Computational Methods for Solving Nonlinear VolterraIntegro- Differential Equation

Loading...
Thumbnail Image
Date
2019-12-01
Authors
ابو ثابت, فرح
Journal Title
Journal ISSN
Volume Title
Publisher
جامعة النجاح الوطنية
Abstract
في هذه الأطروحة ركزنا على حل معادلة فولتيرا التكاملية التفاضلية الغير خطية لأنهاتحتوي على مجموعة واسعة من التطبيقات في الفيزياء الرياضية، والهندسة، والميكانيكا، والكيمياء، وعلم الفلك، وعلم الأحياء، والاقتصاد، ونظرية الإمكانات. بعد ان قدمنا بعض التعاريف والأساسيات التي نحتاجها، ركزنا اهتمامنا بشكل أساسي على الطرق العددية لحل معادلة فولتيرا التكاملية التفاضلية الغير خطية. هذه الطرق هي: طريقةالتحويل التفاضلي مع كثيرات الحدود الأدومية (DTM) طريقة تحليللابلاس أدوميان،(LADM) وطريقة التكرارالمتغير(VIM). حيث سيتم عرض الإطار الرياضي لهذه الطرق العددية مع خصائص التقارب الخاصة بها. حيث سيتم توضيح كفاءة هذه الطرق العددية من خلال بعض الأمثلة العددية. تظهر النتائج العددية بوضوح أن طريقة التكرار المتغير هي واحدة من أقوى التقنيات العددية لحل معادلة فولتيرا التكاملية التفاضلية الغير خطية بالمقارنة مع التقنيات العددية الأخرى بناءً على الأمثلة المستخدمة.
Description
Keywords
Computational Methods for Solving Nonlinear VolterraIntegro- Differential Equation
Citation