An-Najah National University

Faculty of Graduate Studies

Computational Methods for Solving Nonlinear

Volterra Integro - Differential Equation

By
Farah Khaled Shehadah Abu Thabit

Supervisor

Prof. Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Computiational Mathmatics, Faculty of

Graduate Studies, An-Najah National University, Nablus-Palestine.
2019

Computational Methods for Solving Nonlinear

Volterra Integro - Differential Equation

By
Farah Khaled Shehadah Abu Thabit

This Thesis was defended successfully on 1/12/2019 and approved by:

Defense Committee Members Signature

- Prof. Naji Qatanani [SUPEIrVISOr rriiriieenenenns
- Dr. Mahmoud Almanassra / External examiner — ...cicivveiiniennenns

- Dr. Adnan Daraghmeh [Internal examiner .iieeieieiiniinnens

ii
Dedication

‘)'.'1:3:2; “j);; L;; L__.r’.)‘l Lﬁ d.\ﬁ‘\)ﬂ\ < ca.'ajj “ujSi N L.éj QL«.\M\} “Lr\la.\ai UAS “
- “legle dgmaall hlhal Tl o ! g

iv

Acknowledgments

All thanks to God who gave me the strength and determination to

implement this achievement.

| would sincerely Thanks to Professor Naji Qatanani for guidance,
encouragement and supervision during this study and the preparation of the

thesis.

also,l would like to record my special thanks to my parents " Khaled &
Nisreen " and to my sisters "Mahaba, Nour, Menat-Allah and Layan and for
my only brother Mutaz for their support, encouragement and great efforts

in all stages of my life .

In the end, thanks to all the people who helped me in this work.

\Y

B

tolsind) Jead) ALyl adie Lol adigal) Ul

Computational Methods for Solving Nonlinear Volterra Integro -

Differential Equation

adll L) i Lo bl cpalall gaga 215 o L) Al oda agle el L oy
Ciny) Agale Aay 6f Jal U8 (e a0y o e eia sl o JSS AL 138 s cays Lia

oAl Ading o adad duse gl gl e

Declaration

The work provided in this thesis, unless otherwise referenced, is the
researcher’s own work, and has not been submitted elsewhere for any

degree or qualification.

Student’s Name: tdlal) acl
Signature: racd gl
Date:

:t._ul:d\

Vi

Table of Contents

No. Content Page
Dedication i
Acknowledgments \%
Declaration v
List of Tables IX
List of Figures Xi
Abstract Xii
Introduction 1

Chapter One: Mathematical Preliminaries 4

1.1 | Classification of Nonlinear Integro -Differential Equations 5

1.1.1 | Types of nonlinear integro - differential equation 5

112 Singularity of nonlinear integro - differential equation !

1.2 | Systems of nonlinear Volterra Integro - Differential 9
Equations

1.3 | Systems of nonlinear Fredholm Integro - Differential | 10
Equations

1.4 | Kinds of kernel 10

1.5 | Existence of the solution of nonlinear Volterra integro- 12
differential equation

1.6 | Uniqueness of the solution of nonlinear Volterra integro- | 21
differential equation

1.7 | Laplace Transforms 25

1.7.1 | Properties of the Laplace transforms 26

1.7.2 | Convolution theorem 27

Chapter Two: Computational Methods for Solving 28
Nonlinear Volterra Integro-Differential
Equation

2.1 | Differential transform method with Adomian polynomials 28
(DTM).

2.2 | Modified Laplace Adomian Decompostion Method 34

2.3 | The Variational iteration method (VIM). 37

Chapter Three: Numerical Examples and results 37

3.1 | The numerical realization of equations (3.1) — (3.2) Using | 41
Differential Transform Method with Adomian
Polynomials (DTM)

3.2 | The numerical realization of equation (3.1) — (3.2) Using | 45

the Modified Laplace Adomian Decompostion Method
(LADM)

Vii

3.3 | The numerical realization of equation (3.1) — (3.2) Using| 50
The Variational Iteration Method (VIM)

3.4 | The numerical realization of equation (3.3) — (3.4) Using| 55
Differential Transform Method with Adomian
Polynomials (DTM) .

3.5 | The numerical realization of equation (3.3) — (3.4) Using | 57
Variational Iteration Method (VIM).

3.6 | The numerical realization of equation (3.5) — (3.6) Using | 60
the Modified Laplace Adomian Decompostion Method
(LADM)

3.7 | The numerical realization of equation (3.5) — (3.6) Using| 62
the Variational Iteration Method (VIM).

3.8 | The numerical realization of equation (3.7) — (3.8) Using | 65
the Variational Iteration Method (VIM).

3.9 | The numerical realization of equation (3.7) — (3.8) Using| 67
the Modified Laplace Adomian Decompostion Method
(LADM).

3.10 | The numerical realization of equation (3.7) — (3.8) Using | 69
the Differential Transform Method (DTM).

Conclusions 72
References 73
Appendix 79
Matlab Code for Differential Transform Method for | 79
Example 3.1

Matlab Code for Differential Transform Method for | 80
Example 3.2

Matlab Code for Differential Transform Method for | 82
Example 3.4

Matlab Code for Modified Laplace Adomian Decompostion | 85
Method for Example 3.1

Matlab Code for Modified Laplace Adomian Decompostion | 86
Method for Example 3.3

Matlab Code for Modified Laplace Adomian Decompostion | 89
Method for Example 3.4

Matlab Code for Variational Iteration Method for Example | 92
3.1

Matlab Code for Variational Iteration Method for Example | 95
3.2

Matlab Code for Variational Iteration Method for Example | 97

3.3

viii

Matlab Code for Variational Iteration Method for Example 100
3.4
gadlall <«

iX

List of Tables

No. Title Page

3.1 | The exact and numerical solutions of applying Algorithm 3.1 | 40
on equation (3.1)

3.2 | The exact and numerical solutions of applying Algorithm 3.2 | 45
on equation (3.1)

3.3 | The exact and numerical solutions of applying Algorithm 3.3 | 49
on equation (3.1)

3.4 | The exact and numerical solutions of applying Algorithm 3.1 | 52
on equation (3.2)

3.5 | The exact and numerical solutions of applying Algorithm 3.3 | 54
on equation (3.2)

3.6 | The exact and numerical solutions of applying Algorithm 3.2 | 57
on equation (3.3)

3.7 | The exact and numerical solutions of applying Algorithm 3.3 | 59
on equation (3.3)

3.8 | The exact and numerical solutions of applying Algorithm 3.3 | 62
on equation (3.4)

3.9 | The exact and numerical solutions of applying Algorithm 3.2 | 64
on equation (3.4)

3.10 | The exact and numerical solutions of applying Algorithm 3.1 | 64

on equation (3.4)

X
List of Figures

No. Title Page
(3.1)a |The exact and numerical solutions of applying| 44
Algorithm 3.1 on equation (3.1)
(3.1)b | The error resulting of applying Algorithm 3.1on| 44
equation (3.1)
(3.2)a | The exact and numerical solutions of applying| 49
Algorithm 3.2 on equation (3.1)
(3.2)b | The error resulting of applying Algorithm 3.2on| 49
equation (3.1)
(3.3)a |The exact and numerical solutions of applying| 53
Algorithm 3.3 on equation (3.1)
(3.3)b | The error resulting of applying Algorithm 3.3on| 53
equation (3.1)
(3.4) | The exact and numerical solutions of applying 54
all Algorithms on equation (3.1)
(3.5)a |The exact and numerical solutions of applying| 56
Algorithm 3.1 on equation (3.2)
(3.5)b | The error resulting of applying Algorithm 3.1on| 56
equation (3.2)
(3.6)a |The exact and numerical solutions of applying| 58
Algorithm 3.3 on equation (3.2)
(3.6)b | The error resulting of applying Algorithm 3.3on| 58
equation (3.2)
(3.7) | The exact and numerical solutions of applying 59
all Algorithms on equation (3.3)
(3.8)a | The exact and numerical solutions of applying| 61
Algorithm 3.2 on equation (3.3)
(3.8)b | The error resulting of applying Algorithm 3.2on| 61
equation (3.3)
(3.9)a |The exact and numerical solutions of applying| 63
Algorithm 3.3 on equation (3.3)
(3.9)b | The error resulting of applying Algorithm 3.3on| 63
equation (3.3)
(3.10) | The exact and numerical solutions of applying 64
all Algorithms on equation (3.2)
(3.11)a | The exact and numerical solutions of applying| 66

Algorithm 3.3 on equation (3.4)

Xi

(3.11)b | The error resulting of applying Algorithm 3.3on| 66
equation (3.4)

(3.12)a | The exact and numerical solutions of applying| 68
Algorithm 3.2 on equation (3.4)

(3.12)b | The error resulting of applying Algorithm | 68
3.2onequation (3.4)

(3.13)a | The exact and numerical solutions of applying| 70
Algorithm 3.1 on equation (3.4)

(3.13)b | The error resulting of applying Algorithm | 70
3.1onequation (3.4)

(3.14) | The exact and numerical solutions of applying 71

all Algorithms on equation (3.4)

Computational Methods for Sol)\(/lilng Nonlinear Volterra Integro -
Differential Equation.
By
Farah Khaled Shehada Abu Thabit
Supervisor

Prof. Naji Qatanani
Abstract

In this thesis we focus on the numerical treatment of the nonlinear Volterra
integro - differential equation. This equation has wide range of applications
in mathematical physics, engineering, mechanics, chemistry, astronomy,

biology, economics and potential theory.

After introducing some definitions and important concepts of this equation,

we will focus our attention mainly on the numerical methods for solving

the nonlinear Volterra-integro differential equation. These methods are:
Differential Transform method with Adomian polynomials (DTM),
Modified Laplace Adomian Decompostion Method (LADM) and the

Variational iteration method (VIM).

The mathematical framework of these numerical methods together with
their convergence properties will be presented. To demonstrate the
efficiency of these numerical methods, we construct some numerical
examples. Numerical results show clearly that the Variational iteration

method (VIM) is the most efficient numerical technique for solving the

xiii
nonlinear Volterra integro - differential equation in a comparison with the

other numerical techniques.

Introduction

The Volterra integro-differential equation was initiated by Volterra in
1884. It appears in a variety of applications in many fields including
continum mechanics, potential theory, geophysics, characterizing many
social and many physical applications such as glass forming Process, nano
hydrodynamics, heat transfer and all the diffusion process in general. In
addition, this equation has an important role in neutron diffusion and
biological species coexisting together with increasing and decreasing rates
of generating, and wind ripple in the desert. More details about the

applications of these equations can be found in [21, 32].

Nonlinear phenomena has a fundamental role in various fields of science
and engineering. The nonlinear models of the real life problems are still

difficult to solve either analytically or numerically.

There has been much attention devoted to the search for better and more

efficient solution methods for determining solution of nonlinear models

[3].

There are many several analytical and numerical methods for solving
integro - differential equations such as, the Adomian decomposition
method, the direct computation method, the series solution method, the
successive approximation method and the conversion to equivalent
differential equations. However, these analytical methods are not easy to

use and require huge calculation [36-37]. Alternatively, integro-differential

2
equations can be solved using many numerical methods such as the
Legendre wavelet method [33], the Haar wavelet method [25], the
linearization method [34], the finite difference method [39], block-pulse
functions [8], the Taylor polynomial method [9, 24] and the differential

transform method [1, 2, 4, 5].

In recent years, much work has been concentrated on the solutions of
Volterra integro-differential equations. For example in [32] the authors
used the decomposition method for solving some nonlinear integro-
differential equations that arise as model equations for describing turbulent
diffusion. In addition, they gave a comparison between the implicit Runge
Kutta method and the decomposition technique. In [40] the authors
introduced a multi-grid method for solving the nonlinear Urysohn integral
equation. Also, in [37] it was shown that the modified decomposition
method for mixed nonlinear Volterra -Fredholm integral equations
combined with the noise terms phenomena may provide the exact solution
by using just two iterations. Moreover, Wazwaz in [37] implemented the
modified decomposition method, where he obtained numerical solutions in
a rapidly convergent series with components that are elegantly computed.
In addition Sweilam [34] used The variational iteration method (VIM) and
nonlinear boundary value problems for 4th order integro - differential
equations, where Variational Iteration Method is simple and yet a powerful

method for solving integro-differential equations [35].

3

In this work, numerical simulations with different types of nonlinearities
will be treated using some numerical techniques namely, Differential
Transform of nonlinear integro-differential equation method with Adomian

polynomials, Modified Laplace Adomian Decompostion Method (LADM)

And the Variational Iteration Method (VIM). In addition, a comparative
study to examine the performance of these methods for solving integro -
differential equations will be carried out. This can be realized by solving

some numerical examples using Matlab software.
This thesis is organized as follows:

Chapter one introduces some basic concepts and definitions for the
nonlinear integro - differential equations. In chapter two, some numerical
methods namely, Differential transform of nonlinear integro-differential
equation method with Adomian polynomials, Modified Laplace Adomian
Decompostion Method (MLADM) and the Variational Iteration Method
(VIM), will be addressed. Some numerical examples and results are

presented in chapter three and conclusions have been drawn.

4

Chapter One
Mathematical Preliminaries

Definition (1.1) [38]

An integro - differential equation is the equation in which unknown
function q(x) appears under an integral sign and contains ordinary
a"q

derivative g™ (x) = — m=123,..

The most standard form of the nonlinear integro-differential equation

IS given as:
g(x)
q™(x) = h(x) + 2 j B(x, 1)S(q(®))dt, (1.1)

m(x)

Where g™ (x) is the n™ derivative of the unknown function g (x) that will
be determined , h(x) is known analytic function, B(x,t) is a known
function of two variables x and t called the kernel of the integro-
differential equation, A is parameter “complex or real ” g(x) and m(x)
are limits of integration that may be both constants, variables or mixed,

and S(q(t)) is a nonlinear function.

Since equation (1.1) combines differential operator and integral operator,

it is necessary to define some initial conditions ¢ (0), 0 <k <n-1

for the determination of the particular solution q(x) .

Definition (1.2) [38]: Linearity:

The integro-differential equation is called linear, if the unknown function
q(x) inside the integral sign has exponent equal one. Otherwise if the
unknown function gq(x) has exponent other than one or contains nonlinear
functions of g(x) then the integro-differential equation is called nonlinear,

for example, the integro-differential equations

X
qP(x)=3-x2+e*+ j (x — t)g?(t)dt
0

and

X
g®P(x) = x — x%e* + j e*tsinh q(t) dt
0

are a nonlinear integro-differential equations of the second kind.

1.1 Classification of Nonlinear Integro-Differential Equations
1.1.1 Types of Nonlinear Integro-Differential Equations

There are different kinds of nonlinear integro-differential equations:
1. Volterra Nonlinear Integro-Differential Equation

The Volterra nonlinear integro-differential equation of the second kind

appears in the form:

g™ (x) = h(x) + ijB(x, £)S(q(t))dt, (1.2)

6
where the lower limit of integration is constant and the upper limit is

variable.
2. Fredholm Nonlinear Integro-Differential Equation

The Fredholm nonlinear integro-differential equation of the second kind

has the form:

b
4™ (x) = h(x) + A j B(x, 0S(q(0)dt, (1.3)

where the lower and the upper limit of integration are constant.
3. Volterra-Fredholm Nonlinear Integro-Differential Equation

The Volterra - Fredholm nonlinear integro - differential equation of the

second kind takes two forms, namely:
q™ (x) = h(x)

x b
wy j B,(x, 0)S(q(D)dt + 1, j B, (6, 0S(q©)de (1.4)

a a

and

g™ (x,t) = h(x,t) + ijf B(x,t,r, s)S(q(r, S))drds,
0 Ja

(x,t)e Q x [0,T] (1.5)

7
where h(x,t) and B(x,t,r,s) are analytic functions, D = QX [0,t]
and Q is closed subset of R™, n=1,2,3. It is interesting to note that
(1.4) contains disjoint Volterra and Fredholm integrals, however (1.5)
contains mixed integrals such that the Fredholm integral is the interior one,
and Volterra is the exterior integral. Other derivatives of less order may

appear as well.
Definition (1.3)[37] : Analytic function:

A function is said to be analytic if and only if its Taylor series about X

converges to the function in some neighborhood for every X, in its domain.
Definition (1.4) [37] : Homogeneity:

If h(x) is identically zero in the nonlinear integro-differential equation of

the form:

gx)
a™ () = h(x) + 4 j B(x,0S(q(D)dt,

m(x)
then it is called homogeneous, otherwise it is called nonhomogeneous.
1.1.2 Singularity of Nonlinear Integro - Differential Equation

When one of the limits m(x) or g(x) or both are infinite or when the
kernel becomes infinite at one or more points within the integration range
then the equation is singular, for example, the integro - differential

equations

https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Neighborhood_(topology)
https://en.wikipedia.org/wiki/Domain_of_a_function

8
1P =h +2 [BeOS(aO)de

— 00

and

1
(x —)=

q™(x) = h(x) + ij S(g(t))dt, 0<x<1
0

are a singular nonlinear integro-differential equation of the second kind.
(1) Singular Nonlinear Integro-Differential Equation

If the kernel in (1.1) is of the form

B(x,0) = 220, 16)

where v(x,t) does not equal zero and is a differentiable function at
a< x<b, a<t < b, then the nonlinear integro-differential equation

is said to be a singular equation with Cauchy kernel where B(x,t) =

[P ”(x’? h(t) dt,is understood in the sence of Cauchy Principle Value

a x-—

v

(CPV) and the notation P.V. ff :i? dt is usually used to denote this.

Thus P.V.
b ,t X—& ,t b ,t
j vl t) dt=lim{j vl)dt+j ST }
a X—t x=e Jg x—t x4e X — L
For example

2 1—x Lq%(t
u(z)(x)=x2+—x3+x51n<)+sechx+f 1 ()dt, lx] <1
3 1+x 1

9

(i) Weakly Singular Nonlinear Integro-Differential Equation

The kernel is of the form

v(x,t)

B(x,t) = TRt

(1.7)

Where v(x,t) is bounded, “i.e. several times continuously differentiable

as<x<b ,a<t<b with v(x,t)=0and y isa constant such that
0< y <1. For example, the equation:

1
lx —t|Y

qMx) =2 f) Su(t)dt, 0<y <1
0

Is a singular nonlinear integro-differential equation with a weakly singular
kernel.

1.2 System of Nonlinear Volterra Integro-Differential Equations

A system of nonlinear Volterra integro - differential equations has the

form [38]:

q(i)(x) = h;(x) + ff (B1(x; t)51(CI(t)) + B (x, t)§1(P(t))) dt

. X _ . , (1.8)
p@D(x) = hy(x) + fo (Bz (x,t)S, (Q(t)) + B, (x,1)S, (p(t))) dt

The nonlinear functions S;, §; =1,2 are specified. The kernels

B;(x,t) and B;(x,t) and the functions h;(x),i = 1,2 are given as

real - valued function .

10

1.3 System of Nonlinear Fredholm Integro-Differential Equations

A system of nonlinear Fredholm integro - differential equations has the

form[38]:

4000 = hy (@) + J (By (e, 081 (9(0) + By G, 05 (p(©))) dit

, , N i , (1.9)
PO = hy () + [(B2, 005:(4(0)) + By (x5 (p(0))) dit

The nonlinear functions S;,S; =1,2 are specified. The kernels

B;(x,t) and B;(x,t) and the functions h;(x),i = 1,2 are given as
real - valued function .
1.4 Kinds of Kernels
1. Separable Kernel

A kernel B(x,t) is said to be separable or (degenerate) if it can be

expressed as the sum of a finite number of terms, that is,

n

B0 =) n()a(®, (1.10)

i=1
where the functions r;(x) and c;(t) are linearly independent.
2. Difference Kernel

A kernel B(x,t) is called difference kernel , when

B(x,t) = B(x —t), (1.11)

11

3. Symmetric (or Hermitian) Kernel
A complex-valued function B(x, t) is called symmetric (or Hermitian) if
B(x,t) = B*(t, x), (1.12)

where the asterisk denotes the complex symmetric conjugate. For a real

kernel, we have
B(x,t) = B(t,x), (1.13)
4. Skew-Symmetric Kernel
The kernel is of the form
B(x,t) = —B(t, x) (1.14)
5. Abel's Kernels

The kernel B(x,t) is of the form

v(x,t)
lx — ¢V’

B(x,t) = (1.15)

where y € (0,1) and the function v(x, t) is assumed to be differentiable.

Polar Kernel

B(x,t) = %+ k(x,t), 0< y <1, (1.16)

where v and k are bounded and v(x,t) # 0.

12

7. Logarithmic Kernel
The kernel B(x,t) called a logarithmic kernel if it has the form

B(x,t) = v(x,t)In(x —t) + k(x, t), (1.17)
where v and k satisfy the same conditions as in equation (1.16) .

1.5 Existence of the Solution of Nonlinear Volterra Integro-

Differential Equation

For convenience we consider the following nonlinear Volterra integro-
differential equation :

dq(t)

T A fB(t wS(w qw))du |, (1.18)

with the initial condition :

q(0) = qo (1.19)

where h: I XR*"XR" > R™ S:IXR"—> R"and B:I X[— R" are

continuous functions and g, is a given constant; in which I =[0,T],
R = (—o0,0) and R™ denotes the Euclidean n - space with norm || .||. and
let B =C(I,R™) be the Banach space of all continuous functions from |

into R™ equipped with supremum norm ||gllz = sup {llq(®)|l : tel }.

13

Definition (1.5): Normed vector space (V, ||. ||):

Let the set V be a linear vector space, a mapping, || .[: V = R, is called
normed vector space if the following propertis satisfy:

1Llqll=0
2.1l qll =0 ifand onlyif g =0

Bllg+yll<lqll+1lyll

4.116 qll = 61l qll

Definition (1.6): Complete space:

A normed vector space (V,||.l]) is called complete if every Cauchy

saquence inV converges to an element v € V.
Definition (1.7): Banach space:
A Banach space is a complete normed vector space (V, ||.]]) .

The existence theorem is based on the topological transversality theorem

given by Tidke [36] and is known as Leray — Schauder alternative.
For a normed linear space D and a number p where p € (0,), we let

kyo={qeD: |lqll<p} and Q,={qeD: llqll=p}

14

Definition (1.8) [26]:

We should say that H is of the Leray - Schauder type provided for any
k, ball in D, either

(@) Thereisan q € k, suchthatq e Hq, or

(b) There exist € @, ,and A € (0,1) such that y € AHy .

Theorem (1.1) [36] (Leray — Schauder alternative)

Let D be a convex subset of a normed linear space D and let ' : D - D

be a completely continuous operator and let
FH)={qD:qe AHq forsome0<A <1},

Then either

1. F(H) is unbounded, or

2. The operator F has a fixed point.

Proof: Assume D is bounded and let k, be a ball containing F(J{) in its
interior. Since no q € Q, can satisfy the second property in Definition

(1.8), then the operator H has a fixed point and the proof is complete.

Theorem (1.2) (Banach fixed point space) A fixed point is a point that
does not change upon application of amap, system of differential
equations, etc. In particular, a fixed point of a function g(x)is a

point x, such that q(x,) = x,.

http://mathworld.wolfram.com/Map.html
http://mathworld.wolfram.com/DifferentialEquation.html
http://mathworld.wolfram.com/DifferentialEquation.html

15

Theorem (1.3) [31] (The Arzela — Ascoli Theorem)
Let T< (¢(l), p), then the following statements are equivalent:
(1) T is compact.

(2) T is closed subset of (@(l), p) and is both uniformly bounded and

equicontinuous over |I.
For convenience we list the following hypotheses :
(H,) There exists a constant ¢ > 0 such that ||B(t,u)|| < o for
t=u=0.
(H,) There exists a continuous function f: | - R,=[0,00)
such that
1Bt Wl < @) H([ulD,

for every tel and u€ R™, where H : R, — (0,0) is a continuous non -

decreasing function.

(H3) Foreacht* €,

T
lim j| B(t, 1) — B(t" w)|du = 0,
0

is satisfied for t € I.

(H4) There exists a continuous function w : I — R, such that

16

IRt q,)1l < w(@Clgll + llxID,
forevery t €l and q,x € R™.
Our main results are given through the following theorem :

Theorem (1.4) [33]: Suppose that the hypotheses (H;), (H;) and (H,) are
satisfied. Then equations (1.18) and (1.19) have a solution g defined on I

provided T satisfies

du
u+Hw)

fiMWdu < [7 (1.20)

Where ¢ = ||goll and M (t) = max { w(t) , oB(t) } for tel.

Proof . To prove the exsistence of a solution of equations (1.18) - (1.19),
we start by applying Theorem (1.1), first we establish the priori bounds on

the solution of the problem

t

dq(t

% = Ah t,q(t),jB(t,u)S(u,q(u))du) , (1.21)
0

under the initial condition equation(1.19) for A € (0,1). Let g(t) be a

solution of equation (1.21) with initial condition in equation (1.19), then

q(t) satisfies the equivelant integral equation

t u

q(t) = qo +/1jh u,q(u),jB(u,r)S(r,q(r))dT du (1.22)
0 0

upon using the hypotheses (H,), (H,), (H,) and equation (1.22) we obtain

17

1Ol < llgoll + f 0@ (lqGoll + j Jﬁ(r)H(llq(r)Il)dr> du (1.23)

0 0

if we set the right side of equation (1.23) as L(t), then

lg@®Il < L), L(0) = llgoll and

t
d fo) < w(®) <L(t) ; f J,B(T)H(L(T))dr>, (1.24)
0
let
t
z(t) = L(t) + j oB(t)H(L(7))dt (1.25)

0
then we obtain L(t) < z(t), z(0)=L(0) = ||g,ll and

2(t) < w()z(t) + af(OH(z(t)) < M(t)(z(t) + H(z(1)))

Z(¢)

O+ HEE) =M (1.26)

Integrating both sides of equation (1.26) from O to t and use the change of

variables and the condition in equation (1.20) yields

z(t) I
du
f TI‘I(LL) < fM(u)du <-fM(u)du < f TI‘I(H) (127)

Consequently, we conclude that there is a constant k independent of

A €(0,1) suchthat z(t) <k andhence L(t) <k fortel.

18

Thus we have ||q(t)|| < k for t € I and then

lg@®Il =sup {llq®O)ll : t€l}< k.

We define B = C(I,R™) and rewrite the initial value problem equations
(1.18) - (1.19) asfollows: if y € Band q(t) = y(t) + qo, t €1, then it

is easy to see that y satisfies y(0) =y, = 0,

t u
y(t) = fh u,y(u) + qo,fB(u, 7)S(t,y(1) + qp)d7 |du,
0 0
Thenwe defineH : Dy - Dy, Dy ={y €D : y, =0} by

t u

Hy(t) = jh u,y(u) + qo,f B(u,7)S(t,y(1) + q¢)dt |du (1.28)
0 0

for t €I, If and only if g Satisfies (1.18) - (1.19). Then is clearly

continuous. Now we need to prove that # is completely continuous. So

we let a bound sequence {v;} in Dy, i.e. ||lvy,ll < d for all i, where d is

positive constant. From (1.28) and using the hypotheses (H,), (H,), (H,)

and letting M* =sup {M(t) :t € I} we have

*

™
||.7‘[4fm||=TM*<b+C+ H(b+c)>

consequently { H v, } is uniformly bounded.

Now we shall show that the sequence { H v, } is equicontinuous. Let

19
0<t; <t,<T, from (1.28) and using the hypotheses (H,), (H;), (H,)
and letting M* = sup { M(t) : t € I} we have

| Hoy(ty) — Hoi(ty)]
< fttlz|h(u, v;(u) + qo,fouB(u, T)v;(1) + qo)dr)|du

< ft’fp(u)(m(u) +ligoll + [, lo@Hlv; (DIl + llgolDdr)d)du

t2

< f M*(b+c+TM* H(b + c))du (1.29)
ty

By equation (1.29) we conclude that { #+;} is equicontinuous and hence

by theorem (1.2) the operator H is completely countinous.

Moreover, the set F(H) ={y€ D, : q € AHy for some 0 < A < 1}, is
bounded, since for every y in F(H) the function g = y + h is a solution of
(1.21), for which we have proved [|q|| < k and hence ||y|| < k. Now an
application of Theorem (1.1), the operator ' has a fixed point in D, . This
means that equations (1.18) — (1.19) has a solution. This completes the

proof of the theorem.

20
1.6 Uniqueness of the Solution of Nonlinear Volterra Integro -

Differential Equation

Now to show the uniqueness of the solution of nonlinear Volterra
integro -differential equations we need to employ the analysis based on the
applications of the Banach fixed point theorem coupled with Bielecki type
norm and the integral inequalities with explicit estimates (for more details

see [6, 19, 20, 28, 29]).

We first build the appropriate metric space for our analysis and we let

a > 0,be a constant and consider the space of continuous functions

C(I,R™) such that supte,lqe(—t)| < oo, and denote this special space by

at
C,(I,R™). We couple the linear space C,(I,R™), with Bielecki’s metric :
0 lg@®-y@®
(@) = supre;——oat—
and with Bielecki’s norm:

lq (@)l

lqllg = SUPter gz

We are now ready to present the main results for the uniqueness of

solution of equations (1.18) - (1.19).
Theorem (1.5) [27]:
Let p>0,a>0,M >0, y>1 be constants with

a = p y. Suppose that the functions h, B in equations (1.18) - (1.19) satisfy

21

the conditions:
i. [[h(t,x,v)—=nh(tx DI < Mlllx—xI|+ [[v—oll

ii. IB(¢t,u,x) =Bt w0l < plllx—xll],
t g

1
iii. d = supyg Sat || 90 +jh o, 0,jB(0,u)S(u, 0)du) |da|| <

t
0 0

If M/a(1+1/6) < 1, then the equations (1.18) - (1.19) has a unique

solutionx € C, (I,R™).

Proof: To prove Theorem (1.4), we need to consider the following
equivalent formulation for the equations (1.18)-(1.19), with let g €

C,(I,R™) and define the operator T by

t

(Tq)(t) = qq +jh a,q(a),jB(a,u)S(u,q(a))du) do
0

0
t o

—jh o, 0,jB(a, u)S(u,0)du) |do

0 0
t o

+ f n o0, f B(o,1)S(w, 0)du) | do, (1.30)
0 0

Now we shall show that T into itself, From (1.30) and using the hypotheses

we have

1T @I

ITqlly = SUPter —ar

22

g
1
Ssupte,ﬁ h a,q(a),jB(G,u)S(u,q(a))du) do
0

ag

—h| o, O,fB(a, u)S(u,0)du) |do
0

g

1
+Supt€167 h J,O,jB(J,u)S(u,O)du) do

t
0

t

1
< dy + supier =z [la@11 + [plla@)lldo
0

= di + SUPter oat M supee; Teat + pSupee; oat o

gl 1 f Lwola@ll

0

t
1
<dy + M [IglZ + pllgllZsupecs =7 [e“do
0

- 1 [e** -1
=dy + Mllqll7 |1 + psupe; oat .

= dy + Mllgl [1+ 5] = dy + llgllz M (1+7) <0

This proves that the operator T maps C, (I, R™) into itself.
Now we verify that the operator T is a contraction map. Let

x,v € C,(I,R™). From equation (1.30) and using the hypotheses we have

I (Tx)(@®) — (Tv)(@) |

eat

dg (Tx, Tv) = supee;

23

o
1
= SUPter o h a,x(a),jB(a,u)S(u,x(a))du) do
0

—h O',U(O'),jB(O‘, u)S(u,v(a))du) do
0

t

1
< supies —e M |10 = @1 + [pllue) = v(@)lldo
0

t

l|lx(t) —
= M |supie;

v 1 lx(®) — vl
¢ +s ptezﬁfew oat
0

ea

t
1
=M|d7 (x,v) + pd? (x,v) supte,ﬁf e%do
0

1 [e*t -1
1+ psupie St p”

A Pl _ 1w
—Mda(x,v)[1+a]—M(l+y)da(x,v)

= Md (x,v)

do

Since M(1 + 1/y) <1, it follows from the Banach fixed point theorem (see

that T has a unique fixed point in C,(I,R™). The fixed point of T is

however solution of equation (1.1). The proof is complete.

24

1.7 Laplace Transforms

Definition (1.5) [36] : Let f(x) be a real valud function defined for
x = 0. Suppose that f(x) is multiplied by e™* and the result is integrated

with respect to x from 0 to oo, if the integral converges then it is a function

of s, thatis
L0} = Fs) = f e~ £ (x)dx (1.30)
0
or
A
L) = F(5) = lim [e fG0dx (131)
0

F (s) is called the Laplace transform of f(x). Moreover we have
fQ) = L7HF(s)} (1.32)

called the inverse Laplace transform.
1.7.1 Properties of the Laplace Transforms
Laplace transforms has the following properties:
1. Constant Multiple:

L{af (x)} = aL{f (x)} = aF (s), ais aconstant. (1.33)
For example:

L{de™} = 4L{e*} = &

25

2. Linearity Property:

Liaf (x) + Br(x)} = al{f ()} + BLIr(x)} = aF(s) + BR(s),

a, are constants (1.34)
For example:
Clax +32%) = 4L} + 3L0%) = S+

. Multiplication by x:

Tl

L)} = (- 1)" L{f(X)} = (= 1)" T (5) (1.35)
For example:
d d 1 2s
L{xsinx} = —d—L{smx} = —&< 71 1) = GZE 1)

1.7.2 Convolution

Definition (1.6) [38] : If M(x) and r(x) are picewise continuous
functions on [0, x) and both satisfy the conditions needed for the
existence of Laplace transform, then the convolution of M and r denoted

by (M = r)(x) is defined by the integral :

M+ 7) (x) = j “Mx - Or(ddt

or

X

(r«M) (x) = f r(x —t)M(t)dt

0

26

note that

M+ 1) (x) = (r* M)(x)
we can easily show that the Laplace transform of the convolution product
(M x1) (x)is

L{M 1) (1)} = L{ j Mx—0)- r(t)dt} = M(s) - R(s)
0

Where M (s) and R(s) are the Laplace transform for the functions

M (x) and r(x) respectively.

27
Chapter Two
Computational Methods

There are many computational techniques available for solving nonlinear
Volterra integro-differental equations. In this chapter we will discuss the
following methods:Differential Transform Method with Adomian
Polynomials (DTM), Modified Laplace Adomian Decompostion Method

and the Variational Iteration Method (VIM).
2.1 Differential Transform Method with Adomian Polynomials (DTM)

In this section , the (DTM) was discussed in order to solve nonlinear
integro - differential equations in a more comprehensive and effective
way; the idea is based on the methodology of [10] where the nonlinear term
Is replaced by its Adomian polynomials and the dependent variable
components is replaced by its corresponding differential transform

component of the same index.
Differential Transform Method

This method is based on the (DTM) presented by Zhou [39] in his study of
electric circuits, where basic definitions and fundamental theorems of the
differential transformation and its applicability to different types of

differential and integral equation are given in [3, 4, 39].

28

The k" derivative transformation of a function q(x) is defined as follows:

1 [d¥
Q(k) = F[W CI(X)] (2.1)

=Xy,

where q(x) is the premier analytical function and Q(x) is the transformed

function. Differential inverse transformation of Q(x) is defined as follows:

4@ =) Q& - x 22)
k=0
Since g(x) is the analytical function, it is clear that g(x) = qy(x).By
combination of equations (2.1) and (2.2) , with x, = 0, the function

q(x) can be written as:
o 1 [d
aw =) — [—k q(x>] %, 23)
k=0k! dx Y0
Basic mathematical properties of the differential transform can easily be

obtained and summarized in the following theory:

Theorem (2.1) [7]: If G(k), T(k) and W(k) are differential transforms of

the functions g(x), t(x) and w(x) respectively then :
1If g(x) = t(x) + w(x) then G(k) = T(k) + W(k).

2. If g(x)=t(x)w(x) then G(k) = XK ,T(1) W(k — D).
3. If g(x)=aw(x) then G(k) = a W(k).

4. 1F g(x) = j—;t(x) then G(k) = (k + D) (k + 2) - (k +)T (k + n).

29
1, k=
5.1 u(x) = x" then G(k) = 6(k —n) = {& *;n
6. If g(x) =cos(wx + a) then G(k) = (Z—:{cos (%k + a).
7. If g(x) =sin(wx + a) then G(k) = a]:—:csin (%k + a).
).k

8. If g(x)=e? then G(k) = o

Theorem (2.2) [7]:

If G(k), T;(k)andT,(k) are differential transforms of the functions

g(x), t;(x) and t,(x) respectively, thenfor k =1,2,...,N,
we have :

LIf g(x) = [¥ t1(s)t(s)ds then G(k) = T3 Ty (D Ty — 1 — 1),

2. If g(x) =w(x) f;: t,(s)t,(s)ds then
k k—1l-1 1
G(k) = leoz PO a@Ek—1=s -1, k=1

The Modified Differential Transform Method

The Adomian decomposition method is utilized to the following general

nonlinear equation:
Ly +Rg+ My =U(), (2.4)

Where q is the unknown function, L, is the highest - order derivative
which assumed to be easily reversible, R, is the remaining linear operator ,

M, represents a general nonlinear differential operator , and U (x) is the

30
source term. Applying the inverse operator £~ to both sides of equation

(2.4) and using the specific conditions we obtain
q=f)— L7HRg) = L7H(M), (2.5)

where the function f(x) represents the terms arising from integrating the

source term U(x). The nonlinear operator M, = S(q) is decomposed as

S(q) = Z A, (90,91, 92> - Gn) (2.6)
n=0

where A,, n > 0 are the Adomian polynomials determined formally as

follows [3,2,10,39]
o 1far <
An =E W S zllqi (27)
. i=0 A=0

the Adomian polynomials of S(q) are introduced as

Ao = 5(q0),

- , 1

Ay = q25(qp) + ECI%S(Z)(CIO);

i ' @) LN

A3z = q35(q0)(q0) + 1425 (q0) + 5%5 (q0),

i) 1 1 1
A, = q4S(qo) + (qlqs + 5q§> S@(qe) + 5148425 ®)(qo) + @S ®(qo),

and so on.

31
Lemma (2.1) [4]: If f(x) =S(q(x)) , then F(k) = A, where A’ s are

the Adomian polynomials A4, with replacing q, by Q(k),k =0,1,2, ...
Proof: (for more details see [4]).

The differential transform components of g(x) are computed by utilizing

their properties. Then we can write it in the following formula (for x =0)
$(0) = 5(Q(M),

S =QS(Q(M),

5@) = QS(QO) + 5,2 WSDQOY,

$(3) = ®S(Q®) + QQ@SP(Q(0)) + +Q*(WSP(Q(0)),

NORNONCIOIE <Q(1)Q(3) + %Q%D) S@(e) +
%02(1)0(2)5(3)@(0)) + %Q“(DS(‘”(Q(O)) :

and so on.

To use the differential transform method we need to replace the nonlinear
term by its Adomian polynomials of the index k, and hence the dependent
variable components are replaced by their corresponding differential

transforms in the recurrence relation of the same index.

32

2.2 Modified Laplace Adomian Decompostion Method (LADM)

In this section, we show how the modified Laplace decomposition method
can be used to solve the nonlinear Volterra integro - differential equation

(1.1).

To solve the nonlinear Volterra integro - differential equation (1.1) using
the Laplace transform method, it is essential to use the Laplace transforms

of the derivatives of q(x).

Applying the Laplace transform to both sides of equation (1.1) yields:

s"L{q(x)} — s"1q(0)—...—sq™ 2 (0) — ¢V (0)
= L{h(x)}+ L { f B(x, t)S(u(t))dt}. (2.8)
0

or equivalenty

L0} = a0~ ..~ 554" D(O) = g DO) + L)

Sn—l

+ inL {fxB (x, t)S(u(t))dt} (2.9)
S 0

The next step in Laplace decomposition method is representing the solution

in an infinite series given as

a0 =) 4,00, (2.10)
n=0

33

To overcome the nonlinearity of S(q(t)), we use the Adomian
decomposition method given in the form of an infinite series of the

Adomian polynomials 4,, , that is

$a(®) =) A0 (2.11)
n=0
where for every n € N , 4, is the Adomian polynomial given as
ld&" [2/1‘% ” (2.12)
Substituting equation (2.10) and equation (2.11) into equation (2.9) gives

L{Z qn<x>} = ~q(0) ..
i=0

+SinL{h(x)} + Sinﬁ{foxzs(x, t);ﬁn(x) dt}, (2.13)

a7 D(0)

The Adomian decomposition method admits the use of the following

recursive relation
L{qo(x)} = f1(s), (2.14)

1 (r* =
£4: () = fo(5) +S—nL{ | B 0 A dt}, 215)

LG ()} = SinL{ f B0 Z A (x) dt}, n>1, (2.16)
0 n=0

34
where fi(s) and f,(s) are Laplace transforms of f;(x) and f,(x)
respectively. Applying the inverse Laplace transform to equations (2.14)-

(2.16) gives the required recursive relation as follows

ug(x) = f1(x), (2.17)

NN o -
() = £(5) + £ S—nLUO B(x,t);An(x)dt}, (2.18)

1 (g <3
U (x) = L7 S—nLUO B(x,t);An(x)dt} , n=1, (219

2.3 The Variational Iteration Method (VIM)

In this section, we will study the newly developed variational iteration
method (VIM) was established by Ji-Huan He [11-12], the method provides
rapidly convergent successive approximations of the exact solution only if
such a closed form solution exists, and not components as in Adomian
decomposition method. In this method the problem considered has the

form:
Aq + Ny = U(x), (2.20)

where A is a linear operator, V' is a nonlinear operator, and U(x) is a

given function. According to (VIM) [13 - 16], we can build the following

correction functional :

qi+1(x) = q;(x)

35

n j 2 (OAGE) + NG(©) — U@} dé, i >0, 221)
0

where A is Lagrange multiplier [18] , which can be determined optimally
by the variational theory and may be here constant or function, the
subscript i denotes the i* approximation, §; is considered as a restricted
value that means it behaves as a constant, hence &6g; = 0, where § is the

variational derivative [18].

In particular, the correction functional for the nonlinear integro -

differential equation (1.1) is

gi+1(x) = q;(x)

+ j xA(T) [qg’l)(f) — k(z) — j SL(r,r)s(qn(r))dr dr, (2.22)
0 0

The variational iteration method needs applying two basic steps, namely:

1. The determination of the Lagrange multiplier A that can be identified
optimally via integration by parts and by using a restricted variation. after
selecting A, an iteration formula, without restricted variation, should be
used to determine of the successive approximations of g;.,(x),i = 0 of

the solution g (x).

2. The zeroth approximation q,(x) can be any selective function. However,
the initial values q(0), ¢(0),.. are preferably used for the selective zeroth

approximation q,.

36
The following is a summary of the Lagrange multipliers as derived in [38],

and the selective zeroth approximations:
q+k(q(@,4(@®)=0, 2A=-1, qo(x) = q(0),
¢ +k(q(®),4(0),qP (@) =0, 1=1-x,q0(x) = q(0) + G(0)x

4@ +k(q(),4(,qP@), ¢ @) =0, 1=-— (1-2)?
q0(x) = q(0) + (0)x + ¢ (0)x?,

and so on.

Consequently, the solution is given by

q(x) = lim ¢q;(x).

37
Chapter Three

Numerical Examples and Results

In this chapter we implement the aforementioned numerical methods in
chapter two to solve some numerical examples in order to test the
efficiency and accuracy of these methods. This will be carried out using
proper algorithms and Matlab software. Comparison between the exact

and the approximate solutions will be tabulated and graphically illustrated.
Example 3.1

Consider the Volterra nonlinear integro-differential equation :

gP(x) —6q(x) =—4+8 jxtq(t) Inq(t) dt (3.1
0

with the initial conditions :
q(0) =1,4(0) =0 (3.2)
The exact solution of equation (3.1) is :
q(x) = e’

Now, we apply the aforementioned numerical methods in chapter two to

solve equations (3.1) — (3.2).

38
3.1 The Numerical Realization Of Equations (3.1) — (3.2) Using The
Differential Transform Method With Adomian Polynomials (DTM)

The following Algorithm implements the Differential Transform Method

with Adomian Polynomials (DTM) using the Matlab software
Algorithm (3.1)
This algorithm can be illustrated as follows:

1. Input :

a) g(x) , m(x): Limits of integration.

b) A : Is a constant parameter.

c) h(x): The function of the integral equation.

d) B(x, t): The kernel function.

e) S(q(t)) : Nonlinear term.

f) Set m(x) =0 and g(x) = x.

g) The first known iterations g(x), i =0,1,..,n

2. Calculate: the Adomian polynomials for the nonlinear term .
3. Calculate: The iterations q;(x), from n to o

fori= n:m

39

(if i <m)

k—2) 1 [(=1)**(6— 11k + 6 k2 — k%]
qlk+1) = ———ulk-D+ea—7 Kl '
Gif i >m)

gl +1) = —E2uk - 1)

L1 (—1)"*(6—11k+6k2—k3)+G(k—5)_
6(k + 1) k! k=2 |

end

4. Evaluation sum of all u’s in this form : Q(x) = X5, q(k) x*

syms x
yapp = 0;
fori=1:k

yapp = yapp + (x'"'q (D))

end

yapp

5. For any subinterval of discrete points of x :

I. Input exact solution and compute exact at all points of x.

ii. Find absolute error = |qg — g, |.

40

iii. Plot the error and all values x’s.

iv. Output (x;, approximate; Exactj, error ;).

v. Print the table.
vi. Plot and Stop (The process is complete).
6. Output: Approximations g (x) about interval.

We use Algorithm (3.1) to solve equations (3.1) — (3.2). Table (3.1)
contains both the exact and numerical solutions using the Differential

Transform Method (DTM) for equations (3.1) — (3.2).

Table (3.1): The exact and numerical solutions using the Differential

Transform Method with Adomian Polynomials (DTM) with n = 10.

Exact solution Numerical solution Absolute error

X q(x) = e*’ qn (x) =|q — qul
0 1.00000000000000 1.00000000000000 0

0.0938 1.00883726004162 1.00883726004118 0.00000000000044
0.2188 1.04903788068848 1.04903787857613 0.00000000211235
0.3125 1.10258370680894 1.10258363157239 0.00000007523655
0.4062 1.17939127885956 1.17939023105735 0.00000104780220
0.5 1.28402541668774 1.28401692708333 0.00000848960440
0.6250 1.47790419541173 1.47782318045695 0.00008101495478
0.7188 1.67644158014955 1.67610624329884 0.00033533685071
0.8125 1.93509466932358 1.93392305604841 0.00117161327516
0.9062 2.27322252652152 2.26962882885807 0.00359369766344
1 2.71828182845904 2.708333333333333 0.009948495125712

It can be observed that the maximum error is 0.009948495125712.

The exact and approximate solutions are shown in Figure 3.1 (a) and the

resulted error is shown in Figure 3.1 (b).

41

The Solution of Nonlinear VVolterra Integro - Differential Equation by (DTM)

2.8¢

F

f

exact solutions

* Approximation solutions

=

p

L //ﬁ

E

0.2

o.4 O.

X - axis

Fig. 3.1 (a): A comparison between the exact and approximate solutions in examples (3.1).

Absolute Ermor

Fig. 3.1 (b): Absolute error between exact and numerical solutions in example (3.1).

O0.01r¢

O.009

Error

0O.008

0.007

0O.006

0O.005

0.004

0.003

0.002

0.001

X - axis

42
3.2 The Numerical Realization Of Equations (3.1) — (3.2) Using The
Modified Laplace Adomian Decopostion Method (LADM)

Algorithm 3.2

This algorithm can be illustrated as follows:

1. Input :

a) g(x), m(x): Limits of integration.

b) A:lIsa constant parameter.

c) h(x): The function of the integral equation.
d) B(x,t): The kernel function.

e) S(q(t)) : Nonlinear term.

f) Set m(x) =0 and g(x) = x.

2. Calculate: The Adomian polynomials for the nonlinear term .
3. Calculate: The iterations g;(x)

4. Depending on the following recursive relation
L{ug(x)} = hy(s),

L{ug (x)} = hy(s) + Sinﬁ {jox B(x,t) Z(; A;(x) dt},

43

Llun ()} = Slnz{fxzs(x, t)ZAi(x) dt}, i>1
0 i=0

we will need to find all iteration g;(x) using Matlab as follow
%%fori=1:1

Ul = ky(x,t);
%%fori=2:2

Al = B(x,t) * Gy;

F =int(AL,t,0,x);

D = laplace(F);

B = (0 * D);

C = ilaplace(B);

U2 = k,(x,t) + subs(C,t, x));
%%fori=3m

Ai—1= B(x,t) *G;_,
Fi—2=int(Ai — 1,¢,0,x);
Di — 2 = laplace(Fi — 2);
Bi—2 = (0 * Di — 2);

C1 = ilaplace(Bi — 2);

44

Ui = (subs(C1,t,x));

End

5. For any subinterval of discrete points of x :

I. Input exact solution and compute exact at all points of x.
ii. Find absolute error = |qg — g, |.

iii. Plot the error and all values x’s.

iv. Output (x;, approximate; Exactj, error ;).

v. Print the table.

vi. Plot and Stop (The process is complete).

2. Output: Approximations q(x) about interval.

We use Algorithm (3.2) to solve equations (3.1) — (3.2). Table (3.2)
contains both the exact and numerical solutions using the Laplace

Adomian decompostion method for equations (3.1) — (3.2).

Table (3.2): The exact and numerical solutions

45

Adomian decompostion method with n = 2.

Exact solution Numerical solution Absolute error
X q(x) = e’ qn(x) = lq — qal
0 1.00000000000000 1.000011200126562 0.000011200126562
0.0938 0.66666684327790 1.008809640126562 0.000027619915065
0.2188 1.04903788068848 1.047884640126562 0.001153240561927
0.3125 1.10258370680894 1097667450126562 0.004916256682381
0.4062 1.17939127885956 1.165009640126562 0.014381638732999
0.5 1.28402541668774 1.250012200126562 0.034014216561180
0.6250 1.47790419541173 1.390636200126562 0.087267995285177
0.7188 1.67644158014955 1.516684640126562 0.159756940022989
0.8125 1.93509466932358 1.660167450126562 0.274927219197021
0.9062 2.27322252652152 1.821209640126562 0.452012886394959
1 2.71828182845904 2.000011200126561 0.718270628332484

It can be observed that the maximum error is = 0.718270628332484.

The exact and approximate solutions are shown in Figure 3.2 (a) and the

resulted error is shown in Figure 3.2 (b).

Fig. 3.2 (a): A comparison between the exact and approximate solutions in examples (3.1).

The Solution of Nonlinear VVolterra Integro - Differential Eqation by (LADM)

E E

exact solutions

* Approximation solutions

X - axis

using the Laplace

46

j
Error

Absolute Error
.

Fig. 3.2 (b): Absolute error between exact and numerical solutions in example (3.1).

3.3 The Numerical Realization Of Equation (3.1) - (3.2) Using The

Variational Iteration Method (VIM)
Algorithm 3.3
This Algorithm can be illustrated as follows:
1. Input :
a) g(x) , m(x): Limits of integration.
b) A : Is a constant parameter.
c) h(x): The function of the integral equation.
d)B(x, t): The kernel function.

e) S(q(t)) : Nonlinear term.

47

f) Set m(x) =0 and g(x) = x.
2. Calculate: The iterations g;(x)
When i =1

t
A=j et " y(1)2dr
0

X
Bzf (0—1—et+2tef +e?* —A)dt
0

Q1 =y(1) - (B);
A = expand(U1);
3. Set and solve more iterations.
4. For any subinterval of discrete points of X :
I. Input exact solution and compute exact at all points of x.
ii. Find absolute error = |[qg — g, |.
iii. Plot the error and all values X’s.
iv. Output (x;, approximate; Exactj, error ;).
v. Print the table.

vi. Plot and Stop (The process is complete).

48

5. Output: Approximations q(x) about interval.

We use Algorithm (3.3) to solve equations (3.1) — (3.2). Table (3.3)
contains both the exact and numerical solutions using the Variational

Iteration Method (3.1) — (3.2).

Table (3.3): The exact and numerical solutions using the Variational

Iteration Method with Adomian Polynomials (DTM) with n = 3.

Exact solution Numerical solution Absolute error
X q(x) = e*’ qn(x) =|q — qul
0 1.00000000000000 1.00000000000000 0
0.0938 1.008837260041627 1.008837260041627 0
0.2188 1.049037880688489 1.049037880688489 0
0.3125 1.102583706808942 1.02583706808942 0
0.4062 1.179391278859560 1.179391278859560 0
0.5 1.284025416687741 1.284025416687741 0
0.6250 1.477904195411739 1.477904195411739 0.000000000000027
0.7188 1.676441580149551 1.676441580149551 0.0000000000000787
0.8125 1.935094669323582 1.935094669323582 0. 000000000015065
0.9062 2.273222526521520 2.273222526521520 0. 000000000209527
1 2.718281828459046 2.718281828459046 0. 000000002260553

It can be observed that the maximum error is 0.000000002260553

The exact and approximate solutions are shown in Figure 3.3 (a) and the

resulted error is shown in Figure 3.3 (b).

The Solution of Nonlinear Volterra Integro - Differential Equation by (VIM)
2.8 r r
. . " =3
* Approximation solutions /
2.6 exact solutions
2.4 }Z
2.2

=
< 1.8
1.6 /
1.4 €L/
1.2 e
— =
. - e F I
0.2 0.4 0.6 0.8 1
X - axis

Fig. 3.3 (a): A comparison between the exact and approximate solutions in examples (3.1).

-9
x 10
2.5
|
Erorr
/
2
/
/
/
1.5 ‘/
/
=
i /
@ /
= /
o
2 1
=
/
/
/
0.5
//
o r o
0.2 0.4 0.6 0.8 1
X - axis

Fig. 3.3 (b): Absolute error between exact and numerical solutions in example (3.1)

50

The exact and approximate solutions of all methods are shown in Figure

The solutin of Nonlinear Integro-Differential equation by (DTM),(LADM) and (VIM)
2.8¢ F F F E £ T
exact solutions)?\'
2.6 * (LADM) solutions
O (DTM) solutions /
2.4 H (VIM) solutions
2.2
2
=
= 18 s
=
1.6
+
/
1.4 e
. —
i
1.2 -
_— F
16 _

Fig. 3.4: A comparison between the exact and approximate solutions in example (3.1).
Example 3.2

Consider the Volterra nonlinear integro-differential equation :

d
6(x*+1)—
(*+1D)——a())
=(x3+3x2+6x+6)e™* + j t3e~tanagr (3.3)
0

with the initial condition:
q(0) =0 (3.4)
The exact solution of equation (3.3) is :

q(x) = tan™1x

51
3.4 The Numerical Realization Of Equations (3.3) — (3.4) Using The
Differential Transform Method with Adomian Polynomials (DTM)

Using Algorithm (3.1) for equations (3.3) — (3.4) . Table (3.5) contains
both the exact and numerical solutions using the Differential Transform

Method with Adomian Polynomials (DTM) for equations (3.3) — (3.4).

Table (3.6): The exact and numerical solutions using the Differential

Transform Method with Adomian Polynomials (DTM) withn =9

Exact solution Numerical solution Absolute error
x q(x) = tan™x qn(x) =|q—qnl

0 0 0 0

0.0938 | 0.09352634530384 0.09352634524183 0.00000000006201
0.2188 | 0.21540541588183 0.21540529299132 0.00000012289051
0.3125 | 0.30288486837497 0.30288194350543 0.00000292486953
0.4062 | 0.38583975163390 0.38581026419894 0.00002948743495
0.5 0.46364760900080 0.46346726190476 0.00018034709604
0.6250 | 0.55859931534356 0.55737143471127 0.00122788063228
0.7188 | 0.62323229760101 0.61921887947618 0.00401341812483
0.8125 | 0.68231655487474 0.67113242450924 0.01118413036550
0.9062 | 0.73622997521529 0.70867363217887 0.02755634303641
1 0.78539816339744 0.72380952380952 0.06158863958792

It can be observed that the maximum error is 0.06158863958792.

The exact and approximate results of g(x) are shown in Figure 3.4 (a) and

the resulted error is shown in Figure 3.5 (b).

52

The Solution of Nonlinear Integro - Differential Equation by (DTM)

o.8
& Approximation solutions //////
s . *
o.7 exact solutions — e
e
0.6 —
| A=
0.5
/:L/
— -
= 0.4
== //%
~
0.3 /{L
0.2 A/
o.1
o E
o o.2 o.4 0.6 o.8 a1

Fig. 3.5 (a): A comparison between the exact and approximate solutions in examples (3.2).

0.07 r E E

0O.06

0.05

0.04

Absolute Error

0.03

0.02

o0.01

Fig. 3.5 (b): Absolute error between exact and numerical solutions in example (3.2) .

3.5 The Numerical Realization Of Equations (3.3) — (3.4) Using The
Variational Iteration Method (VIM)

Using Algorithm (3.3) for equations (3.3) — (3.4) . Table (3.5) contains
both the exact and numerical solutions using the Variational Iteration

Method (VIM) for equations (3.3) — (3.4) .

Table (3.5): The exact and numerical solutions using the Variational

Iterationwith n = 6.

53

Exact solution Numerical solution Absolute error
x q(x) = tan™x qn(x) =|q—q,]|

0 0 0 0

0.0938 0.09352634530384 0.093526345303846 0.000000000008066
0.2188 0.21540541588183 0.215405415889905 0.000000001624805
0.3125 0.30288486837497 0.302884869999776 0.000000078719100
0.4062 0.38583975163390 0.385839830353001 0.00000166761338
0.5 0.46364760900080 0.463649276613144 0.000043044026501
0.6250 0.55859931534356 0.558642359370063 0.000043044026501
0.7188 0.62323229760101 0.623556289841569 0.000323992240555
0.8125 0.68231655487474 0.684190697399316 0.001874142524568
0.9062 0.73622997521529 0.745076036939866 0.008846061724573
1 0.78539816339744 0.820934620934621 0.035536457537173

It can be observed that the maximum error is 0.035536457537173.

The exact and approximate solutions are shown in Figure 3.6 (a) and the

resulted error is shown in Figure 3.6 (b).

Fig. 3.6 (a): A comparison between the exact and approximate solutions in examples (3.2).

The Solution of The Nonlinear Integro - Differential Equation by (VIM)

T

T

exact solutions

+ Approximation solutions

i_/

54

oO.04a T T
Error

0.035
/

/
0.03
/

0.025

0.02

Absolute Ermor

0.015

x - axis

Fig. 3.6 (b): Absolute error between exact and numerical solutions in example (3.2).

The exact and approximate solutions of all methods are shown in Figure

3.7.

The Solutions of Nonlinear Integro-Differential Equation by (DTM) and (VIM)

>°f [[[

exact solution E

0.8 | .
@) (DTM) solution /
*

(VIM) solution

0.7 {

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X - axis

Fig. 3.7: A comparison between the exact and approximate solutions in examples (3.2).

Example 3.3

55

Consider the Volterra nonlinear integro-differential equation :

dx

with the initial condition:

q(x)=1—ex+ezx+j

q(0) =1

X

0

The exact solution of equation (3.3) is :

q(x) =e*.

e* 1 (1 — q2(t))dt,

(3.5)

(3.6)

3.6 The Numerical Realization of Equations (3.5) — (3.6) Using The

Modified Laplace Adomian Decopostion Method (LADM).

Using Algorithm (3.2) for equations (3.5) — (3.6), Table (3.6) contains

both the exact and numerical solutions using the Laplace Adomian

Decopostion Method for equations (3.5) — (3.6) .

Table (3.6): The exact and numerical solutions using the Laplace

Adomian Decopostion Method (LDTM) withn = 1.

Exact solution Numerical solution Absolute error

X q(x) = e* q(x) = e* =19 — g4l
-1 0.367879441171442 0.567667641618306 0.199788200446864
-0.8 0.449328964117222 0.600948258997328 0.151619294880106
-0.6 0.548811636094027 0.650597105956101 0.101785469862075
-0.4 0.670320046035639 0.724664482058611 0.054344436022971
-0.2 0.818730753077982 0.835160023017820 0.016429269939838
0 1.000000000000000 1.000000000000000 0

0.2 1.221402758160170 1.245912348820635 0.024509590660465
0.4 1.491824697641270 1.612770464246234 0.120945766604964
0.6 1.822118800390509 2.160058461368274 0.337939660977765
0.8 2.225540928492468 2.976516212197558 0.750975283705090

56

It can be observed that the maximum error is 0.750975283705090.

The exact and approximate solutions are shown in Figure 3.8 (a) and the

resulted error is shown in Figure 3.8 (b).

The Solution of Nonlinear VVolterra Integro - Differential Equation by (LADM)

3r T
f F f F
= Approximation solutions
exact solution
2.5
=
2
&=
> 1.5 —
= ////
-
1 =
o
=
5= -
Sen &= /7'77/
O.5F — =
ot
-1 -0.8 -0.6 -0.4 -0.2 o 0.2 0.4 0.6 0.8

X - axis

Absolute Error

O.5

Fig. 3.8 (b): Absolute error between exact and numerical solutions in example (3.3).

3.7 The Numerical Realization Of Equations (3.5) — (3.6) Using The

57

Variational Iteration Method (VIM)

Table (3.7): The exact and numerical solutions using the variational

iteriation method (VIM) with n = 4.

Exact solution Numerical solution Absolute error

X qx) = e* qn(x) =19 = qul
-1 0.367879441171442 0.367879441321282 0.000000000149839
-0.8 0.449328964117222 0.449328964125571 0.000000000008350
-0.6 0.548811636094027 0.548811636094228 0.000000000000201
-0.4 0.670320046035639 0.670320046035640 0.000000000000001
-0.2 0.818730753077982 0.818730753077982 0

0 1.000000000000000 1.000000000000000 0

0.2 1.221402758160170 1.221402758160170 0

0.4 1.491824697641270 1.491824697641269 0.000000000000001
0.6 1.822118800390509 1.822118800390290 0.000000000000219
0.8 2.225540928492468 2.225540928483107 0.000000000009361

It can be observed that the maximum error is 0.000000000009361.

The exact and approximate solutions are shown in Figure 3.9 (a) and the

resulted error is shown in Figure 3.9 (b).

Fig. 3.9 (a): A comparison between the exact and approximate solutions in examples (3.3).

The Solution of Nonlinear Volterra Integro - Differential Equation by (VIM)

2.5

F F F

F

Exact solutions

* Approximation solutions

1.5

-0.4 -0.2 o

X - axis

58

-10
x 10
1.5 T T
\
\ Error
\
\
\
\
\
1 \
\
\
— \
=] \
[} \
= \
= \
S \
n \
=1 \
= \
o.5 Y
\
\
\
\
\
\
° _ -
-1 -0.8 -0.6 -0.4 -0.2 (o] 0.2 o.4 0.6 o.8

X - axis

Fig. 3.9 (b): Absolute error between exact and numerical solutions in example (3.3).

The exact and approximate solutions of all methods are shown in Figure

The Solution of Nonlinear Volterra Integro-Differential Equation by (LADM) AND (VIM)
S F F F F 9
exact solutions
o (DTM) solutions
2.5 + (VIM) solutions
=
2
= 1s
=
@
//// €
-
1 B
@
S
e
0.5 P
XL
ot
-1 -0.8 -0.6 -0.4 -0.2 (e] 0.2 0.4 0.6 0.8
X - axis

Fig. 3.10: A comparison between the exact and approximate solutions in examples (3.3).

59

Example 3.4

Consider the Volterra nonlinear integro-differential equation :

dx

d
—q(x) = 1+ex—2xex—ezx+j

with the initial condition:

q(0) =2

X

0

The exact solution of equation (3.4) is :

q(x) =1+e”.

3.8 The numerical Realization of equations (3.7) — (3.8) Using The

Variational Iteration Method (VIM)

Using Algorithm (3.3) for equations (3.7) — (3.8) . Table (3.6) contains

both the exact and the numerical results using the Variational Iteration

Method for equations (3.7) — (3.8).

Table (3.8): The exact and numerical solutions using Variational lteration

Method (VIM) with n = 3.

e* tq?(t)dt,

(3.7)

(3.8)

Exact solution Numerical solution Absolute error
x gix) =1+e* qn (%) = lq — gyl

0 2.000000000000000 2.000000000000000 0

0.0938 2.098340055937721 2.098340054991735 0.000000000920105
0.2188 2.244582335327159 2.24458182938934 0.000005427229550
0.3125 2.366837941173796 2.366836647670151 0.000005427229550
0.4062 2.501102742986564 2.501096504099779 0.000038359154292
0.5 2.648721270700128 2.648699569298986 0.000185507539221
0.6250 2.868245957432222 2.868163173060590 0.001042650006852
0.7188 3.051969369391527 3.051777803836352 0.003142377825653
0.8125 3.253534787213209 3.253135200988730 0.008390931887913
0.9062 3.474900021868255 3.474130861914352 0.020388681771895
1 3.718281828459046 3.716892914345171 0.045913559787484

60

It can be observed that the maximum error is 0.045913559787484.

The exact and approximate solutions are shown in Figure 3.11 (a) and the

resulted error is shown in Figure 3.11(b).

Fig. 3.11 (a):

Absolute Error

Fig. 3.11 (b):

The Solution of Nonlinear VVolterra Integro - Differential Equation by (VIM)
2s i i i i

+

exact solutions L

Approximatian solutions

-0.4 -0.2 o

xX- axis

A comparison between the exact and approximate solutions in examples (3.4).

-3
x 10
1.4¢ 3

1 /
/
Error /

Absolute error between exact and numerical solutions in examples (3.4).

61
3.9 The Numerical Realization Of Equations (3.7) — (3.8) Using The
Modified Laplace Adomian Decopostion Method (LADM).

Using Algorithm (3.2) for equations (3.7) — (3.8) . Table (3.6) contains
both the exact and the numerical results using the Variational Iteration

Method for equations (3.7) — (3.8) .

Table (3.9): The exact and numerical solutions using Modified Laplace

Adomian Decompostion Method (LADM) with n = 4.

Exact solution Numerical solution Absolute error

x qx)=1+¢e* dn (%) = 1q — qul
0 2.000000000000000 2.000000000000000 0
0.0938 | 2.098340055937721 2.098340055937721 0.000000000000000
0.2188 | 2.244582335327159 2.244582335327160 0.000000000000000
0.3125 | 2.366837941173796 2.366837941173797 0.000000000000000
0.4062 | 2.501102742986564 2.501102742986564 0
0.5 2.648721270700128 2.648721270700128 0
0.6250 | 2.868245957432222 2.868245957432221 0.000000000000001
0.7188 | 3.051969369391527 3.051969369391522 0.000000000000006
0.8125 | 3.253534787213209 3.253534787213173 0.000000000000036
0.9062 | 3.474900021868255 3.474900021868070 0.000000000000185
1 3.718281828459046 3.718281828458230 0.000000000000816

It can be observed that the maximum error is = 0.000000000000816.

The exact and approximate solutions are shown in Figure 3.12 (a) and the

resulted error is shown in Figure 3.12 (b).

62

The Solution of Nonlinear VVolterra Integro - Differantial Equation by (LADM)
3.8 F F

| | .

exact solutions

3.6
= Approximation solutions /
3.4 /

X - axis

Fig. 3.12(a): A comparison between the exact and approximate solutions in examples (3.4).

x 10
il F F

| Error |

Absolute Error

xX - axis

Fig 3.12 (b): Absolute error between exact and numerical solutions in examples (3.4).

63
3.10 The Numerical Realization Of Equations (3.7) — (3.8) Using
The Differential Transform Method With Adomian Polynomials

(DTM)

Using Algorithm (3.1) for equations (3.7) — (3.8) . Table (3.6) contains
both the exact and the numerical results using the Variational Iteration

Method for equations (3.7) — (3.8).

Table (3.8): The exact and numerical solutions using Differential

Transform Method with Adomian Polynomials (DTM) withn = 11.

Exact solution Numerical solution Absolute error
x gx) =1+¢e* dn(X) =19 — gl

0 2.000000000000000 2.000000000000000 0

0.0938 2.098340055937721 2.098340055937721 0

0.2188 2.244582335327159 2.244582335327160 0.000000000000001
0.3125 2.366837941173796 2.366837941173725 0.000000000000071
0.4062 2.501102742986564 2.501102742985276 0.000000000001288
0.5 2.648721270700128 2.648721270687366 0.000000000012763
0.6250 2.868245957432222 2.868245957282028 0.000000000150195
0.7188 3.051969369391527 3.051969368686468 0.000000000705060
0.8125 3.253534787213209 3.253534784476825 0.000000002736384
0.9062 3.474900021868255 3.474900012701995 0.000000009166260
1 3.718281828459046 3.718281801146385 0.000000027312661

It can be observed that the maximum error is 0.000000027312661.

The exact and approximate solutions are shown in Figure 3.13 (a) and the

resulted error is shown in Figure 3.13 (b).

64

The solution of Nonlinear Volterra Integro - Differential Equation by (DTM)

S8 F F F F F F

= Approximation solutions

3.6 -
exact solution i/
3.4 jt/

= L

2.8
2.6 %L/
2.4 ﬁL{
/
2.2
///*:
o o.1 o.2 0.3 o.4a o.5 o.e 0.7 o.s 0.9 1

x - axis

Fig. 3.13 (a): A comparison between the exact and approximate solutions in examples (3.4).

3.5¢F T
Erorr

Absolute Error

0.5

X - axis

Fig. 3.13 (b): Absolute error between exact and numerical solutions in examples (3.4).

65
The exact and approximate solutions of all methods are shown in Figure

3.14.

The solutions of Nonlinear Integro-Differential equation by (LADM),(DTM) and (VIM)
3-8¢ f f f i

~ exact solutions }
3.6 (LADM) solutions

(DTM) solutions /J

(VIM) solutions ®/

o O

2.4 g s
ﬁ/ﬁ@
2.2 /@/
///// ‘
o2& :
) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X - axis

Fig. 3.14: A comparison between the exact and approximate solutions in examples (3.4).

66

Conclusions

Computional methods have been used to solve nonlinear Volterra integro -
differential equation . The numerical methods are implemented in a form of

algorithms to solve some numerical examples using Matlab software.

Based on our numerical results, one sees clearly that the Variational
Iteration Method (VIM) is the most effective numerical technique for

solving nonlinear Volterra integro - differential equation.

67

References

[1] I. Arikoglu, Solution of boundary value problems for integro -
differential equations by using differential transform method, Appl.

Math. Comput. 168 (2005), pp 1145-1158.

[2] I. Arikoglu, Solution of integral and integro-differential
equation systems by using differential transform method, Comput.

Math. Appl. 65 (2008) 2411-2417.

[3] T. Batiha, M. Norani and I. Hashim, Numerical Solutions Of The
Nonlinear Integro — Differential Equations, Int. J. Open Problems

Compt. Math., Vol. 1, No. 1, June 2008.

[4] S. Behiry, Nonlinear Integro - differential Equations by
Differential Transform Method with Adomian Polynomials, Math.

Sci. Lett. 2, No. 3, 209-221 (2013).

[5] S. Behiry, Differential Transform Method for Nonlinear Initial -
Value Problems by Adomian Polynomials, General Required Courses
Department, Jeddah Community College, king Abdulaziz University,
Jaddah 21589, Kingdom of Saudi Arabia, Vol. 4, no. 8, (2012) 581-781.

[6] A. Bielecki, A remark on the Banach method - Cacciopoli
Tikhnov in the theory of the different ordinary ordinations, Bull

Acad. Polon. Sci. If st. Sci. Math. Phys. Astr. 4 (1956), 261-264.

68
[7] A. Borhanifar, Reza Abazari , Differential transform method for
a class of nonlinear integro - differential equations with derivative
type kernel, Department of Mathematics, University of Mohaghegh
Ardabili, Ardabil, Iran . November 16, 2011.

[8] P. Darania, E. Abadian, A. Oskoi, Linearization method for
solving nonlinear integral equations, Math. Probl. Eng. (2006) Vol.
99 No. 3 2015, 277-287.

[9] P. Darania, K. Ivaz, Numerical solution of nonlinear Volterra-
Fredholm integro - differential equations, Appl. Math. Comput. 56
(2008) 2197-22009.

[10] A. Elsaid, Fractional differential transform method combined
with Adomian polynomials, Appl. Math. Comput. 218 (2012)
6899-6911.

[11] J. He, A new approach to nonlinear partial differential
equations, Com- mun. Nonlin. Sci. Numer. Simul. 2 (1997)

230-235.

[12] J. He, Approximate analytical solution of Blasius’ equation,

Commun. Nonlinear. Sci. Numer. Simul. 3 (1998) 260-263.

[13] J. He, Non - perturbative methods for strongly nonlinear

problems, Berlin: Dissertation. Dererlag im Internet GmbH, (2006).

69
[14] J. He, Variational iteration method akind of non-linear
analytical, technique: some examples. Int. J. Non-Linear Mech. 34

(1999) 699-708.

[15] J. He, Variational iteration method for autonomous
ordinary differential systems. Appl. Math. Comput. 114 (2000)
115-123.

[16] J. He, Some asymptotic methods for strongly nonlinear

equations. Int. J. Modern Phys. B 20 (2006) 1141-1199.

[17] M. Hussain and Majid Khan, modified Laplace decomposition
method, Applied Mathematical Sciences, Vol. 4, 2010, no. 36,
1769-1783.

[18] M. Inokuti, H. Sekine and T. Mura, General use of the
Lagrange multiplier in nonlinear mathematical physics. In:
Nemat Nassed S,editor. Variational Method in the Mechanics of

Solids. Pergamon Press, (1978).

[19] M. Krasnoselskii, Topological Methods in the Theory of

Nonlinear Integral Equations, Pergamon Press Oxford, 1964.

[20] T. Kulik and C. Tisdell, Volterra integral equations on
time scales: Basic qualitative and quantitative results with
applications to initial value problems on unbounded domains,

Int. J. Difference Equ. Appl Vol.3, (2008).No. 1 (2008), 103-133.

70
[21] P. Kythe, P. Puri, Computational Methods for Linear Integral

Equations, University of New Orleans, New Orleans1992.

[22] J. Manafianheris , Solving the integro - differential equations
using the modified Laplace Adomian decomposition method,

Journal of Mathematical Extension , Vol. 6, (2012). No. 1, 65-79.

[23] A. Mahmood and L. Sadoon, Existence of a Solution of a
Cartain Volterra - Fredholm Integro Differential Equations, J. Edu.

& Sci., Vol.(25), (2012). No.(3), p (62- 67).

[24] K. Maleknejed, F. Mirzaee, Numerical solution of integro -
differential equations by using rationalized Haar functions method,

Kybernetes Int. J. Syst. Math. 35 (2006) 1735-1744.

[25] B. Pachpatte, Applications Of The Leray — Schauder
Alternative To Some Volterra Integral and Integro - Differential
Equations, Indian J. pure appl. Math., Inform. 26 (12) : 1161-1168,
December 1995.

[26] A. Andrzel Granas, On the Leray-Schauder Alternative,

Topological Methods in the Nonlinear Analysis, Journal of the

Juliuss Schauder center ,Vol. 2, (1993). 225-231.

[27] B. Pachpatte, Inequalities for Differential and Integral

Equations, Academic Press, New York, 1998.

71
[28] B. Pachpatte, Integral and Finite Difference Inequalities
and Applications, North-Holland Mathematics Studies, Vol.
205, Elsevier Science B.V. Amsterdam, 2006.

[29] B. Pachpatte, On Cartain Volterra Integral and Integro-
Differential Equations, Facta Universitatis, Ser. Math. Inform. Vol.

(23), p (1- 12), (2008).

[30] C. Pitts, Introduction to metric spaces, Oliver and Boyd,

Edinburgh, (1972).

[31] M. Rashed, Numerical solution of functional differential,
integral and integro-differential equations, Appl. Numer. Math.156
(2004) 485- 492,

[32] M. Razzaghi, S. Yousefi, Legendre wavelets method for
nonlinear Volterra-Fredholm integral equations, Math. Comput.

Simul. 70 (2005) 1-8.

[33] M. Reihani, Z. Abadi, Rationalized Haar functions method for
solving Fredholm and Volterra integral equations, J. Comput. Appl.

Math. 200 (2007) 12-20.

[34] N. Sweilam, Fourth order integro-differential equations
using variational iteration method. Comp. Math. Appl. (2007)
no..54 (7-8) 1086-1091.

72
[35] H. Tidke, Existence of global solutions to nonlinear mixed
Volterra-Fredholm integro differential equations with nonlocal

conditions, Jelec. Diff. Egs., Vol. (2009), No. (55), p (1-7), (2009).

[36] A. Wazwaz, The combined Laplace transform - Adomian
decomposition method for handling nonlinear Volterra integro —

differential equations, Appl. Math. Comput. 216 (2010) 1304 -1309.

[37] A. Wazwaz, Linear and Nonlinear Integral Equations:
Methods and Applications, Springer Heidelberg, Dordrechi
London, (2011).

[38] J. Zhao, RM. Corless, Compact finite difference method for
integro - differential equations ,Appl. Math. Comput. 177 (2006)
271- 288.

[39] J. Zhou, Differential Transformation and Its Applications for

Electrical Circuits, Huazhong University Press, Wuhan, China 1986.

[40] S. Yalcinbas ,Taylor polynomial solution of nonlinear
Volterra-Fredholm integral quations, Appl. Math. Comput. 127
(2002) 195-206.

73

Appendix

Matlab Code for Differential Transform Method (DTM) for Example
3.1

> clc

> clear all

» format long

» %The general form of nonlinear vollterra integro differential

equation

> %Display

> disp(sprintf('Farah Abu-Thabet'))

> disp(sprintf('Laplace Method"))

> %% in put data

> u(1)=1,

> u(2)=0;

> u(3)=1,;

> u(4)=0;

> %%A0

> G(1)=0;

74

G(2)=0;

G(3)=1;

G(4)=0;

G(5)=1,

%%nonlinear adomian polynomial

%%for i1=4

for k=2:6

u(k+3)=(L/((k+1)*(k+2)))*(6*u(k+1)+(8/K)*G(k-1));

end

%%solution of problem

Syms X

yapp=0;

for i=1:9

yapp=yapp+(u(i)*x~(i-1));

end

yapp

%%Exact solution

75
> x=[00.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
11;

» M1=x."8./24 + X."6./6 + X."4.[2 + Xx."2 + 1;

> exact=exp(x."2);

> error=abs(M1-exact);

> plot(x,M1,x,exact,’'m-.")

> %%print

> disp(sprintf(TABLE(2) :) ")

> [x'exact' M1' error']

T

Matlab Code for Differential Transform Method (DTM) for

Example 3.2
> clc

» clearall

» format long

» %The general form of nonlinear vollterra integro differential

equation

> %Display

76

disp(sprintf('Farah Abu-Thabet'))

disp(sprintf('Transform"))

%% in put data

u(1)=0;

u(2)=1,

%%A0

G(1)=1;

G(2)=1;

G(3)=1;

G(4)=-1/6:

G(5)=1/24:

%% nonlinear adomian polynomial

for k=2:3

u(k+1)=(-1*(k-2)*u(k-1)/(k))+(1/(6*(k+1))*[((-1"K)*(6-11*k+6*k"2-
k~3)/factorial(k))]);

End

u(5)=-2*u(3)/4;

>

>

77

u(6)=-3*u(4)/5+1/30*((-6/factorial(4))+G(1)/4);
u(7)=-4*u(5)/6+1/36*((24/factorial(5))+G(2)/5);
u(8)=-5*u(6)/7+1/42*((-60/factorial(6))+G(3)/6);
u(9)=-6*u(7)/8+1/48*((120/factorial(7))+G(4)/7);
u(10)=-7*u(8)/9+1/54*((-210/factorial(8))+G(5)/8);
%%solution of problem

Syms X

yapp=0;

for i=1:7

yapp=yapp+(u(i)*x"(i-1));

end

yapp

%%Exact solution

x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
1];

M1= x."5./5 - X."3./3 - XNT/T7 + X;

exact=atan(x);

78

> error=abs(M1-exact);

> plot(x,M1,x,exact,'m-.")

> %%print

> disp(sprintf(' TABLE(1) :))

> [x'exact' M1' error']

S e T T R R R T

Matlab Code for Differential Transform Method (DTM) for

Example 3.4

> clc

> clear all

» format long

> %The general form of nonlinear vollterra integro differential

equation

» %Display

> disp(sprintf('Farah Abu-Thabet’))

> disp(sprintf('Transform"))

» %% in put data

> u(1)=0;

79

u(2)=1,

%%A0

G(2)=0;

G(2)=0;

G(3)=1;

G(4)=1,

G(b)=7/12;

G(6)=1/2;

%%non linear adomian polynomial
u(3)=(1/factorial(2))+(1/factorial(2))*(G(1)/factorial(0));

u(4)=(1/factorial(3))+(1/factorial(3))*((G(2)/factorial(1))-
(G(1)/(factorial(1)*factorial(0))));

u(5)=(1/factorial(4))+(1/factorial(4))*((G(4)/factorial(3))-
(G(3)/(factorial(2)*factorial(2)))+(G(2)/(factorial(3)*factorial(1))));

u(6)=(1/factorial(5))+(1/factorial(5))*((G(5)/factorial(4))-
(G(4)/(factorial(2)*factorial(3)))+(G(3)/(factorial(3)*factorial(2))));

80
u(7)=(1/factorial(6))+(1/factorial(6))*((G(6)/factorial(5))-
(G(5)/(factorial(2)*factorial(4)))+(G(4)/(factorial(3)*factorial(3)))-
(G(3)/(factorial(2)*factorial(4))));

%%solution of problem

Syms X

yapp=0;

for i=1:7

for j=1:8

yapp=yapp+(x"2+3)+(taylor(1+exp(x), X, 'Order’, 11));

end

end

yapp,

%%EXxact solution

x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
1];

M1=x.~10/3628800 + x."9/362880 + x.78/40320 + x.~7/5040 +
X6/720 + x.N5/120 + X.M/24 + xN3/6 + X"2/2 + X + 2;

exact=1+exp(x);

81

> error=abs(M1-exact);

» plot(x,M1,"*" x,exact,'r")

> %%print

> disp(sprintf(' TABLE(1) :))

> [X'exact' M1' error']
R A A

Matlab Code for Modified Laplace Adomian Decompostion
method (MLAD) for Example 3.1

> clc
» clearall
» format long

> %The general form of nonlinear vollterra integro differential

equation
» %Display
> disp(sprintf('Farah Abu-Thabet'))
> disp(sprintf('Laplace Method'"))
> %In put data

» symstxs

82

%%for i=1

A=2/3;

%%for i=2
U=A*log(A)*t;
F=int(U,t,0,X);
Al=laplace(F);
B=(8*A1/(s"2-6));
C=ilaplace(B);
D=((1/3)*cosh(sqrt(6)*x))+(subs(C,t,x));
%%for i=2
Ul=t*(D*log(A)+D);
F1=int(U1,t,0,X);
A2=laplace(F1);
B1=(8*A2/(s"3-6*5));
Cl=ilaplace(B1);
D1=(subs(C1,t,x));

%% approximation(1)

&3
> x=[00.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
11;

> Mil=
(22152124404789197. *cosh(6.7(1/2).*))./81064793292668928 +
(4869473359433779.*x.12)./27021597764222976 +
4869473359433779/81064793292668928;

> exact=exp(x."2);

> error=abs(M1-exact);

> plot(x,M1,x,exact,'m")

> %%print

> disp(sprintf(' TABLE(1) 1) ")

> [x'exact' M1' error]

HHHHH AR H R R H

Matlab Code for Modified Laplace Adomian Decompostion
method (MLAD) for Example 3.2

> clc
> clear all

» format long

84
%The general form of nonlinear vollterra integro differential

equation

%Display

disp(sprintf(‘Farah Abu-Thabet'))

disp(sprintf('Laplace Method'))

%In put data

symstxs

%%for i=1

A=0.5+0.5%exp(2*x);

%%for =2

F=(A)2;

Al=laplace(F);

B=(Al/(s*s-s));

C=ilaplace(B);

D=(subs(C,t,x))*-1;

%%for 1=3

K=((A)*(D)*2);

85

A2=laplace(K);

B1=(A2/(s*(s-1)));

Cl=ilaplace(Bl);

D1=-1*subs(C1,t,x);

%% approximation(1)

x=[-1-0.8-0.6-0.4-0.200.20.40.60.8];

M1=0.5+0.5.*exp(2.*X);

exact=exp(x);

errorl=abs(M1-exact);

plot(x,M1,x,exact,'m")

%%print

disp(sprintf(' TABLE(1) :) "))

[x" exact' M1' error']

%% approximation(2)

x=[-1-0.8-0.6-0.4-0.200.20.40.60.8];

M2= X./4 - exp(2.%X)./4 - exp(4.%X)./48 + exp(X)./3 - 1/16;

exact=exp(x);

86

> error=abs(M2-exact);

> plot(x,M2,x,exact,'m")

> %%print

> disp(sprintf(' TABLE(2) :) ")

> [x'exact' M2' error']

> %% approximation(3)

» x=[-1-0.8-0.6-0.4-0.200.20.40.60.8]

» M3= (3.*x)./16 + (11l.*exp(2.*x))./32 - exp(3.*x)./18 +
(13.*exp(4.*x))./576 + exp(6.*x)./1440 - (31.*exp(x))./90 -
(x.*exp(2.*%x))./8 - (x.*exp(x))./3 + x.*2./8 + 19/576;

> error=abs(M3-exact);

> plot(x,M3,x,exact)

> %%print

> disp(sprintf(' TABLE(3) :))

> [x'exact' M3' error']

S R B T R R

87
Matlab Code for Modified Laplace Adomian Decompostion
method (MLAD) for Example 3.4

> clc

> clear all

» format long

> %The general form of nonlinear vollterra integro differential

equation

> %Display

> disp(sprintf('Farah Abu-Thabet'))

> disp(sprintf('Laplace Method'))

> %lIn put data

» symstxs

> %%for i=1

> A=3:

> %%for =2

> F=(A)"2;

» Al1=9/s:

» B=(Al/(s*s-s));

88

> C=ilaplace(B);

> D=(subs(C,t,x));

> %%for i=3

> K=((A)*(D)*2);

> A2=laplace(K);

> B1=(A2/(s*(s-1)));

» Cl=ilaplace(Bl);

» D1=-exp(2*x)-exp(X)*((2*x)-1)+subs(C1,t,x);

> %%for i=4

» K1=((A)*(D1)*2)+(D"2);

> A3=laplace(K1);

> B2=(A3/(s*(s-1)));

» C2=ilaplace(B2);

» D2=subs(C2,t,x);

> %%for i=5

> K2=((D)*(D1)*2)+((A)*2);

> Ad=laplace(K2);

&9

> B3=(A4/(s*(s-1)));

> C3=ilaplace(B3);

» D3=subs(C3,t,x);

> %% approximation(1)

a) x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
1]

(@) M1=x."M/24 + x."3/6 + X."2/2 + X + 2;
(b) exact=1+exp(X);

(c) error=abs(M1-exact);

(d) plot(x,M1,*" x,exact,'r")

() %%oprint

(Hdisp(sprintf("' TABLE(1) 1) "))

(g) [X' exact' M1' error']

b) %% approximation(2)

i) x=[00.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125
0.9062 1];

» M2=x/7/5040 + x."6/720 + xX.*5/120 + X."4/24 + X."3/6 + X.N2/2

+ X+ 2;

(@)

(b)

(©)

(d)

(1)

(a)

(b)

(©)

(d)

(1)

(i)

90

exact=1+exp(x);
error=abs(Mz2-exact);
plot(x,M2,x,exact,'m")
%%print

disp(sprintf(' TABLE(2) 1))
[x' exact' M2' error']

%% approximation(3)

x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125
0.9062 1];

M3= x.9/362880 + x.”8/40320 + x.~7/5040 + x.”"6/720 +
X.5/120 + x.M/24 + xN3/6 + X2/2 + X + 2;

exact=1+exp(x);
error=abs(M3-exact);
plot(x,M3,x,exact)

%%print

disp(sprintf(' TABLE(3) 1))
[X' exact' M3' error']

%% approximation(4)

91
i) x=[00.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125
0.9062 1];

> M4=x.711/39916800 + x.~10/3628800 + x.~9/362880 +
x.78/40320 + x.A7/5040 + x."6/720 + x.~5/120 + x.N4/24 + x."3/6

+ X212+ X+ 2;

> exact=1+exp(x);

(@) error=abs(M4-exact);

(b) plot(x,M4,x,exact)

(c) %%print

(d) disp(sprintf(' TABLE(4) :) ")

(i) [x exact' M4 error']

(i) %% approximation(5)

ii) x=[00.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125
0.9062 1];

> M5=x."14/87178291200 + x."13/6227020800 + x.~12/479001600
+ x.211/39916800 + x.~10/3628800 + x.79/362880 + x.~8/40320 +
X N7/5040 + x.M6/720 + x.N5/120 + x.M/24 + xN3/6 + X "2/2 + X +
2;

> exact=1+exp(x);

92

(@) errorl=abs(M5-exact);

(b) plot(x,M5,x,exact)

(c) %%print

(d) disp(sprintf(' TABLE(5) :) ")

(i) [x exact' M5 error']

i) %%Plot All Itteration with Exact Solution

> plot(x,M1,*' x,M2,'B'x,M3,'R',x,M4,"Y",x,M5,'G',x,exact,'P")
HHH B R

Matlab Code for Variational Iteration Method (VIM) for Example
3.1

> clc
> clear all
» format long

» %The general form of nonlinear vollterra integro differential

equation
> %Display
» disp(sprintf('Farah Abu-Thabet'))

> disp(sprintf('Variation Iterative Method'))

93

%In put data

N=4;

Syms X

syms r

syms t

y(1)=1;

%%for i=1

A=int(8*r*1*log(1),r,0,t);

B=int(((t-X)*(0-6*1+4)-A),t,0,%):

Ul=y(1)+(B);

B=expand(U1);

%%for i=2

A2=int(((subs(U1,x,))*8*r*log((subs(U1,x,r))),r,0,t);

B2=int((t-x)*(diff(diff(subs(U1,x,t)))-6*(subs(U1,x,t))+4)-A2,t,0,X);

U2=U1-B2;

C=expand(U2);

%% approximation(1)

94
x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
11;

M1=x."2 + 1;

exact=exp(x.*2);

error=abs(M1-exact);

plot(x,M1,x,exact)

%%print

disp(sprintf(' TABLE(1)) "))

[x' exact' M1' error']

%%%9%%%%% %% % %% %% %% %%% % %% %% % %% %% % %%
%%%%%%%% %% %% %

%% approximation(2)

x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
1];

M2=(16*pi)/15 - (32.*x)/15 - (log(x - i)*16*i)/15 + (log(x +
1)*16*1)/15 + 2.*x.*log(X - i) + 2.*x.*log(X + 1) + X."2 -
(58.*x.73)/45 - x.M/2 - (9.*%x."5)/25 + (4.*x."3.*log(x."2 + 1))/3 +
(2.*x.75.*log(x."2 + 1))/5 + 1;

exact=exp(x."2);

95

> error=abs(M2-exact);

> plot(x,M2,x,exact)

> %%print

> disp(sprintf(' TABLE(2) :) ")

> [x'exact' M2' error']

> %%all plot

» plot(x,M1,x,exact,'m")

HRHH B R I R R R R R

Matlab Code for Variational Iteration Method (VIM) for Example
3.2

> clc

> clear all

» format long

» %The general form of nonlinear vollterra integro differential

equation

» %Display

> disp(sprintf('Farah Abu-Thabet"))

> disp(sprintf('Variation Iterative Method"))

96

> %lIn put data

» N=4,

» syms X

» syms r

» syms t

> y(1)=0;

» %%for i=1

a) A=int(r"3,r,0,t);

b) B=int(((-1)*((0-(t"3+3*t"2+6*t+6)*exp(-1*t)))+A),t,0,X);
¢) Ul=y(1)+(B);

d) B=expand(U1);

> %%for i1=2

a) A2=int((r"3*exp(-1*(subs(U1,x,))),r,0,t);

b) B2=int((-1)*((6*(**2+1)*(diff(subs(U1,x,t))-
(1A3+3*tA2+6%t+6)*exp(-1*1)))+A2),1,0,X):

i) U2=U1-B2;

c) C=expand(U2);

97

d) %%for i=3
e) A3=int((r"3*exp(-1*(subs(U2,x,r)))),r,0,t);

f) B3=int((-1)*((6*(t"2+1)*(diff(subs(U2,x,1))-
(tA3+3*tA2+6%t+6)*exp(-1*1)))+A3),1,0,%):

1) U3=U2-B3;
g) L=expand(U3);
1) %% approximation(1)

> x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
1];

» M1=-1*x."3/3+X;

1) exact= atan(x);

i) error=abs(M1-exact);

i) plot(x,M1,x,exact)

Iv) %%print

v) disp(sprintf(' TABLE(2) :) ")
vi) [X'exact' M1'error']

%% approximation(2)

98
> x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
1];

» M2= x."9/9 - x.A7[7 + x."5/5 - x."3/3 + X;
» exact= atan(x);

» error=abs(M2-exact);

1) plot(x,M2,x,exact)

1) %%yprint

i) disp(sprintf(' TABLE(2) 1) "))

Iv) [x' exact' M2'error']

%% approximation(3)

> x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
1];

1) M3=x.713/13 - x.M11/11 + x.29/9 - X.AT/7 + XN5/5 - X313 + X;
» exact= atan(x);

1) errorl=abs(M3-exact);

i) plot(x,M3,x,exact)

i) %%print

iv) disp(sprintf(' TABLE(3) :) ")

99

V) [x' exact' M3' error']

> %%all plot

> plot(x,M1,'R',x,M2,"Y" x,exact,'B',x,exact,'M")

HHHHHHHH AR

Matlab Code for Variational Iteration Method (VIM) for Example
33

> clc
> clear all
» format long

» %The general form of nonlinear vollterra integro differential

equation
> %Display
» disp(sprintf('Farah Abu-Thabet"))
> disp(sprintf('Variation Iterative Method'))
> %lIn put data
» N=4;
» Syms X

» syms r

100

» syms t

> y(1)=1;

> %%for i=1

i) A=int(0,r,0,t);

1) B=int((0-1+exp(t)-exp(2*t)-A),t,0,X);

i) Ul=y(1)-(B);

Iv) B=expand(U1l);

> %%for =2

> A2=int((exp(t-r)*(1-(subs(U1,x,r)"2)),r,0,t);

(1) B2=int(diff(subs(U1,x,t)-1+exp(t)-exp(2*t)-A2),t,0,X);

(2) U2=U1-B2;

(3) C=expand(U2);

4) %%for i=3

(5) A3=int((exp(t-r)*(1-(subs(U2,x,))"2)),r,0,t);

6) B3=int(diff(subs(U2,x,1)-1+exp(t)-exp(2*t)-A3),1,0,x);

(7) U3=U2-B3;

(8) L=expand(U3);

101

> %% approximation(1)

a) x=[-1-0.8-0.6 -0.4-0.200.20.40.6 0.8];
(@) M1=x."4/24 + x.~3/6 + x."2/2 + x + 0.9999;
(b) exact=exp(x);

(c) error=abs(M1-exact);

(d) plot(x,M1,x,exact)

() %%print

(Hdisp(sprintf("' TABLE(1) 1) "))

() [Xx exact' M1'error']

(h) %% approximation(2)

b) x=[-1 -0.8 -0.6 -0.4 -0.20 0.2 0.4 0.6 0.8];

(@ M2=x.19/362880 + x.~8/40320 + x.~7/5040 + x."6/720 +
X.N5/120 + x.M/24 + X316 + X N2/2 + X + 1;

(b) exact=exp(x);
(c) error=abs(M2-exact);
(d) plot(x,M2,x,exact)

(e) %%print

102

(Hdisp(sprintf(" TABLE(2) 1))

() [Xx exact' M2' error']

11) %% approximation(3)

c) x=[-1-0.8-0.6 -0.4-0.200.20.4 0.6 0.8];

(@ M3=x.r12/479001600 + x.~11/39916800 + x.10/3628800 +
X.79/362880 + x.~8/40320 + x.~7/5040 + x.~6/720 + x.~5/120 +
XM[24 + xN3/6 + x"2/2 + x + 1;

(b) exact=exp(x);

(c) error=abs(M3-exact);

(d) plot(x,M3,x,exact)

(e) %%print

(Hdisp(sprintf("' TABLE(3) 1))

(g0 [X exact' M3'error]

> %%all plot

> plot(x,M1,'R"x,M2,"Y" x,exact,'B',x,exact,'M")

S R R R

103
Matlab Code for Variational Iteration Method (VIM) for Example
3.4

> clc

> clear all

» format long

> %The general form of nonlinear vollterra integro differential

equation

> %Display

> disp(sprintf('Farah Abu-Thabet'))

» disp(sprintf("Variation Iterative Method"))

> %lIn put data

» N=4,

» syms X

» syms r

» syms t

> y(1)=2;

> %%for i=1

> A=int(exp(t-r)*((y(1))*2),r,0,t);

104

> B=int((0-1-exp(t)+2*t*exp(t)+exp(2*t)-A),t,0,x);

» Ul=y(1)-(B);

» A=expand(U1);

> %% for 2

»> A2=int(((subs(U1,x,n)"2)*(exp(t-r)),r,0,t);

» B2=int((subs(diff(U1),x,t))-1-exp(t)+2*t*exp(t)+exp(2*t)-A2,t,0,X);

» U2=U1-B2;

> B=expand(U2);

> %% for 3

» A3=int(((subs(U2,x,r))"2)*(exp(t-r)),r,0,t);

» B3=int((subs(diff(U2),x,t))-1-exp(t)+2*t*exp(t)+exp(2*t)-A3,t,0,X);

» U3=U2-B3;

» C= expand(U3);

» %% approximation(1)

> x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062
1]

» M1=7*exp(X) - exp(2.*x)/2 - 3.*x - 2.*X.*exp(x) - 9/2;

105

> exact=1+exp(X);

» errorl=abs(M1-exact);

» plot(x,M1,x,exact)

> %%)print

> disp(sprintf(TABLE(1) :))

> [x' exact' M1' error']

> %% approximation(2)

» x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062 1];

» M2=52*exp(2.*X) - (257.*x)/4 - (13*exp(3.%X))/9 + exp(4.*Xx)/48 +
(2*exp(x))/3 - (37.*x.*exp(2.*%x))/2 + (X.*exp(3.*x))/3 -
24.*xX. 2. %exp(1.*x) + 4.*x."3.*exp(X) + 2.*x."2.*exp(2.*X) -

17.%%.*exp(X) - (45.*x./2)/2 - 3.*x.A3 - 7091/144;

» exact=1+exp(x);

» error=abs(M2-exact);

> plot(x,M2,x,exact)

> %%print

» disp(sprintf(' TABLE(2) 1))

> [x' exact' M2' error']

106

> %% approximation(3)

> x=[0 0.0938 0.2188 0.3125 0.4062 0.5 0.6250 0.7188 0.8125 0.9062 1];

» M3=(23854975*exp(2.*x))/576 - (1755133633.*x)/20736 -
(4810751*exp(3.*X))/7776 + (86570981 *exp(4.*x))/248832 -
(4698473*exp(5.*x))/480000 + (319343*exp(6.*x))/1944000 -
(65*exp(7.*x))/42336 + exp(8.*x)/129024 +
(2933236952771*exp(1.*x))/54432000 - (12187981.*Xx.*exp(2.*x))/288
+ (533779.*x.*exp(3.*x))/432 - (4766885.*x.*exp(4.*x))/20736 +
(381511.*x.*exp(5.*x))/72000 - (1351.*x.*exp(6.*x))/21600 +
(x.*exp(7.*%x))/3024 + (733435.*x."2.*exp(x))/144 - 1433.*x."*3.*exp(X)
+ (52903.*%x.M. *exp(X))/72 + (128.*x.75.%exp(X))/5 + 18.*x.76.*exp(X)
- (24.%%x.7 *exp(x))/7 + (1404235.*x.72.%exp(2.*X))/72 -
(60869.*x.12.%exp(3.*x))/54 - (74527 .*x."3.*exp(2.*%X))/12 +
(232073.*x.12.*exp(4.*x))/3456 + (19967.*x."3.*exp(3.*x))/54 +
(2831.*x.M.*exp(2.*x))/2 —

» (7609.*x.72.*exp(5.*%x))/7200 - (8441.*x."3.*exp(4.*x))/864 -
(469.*x.M.*exp(3.*X))/9 - 174.*x."5.%exp(2.*Xx) +
(7.*x.72.*exp(6.*x))/1080 + (3.*x."3.*exp(5.*x))/40 +
(5.*x.M.*exp(4.%x))/9 + (8.*x.25.*exp(3.*x))/3 + 8.%x.M6.*exp(2.*X) -
(2214919.*x.*exp(x))/216 - (23678779.*x."2)/576 - (101187.*x."3)/8 -
(252809.*x.74)/96 - (7347.*x."5)/20 - (63.*X."6)/2 - (9.*X.7)/7 -
482735066144893/5080320000;

107

> exact=1+exp(X);

> error=abs(M3-exact);

» plot(x,M3,x,exact)

> %%)print

> disp(sprintf(' TABLE(3) 1))

> [x' exact' M3' error']

> %%all plot

> plot(x,M1,'R"x,M2,"Y" x,M3,'G',x,exact,'B')

Agihgl zladl daals

Ladad) b jal) 4408

Ahd) Alalinl) Alalsal) 1yl gh Alslaa Jad dgased) 5 k)

dac)
bl gif Salad A& 754
i)

g.'al.'\hﬁ @U o

clalyl A sdaldl dap o Jsaad) clibiad Yladia) dagbi) ol cuas
2019

dbd) Aboaldnl) Atalsdl) b:\:u 158 Aalea Jad Lasad) 5kl
Aas)
i g Salad A £
il
(kb Al

sadlall

@sind e Ada yall loalel ALl bl Al da e WS, dag)l o b
plos cobially (WSplSually cAuuniglly cdpcalpll oLyl 4 Clipkll e dasls desane o

LUEY) Alang cala@Y g e Ll ale g ccllal)

o bl J<8 Lialaia) BS) cleabing Al clulaly Caplaall ey el o) 2
diph s Gphall oda byl Aloalil Ll il dblee Jal Aol Gkl
oY dias Al (DTM) dwesdl) agaall @i s Laalall Jyoail

(VIM) sl fsall 355k 5 (LADM) ¢ laasal

dus L le Laldll g_vlsﬂ\ uaibad &= MJJ:J\ &)H\ ch@J L;.salg,)l\ ‘)&:}[\ Uy (;15‘“ GITEN

A2 ARG (any (PAA (e Apaaall bl 538 36l mua g Al
dal Al byl ol (e sanly A i) SE Ayl o 2 gaas Apaaell i) el
o 2l AT Lol bl ae AL Agdad) Aloalall Al hald Al

PURECAA LAY

