Concentration and Temperature Dependence of Viscosity in Mode-Coupling Theory of Binary Mixture of Water and Phenol

Thumbnail Image
Date
2015-04-21
Authors
Elayyat, Shadia M.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The dynamic shear viscosity of a binary liquid mixture of water and phenol has been measured at different temperatures (32.0 ℃ ≤ 𝑇 ≤ 75.0 ℃) and different concentrations (0.00% up to 100.00% by weight of phenol) by using glass capillary viscometer and Brookfield viscometer model DV-I+. The critical temperature and critical concentration have been determined to be 67.0 ℃ and 33.90% by weight of phenol respectively. The mode coupling theory (MCT) has been used to calculate the value of background viscosity (noncritical part of shear viscosity) 𝜂0 = 0.684 cP, the Debye momentum cutoff 𝑞𝐷 = 0.786 Å −1 and the MCT constant A = 0.050. The intermolecular force range L of water and phenol molecules in a binary mixture has been calculated to be 11.17 Å. The large value indicates that the mutual force between binary mixture molecules can be considered as a week attractive force. The critical amplitude of specific heat under constant pressure at critical concentration and above critical temperature 𝐶𝑝𝑐 has been found to be 259.16 𝐽 𝑘𝑔.𝐾 by using the two scale factor university.
Description
Keywords
Citation