−=−= CIIC µµµ  

Thus 2/1C  is measurable, and has zero measure. 

3.1.4 Proposition 

 If A  is the set of points in the unit interval ]1,0[  having a four 

expansion without 3's, then A  has zero measure. 

Proof 

 Take the representation: ]1,3.0[]3.0,2.0[]2.0,1.0[]1.0,0[]1,0[ ∪∪∪=  

At  first we need to show that, 4/1)\]1.0,0([ =Aµ  

To do so for all Ax∈ , ∑= i
ix

x
4

  2,1,0=ix   

•  Let ]1.0,03.0[1 =A , since for all 1Aa∈ , 3:
4 2 ==∑ a
a

a i
i , then Aa∉ , 

so  ϕ=∩ 1AA  and 2
1 4)( −=Aµ  

•Let ]03.0,023.0[]02.0,013.0[]01.0,003.0[2 ∪∪=A , since for all 2Aa∈ , 

∑ == 3:
4 3a
a

a i
i  , then Aa∉ , so ϕ=∩ 2AA  and 3

2 43)( −∗=Aµ   

•  Let ∪∪∪= ]003.0,0023.0[]002.0,0013.0[]001.0,0003.0[3A  

                   ∪∪∪ ]013.0,0123.0[]012.0,0113.0[]011.0,0103.0[  

                   ]023.0,0223.0[]022.0,0213.0[]021.0,0203.0[ ∪∪ , 
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since for all 3Aa∈ , ∑ == 3:
4 4a
a

a i
i   , then Aa∉ , so ϕ=∩ 3AA  ,                     

and 42
3 43)( −∗=Aµ . 

In general we have nA  is the union of 13 −n   disjoint closed intervals each 

have length )1(4 +− n  and for all nAa∈ , 3:
4 1 == +∑ ni

i a
a

a  , then 

ϕ=∩ nAA  and )1(1 43)( +−− ∗= nn
nAµ  

Since ∑=∪ )()( nn AA µµ , 

Then )( nAµ  L++++= 534232 4/34/34/34/1  

                     ))4/34/34/31(4/3(4/1 332232 L+++++=  

                     4/1
4/31

14/34/1 32 =⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
+=  

Thus 4/1)\]1.0,0([ =Aµ , By the same way we see that 

4/1)\]2.0,1.0([ =Aµ , 4/1)\]3.0,2.0([ =Aµ and 4/1)\]1,3.0([ =Aµ  

Therefore )\()()( AIIA µµµ −=  

[ ])\]1,3.0([)\]3.0,2.0([)\]2.0,1.0([)\]1.0,0([1 AAAA µµµµ +++−=   

[ ] 04/14/14/14/11 =+++−= . 

3.1.5 Proposition 

 2/12/1 CC +  has measure zero. (See [3] p.790) 

Proof 

 If we prove that  )(3/1 2/12/1 CC +  has measure zero, then obviously 

2/12/1 CC +   has measure zero. Let )( 2/12/1 CCx +∈ , then there exist  
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2/1, Cba ∈ such that  bax += . Let )(3/1 2/12/1 CCc +∈ , then 

baxc
3
1

3
1

3
1

+== . Using base four expansion of a , b  and c with all 

digits of a  and b  are divisible by 3,then 

∑ i
ic

4
 = )

44
(

3
1 ∑ ∑+ i

i
i
i ba

 : 3,0, =ii ba         

            3,0,:4/)(
3
1

=+= ∑ ii
i

ii baba , Hence  

• =ic  1/3 (0 + 0) = 0 when 0== ii ba  

• =ic  1/3 (0 + 3) = 1 when 0=ia  and 3=ib  

• =ic  1/3 (3 + 0) = 1 when 3=ia  and 0=ib  or 

• =ic  1/3 (3 + 3) = 2 when 3== ii ba . 

Therefore ∑=+= i
ic

bac
43

1
3
1   2,1,0: =ic . Hence 3≠ic  for all 

L,3,2,1=i . Then unless c  is a quaternary rational its expansion will never 

use the digits three, and ( by 2.2.3 remark )the expansion of c  is unique. 
Let S  be all quaternary rationals in 1/3 ( 2/12/1 CC + ).  

Thus for all SCCx \)(3/1 2/12/1 +∈ , ∑ == 2,1,0:
4 ii

i x
x

x  . Since 

3≠ix  for all L,3,2,1=i Then by (3.1.4 proposition) SCC \)(3/1 2/12/1 +  

has measure zero, and since all elements in S  are quaternary rational, then 
QS ⊂ , hence S  is countable, then )(3/1 2/12/1 CC +  has  measured zero. 

Therefore 2/12/1 CC +   has zero measure. 
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3.1.6 Remark 

 The measure of the Cantor middle third set 3/1C  is zero and its sum 

has positive measure, while the measure of the Cantor middle half set and 

its sum have zero measure. 

3.1.7 Remark  

 There exists a Cantor set with positive measure. This can be 

constructed as follows: 

Start with the unit interval for ]1,0[=I  and choose a number 

10 << p . Let 

                                )
4

2,
4

2(1
ppR +−

=  = )
42

1,
42

1( pp
+−   

Which has measure 2/p . Again, define 11 \ RIC = . Now define  

                               )
16

14,
16

14()
16

2,
16

2(2
ppppR +−

∪
+−

=  

Which has measure 4/p ; continue as before, such that each kR has 

measure
k

p
2

; note again that all the kR are disjoint. The resulting Cantor set 

has measure  

∑ ∑
∞

=

∞

=

−
∞

=

>−=−=−=
1 11

0121)(1)\(
n n

n
n

n
n ppRRI µµ U  

Thus we have a continuum many of Cantor sets of positive measures.  

(See [12]) 
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3.1.8 Note 

 Clearly Cantor sets can be constructed for all sorts of "removals", we 

can remove middle halves, or thirds, or any amount r/1 , 1>r . All of these 

Cantor sets have measure zero. The key point is that: 

If at each stage we remove r/1  of each of the remaining intervals, the 

results is a set of measure zero. The favored examples are the Cantor sets 
which constructed by Georg Cantor " 2/1C  , and 3/1C " , are constructed for 

the case 2=r  and 3=r  respectively. 

 However it is possible to construct Cantor sets with positive measure 

as well; the key is to remove less and less as we proceed, for example; 

remove 3/1  then 23/1  of each remaining parts then 33/1  of each of 

remaining parts … and so on. The result is a set of positive measure 

 These Cantor sets have the same topology as the Cantor set and the same 

cardinality but different measure.  

3.2 Measure Zero Set with Non-Measurable Sum 

 From previous studies we notice that there exists a measure zero set 

so that its sum also has zero measure, and a set with measure zero but its 
sum has positive measure such as 2/1C  and 3/1C  respectively. In this 

section we will discuss a special subset A  of 3/1C  that has measure zero 

with non-measurable sum. 

3.2.1 Definition  

 We say that XB ⊆  is a Bernstein set (in X ) provided B  and BX \  

intersect every non-empty perfect subset of X . (See [3], p.2) 
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3.2.2 Proposition 

 Any closed set B  in  can be written as DPB ∪=  where P  is 

perfect and D  is countable. (See [13], p.3596) 

Proof 

 If B  is countable then take the perfect set ϕ=P , and BD =   then 

we are done. Otherwise  

Let BxxBxP ∩+−>∀∈= ),(,0:{ εεε  is uncountable} and 

PBD \= . First need to show that P  is closed set, 

 Let )( nx  be any convergent sequence to x  such that Pxn ∈  for all Nn∈ , 

since BP ⊂  and B  is closed, then Bx∈ . Let 0>ε  be arbitrary, then there 
exists 0>j  such that Bxxx j ∩+−∈ ),( εε , since Px j ∈ , and 

),( εε +− xx  is neighborhood of jx , therefore Bxx ∩+− ),( εε  is 

uncountable., So Px∈ , then P  is closed.  

Now need to prove P  is dense in itself,   

Let Dx∈ , then we can find two rational numbers a  and b  such that 
bxa <<  and Bba ∩),(  is countable. Since there are only countably many 

open intervals 1}{ =nnO  with rational end points, then there exist countable 

numbers of open intervals jO   such that BO j ∩ is countable, so 

)( BOD nn ∩⊂ U . But countable union of countable set is countable, 

therefore D   is countable set. Let Px∈  be arbitrary, then for all 0>ε  
Bxx ∩+− ),( εε  is uncountable, and since D  is countable therefore 

DBxx \),( ∩+− εε  is also uncountable. Since DBP \= , then 

Pxx ∩+− ),( εε   is uncountable and so x  is a cluster point, consequently  

P  is dense in itself.  
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3.2.3 Proposition 

Let P  be a nonempty perfect set, then for any Py∈ , Py ∩−∞ ],(  or 

Py ∩∞),[  is a perfect set. 

Proof 

Let P  be any nonempty perfect set. Let Py∈  be arbitrary and 

define ],,( yPA −∞∩=  ),[ ∞∩= yPB , for all At∈  and yt < , At ′∈  

because if yt < , then for any 0>ε  ),(),(),( baytt =−∞∩+− εε where 

},min{ ε+= tyb  and ε−= ta , then ),,( bat∈   

Hence AttPyttPba ∩+−⊂∩−∞∩+−=∩ ),(),(),(),( εεεε   

Since Pt ′∈  then ,}{\),( φ≠∩ tPba  so At ′∈   

Similarly for all Bt∈  and yt > , Bt ′∈ . 

If Ay ′∉  and By ′∉  then there exists 0, 21 >εε  such that  

φεε =∩+− }{\),( 11 yAyy  and φεε =∩+− }{\),( 22 yByy  

Let },min{ 21 εεε =  then, φεε =∩+− }{\),( yPyy , but BAP ∪= , then 

φεε =∪∩+− }{\)(),( yBAyy .  

Therefore φεε =∩+− }{\),( ypyy  and this is a contradiction because 

PPy ′=∈ . Then Ay ′∈  or B′ . 

If Ay ′∈  then AA ′=  hence A  is perfect and if By ′∈  then BB ′=  hence 

B  is perfect, thus A  or B  must be perfect. 
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3.2.4 Corollary  

 If P  is a non empty perfect set, then { PPP ′⊂′ :  non empty and 
perfect} is uncountable. And for every Py∈  we can find a perfect subset 

yp  of P  such that for all yx ≠  yx PP ≠ . 

3.2.5 Lemma 

 Every Bernstein subset of an interval I  of real numbers has inner 

measure zero and the same outer measure as I . 

 Proof: 

 Let I  be a non empty open or open half interval in R ,  and B  be any 

Bernstein subset in I . Since for any non empty open or open half interval 

I  there exists a closed interval ],[ ba  subset in I  where ba ≠ , and since I  

is perfect set. Then by (3.2.3 proposition, and 3.2.4 Corollary) there exist 

uncountably many perfect subsets of I . 

Let { ξξ :p < c} be the family of all non-empty perfect subset of I . 

If the inner measure of B  is not zero then by (1.4.10 note) B  must contain 

a closed set of positive measure, since the measure of any countable set is 

zero and the closed set with positive measure is uncountable set, so by 

(3.2.2 proposition) this closed set must have a non empty perfect subsets. 
Then there exists ξ  < c such that Bp ⊂ξ , so φξ =∩ )\( BIp  and this  

contradicts that B  is Bernstein subset in I . 

Then B  has inner measure zero. 

Now if B  dose not have the same outer measure as I , then by (1.4.9 
proposition) ).())\(()\( IBBIBBI µµµµ =∪≥+ ∗

∗
∗  Therefore 
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0)()()\( >−≥ ∗
∗ BIBI µµµ , that is ( BI \  ) has positive inner measure, 

then there exists a closed subset in ( BI \  ) with positive measure. 

Therefore this closed set contains a non empty perfect subset. Then there 
exist ξ  < c such that ⊂ξp  ( BI \  ) and φξ ≠p , therefore Bp ∩ξ  = φ  

and again, this is contradicts that B  is Bernstein subset in I , thus B  must 

have the same outer measure as I . 

3.2.6 Theorem 

 Every Bernstein subset of an interval in R  is not measurable. 

Proof 

 Let B  be any Bernstein subset in an interval I . Then by (3.2.4 
lemma) 0)( =∗ Bµ , and )()( IB ∗∗ = µµ . Since 0)( >∗ Iµ , then 

)()( BB ∗
∗ ≠ µµ . Hence B  is non-measurable. 

3.2.7 Lemma   

 Let ]2,0[∈x . If 2/x  has infinitely many ones in its ternary 

expansion, then there are c many representations of x  as the sum of two 

Cantor-set elements; otherwise, x  has only finitely many such 
representations and all of the elements of 3/1C  used to represent x  are 

equivalent to 2/x . (See [3], p.788) 

Proof 

 Since every element of 3/1C  has a ternary expansion consisting of 

only even digits, then for any 3/13/1]2,0[ CCx +=∈  there exists 

3/1, Cba ∈  such that bax += . Let 2/xc =   then c  is the average of a 
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and b. If iii bac ,,  are the thi    digits of bac ,,  respectively, since 

baccx +=+= , then  

∑∑
∞

=

∞

=

+
=

+

11 33 i
i

ii

i
i

ii bacc
.  

Therefore  ∑
∞

=
=

+−

1
0

3
)(2

i
i

iii bac
        

So 3 | ibac iii ∀+− )(2(   

Then for all i  we have  

• 0=ic  and 0== ii ba ,  

• 1=ic  and 2,0 == ii ba , 

• 1=ic  and 2=ia , 0=ib  , or 

• 2=ic  and 2== ii ba      

If c  is ternary rational, then the digits of c  must end in either a sequence 

of zeros or a sequence of two's that is from the property of ternary 

rational. In either case the digits of a  and b  must do likewise since when 
0=ic  we have 0== ii ba  and when 2=ic  we have 2== ii ba . 

And so they are also ternary rationals therefore a  ∼ b  ∼ c , since all 

ternary rational are equivalent. 

Now consider the case c  is not a ternary rational, so there is a unique 

ternary expansion of c . 

Let us construct the numbers a  and b  using only even digits for each ic  

that is zero or two, we must have iii bac == . But for each 1=ic ,  we 
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have a choice either 2,0 == ii ba  or 0,2 == ii ba , two choice for 

ii ba & . Thus if },,2,1,0{ nk L∈  is the number of digits in c  that 

have the value 1, then there are k2  possible choices for the pair ba,  . In 

particular if c  has infinitely many ones in its expansion then there are 
N2  = c many representation for x . If there are only finitely many ones 

then the digit of cba ,,  will all agree on a tail end. That is cba ,,  

disagreeing on only finitely many digits. 

3.2.8 Proposition  

There is a set 3/1CA⊆  such that AA +  is Bernstein in 

3/13/1]2,0[ CC += , hence AA +  is non-measurable. (See [3], p.789) 

Proof 

 Let 0R  be the set of elements of  ]2,0[  that can be expressed in c 

many ways as the sum of elements of 3/1C . And 1R  be the elements that 

can be expressed in only finitely many ways. We can construct 0R  and 1R  

by (2.3.7 lemma). 

Let ξξ :{ p  < c } be the family of all non-empty perfect subsets of ]2,0[ . 

We will find an 3/1CA⊆  such that each ξp   intersects both AA +  and its 

complement. Construct a net  

                    <×××>∈< ξξξξξξξ :,,,( ppCCdcba  c ) 

Such that for each ξ  < c,  

 )(∗  ξξξ bac +=  and ϕξξξ =+∩ ++ )( 11 AAD   , 

Where U ξη ηηξ <= },{ baA  and }:{ ξηηξ ≤= dD .  
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This will ensure that U cc baAA <== η ηη },{  has the desired properties, 

since then  

 <ξξ :{c  c} Ababa ∈+= ςηςη ,:{  for all <ςη,  c AA +⊂}  

And ξDAA \]2,0[⊆+ , then  

ξξ :{ c  < c ξDRAA \} ⊆+⊆ , therefore  

<ξξ :{c  c AAp +∩⊂ ξ} and )\]2,0([ AApD +∩⊂ ξξ   

That is each ξp  intersects both AA +  and its complement. So AA + is a 

Bernstein set, hence non measurable. 

To make an inductive step, assume that for some α  < c we have already 
constructed a partial net which satisfies )(∗  for all ξ  < ∝.  

Now we need to show that we can construct a partial net which satisfies 
)(∗  for αξ = . We first choose ααα cba ,,  such that ααα cba =+  and 

neither αa  nor αb  is in αα AD − . 

We decide two cases.  

Case 1: ξp  intersects 0R  in a set of cardinality c. Since =∩ DRP \)( 0α c, 

then choose DRPc \)( 0∩∈ αα . And since 0Rc ∈α where 0R  is the set  of 

elements of  3/13/1 CC +  that can be expressed in c many ways as the sum 

of elements of 3/1C , and <αα AD \  c, then there exist αα ba ,  in 3/1C  such  

that ααα cba =+  and neither αa  nor αb  is in αα AD − . 

Case 2: ξp  intersect 1R  in a set of cardinality c. First choose  

ααα DRpc \1∩∈ such that  2/αc  is  not equivalent to any element of  

αα AD −  . Then choose 3/1, Cba ∈αα  such that  ααα cba =+  , since 
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by (2.3.7 lemma)  both  αa  and αb  are equivalent  to 2/αc , neither of them 

in αα AD − , and since 2/αc  1R∈  then it is not equivalent  to any element 

of αα AD −  . Our construction is finished by choosing  

)(\ 11 ++ +∈ ξξαα AApd   

That means for each αξ ≤  we have ϕξξα =+∩ ++ )( 11 AAD   

Then there exists a set 3/1CA⊂  such that each αp  intersects both AA +  

and its complement then AA +  is Bernstein in 3/13/1]2,0[ CC += . 

3.3 Applications of the Cantor middle half set 2/1C  

3.3.1 Lemma 

 Let U  be the set of elements of ]1,0[  that use only zeros and twos in 

one of its base four expansions, and let V  be the set of elements that use 

only zeros and ones. Then ].1,0[=+VU  

Proof 

 Let ]1,0[∈c , then 1,0=c  or 10 << c . If 10 << c  then there exists c 

many representations vuc +=  such that )1,0(, ∈vu . 

If iii vuc ,,  are the thi  digits of ,,uc  and v  respectively then   

∑ ∑ ∑
∞

=

∞

=

∞

=
+=

1 1 1 444i i i
i
i

i
i

i
i vuc

  

Therefore 4| )( iii vuc +−  

Then we can choose iu  and iv  as follows 

When 0=ic , take 0== ii vu  
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 When 1=ic , take 1,0 == ii vu                  

When 2=ic , take 0,2 == ii vu  

When 3=ic , take 1,2 == ii vu  

Then we get Uu∈  and Vv∈  that is VU +⊂]1,0[  and we have 

]1,0[⊂+VU  directly, Then ]1,0[=+VU . 

3.3.2 Lemma 

 ]5.1,0[
2
1

2/12/1 =+ CC . Furthermore, each element in ]5.1,0[  can be 

expressed as such a sum in at most two ways, and except for a countable 

set, each element in ]5.1,0[  can be expressed in a unique way.  

(See [3], p.791) 

Proof  

 We have ]5.1,0[
2
1

2/12/1 ⊂+ CC  directly … … … … … ( i ) 

Let ]5.1,0[∈x  then ]1,0[
3
2

∈x , therefore by (3.3.1 lemma) there exists 

Uu∈  and Vv∈  such that vux +=
3
2 , and if ii vu ,  are the thi  digits of u  

and v respectively, then  

∑ ∑+= i
i

i
i vu

x
443

2  such that  }2,0{∈iu  and  }1,0{∈iv  for all L,2,1=i  

Therefore  ∑ ∑+= i
i

i

i vu
x

4
3

2
1

4
2
3

 : }2,0{∈iu and }1,0{∈iv  for all L,2,1=i  

                   ∑ ∑+= i
i

i
i ba

42
1

4
 :  }3,0{, ∈ii ba  for all L,2,1=i  
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                    ba +=  such that ,2/1Ca∈  2/12
1 Cb∈  

Then )
2
1( 2/12/1 CCx +∈ , and  

 )
2
1(]5.1,0[ 2/12/1 CC +⊂  … … … … … … ( )ii  

Therefore By ( i ) and ( ii ) ]5.1,0[
2
1

2/12/1 =+ CC . This proves the first part 

of the theorem. 

 Now fix an x  in [0,1.5], then there exist 2/1Ca∈  and 2/12
1 Cb∈ such 

that bax += . Let baxc
3
2

3
2

3
2

+==   

Since ∑= i
iaa

43
2

3
2  : }3,0{∈ia , then  ∑= i

ia
a

43
2  : }2,0{∈ia  for all 

L,2,1=i . Therefore by using the fact that all of digits of a are divisible by 

three, the computation of a
3
2  can be carried out digit-wise and results in an 

element of U  

Similarly since 2/12
1 Cb∈ ,  then =b

3
2  ∑∗ i

ib
42

1
3
2  : }3,0{∈ib   

Therefore =b
3
2  ∑ i

ib
4

 : }1,0{∈ib  for all L,2,1=i . Hence Vb ∈
3
2  

Since ]1,0[∈c , then each such c  has at most two such representations and 

except when c is a quaternary rational “and the quaternary rational set is  

countable”, therefore each such c has a unique representation. 
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3.3.3 Lemma  

 Let 2/12/1 2
1 CCA ∪= , then there are two non-empty perfect subsets 

P  and Q  of A  such that every element of QP +  can be expressed 

uniquely as the sum of two elements in A . (See [3], p.791) 

Proof 

 AA +  is the union of three closed sets : 

,
2
1

2
1, 2/12/12/12/1 CCCC ++  and 2/12/1 2

1 CC +  by (3.1.5 proposition), 

The first and second sets both have measure zero.  
Since ]1,4/3[]4/1,0[2/1 ∪⊂C , then 

])1,4/3[]4/1,0([])1,4/3[]4/1,0([2/12/1 ∪+∪⊂+ CC  

                             ]2,4/6[]4/5,4/3[]4/2,0[ ∪∪=  

Therefore φ=+∩ )()4/6,4/5( 2/12/1 CC . And since 

]1,0[)2/12/1( 2/12/1 ⊂+ CC , then φ=+∩ )2/12/1()4/6,4/5( 2/12/1 CC  

Hence there exists an open interval I  ⊆ ]5.1,0[  that is disjoint from 

2/12/1 CC +  and 2/12/1 2
1

2
1 CC + . By (3.3.2 lemma), the third set is the 

interval ]5.1,0[ . 

Furthermore, by (3.3.2 Lemma) we can partition ]5.1,0[  into two sets X  

and Y  such that X  is countable and every element in Y  has a unique 
representation as a sum of two elements, one in 2/1C  and the other in 

2/12
1 C . Choose an x  in IY ∩  and let bax +=  with 2/1Ca∈  and 

2/12
1 Cb∈ . 
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Now choose a neighborhood j  of a  and a neighborhood k  of b  small 

enough that the closure )( kjcl +  of kj +  is a subset of I . 

Let R  be the intersection of A  with )( jcl  and S  be the intersection of A  

with )(kcl , since A  , )( jcl , and )( kcl  are perfect sets then 

)( jclA ∩  and )(kclA ∩  are perfect sets. Therefore both R  and S  

are non-empty perfect subsets of A . 

Let D  be the countable set consisting of all numbers used in the 
representations of elements of X , and let P  and Q  be non-empty perfect 

subsets of DR \  and DS \  respectively. Fix QPx +∈ ; we must show 

that x  has a unique representation as a sum of elements of A . Since 
)\()\( DSDRx +∈  then there exist DRa \∈  and DSb \∈  with 

bax += . 

Since )( jclR ⊂  and )(kclS ⊂ , then  

IkcljclDSDR ⊂+⊂+ )()()\()\( . Therefore Ix∈  

But then x  is not in the first two pieces of AA + , that is true since I  is 

disjoint from the first two pieces. 

So it must be that one of the element ba,  is in 2/1C  and the other in 

2/12
1 C . Since a  and b  are not in xD,  cant be in X . 

Therefore Yx∈  and we are done. 

3.3.4 Theorem  

 There is no subset 2/12/1 2/1 CCAB ∪=⊆  such that BB +  is 

Bernstein in ]5.1,0[ . (See [3], p.791) 
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Proof 

 Suppose that such a set B  exists. Let P  and Q  be as in the previous 

lemma. B  can’t contain a non-empty perfect subset, since that would imply 

BB +  also contains a non-empty perfect subset of ]5.1,0[ , and that is 

contradict BB +  is Bernstein in ]5.1,0[ . Therefore there is some element x  

in BP \ .  Then Qx +  is a perfect subset of QP + . And so each element of 

Qx +  has a unique representation as a sum of element in A  that is since 

Qx +  is subset in QP +  which has a unique representation as a sum of 

element in A . But then since Bx∉  no element of Qx +  is in BB + . Then 

we get a perfect subset Qx +  of ]5.1,0[  which disjoint from BB + . So 

BB +  is not Bernstein in ]5.1,0[ , which is a contradiction. 
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 جامعة النجاح الوطنية

 كلية الدراسات العليا
 

 

 مجموعات الكانتور في نظرية القياس 
 

 

 

 إعداد 

 علاء جمال مصطفى ياسين

 

 

 إشراف 

 الدكتور عبداالله حكواتي
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روحة استكمالا لمتطلبات درجة الماجستير في الرياضيات بكلية الدراسات العليا          قدمت هذه الأط  

 .في جامعة النجاح الوطنية في نابلس، فلسطين
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 مجموعات الكانتور في نظرية القياس 

 إعداد 

 علاء جمال مصطفى ياسين

 إشراف 

 الدكتور عبداالله حكواتي

 الدكتور جاسر صرصور

 الملخص

  و 3/1Cهذه الرسالة عبارة عن بحث في استخدام مجموعات الكـانتور   

2/1C        3/1 في نظرية القياس، تم برهان أنC   2/1 وC      أنهما لهما قياس وقياسـهم 

 .يساوي صفر

3/13/1وبعد ذلك تم اثبات أن القياس لـ         CC  موجب وأن القيـاس لــ       +

2/12/1 CC  3/1C جزية من    A يساوي صفر، وأيضا تم اثبات أنه يوجد مجموعة          +

AA بحيث تكون المجموعة   . ليس لها قياس+

 جزئيـة مـن     Bوفي نهاية الرسالة تم برهان أنـه لا يوجـد مجموعـة             

2/12/1 2
1 CCB U⊂ بحيث تكون BB  .]5.1,0[ بيرنشتاين في +

 
 
 
 

 




