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Abstract  

  
The heat equation is considered with Random Walk and Brownian motion 

under the assumption of  Bernoulli's,  Binomial, Geometric and Poisson 

distributions for Markov chain. 

 

Some numerical methods are also used to find a numerical solution of heat 

equation under certain conditions as finite difference method (explicit and 

implicit), Crank  Nicolson method and method of lines. 

 

Separation of variables method also used to determine an analytic solution 

of heat equation. 

 

In addition,  we have used the  Hamilton Jacobi Bellman equation (HJB) 

and algebraic Riccati equation that arises in the linear quadratic regulator  

(LQR) to obtain the optimal control function for heat equation. 

 

Finally, a comparison between exact and approximate solution for state 

space equation using Euler's method.  
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• Preface

The heat equation is an important partial differential equation that

describes the distribution of heat or change in temperature in a particular

region over time [24].

The heat equation has the general form:

∂U

∂t
= D

∂2U

∂x2
(1)

Where

U = U(x, t) is the temperature and is a function of space and time.

D is a constant.

The heat equation predicts that if a hot object is placed in a box of

cold water, the body temperature will decrease, and eventually after an

unlimited time, without any external sources of heat, the temperature

becomes homogeneous.

The heat equation is of fundamental importance in different scientific

fields. In mathematics, it is the prototypical parabolic partial differential

equation. In statistics, the heat equation is connected with the study

of Brownian motion. The diffusion equation, a more general version

of the heat equation, arises in connection with the study of chemical

diffusion and other related processes [16]. Heat and mass transfer is used

to understand how drug delivery devices work, how kidney dialysis works,

and how to control heat for temperature-sensitive things [24].
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Many scientists have worked on the heat equation, for example Jean

Biot (1774-1862) has studied the heat conduction equation but he was

unsuccessful to deal with the problem of incorporating external convec-

tion effects in heat conduction analysis. Joseph Fourier (1768-1830) de-

termined how to solve the problem and gave the well-known Fourier’s

law. Ernst Schmidt (1892-1975) was a German scientist and pioneer

in the field of Engineering thermodynamic, especially in heat and mass

transfer.

Chamkha and Khaled (2000) have studied the effect of magnetic field

on the coupled heat and mass transfer by mixed convection in a linearly

stratified stagnation flow in the presence of an internal heat generation or

absorption. EL-Hakiem (2000) studied thermal radiation effects on hy-

dromagnetic free convection and flow through a highly porous medium

bounded by a vertical plane surface. Chamkha (2000) has analyzed hy-

dromagnetic mixed convection from a permeable semi-infinite vertical

plate embedded in porous medium in heat dimension[24]. In recent years,

many researchers have worked on the heat conduction equation (see for

example [1, 15, 20, 22]).

In this thesis we have studied how to control the heat equation. In the

first chapter of this thesis we derived the heat equation using stochastic

process specifically random walk with Bernoulli’s, Binomial, Geometric

and Poisson distribution. Additionally, we used Brownian motion to

derive the heat equation.
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In the second chapter we solved the heat equation in one dimen-

sion using the separation of variables method subject to some specific

boundary and initial conditions (Dirichlet and Neumann conditions). In

the third chapter we solved the heat equation by well-known numerical

methods. Namely the Finite Difference Method, Theta Method, Crank-

Nicolson Method and Method of Lines.

In the last chapter we have studied the optimal control of heat equa-

tion. Optimal control is the process of determining optimal control

function and state trajectories for a dynamic system over a period of

time to minimize a performance index. Optimal control is closely re-

lated to the theory of calculus of variations. Some important scien-

tists who contributed to the theory of optimal control Isaac Newton

(1642-1727),Johann Bernoulli (1667-1748), Leonhard Euler (1707-1793),

Ludovico Lagrange (1736-1813), Andrien Legendre (1752-1833), Carl Ja-

cobi (1804-1851), William Hamilton (1805-1865), Karl Weierstrass (1815-

1897), Adolph Mayer (1839-1907), and Oskar Bolza (1857-1942). Some

important milestones in the development of optimal control in the 20th

century include the formulation dynamic programming by Richard Bell-

man (1920-1984) in the 1950s, the development of the minimum prin-

ciple by Lev Pontryagin (1908-1988), and the formulation of the linear

quadratic regulator by Rudolf Kalman in the 1960s.

Optimal control has found applications in many different fields, in-

cluding robotics, process control, aerospace, engineering, finance, eco-
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nomics and management science (see for example [6, 11, 13, 21]).

There are two types of control systems, the first is closed loop system

and the other is open loop system [13].

Closed loop control systems are also called feedback control systems

are very common in process control and electronic control systems.

In closed-loop system, a controller is used to compare the output of a

system with the required condition and convert the error into a control

action designed to reduce the error and bring the output of the system

back to the desired response. Closed-loop control systems use feedback

to determine the actual input to the system and can have more than one

feedback loop.

Open loop systems are defined by the fact that the output signal

or condition is neither measured nor feedback for comparison with the

input signal or system set point. Therefore open loop systems are com-

monly referred to as non feedback systems. Such that the output has no

influence or effect on the control action of the input signal.

Also, as an open-loop system does not use feedback to determine if

its required output was achieved, it assumes that the desired goal of the

input was successful because it cannot correct any errors it could make,

and so cannot compensate for any external disturbances to the system.

In this thesis we take the closed loop case.
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Chapter One 

Random Walk and the Heat Equation  
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1.1 Markov Chain Definition and Examples

A discrete time stochastic process is a sequence of random variables,

{xn}∞n=0 = {x0, x1, x2, ...}, where xn ∈ S and S is the discrete state

space.

In general, xn are dependent. Therefore in order to describe the

stochastic process, we need to know all the joint probability density func-

tions: P (x0 = i0, ..., xn = in),∀n = 0, 1, 2, ... and ∀i0, i1, ..., in ∈ S.

Consider a random walk starts at x0 = 0, the conditional probability

density functions can be specified as:

P (x1 = i1)

P (x2 = i2|x1 = i1)

P (x3 = i3|x1 = i1, x2 = i2)

...

P (xn = in|x1 = i1, x2 = i2, ..., xn−1 = in−1)

recall that P (x2 = i2|x1 = i1) = P (x2=i2,x1=i1)
P (x1=i1)

Definition 1.1. A stochastic process {xn, n = 0, 1, 2, ...} with discrete

state space S is called a discrete Markov chain if

P (xn = in|xn−1 = in−1, ..., x0 = i0) = P (xn = in|xn−1 = in−1)∀i0, ..., in ∈ S

which is called memoryless property ([14, 19])

The conditional probability P (xn = in|xn−1 = in−1) is called Transi-
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tion Probability and it is denoted by P n−1,n
in−1,in

The transition matrix P for the Markov chain is the N×N matrix for

finite Markov chain, whose (i, j) entry is Pij. The matrix P is a stochastic

matrix, that is,

0 ≤ Pij ≤ 1, 0 ≤ i, j ≤ N (1.1)

N∑
j=0

Pij = 1, 0 ≤ i ≤ N (1.2)

Any matrix satisfying (1.1) and (1.2) is called the transition matrix

for a Markov chain.

where:

Pij is the probability that the system is at state j out of state i in

one step.

Definition 1.2. A discrete time Markov chain is said to be homogeneous

in time if the probability of going from one state to another is independent

of the time at which the step is being made. That is, for all states i, j

P (xn = j|xn−1 = i) = P (xn+k = j|xn+k−1 = i)

∀k = −(n − 1),−(n − 2), ...,−1, 0, 1, ... otherwise the Markov chain is

said to be non-homogeneous.

Example 1.3. A model for the state of the phone such that xn = 1 or

0, when xn = 0 that means at time n the phone is free and xn = 1

that means at time n the phone is busy. Also at each time interval, we
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assume that the probability of call comes in is p and no more than one

call comes in the particular time interval that means if the phone is busy

the incoming call doesn’t occur at that time interval, also if the phone

is busy at time interval the probability to be free is q at that time [19].

So this example gives a Markov chain with state space S = {0, 1} and

matrix:

P =


0 1

0 1− p p

1 q 1− q



Example 1.4. Consider a random walker moving along the locations

{0, ..., N} such that at each step the walker moves one step to the right

with probability p and one step to the left with probability q = 1− p, but

at the boundary points the walker moves inward with probability 1, [19]

so the transition matrix is given by

P (j, j + 1) = p, P (j, j − 1) = 1− p, 0 < j < N

P (0, 1) = 1, P (N,N − 1) = 1

P (i, j) = 0, for other sites.
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Figure 1.1: Random walk with reflecting boundary

1.2 Random Walk Definition and Examples

The concept of random walk was introduced for the first time by Karl

Pearson 1905. However, in 1880, Lord Rayleigh applied this process

without naming it to analyze a particular random vibration problem.

Random walk is the best way to express the path that consist of a series

of random steps. It may also indicate the path followed by a Brownian

particle as it moves through a liquid.

Some fields of random walk implementations are finance, mathemat-

ics, economics, biology and physics.

Definition 1.5. A random walk is a stochastic sequence {Sn} that is

defined by:

Sn = x1 + x2....+ xn =
n∑
k=1

xk

S0 = 0

Where {xk} are independent and identical distributed random variables.

Consider a particle moves along the real line by steps, each step has
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two choices either x = 1 or x = −1 , for example, one step to the

right is with probability equal p and to the left equal 1 − p = q that

is P (x = 1) = p and p(x = −1) = 1 − p = q, in this case it is called

simple random walk, see figure (??), it is called symmetric random walk

if p = q = 1
2 .

Figure 1.2: Simple random walk

The Random walk can happen in many situations, and is useful for

analyzing different scenarios. One of the basic models of random walk,

simple random walk on the integer lattice Zd (d=1, one dimension). At

each time step, a walker flips a fair coin and moves one step to the left

or one step to the right depending on whether the coin comes up heads

or tails.

Let Sn denote the position of the walker at time n [20].

If the walker starts at the origin (x = 0), so

Sn = x1 + x2 + ...+ xn

where xi equals ±1 represents the change in position and

P (xi = 1) = P (xi = −1) = 1
2 , see figure (1.3).
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Figure 1.3: Random walk with S0 = 0

1.3 Classifications of States

• Accessibility

Definition 1.6. A state k is accessible from state j if

P n(j, k) = P (xn = k|x0 = j) > 0 for some n ≥ 0

and it is denoted by j → k .

where

P n(j, k) is the probability that at stage n, the system is in state k

given that it is initially in state j

• Communicability

Definition 1.7. A state j communicates with state k, if state j is

accessible from state k, and state k is accessible from state j, and it



13

is denoted by j ←→ k . In other words, two states communicate if

and only if each state has a positive probability of eventually being

reached by a chain starting in the other state.

Properties of the symbol ←→ :

1. i←→ i (reflexive).

2. if i←→ j, then j ←→ i (symmetric).

3. if i←→ j and j ←→ k, then i←→ k. (transitive).

So the relation ←→ is an equivalence relation on the state space.

Also it partitions the state space into disjoint sets called commu-

nication classes.

Definition 1.8. Chapman Kolmogorov equation is an identity re-

lating the joint probability distributions of different sets of coordi-

nates on a stochastic process, that is:

P n+m(i, j) =
∑

k∈S P
n(i, k)Pm(k, j)

Proof. 1. reflexive, since P 0(i, i) = 1 > 0.

2. symmetric, this is immediate from definition.

3. transitive, if i←→ j then P n(i, j) > 0, similarly, since

j ←→ k, then Pm(j, k) > 0, therefore by the Chapman-Kolmogorov

equation, we get:

P n+m(i, k) =
∑

j∈S P
n(i, j)Pm(j, k) ≥ P n(i, j)Pm(j, k) > 0.
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Example 1.9. Given the following Markov chain

Figure 1.4: Transition diagram

p =



0.7 0.3 0 0 0

0.8 0.2 0 0 0

0 0 0.9 0.1 0

0 0 0.3 0.2 0.5

0 0 0 0.6 0.4


For example, states 0 and 1 are accessible from state 0,

states 2, 3, and 4 are accessible from state 3

0←→ 1, 2←→ 3←→ 4

there have two communication classes {0, 1}, {2, 3, 4}

• Irreducibility

Definition 1.10. A Markov chain is called irreducible if there is

only one class of communication (all states belong to one class),

otherwise it is called reducible.
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Remark 1.11. If the Markov chain is irreducible then for any pair

of i and j, ∃n ∈ N such that P n(i, j) > 0

Consider example (1.9), the classes {0, 1}, {2, 3, 4} are communi-

cate but disjoint, therefore the chain is reducible.

Example 1.12. Consider a Markov chain

p =

p 1-p

q 1-q



this Markov chain is irreducible.

• Recurrence and transience

If fii = P (xn = i forsome n ≥ 1|x0 = i), is the probability that

the Markov chain will eventually be found in state i if it starts from

state i.

Definition 1.13. A state i is recurrent if fii = 1 ,i.e., the system

is certain to return to state i if it starts at state i

Definition 1.14. A state i is transient if fii < 1,i.e., there is

positive probability that the system starts at state i, fails to return

to it.
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Proposition 1.15. The state j is recurrent if and only if∑∞
n=1 P

n(j, j) = ∞. (in this case the chain returns to j infinitely

often with probability 1 ).

Proposition 1.16. The state j is transient if and only if∑∞
n=1 P

n(j, j) < ∞. (in this case the chain returns to j finitely

many times with probability 1 ).

where
∑∞

n=1 P
n(j, j) = E[number of visits to j|x0 = j]

Define Ti = min{n > 0 : xn = i} which is called first-passage time,

that means the first time that the Markov chain is in state i, given

that the process starts in state i.

If the chain does not return to state i, then Ti = ∞, therefore

Ti <∞ with probability one.

Theorem 1.17. The following dichotomy holds:

(i) if P (Ti <∞) = 1, then i is recurrent.

(ii) if P (Ti <∞) < 1, then i is transient.

In particular, every state is either transient or recurrent. (For more

details see [3, 19, 26])
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• Positive Recurrence and Null Recurrence

Theorem 1.18. Let P be the transition matrix of a Markov chain,

and let p0 be the probability vector which represents the initial dis-

tribution. Then the probability that the chain is in state i after n

steps pni is the ith entry in the vector

pn = p0Pn

where

pn is the distribution at time n of the Markov chain.

Definition 1.19. A finite transition matrix P is regular if some

power of P has only positive entries (i.e. strictly greater than zero).

A Markov chain is a regular Markov chain if its transition matrix

is regular.

Example 1.20. Consider the transition matrix

P =

0.2 0.8

0.7 0.3


all entries of P are positive, therefore P is regular.

Theorem 1.21. For a regular transition matrix P, there exists

some unique probability vector π̄ such that:([3, 19])
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(i) As n becomes large, all of the rows of Pn approach π̄

π̄ = lim
n→∞

Pn

(ii) π̄P = π̄

(iii) π̄(j) > 0

The probability vector π̄ is called an invariant probability for tran-

sition matrix P, stationary, or steady state probability distribution.

Example 1.22. Consider the two state Markov chain with transi-

tion matrix P =

1− p p

q 1− q

 , 0 < p < 1, 0 < q < 1

The matrix P has eigenvalues 1 and 1−p−q, P we can diagonalized

as, [19]

P = QDQ−1

where

D =

1 0

0 1− p− q

 , Q =

1 −p

1 q

 , Q−1 =

 q
q+p

p
q+p

−1
q+p

1
q+p


when P is diagonalized it is easy to raise P to powers,

Pn = QDnQ−1
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= Q

1 0

0 (1− p− q)n

Q−1
Since (1− p− q) < 1, then

lim
n→∞

Pn =

 q
q+p

p
q+p

q
q+p

p
q+p

 =

π̄
π̄

 , π̄ =
[

q
q+p

p
q+p

]

Definition 1.23. An infinite Markov chain is called null recurrent

if it is recurrent but

lim
n→∞

pn(i, j) = 0 ∀i, j

Otherwise, a recurrent chain is called positive recurrent.

For positive recurrent Markov chain, ∀i, j the limit

lim
n→∞

pn(i, j) = π̄

exists and is independent of the initial state i.

One way to determine whether or not a chain is positive recurrent

is to try to find an invariant probability distribution. If a chain

is positive recurrent, then there exists a unique steady state prob-

ability distribution, moreover, if a chain is not positive recurrent,

there is no steady state probability distribution.

Recall the first passage time Ti = min{n > 0 : xn = i}, if
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(i) E(Ti) <∞, then the chain is positive recurrent.

(ii) E(Ti) =∞ and P (Ti <∞) = 1, then the chain is null recurrent.

(iii) P (Ti <∞) < 1, then the chain is transient.

item P (xn = i|x0 = i) Zi

Null recurrent state 1 ∞

Positive recurrent state 1 <∞

Transient < 1 <∞

where Zi is Expected number of visits to i given x0 = i.

• Absorbing states

Definition 1.24. A state j is called absorbing state when entering

this state it is impossible to leave it. P (xn = j|x0 = j) = 1.

If every state can reach an absorbing state, then the Markov chain

is an absorbing Markov chain.

• Ergodic Markov chain

Definition 1.25. A state i is said to be ergodic if it is a periodic

and positive recurrent. In other words, a state i is ergodic if it is

recurrent, has a period of 1, and has finite mean recurrence time.

If all states in an irreducible Markov chain are ergodic, then the

chain is said to be ergodic.
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Example 1.26. Consider a Markov chain

the states {1,2} are transient states.

the states {0}, {3} are recurrent states

the states {0}, {3} are absorbing states

Non ergodic Markov chain.

From example (1.12), the states {0,1} are recurrent states, ergodic

Markov chain.

1.4 Random Walk and Diffusion

In this section the heat equation is derived in a different way from the

usual physical way, since the basic model of heat diffusion uses the idea

that heat spreads randomly in all directions at a given rate. Therefore,

the heat equation is a partial differential equation derived from this intu-

ition by calculating the average of a very large number of particles, so the

heat equation will be derived by using the probabilities and stochastic

processes.
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In this section, a random walk with Bernoulli, Binomial, Geometric

and Poisson distribution can be used to derive heat equation.

• Bernoulli distribution

Consider a walker moves along the x-axis by steps. Each step has

the length h and time duration δt, in each step the walker can

move only one step to the left (L) or one step to the right (R), such

that the probability of moving to the left and moving to the right

equally likely that is 1/2 (symmetric random walk).

If there have n events, then the number of events to the right (R)

is K, so the number of events to the left (L) is n−K, therefor the

probability density function for Bernoulli distribution is given by

[31]:

Pn(K) = n!
K!(n−K)!

1
2n , k = 0, 1, 2, ...n, with

∑n
K=0 Pn(K) = 1

Let U(x, t) be the probability that after time t the particle will be

at the state x. If the goal is to reach the state x at time t + δt,

according to the rule of motion we have two choices, the first one

is the walker was at the state x + h at time t and moved to the

left or the walker was at the state x − h at time t and moved to

the right, as the position of the walker at time t and the direction

of its next movement are independent, so the first event happens

with probability 1
2U(x+ h, t), while the second with 1

2U(x− h, t).

from transition diagram (figure 1.5) we obtain the following equa-
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Figure 1.5: Transition diagram for Bernoulli distribution

tion:

U(x, t+ δt) =
1

2
U(x+ h, t) +

1

2
U(x− h, t) (1.3)

we use the notation Ut(x) for U(x, t).

equation (1.3) can be written as:

Ut+δt(x)− Ut(x) =
1

2
{Ut(x+ h)− 2Ut(x) + Ut(x− h)} (1.4)

dividing equation (1.4) by δt and multiplying the second part with

h2

h2 , equation (1.4) becomes:

Ut+δt(x)− Ut(x)

δt
=

h2

2δt

Ut(x+ h)− 2Ut(x) + Ut(x− h)

h2
(1.5)

let D = h2

2δt , equation (1.5) becomes:

Ut+δt(x)− Ut(x)

δt
= D

Ut(x+ h)− 2Ut(x) + Ut(x− h)

h2
(1.6)

using Taylor series, U(x, t + δt) and U(x ± h, t) can be written in

the form:
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U(x, t+ δt) = U(x, t) + Ut(x, t)δt+ o(δt)

U(x± h, t) = U(x, t)± Ux(x, t)h+ o(h)

and taking the limits as h → 0 and δt → 0 in such away that the

coefficient D remains constant, equation (1.6) takes the form of

diffusion (heat) equation:

∂U

∂t
= D

∂2U

∂x2
(1.7)

where D is the diffusion coefficient.

• Binomial distribution

At each step the probability of moving to the right is p and moving

to the left is q = 1− p (non-symmetric random walk).

The number of events to the right (R) is K, so the number of events

to the left (L) is n − K, therefor the probability density function

for Binomial distribution is given by [31]:

Pn(K) = n!
K!(n−K)!p

K(1− p)n−K , with
∑n

K=0 Pn(K) = 1

Figure 1.6: Transition diagram for Binomial distribution

from transition diagram (figure 1.6), we obtain the following equa-
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tion:

Ut+δt(x) = (1− p)Ut(x+ h) + pUt(x− h) (1.8)

Let p = 1
2 + ε and 1 − p = 1

2 − ε, where ε is a small positive

infinitesimal quantity. Then equation (1.8) can be written as:

Ut+δt(x) = (
1

2
− ε)Ut(x+ h) + (

1

2
+ ε)Ut(x− h) (1.9)

In similar way as equation (1.8), two other iterative relations can

be written:

Ut(x− h) = (
1

2
+ ε)Ut−δt(x− 2h) + (

1

2
− ε)Ut−δt(x) (1.10)

Ut(x+ h) = (
1

2
+ ε)Ut−δt(x) + (

1

2
− ε)Ut−δt(x+ 2h) (1.11)

substituting equation (1.10) and equation (1.11) into equation (1.9),

the result is:

Ut+δt(x) =
1

4
{Ut−δt(x− 2h) + 2Ut−δt(x) + Ut−δt(x+ 2h)}

+ ε{Ut−δt(x− 2h)− Ut−δt(x+ 2h)}

+ ε2{Ut−δt(x− 2h)− 2Ut−δt(x) + Ut−δt(x+ 2h)}

(1.12)

subtracting Ut−δt(x) from both sides of (1.12), we get:
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Ut+δt(x)− Ut−δt(x) =

(
1

4
+ ε2){Ut−δt(x− 2h)− 2Ut−δt(x) + Ut−δt(x+ 2h)}

+ ε{Ut−δt(x− 2h)− Ut−δt(x+ 2h)}
(1.13)

transforming equation (1.13) as follows

Ut+δt(x)−Ut−δt(x)
2δt =

(
1

4
+ ε2)

(2h)2

2δt

Ut−δt(x− 2h)− 2Ut−δt(x) + Ut−δt(x+ 2h)

(2h)2

+ ε
4h

2δt

Ut−δt(x− 2h)− Ut−δt(x+ 2h)

4h

(1.14)

Let

D = (1 + 4ε2)
h2

2δt
and

D

T

∂V

∂x
=

2h

δt
ε (1.15)

substituting equation (1.15) into equation (1.14), we have:

Ut+δt(x)− Ut−δt(x)

2δt
=D

Ut−δt(x− 2h)− 2Ut−δt(x) + Ut−δt(x+ 2h)

(2h)2

+
D

T

∂V

∂x

Ut−δt(x− 2h)− Ut−δt(x+ 2h)

4h

(1.16)

This can be considered as difference equation of diffusion with drift,

the exterior force (∂V∂x ) is the cause of the drift. The quantity T is

the temperature in units of the energy. According to equation

(1.15),
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D ∝ h2

δt
while

D

T

∂V

∂x
∝ h

δt
. (1.17)

in this case it is impossible to keep the diffusion coefficient constant

[31]

D ∝ h2

δt
= constant

However, can be taken the limit as h→ 0 and δt→ 0, such that

h

δt
∝ v = constant

then

h2

δt
∝ D → 0

and equation (1.16) becomes:

Ut+δt(x)− Ut−δt(x)

2δt
= v

Ut−δt(x− 2h)− Ut−δt(x+ 2h)

4h
(1.18)

taking the limit as h → 0 and δt → 0, equation (1.18) takes the

form:

∂U

∂t
= −v∂U

∂x
. (1.19)

where

v = ε
4h

2δt

Equation (1.19) is called the advection equation.
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• Geometric distribution

Geometric distribution represents the number of failures before we

get a success in a sequence of Bernoulli attempts; k, then the prob-

ability density function for k is:

P (k) = pqk−1, k = 1, 2, ...

where

p : probability of success in any single experiment.

q = (1− p) : probability of failure in any single experiment.

The transition from the state x−h to the state x is with probability

p and from the state x+ h to the state x is with probability q.

Figure 1.7: Transition diagram for Geometric distribution

from the transition diagram (figure 1.7) we obtain the following

equation:

Ut+δt(x) = pUt(x− h) + qUt(x+ h) (1.20)
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subtracting Ut−δt(x) from both sides of equation (1.20), the result

is:

Ut+δt(x)− Ut−δt(x) = pUt(x− h) + qUt(x+ h)− Ut−δt(x) (1.21)

substituting p = 1− q in equation (1.21), we get:

Ut+δt(x)−Ut−δt(x) = Ut(x−h)− qUt(x−h) + qUt(x+h)−Ut−δt(x)

(1.22)

using Taylor expansion of Ut(x− h) about (x, t− δt):

Ut(x− h) = Ut−δt(x)− h∂U
∂x

+ δt
∂U

∂t
(1.23)

substituting equation (1.23) into equation (1.22), we obtain:

Ut+δt(x)−Ut−δt(x) = q{Ut(x+h)−Ut(x−h)}−h∂U
∂x

+δt
∂U

∂t
(1.24)

dividing equation (1.24) by 2δt and multiplying the first part with

2h
2h , we get:

Ut+δt(x)− Ut−δt(x)

2δt
=

q

2δt

2h

2h
{Ut(x+h)−Ut(x−h)}− h

2δt

∂U

∂x
+

1

2

∂U

∂t

(1.25)

taking the limits as h → 0 and δt → 0 and substituting q = 1
2 − ε
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into equation (1.25), equation (1.25) takes the form:

∂U

∂t
= −ε2h

δt

∂U

∂x
(1.26)

equation (1.26) is an advection equation, that is defined by:

∂U

∂t
= −v∂U

∂x
(1.27)

where

v = ε
2h

δt

• Poisson distribution

◦ Poisson process

Consider x(t) the number of customers arriving at a store by time

t. Time is now continuous, so t takes values in the non-negative

real numbers. The rate at which customers arrive is subject to the

following assumptions: ([3, 19])

(i) The number of customers arriving during time interval does not

affect the number arriving during a different time interval.

(ii) The arrival rate at which customers arrive is constant.

(iii) One arrived at a time.

The first assumption can be expressed mathematically as: s1 ≤

t1 ≤ s2 ≤ t2 ≤ ... ≤ sn−1 ≤ tn−1 ≤ sn ≤ tn, that is, in the interval
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[si, ti] the random variables x(t1)−x(s1), x(t2)−x(s2), ..., x(tn−1)−

x(sn−1), x(tn)−x(sn) are independent. Where x(ti)−x(si) represent

the number of customers arrive in the time interval [si, ti].

For the second assumption, if λ is the rate at which customers

arrive, i.e., in a small time interval [t, t+δt], a new customer arrives

with probability λδt.

The third assumption states that the probability that more than

one customer arrive during a small time interval is too small. There-

fore, as δt→ 0,

P (x(t+ δt) = x+m|x(t) = x) =


λδt+ o(δt) ifm = 1

o(δt) ifm > 1

1− λδt+ o(δt) ifm = 0

where o(δt) represents some function that is much smaller than δt.

Definition 1.27. A stochastic process x(t) with x(0) = 0 satisfying

the previous assumptions (i − iii) is called a Poisson process with

rate parameter λ.
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Theorem 1.28. For every t ≥ 0, the random variable x(t) has a

Poisson distribution with rate λt that is

P (x(t) = k) =


e−λt(λt)k

k! k = 0, 1, 2, ...

0 otherwise

So, a Poisson process is a collection of random variables each of one

has a Poisson distribution.

Figure 1.8: Transition diagram for Poisson distribution

from transition diagram (1.8) we obtain the following equation:

Ut+δt(x) = (1− λδt)Ut(x+ h) + λδtUt(x− h) (1.28)

Ut+δt(x)− Ut(x+ h) = −λδt(Ut(x+ h)− Ut(x− h)) (1.29)

using Taylor expansion of Ut(x+ h) about (x, t+ δt), we get:

Ut(x+ h) = Ut+δt(x) + h
∂U

∂x
− δt∂U

∂t
(1.30)
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substituting equation (1.30) into equation (1.29), we obtain:

δt
∂U

∂t
− h∂U

∂x
= −λδt(Ut(x+ h)− Ut(x− h)) (1.31)

∂U

∂t
=
h

δt
(1− 2λδt)

∂U

∂x
(1.32)

using (1− λδt) = 1
2 − ε =⇒ −λδt = −1

2 − ε, the result is:

∂U

∂t
= −ε2h

δt

∂U

∂x
(1.33)

Let v = ε2hδt , equation (1.33) can be written as:

∂U

∂t
= −v∂U

∂x
(1.34)

equation (1.34) is called advection equation

1.5 Brownian Motion

Brownian motion is a stochastic process that describes the continuous

random motion. The first model was proposed by Einstein in 1905 af-

ter the British scientist R. Brown in 1827 observed that the random

movement of pollen particles in water. It is also called Wiener process

relative to the N. Wiener who invented the mathematical construction

of Brownian motion.
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Let Xt represent the position of a particle at time t. In this case t

takes on values in the non-negative real numbers. The Brownian will be

an example of a stochastic process with both continuous state space and

continuous time.

Definition 1.29. A Brownian motion (Wiener process) with variance

parameter σ2 is a stochastic process Xt with values in R satisfying: ([19,

26])

(i) X0 = 0

(ii) Xt has independent increments.

That means, for any time intervals [s1, t1), [t1, s2), [s2, t2), ... the ran-

dom variables Xt1 −Xs1, Xs2 −Xt1, Xt2 −Xs2, ... are independent.

(iii) For any s < t, the random variable Xt−Xs has a normal distri-

bution with mean 0 and variance (t− s)σ2

(iv) Xt is almost surely continuous.

The process with σ2 = 1 is called standard Brownian motion.

Suppose the process Xt satisfies these conditions (i− iv), our goal is

to find a distribution of Xt, we take the case t = 1, so X1 can be written

as:

X1 = X 1
n
−X0 +X 2

n
−X 1

n
+ ...+X1 −X1− 1

n
(1.35)

In other words, X1 can be written as the sum of n independent, identically

distributed random variables.

In addition, if n is large, each of the random variables are small.
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Let

Yn = max{|X 1
n
−X0|, ..., |X1 −X1− 1

n
|}

then as n → ∞, Yn → 0, this is because of the last condition: Xt is

a continuous function of t, (if Yn did not go to 0 then there would be

a jump in the path of Xt). Then, by applying the CLT (Central Limit

Theorem), Xt is shown to have a normal distribution (For more details

see, [19, 26]).

Definition 1.30. Central Limit Theorem (CLT) establishes that, when

independent random variables are added, the distribution of their sum

tends toward a normal distribution even if the original variables them-

selves are not normally distributed.

If a Brownian motion starting at x, then the Brownian motion is a

process satisfying the previous conditions (i−iv in definition 1.28) except

the first condition, whereas the initial condition X0 = x.

If Xt is a Brownian motion starting at X0 = 0, then Mt = Xt + x is

a Brownian motion starting at x.

Let Pt(x, y) denote the transition density for any x, y ∈ R and t > 0,

i.e., the density of Xt for Brownian motion starting at x.

Since Xt −X0 is normal with mean 0 and variance t, then Pt(x, y) is

given by:

Pt(x, y) =
1√
2πt

e−
(x−y)2

2t (1.36)
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Properties:

1. The transition density Pt(x, y) satisfies the diffusion equation:

∂Pt
∂t

=
1

2

∂2Pt
∂y2

(1.37)

for any x, y ∈ R and t > 0.

differentiating equation (1.36), the result is:

∂Pt(x, y)

∂t
=
y2 − 2yx+ x2 − t

2t2
Pt(x, y)

∂Pt(x, y)

∂y
=
x− y
t

Pt(x, y)

∂2Pt(x, y)

∂y2
=
y2 − 2yx+ x2 − t

t2
Pt(x, y)

2. The probability density of Xt is given by

fXt
(x) =

1√
2πt

e−
x2

2t

such that the mean of Xt is zero and the variance is t (standard

Brownian motion).

3. E[XsXt] = min{s, t}

4. For any 0 ≤ s < t the increment Xt − Xs is independent of the

σ-field Fs = σ{Xr : 0 ≤ r ≤ s}.
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• Stopping time

Definition 1.31. A random variable τ ∈ [0,∞) is a stopping time

for the Brownian motion Xt if for each t, the event {τ ≤ t} is

measurable with respect to Ft.

It means, to know that the process has stopped before time t or

not, we only need to look at the Brownian motion up to time t.

The most important example will be stopping time of the form

τx = inf{t : Xt = x}

• Strong Markov property

Let Yt = Xτ+t −Xτ , for τ being a stopping time.

The strong Markov property states that Yt is a Brownian motion

independent of Fτ , where Fτ is the information contained in the

Brownian motion up the stopping time τ .

To see how to use this property, we take the following example:

Example 1.32. Find the probability that ∃ t, 0 ≤ t ≤ 1 such that

Xt ≥ 1. [19]

solution:

Let τ = inf{t,Xt = 1}
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our goal is to find the probability of the set {τ ≤ 1}. We related to

the set {X1 ≥ 1}, we have:

P (X1 ≥ 1) = P (X1 ≥ 1|τ ≤ 1)P (τ ≤ 1)

by the strong Markov property after the random time τ , the random

variable X1 −Xτ = X1 − 1 has the normal distribution with mean

0, hence by symmetry:

P (X1 − 1 ≥ 0|τ ≤ 1) =
1

2

we get:

P (τ ≤ 1) = 2P (X1 ≥ 1) = 2

∫ ∞

1

1√
2π
e−

x2

2 dx

This result is a particular case of the reflection principle.

Definition 1.33. (Reflection Principle)

suppose Xt is a Brownian motion with variance parameter σ2 starting

at z and z < c, where z and c are constant, then for any t > 0,

P (Xs ≥ c for some 0 ≤ s ≤ t) = 2P (Xt ≥ c|x0 = z)

= 2

∫ ∞

c

1√
2πtσ2

e−
(x−z)2

2σ2t dx
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1.6 Brownian Motion and the Heat Equation

Imagine the temperature is determined by a very large number of heat

particles that move a Brownian motion, and the initial temperature is

given by g(x). Let U(x, t) be the temperature at position x at time t.

If there are g(y) particles starting from the site y and moving to site

x at time t. The probability of moving from y to x in time t is the same

as the probability of a particles move from x to y at the same time t.

By calculating the average of a very large number of particles over all

possible of y, U(x, t) takes the form [20]:

U(x, t) = E[g(Xt)|X0 = 0] (1.38)

If Xt is a Brownian motion starting at x, then for a fixed t, Xt is a

random variable with probability density function

Pt(x, y) =
1√
2πt

e−
(x−y)2

2t

If x, t are fixed and pt(x, y) is considered as a function of y. Symmetry

is seen by noting that pt(x, y) = pt(y, x).

equation (1.38) can be written as:

U(x, t) =

∫
R
g(y)Pt(x, y)dy =

∫
R
g(y)Pt(y, x)dy (1.39)
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define U(x, 0) = g(x) and U(x, t) for t > 0 define by equation (1.38).

If t = 0, x = 0 , g(0) = 0. Then we get the equation:

lim
s→0+

U(0, s)− g(0)

s
= lim

s→0+

E[g(Xs)|X0 = 0]

s
(1.40)

Suppose that g is C2 and approximating g by the second order Taylor

polynomial,

g(x) = g′(0)x+
1

2
g′′(0)x2 + o(x2), x→ 0. (1.41)

then,

E[g(Xs)] = g′(0)E[Xs] +
1

2
g′′(0)E[Xs

2] + o(Xs
2) (1.42)

but E[Xs] = 0, E[Xs
2] = s and o(Xs

2) = o(s), dividing equation

(1.42) by s and taking the limit as s → 0, the limit becomes 1
2g
′′(0).

Therefore in general the partial differential equation that U(x, t) satisfies

is:

∂U(x, t)

∂t
=

1

2

∂2U(x, t)

∂x2
(1.43)

equation (1.43) is the heat equation with D = 1
2 and initial condition

U(x, 0) = g(x).
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• Separation of variables method

The method of separation of variables (sometimes called Fourier

method) is an appropriate method for solving the heat equation (1),

it is basically based on the assumption that the solution U(x, t) can

be separated as a product of two functions G(x)H(t) one depends

on x and the other on t.

U(x, t) = G(x)H(t)

This separates out the partial differential equation into two or three

ordinary differential equations, which are related to a common con-

stant ([16, 25, 29]).

2.1 The Dirichlet Condition

Consider the following heat equation with the Dirichlet boundary condi-

tions on the finite interval 0 < x < L [29]:

Ut −DUxx = 0, 0 < x < L, t > 0

U(x, 0) = ψ(x)

U(0, t) = U(L, t) = 0 (homogeneous Dirichlet Boundary conditions)

(2.1)
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By separation of variables, let U(x, t) = G(x)H(t), substituting it in

equation (2.1), the result is:

G(x)H ′(t)−DG′′(x)H(t) = 0

Dividing by DG(x)H(t), we obtain:

H ′(t)

DH(t)
=
G′′(x)

G(x)
(2.2)

The left hand side is a function of t, the right hand side is a function

of x, both sides of equation (2.2) are equal to some constant value −λ,

therefore equation (2.2) becomes:

H ′(t)

DH(t)
=
G′′(x)

G(x)
= −λ (2.3)

Equation (2.3) is a pair of separate ordinary differential equations

G′′(x) + λG(x) = 0

and

H ′(t) +DλH(t) = 0

from the Dirichlet boundary conditions U(0, t) = U(L, t) = 0, we get:

U(0, t) = G(0)H(t) = 0 =⇒ G(0) = 0

U(L, t) = G(L)H(t) = 0 =⇒ G(L) = 0
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therefore, the two ordinary differential equations become:

G′′(x) + λG(x) = 0, G(0) = G(L) = 0 (2.4)

H ′(t) +DλH(t) = 0 (2.5)

Initial condition can not be used, since U(x, 0) = G(x)H(0) = ψ(x) does

not imply that H(0)

The characteristic equation for equation (2.4) is:

m2 + λ = 0→ m = ±
√
−λ

If λ = 0, then m = 0 (repeated root with multiplicity = 2) =⇒ G(x) =

c1x+ c2

G(0) = 0 =⇒ c2 = 0

G(L) = 0 =⇒ c1 = 0

Therefore the only solution is G(x) ≡ 0 (trivial solution), as the result

U(x, t) ≡ 0 and this does not satisfy the initial condition.

If λ = −σ2 < 0, then m = ±σ (real distinct roots), so the solution of

equation (2.4) is given by:

G(x) = c1e
σx + c2e

−σx

or

G(x) = c1cosh(σx) + c2sinh(σx)
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since G(0) = 0, c1cosh(0) + c2sinh(0) = 0 but sinh(0) = 0 and

cosh(0) = 1 =⇒ c1 = 0

since G(L) = 0, c1cosh(σL) + c2sinh(σL) = 0 but c1 = 0

=⇒ c2sinh(σL) = 0 =⇒ c2 = 0

since σL 6= 0 =⇒ sinh(σL) 6= 0, so the solution is G(x) ≡ 0

If λ = σ2 > 0, then m = ±σi (complex roots), therefore the solution

of equation (2.4) is given by:

G(x) = c1cos(σx) + c2sin(σx)

since G(0) = 0 =⇒ c1cos(0) + c2sin(0) = 0 =⇒ c1 = 0

since G(L) = 0 =⇒ c1cos(σL) + c2sin(σL) = 0, since c1 = 0 =⇒

c2sin(σL) = 0

for a nontrivial solution, sin(σL) must equal to 0, therefore

sin(σL) = 0 =⇒ σL = nπ, where n is a positive integer =⇒ σn = nπ
L

that is λn = (nπL )2

If Gn(x) is a nontrivial solution corresponding to λn, then cGn(x), c 6=

0 is also a nontrivial solution corresponding to λn.

therefore,

Gn(x) = c2sin(
nπ

L
x), n = 1, 2, 3, ...

For the second ordinary differential equation (2.5)

H ′n(t) +DλnHn(t) = 0, (first order separable)



46

This ODE is easy to solve, so

Hn(t) = Ane
−Dλnt, An = ecn

Hn(t) = Ane
−D(nπL )2t, n = 1, 2, 3, ...

Each value of σn yields an independent solution satisfying the heat equa-

tion, we have an infinite number of independent solutions Un(x, t).

As a result, Un(x, t) = Gn(x)Hn(t) is a solution of the heat equation

for n = 1, 2, 3, ...

The general solution that satisfies the Dirichlet boundary conditions

is:

U(x, t) =
∞∑
n=1

Un(x, t) =
∞∑
n=1

Gn(x)Hn(t)

U(x, t) =
∞∑
n=1

Ane
−D(nπL )2tsin(

nπ

L
x)

The initial condition is used to determine the coefficient:

U(x, 0) = ψ(x)

ψ(x) =
∞∑
n=1

Ansin(
nπ

L
x) (2.6)

equation (2.6) is a Fourier sine series expansion of ψ(x) on [0, L] so,

An =
2

L

∫ L

0

ψ(x)sin(
nπ

L
x)dx, n = 1, 2, 3, ...
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2.2 The Neumann Condition

For problems in one dimension, the homogenous Neumann conditions are

given by [29]:

Ux(0, t) = 0 and Ux(L, t) = 0

Consider the following heat equation with the Neumann conditions

on the finite interval 0 < x < L:

Ut −DUxx = 0, 0 < x < L, t > 0

U(x, 0) = ψ(x)

Ux(0, t) = Ux(L, t) = 0 (homogeneous NeumannBoundary conditions)

(2.7)

If we let U(x, t) = G(x)H(t), and using the Neumann boundary condi-

tions, then we have the following pair of ordinary differential equations:

G′′(x) + λG(x) = 0with G′(0) = G′(L) = 0 (2.8)

H ′(t) +DλH(t) = 0 (2.9)

the characteristic equation for equation (2.8) is:

m2 + λ = 0→ m = ±
√
−λ

If λ = 0, then m = 0, (a repeated root with multiplicity = 2)
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=⇒ G(x) = c1x+ c2

since G′(0) = 0 and G(x) = c1x+ c2 =⇒ G′(x) = c1 =⇒ c1 = 0

since G′(L) = 0 and c1 = 0 =⇒ c2 arbitrary

therefore, when λ = 0 =⇒ G(x) = constant

If λ = −σ2 < 0, then m = ±σ (real distinct roots), so the solution of

equation (2.8) is given by:

G(x) = c1cosh(σx) + c2sinh(σx)

G′(x) = c1σsinh(σx) + c2σcosh(σx)

since G′(0) = 0 =⇒ c1σsinh(0) + c2σcosh(0) = 0 since sinh(0) = 0

and cosh(0) = 1 =⇒ c2σ = 0 =⇒ c2 = 0

since G′(L) = 0 =⇒ c1σsinh(σL)+c2σcosh(σL) = 0 since c2 = 0 =⇒

c1σsinh(σL) = 0, since σL 6= 0 =⇒ sinh(σL) 6= 0 =⇒ c1 = 0, therefore

the solution is G(x) ≡ 0, as the result U(x, t) ≡ 0 and this does not

satisfy the initial condition.

If λ = σ2 > 0, then m = ±σi (complex roots), therefore the solution

of equation (2.8) is given by:

G(x) = c1cos(σx) + c2sin(σx)

G′(x) = −c1σsin(σx) + c2σcos(σx)

since G′(0) = 0 =⇒ −c1σsin(0) + c2σcos(0) = 0 =⇒ c2 = 0
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since G′(L) = 0 =⇒ −c1σsin(σL) + c2σcos(σL) = 0 since c2 = 0 =⇒

−c1σsin(σL) = 0

For a nontrivial solution, sin(σL) = 0 → σL = nπ =⇒ σn = nπ
L =⇒

λn = (nπL )2, therefore

Gn(x) = cos(
nπ

L
x), n = 1, 2, 3, ...

In fact, we include n = 0, (n = 0, 1, 2, ...), since λ = 0 with G0 =

cos(0) = 1

for the second ODE eqaution (2.9):

H ′(t) +DλnH(t) = 0, n = 0, 1, 2, ... (first order separable )

this ODE is easy to solve, therefore

Hn(t) = Ane
−Dλnt, An = ecn

Hn(t) = Ane
−D(nπL )2t, n = 0, 1, 2, 3, ...

Note that U0(x, t) = G0(x)H0(t) = 1.A0 = A0, but for ease, U0(x, t) can

be written as 1
2 .A0 = A0

2
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Therefore, the general solution that satisfies the Neumann boundary

conditions is:

U(x, t) =
∞∑
n=0

Un(x, t) =
∞∑
n=0

Gn(x)Hn(x)

U(x, t) =
A0

2
+
∞∑
n=1

Ane
−D(nπL )2tcos(

nπ

L
x)

The initial condition U(x, 0) = ψ(x), therfore

ψ(x) =
A0

2
+
∞∑
n=1

Ancos(
nπ

L
x) (2.10)

equation (2.10) is a Fourier cosine series of ψ(x) on [0, L] so,

An =
2

L

∫ L

0

ψ(x)cos(
nπ

L
x)dx, n = 0, 1, 2, ...

Example 2.1. Solve the following heat equation (Neumann condition):

Ut −
1

4
Uxx = 0, 0 < x < 1, t > 0

Ux(0, t) = Ux(1, t) = 0

U(x, 0) = 10x

Solution:

L = 1 , D = 1
4, ψ(x) = 10x,
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A0 = 2

∫ 1

0

10x cos(0)dx = 10

An = 2

∫ 1

0

10xcos(nπx)dx =
20((−1)n − 1)

n2π2
, n ≥ 1

An =


−40
n2π2 n is odd

0 n is even

therefore,

U(x, t) =


5− 40

π2

∑∞
n=1

1
n2e
− (n2π2)t

4 cos(nπx) n is odd

5 n is even

Example 2.2. Solve the following heat equation (Dirichlet condition):

Ut = Uxx, 0 < x < 1, t > 0

U(0, t) = U(1, t) = 0

U(x, 0) = sin(2πx)
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Solution:

L = 1, D = 1, ψ(x) = sin(2πx)

An = 2

∫ 1

0

sin(2πx)sin(nπx)dx =


1 n = 2

0 otherwise

therefore,

U(x, t) =


e−4π

2tsin(2πx) n = 2

0 otherwise
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Chapter Three 

Numerical Methods for Solving the Heat Equation 
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3.1 Finite Difference Method

The finite difference approximations are one of the simplest and oldest

methods for solving partial differential equations. It was known by L.

Euler in 1768, in one dimension of space and was developed into two

dimensions by C. Runge in 1908. The finite difference techniques began

in numerical applications in the early 1950s.

It is based on replacement the partial derivatives by finite differ-

ence approximations, whether forward, centred or backward difference

approximation.

3.1.1 Explicit Method

The idea of explicit forward difference method is to use the first order

forward difference approximation for the time derivative and second order

centred difference approximation for the space derivative ([16, 22, 28]).

Consider the heat equation:

Uxx = Ut + g(x, t), 0 < x < L, t > 0

U(x, 0) = ψ(x) (initial condition)

U(0, t) = U(L, t) = 0 (boundary conditions)

(3.1)

g(x, t), ψ(x), and L are given.

Note that the computer can not run forever, so we must decide how

much time it takes, therefore assume that the interval is 0 < t < T .
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Determining the points in the domain at which the solution is to be

approximated. These points are called grid points.

Let xi = idx, i = 0, 1, 2, 3, ..., N + 1

and tj = jdt, j = 0, 1, 2, 3, ...,M

where dx = L
N+1 and dt = T

M are the step sizes.

The result is a grid shown in figure (3.1):

Figure 3.1: Example of the grid system , N=4 and M=5

Note that the solid grid points are either initial or boundary points

where the solution is given. Initial it is given by ψ(xi), on the boundaries

(x = 0 or x = L) the solution is zero unless the boundary conditions are

not homogeneous. The other grid points are the points at which the

solution is to be approximated.
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Evaluating the equation at each interior point (xi, tj), i = 1, 2, 3, ..., N

and j = 1, 2, 3, ...,M by using the first order forward difference approx-

imation for the time derivative Ut(xi, tj) and second order centered dif-

ference approximation for the space derivative Uxx(xi, tj), we get:

Uxx(xi, tj) = Ut(xi, tj) + g(xi, tj) (3.2)

Ut(xi, tj) =
U(xi, tj+1)− U(xi, tj)

dt
− dt

2
Utt(xi, ξj), ξj ∈ [tj, tj+1] (3.3)

Uxx(xi, tj) =
U(xi+1, tj)− 2U(xi, tj) + U(xi−1, tj)

(dx)2
− (dx)2

12
Uxxxx(ηi, tj),

(3.4)

ηi ∈ [xi−1, xi+1]

substituting both equations (3.3) and (3.4) into equation (3.2), we

have:

U(xi+1, tj)− 2U(xi, tj) + U(xi−1, tj)

(dx)2
− (dx)2

12
Uxxxx(ηi, tj)

=
U(xi, tj+1)− U(xi, tj)

dt
− dt

2
Utt(xi, ξj) + g(xi, tj)
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U(xi+1,tj)−2U(xi,tj)+U(xi−1,tj)
(dx)2 + ζi,j =

U(xi,tj+1)−U(xi,tj)
dt + g(xi, tj) (3.5)

where ζi,j is the truncation error, given by:

ζi,j =
dt

2
Utt(xi, ξj)−

(dx)2

12
Uxxxx(ηi, tj) = O(dt) +O(dx)2

multiplying equation (3.5) by dt and we let λ = dt
(dx)2 , the result is:

λ[U(xi+1, tj)− 2U(xi, tj) +U(xi−1, tj)] + dtζi,j = U(xi, tj+1)−U(xi, tj) +

dtg(xi, tj)

U(xi, tj+1) = λU(xi+1, tj)+(1−2λ)U(xi, tj)+λU(xi−1, tj)−dtg(xi, tj)+dtζi,j

(3.6)

dropping the truncation error in equation (3.6) and let U(xi, tj) ∼= Ui,j

be the value that satisfies the new difference equation (3.7), we get:

Ui,j+1 = λUi+1,j + (1− 2λ)Ui,j + λUi−1,j − dtgi,j (3.7)

i = 1, 2, 3, ..., N and j = 0, 1, 2, 3, ...,M − 1

from the initial condition U(x, 0) = ψ(x) and the boundary conditions

U(0, t) = U(L, t) = 0, we get:

Ui,0 = ψ(xi) (initial condition) and U0,j = UN+1,j = 0 (boundary

conditions)
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Equation (3.7) is an iterative formula for an explicit forward difference

method for the heat equation. It is explicit since Ui,j+1 at the time level

j + 1 is given explicitly by values at the time level j.

The stencil is given in the following diagram:

Figure 3.2: The stencil for explicit forward difference method

The time level j = 0 is used to approximate the solution at time level

j = 1. Then time level j = 1 is used to approximate the solution at time

level j = 2 and so on until the solution is approximated for the all time

levels.

Example 3.1. Consider the heat equation

Uxx = Ut, 0 < x < 1, 0 < t < T

U(0, t) = U(1, t) = 0

U(x, 0) = sin(2πx) (3.8)

the exact solution using separation of variables from example (2.2) is



59

given by:

U(x, t) = e−4π
2tsin(2πx)

Figure 3.3: The exact solution at t=0.001

using the explicit forward difference method with N = 20, M =

5, 10, 20 and T = 0.1 for each t = 0.02, 0.04, 0.1, the numerical solu-

tion of the heat equation (3.8) is given in Figure (3.4). [22]

Figure (3.4), shows that as M increases from 5 to 20 the approximated

solution dashed line for M = 20 becomes closer to the exact solution,

the solid line.

However, for the same M = 20 we have smaller time step dt and it

should give more accurate results, but at t = 0.1 the solution becomes

unstable and far from the exact one (−60 ≤ U(x, t) ≤ 60).

The effect of instability did not appear at smaller time t = 0.04 and

t = 0.02.

The explicit forward difference is conditionally stable with stability
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Figure 3.4: Solution of the heat equation by explicit method

condition: (for more details see [22])

λ =
dt

(dx)2
≤ 1

2

Therefore, for stability of this method the time and space step sizes must

satisfy the relation

2dt ≤ (dx)2

Example 3.2. Recall our example (3.1). Instability occurred for t = 0.1

even when M = 20 is used.

N = 20→ dx = 1
21
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M = 20→ dt = 0.1
20 = 0.005

therefore 2dt = 0.01 and (dx)2 = ( 1
21)2 ∼= 0.00676→ 2dt > (dx)2

the stability condition is not satisfied.

To overcome the instability, we choose M such that

2(
0.1

M
) ≤ (

1

21
)2

which implies that

M ≥ 2(0.1)(21)2 = 88.2

for N = 20, M must be at least 89 (M integer), as a result, resolving

example (3.1) using M = 90 and T = 0.1 for t = 0.02, 0.04, 0.1, the

result is given in figure (3.5), for this calculation λ = 0.49

Figure (3.5) shows that the stability condition is satisfied when

M = 90

The explicit forward difference Method:

Advantages: explicit and simple.

Disadvantage: conditionally stable.
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Figure 3.5: Solution of heat equation (stability condition satisfied)

3.1.2 Implicit Method

The idea of implicit backward difference method is to use backward dif-

ference approximation for time derivative and centred difference approx-

imation for space derivative [22].

Ut(xi, tj) =
U(xi, tj)− U(xi, tj−1)

dt
+O(dt)
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Uxx(xi, tj) =
U(xi+1, tj)− 2U(xi, tj) + U(xi−1, tj)

(dx)2
+O(dx)2

dropping the error terms and let U(xi, tj) ∼= Ui,j, then the heat equa-

tion (3.1) becomes:

Ui+1,j − 2Ui,j + Ui−1,j
(dx)2

=
Ui,j − Ui,j−1

dt
+ gi,j

dt

(dx)2
(Ui+1,j − 2Ui,j + Ui−1,j) = Ui,j − Ui,j−1 + dtgi,j (3.9)

Let λ = dt
(dx)2 , equation (3.9) can be rewritten as:

λUi−1,j − (1 + 2λ)Ui,j + λUi+1,j = −Ui,j−1 + dtgi,j

i = 1, 2, 3, ..., N and j = 1, 2, 3, ...,M

For each interior point, we get a linear equation with 3 unknowns:

Ui−1,j, Ui,j and Ui+1,j except near the boundaries and initial points which

Ui,j−1 is known.

Example 3.3. Recall example (3.1)

Using N = 20, M = 5, 10, 20 and T = 0.1 for each t = 0.02, 0.04, 0.1,

the numerical solution of the heat equation (3.8) is given in figure (3.6):
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Figure 3.6: Solution of the heat equation by implicit method

The implicit method is stable , so no condition on the time and space

step sizes.

3.2 Theta Method

The numerical results obtained from the explicit and implicit methods

(figures (3.4) and (3.6)) shows that the exact solution lies between the

results from both methods.
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The idea of the theta method is to use both the explicit and the

implicit to produce a more accurate method by adding a fraction θ of

the explicit to (1− θ) of the implicit, 0 ≤ θ ≤ 1

The two methods (explicit and implicit) can be rewritten as:

Explicit: Ui,j+1 − Ui,j = Vi,j

Implicit: Ui,j+1 − Ui,j = Vi,j+1

where

Vi,j = λ[Ui+1,j − 2Ui,j + Ui−1,j]− dtgi,j

Adding the explicit and the implicit terms together by adding a frac-

tion θ of the explicit to (1− θ) of the implicit

θ(explicit) + (1− θ)(implicit)

Ui,j+1 − Ui,j = θ(Ui,j+1 − Ui,j) + (1− θ)(Ui,j+1 − Ui,j)

= θVi,j + (1− θ)Vi,j+1

Ui,j+1 − Ui,j = θ[λUi+1,j − 2λUi,j + λUi−1,j − dtgi,j] + (1− θ)[λUi+1,j+1 −

2λUi,j+1 + λUi−1,j+1 − dtgi,j+1]

i = 1, 2, 3, ...N and j = 0, 1, 2, ...,M − 1

This is called the theta method, 0 ≤ θ ≤ 1

when θ = 1→ the explicit method.

when θ = 0→ the implicit method.

when θ = 1
2 → Crank Nicolson method.

The stability condition of the theta method is λ(2θ − 1) ≤ 1
2
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0 ≤ θ ≤ 1
2 → the theta method is stable.

1
2 < θ ≤ 1→ the theta method is conditionally stable [22].

3.3 Crank Nicolson Method

Crank Nicolson method was discovered by John Crank and Phyllis Nicol-

son in the mid-20th century. They apply it to the heat equation and they

approximate the solution of the heat equation by approximating the time

derivative and space derivative by finite differences.

The idea of Crank Nicolson method is to use centred difference ap-

proximation for space derivative and integrate the time derivative with

respect to t ([9, 22]).

Consider the heat equation (3.1), it can be written as:

Ut(x, t) = G(x, t) (3.10)

where

G(x, t) = Uxx(x, t)− g(x, t)

integrating equation (3.10) from tj to tj+1, j = 0, 1, 2, 3, ...,M − 1

∫ tj+1

tj

Ut(x, t)dt =

∫ tj+1

tj

G(x, t)dt
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using trapezoid quadrature rule:

∫ b

a

g(x)dx =
h

2
[g(a) + g(b)]− h3

12
g′′(c), c ∈ (a, b), h = b− a

U(x, tj+1)− U(x, tj) =
dt

2
[G(x, tj) +G(x, tj+1)]−O(dt)3

U(x, tj+1)−U(x, tj) = dt
2 [Uxx(x, tj)− g(x, tj) +Uxx(x, tj+1)− g(x, tj+1)]−

O(dt)3

The error O(dt)3 is the local one, that is the error generated at each

time step. However, the composite error for j = 0, 1, ...,M −1 is of order

O(dt)2

dropping the error term and using 2nd order centered difference for

the space derivative, we obtain:

Ui,j+1 − Ui,j =
dt

2
[
Ui+1,j − 2Ui,j + Ui−1,j

(dx)2
+
Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1

(dx)2
]

−dt
2

[gi,j + gi,j+1]

setting λ = dt
(dx)2 and rearranging the terms, the result is:

λUi+1,j+1 − 2(1 + λ)Ui,j+1 + λUi−1,j+1 = −λUi+1,j − 2(1 − λ)Ui,j −

λUi−1,j + dt(gi,j + gi,j+1)

i = 1, 2, 3, ..., N , j = 0, 1, 2, 3, ...,M − 1

The error is O(dx)2 +O(dt)2
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Example 3.4. Recall the example (3.1)

Using N = 20 , M = 5, 20 and T = 0.1 for different time t =

0.02, 0.04, 0.1, the solution of the heat equation (3.8) by Crank Nicolson

method is given in figure (3.7) [22].

From figure (3.7) it is clear that Crank Nicolson has outperformed the

explicit and the implicit methods. However, the method is not perfect,

because it did not better at the jump discontinuities.

Figure 3.7: Solution of the heat equation using the Crank Nicolson method
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Example 3.5. Consider the heat equation with discontinuities in the

initial condition:

Uxx = Ut, 0 < x < 1, 0 < t < T

U(0, t) = U(1, t) = 0

U(x, 0) =


1 1

4 < x < 3
4

0 otherwise

, initial condition (3.11)

The initial condition has two discontinuities.

With N = 30, M = 5, 10, 20 and T = 0.1 for each time t = 0.02, 0.04, 0.1,

the solution of the heat equation (3.11) using the Crank Nicolson method

and the implicit method is given in figures (3.8) and (3.9) respectively.
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Figure 3.8: Solution of the heat equation (example 3.5) using the Crank
Nicolson method

Both implicit and Crank Nicolson methods are stable, but the implicit

method did better at the jump discontinuities. The explanation is in the

type of stability.
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Figure 3.9: Solution of the heat equation (example 3.5) using the implicit
method

There are two types of stability, stable and L-stable, the Crank Nicol-

son method is unconditionally stable but not L-stable. The implicit

method is unconditionally stable and L-stable.

Definition 3.6. L-stable methods: the method is stable and the amplifi-

cation factor k → 0 as the time step dt→∞
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3.4 Method of Lines

The method of lines was discovered in the early 1960s and it is known

to experts in computational techniques in electromagnetism. It’s appli-

cations has increased dramatically in the last few years, and we use this

method to find a solution for the heat equation.

The idea of the method of lines is to reduce the problem to an initial

value problem (IVP) by approximating the space derivative Uxx using

centered difference approximation ([22, 27]). Therefore equation (3.1)

becomes:

Ut(xi, t) =
U(xi+1, t)− 2U(xi, t) + U(xi−1, t)

(dx)2
− g(xi, t) +O(dx)2

dropping the error term, we obtain the IVP:

dUi(t)

dt
=
Ui+1(t)− 2Ui(t) + Ui−1(t)

(dx)2
− gi(t)

with Ui(0) = ψi, i = 1, 2, 3, ..., N

There are many numerical methods for IVPs. One of the most popu-

lar is the Runge Kutta method (RK4) which makes the method of lines

with RK4 (LRK4).

This way we need to solve N IVPs one for each i. This means for

each i = 1, 2, 3, ..., N , approximate the solution on all time levels, then

step to the next space level.
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The method of lines is conditionally stable, but determining the sta-

bility condition is not so easy.

Example 3.7. Recall the example (3.1), using the method of lines for

solving the heat equation (3.8), using N = 18, M = 5, 10, 20 and T = 0.1

for each time t = 0.02, 0.04, 0.1, the result is given in figure (3.10).

Figure 3.10: Solution of the heat equation using the method of lines
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Example 3.8. Consider the heat equation:

Uxx = Ut, 0 < x < 1, 0 < t < T

U(0, t) = U(1, t) = 0

U(x, 0) = sin(πx) (3.12)

the exact solution using separation of variables method is:

An = 2

∫ 1

0

sin(πx)sin(nπx)dx =


1 n = 1

0 otherwise

U(x, t) =


e−π

2tsin(πx) n = 1

0 otherwise

Using Matlab the numerical solution of the heat equation (3.12) using

N = 20, M = 1000 and T = 0.1 at time t = 0.0002 using explicit forward

difference, implicit backward difference, Crank Nicolson and Method of

Lines respectively is:
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Figure 3.11: The exact solution of the heat equation (3.12)

Figure 3.12: The solution of the heat equation (3.12) using Explicit method
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Figure 3.13: The solution of the heat equation (3.12) using Implicit method

Figure 3.14: The solution of the heat equation (3.12) using Crank Nicolson
method

Figure 3.15: The solution of the heat equation (3.12) using Method of Lines
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Figure 3.16: Absolute error for each method used to solve the heat equation
(3.12)
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Chapter Four 

Optimal Control of Heat Equation  

  

  

  

  

  

  

  

  

  

 



79

Optimal control is the process of determining optimal control function

and state trajectories for a dynamic system over a period of time to

minimize a performance index.

For example, consider a dynamic system:

ẋ = g(x(t), u(t), t) (4.1)

x(t0) = x0

J(x(t), u(t), t) = S(x(tf), tf) +

∫ tf

t0

L(x(t), u(t), t)dt (4.2)

Equation (4.1) is called state space equation and it can be linear and

take the form:

ẋ = Ax+Bu

where A ∈ Rn×n, B ∈ Rn×m are constant matrices.

Equation (4.2) is called Performance index or cost function. The first

part S(x(tf), tf) is called terminal part and it is a function of final state

and final time, moreover L(x(t), u(t), t) is called trajectory part and it is

a function of state, control function and time.

The optimal control problem in continuous time can be solved by two

ways using the Pontryagin Maximum Principle or the Hamilton Jacobi

Bellman (HJB) equation, in addition we use a dynamic programming

approach for solving the (HJB) equation.
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4.1 The Hamilton Jacobi Bellman (HJB) Equation

The Hamilton Jacobi Bellman equation is a partial differential equation

which is the result of the dynamic programming theory by Richard Bell-

man in the 1950s [17]. The HJB is central to optimal control theory and

the solution of HJB is the control function which afford the minimum

cost for a given dynamical system with an associated performance index

(cost function).

Consider a dynamic system described by state space equation:

ẋ(t) = g(x(t), u(t), t) (4.3)

where

ẋ =
dx

dt

x(t) = [x1(t), x2(t), ..., xn(t)]
T ∈ Rn

is the state vector of the dynamical system.

u(t) ∈ Rm

is called the control function (value function) which is the input function
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of the dynamical system. Subject to the initial condition:

x(t0) = x0

and the performance index:

J(x(t), u(t), t) = S(x(tf), tf) +

∫ tf

t0

L(x(t), u(t), t)dt

The dynamic programming principle is used to derive HJB equation

which is solved by a control function that minimize the performance

index (4.2).

The optimal control is denoted by u? such that

J(u?) ≤ J(u)

substituting u? in the state space equation (4.3), we obtain:

ẋ = g(x(t), u?(t), t)

the optimal solution of this equation is denoted by x?.

Consider the following equation:

Jt(x(t), t) = L(x(t), u(t), t) + Jx(x(t), t)g(x(t), u(t), t) (4.4)

Equation (4.4) is a partial differential equation which is called the Hamil-
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ton Jacobi Bellman equation (HJB) ([8, 17]). Also it can be written as:

0 = Jt +H (4.5)

Where H is called the Hamiltonian function that is defined by:

H = L+ λTg

where λ ∈ Rn is called the costate variable.

we can find the optimal control that minimize the performance index

(4.2) by the following theorem.

Theorem 4.1. (Maximum Principle) if x? and u? is optimal solution,

then there exist λ? is also a solution such that: ([8, 17, 23])

∂H
∂x

= −λ̇ (costate equation)

∂H
∂λ

= ẋ (optimal state equation)

∂H
∂u

= 0 (optimal control equation)

Subject to the condition:

H(x?, u?, λ?, t) ≤ H(x, u, λ, t)
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Example 4.2. Find the optimal control for the given system

ẋ1 = x2

ẋ2 = u

J =

∫ 2

0

1

2
u2dt

x(0) =

1

2

 , x(2) =

1

0


solution:

L =
1

2
u2, g =

x2
u


Jt +H = 0

H = L+ λTg =
1

2
u2 + [λ1 λ2]g =

1

2
u2 + λ1x2 + λ2u

by theorem (4.1)

∂H
∂u

= u+ λ2 = 0→ u = −λ2

H = −1

2
λ2

2 + λ1x2

∂H
∂x1

= 0 = −λ̇1 → λ1 = c3

∂H
∂x2

= λ1 = −λ̇2 → λ̇2 = −c3 → λ2 = −c3t+ c4

∂H
∂λ1

= x2 = ẋ1 → x1 =
c3
6
t3 − c4

2
t2 + c2t+ c1
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∂H
∂λ2

= −λ2 = ẋ2 = c3t− c4 → x2 =
c3
2
t2 − c4t+ c2

by the initial conditions:

x1(0) = 1→ c1 = 1

x2(0) = 2→ c2 = 2

x1(2) = 1→ 8

6
c3 − 2c4 + 5 = 1

x2(2) = 0→ 2c3 − 2c4 + 2 = 0

→ c3 = 3, c4 = 4

therefore

λ1
? = 3

λ2
? = 4− 3t

x1
? =

1

2
t3 − 2t2 + 2t+ 1

x2
? =

3

2
t2 − 4t+ 2

u? = 3t− 4

4.2 Linear Quadratic Control Regulator (LQR)

In LQR the dynamic system is linear, also the performance index and

the control function u(t) is quadratic ([12, 30])
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Consider the continuous linear dynamical system:

ẋ(t) = Ax+Bu (4.6)

x(0) = x0

J =
1

2
xT (t)Rx(t) +

1

2

∫ tf

0

(xTHx+ uTQu)dt (4.7)

J =
1

2

∫ ∞

0

(xTHx+ uTQu)dt

without terminal part in the infinite time.

Where A ∈ Rn×n, B ∈ Rn×m are constant matrices and A,B are

controllable.

Q > 0 positive definite matrix.

H,R ≥ 0 are positive semi definite matrices.

4.2.1 State Space Formulation

We discuss how to form a state space equation for any ordinary differ-

ential equation. Consider the general form of a system characterized by

an nth order differential equation:

f (n) + a1f
(n−1) + a2f

(n−2) + ...+ an−1ḟ + anf = u (4.8)

subject to

f(0), ḟ(0), ..., f (n−1)(0) are known
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such that

ḟ =
df

dt
, f̈ =

d2f

dt2
, ..., f (n) =

dnf

dtn

Define x1 = f, x2 = ḟ , ..., xn = f (n−1), equation (4.8) can be written as

[5]:

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

...

ẋn−1 = xn

ẋn = −anx1 − an−1x2 − ...− a1xn + u

We can write it as a vector matrix differential equation:



ẋ1

ẋ2

ẋ3

...

ẋn−1

ẋn


=



0 1 ... 0 0

0 0 ... 0 0

0 0 ... 0 0

...

0 0 ... 0 1

−an −an−1 ... −a2 −a1





x1

x2

x3

...

xn−1

xn


+



0

0

0

...

0

1


u (4.9)

therefore,

ẋ = Ax+Bu
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where A,B and x are defined in equation (4.9).

Example 4.3. Form the state space equation for the following system

...
f − 3f̈ + 2ḟ − 2f = u

Solution:

x1 = f , x2 = ḟ and x3 = f̈ , then

ẋ1 = x2

ẋ2 = x3

ẋ3 = 2x1 − 2x2 + 3x3 + u
ẋ1

ẋ2

ẋ3

 =


0 1 0

0 0 1

2 −2 3



x1

x2

x3

 +


0

0

1

u

In equation (4.6), the matrices A and B must be controllable. There-

fore, we will discuss how we can know that A and B can be controlled

or not.

Let M =
[
B AB ... An−1B

]
Definition 4.4. the system is controllable if the rank of matrix M is

n (i.e. M is with full rank), other wise the system is uncontrollable

([5, 18, 32]).
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Definition 4.5. The matrix M is called the system controllability matrix.

Consider the following example:

Example 4.6. Determine whether the following system is controllable or

not ẋ1
ẋ2

 =

1 1

0 2

x1
x2

 +

0

2

u
Solution:

n = 2→M =

0 2

2 4


rank(M)=2 the system is controllable

4.2.2 Solution of the State Space Equation by Laplace Trans-

form

The state space equation can be written in a vector matrix form, therefore

we determine how to find Laplace transform of a vector.

Let

x(t) =


x1(t)

...

xn(t)



L{x(t)} =


L{x1(t)}

...

L{xn(t)}

 =


X1(s)

...

Xn(s)

 = X(s)
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since

L{ġ} = L{dg
dt
} = sG(s)− g(0)

therefore

L{ẋ(t)} =


L{ẋ1(t)}

...

L{ẋn(t)}

 =


sX1(s)− x1(0)

...

sXn(s)− xn(0)

 = sX(s)− x(0)

to solve equation (4.6), we take Laplace transform for both sides of equa-

tion (4.6),to get [5]:

sX(s)− x(0) = AX(s) +BU(s)→ [sI − A]X(s) = x(0) +BU(s)

X(s) = [sI − A]−1x(0) + [sI − A]−1BU(s) (4.10)

x(t) = L−1[[sI − A]−1x(0) + [sI − A]−1BU(s)] (4.11)

Example 4.7. solve the following system

ẋ1(t)
ẋ2(t)

 =

 1 −1

−8 −1

x1(t)
x2(t)

 +

0

1

u(t)

where u(t) = 1 and x(0) =

0

0


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Solution:

[sI − A] =

s− 1 1

8 s+ 1



[sI − A]−1 =

 s+1
s2−9

−1
s2−9

−8
s2−9

s−1
s2−9


U(s) = L(u(t)) =

1

s

X(s) =

 −1
s(s2−9)

s−1
s(s2−9)


taking the inverse Laplace transform, the result is:

x(t) =

 1
9 −

cosh(3t)
9

1
9 −

cosh(3t)
9 + sinh(3t)

3



4.2.3 Determination the Optimal Control Using Maximum Prin-

ciple to Derive Algebraic Riccati Equation

The optimal control for the system in equation (4.6) that minimize the

cost function in equation (4.7) is determined as:

The Hamiltonian function for equatoin (4.7) is:

H =
1

2
(xTHx+ uTQu) + λT (Ax+Bu)



91

the costate equation is given by:

λ̇(t) =
∂H
∂x

= −(Hx+ ATλ)

the optimal control equation is:

∂H
∂u

= 0→ u = −Q−1BTλ

the optimal state equation is:

ẋ =
∂H
∂λ

= Ax−BQ−1BTλ

These equations can be written in vector matrix form as:

ẋ
λ̇

 =

 A −BQ−1BT

−H −AT

x
λ

 (4.12)

But it is not easy to solve the system (4.12), therefore we guess the

solution of (4.12) as:

λ(t) = P (t)x(t), P ∈ Rn×n

λ̇ = Ṗ x+ Pẋ

= Ṗ x+ P (Ax+Bu)
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= Ṗ x+ P (Ax−BQ−1BTλ)

= Ṗ x+ P (Ax−BQ−1BTPx)

−(Hx+ ATPx) = (Ṗ + PA− PBQ−1BTP )x

(Ṗ + PA+ ATP − PBQ−1BTP +H)x = 0

From last equation, we get the equation:

Ṗ + PA+ ATP − PBQ−1BTP +H = 0 (4.13)

P (tf) = R

for the infinite time horizon, there is no terminal part, therefore when

the time approaches infinity, [23] we have:

limt→∞Ṗ = 0 (4.14)

from equations (4.14) and (4.13), we get:

PA+ ATP − PBQ−1BTP +H = 0 (4.15)

Equation (4.15) is called Algebraic Riccati Equation(ARE) [12], where

the positive definite matrix P is the solution of the equation (4.15).

The control function u that minimize the cost function J is written
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as:

u(t, x) = −(Q−1BTP (t))x(t) = −K(t)x(t)

substituting u in the state space equation (4.6), the result is:

ẋ = (A−BQ−1BTP (t))x

Example 4.8. Consider the following system

ẋ =

0 1

0 0

x+

0

1

u
with

H =

a2 0

0 0

 , Q = 1

Let P =

p11 p12

p12 p22

 be the solution of riccati equation, then the riccati

equation becomes:

 −p212 + a2 p11 − p12p22

p11 − p12p22 2p12 − p222

 =

0 0

0 0


the solution is:

P =

√2a3 a

a
√

2a


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therefore

K = Q−1BTP =
[
a
√

2a

]
the control function that minimizing the cost function is u = −Kx

Consider the following procedure to solve ARE:

Take the following linear dynamical system:

ẋ(t) = Ax+Bu (4.16)

x(0) = x0

J =
1

2
xT (t)Rx(t) +

1

2

∫ tf

0

(xTHx+ uTQu)dt (4.17)

equations (4.16) and (4.17) can be solved by [10]:

ẋ(t)

ṗ(t)

 =

 A −BQ−1BT

−H −A

x(t)

p(t)

 = Z

x(t)

p(t)


x(0) = x0, p(tf) = Rx(tf)

The above system is the corresponding Hamiltonian system for equa-

tions (4.16) and (4.17).

The solution of equation p(tf) = Rx(tf) in t = tf using state transient

matrix (L−1[SI − Z]−1) is:
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x(tf)

p(tf)

 = ez(tf−t)

Φ11(tf − t) Φ12(tf − t)

Φ21(tf − t) Φ22(tf − t)

x(t)

p(t)

 (4.18)

P (t) = [Φ22(tf − t)−RΦ12(tf − t)]−1[RΦ11(tf − t)−Φ21(tf − t)] (4.19)

Example 4.9. Consider the following system

ẋ(t) = x(t) + u(t)

find the control function u that minimize the following cost function

J =
1

2
8x2(5) +

1

2

∫ 5

0

u2(t)dt

we have: A = 1, B = 1, tf = 5, R = 8, H = 0 and Q = 1

Hamiltonian matrix Z is:

Z =

1 −1

0 −1


The transient matrix is:

et 1
2e
−t − 1

2e
t

0 e−t



K(t) =
8e(5−t)

−3e−(5−t) + 4e(5−t)
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the control function u(t, x) = −Kx

4.3 Optimal Control of Heat Equation

In linear quadratic control, the state space equation is an ordinary dif-

ferential equation. Therefore we must convert the heat equation to an

ordinary differential equation, so by using the separation of variables

method we can express the solution of the heat equation as a product of

two functions each of them is a solution of ordinary differential equations,

then use the riccati equation for solving each of them.

Recall the example (2.2):

Ut = Uxx, 0 < x < 1, 0 < t < 0.1

U(0, t) = U(1, t) = 0

U(x, 0) = sin(2πx) (4.20)

the exact solution is:

U(x, t) = e−4π
2tsin(2πx)

By separation of variables, we obtain:

U(x, t) = G(x)H(t)
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where G(x) is the solution of the following ordinary differential equation:

d2G(x)

dx2
+ 4π2G(x) = 0

and H(t) is the solution of the following ordinary differential equation:

dH(t)

dt
+ 4π2H(t) = 0

To obtain the control function for each of ODE’s, we take the case that

each of them equal the control function u1, u2 respectively. For the first

ordinary differential equation:

d2G(x)

dx2
+ 4π2G(x) = u1, G(0) = G(1) = 0 (4.21)

the state space equation for equation (4.21) is:

x1 = G

x2 = Ġ

ẋ1 = x2

ẋ2 = −4π2x1 + u1ẋ1
ẋ2

 =

 0 1

−4π2 0

x1
x2

 +

0

1

u1
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ẋ = Ax+Bu1

To verify that A and B are controllable or not:

M =
[
B AB

]
=

0 1

1 0


rank(M)=2, so A and B are controllable.

The performance index for equation (4.21) is:

J =
1

2

∫ 0.1

0.0

(x2 + u2)dt

with Q = 1, R = 0, H =

1 0

0 1



Z =



0 1 0 0

−4π2 0 0 −1

−1 0 0 −1

0 −1 4π2 0



(sI − Z) =



s −1 0 0

4π2 s 0 1

1 0 s 1

0 1 −4π2 s


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For the second ordinary differential equation:

dH(t)

dt
+ 4π2H(t) = u2 (4.22)

the state space equation for (4.22) is:

x1 = H

ẋ1 = −4π2x1 + u2

A = −4π2, B = 1

ẋ = Ax+Bu2

M = 1→ rank(M) = 1→ A and B is controllable.

The performance index for (4.22) is:

J =
1

2

∫ 0.1

0.0

(x2 + u2)dt

with Q = 1, R = 0, H = 1

Z =

−4π2 −1

−1 4π2



[sI − Z] =

s+ 4π2 1

1 s− 4π2


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[sI − Z]−1 =

 4π2−s
16π4−s2+1

1
16π4−s2+1

1
16π4−s2+1

−4π2−s
16π4−s2+1



Let a = cosh(
√

16π4 + 1t)− 4π2sinh(
√

16π4 + 1t)√
16π4 + 1

, b =
−sinh(

√
16π4 + 1t)√

16π4 + 1

and c = cosh(
√

16π4 + 1t) +
4π2sinh(

√
16π4 + 1t)√

16π4 + 1

L−1[sI − Z]−1 =

a b

b c



P =
sinh(

√
16π4 + 1(0.1− t))√

16π4 + 1cosh(
√

16π4 + 1(0.1− t)) + 4π2sinh(
√

16π4 + 1(0.1− t))

u2 =
[

−sinh(
√
16π4+1(0.1−t))√

16π4+1cosh(
√
16π4+1(0.1−t))+4π2sinh(

√
16π4+1(0.1−t))

]
x

u1 and u2 are factors of control function of heat equation (4.20).

4.4 Illustrated Examples and Sensitivity Analysis

In this section, we will implement the Euler method to solve the state

space equation.
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• Euler method

Euler method was created by Leonhard Euler in 1770 ([2, 4]), it is

a numerical method to approximating the solution of differential

equation:

y′ = F (t, y), a ≤ t ≤ b, y(a) = y0 (4.23)

The domain [a,b] is divided into a number of sub-intervals M , all

sub-intervals have the same length h = b−a
M .

Figure 4.1: Sub intervals of Euler method

from figure (4.1), note that ti = a + ih, i = 0, 1, ...,M , to approxi-

mate the solution of the differential equation, we need to approx-

imate the solution at each point ti, i = 0, 1, ...,M , the solution at

t0 = a is given by the initial condition y(a) = y0.

We use the notations:

y(ti) = yi for the exact solution at ti.

R(ti) = Ri for the approximate solution at ti.

approximating y′ at ti using first-order forward difference formula:

y′i =
yi+1 − yi

h
− h

2
y′′(ζi), ζi ∈ [ti, ti+1] (4.24)
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substituting (4.24) into equation (4.23), the result is:

yi+1 − yi
h

− h

2
y′′(ζi) = F (ti, yi), i = 0, 1, ...,M − 1

yi+1 = yi + hF (ti, yi) +
h2

2
y′′(ζi) (4.25)

dropping the remainder term, the new equation is not satisfied by

yi but by Ri where Ri
∼= yi, the equation (4.25) becomes:

Ri+1 = Ri + hF (ti, Ri), i = 0, 1, ...,M − 1 (4.26)

R(a) = R0

equation (4.26) is the iterative formula for Euler method for equa-

tion (4.23).

Starting with initial condition R0 we compute R1, then use R1 to

compute R2 and so on until RM .

Example 4.10. Consider the differential equation,

y′ = t+ 2y, y(0) = 0 (4.27)

using h = 0.25,M = 4 find the solution for equation (4.27) in [0.1]

by Euler method.
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Solution:

F (t, y) = t+ 2y and i = 0, 1, 2, 3

Ri+1 = Ri + 0.25(ti + 2Ri), i = 0, .., 3

The exact solution is:

y = 0.25e2t − 0.5t− 0.25

Figure 4.2: Numerical results for h=0.25

Figure 4.3: Numerical Solution vs. Exact Solution, h=0.25
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In figure (4.3) the numerical solution is so inaccurate, to reduce

the error, we may reduce the step size h since the remainder term

we dropped in the derivation depends on h.

Figure 4.4: Numerical Solution vs. Exact Solution, h=0.01

As we see in figure (4.4), the accuracy of this numerical solution is

much higher than before.

For solving the state space equation by Euler method, consider the ex-

ample:

Example 4.11. (Closed loop system)

ẋ = 2x+ u

x(0) = 1

J =
1

2

∫ 1

0

u2dt
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Solution:

A = 2,B = 1 and Q = 1

The control function u that minimize the cost function J is taking the

formula:

u = −(Q−1BTP )x

therefore, the state space equation becomes:

ẋ = (A−BQ−1BTP )x

Riccati equation for this example is:

4P − P 2 = 0→ P = 4 and P = 0 (rejected)

The state space equation becomes:

ẋ = −2x

the exact solution is:

x(t) = e−2t

by Euler method, using h = 0.01 and M = 100, the numerical solution

and exact solution is given in figure (4.5).
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Figure 4.5: Numerical Solution vs. Exact Solution, h=0.01

Example 4.12.

ẋ =

−1 0

0 1

x+

0

1

u

x(0) =

1

1


J =

1

2

∫ 1

0

(x1
2 + u2)dt

Solution:

A =

−1 0

0 1

 , B =

0

1

, H =

1 0

0 0

 and Q = 1

The solution of riccati equation would be:

P =

1
2 0

0 2


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The state space equation becomes:

ẋ =

−1 0

0 −1

x (4.28)

The exact solution is:

x(t) =

e−t
e−t


By Euler method, using h = 0.01 and M = 100, we get:

Figure 4.6: Numerical Solution vs. Exact Solution for the first state, h=0.01
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Figure 4.7: Numerical Solution vs. Exact Solution for the second state,
h=0.01

we introduce the open control system through the following example:

Example 4.13. ( open loop system), Recall the example (4.7),

ẋ1(t)
ẋ2(t)

 =

 1 −1

−8 −1

x1(t)
x2(t)

 +

0

1

u(t) (4.29)

where u(t) = 1 and x(0) =

0

0


with output equation:

y(t) = Cx(t) (4.30)

where C =
[
0 1

]
the exact solution by Laplace transform is:

x(t) =

 1
9 −

cosh(3t)
9

1
9 −

cosh(3t)
9 + sinh(3t)

3


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ẋ1
ẋ2

 =

 x1 − x2

−8x1 − x2 + 1

 = F (t, x)

using Euler method solve the system (4.29) using h = 0.01, t ∈ [0, 0.5],

the result is given in figures (4.8) and (4.9).

Figure 4.8: Numerical Solution vs. Exact Solution for the first state, h=0.01

Figure 4.9: Numerical Solution vs. Exact Solution for the Second state,
h=0.01
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the solution of output equation (4.30) is given in figure (4.10)

Figure 4.10: Solution of output equation

Example 4.14. (CD-player)

Consider the example of the CD-player that could be found in [7],

where the dimension of a matrix A is 120× 120

The numerical solution using Euler method for the states 10, 60 and

120 respectively are given in figures (4.11).

Example 4.15. Consider the state space equation (4.28) where the ma-

trix A is a 200× 200 diagonal matrix in which the main diagonal entries

are all -1.

Using Euler method, the solution of state 200 for example, is given

by figure (4.12).

The absolute error for the results is between 0 and 1.8× 10−3

(0 ≤ error ≤ 1.8× 10−3).
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Figure 4.11: Numerical results for CD-player (example(4.14))
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Conclusion 

 

We study heat equation under Dirichlet, Neumann, Euler and HJB 

equation. We conclude that goodness of numerical solution and analytic 

solution where the tolerance is 10ିଷ. The control function derived in the 

case of using algebraic Riccati equation found to be nonlinear function; 

trigonometric and hyperbolic functions depends on the initial conditions. 

We recommended farther research to consider heat equation as laplacian 

equation to determine the control function using HJB equation.  Also the 

heat equation could be discussed using other distribution functions for 

Markov chain. 
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  جامعة الʹʱاح الॻʹʟʦة 
  كلॻة الʗراسات العلॻا 

  

  
  

  

اسʗʳʯام الʙʮمʱة الʗیʹامॻȜॻة في الʙʠॻʴة على الʸعادلة 
 ȖȂʙʟ ʥع ʣائي وذلʦʵي العʵʸة  الॻلʸة في حالة عȂارʙʲال

  معادلة هاملʦʯن جاكʦب بʻلʸان

  

  إعʗاد
  سالي مʗʸʲ علي عʹاʴǺة

  
  
  إشʙاف

ʗأسع ʔʻʱن ʗʸʲد.م  
  تʴاجȜاروجʛʹʻʻ.دʦȂʙʯʸǻس أ.د

  
قʗمʕ هʘه الأʙʟوحة اسʸؒʯالا لʠʯʸلॺات الʦʶʲل على درجة الʸاجʙʻʯʴ في الȂʙاضॻات 

  فلʥʻʠʴ-الʹʱاح الॻʹʟʦة في نابلʛ الʦʲʸسॺة ȜǺلॻة الʗراسات العلॻا في جامعة
2019 



 ب
لʵʸي اسʗʳʯام الʙʮمʱة الʗیʹامॻȜॻة في الʙʠॻʴة على الʸعادلة الʙʲارȂة في حالة عʸلॻة ا

  العʦʵائي وذلʣ عȖȂʙʟ ʥ معادلة هاملʦʯن جاكʦب بʻلʸان 
  إعʗاد

  سالي مʗʸʲ علي عʹاʴǺة
  إشʙاف 

ʗأسع ʔʻʱن ʗʸʲد.م  
  دʦȂʙʯʸǻس تʴاجȜاروجʛʹʻʻأ.د. 

ʝʳلʸال  
ة الʛʰاونॽة وتʨزȄعات بʛنʨل ʛؗʴائي والʨʷي العʷʺال ȋوʛش ʗʴة تȄارʛʴدراسة الʺعادلة ال ʦت ي, ذات

ʨف.   الʙʴیʧ, الهʙʻسي وʨȃاسʨن لʶلʶلة مارؗ
ȋʨʢʵق الʛʡن, وʨʶلȞॽن ʥانʛؗ ,دʙʴʺق الʛقة الفȄʛʡ لʲة مǽدʙق العʛʢال ʠعǼ امʙʵʱاس ʦت ʙفي  لق

  حل عʙدȑ للʺعادلة الʛʴارȄة. إʳǽاد
ʻمʙʵʱاس ʙة. ولقȄارʛʴلي للʺعادلة الʽلʴاد حل تʳǽات لإʛʽغʱʺل الʸقة فȄʛʡ امʙʵʱاس ʦدلة ا معاكʺا ت

  هاملʨʱن جاكʨب بʽلʺان ومعادلة رȞȄاتي لإʳǽاد اقʛʱان الʛʢॽʶة للʺعادلة الʛʴارȄة. 
  وأخʛʽا تʦ مقارنة الʴلʨل الʺʱʵلفة مع Ǽعʹها وتʴلʽلها. 
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