A Dynamic Programming Approach to Control Heat Equation with Random Walk Process Using HJB Equation

dc.contributor.authorAnabsa, Sally Mohammad Ali
dc.date.accessioned2022-09-19T12:19:49Z
dc.date.available2022-09-19T12:19:49Z
dc.date.issued2019-04-29
dc.description.abstractThe heat equation is considered with Random Walk and Brownian motion under the assumption of Bernoulli's, Binomial, Geometric and Poisson distributions for Markov chain. Some numerical methods are also used to find a numerical solution of heat equation under certain conditions as finite difference method (explicit and implicit), Crank Nicolson method and method of lines. Separation of variables method also used to determine an analytic solution of heat equation. In addition, we have used the Hamilton Jacobi Bellman equation (HJB) and algebraic Riccati equation that arises in the linear quadratic regulator (LQR) to obtain the optimal control function for heat equation. Finally, a comparison between exact and approximate solution for state space equation using Euler's method.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11888/17179
dc.language.isoen_USen_US
dc.publisherAn-Najah National Universityen_US
dc.supervisorDr. Mohammad Ass'aden_US
dc.titleA Dynamic Programming Approach to Control Heat Equation with Random Walk Process Using HJB Equationen_US
dc.title.alternativeاستخدام البرمجة الديناميكية في السيطرة على المعادلة الحرارية في حالة عملية المشي العشوائي وذلك عن طريق معادلة هاملتون جاكوب بيلمانen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
organized.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format
Description:
full text
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: