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Abstract

This thesis 1s a survey for the using of Cantor sets C,,; and

C,, 1n measure theory. It is proved that C,, and C,, are

measurable and have zero measure. Following that it is shown
that the measure of C,,; +C,,; is positive and the measure of

C,,, +C,,, 1s zero. Also it is shown that there exists a subset 4 of

C,,; such that 4 + 4 is non measurable. At the end of this thesis it

is shown that there is no subset B<=C,,, U %Cl ,, such that B+ B

1s Bernstein in [0,1.5].



Introduction

This thesis will concentrate on the study of the behavior of some
sets in measure theory. Measure theory is a basis of modern theories of
integration. Lebesgue measure is a special case of it. Four main sets will be

discussed in this thesis:

(/) Uncountable sets with zero measure.
(i) Set with zero measure but its algebraic sum has a positive measure.
(7ii) Set with zero measure, and also its algebraic sum has zero measure.

(iv) Measure zero set with non-measurable sum.

Thus algebraic sum can't characterize measure zero sets.

To achieve this study we need to look at surprising sets which are
the Cantor sets. The Cantor set which was defined by Cantor is a set of
length zero which contains uncountably many points. A perfect set does
not have to contain an open set. Therefore, the Cantor set shows that closed
subsets of the real line can be more complicated than intuition might at first
suggest. It is in fact often used to construct difficult, counter-intuitive

objects in analysis. For example the measure of the Cantor middle third set

C,,; 1s zero and its sum has positive measure. While the measure of the
Cantor middle half set C,,, is zero and its sum also has zero measure.

Moreover there exists a set 4 < C,,; such that 4 + 4 is non-measurable.

The contents of this thesis are divided into three chapters. In the first
one we give some basic definitions and preliminary results that are used in

subsequent chapters. In the beginning of the second chapter we will study,
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in detail, the construction of the Cantor middle third and half sets. Finally

we will discuss the properties of the cantor middle third C, ;sets.

In chapter three we will discuss the measure of the cantor sets and

will be introduced to the Cantor sets has positive measure. Following that

we will define a set A4, subset of the C,,;, which has zero measure, but

A+ A is non-measurable. Finally we will present an application of the

C,,, such that C,, +C,,, =[0,1.5], furthermore there is no subset

1 . .
Bc(C, v ECI/Z such that B + B 1s Bernstein in [0,1.5].
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Chapter One

Preliminaries

In this chapter, we shall give necessary facts and definitions of
cardinal numbers, dense sets, Borel sets, lebesgue measure, and connected
space. The purpose of this chapter is to clarify terminology and notations

that we shall use throughout this thesis.
1.1 Cardinality

In this section we shall give required definitions and facts a bout

cardinality of sets.
1.1.1 Definition

Two sets A and B are equivalent if and only if there exists a one-to-
one function from 4 onto B. A and B are also said to be in one-to-one

correspondence, and we write 4 = B. (See [4], p. 93)

We shall use the symbol N, to denote the set {1,2,3,---,k}. Each N,

may be thought of as the standard set with k& elements since we shall

compare the sizes of other sets with them.

1.1.2 Definition

A set S 1s finite if and only if S=¢ or § 1is equivalent to N, for
some natural number k. In the case S =¢, we say ¢ has cardinal number
zero and write ‘¢‘=O. If S is equivalent to N,, then § has cardinal

number k and we write ‘S‘ =k.

A set S is infinite if and only if it is not finite. (See [4], p. 93)



1.1.3 Definition

A set S is denumerable if and only if it i1s equivalent to the set of

natural numbers N. A denumerable set S has cardinal number X, and

write ‘S‘ =Ny. If a set 1s finite or denumerable, it is countable, otherwise

the set is uncountable. The symbol ¥, is the first infinite cardinal
number. Other infinite cardinal numbers are associated with uncountable

sets.

The interval (0,1) is an example of an uncountable set. The cardinal

number of (0,1) is defined to be ¢ (which stands for continuum).

(See [4], p.97, 99)
1.1.4 Remark

2" where N is a set of all natural numbers is the set of all functions
f+N — {0,1}. So the cardinal number of 2" is the cardinal number of
the set of functions f : N — {0,1} . Therefore ‘2N‘ =¢C. (See [2],p.9)

1.1.5 Fact

It is will known that n < NX¢< ¢ for all » € N. And there are no sets
A for which N, <|4|<c. (See [2], p. 8, and 9)

1.1.6 Definition

A set A is a directed set if and only if there is a relation < on A

satisfying:
a) A< foreach Ae A,

b)if A, <A, and A, <A, then A, < A,,
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c) if A;,4, € A then there is some A; € A with 4, <A4;, 4, <4;.

The relation < is referred to as directed on A . (See [2], p.73)
1.1.7 Definition

A netinaset X isa function P: A— X where A is some directed set.
The point P(A) is denoted x,, and we denote the net as (x ) .(See[2],p.73)

1.2 Topological Properties

The topology in our thesis is the standard topology for the real
numbers R and in this section we will give basic definitions of topological

properties.
1.2.1 Definition

If X is a topological space and E < X, the closure of £ in X is
the set E =cl(E)=n{K c X :K is closed and E c K}, also the interior of

E in X istheset E° =Int(E)=U{Gc X:G isopenand G C E}.
(See [2], p. 25, 27)

1.2.2 Definition

Let (X, 7) be topological space. A set D is dense in X if and only
if c/y,D=X. Also a set Ec X 1s said to be nowhere dense, if

(clyE)" =¢. Thatis cl, E has empty interior. (See [2, 5], p.109, 306)
1.2.3 Definition

A point x € R is a cluster point (or a point of accumulation) of
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a subset S < R if each ¢-neighborhood v, =(x—¢&,x+¢) of x contains

at least one point of § distinct from x.
S’ is the set which contains all cluster points of S. (See [6], p.59)

1.2.4 Note

If S"# ¢, then S is not a finite set.

1.2.5 Definition

A space X is disconnected if and only if there are disjoint non-
empty open sets H and K in X such that X = H U K. We then say that
X 1is disconnected by H and K .

When no such disconnected exists, X is connected. (See [2], p.191)

1.2.6 Definition

If xe X, the largest connected subset C, of X containing x 1is

called a component of x. It exists being just the union of all connected

subsets of X containing x. (See [2], p.194)

1.2.7 Definition

A space X is totally disconnected if and only if the component in
X are the points. Equivalently X is totally disconnected if and only if the

only nonempty connected subsets of X are the one point sets.

(See [2], p. 210)



1.2.8 Definition

A space X is compact if and only if each open cover of X has a

finite subcover. (See [2], p.116)
1.2.9 Proposition

A subset S of real numbers is compact if and only if it is closed and

bounded. (See [6], p. 186)

1.2.10 Proposition

Suppose {4} is a collection of sets such that each 4, is non-empty,

compact, and 4,,; < 4;. Then 4=nN4; is non-empty. (See [7], p.2)

1.2.11 Definition

A metric space is an ordered pair (M, p) consisting of a set M

together with a function p: M x M — R satisfying forall x,y,ze M :
a) p(x,y)=0,

b) p(x,x)=0; p(x,y)=0 implies x =y,

¢) p(x,y)= p(y,%),

d) p(x,y)+ p(y,z) 2 p(x,y)

The function p is called a metric on M . (See [2], p. 16)



1.3 Algebra of Sets
1.3.1 Definition

A collection C of subsets of X is called an algebra of sets or a

Boolean algebra if

(i) AuB 1s1n C whenever 4 and B are inC .
(ii) X \ 4 1s in C whenever 4 is .(See [1], p. 17)

1.3.2 Definition

An algebra C of sets is called a o -algebra if every union of a

countable collection of sets in € is again in C. That is if <4, > is a

sequence of sets, then U A. must again belong to C. (See [1], p.18)
i=1

1.3.3 Definition

The smallest o -algebra, which contains all of the open sets, is called

Borel algebra. And the Borel set is an element of a Borel algebra B.
(See [1], p. 52)
1.4 Measure and Measurable Space

1.4.1 Definition

By a measurable space we mean a couple (X, B) consisting of a set

X and a o-algebra B of subsets of X . A subset 4 of X is called
measurable (or measurable with respect to B) if 4 €B. (See [1], p. 253)
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1.4.2 Definition

A set function is a function that associates an extended real number

to each set in some collection of sets. (See [1], p.54)
1.4.3 Definition

A set function m that assigns to each set £ in some collection M of
sets of real numbers a nonnegative extended real number mE called the
measure of E. (See [1], p. 54)

1.4.4 Definition

For any set A4 of real numbers consider the countable collection {/, }
of open intervals that cover 4, we define the Lebesgue outer measure ™ A

by p'A=inf {d L(I,) suchthat 4l }.(See[l],p.56)
1.4.5 Definition

A set E of real numbers is said to be lebesgue measurable if for each
set A of real numbers we have " A=y (ANE)+ u (ANE®).
(See [1], p. 58)

For any sets 4,B,FE and E;:i=123,--- we have the following
properties:
i) ue=0.
i) If Ac B then " A< u'B.

i) If Ec|JE, then g"E<)"" u"E.(See[l], p. 288)

i=1
1.4.6 Definition

Let © be a measure on an algebra C and x° the induced outer

measure. We define the inner measure x, induced by u by setting
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u A=suplud — 1" (A\ E)], Where the supremum is taken over all sets

A eC for which u" (A\ E)<o.(See[1], p.317)

1.4.7 Definition

A bounded set E is said to be measurable if u,E=u’E.
(See [1], p. 318)
1.4.8 Lemma

Let £ be any bounded subset in the real numbers R, then
U, E < E . If E belongs to an algebra C, then y,E=u'E.

(See [1], p. 318)
1.4.9 Proposition
Let £ and F' be disjoint sets, then
U E+u F<u (EOFR)<uE+u' F<u (EORN) < E+u'F
(See [1], p. 320)

1.4.10 Note
Let E be any bounded subset in the real numbers, and u is
Lebesgue measure on R,

then u E = sup{ puF :F c E, F closed} (See [1], p. 323)

1.4.11 Proposition
If A 1s countable, then u(A)=0. (See [1], p.58)
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Chapter Tow
Cantor Sets
2.1 Introduction to Cantor Sets

In the years 1871-1884 Georg Cantor invented the theory of infinite

sets. In the process Cantor constructed a set which is called a "Cantor" set.

To construct the Cantor set, take a line and remove the middle third.
There are two line segments left. Take the remaining two pieces and
remove their middle thirds. Repeat this process infinite number of times.
The resulting collection of points is called a "Cantor" set. Indeed repeatedly
removing the middle third of every piece, we could also keep removing any
other fixed percentage (other than 0 % and 100 %) from the middle. The
resulting sets are all homeomorphic to the Cantor set, i.e. these sets are

topologically the same.

The Cantor set is an unusual object. The deletion process produces
an infinite set of points. On the other hand these points are uncountable,

also it has no interior point.(See [10], [11])
2.1.1 Remark

The Cantor set C is a totally disconnected compact metric space.

(See [2], p. 217)

Our study will be concentrated on Cantor middle third set C,,; and

Cantor middle half'set C,, .
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Cantor Middle Third set C, ;:

Beginning with the unit interval 7 =[0,1], define closed subsets
A DA, o--- in I as follows: we obtain 4, by removing the interval
(1/3,2/3) from I, A, is then obtained by removing from A, the open

intervals (1/9,2/9) and (7/9,8/9). In general, having 4, ,, 4, 1s obtained by

n-1»
removing the open middle thirds from each of the 2" closed intervals that

make up A4, ,. The cantor middle third set is the subspace C,,; =4,

ofl. (See [2], p. 121)

Cantor mMiddle Half Set C, ,:

Start with the unit interval F, =[0,1]. Remove the (open) middle

half-resulting in F; =[0,1/4]U[3/4,1]. Then repeat the process removing

the middle half of each of the intervals that remain. At stage n we get a set

F that is the union of 2" intervals each being of length 4™". These are

nested: F, > F, o F, >---, so their intersection C,,, =[] F, , is called the
n=0

cantor middle half set. (See [8], p.315)
2.2 Ternary Representation of Numbers

2.2.1 Definition

For any x €[0,1], x can be represented in the scale of some integer

b>1 as x=(0.a,a,a,---),, where every a; is one of the integers

0,---,b—1. Also x can be represented by a convergent series as:

x:Z% ra; €{0,---,b—1} forevery i =12,---.
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The integer b is called the base of the scale. For 5 =2 it is called a binary

expansion; and for b =3 it is called a ternary expansion (See [9], p.941)

2.2.2 Definition

Let x,y €[0,1] in base b expansion. Then x,ywill be called
equivalent with respect to base b expansion and we write x ~, y if and

only if there is a b expansion of x and a b expansion of y such that the

two expansions disagree on only finitely many digits.
(See [3], p.788)

Rational with Respect to the Base 5:

Let xe[0,1], then there exist a sequence <x, >, where

n
0

x,€{0,1,---,b—1},and x = Zz—i If the expansion of x ends in a
i=1

sequence of zeros, then there exists m € N such that x; =0 for all

i >m, hence x=Z% : x; €{0,1,---,b—1}.

i=1

Since for all r we have Z b_,l =L, then
i=r+l bl br
mlx. © bh-1 x —1
x=() —)+( —) 4+ (———)
22 O

Therefore x has two possible base b expansions one ending in asserting of

0’s and the other ending in asserting of (b —1)’s. In the case b =4 we will

say that x is quaternary rational, and according to the (2.2.2 Definition) all

such quaternary rationals are equivalents. (See [3], p.788)



16

Ternary Rational:

Let xe€[0,1], then there exist a sequence <x, >, where

x, €{0,1,2}, and x = Zx—i If the expansion of x ends in a sequence of
i=1

zeros, then there exists me N such that x; =0 for all i>m, hence

mxi m—lxi 0 2 Xm—l
x:;? :xie{0,1,2}.Sox:(;?)+(z—l_)+( )

i=m+1 3 3m

Therefore x has two possible ternary expansions one ending in asserting of

0’s and the other ending in asserting of 2’s. In this case we will say that x

is ternary rational, and according to the (2.2.2 Definition) all such ternary

rationals are equivalents. (See [3], p. 6)

2.2.3 Remark

Letx €[0,1]. If we represent x as a quaternary expansion, then x has

a unique representation except when x is quaternary rational. (See [6], p.

60)
2.2.4 Proposition

The Cantor middle third set is precisely the set of points in the

interval / having a ternary expansion without 1's. (See [2], p. 121)
Proof

Let's focus on the ternary representations of the decimals between 0 and 1.
Since, in base three, 1/3 is equivalent to 0.1, and 2/3 is equivalent to 0.2.
We see that in the first stage of the construction (when we removed the
middle third of the unit interval) we actually removed all of the real

numbers whose ternary decimal representation have a 1 in the first decimal
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place, except for 0.1 itself. (Also, 0.1 is equivalent to 0.0222... in base
three, so if we choose this representation we are removing all the ternary
decimals with 1 in the first decimal place.) In the same way, the second
stage of the construction removes all those ternary decimals that have a 1 in
the second decimal place. The third stage removes those with a 1 in the
third decimal place, and so on. (By noticing that 1/9 is equivalent to 0.01
and 2/9 is equivalent to 0.02 in base three.)
Thus, after every thing has been removed, the numbers that are left — that
is, the numbers making up the Cantor set — are precisely those whose

ternary decimal representations consist entirely of 0’s and 2’s. Then the

Cantor middle third set C,,; is precisely the set of points in the interval /

. ) ) ) = X; .
having a ternary expansion without 1’s i.e. x = Z—; :x; =0,2 forall i.
i=1

2.2.5 Proposition

The Cantor set C,,, is precisely the set of points in the interval /

having a quaternary expansion without 1's and 2's. (See [8], p.316)
Proof

Since in base four expansion, 1/4 is equivalent to 0.1 and 3/4 is
equivalent 0.3. We see that in the first stage of construction (when we
removed the middle half of the unit interval) we actually remove all
elements x €[0,1] such that 0.1 < x < 0.3, that is we remove all of the real
numbers whose four decimal representation is 1 and 2 in first decimal
place, except for 0.1 itself. (Also 0.1 is equivalent to 0.0333 . . . in base
four, so we choose the representation in which we are removing all the four

decimals with 1 and 2 in the first decimal place). In the same way, the
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second stage of the construction removes all those fourth decimals that
have a 1 and 2 in the second decimal place. The third stage removes those
with a 1 and 2 in the third decimal place, and so on. (By noticing that 1/16

is equivalent to 0.01 and 3/16 is equivalent to 0.03 in base four expansion).

finally all numbers left, making up the Cantor middle half set C,,, are

precisely those whose four decimal representations which consist entirely

of 0's and 3's. Thus C,,, 1s the set of points, x, in the unit interval such

that there 1s a base four expansion of x that uses only zeros and threes.

Thatis x = Z X; /4! :x;, =0,3Vi=1,2,3,---. O

The Cantor middle third set C,,; at least contains the endpoints of
all of the intervals that make up each of the sets A, , that is since by
removing open middle thirds, then for every ne N, 0e€ 4,and hence
0eC,,;. The same argument shows that 1€ C,,;. In fact, if y 1s the
endpoint of some closed interval of some particular set A4,, then it is also

an endpoint of one of the intervals of 4,,, forall n.

2.2.6 Proposition

Each of the Cantor middle third set C,,; and Cantor middle half set

C,,, 1s 1) Closed, 2) Dense 1n it self, 3) and of no interior.

(See [2], p. 217)

Proof

It is enough to prove it for the Cantor middle third set C,,; because

the other proof for C,,, is similar.

1) Cantor middle third set is closed
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From the construction of the Cantor middle third set

C,; = NA,, since each sets A, can be written as a finite union of

2" closed intervals, each of which has a length of1/3", as follows:
o A,=[0,1]

.Al

[0,1/3]U[2/3,1]

o A, =[0,1/9]U[2/9,3/9]U[6/9,7/9]U[8/9,1]

Since A, is a finite union of closed sets, A, is a closed set for all ne N,

then C,,; is an intersection of closed sets, therefore C, 5 is a closed set.

2) Cantor middle third set is dense in itself

All endpoints of every subinterval will be contained in C, ;. Take
any xe C,,; =4, then x 1sin 4, for all n, so x must be contained in
one of the 2" intervals that comprise the set 4, . Define x, to be the left

endpoint of that subinterval (if x is equal to that endpoint, then let x, be

the right endpoint of that subinterval). Since each subinterval has length

1/3", we have:

‘x - xn‘ <1/3". Hence, the sequence (x,) converges to x, and since all
endpoints of the subintervals are contained in the Cantor set, we have
found a sequence of numbers not equal to xcontained in C,,;that
converges to x. Therefore, x is a limit point of C,,;. But since x was

arbitrary, every point of C, , is a limit point of it. Thus C,,; is dense in

itself.
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3) C,,; has no interior point

Assume that there exists x € Int(C,,;), then there exists an & >0 such that
(x—g,x+¢&)cC,;. Choose neN such that 3" <g, then
(x—¢&,x+&)z A,. Therefore (x—¢&,x+¢)zC,,;;, and this contradicts

that x € IntC, ;. Therefore C,,; has no interior point.

2.2.7 Corollary

C,,; does not contain any open set

2.3 Properties of Cantor Middle Third Set C,

2.3.1 Proposition

The Cantor middle third sets C,,;, and C,,, are compact
(See [2], p. 216)
Proof

From (2.2.5 Proposition part 1) C,,; is closed, also it is bounded.

Since by (1.2.9 Proposition) every closed bounded subset of the real

numbers is compact, then C;,; is compact

And similarly C,,, is also compact.

2.3.2 Proposition

The Cantor middle third sets C, 5, and C,,, are uncountable.

(See [2], p. 217)

Proof
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By using Binary expansion for all y €[0,1], and ternary expansion

for all x € C,,; define the function

f:Cy 5 = [0,1]
Xi Vi - :
Z?%Z?,where y;=x;1fx,=0and y, =11f x, =2

We have f is one-to-one and onto. Since [0,1] is uncountable, then C, ; 1s

also uncountable. Similarly, C,,, is uncountable also.

2.3.3 Lemma

Let x € (0,2) then x has c many representations

x=a+b suchthat a,b € (0,]).

Proof

X
, —

Let x €(0,2) be arbitrary. Let 6 = min { 5

}.

X
2

Then for all 0<e<8/2, we have [x/2+¢, x/2—¢& ]< (0,1) and

x/2+ &+ x/2 — ¢ = x .Since we have uncountably number of &, So x

has ¢ many representations.

2.3.4 Proposition

The Cantor set C,,;when added to itself gives the interval [0,2].

(See [1], p.783)

Proof

Since C,,; <[0,1], then C,,; +C,,; < [0,2] ... ... ... .. o (%)
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Let x e [0,2] be arbitrary and let ¢ = x/2, therefore ¢ e [0,1], so by using

ternary representation of cthere exists a sequence <c, > such that

25

c S e =012,
SEY
Since x €[0,2],then x=0,20r 0<x<2

If x =0, or 2 then we are done because 0 and 1 € C,,; and

0+ 0=0 also 1+1=2.

Now if x € (0,2), then by (2.3.3 Lemma) we have C many

representation of x.

Let x=a+b=c+c suchthat a,b < (0,1),

Using the ternary representation for a,b,and cwe have
a=Ya;/13,b=>b/3" :a;,b =012V i=123,--

Then x=Ya, /3" +Y.b,/3 =Y ¢, /3 +>c, /3
=3 (e, +¢)/3
If c,=0then a,=b, =0
If ¢, =1then a, =0and b, =2 or
a,=2and b, =0
If ¢, =2 then a, =b, = 2.

Then we get

x=>a,/3 +> b, /3", Such that a, and b, =1 forall 7,
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So > a,/3" and > b, /3 are in the Cantor middle third set.

That is Vx € [0,2] we have x=a + b such that a and b in the Cantor
middle third set.

Therefore [0,2] € C, 3 +C| /3 cor vovvev cvn vt vee v e e (%)
From (*) and (**) we get C, ;+C,,; =[0,2].
2.3.5 Definition
A subset P of R is perfect set if it is closed and dense in itself:

1.e., each point of P is an accumulation point of P; that is: P is perfect in

R ifand only if P = P'. (See [2], p. 216)
2.3.6 Remark
Every closed interval[a, b], a # b is a perfect set.
2.3.7 Proposition
Every non-empty perfect set is uncountable. (See [7], p. 165)
Proof

If P is perfect, it consists of accumulation points, and therefore can

not be finite. Therefore it is either countable or uncountable. Suppose P

was countable and could be written as P = {x,,x,,x;,"--}

The interval U, =(x, —1,x, +1) is a neighborhood of x,. Since x, must be

an accumulation point of P, Therefore there are infinitely many elements

of P contained in U,.
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Take one of those elements, say x, and take a neighborhood U, of x,
such that U,=(x, =0,x, +0) where
o =1/2min{‘x2 - X,

X, —(x; +1)

X, —(x; — l)‘ }. Then the closure

b 5

(U,)1s contained in U, and x, ¢ c/U,. Again, x, is an accumulation point
of P, so that the neighborhood U, contains infinitely many elements of

P.

Select an element, say x;, and by the same argument take a neighborhood
U, of x5 such that closure (U,) is contained in U,and x, ¢ c/U; so x,

and x, are not contained in closure (U;).

Continue in that fashion to find sets U, and points x, such that:

e Closure (U,,,)cU,

e x; isnotcontained in U, forall 0< j<n

e x, iscontained in U,

Now consider the set V' =n( closure (U,) N P)

Since each set (closure (U, ) N P) is closed and bounded, it is compact.
Also, by construction, (closure (U,,,) N P) < (closure (U,) N P).

Therefore, by (1.2.10 proposition),}” 1s not empty. Also x, ¢V because
x, ¢U,,, for all integer numbers n. But V' is non-empty, therefore P is

not countable.
2.3.8 Note

The Cantor middle third set C,,; as well as C,,, is closed and dense

in itself, then it is a perfect set, hence is uncountable.
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Chapter Three

Measure and Cantor Sets
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Chapter Three

Measure and Cantor Sets

Different measurable sets can be seen in mathematics, measurable

sets, non-measurable sets, and measure zero sets. We sow that C, 5 is
uncountable with zero measure but (C,,; + C,,;) has positive measure.

While C,,, and (C,,, + C,,,) have zero measures. Another Cantor set with

positive measure will be studied. Also we will define a set A4, subset of

C,,; with measure zero, but 4 + A4 is non-measurable. Finally we will see

applications of C,,,.

3.1 Measure of Cantor Sets

3.1.1 Proposition

The Cantor set C,,; 1s measurable and has measure zero.

(See [1], p. 64)

Proof

Since C,,; =N4,, then C,,; is a countable intersection of closed

sets, therefore C, ; 1s a Borel set, so C,,; is measurable.

From the construction of C,,; we have for every stage n > 0 we remove

2"! disjoint intervals from each previous set each having length 1/3".

Therefore we will removed a total length of

1

> 2 ~ =%Z (2/3)""

=1/33(2/3)"
n=0
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1 =1
=7

1
3
from the unit interval [0,1].

Then C,,; 1s obtained by removing a total length 1 from the unit interval

[0,1], so wu(I\C,;)=1. Since wu(l)=u(C,;)+ul\C,;), then
H(Cy3)=pul)—pu(I\NCy3)=1-1=0

Therefore the set C,,; is measurable and has zero measure.

3.1.2 Remark

The measure of the C,,; is zero, but u(C,,; +C,,;)#0, since
C3+Cpy3 =10,2] .
3.1.3 Proposition

The Cantor Cis 1s measurable and has zero measure.

Proof

Since C,,, =NF,, that is C,,, is countable intersection of closed

sets, therefore it is Borel set. Hence C,,, is measurable

From the construction of C,,, we have for stage n > 0 we remove 2"

disjoint interval from each previous set each having length (2/4)".

Therefore we will remove a total length of

= 2 2 & 2
2n—1 - = “\n-1
22 i@

M

|
()

L
2
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RIGRERNS
2\1-1/2

from the unit interval [0,1].Then C,,, is obtained by removing a total

length 1 from the wunit interval [0,1]. and w(/\C,,,)=1, Then
H(Cypp)=puld)—u\Cyp)=1-1=0.

Thus C,,, 1s measurable, and has zero measure.

3.1.4 Proposition

If 4 is the set of points in the unit interval [0,1] having a four

expansion without 3's, then A4 has zero measure.
Proof
Take the representation: [0,1]=[0,0.1]w[0.1,0.2] W [0.2,0.3] W [0.3,1]

At first we need to show that, #([0,0.1]\ A)=1/4

Todoso forall xe 4, x:Z% x;, =0,1,2

e Let A4, =[0.03,0.1], since for all ac 4,, a =Z%:a2 =3, then a¢ 4,

so AN A, =¢ and u(A4,)=4"

eLet 4, =[0.003,0.01]U[0.013,0.02] U[0.023,0.03], since for all a e A4,,

a:Z%:% =3 ,thenag A,s0 AN A4, =¢ and ,u(Az):3>!<4_3

e Let 4, =[0.0003,0.001] U [0.0013,0.002] U [0.0023,0.003] U
[0.0103,0.011]L[0.0113,0.012]U[0.0123,0.013] U

[0.0203,0.021] U [0.0213,0.022] U [0.0223,0.023],
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since for all a € 4;, a:Z%:@:?’ , then ag 4, so ANnAd,=¢ ,
and p(A4;)=3"%47".

In general we have 4, is the union of 3"~ disjoint closed intervals each

have length 4"*" and for all aed,, a :Z“%:an+1 =3 , then
ANA, =@ and p(A4,)=3"" 40"

Since p(UA4,)= u(4,),

Then u(A,) =1/4> +3/4> +32 /4% +3° /4> + ...

=1/4> +(3/4°(1+3/4+3% /4% +3° /4% +..)

=1/4% + 3/43( ! j:1/4
1-3/4

Thus £([0,0.1]\ 4) =1/4, By the same way we see that

2#([0.1,0.2]\ A) =1/4, £([0.2,0.3]\ 4)=1/4and u([0.31]\ A)=1/4
Therefore p1(A) = (1) — u(I\ 4)

=1 = [2([0,0.1]\ 4) + 2£([0.1,0.2]\ A) + £([0.2,0.3]\ A) + 2([0.3,1]\ 4)]
=1-[1/4+1/4+1/4+1/4]=0.

3.1.5 Proposition

C,,, +C,,, has measure zero. (See [3] p.790)

Proof

If we prove that 1/3(C,,, + C,,,) has measure zero, then obviously

C,, +C,,, has measure zero. Let xe(C,,, +C,,,), then there exist
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a,b e C,,,such that x=a + b . Let cel/3(C,,, +C,,,), then

1

c=—Xx-= ga + %b . Using base four expansion of a, b and cwith all

1
3
digits of a and b are divisible by 3,then

¢, 1 a; b,
== —+>» —4):a;,b,=03
241 3(241 241)
= L% (a, v b,) /4" a,b, = 0.3, Henes

e ¢, =13(0+0)=0when a,=b,=0
e ¢, =13(0+3)=1when g, =0 and b, =3
e ¢, =133+0)=1when g; =3 and b, =0 or

e ¢;=1/33+3)=2when a;, =b, =3.

1

Therefore c= % a+ %b = Zz—’l :c; =0,1,2. Hence ¢, #3 for all
i=1,2,3,---. Then unless c is a quaternary rational its expansion will never

use the digits three, and ( by 2.2.3 remark )the expansion of ¢ is unique.

Let S be all quaternary rationals in 1/3 (C,,, + C,,,).

Thus for all x e 1/3(C,,, +C,,,)\S, x=2%:xi20,1,2 . Since

x; #3 for all i=1,2,3,---Then by (3.1.4 proposition) 1/3(C,,, +C,,,)\S

has measure zero, and since all elements in S are quaternary rational, then

S cQ, hence § is countable, then 1/3(C,,, + C,,,) has measured zero.

Therefore C,,, + C,,, has zero measure.
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3.1.6 Remark

The measure of the Cantor middle third set C,,; is zero and its sum

has positive measure, while the measure of the Cantor middle half set and

its sum have zero measure.
3.1.7 Remark

There exists a Cantor set with positive measure. This can be

constructed as follows:

Start with the unit interval for 7 =[0,1] and choose a number

0<p<l.Let

p L, p
4°2 4

Which has measure p/2. Again, define C, =17\ R,. Now define

2-p 2+p 14-p 14+p
R - 5 v s
2 =( 16 ° 16 ) 16 16 )

Which has measure p/4; continue as before, such that each R, has

P .

measurez—k ; note again that all the R, are disjoint. The resulting Cantor set

has measure

w\JR)=1-3 u(R,)=1-3 p2 " =1- p>0

n=1 n=1 n=1
Thus we have a continuum many of Cantor sets of positive measures.

(See [12])
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3.1.8 Note

Clearly Cantor sets can be constructed for all sorts of "removals", we
can remove middle halves, or thirds, or any amount 1/7, » > 1. All of these

Cantor sets have measure zero. The key point is that:

If at each stage we remove 1/7 of each of the remaining intervals, the

results is a set of measure zero. The favored examples are the Cantor sets

which constructed by Georg Cantor " C,,, , and C,,;", are constructed for

the case » =2 and » =3 respectively.

However it is possible to construct Cantor sets with positive measure
as well; the key is to remove less and less as we proceed, for example;
remove 1/3 then 1/3% of each remaining parts then 1/3° of each of

remaining parts ... and so on. The result is a set of positive measure

These Cantor sets have the same topology as the Cantor set and the same

cardinality but different measure.
3.2 Measure Zero Set with Non-Measurable Sum

From previous studies we notice that there exists a measure zero set

so that its sum also has zero measure, and a set with measure zero but its

sum has positive measure such as C,,, and C,,; respectively. In this

section we will discuss a special subset 4 of C,,; that has measure zero

with non-measurable sum.
3.2.1 Definition

We say that B < X is a Bernstein set (in X ) provided B and X \ B

intersect every non-empty perfect subset of X . (See [3], p.2)
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3.2.2 Proposition

Any closed set B in R can be written as B=P U D where P is

perfect and D 1is countable. (See [13], p.3596)

Proof

If B is countable then take the perfect set P=¢, and D =B then

we are done. Otherwise

Let P={xeB:Ve>0,(x—¢,x+¢&)N B 1is uncountable} and

D = B\ P. First need to show that P is closed set,

Let (x,) be any convergent sequence to x such that x, € P forall ne N,

since P < B and B is closed, then x € B. Let £ >0 be arbitrary, then there
exists j>0 such that x;, e(x-¢&x+&)NB, since x;, P, and

(x—¢&,x+¢) 1s neighborhood of x;, therefore (x—¢&,x+&)NB is

uncountable., So x € P, then P is closed.
Now need to prove P is dense in itself,

Let xe D, then we can find two rational numbers a and b such that

a<x<b and (a,b) N B is countable. Since there are only countably many
open intervals {O, },_, with rational end points, then there exist countable
numbers of open intervals O, such that O, N Bis countable, so
DcU,(0O, nB). But countable union of countable set is countable,
therefore D 1is countable set. Let x € P be arbitrary, then for all £>0
(x—&,x+¢&)N B is uncountable, and since D is countable therefore
(x—&,x+&)NnB\D is also uncountable. Since P=B\D, then

(x—&,x+ &) P 1is uncountable and so x is a cluster point, consequently

P is dense in itself.
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3.2.3 Proposition

Let P be a nonempty perfect set, then for any y € P, (—o0, y] " P or

[y,0) N P is a perfect set.

Proof

Let P be any nonempty perfect set. Let y € P be arbitrary and
define A=PnN(-w,y], B=PnN[y,©), for all te 4 and t<y, te A
because if < y, then for any ¢>0 (¢ —¢,t+ &) N (-0, y)=(a,b)where

b=min{y,t +¢&} and a=t — ¢, then ¢ € (a,b),

Hence (a,b)n P=(t—¢e,t+e)N (-0, y)NPc(t—¢c,t+e)NA
Since t € P’ then (a,b)) " P\{t}#¢p, sote A’

Similarly forall fe B and t >y, te B'.

If y¢ A" and y ¢ B' then there exists &,,&, >0 such that
(y—eny+te)nAN{yi=¢ and (y —&,,y+&,) N B\{yj=¢

Let £ =min{e,,&,} then, (y -,y +&)NP\{y}=¢,but P=40U B, then
(y=&,y+e)n(AVB)\{y;=9¢.

Therefore (y—¢,y+&)n p\{y}=¢ and this is a contradiction because

yeP=P .Then ye A" or B'.

If ye A" then A= A" hence A4 is perfect and if y € B’ then B=B' hence

B is perfect, thus 4 or B must be perfect.
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3.2.4 Corollary

If P is a non empty perfect set, then { P’ P:P' non empty and
perfect} is uncountable. And for every y € P we can find a perfect subset

p, of P suchthatforall x=y P #P, .

3.2.5 Lemma

Every Bernstein subset of an interval / of real numbers has inner

measure Zero and th€ same outer measure as /.
Proof:

Let / be a non empty open or open half interval in R, and B be any
Bernstein subset in /. Since for any non empty open or open half interval
I there exists a closed interval [a,b] subset in / where a # b, and since /
is perfect set. Then by (3.2.3 proposition, and 3.2.4 Corollary) there exist

uncountably many perfect subsets of /.

Let { p; :£<c} be the family of all non-empty perfect subset of /.

If the inner measure of B is not zero then by (1.4.10 note) B must contain
a closed set of positive measure, since the measure of any countable set is
zero and the closed set with positive measure is uncountable set, so by
(3.2.2 proposition) this closed set must have a non empty perfect subsets.

Then there exists & < € such that p. < B, so p. N"(/\B)=¢ and this

contradicts that B is Bernstein subset in /.
Then B has inner measure zero.

Now if B dose not have the same outer measure as /, then by (1.4.9
proposition) U, (I\B)+ u" B> u,((I\B)U B)=u(l). Therefore
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w,(I\B)> u(I)— " (B)>0, that is ( /\ B ) has positive inner measure,

then there exists a closed subset in ( /\B ) with positive measure.

Therefore this closed set contains a non empty perfect subset. Then there
exist § <csuchthat p, c ( I\B )and p. # ¢, therefore p. "B = ¢

and again, this is contradicts that B is Bernstein subset in /, thus B must
have the same outer measure as /.

3.2.6 Theorem

Every Bernstein subset of an interval in R is not measurable.
Proof

Let B be any Bernstein subset in an interval /. Then by (3.2.4
lemma) u,(B)=0, and 4" (B)=x"(I). Since wu (I)>0, then
u,(B)# 1" (B). Hence B is non-measurable.

3.2.7 Lemma

Let x€[0,2]. If x/2 has infinitely many ones in its ternary
expansion, then there are ¢ many representations of x as the sum of two

Cantor-set elements; otherwise, x has only finitely many such

representations and all of the elements of C,,; used to represent x are

equivalent to x/2. (See [3], p.788)

Proof

Since every element of C,,; has a ternary expansion consisting of
only even digits, then for any x € [0,2] = C,,; + C,,; there exists

a,beC,,; such that x =a + b . Let c=x/2 then c is the average of a



and b. If ¢,,a,,b, are the i"

X=c¢c+c=a+ b,then

Therefore ).

© 2c;, —(a; +bl.)_

i=1 3

So3| (2¢;, —(a; + b;)Vi

Then for all i we have

ec;,=0anda, =b, =0,

1

ec;=1and q,=0,b, =2,

ec.=land aq;=2,b,=0,0r

ec,=2and a, =b, =2

37
digits of ¢, a, b

0

respectively, since

If ¢ is ternary rational, then the digits of ¢ must end in either a sequence

of zeros or a sequence of two's that is from the property of ternary

rational. In either case the digits of @ and b must do likewise since when

¢; =0 we have a; =b;, =0 and when ¢, =2 we have a, =D, =2.

And so they are also ternary rationals therefore a ~ b ~ ¢, since all

ternary rational are equivalent.

Now consider the case ¢ is not a ternary rational, so there is a unique

ternary expansion of c.

Let us construct the numbers a and b using only even digits for each c;

that is zero or two, we must have ¢; =a; =b,. But for each ¢; =1, we



38

have a choice either a;, =0,b, =2 or a; =2,b, =0, two choice for
a, & b, . Thusif k € {0,1,2,--- ,n} is the number of digits in ¢ that
have the value 1, then there are 2% possible choices for the pair a,b . In

particular if ¢ has infinitely many ones in its expansion then there are

‘2N ‘ = C many representation forx. If there are only finitely many ones

then the digit of a, b, ¢ will all agree on a tail end. Thatis a, b, ¢
disagreeing on only finitely many digits.
3.2.8 Proposition

There 1s a set A< (C,,; such that 4+ A4 1s Bernstein in
[0,2]=C,,; + C,,5, hence 4 + A4 1s non-measurable. (See [3], p.789)
Proof

Let R, be the set of elements of [0,2] that can be expressed in C
many ways as the sum of elements of C,,;. And R, be the elements that

can be expressed in only finitely many ways. We can construct R, and R,

by (2.3.7 lemma).

Let { p. : & <c } be the family of all non-empty perfect subsets of [0,2].
We will find an 4 ¢ C,,; such that each p, intersects both 4+ A4 and its

complement. Construct a net

(<ag,bg,ce,d, > CxCxp,xp.:E<C)
Such that for each £ <c,
(*) cp =a; +b:and D, N (Agy + 4:))=¢

Where 4, :Un<§{an’bn} and D, ={d, :n <&},
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This will ensure that 4 = A, = UMC {a,,b,} has the desired properties,

since then

{c. & <ct={a,+b.:a,,b.edforall pg<clcA+4
And 4+ 4 < [0,2]\ D, then

{cg : & <C}gA+AgR\D§,therefore
{cp:é<ccp, A+ Adand Dy < p, N ([0,2]\ A+ A)

That is each p. intersects both 4 + A4 and its complement. So 4+ A4is a

Bernstein set, hence non measurable.

To make an inductive step, assume that for some « < ¢ we have already

constructed a partial net which satisfies (*) for all & <.

Now we need to show that we can construct a partial net which satisfies

(*) for {=a. We first choose a,,b,,c, such that a, +b, =c, and

a’-a’ra

neither a, nor p_isinD, — A4,

We decide two cases.

Case 1: p, intersects R, in a set of cardinality C. Since ‘(Pa N Ry)\ D‘ =C,

then choose ¢, € (P, "R,)\ D. And since c, € Rywhere R, is the set of
elements of C,,; + C,,; that can be expressed in C many ways as the sum

of elements of C, 5, and |D, \ 4,|< c, then there exist a,,b, in C,,5 such

that a, + b, =c, and neither a, nor p_isinD, — A4,
Case 2: p. intersect R, in a set of cardinality C. First choose

¢, € py "R, \D,such that ¢, /2 is not equivalent to any element of

since

a

D, - A, . Then choose a,,b, € C,,; such that a, +b, =c
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by (2.3.7 lemma) both a, and b, are equivalent to c, /2, neither of them
in D, —A,,andsince ¢, /2 € R, then it is not equivalent to any element

of D,-A4, . Our construction 1is finished by choosing
da € Pq \(A§+1 + A§+1)

That means for each & < o wehave D, N (4;,, + 4z, ) =9

Then there exists a set 4 < C,,; such that each p, intersects both 4 + 4

and its complement then 4 + 4 is Bernstein in [0,2]=C, 5 + C, 5.

3.3 Applications of the Cantor middle half set C,,

3.3.1 Lemma

Let U be the set of elements of [0,1] that use only zeros and twos in

one of its base four expansions, and let V' be the set of elements that use

only zeros and ones. Then U + V' =[0,1].

Proof

Let c€[0,1], then ¢=0,1 or 0<c<1.If 0<c<]1 then there exists C

many representations ¢ =u + v such that u,v € (0,1).

If ¢;,u,,v, are the i digits of c,u, and v respectively then

u . IRV
=2 S+

4 i-1 4 is1 4!

0 C,‘ ©
2

i=1 -
Therefore 4| ¢; — (u; +v,)

Then we can choose u; and v, as follows

When ¢; =0, take u, =v, =0
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When ¢; =1, take u;, =0,v, =1

When ¢; =2, take u;, =2,v;, =0
When c; =3, take u, =2,v, =1

Then we get uelU and velV that is [0]]]cU+V and we have
U +V c[0,1] directly, Then U +V =[0,1].

3.3.2 Lemma

1 :
C ), +EC1 ,» =[0,1.5]. Furthermore, each element in [0,1.5] can be

expressed as such a sum in at most two ways, and except for a countable

set, each element in [0,1.5] can be expressed in a unique way.
(See [3], p.791)
Proof

We have C,,, +%C1/2 c[0,1.5] directly ... ... ... ... ... (@)

Let x<[0,1.5] then %xe[O,l], therefore by (3.3.1 lemma) there exists
ueU and veV such that %x:u +v, and if u,,v, are the i” digits of u

and vrespectively, then

%x - Z% + Z% such that u, €{0,2} and v, € {0,1} forall i=12,---
3
M 13,
Therefore x = Z 24l, + EZ 41,’ u; €{0,2}and v, € {0,1} foralli=12,---

a, lab
=Y —Lt+->-—"": a;,b, {03} forall i=12,--
RS R
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1
=a+b suchthat aeC,,,, beECI/Z
1
Then x e (C,,, +EC1/2)’ and

1 N
[01.51 (Ciyz 5 Cuiz) woe v voe o (i)

Therefore By (i) and (i) C,,, + %Cuz =[0,1.5]. This proves the first part

of the theorem.

Now fix an x in [0,1.5], then there exist a € C,,, and b G%Cl/zsuch

that x=a+b.Let ¢ = 3x = za + 3b
3 3 3

Since %a = %Z % : a; €{0,3}, then %azZ% : a; €{0,2} for all

i=1,2,---. Therefore by using the fact that all of digits of «a are divisible by

: 2 : . .
three, the computation of 3 a can be carried out digit-wise and results in an

element of U

Similarly since be%Cm, then %b: %* ;—Z b"l. . b, €{0,3}

Therefore %b: > ii. : b, €{0,1} forall i=1,2,---. Hence i—b eV

1

Since ¢ €[0,1], then each such ¢ has at most two such representations and

except when cis a quaternary rational “and the quaternary rational set is

countable”, therefore each such ¢ has a unique representation.
b
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3.3.3 Lemma

1
Let A=C,,, U 5 C,,,, then there are two non-empty perfect subsets

P and O of A4 such that every element of P+ Q can be expressed

uniquely as the sum of two elements in 4. (See [3], p.791)
Proof

A+ A is the union of three closed sets

1 1 1 ”
Ci» +C1/2,§Cl/2 +EC1/2’ and C,,, +§Cl/2 by (3.1.5 proposition),

The first and second sets both have measure  zero.
SinceC,,, < [0,1/4]U[3/4.1], then
C,, +Ci,, c([0,1/7410[3/4,1]) +([0,1/4]U[3/4.1])

=[0,2/4]U[3/4,5/4]1U[6/4,2]

Therefore (5/4,6/4)N(C,), +C,,,)=¢. And since
(1/2¢,,, +1/2C,,,)<[0,1], then (5/4,6/4)(1/2C,,, +1/2C,,,)=¢

Hence there exists an open interval / < [0,1.5] that is disjoint from

C,, +C,,, and %Cl/z +%Cl/2. By (3.3.2 lemma), the third set is the

interval [0,1.5].

Furthermore, by (3.3.2 Lemma) we can partition [0,1.5] into two sets X

and Y such that X is countable and every element in ¥ has a unique

representation as a sum of two elements, one in C,,, and the other in

1 : .
ECI/Q. Choose an x in Y N/ and let x = a + b with ae(C,,, and

1
be—-C,, ,.
5 i
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Now choose a neighborhood j of a and a neighborhood %4 of b small

enough that the closure c/(j + k) of j+ k is a subset of /.

Let R be the intersection of 4 with cl(j) and S be the intersection of A
with cl(k), since A4 , cl(j), and c/ (k) are perfect sets then
AN cl(j) and A N cl(k) are perfect sets. Therefore both R and §

are non-empty perfect subsets of 4.

Let D be the countable set consisting of all numbers used in the

representations of elements of X, and let P and O be non-empty perfect

subsets of R\ D and S\ D respectively. Fix x € P + O ; we must show

that x has a unique representation as a sum of elements of A. Since
xe(R\D)+ (S \D) then there exist ac R\D and b€ § \ D with

xX=a+b.

Since R < c¢l(j) and S < ¢/ (k), then

(R\D)+(S\D)ccl(j)+cl(k) < I.Therefore xel

But then x is not in the first two pieces of A4+ A4, that is true since [ is

disjoint from the first two pieces.

So it must be that one of the element a,b is in C,,, and the other in

1 . : .
ECW. Since a and b are notin D,x cantbein X .

Therefore x € Y and we are done.

3.3.4 Theorem

There is no subset Bc 4=C,,, Ul1/2C,,, such that B+ B 1is
Bernstein in [0,1.5]. (See [3], p.791)
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Proof

Suppose that such a set B exists. Let P and Q be as in the previous
lemma. B can’t contain a non-empty perfect subset, since that would imply
B+ B also contains a non-empty perfect subset of [0,1.5], and that is
contradict B + B is Bernstein in [0,1.5]. Therefore there is some element x
in P\ B. Then x + Q is a perfect subset of P+ Q. And so each element of
x + Q has a unique representation as a sum of element in A4 that is since
x+ Q 1is subset in P+ Q which has a unique representation as a sum of
element in 4. But then since x ¢ B no element of x + Q0 isin B+ B. Then
we get a perfect subset x + Q of [0,1.5] which disjoint from B+ B. So

B + B is not Bernstein in [0,1.5], which is a contradiction.
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