Numerical Methods for Solving Lienard’s Equation

dc.contributor.authorAldalou, Hiyam Ahmad
dc.date.accessioned2022-09-21T05:49:42Z
dc.date.available2022-09-21T05:49:42Z
dc.date.issued2020-10-08
dc.description.abstractIn this thesis, we focus on the numerical handling on one of the most important equation in physics, namely, the Lienard equation. This equation has a wide range of applications in both science and technology. The numerical techniques used to approximate the solution of the Lienard equation are: the Variational Iteration Method (VIM), the Variational Homotopy Perturbation Method (VHPM) and the Adomian Decomposition Method (ADM). The efficiency and the accuracy of these numerical techniques have been proved by solving some numerical examples. Numerical results show clearly that the variational iteration method is one of the most powerful numerical technique for solving the Lienard equation in comparison with other numerical techniques.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11888/17269
dc.language.isootheren_US
dc.publisherجامعة النجاح الوطنيةen_US
dc.supervisorNaji Qatananien_US
dc.titleNumerical Methods for Solving Lienard’s Equationen_US
dc.title.alternativeحلول عددية لمعادلة ليناردen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Numerical-Methods-for-Solving-Lienards-Equation.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:
Full Text
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections