An-Najah National University Faculty of Graduate Studies

Factors Affecting the Acceptance of E-Health System - A Case Study of Nablus Governorate Hospitals

By Mai Sameer Qutob

Supervisors Dr. Baker Abdalhaq

This Thesis is Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Engineering Management, Faculty of Graduate Studies at An-Najah National University, Nablus, Palestine.

Factors Affecting the Acceptance of E-Health System - A Case Study of Nablus Governorate Hospitals

By Mai Sameer Qutob

This Thesis was defended successfully on 6/12/2017 and approved by

Defense Committee Member	<u>Signatures</u>
1. Dr. Baker Abdalhaq\ Supervisor	••••
2. Dr. Ahmad Ewais \ External Examiner	•••••
3. Dr. Yahya Saleh \ Internal Examiner	•••••••••••••••••••••••

Dedication

iii

To the gentleman Mr. Nomair Isbaih, who raised me to believe in myself, to be a better woman, without him I would have never inspired to start but also complete this work

To my dear father a man no like other for supporting me all the way .

To my mother a strong and gentle soul who taught me to trust in Allah, believe in hard work. and that so much could be done with little

To anyone who has shown me friendship and kindness during my field travels

Thank you for every thing

Acknowledgement

iv

First and foremost, I am thankful to Allah for granting me the strength, perseverance and steadfastness to carry on and to accomplish this work.

1 am extremely grateful to my supervisor, Dr. Baker Abdalhaq, for holding me to his high academic standards and for his valuable guidance, advice and sincere support throughout the journey of my research.

1 would like to express my deepest gratitude to my father and mother for their endless support and confidence throughout my life.

Big thanks to my friends especially Jumana Jaghub, Nomair Isbaih, Fareed Al-sayeed and Liana Nabulsi, for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis.

Finally, thanks to all hospitals and specialists who provided me with valuable information and figures. Without their passionate participation and input, the validation survey could not have been successfully conducted.

Thank you all,

v

أنا الموقعة أدناه مقدمة الرسالة التي تحمل العنوان:

Factors Affecting the Acceptance of E-Health System - A Case Study of Nablus Governorate Hospitals

العوامل المؤثرة على قبول نظام الصحة الإلكترونية دراسة حالة لمستشفيات محافظة نابلس

أقر بأن ما اشتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص، باستثناء ما تمت الإشارة إليه حيث ما أن هذه الرسالة كاملة، أو أي جزء منها لم يقدم من قبل لنيل أي درجة أو لقب علمي أو بحث لدى أي مؤسسة تعليمية أو بحثية أخرى.

Declaration

The work provided in this thesis, unless otherwise referenced, is the researcher's own work, and has not been submitted elsewhere for any other degree or qualification.

Student's name:	اسم الطالبة:
Signature:	التوقيع:
Date:	التاريخ:

List of Abbreviation

E-Health	Electronic Health		
ТАМ	Technology Acceptance Model		
IT	Information Technology		
ICT	Information and Communication Technologies		
IS	Information System		
HIS	Hospital Information System		
Н	Hypothesis		
SPSS	Statistical Package for the Social Sciences		
Comm.	Communication		
PU	Perceived Usefulness		
PEOU	Perceived Ease of Use		
ATT	Attitude		
E- prescription	Electronic Prescription		
INT	Intention		
WHO	World Health Organization		
UNSCO	United Nations Special Coordinator Office		
HIT	Health Information Technology		
HIMS	Healthcare Information Management System		
PR	Perceived Risk		
Std. Deviation	Standard Deviation		
Ν	Numbers		
Sig.	Significant		
LSD test	Least Significant Difference		
SPSS	Statistical Package for the Social Sciences		
ANOVA	Analysis of Variance		

Table of Contents

No.	Content	Page
	Dedication	iii
	Acknowledgement	iv
	Declaration	V
	List of Abbreviation	vi
	Table of Contents	vii
	List of Tables	ix
	List of Figures	Х
	List of Appendices	xi
	Glossary of Key Terms	xii
	Abstract	xiii
	Chapter One: Introduction	1
1.1	Background	2
1.2	Statement of the Problem	5
1.3	Importance of the Study	6
1.4	Research Questions	7
1.5	Research Objectives	8
1.6	Research Hypotheses	8
1.7	Thesis Structure	9
	Chapter Two: Literature Review	11
2.1	Background	12
2.2	E-Health Discussion	14
2.2.1	Introduction to E-Health	15
2.2.2	E-Health Definition	17
2.2.3	Categories of E-Health	18
2.2.4	Benefits of E-Health	20
2.2.5	E-Health Challenges	23
2.3	Information and Communication Technology in Healthcare	25
2.3.1	Palestinians ICT Sector Background	27
2.3.2	E-Health System in Palestine	31
2.4	Technology Adoption in Healthcare	35
2.4.1	Technology Acceptance Model (TAM)	37
2.4.2	Factors Affecting the Acceptance of E-Health System	40
2.4.3	Factors Affecting the Acceptance of E-Health System in Palestine	42
2.5	Previous Studies	50
2.6	Summary	66
	Chapter Three: Methodology	68
3.1	Research Methodology	69

•	٠	٠
V1	1	1

No.	Content	Page
3.2	Research Design	70
3.3	Research Date Collection Tools	71
3.3.1	The First Tool: Semi Structures Interviews	72
3.3.2	The Second Tool: Questionnaire	74
3.4	Research Hypotheses and Framework	76
3.5	Sampling Technique	78
3.5.1	Population of the Study	78
3.5.2	Population Sampling	79
3.6	Distribution of the Questionnaire	80
3.7	Test of Data Validity and Reliability	81
3.7.1	Test of Validity	81
3.7.2	Test of Reliability	82
3.8	Data Analysis Technique	83
3.8.1	Interviews Technique	83
3.8.2	Statistical Technique	84
3.9	Summary	85
	Chapter Four: Data Analysis and Results Discussion	86
4.1	Descriptive Analysis	87
4.2	Statistical Differences Among Survey Respondents	93
4.3	E-Health System Factors Testing	106
4.4	Hypotheses Testing	107
4.5	E-Health Adoption Framework in Palestine	113
4.6	Introduction to Qualitative Analysis	116
4.6.1	Qualitative Data Analysis (Interviews Analysis)	116
4.7	Summary	120
	Chapter Five: Conclusions and Recommendations	122
5.1	Conclusions	123
5.2	Recommendation	126
5.3	Research Contribution	133
5.4	Future Research	134
	References	136
	Annex	161
	الملخص	Ļ

List of Tables

No.	Table	Page	
Table (2-1)	E-Health Definitions		
Table (2-2)	E-Health Categories	19	
Table (2-3)	Middle East Internet Usage and Population Statistics 2017	30	
Table (2-4)	Main Selected ICT Indicators for Different Selected Years.	30	
Table (2-5)	Related Studies	64	
Table (3-1)	Size of Targeted Hospitals Employees	79	
Table (3-2)	Distribution and Collection of Data.	81	
Table (3-3)	Cronbach Alpha Test	83	
Table (4-1)	Distribution of Gender	88	
Table (4-2)	Distribution of Age	88	
Table (4-3)	Distribution of Experience Years	89	
Table (4-4)	Distribution of Job	90	
Table (4-5)	Distribution of Completed Work		
Table (4-6)	Distribution of System Usage	91	
Table (4-7)	Distribution of Work Place		
Table (4-8)	Statistical Differences Among Participants According to Their Gender	94	
Table (4-9)	Independent Samples Test for Gender Differences among Participants	95	
Table (4-10)	Total Score for All Factors According to Research Respondents.	106	
Table (4-11)	Results of Hypothesis Testing	108	
Table (5-12)	Related Studies to Results of Hypothesis Testing	113	
Table (4-13)	Correlations Between Factors Influencing e- Health System.	114	
Table (4-14)	Summary of Identified Codes, Basic Themes, and Central Themes.	117	

List of Figures

No.	Figure			
Figure (1.1)	Thesis Structure.			
Figure (2.1)	Technology Acceptance Model (TAM)	39		
Figure (3.1)	Research Design	70		
Figure (3.2)	Research General Framework for e-Health Acceptance.	76		
Figure (4.1)	E-Health System Adoption Framework.			
Figure (4.2)	E-Health Framework Based on Factors Relationship.	115		

No.	No. Appendix	
Annex A	The Main Types of Research	162
Annex B	The Questions of the Interview	169
Annex C	Questionnaire of Factors Affecting the Adoption of e-Health System	173
Annex D	Experts and Arbitrators	183
Annex E	Tables	184

List of Appendices

Glossary of Key Terms

Term	Definition		
Acceptance	The demonstrable willingness within a user group to employ information technology for the tasks it is designed to support (Dillon & Morris, 1996).		
Intention	A measure of the strength of one's intention to perform a specified behavior (Davis et al., 1989).		
Factors	Elements contributing to a particular result or situation (Davis et al., 1989).		
Information and Communications Technology (ICT)	ICT is an umbrella term that includes any communication device or application, encompassing: radio, television, cellular phones, computer and network hardware and software, satellite systems, as well as the a variety of services and applications (Fromm et al., 2009).		
Healthcare ICT	Healthcare information and communication technology is used to describe a broad concept of technologies which allow individuals to conduct various healthcare-related actions, for example, to collect information, access stored data, communicate, and interact with distant services without limitation in time and space (Ammenwerth et al,. 2003)		
Health	A combination of computer science, information science,		
Informatics	and health science (Aggelidis & Chatzoglou, 2009).		
User	End-user of a specific device, system or service. The main users of healthcare ICT are: a) healthcare professionals who work with healthcare ICT applications in hospitals, health centers and other healthcare institutions, b) patients, c) all citizens (regarding the e-Health services), and d) other supportive parties (e.g., parents, family, social care workers) (Fromm et al., 2009).		
Healthcare Professionals	A personnel responsible for medical and care-giving activities in hospitals. Professionals include individuals with different areas of expertise: clinicians, physicians, nurses, radiologists, pharmacists, laboratory technicians, radiographers, etc. (Ammenwerth et al., 2003).		
Attitude	Positive or negative evaluation on specific thing or individual. Attitude is influenced by beliefs about the consequences (Tan & Teo, 2000; Luo et al., 1999).		
Statistical Package for the Social Sciences software (SPSS)	SPSS is a computer program used for statistical analysis. SPSS can provide various, statistics and empower researchers to achieve their objectives (DeCoster, 2004).		

Factors Affecting the Acceptance of E-Health System A Case Study of Nablus Governorate Hospitals By Mai Sameer Qutob Supervisors Dr. Baker Abdalhaq

Abstract

This research aims to study the factors influencing medical professionals' acceptance and usage of e-Health technology in State of Palestine hospitals and to introduce an e-Health framework that can be adopted by the Palestinian hospitals in order to utilize technology effectively in their operations. A longitudinal case study was undertaken for three hospitals in Nablus governorate. Which are Rafidia Surgical Hospital, Al-Najah, and specialized Arab hospitals working in Nablus.

The research framework which based on Technology Acceptance Model (TAM) was conceptualized via reviewing related literature and experts' opinion in the design process. TAM, which contains perceived usefulness, perceived ease of use, attitude towards usage, and usage intentions, is extended with external factors, which are system characteristic, training, fear of accountability, output quality, culture and perceived risk).

The research utilized both qualitative and quantitative research methods to answer the research questions and to test hypotheses. Qualitative data were collected via in depth semi-structured interviews with IT specialists and system users in a targeted area in order to get a better understanding to e-Health system status, benefits, challenges and obstacles. Furthermore, Quantitative data were related to the factors influencing E-Health acceptance collected via a survey which was distributed to a random sample (n=300) of health professionals at hospitals.

The results of the literature review, the qualitative exploratory study, the quantitative pilot, and the quantitative final study formed the framework. The analysis of collected data indicated that perceived ease of use, perceived usefulness, perceived risk, and output quality are the most significant factors influencing E-Health adoption by Palestinian hospitals. Additionally, perceived risk, system characteristic, and fear of accountability, are influencing e-Health innovation adoption in less degree.

Based on the research findings, Palestinian health institutions should work on formulating new strategies, enhancing operational processes, developing E-Health infrastructure, introducing services with high quality, and coordinating with other entities such as, ICT companies, offices transfer software programs; that would be helpful in achieving medical care employees' trust in order to spreading E-Health technology among Palestinian society.

Chapter One Introduction

Chapter One Introduction

This chapter introduces a general background of the research title, clarifying statement of the problem, importance of the research, research objectives, and research questions. In addition, it presents the research hypotheses, and the structure of the thesis.

1.1 Background

Clinics, hospitals, community health sites and primary health care centers are the healthcare facilities (WHO, 2012). Healthcare is a sector full of vast and various information and knowledge relating to health issues, nutrition, disease prevention, disease management and cure through medication. This information is continuously generated and resides in the pivots of the health care system, which are the individual, the physician, and the community.

The health domain is experiencing a significant numerous of internal, but also external pressures due to increasing population and demand for better health services. The progress in information and communication technologies (ICT) and medicine are resulting in new methods, manners, and opportunities to support or even enable new pattern of health care services (Anker et al., 2011).

ICTs is the solution for poor healthcare outcomes (Li et al., 2013). It plays an essential role in supporting daily life in today's digital society; it has used everywhere now and helping to delivering more efficient, dynamic, and better healthcare services (Anja, Heiko, & Ulrich, 2014). It also helps corporation and institutions to increase productivity and create attractive products to be sold on the world market, additional to its greatest impact on administration functions, such as reducing health care cost, decreasing paperwork and workload of healthcare professionals, increasing administrative efficiencies and expanding access to affordable care. It has also shown effectiveness in preventing medical errors by enforcing clinical guidelines and protocols.

Using technology in health domain allows medical practitioners and healthcare specialists to diagnose and provide advice for the treatment of patients at a distance using ICT technologies. It can also be accessed by using the Internet, up-to-date medical data or gain expert advice from other medical professionals and therefore, obtain more accurate solutions for patients' diagnosis and treatment (Holden & Karsh, 2010). Additionally, with the sophistication in modern telecommunications also in information processing capability and miniaturization of health diagnostic equipment, it becomes possible to deliver more immediate, efficient and effective heath care services to the masses (Street, 2004).

E-Health is one of the outputs of the technological development in the field of ICT, which offers many opportunities for enhancing the quality of medical process by developing the quality management system in the field of e-Health that will reflect positively on practitioners (Holden, 2010).

According to European Commission (2011), the different e-Health applications have been used across countries corresponding to their health

needs and priorities. The application has different purposes in developing and developed countries. For developing countries, the main goals are to provide & improve access to medical services for populations living in rural and remote areas, also to more efficient in utilizing limited healthcare resources. While in developed countries, the major goals are to minimize healthcare budgets and to find solutions for an aging population. World Health Report 2006 "Working together for Health" mention that the most acute needs for e-Health applications are in developing world (WHO, 2006).

According to Schaper & Pervan (2007), e-Health depends primarily on the user's willingness to employ & utilize the computer in the health process. Therefore, understanding the individuals' willingness to accept and utilize computer considered to be one of the most challenging issues in information systems research, Davis (1989) agreed with them and mention, if this can be understood, any institution would be able to explain, predict, enhance, and raise up user acceptance of any technology.

Despite high interest in e-Health technology, but the acceptance rates still not high enough for healthcare systems to experience the maximal benefits. E-Health has to offer and users' resistance to new technologies innovations is cited as a major barrier to advancement (Li et al., 2013). Also, the implementing and embedding new technologies of any kind involves complex processes of change at the micro level for medical staff also for patients and at the level for healthcare organizations (Mair et al., 2012).

1.2 Statement of the Problem

Many public and private health services providers suffer from Poor documentation, losing or damaging data, lack accessing of data, ineffective dissemination of-or inaccessible to information and reliance on human memory for the retrieval of data; all these are barriers that impede delivering high-quality healthcare services. Additionally, many of manhours are wasted by personnel moving from department to department in search of-or for purposes of delivering the information. Hence, to achieve effectiveness in delivering health care services ICTs can thus be adopted because; they have potential to bring about extreme changes within the healthcare sector.

Several researchers (e.g., Chaudhry et al., 2006; Häyrinen et al., 2008; Goldschmidt, 2005) have emphasized the need for a research topic in implementing ICT in the health sector in order to realize the practical benefits of, challenges for, and factors effect on technology adoption (Schaper & Pervan, 2007).

Sequist et al., (2008) noted that Health Information Technology (HIT) has the potential to improve the quality of care, patient safety and reduce the cost of care services. Despite that, the system is not widely available and even if available is not properly utilized, Bennani., (2008) agreed with them and mention that the adoption of such IT in the healthcare industry is still very slow compared with other industries.

5

Strategies for the successful management of e-Health system implementation and development should include engaging the healthcare professionals, also should provide strong organizational support for them before and during implementation activities. These factors could eliminate major resistance and mitigate negative attitudes frequently reported, and at the same time increase the level of acceptance of e-Health by healthcare workers (Khalifa & Alswailem, 2015).

Chau & Hu (2002) noted that due to the newness of e-Health services, particularly in the area of developing world, there is a limitation in previous academic research. Where the majority of the research published are relate to developed world (Currie, Philip & Roberts, 2015).

This research focuses on a key gap in the literature regarding the use of technology acceptance models in health sector from the medical professionals' perspective in Palestinian hospitals on one hand and, identifying factors affecting the acceptance on the other hand. Identifying the factors that are either internal or external is a necessary step for successful e-Health services implementation.

1.3 Importance of the Study

Motivations that encourage studying this topic are:

• The use of e-Health Technology in Palestine is not mature yet. It still suffers from lack of popularity, so it deserves to review for better and clear understanding of this technology.

- Until recently, no research has investigated factor affecting of e-Health adoption in Palestinian hospitals. Hence, this research is an attempt to fill this gap by addressing these factors and its influence on e-Health adoption in Palestine.
- It will enrich the scientific knowledge with e-Health science, which is a relatively a new topic, also the studies in this area are still limited.
- E-Health technology is an important tool for hospital development towards improving the community, testing of these factors may result a recommendation for e-Health strategist and providers in the country, where the initiative might not be successful if such factors were not taken into account.

1.4 Research Questions

The main question is:

What are the factors that influence the acceptance and use of e-Health system by medical professionals in Palestinian private and public hospitals?

The sup-questions are:

- 1. Which factors have strong or weak effect on acceptance?
- 2. What changes are required to improve e-Health environment?

1.5 Research Objectives

- To determine the factors that influence the adoption of e-Health in the Palestinian hospitals.
- 2. To determine which of these factors have the greatest impact on the adoption of e-Health technology.
- To find the correlations between factors influencing the adoption of e-Health in the Palestinian hospitals.
- 4. To introduce e-Health adoption framework in Palestine.

1.6 Research Hypotheses

This research aims to test the following hypotheses:

- System characteristic has direct and positive effect on perceived risk of e-Health system.
- Employees training has direct and positive effect on perceived risk of e-Health system.
- Fear of accountability has direct and positive effect on perceived risk of e-Health system.
- System characteristic has direct and positive effect on perceived ease of use of e-Health system.
- Employees training has direct and positive effect on perceived ease of use of e-Health system.

- 6. Fear of accountability has direct and positive effect on perceived ease of use of e-Health system.
- 7. System characteristic has direct and positive effect on perceived usefulness of e-Health system.
- 8. Employees training has direct and positive effect on perceived usefulness of e-Health system.
- 9. Fear of accountability has direct and positive effect on perceived usefulness of e-Health system.
- Perceived risk has direct and positive effect on perceived usefulness of e-Health system.
- Perceived risk has direct and positive effect on perceived ease of use of e-Health system.
- 12. Output quality has a positive influence on intention to use e-Health system.
- 13. Culture has a positive influence on intention to use e-Health system

1.7 Thesis Structure

The reader will find Five Chapters in this thesis. The first chapter introduces the thesis subject and its objectives. The second chapter is the literature review that contains six parts (E-Health overview, background, E-Health Discussion, ICT in health sector, technology adoption in health care, related studies).

The third chapter is research methodology, which explains this research methodology along with the tools used for data collection. The fourth chapter presents the data analysis and result. Finally, the last chapter provided the result discussion, conclusions and recommendations, and some suggestions for future research. See Figure (1-1): Thesis structure

Figure (1.1): Thesis Structure

Chapter Two Literature Review

Chapter Two Literature Review

This chapter is divided into two parts, the first one discuss e-Health and ICT terminologies, while the second part of this chapter discusses the previous scientific studies related to e-Health adoption, user acceptance model, factors influencing e-Health adoption Palestine.

2.1 Background

Information and Communication Technology (ICT) is one of the driving forces of globalization, which drive the nation for developing. ICT applications enter the daily lives of human and have rapidly changed our economic and social life; this is because the technology has given us multiple ways to accomplish the tasks better and faster, and has had a significant effect on the way organizations managed its services.

The advent of ICT around the world is gaining life and nation's opportunity to achieve sophistication in all aspects of society, including health care (Idowu, et al., 2003).

ICTs have great potential to improve medical sector in both the developed and developing world, by enhancing access to medical information and making health services more efficient; They can also contribute to improve the output of health services, and reduce services cost (WHO, 2012). Also, enriching workflow, simplifying healthcare operations, and reaching health goals in a more effective manner (Viitanen, 2009).

World population now exceeds seven billion, whereas more than 5.5 billion reside in the developing countries (UNDP, 2016). The increasing number of population requires finding ways to enhance and improve the quality of medical care delivery systems for all health institutions. ICT is the vehicle with the potential to enhance the health care services as well as the competence of the healthcare worker and institutions in both the public and private sectors worldwide (Idowu et al., 2003).

A survey results provided by WHO region, World Bank income group, and globally – showed that e-Health systems are being increasingly adopted within the health sector in higher income countries, and the emerging economies such as Brazil, China, and India for instance, are also beginning to use e-Health systems in their health care, whereas low-income countries still struggling to initiate e-Health systems (WHO, 2012).

According to Khalifa & Alswailem (2015), the modern e-Health systems are comprehensive, integrated and specialized information system are designed to manage the administrative, financial and clinical aspects of hospitals and healthcare facilities. They are considered one of the most important focal points on which the delivery of healthcare between hospitals and different types of medical institutions.

Hospital Information Systems have the potential to improve the health of individuals and the performance of healthcare providers, which led to improving quality, expense savings, and greater engagement by patients in their own health care. Despite evidence of these benefits, hospitals utilization of e-Health systems is still low. The response of healthcare professionals to the use of Hospital Information Systems is an important research topic that can explain the success or failure of any e-Health development and implementation project (Khalifa & Alswailem, 2015).

Although research often focuses on systems design and implementation, but this not enough on how users react to already implemented IT systems. The fit between IT and the hospital work system will lead intended users to accept or reject the system and to incorporate it into their work (Holden & Karsh, 2010).

2.2 E-Health Discussion

The world population is growing quickly, while the medical care services delivery is not good enough to cater for the populace. Therefore, a need for bringing new ways to improve the healthcare delivery is created in order to allow people to have access to healthcare easily and timely, hence implementing e-Health projects are the modern way to enrich the sector of healthcare services.

E-Health is a new global topic (Pagliari et al., 2005). It was discussed at the Nations World Summit on the Information Society in December 2003, which was held in Geneva-Tunis 2003. The summit of (WSIS) asserts commitments of nations to improving access to the world's health knowledge and telemedicine services in order to aid improving the quality of life (International Telecommunication Union, 2012).

The Nations World Summit pointed that e-Health is one of the significant ICT applications, and stated the following: "Promoting collaborative efforts of health stockholders, governments, planners, health practitioners', and other agencies along with the participation of international organizations for creating a reliable, timely, high quality and affordable healthcare and health information systems and for promoting continuous medical training, education, and research through the use of ICTs, and encourage the acceptance & utility of ICTs to improve and extend healthcare and health information systems (International telecommunication union, 2012).

The all-embracing mandate of the United Nations agencies aims to show the way and assist countries in bringing about peace, growth, and prosperity in the world through development. WHO which is one of the United Nations agency, published in 2005 a general report on the subject of e-Health, in the interests of drawing the attention of decision-makers to the need for the rapid development of strategies in this area (Healy, 2008).

The e-Health innovation is one component in the progressing process since there is no health without development, no development without health. Hence, it should take the concern of any local institution and all United Nations agencies.

2.2.1 Introduction to E-Health

The prefix "e-", in the term E-Health is standing for "electronic", is similarly used in numerous other applications such as e-human resource, e-

banking, e-commerce, e-learning, e-school, e-governance and e-transport. etc., to convey the notion of digital data (as opposed to traditional data such as, manual medical report, paper medical records, electrocardiogram printouts and x-ray film). Without digitization, there would be no automatic processing and no instantaneous exchange via the network (Healy, 2008).

Eysenbach in 2001 wrote, "e" in e-Health does not only stand for "electronic," but the definition actually encompasses a number of other "e's," which together, perhaps best characterize what e-Health is all about, this 10 e's in "e-Health" are: Efficiency, Enhancing Quality, Evidence-Based, Empowerment, Encouragement, Education, Enabling, Extending, Ethics, Equity (Eysenbach, 2001).

The term Health used broadly and refers to a state of complete physical, mental and social well-being and not merely the absence of illness, disease or infirmity (WHO, 2004). The scope of health has two major facets, the first is public health: which is the responsibility of states and is geared towards preventing and responding to disease in populations and the second is health care: which is geared towards individual patients and the treatment of disease (Healy, 2008).

The health system according to WHO (2007), defends as a system consists of all institutions, individuals, and actions whose major purpose is to promote, restore or maintain health".

Medical services are joint activities that cover many of participants (e.g. Doctor, nurse, radiologist, etc.) who work towards a common purpose of providing medical services.

2.2.2 E-Health Definition

A combination of 'E' and 'health' created the term e-Health that many scholars' efforts have been made to define. There are many definitions of e-Health already existing in the literature. Table (2-1) illustrate some of these definitions.

Author	Definition		
WHO (2004)	"A new concept means the using of electronic communication and information technology in the health sector, where digital data - transmitted, stored and retrieved electronically - for clinical, educational and administrative purposes, both at the local site and across wide geographic regions (at a distance)".		
Pagliari et	"E-Health = Medicine + Communication + Information		
al.,(2005)	+ Society"		
Blaya et al., (2010)	"The use of information and communication technologies (ICT) in support of health and health- related fields, including healthcare services, health surveillance, health literature, and health education, knowledge and research"		
European Commission (2012)	"The use of modern information and communication technologies to meet needs of citizens, patients, healthcare professionals, healthcare providers, as well as policy makers".		

 Table (2-1): E-Health Definitions

This technology which emerged early in the 21st century and is an all-encompassing term for the combined use of electronic information and communication technology (ICT) in the health sector. The use of e-Health has enhanced state-of-mind, a way of thinking, an attitude and behavior, and a commitment to networking, facilitated global thinking, and improved health care on local, regional, and worldwide (Cashen et al., 2004).

It appears there are synonyms for E-Health term. According to Blaya et al., (2010), the term is used synonymously with health information technology (IT), while Mekawie (2013) noted that, when ICT is applied in health care, it is known as telemedicine, medical informatics. Recently the term e-Health is commonly used in literature instead of above terminologies (Healy, 2008).

According to these definitions in literature, we can summarize e-Health as a term that includes any ICT'-based health process, such as audio or video tape, satellite TV, computer, local intranet/extranet tape. This technology used to improve healthcare services delivery locally, regionally, and worldwide, and has the power to significantly strengthen patientphysician relationships and vice versa.

2.2.3 Categories of E-Health

E-Health system consists of a number of applications of information technology (IT) related to health service. Blaya et al., (2010); Ahlan & Ahmad (2014); Viitanen (2009; Pagliari et al. (2005) classified the system into eight categories as shown in Table (2-2).

Table ((2_2).	F_Health	Categories
I able (2-23.	L-IICalui	Categories

Category	Definition
Electronic health record	"An electronic record of health-related
	information on an individual that can be created, managed, stored or consulted by clinicians or medical staff. In literature, the term electronic medical record is used as a
	synonym".
Laboratory information management system	"A system for laboratory-specific activities or for reporting results to administrators and health care personnel".
Pharmacy information system	A system used to request, track medications, or medication orders, and reduce the loss of medicines. The term e-prescription is used as a synonym.
Patient registration or	The system for monitoring and managing the
scheduling system	patients' movement.
Monitoring, evaluation,	The system utilize for aggregate reporting of information, program surveillance, and
and patient tracking system	information, program surveillance, and tracking of patients' status.
Clinical decision support system	"Software applications that integrate patient
	data with a knowledge base and an inference mechanism to produce patient-specific output
	in the form of care recommendations.
	assessments, alerts and reminders to actively
	support medical staff in clinical decision- making. Briefly, it helps doctors and other medical experts to manage their patients with
	ease".
Patient reminder system	The system used to remind patients to perform a specific action, for example, take medicine or attend the clinic for health checking.
Research/data collection system	The system used for collecting data from different locations or for storing, managing, or reporting on data used for researching purposes.

2.2.4 Benefits of E-Health

E-Health adaptation has inspired many researchers to explore this evolving area and the associated benefits. Literature reviews have indicated that benefits are clear at least in theory.

Applying e-Health shifted healthcare delivery from its traditional form to advance form, also improve the quality of care (Viitanen, 2009). Furthermore, the integration of ICT and healthcare has brought a lot of benefits such as, cost, effort and time reduction, increasing medication safety, improving the health services quality, increasing the satisfaction of both employees and patients (Omary, et al., 2010; Jung & Loria., 2010; Ibrahim., 2013). Additionally, scale up treatment delivery to numerous number of patients in both developed and developing countries, and reducing the losses of human lives (Blaya et al., 2010).

The significance of the Health IS emerges from the value of their role in saving all types of medical information and data including patient personal information and any other medical data related to him/her. In addition, this system recording any medical services that have been provided to the patient, such as diagnoses, treatments, follow up reports about his/her health position and important medical decisions (Cebul et al., 2011; Douglas et al., 2010; Wolfstadt et al., 2008)..

 A systematic review by (Codagnone & Lupiañez-Villanueva, 2013), identified three broad areas of e-Health benefits which are: **Quality of care**: E-Health has been shown to contribute the quality of care in several ways, for example; Improved clinical monitoring, fewer medical and prescribing errors, enhanced surveillance and monitoring, better time utilizing and that less time is spent to deliver health services, improves the accessibility of healthcare services, and continuity of care that create patients satisfaction with e-Health.

Cost savings: Using the e-Health has a huge potential for medical services cost savings, for example; Reduction of costly medical errors, prevention of costs from treatment side effects, and reduced administrative costs (including papers and printing cost).

Organizational efficiency: The profound efficiency impacts would occur at a deeper organizational level through changes in the work practices and processes in role and tasks carried out by health professionals and on delegation of work activities

Austin & Boxerman (2003); and Jung (2008) pointed that the main stakeholders who benefit from e-Health system involve, employees (doctors, nurses) patients (consumers), employers (organizations), and others involved in the provision of health care.

Patients: Patient can also be viewed as consumers (Cashen et al. 2004). E-Health applications enhance the effectiveness of healthcare by reduction of waiting times for the patients and improving patient care. In addition, it strongly influences on the relationship between the patient and the healthcare provider (Deluca & Enmark, 2000; Austin & Boxerman, 2003). E-Health has access to thousands of health care Internet sites where they can gain unlimited health information since the Internet not only offers patients the ability to search for and gather health information regarding healthy lifestyles, health and self treatment, but also it can provide greater convenience to patients to accept it; Since this makes it possible for them to access information about their own health from home, rather than having to travel to the health center to meet doctor and stand in line (Jung, 2008).

Other studies have found that many times patients actually do not need to see their physician, because the required information could be provided by other means than a face-to-face visit, for example: they can email them questions about health issues and receive responses from their doctors, and this will increase their satisfaction (Goldstein, 2000; Kind & Silber, 2004; Mou & Cohen, 2014).

Employees: E-Health is an opportunity to promote serving patients through facilitating and enhancing medical practitioners work performance (Kirshenbaum, 2002). Medical history brings advantages to medical staff, as the duplication of medical steps can be avoided, reducing diagnosing and treatment errors, conserving workers time and increasing their satisfaction (Hayrinen et al., 2008).

The success of e-Health depends on the quality of the information available to healthcare professionals in making decisions and communicating with each other during patient care. **Organization**: Organization faces rising in healthcare expense, so they are searching new and innovative approaches to reduce these costs, and aim to improve the quality of healthcare at the same time. Some institutions consider the Internet as a value mean to streamline healthcare administrative expenditures, and to enhance communication among the multiple healthcare institutions (Meyers et al., 2002).

In addition, the organizational management activities which include posting employee information on a healthcare Intranet Web site, delivering educational programs, listing job announcements, announcing employee health benefit programs and the health promotion activities of the company, are also offered through its Intranet site because they reduce health care expenditure and enhance the productivity (Degroot & Kiker, 2003).

2.2.5 E-Health Challenges

Applying healthcare information system is accompanied by many challenges and difficulties that influence the adoption of this technology.

Grimson et al., (2000) discussed a number of challenges facing ICT adoption in healthcare in countries whether developed or developing. These challenges are: (a) the complexity of medical information and data (b) problems in data entry (c) privacy and security concerns, d) the absence of a unique national patient identifier, and (e) lack of awareness about the benefits and risks associated with information technology, Omary et al., (2010) also agreed with them. George et al., (2014) mention the legal, ethical and governance challenges, for example; Who is the owner of this information and Who has permission to access to this information, Kind & Silber (2004) agreed with them about the ethical challenges, and mention Health Internet Ethics have developed the "e-Health Code of Ethics" in an effort to respond to concerns about reliability of information, confidentiality, and privacy.

Nemeth et al. (2005) noted that understanding the role of IT in healthcare centers requires knowledge of the cognitive work that the system is intended to support. Several currently established challenges seem to be related to end user issue considerations in healthcare IT development. Viitanen (2009) agreed with them and mention that the successful healthcare HIS implementation in healthcare institutions appears to be a difficult task. He highlighted the end user's resistance to accept and utilize the new technology as the core challenge associated with the use of such technology in health care institutions.

A survey report published by the European Commission, pointed that the bulk of European health professionals agree that technology enhance the output quality of care services they provide. Healthcare practitioners who are still not utilizing technology cite the lack of technical support and training as master obstacle. Thus to expand the use of electronic health, they ask for more training, more technology in medical education and better electronic networking among health care staff who want to share medical information (European Commission, 2008).

2.3 Information and Communication Technology in Healthcare

Recently, there has been an interest to utilize computers, internet and communication networks, which abolish the constraints of time and distances in the way, that made the world as a small village. In light of this, there is a determined effort to recruit ICT's tools in the health process and activates in order to increase their efficiency of healthcare services.

ICTs defined as "tools that facilitate and smooth communication, processing and transporting of information, also the sharing of knowledge by electronic means. This include full range of electronic digital and analog ICTs, from radio and television to telephones (both fixed and mobile), computers, and electronic-based media such as digital text, audio-video recording, and the Internet, involving Web 2.0 and 3.0, social networking and web-based communities" (Fromm et al., 2009).

ICT tools change how health care is delivered and how health systems are run. Today's, ICT is essential for health systems to meet obligations to deliver care, educate students, treat patients and monitor public health. ICT in its many forms is the basis to coordinate complex activities, ensuring quality, promoting collaboration and sharing the growing body of knowledge in health (Otieno, 2013).

Dixit et al., (2008) categorizes the ICT tools used in healthcare as e-Health into two separate forms:

1. The synchronous communication (Real Time): Which refers to the manner of communication where the transfer takes place

simultaneously. Eg; audio or video conferencing utilizing the telephone, mobile phone, or satellite communication.

2. The asynchronous communication (Store and Forward): Which refers to manner of communication where the transfer takes place over a period of time, or in separate time frames, not requiring the transmission to take place at the same time. For example, e-mail.

The new application of ICT, such as the internet, computer, and smart phones has become commonly available (Eide et al., 2010). Using communication technology infrastructure like networks, are necessary to share healthcare information in health domain as well as in other domains (Marrow, 2008). For this, most countries began investing in the communication infrastructure of their health care delivery system (Viitanen, 2009).

Tsiknakis & Kouroubali, (2009), mention most hospitals had operational ICTs to support their financial and administrative functions. In hospital, the health information system (HIS) is known as an information system developed to control and manage tasks in a hospital.

HIS technology is crucial to strengthen the health care services. It is typically used to describe hospital computer systems with tasks like patient admission and discharge, order entry for laboratory tests or prescription, and billing functions (Coeira, 2003). It also necessary for the automated processing of accumulated data and to manage patient health care procedures to support real-time coordination of distributed hospital resources (Sackmann et al., 2002).

2.3.1 Palestinians ICT Sector Background

Information and Communications Technology sector is considered a service economy. IT plays a significant role in Palestinian economy and it is one of the fastest growing sector in the economy.

Many economic and outsourcing experts believe that Palestinian ICT sector is highly competitive and is capable to meet the developmental need of Palestinian economy (AVASANT, 2013; Solutions for development consulting co., 2013; UNSCO, 2016).

ICT domain considered the highest contributor to Gross Domestic Product (GDP) as compared to other sectors. Between Q1/2015 and Q1/2016 there was a significant expansion in real value added in ICT sector (2.8%) for West Bank, and (9.1) for Gaza Strip during the same period. Also the percent contribution to real GDP is 7.3% for West Back, and.05% in Gaza Strip (UNSCO, 2016). While the Economic performance for the year 2014 as follows: the value add of the sector is 11.40%, the GDP is 6.10% (MTIT, 2015).

There are around 300 enterprises working in the ICT sector, covering a wide spectrum of the ICT market, including hardware distributors, software development firms, office automation vendors, and internet service providers, and telecommunications companies, ICT consulting and training companies. (MTIT, 2013).

In education, thirteen (13) Palestinian Universities teach ICT related field, Also 2500 of students' yearly graduates (PITA 2012).

Avasant (2013) analyzed the market demand for ICT services based on the trade in various sectors; it found that ICT services wide engaging with six sectors, these sectors are: commercial agribusiness, banking and financial services, higher education sector, government sector, municipality sector, tourism sector, and other professional services.

According to some statistical indicators, the outlook for the Palestinian ICT sector is a promising trend. PCBS publications show that using mobiles, computers, and the Internet is increasing every year more than previous years.

Statistics show that:

- The percentage of establishments conducting research and development (R&D) activities related to ICT totaled 2.5% in Palestine in 2011: 1.5% in the West Bank and 5.0% in the Gaza Strip (PCBS, 2012)
- Approximately, 3,007,869 citizens access to internet in Palestine and representing 44.7 % of Palestinian population, and 2.1 % of Middle East population (Internet World Stats, 2017). These percentages compared to other Middle East countries are shown in Table (2-3)

- 47.0% of enterprises used computer in the Palestine in 2011: where 49.6% in the West Bank and 40.8% in the Gaza Strip (PCBS, 2011).
- 63.1% of households in Palestine with own computers in 2014, where 66.9% in West Bank, and 55.6% in Gaza strip (PCBS, 2014). In 2011, the average became 50.9%, and in 2009 was 49.2 (PCBS, 2011).
- 48.2% of households in Palestine with internet access at home in 2014, where 42.2% for West Bank, and 30.4% for Gaza strip (PCBS, 2014). In 2011, the average was 30.4%, and in 2009 was 28.5% (PCBS, 2011).
- 97.8% of households in Palestine have a mobile phone in 2014: where 97.9% in the West Bank and 97.7% in the Gaza Strip (PCBS, 2014). In 3013, the average was 96.5%, in 2011, the average was 95%, and in 2009 was 92.4 (PCBS, 2011).
- 60.2% of individuals (aged 10 years and over) in Palestine used a computer in 2014: where 59.5% in West Bank and 61.2% in Gaza strip (PCBS, 2014). In 2011, the average was 53.7%, and in 2009 was 57.1% (PCBS, 2011).
- 53.7% of individuals (10 years and over) in Palestine used the Internet in 2014- 54.5% for West Bank, and 52.2% for Gaza strip (PCBS, 2014). In 2011, the average was 39.4%, and in 2009 was 32.3% (PCBS, 2011).

All the above statistics are shown in Tables (2-3), (2-4).

MIDDLE	Population	Users, in	Internet	Population	Internet	Facebook
EAST	(2017)	2000	Usage	_	users	2016
Bahrain	1,418,895	40,000	1,278,752	90.1 %	0.9 %	800,000
Iran	80,945,718	250,000	56,700,000	70.0 %	40.1 %	17,200,000
Iraq	38,654,287	12,500	14,000,000	36.2 %	9.9 %	14,000,000
Israel	8,323,248	1,270,000	5,941,174	71.4 %	4.2 %	4,900,000
Jordan	7,876,703	127,300	5,700,000	72.4 %	4.0 %	4,800,000
Kuwait	4,099,932	150,000	3,202,110	78.1 %	2.3 %	2,300,000
Lebano n	6,039,277	300,000	4,545,007	75.3 %	3.2 %	3,100,000
Oman	4,741,305	90,000	3,310,260	69.8 %	2.3 %	1,500,000
Palestin e	4,928,225	35,000	3,007,869	44.7 %	2.1 %	1,700,000
Qatar	2,338,085	30,000	2,200,000	94.1 %	1.6 %	2,200,000
Saudi Arabia	32,742,664	200,000	20,813,695	63.6 %	14.7 %	14,000,000
Syria	18,906,907	30,000	5,502,250	29.1 %	3.9 %	n/a
UAE	9,397,599	735,000	8,515,420	90.6 %	6.0 %	7,700,000
Yemen	28,119,546	15,000	6,773,228	24.1 %	4.8 %	1,800,000
TOTAL	250,327,574	3,284,800	141,489,765	56.5 %	100.0 %	76,000,000

Table (2-3): Middle East Internet Usage and Population Statistics 2017

Source: Internet World Stats, (2017).

 Table (2-4): Main Selected ICT Indicators for Different Selected

 Years.

Indicator	Year				
Indicator	2014	2011	2009	2006	
Percentage of Households with Own Computer	63.1	50.9	49.2	32.8	
Percentage of Households with Internet Access	48.3	30.4	28.5	15.9	
Percentage of Households with Mobile phone	97.8	95.0	92.4	81.0	
Percentage of Persons (10 Years and Over) Who Use the Computer	60.2	53.7	57.1	50.9	
Percentage of Persons (10 Years and Over) Who Use the Internet	53.7	39.4	32.3	18.4	

Source: Palestinian Central Bureau of Statistics, (2014).

Despite ICT sector in State of Palestine is growing and increasingly contributes well in Palestinian's GDP, it still faces many challenges significantly restrict the development of this sector. The major challenges are represented by: poor and weak ICT infrastructure, political environment and restrictions imposed by Israel on ICT sector, the limited and minimal financial and human resources dedicated to Research and Development by the government and the private sector in Palestine. The ICT worker in Palestinian territories is less prepared in terms of skills and competencies than ICT workers in neighboring markets, restrictions on the movement of people, goods and restrictions on import (Solutions for development consulting co. 2013).

2.3.2 E-Health System in Palestine

Palestine is still in the infancy stage of computerizing and transforming their administrations, businesses and individual life into an internet –based operations including e-government, e-commerce, and e-shopping. Among the neighboring countries, Palestine has good convenient and high-quality telecommunication facilities. It applies the latest technologies in telephone and Internet services.

Despite the political environments persisting in Palestine, it shows better number of Internet users penetration rate compared with neighboring countries of Eastern Mediterranean as it shown in Table (2-3), where approximately, 3,007,869 citizens access to internet in Palestine, representing 44.7 % of Palestinian population, and 2.1 % of Middle East population (Internet World Stats, 2017).

The variation and diversity in the socio-economic and cultural situation among countries of the Eastern Mediterranean Region have resulted in variation and multiplicity of constraints in e-Health implementation (Al-Shorbaji, 2009). Palestine, which is one of these countries, faces these constraints. The challenges range from lack of awareness of potential e-Health benefits, shortage, or total lack of funding by the government and other healthcare providers, confidentiality concerns and lack of legal framework, weakness of information infrastructure, complex systems coupled with the lack of skilled staff; and lack of data standards that permit the exchange of health data.

Palestine health services have for decades relied on a labor-intensive system of hand-written of patient records, prescriptions, and registers. The Health institutions recognized emerging ICT to Healthcare services has potential to strengthen care services for both public and private health sector. As a response, e-Health initiative was launched.

The ministry of health strategic plan for 2014-2016 encourages local health institutions to invest in electronic health technology. However, most of these institutions could not adopt the e-Health project due to a high cost, which is the main barrier in implementing such projects (Palestinian National Health Strategy 2014-2016).

E-Health in the Palestinian health sector is yet mature, and grow slowly. That is why the Palestinian Ministry of Health, local healthcare institutions, and international organizations should cooperate to promote the implementation of e-Health projects and framing strategies to foster the e-Health usage. As part of the developing strategies of the Palestinian health sector which aimed to upgrade the quality of medical services for the Palestinian citizen, the Ministry of Health with the support of the project "the reform and development of the health sector", funded by USAID, began implementing a computerized, comprehensive health system, covering all components of the health sector, starting with patient health records, passing through the rationalization of expenditures, to improving human resources management, and ending with accurate scientific reference for policy and future health plans.

The project launched before six years and it will cover most public hospitals and health centers in West Bank. Executing the project required creating strong IT infrastructure; which included a construction of servers' room link all hospitals department with network, supply computers, printers, in addition to training session gave to every user in the hospitals.

The new system abolished the old system, which was based on paper records. The use of ICT in hospitals offers great potential for improving the quality of provided services, increasing the efficiency of performed tasks, and reducing the organizational expenses. The system also linked all health facilities and hospitals to one network; that enables the exchange of information between the Ministry of health and its facilities in a quick and smooth manner.

IT specialist, (2016) noted that the system will turn the work in the health sector from traditional-manual work to a computerized digital work;

it will also save time and effort in providing care. Additionally, it helps to make the right decisions regarding the hospital management, policies formulation, and health hazard prevention.

Regarding private hospitals, a few numbers of hospitals in State of Palestine adopted HIS; because this type of systems requires a huge financial resource, starting with software and equipment purchase, to employing specialists, creating strong IT infrastructure, availability of Internet, training sessions... etc.

Ibrahim (2013) research discussed the impact of ICT on Palestinian health centers and explored the benefits which can gain from involving ICT in healthcare sector by selected the Electronic Health Record (EHR) system as a tool of ICT to be assessed in Palestine.

ICT tools have a significant impact on Palestinian healthcare sector. Implementing and using EHR system can influence positively the healthcare service by the following benefits (Ibrahim, 2013).

- Decreasing effort, cost, time.
- Improving Palestinian patient safety and quality of health care.
- Supporting medical decisions.
- Rising efficiency and quality of Palestinian healthcare center.
- Increasing Palestinian patient and health practitioner satisfaction.

• Improving Palestinian health center image.

2.4 Technology Adoption in Healthcare

Various research available in the literature have been trying to explain the delay or unsuccessful implementation of e-Health and link this concern to the acceptance or resistance of medical practitioners towards this system.

WHO (2004) mentions that the integration and absorption of e-Health into the everyday life of healthcare professionals is becoming a reality in developing as well as the developed world.

The adoption of ICT is the main factor for economic and social development. However, health care has been one of the slowest sectors to adopting and implementing an electronic information system. Nicola & Jarke (1998) mention ICT technology still underdeveloped in developing world, Omary et al., (2010) support this and noted that the developing countries are still depending on the conventional health care technique.

Modern ICT is being taken into usage in the healthcare domain at an increasing pace (Suomi, 2000). Today, different healthcare IS being used in hospitals that aim to serve groups of healthcare practitioners in their daily work with patients (Viitanen, 2009). The increase utilizes of technological innovations in healthcare is crucially beneficial for both healthcare professionals and patients during the diagnosis and treatment processes (Khalifa & Alswailem, 2015).

E-Health systems usually need a lot of difficult complementary changes and support during the process of customization and final tuning. Also, it needs a technical support from various software, hardware, networking, and service vendors when technical problems appear, such as poor user software interfaces, slow computer machines or networks, or difficult data entry and retrieval especially when the hardware is old (Dansky et al., 1998).

HIT adoption and usage remain a major concern for both researchers and practitioners. Despite impressive advances in hardware and software capabilities, the problem of underutilized systems continues. However, a significant progress has been made over the last two decades in explaining and predicting user acceptance of information system (Venkatesh & Davis, 2000).

The European Commission in 2011 published a survey report about European electronic services in healthcare (e-Health) the report shows that the percentage of European doctors using the computer is 87% and 48% with a broadband connection. European medical staff and doctors increasingly store and send patients' data electronically such as eprescriptions, x-ray film, electrocardiogram printouts, and lab reports. By using e-Health applications, the medical services have already improved healthcare in Europe through (eg: better medical decision and less waiting time for patients). In addition, the report pointed areas where the medical practitioners could make better use of ICT to offer medical services such as telemonitoring, e-prescriptions, and medical services cross-border (European Commission, 2008).

Codagnone & Lupiañez-Villanueva (2013) mention some negative aspects of e-Health such as (1) Increased workload due to data entry (2) The risk of too much or overload information, difficulties in analyzing and acting upon it (3) Declining in work quality during the initial years.

2.4.1 Technology Acceptance Model (TAM)

Eight models of information technology acceptance were discussed in literature. These models were: the model of PC utilization ; the technology acceptance model (TAM); the motivational model; the theory of planned behavior; the theory of reasoned action; the innovation diffusion theory and the social cognitive theory; a model combining the technology acceptance model and the theory of planned behavior (Venkatesh et al., 2003).

TAM was developed in the 1980's, in light of concern that professionals not utilize It available to them. Its originators reasoned that the key to increase utilizing was to first increase acceptance of IT, which could be estimated by asking individuals about their future intentions to use the technology. Knowing the factors that shaped one's intentions would allow organizations to manipulate those factors in order to enhance acceptance, and thus increase IT use (Holden & Karsh, 2010).

Davis et al., (1986) study highlighted that the development of TAM is to explore the determination of technology usage. TAM provide an

explanation of the determination of computer acceptance that is generally capable of explaining end-user behavior across a broad range of end-user computing technologies and user populations, while at the same time being both parsimonious and theoretically justified" (Davis, 1989).

The core of TAM is to provide a basis for discovering the influence of external variables on internal beliefs, attitudes, intentions, and usage. Several studies have found that (TAM) consistently explains a significant proportion of the variance, typically about 40%, in usage intentions and behavior. This model theorizes that an individual's behavioral intention to utilize a system is determined by two beliefs: The first is perceived usefulness (PU), which is defined as the extent to which a person believes that using the IT system will enhance his or her job performance. The second is perceived ease of use (PEOU), which defined as the extent to which a person believes that using the system will be free of effort (Pai & Huang 2011; Holden & Karsh 2010).

The TAM model assumes that the effects of external variables, for example: (PU) and (PEOU) mediate system characteristics, and training, effect on intention to use. Additionally, according to TAM, PU is also influenced by PEOU because the easier the system is to use the more useful it can be (Davis, 1989). Figure (2.1): illustrates the components of the Technology Acceptance Model.

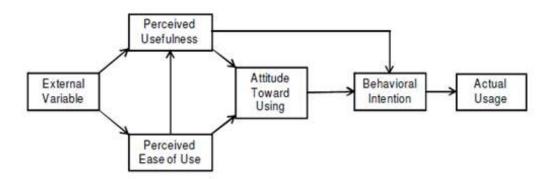


Figure (2.1): Technology Acceptance Model (TAM). Source: Davis et al. (1989).

TAM was derived from the theory of reasoned action (TRA), and TAM axioms that the utilize of an Information system is determined by the behavioral intention, but on the other hand, that the behavioral intention is determined by the individual's attitude towards the utilization of the system and also by his/her perception of its interest.

According to Davis (1989), the attitude of the person is not the only factor that determines his/her utilization of the system, but also based on the impact, which it may have on his/her performance. Therefore, even if a professional does not welcome the information system, the probability that he/she will utilize it is high if he /she perceives that the system will improve & enhance his/her work performance. Besides, the TAM hypothesizes a direct link between PU and PEOU. With two systems offering the same features, a user will find more useful the one that he/she finds easier to use (Dillon & Morris, 1996).

A great deal of research has been conducted using TAM as a framework, and new models such as TAM2 and TAM3 were developed from it. While TAM2 focused on identifying determinants of PU and

moderating variables, TAM3 concentrated on interventions that can influence the acceptance and use of IT in an organization (Venkatesh & Davis, 2000; Venkatesh & Bala, 2008).

The reason why TAM was chosen in our research is because; it has been tested empirically and supported through validations, replications, and applications (Chau & Hu 2002; Lee 2010; Holden & Karsh, 2010). TAM is one of the most powerful, strong and parsimonious models for predicting user acceptance, especially in information system context (Khasawneh & Ibrahim, 2008). According to Venkatesh (2000), "the parsimony of TAM combined with its predictive power makes it easy to apply to different situations".

2.4.2 Factors Affecting the Acceptance of E-Health System

Several studies, for example (Ahlan & Ahmad 2014; Hage et al. 2013; Murray, 2011; Murray et al., 2010; Gagnon et al. 2010; Yarbrough & Smith 2007) provides a systematic review of the usage of ICT in health sector in order to highlight the factors related positively or negatively to the adoption of ICT by health professionals in a clinical environment (Codagnone & Lupiañez-Villanueva, 2013).

A systematic review for 111 scientific articles reported the most frequently factors associated with adopting this technology (Codagnone et al., 2013). These challenges was grouped into five categories and are shown below.

- Technology factors: The first factor is the Access; this factor relates to physical access to PC, internet and download speed. The second is related to Software Characteristics and Interface Design of the system; where poor design and technical difficulties are the most frequently cited barriers. The third one related to Cost Issues; there is a need for that in some countries that are looking for low-cost of technological alternatives particularly developing and rural area. The fourth one related to Legal Issues; confidentiality – privacy and security concerns. Finally, the localization; which is concerned with the suitability of such technology to religious, local culture, values and languages and appropriate for the users.
- Individual and professional factors: They represent the characteristics of health professionals in terms of acceptance of e-Health. Among these features are the professional's familiarity with ICT, confidence in the use of computers and other technologies, the motivation to change their habits, and their vision about the benefits of e-Health technology and tools, their commitment to use e-Health, motivation to use the ICT (readiness), resistance to use, individual demographic characteristics (age, gender, experience, etc.), and the time which is needed to do work by using the technology of e-Health.
- Human environment factors (associated with patients and colleagues): The first one associated with Patients; patients' attitudes and preferences regarding ICT, patient health professional interaction

and applicability to patients' characteristics. The second one is associated with Peers; attitude of colleagues about ICT, the support and promotion of ICT by colleagues and the Relations between them.

- ◆ **Organizational environment** (Internal environment): The first one is associated with the Work; such as structure of work, time constraints and workload, work flexibility, relation between/ and interactive with different health professionals, professional culture. The second is associated with Resources availability; for example, material and human resources available. The third is Organizational aspect; lack of training, absence of a leader, lack of user involvement in the design, user participation in the implementation strategy, relations between management and health professionals, organizational support, incentive mechanisms, and organizational other cultural or organizational aspects.
- External environment factors: Which are the concerns related to Funding of ICT and the Inter-organizational relationship

2.4.3 Factors Affecting the Acceptance of E-Health System in Palestine

Based on previous literature and many conducted interviews, the first question answered. What are factors affecting the acceptance on e-Health system?.

Two sets of factors affecting e-Health system was used to formulate the research framework, and are categorized as external factors, which include, System Characteristic, Employee Training, Fear of Accountability, and behavioral intention factors, which include, Output Quality and Culture.

✤ System characteristics

System characteristics categorized into two main groups, the first one is information-related characteristics such as: accuracy, currency, completeness, and personalization, the second group is system-related characteristics such as: accessibility, reliability, flexibility, adaptability, usability, and interactivity. Many studies (eg. Mueller and Zimmermann, 2009; Nov &Ye, 2008; Wang et al, 2007; Wixom & Todd, 2005; Delone & Mclean, 2003) focus on system characteristic as factor affect ICT acceptance (Codagnone & Lupiañez-Villanueva, 2013).

Rho, Choi, & Lee (2014); Ahlan & Ahmad, (2014); Yu, Li, & Gagnon, (2009) studies mention that the better system design the better intention to system usage. The results of these studies show that system characteristic has positive direct influence on PEOU and PU.

✤ Training

Training provides users with a hands-on mechanism to deployment of useful, relevant information about the new system, and allowing them to explore the system from a technical standpoint & functional perspective. Furthermore, training can mitigate the invoke of passive reaction from users toward the new system (Al-Sayyed & Abdalhaq, 2016; Al-Shorbaji, 2009; Khalifa & Alswailem, 2015; Venkatesh and Bala, 2008; Tung et al., 2008).

According to the Venkatesh and Bala (2008); Allahyari & Ramazani (2012) studies, when the trainees obtain adequate training it would qualify their familiarities with any technology, and thus, this will affect positively on their perceptions about the ease of use and the usefulness of the system. Also according to Venkatesh (2006) training, can assist users make better adoption decision about the new system and help managers to make effective decisions during implementation.

It is very important within the health institution management to have well defined strategies for training or technical support for the professionals and medical staff. Good training can be an element of adoption, but in case the training received is not suitable, it can become a barrier for acceptance (Codagnone & Lupiañez-Villanueva, 2013).

As a result for Venkatesh, (2006); Venkatesh & Bala, (2008); Allahyari & Ramazani, (2012) studies, training has a direct effect on PU. Also, PEOU use influenced directly by training according to Venkatesh, (2006); Amoako-Gyampah and Salam, (2004) studies.

Also the result of Wu et al., (2008) study about utilizing ICT in health domain shows that training had a direct effect on PU, PEOU, a study about using ICT in learning sector conducted by Al-Sayyed & Abdalhaq, (2016) study show the same results.

✤ Fear of accountability

Fear of accountability is a factor that emerged through the interviews conducted with health specialists and the users of e-Health system in targeted areas. People are fearful of many things in today's workplace and from accountable for their job performance. Many users asserted that fear of accountability, which related to the mistakes that may occur when using the system put them under management punishment or legal issues, and thus affects the intention to accept the system.

Mistakes may occur for example through (1) entering wrong medical data that's unable to modified or (2) neglecting user account password and thus, unauthorized access may occur by another user- hence the real data will be exposed to manipulation.

Management support plays a vital role in promoting open discussion of errors in the hospital. After making a mistake, healthcare professionals may experience emotions such as shame, guilt, or depression. Litigation, complaints, and actions by regulatory authorities can present additional burdens in a small subset of these situations. Particularly effective to address these issues can be actions by senior managers to talk openly about past mistakes and problems, to publicly endorse the concept of blame-free error reporting, and to offer encouragement and support to those directly involved. This can mitigate the fear of system usage (Wu et al., 2008)

Perceived risk

Perceived Risk is the degree to which an individual expects certain negative outcomes and the danger and severity of negative consequences from using e- health (Jung, 2008). Perceived risk is described as a cognitive assessment rather than emotional responses, also, is formulated from thoughts, believes, perceptions, etc. (Featherman & Pavlou, 2002).

Jung, (2008) highlighted the risks involved with utilizing e-Health system mainly from the danger of receiving outdated or simply wrong information, which can have severe consequences in the health-care setting. Additionally, the risks associated with utilizing e-Health include the fear of losing privacy, as health care can be a very private and sensitive issue, and the fear of a lack of security.

International related studies mentioned perceived risk as a major factor, which influences e-Health adoption (Zhang, 2015). Users feel risk toward accessibility; reliability, response time, and speed of Internet connection during perform work. Furthermore, users feel risk if e-Health services are not convenient with their needs.

In the e-service context, consumers face numerous performance, financial, privacy, and even psychological risks. Reducing risk perceptions is thus considered essential to the success of e-services (Mou & Cohen, 2014).

Many studies infer that perceived risk factor is the main factor that influences technology adoption by employees and managers. In addition, perceived risk influences the factors of TAM and TPB (Schmiege et al., 2009)

A study by Ortega Egea and Román González, (2011) mention that Perceived Risk to has a positive effect on perceived ease of use and perceived usefulness, Featherman & Pavlou, (2002) agreed with them. Whereas, Rose & Fogarty, (2006) indicated that perceived riskiness is proposed to have a negative effect on PEOU and PU of self-service technologies (SSTs).

♦ Output quality

Output quality is "the degree to which a person believes that the system performs his or her job tasks well" (Venkatesh & Bala, 2008; Venkatesh & Davis, 2000). In other words, it is defined as "the degree to which a person judges the effect of new IT system" (Wu et al., 2011; Lin & Lu, 2000).

Venkatesh and Davis (2000) indicated that output quality is distinct from perceived usefulness, as a different judgmental process is involved. Also, assume that the output quality of e-Health will positively influence perceived usefulness.

Output quality in the consumer service context captures a person's perception of the quality of the outcome of using any service. In the case of e-Health, the output of the e- health services investigated here is information, and information quality in health care, which depends on several aspects: (eg. Understandability, relevance, usefulness, and reliability) according to (Song & Zahedi, 2006).

Furthermore, the quality of data recorded in e-Health system varies widely and affect output quality factor, due to a range of socio-technical factors surrounding individual users and the variations in the mechanisms and practice of data coding (Josip et al., 2008). Additionally, the accurate diagnostic and therapeutic procedures by physicians in their professional decision making when using the system affect the output quality (Yarbrough & Smith, 2007).

Perceived output quality may prove to be predictive as an antecedent of the medical professional acceptance of health IT or e-Health.

A study conducted by Mutula in 2015 mention that output quality has a direct positive impact on intention to use e-Health technology (Mutula, 2015).

Culture

Culture is a factor reported in several related studies. According to Ralph & Holloway (1969) ; Kluckhohn (1962), "Culture consists of patterns, explicit and implicit, of and for behavior acquired and transmitted by symbols, constituting the distinctive achievement of human groups, including their embodiments in artifacts; the essential core of culture consists of conventional, classic ideas and especially their attached values". Khasawneh & Ibrahim, (2008) mention that there are differences between developed and developing countries in how they use ICT that can be traced to differences in culture. Much of the culture is steeped in ancient rituals and tradition and is non-believers in modern medicine and general health care.

Usually, people comfortable with doing things in traditional way and the way they have always done them (Jung & Loria, 2010). Therefore, many researchers expect that integrating subjective norms will strengthen the understanding of differences in behavioral intentions and will allow a better capturing of cultural effect on IT use.

In addition, resistance by some healthcare practitioner to change their work from routine, manual way to electronic documentation way is a common problem in both developed and developing countries (Triandis, 1977).

Changing the culture can be difficult and takes time. Thus, without management support, the cultural change in a hospital may not be possible (Wu et al., 2008). Strong, long-term commitment is needed in order to manage the changes in roles and workflow introduced by the E-Health system, including efforts to generate a positive culture of change through a clear training program delivered by people familiar with the clinical tasks and issues (Cucciniello et al., 2015).

Most health executives and information managers are aware that it need time to change the work culture or at least modify health practitioner behaviors and attitudes (WHO, 2006). If cultural values agree with traditional health services and not trust communication channels, then E-Health technology will not be adopted in the society.

Jung & Loria (2010) and Hoqu and Bao (2015) studies mention culture doesn't influence the intention to use HIS

2.5 Previous Studies

There are many international studies, which discussed e-Health technology, information and communication technology (ICT), and the factors that influence the adoption of e-Health. Those studies provide theoretical and empirical background about E-Health technology. Therefore, it is very important to explore those studies to understand, analyze, and highlight the factors that influence E-Health technology. In addition, these studies give a good chance to compare our findings with others.

Mutula (2015) study: Aims to determine factors affecting attitudes and perceptions of nurse's staff towards the usage and utilization of Information and Communication Technology (ICT) in 16 hospitals in KwaZulu-Natal (KZN) province, South Africa. Data were gathered through a survey questionnaire, and factor analysis performed to extract relevant variables. The survey tool included a set of twenty-two perception and attitude items given out to 226 nurses in sixteen healthcare facilities in a KwaZulu-Natal province in South Africa. The results detected positive dispositions of nurses towards the utilization of ICT. Furthermore, the results show that self-efficacy, adoption of computers to improve nursing care, confidence in using computers, usefulness, output quality, interactability and knowledgeability were the main factors influencing attitudes and perceptions of nurses towards the use of ICT in the workplace. The results may inform institutional and provincial ICT infrastructure development decisions to improve the nursing services in hospitals.

Abdekhoda et al., (2015) study: Medical staff adoption seems to be a significant matter when comprehensive implementation of Electronic Medical Records (EMR) is considered. This work was conducted to determine the organizational contextual factors affecting Medical staff ' adoption of EMR. A sample of 330 Medical staff working in hospitals affiliated to Tehran University of Medical Sciences was selected. Medical practitioners' attitudes toward EMRs' adoption have been assessed by a conceptual path model of Technology Acceptance model (TAM) and organizational context variables. The Collected data were analyzed by SPSS16 using regression analysis. The final model was tested by structural equation modeling (SEM) and represented by SPSS-AMOS, structural equation modeling software.

The study finding suggests that modified proposed conceptual path model explains about 56% of the variance of EMRs' acceptance. The findings also evidenced that perceived usefulness (PU), perceived ease of use (PEOU), management support; practitioners' involvement, practitioners' autonomy, and the practitioners-patient relationship have direct and significant effect on medical staff' attitudes toward EMRs' adoption. However, training showed to have no significant effect on PU and PEOU. These factors should be subsequently the major concern of health organizations and health policy makers.

Khalifa and Alswailem (2015) study: The main objective of the study is to evaluate hospital information systems (HIS) acceptance and satisfaction, through investigate the influential factors that might increase or decrease acceptance and satisfaction levels among different healthcare practitioners, in order to provide solutions for successful HIS implementation. The study used a quantitative survey tool to collect data directly from different kinds of HIS users. The questionnaire contained five parts; a demographic user information part, a general HIS assessment part, a part about accessibility and availability of computers, a part about HIS and patient care and part about satisfaction with HIS.

Results show that the availability of desktop computers in the hospital was one of the most affecting factors, with a special emphasis on the availability of laptop computers and computers to smooth direct and instant data entry, and information retrieval processes when healthcare professionals are at the point of care, another factor is the organizational support of users, through providing more training to new and old users, hence training will reduce work hours additionally, to system design, where bad or inadequate user interface or poor HIS performance, interface or poor HIS performance, such as slow response times; will reduce its chances of being accepted by users and implemented successfully.

Nuray et al., (2015) study: It aimed to assess the technology acceptance in health care by reviewing the predictive factor and intervention programs in Turkey. This study illustrated that the acceptance and the increase utilization of technological innovations in health care are crucially beneficial for both health care professionals and patients during the diagnosis and treatment processes.

This study focused on the theory of planned behavior, technology acceptance model, diffusion of innovation theory and unified theory of technology acceptance covering the most distinguished concepts and constructs to understand attitudes towards technological innovations. In addition, it determined the perceived benefits of technological innovations, ease of use, perceived ease of use, perceived control beliefs, confidentiality and privacy as strong influencing factors for refusing technology usage.

Hoque & Bao (2015) study: The study objective was to assess the factors influencing e-Health adoption in both developed and developing countries. However, there have been only a few studies exploring the role of cultural factors in the adoption and use of e-Health, particularly in developing countries. In this study, the researchers investigated the influence of culture on the adoption of e-Health in Bangladesh.

This study developed a more adequate research framework by integrating Hofstede's cultural dimension model (contain six dimensions) and the Technology Acceptance Model (TAM). A survey method (questionnaires) was used to gather data from respondents in different private and public hospitals in Bangladesh. The partial least squares method, a statistical analysis technique based on the Structural Equation Model, was chosen to analyze the gathered data.

In total, 250 questionnaires were collected from respondents in different private and public hospitals in targeted area. The results of this study found that whereas cultural dimensions such as power distance, masculinity, and restraint had significant impacts on intention to utilize e-Health, Uncertainty Avoidance, Collectivism, and Pragmatism had no significant impact on Intention to utilize e-Health in hospitals. Additionally, the results also show that perceived usefulness was a significant indicator of e-Health adoption decisions, whereas Perceived Ease of use was not an insignificant predictor of e-Health adoption.

Rho et al., (2014) study: The study develop a theoretical model for explaining the predictive factors affecting physicians' willingness to use telemedicine innovation to provide healthcare services. The model developed based on (TAM) with the inclusion of three predictive constructs from the previously published telemedicine literature: (1) accessibility of medical records and of patients as clinical factors, (2) self-efficacy as an individual factor and (3) perceived incentives as regulatory factors. A survey was conducted, and data collected from 183 physicians.

The outcomes confirmed the validity of the original TAM constructs: the PU of telemedicine directly affected the behavioral intention to use it, and the PEOU directly affected both the perceived usefulness and the behavioral intention to use it. Additionally, results in TAM variables show that: the system characteristic (accessibility of medical records of patients) directly impacted the perceived usefulness of telemedicine, self-efficacy and had a significant positive effect on both the PEOU and the PU of telemedicine, and perceived incentives were found to be important with respect to the intention to use telemedicine technology.

The study proves that the telemedicine Service Acceptance model was feasible and could explain the acceptance of telemedicine services by physicians South Korea.

Ahlan & Ahmad (2014) study: It investigated the nation of Health Information System and the factors that affect the user acceptance of the systems. HIT can be implemented in the form of Electronic Health Record (EHR), Electronic Medical Record (EMR), Computerized Physician Order Entry (CPOE), Clinical Decision Support System (CDSS), etc. or in some cases combination of two or more of the above. The study mentions that HIS system not widely available especially in developing countries, the research explores the health consumers' behavioral intention of using HIT. TAM was extended with additional variables from Health belief model, theory of planned behavior. A questionnaire was used as a research instrument, which was developed based on the proposed model with additional antecedent and mediating variables on top of the three theories. The sample participants were 728 members from three Internet health portals in Korea. Web based survey was used to gather the data using structured self-administered questionnaire.

The results show that perceived threat, perceived usefulness, and perceived ease of use significantly affect health consumers' attitude and behavioral intention. Also, health status, health belief and concerns, subjective norm, HIT characteristics, and HIT self-efficacy had a strong indirect impact on attitude and behavioral intention through mediators of perceived threat, perceived usefulness, and perceived ease of use

Anja et al., (2014) study: The study investigated physicians' perceptions towards adopting a digital archive system, which is currently not used as originally intended by the IT-department. Based on the Unified Theory of Acceptance (UTAUT), and with the findings of an extensive review of the literature a research model has been developed. Mixed-approach is used for data gathering. To gain qualitative data, an interview with thirteen professionals (6 physicians and 7 nurses) has been conducted, while quantitative data gained through a questionnaire.

The results show performance and effort related outcome expectations, as well as facilitating conditions have been identified as the most relevant factors influencing physicians' adoption of a HIT system, whereas physicians are only willing to adopt the system if they perceive that the system under investigation outweigh the efforts using it and is superior to established systems and methods. Further findings show, despite physicians report high computer self-efficacy, training sessions are necessary to increase their actual degree of system usage.

Mekawie (2013) study: In this study, the Unified Theory of Acceptance and Use of Technology (UTAUT) model was used as a foundation to investigate factors of technology acceptance in health care sector in Egypt. The research concluded that, online privacy, computer anxiety, online trust and internet experience & exposure are factors affecting e-Health acceptance.

Huang (2013) study: It investigated people's intention to use telecare technology, and assess the degree of influence that behavioral factors on users' acceptance of telecare in Taiwan. The Structural Equation Modeling (SEM) technique was used to analyze the forecasting TAM model applied to telecare. The outcomes show that the proposed model has good explanatory power for the behavioral intentions of using telecare. Additionally, the result show that among factors affecting the behavioral intentions of using telecare, the strongest factor is attitude, followed by the perceived usefulness, the perceived ease of use, subjective norms, and personal innovativeness, respectively.

Ortega Egea & Román González (2011) study: It explored physicians' acceptance, in terms of usage intentions, of a main component

of health information technology: electronic health care records system (EHCR). For this purpose, the original Technology Acceptance Model (TAM), which contain perceived usefulness, perceived ease of use, attitude towards usage, and usage intentions, is extended with trust and perceived risk related factors such as physicians' perceptions of organizational trust, perceived risk, and information integrity.

The outcomes emphasize the special importance of attitudinal factors (attitude towards the usage and perceived institutional trust) and cognitive instrumental processes (mainly, usefulness perceptions) in determining physicians' intention to use the systems. Perceptions of organizational trust, and perceived risk exerted strong direct influence on users' perceived usefulness, perceived ease of use, and attitude towards the use of systems. Additionally, trustfully mediated the influences of perceived risk and information integrity perceptions on physicians' adoption of IT systems.

Jung & Loria (2010) study: It aims to investigated older people's acceptance of e-Health services, in order to identify determinants of their intention to use the system. TAM was used as a conceptual guideline for data collection and as a general coding scheme. Additionally, in-depth exploratory interviews with twelve individuals over 45 years of age and of varying backgrounds are conducted.

The outcomes of the study supported the importance of usefulness and perceived ease of use of the e-Health service as the main determinants of people's intention to use the service. Additional critical factors are identified, such as, individual's resistance to change (people are comfortable with doing things in the traditional way), lack of awareness about the system, and trust in the service provider. Also, most interviewees expressed positive attitudes towards using e-Health and find these services useful, and easy to use.

Aggelidis & Chatzoglou (2009) study: The paper mentioned that the use of information technology in the health care sector and especially in hospitals offers great potential for improving the quality of services provided and the efficiency of the personnel, also for reducing the managerial expenses. The major question that arises according to study is whether Greek hospital personnel are willing to use state of the art information technology while performing their jobs. The study addresses this issue by developing and testing a modified technology acceptance model, additionally, correlation, explanatory and confirmation factor analysis were performed to test the reliability and validity of the measurement model. The result shows that self-efficacy and social influence, perceived usefulness and anxiety, and facilitating conditions and social influence are the main factors detected in the study.

Luo et al., (2009) study: It aimed to identify the prevalence of short message system (SMS) and internet usage in patients visiting the Singapore Health clinics (network of 9 polyclinics provides primary healthcare services to the Singapore community) and to measure patients' acceptance of utilizing these technologies in healthcare service delivery. The study introduced SMS as one of ICT tools, and point it is increasingly used in healthcare delivery worldwide, also facilitated and promoted communication, and exchange of information between patient and doctors or other health practitioners.

Data gathered from a representative sample of patients visiting the nine Singapore Health clinics. The questionnaire is used to collect data, it included five parts. The study showed that among 705 patients surveyed (mean age: 54.6 years, female: 50.6%, response rate: 92%), 407 (57.7%) were SMS users, and 158 (22.4%) were internet users. Two hundred and eighty-four of 412 SMS and/or internet users (40.3% of the entire sample) were comfortable with using those technologies in healthcare service delivery. It also showed main concerns associated with the use of SMS and internet in healthcare delivery were a preference for in-person consultation with a doctor (23.5%), decreased patient-doctor interaction (23.0%), and raised healthcare cost (20.8%).

Yu et al., (2009) study: The study applied a modified version of the extended technology acceptance model (TAM2) to explore the factors influencing the acceptance of health IT applications by caregivers in care facilities. Variables, including social influence factors such as subjective norm and image, were studied together with demographic variables, including age, job level, long-term care work experience and computer skills in regard to their impact on caregivers' acceptance of health IT applications.

To collect data, a questionnaire was developed based on the validated items from TAM2, a convenience sample was used. Confirmatory factor analysis and structural equation modeling techniques were used to validate our causal model.

Results show, perceived usefulness, perceived ease of use and computer skills had a significant positive impact, whereas image had a significant negative impact on user' intention to utilize health IT applications. Image, subjective norm and computer skills, system characteristic also indirectly impacted on intention during the mediating factor of ease of use. Ease of use, subjective norm and job level also determined perceived usefulness. The demographic factors including age and long-term care work experience didn't have any significant effect on users' acceptance of a health IT application. Their model explains 34% of caregivers' intention to utilize an introduced IT application before any hands-on experience with the system established.

The researchers concluded, that the planners and managers should ensure that a health IT innovation to be introduced into a long-term care facility is useful, effortless and easy to use. Manager's efforts should be focused on forming a positive social norm for the introduction of the new innovation and improving users' computer skills. Securing the managers' and senior nurses' support for the innovation at the onset of the project is critical for success. Finally, the healthcare provider appears to dislike the idea of increased IT ability will elevate their status. Wu et al., (2008) study: It introduced an extended technology acceptance model that integrates variables connoting management support and trust into the model to explore what determines acceptance of adverse event reporting systems by healthcare practitioners in Taiwan hospitals.

The proposed model was empirically examined using data collected from a survey in the hospital environment. 940 questionnaires were distributed to 144 hospitals implemented the system. The sample includes five level worked for hospitals in Taiwan, physicians, nurses, medical technicians, pharmacists and administration staffs.

The obtained data were tested for reliability and validity using confirmatory factor analysis. Both were analyzed using LISREL software. The model contained 17 items describing six latent constructs: perceived usefulness, perceived ease of use, management support, trust, subjective norm, and intention to use.

The outcomes show that perceived usefulness, perceived ease of use, subjective norm, and trust had a significant effect on a professional's intention to utilize the system. Among them, subjective norm had the most contribution. Perceived ease of use, and subjective norm also had a direct effect on perceived usefulness and trust, respectively. Additionally, the management support (training) had a direct effect on perceived usefulness, perceived ease of use, and subjective norm.

Lorig (2002) study: introduced the advantage of using the internet in improving the healthcare status and healthcare utilization for individuals

62

with chronic back pain. Also the research suggested that a simple, low-cost use of the internet may improve health status and lower health utilization for people with recurrent back pain.

The study used a randomized controlled trial e-mail discussion group, participants included 580 people from 49 states in USA with chronic back pain having at least one outpatient visit in the past year.

This research didn't find statistically significant that the use of the internet can lower healthcare utilization and get potential saving, and attributed the reason for this is that because of the high utilization patterns of people with recurrent back pain. The researcher of this study recommended continuing with other study with a replication group.

Chae et al., (2001) study: It explored the nation of telemedicine in home health services (HHS) for elderly patients. To collect data a sample of fifty patients were selected for the study. The study found that telemedicine was effective in terms of decreasing the number of clinic visits and achieving patient satisfaction. The average number of clinic visits per month was significantly reduced from 0.64 to 0.42 (p<0.05) after utilizing telemedicine. Above 72% of patients were satisfied with telemedicine, but only patient location showed a significant difference for patient satisfaction (p<0.05). Patients in their homes (82%) were more satisfied than patients in nursing homes (50%).

The provided medical consultation service (100%) was the most highly satisfactory services with telemedicine, followed by physical therapy (83.3%). Although the satisfaction scores didn't indicate a significant difference in the system characteristics, the quality of verbal communication appeared to be a more important factor in influencing patient satisfaction than set-up time or quality of image. A computer-based patient record was developed to view a patient summary and to document meeting at the patient's home. The system is a low-cost approach that is easy to interface with a notebook computer; it can support various other HHSs.

Table (2-5) summarizes a general information about the studies related to e-Health systems research.

Author	Title	Country	Year
Mutula	Factors Influencing Perceptions and Attitudes of Nurses Towards the Use of ICT in Patient Care in Kwazulu Natal Province, South AfricaKwaZulu- Natal (KZN) province, South Africa		2015
Hoque & Bao	Cultural Influence on Adoption and Use of e-Health: Evidence in Bangladesh	Bangladesh	2015
Nuray et al.,	Technology Acceptance in Health Care: An Integrative Review of Predictive Factors and Intervention Programs	Turkey	2015
Abdekhoda et al.,	The effects of organizational contextual factors on physicians' attitude toward adoption of Electronic Medical Records	Tehran	2015
Khalifa & AlswailemHospital Information Systems (HIS) Acceptance and Satisfaction: A Case Study of a Tertiary Care Hospital		Saudi Arabia	2015
Rho et al.,	Predictive factors of telemedicine service acceptance and behavioral intention of physicians.	South Korea	2014

 Table (2-5): Related Studies.

Author	Title	Country	Year
Ahlan & Ahmad	User Acceptance of Health Information Technology (HIT) in Developing Countries: A Conceptual Model	Korea	2014
Anja et al.,	Why Do They Resist? Examining the Salient Factors of Physicians ' It	Germeny	2014
Codagnone & Lupiañez- Villanueva	Benchmarking Deployment of eHealth among General Practitioners	European Union countries	2013
Mekawie	Factors Affecting Adoption of eHealth in Egypt	Egypt	2013
Huang	Innovative health care delivery systema questionnaire survey to evaluate the influence of behavioral factors on individuals' acceptance of telecare.	Tiwan	2013
Ortega Egea & Román González	Explaining physicians' acceptance of EHCR systems: An extension of TAM with trust and risk factors	Spain	2011
Jung & Loria	Acceptance of Swedish E-Health Services	Swedish	2010
Aggelidis & Chatzoglou	Using a modified technology acceptance model in hospitals.	Greece	2009
Luo et al.,	Acceptance of Information and Communication Technologies for Healthcare Delivery	Singapore	2009
Yu et al.,	Health IT acceptance factors in long-term care facilities: a cross-sectional survey.	Canada	2009
Wu et al.,	Testing the technology acceptance model for evaluating healthcare professionals' intention to use an adverse event reporting system	Taiwan	2008
Lorig	Can a back pain email discussion group improve health status and lower healthcare costs?	USA	2002
Chae et al.,	Patient satisfaction with telemedicine in home health services for the elderly	Ireland	2001

2.6 Summary

This chapter discussed e-Health concepts, categories, benefits, challenges and related studies that are related to issue. It also introduce the factors influencing e-Health acceptance. These factors were derived from literature review and interviews with IT specialist.

After reviewing the previous literature and go in-depth in the research issue, the researcher sees that e-Health is a combination of technology and health activities and aims to enhance the quality of provided health services locally or remotely, by that, the researcher agreed with others researcher (Blaya, et al., 2010; Pagliari, 2005; Cashen, Dykes, & Gerber, 2004) and, internationals health institutions (eg: WHO, 2014; European Commission, 2012) are adopted in their definition to the term e-Health.

Also, the researcher agrees with (Khasawneh & Ibrahim, 2008; Blaya, et al., 2010) about the shortage in utilizing technology in health sector in developing countries due to some limitation such as: Lack of financial resources, poor ICT infrastructure and the absence of clear policies and regulations ...etc, on the contrary of the situation in developed countries where e-Health becomes one of the necessities of the daily health lifestyle.

Implementing this technology has numerous advantages such as improving the quality, reducing the cost, speed up- the health services delivering. Simultaneously, is surrounded with numerous challenges, these challenges may have related to human acceptance, IT infrastructure, technology itself and found Resources...etc.

Any new technology exposed to face problems, one of the main problems is related to end user acceptance. Many researchers such as (Holden & Karsh, 2010; Ortega Egea & Román González, 2011; Melas, Zampetakis, Dimopoulou, & Moustakis, 2011; Jung & Loria, 2010) mentions this problem in their research and tried to determine factors influence the end user behavior toward the IT.

There is a various models explaining individuals perception to adoption & utilize the technology. One of the most used model is TAM, which had been used in current research.

TAM is One of the most influential research models in studies of the determinants of IS and IT acceptance. It explain about 40%, in usage intentions, it also has been tested empirically and supported through validations, replications, and applications

Chapter Three Methodology

Chapter Three Methodology

This chapter focuses on the methodological procedures that were used in the research, and gives a description of the methods applied when carrying out the research.

Determining an appropriate research methodology is considered an important element in a research study. All methods used by a researcher during a research study are termed as research methods, which include the theoretical procedures, experimental studies, numerical schemes, and statistical approaches. They help the researcher in collecting samples and data of the research. A scientific research methods call for explanations based on collecting facts, measurements and observations and not on reasoning alone.

3.1 Research Methodology

The research methodology is a systematic way to solve a problem. It is a science of studying how research is to be carried out. It is the procedures by which researchers go about their work of describing, explaining and predicting phenomena (William, 2000).

Remenyi et al., (2003) described methodology as the "overall approach to a problem which could be put into practice in a research process, from the theoretical underpinning to the collection and analysis of data". On a similar note, Collis and Hussey (2009) agreed with them and identified methodology as the "overall approach to the entire process of the research study". Research methodology, as per the above definitions is focused around the problems to be investigated in a research study and hence is varied according to the problems to be investigated.

3.2 Research Design

The research design illustrates the logical operation's flow of the research. It articulates what data is required, from whom, and how it is going to answer the research question. Also, it's not connected with any specific technique or method to collect data of any type (Kothari, 2004). The major goal of research design is to decrease the probability of building incorrect causal relationships between the study variables. Once the research design is completed, the actual work can be initiated (Jalil, 2013). Figure (3.1) shows research design stages.

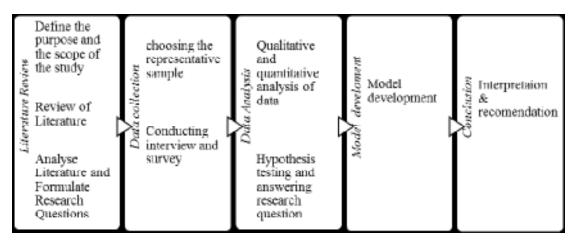


Figure (3.1): Research Design.

The study starts with setting the research objectives and question, then the researcher utilized the literature review and previous studies in order to better understand the research topic. Then an interview with experts was conducted in order to get better understanding e-Health system, and then the researcher developed a questionnaire based on the available literature and the interviews outcomes. A pilot study was performed before the questionnaire distribution process, also validity and reliability test were made to ensure the quality of the questionnaire. After that, questionnaire were distributed and gathered, a statistical analysis was accomplished to perform final report and results using the SPSS software. Finally, the proposed framework were developed, which describe the impact of factors on e-Health system, depending on the research results and literature.

In order to decide the approach for this research, the researcher reviewed the different types of research shown in annex (A), which represents an inception material of scientific research for new researcher.

3.3 Research Date Collection Tools

There are different methods for data gathering when conducting research. The most common methods: questionnaires, interviews, observations, and tests. These tools must selected and constructed in the light of scientific bases; in order to gain access to the wanted data and thus fulfill the objectives of the research. The researcher might use a single research instrument or a combination of more than one instrument, depending on the nature of the research.

This study based on mixed research tools. The first was interviews to collect data from specialist at targeted hospitals and Ministry of health, so we can go in-deep into the study topic. The second tool was a questionnaire to get quantified (numerical) results related to the factors influencing e-Health acceptance in targeted Palestinian hospitals, so we could answer the research questions and hypotheses.

3.3.1 The First Tool: Semi Structures Interviews

In this research, exploratory interviews were made with Palestinian IT specialists in target hospitals, Ministry of Health and some of users to explore e-Health adoption, assess the usage of e-Health in Palestine, and investigate the factors that affect e-Health adoption in the Palestinian health sector. The questions of exploratory interviews are mentioned in annex B.

The interview is one of the important methods used for observing and collecting data through conduct a purposeful discussion between the researcher and others participants in the research field. The matters raised are recorded (videotaped, audio-recorded or written down) and subsequently analyzed. When researcher exchange views with one or more participants by asking them general or closed questions and then recording their answers, this termed called qualitative interview and help the researcher to format a specific overview of research topic and the most important aspects related to it (Creswell, 2012). Interviews can involve one subject, or a group of subjects, but typically no more than 5 or 6 people in a group. A number of techniques including coding and thematic analysis can analyze the Qualitative data

Interviews are usually divided into three groups: structured, semistructured, and unstructured interviews (Heppner et al., 2008).

- Structured interviews: the interviewer asks a set of clear and specific pre-determined questions that are asked to all interviewees in the same order.
- Unstructured interviews: also known as 'in-depth interviews' It looks like a daily conversation with no specific pre-defined set of questions, also, they are open ended and informal. The interviewer should have a clear idea about a topic or topics that they want to explore, also this type of interviews, allowing the interviewer to ask questions depending on the respondents' answers.
- Semi-structured interviews: it considered as a mix of both structured and unstructured interviews. The interviewer develop and use an 'interview guide' that contains a list of pre-defined questions and topics that need to be covered during the conversation. This type has some flexibility, where the interviewer can ask questions away from the guide, or may omit, change order or add additional questions when it is appropriate.

In this research, Semi-structured interviews were used because the researcher needs to hear about the research issue as much as possible with some restrictions. Furthermore, it allows informants the freedom to express their views in their own terms (Saunders et al, 2009).

Face-to-face meetings were conducted by IT specialist and some users in targeted research area. Furthermore, the number of interviews conducted was with fifteen participants to collect the required information. In this case, it should be noted that face-to-face interviews needed a lot of time and effort.

3.3.2 The Second Tool: Questionnaire

Sekaran (2003) noted that the questionnaire as a pre-formulated written set of questions to which respondents' record their answers, usually through rather closely defined alternatives. Questionnaire often gathers quantitative data, but can also gather qualitative information through openended questions, and it can be done online, face-to-face or over the telephone. Surveys are very flexible and can be used to collect different types of data from small or large numbers of people. Additionally, the data collected through questionnaire needs to be analyzed to produce useful results. Quantitative data (numbers) are typically analyzed using statistical software like SPSS

In this research, the questionnaire is one of the main tools to collect the primary data. The items used to measure the research model (items used in the questionnaire) were based mostly on items used in measurements by TAM model and the interviews.

The questionnaire utilized to gather and acquire the primary data that will be analyzed to achieve the research goals. The questionnaire was designed into two languages (Arabic and English), the Arabic version to be distributed to participants because it is the native language in Palestine, and then translated it to the English version to be used in the research content. Research questionnaire was adjusted three times before getting the final design, the first adjustment was upon the supervisor request, the second was upon to expert opinions, and third was because the results of a pilot study.

In addition, the researcher did a pilot study contain about 40 respondents from a three hospital in Nablus province hospital, also, many interviews conducted with employees work in the targeted hospitals to identify if the questionnaire is well understood or not, then the researcher calculates the reliability test of the questionnaire which was high and indicated that questionnaire statements were clear and understood for respondents.

The questionnaire consisted three main parts. This shown in (annex C)

- Part One: this part of questionnaire included a description of the research objective and importance. Also, this part assured participants of the confidentiality of the information, and encourage them to answer the questionnaire.
- Part Two: this part was put to collect demographic information about respondents which included (gender, age, years of experience, workplace, percentage of work completed by the system, frequency of using the system, and type of hospital).

Part Three: this part consisted of (34) items constructed in close-ended statements designed based on the five- Likert scale (5= strongly agree, 4= agree, 3= neutral, 2= disagree, 1= strongly disagree). The items classified into eight areas, which represent the factors affecting e-Health system.

3.4 Research Hypotheses and Framework

Based on previous discussion, theories, model, and exploratory interviews, we managed to identify the most important factors that Influence E-Health adoption. These factors include: TAM, integrated with other factors, which are system characteristic, training, fear of accountability, perceived risk, culture, and output quality.

The proposed framework is primary consists of TAM factors integrated with the factors which mentioned above is shown in Figure (3.2). The following diagram explains the general framework of the research:

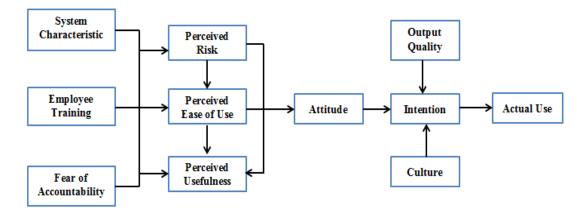


Figure (3.2): Research General Framework for e-Health Acceptance.

According to the literature review and the above proposed model, the following hypotheses was developed to achieve research objectives:

- System characteristic has direct and positive effect on perceived risk of e-Health system.
- Employee training has direct and positive effect on perceived risk of e-Health system.
- Fear of accountability has direct and positive effect on perceived risk of e-Health system.
- 4. System characteristic has direct and positive effect on perceived ease of use of the e health system.
- Employee training has direct and positive effect on perceived ease of use of the e - health system.
- 6. Fear of accountability has direct and positive effect on perceived ease of use of the e health system.
- System characteristic has direct and positive effect on the perceived usefulness of e-Health system.
- 8. Fear of accountability has direct and positive effect on the perceived usefulness of e-Health system.
- 9. Perceived risk has direct and positive effect on the perceived usefulness of e-Health system.
- Perceived risk has direct and positive effect on perceived ease of use of the e-Health system.

- 11. Output quality has a positive influence on intention to use e-Health system.
- 12. Culture has a positive influence on intention to use e-Health system.
- 13. Employee training has direct and positive effect on the perceived usefulness of e-Health system.

3.5 Sampling Technique

Researchers are interested in how they will choose research samples, so, it is important to determine the methods that suit with research purposes, then define research population and sample size.

3.5.1 Population of the Study

Sekaran (2003) defines the population as the group of people or things of interest under examination by the researcher. In this research, the population was the health sector workforce in West Bank. According to the Palestinian ministry of health report, the number of the workers who have a permanent position was (30,080) employed, (19,011) of them working in West Bank, and (11,069) in Gaza (MOH, 2015).

Palestinian Ministry of Health is one of the largest operator of human force working in the health sector in the Palestinian territories; in 2014 the number of workforce in the Palestinian Ministry of Health amounted to 13,975 employees on a permanent basis; of whom 7.032 (50.3%) employees working in the West Bank, and 6. 943 (49.7%) employees in the Gaza Strip. The number of medical personnel assigned to different medical occupation is (8.916) person; of whom 4.986 (55.9%) employees working in the West Bank; and 3.930 (44.1%) employees in the Gaza Strip, additionally, to 5.058 of employees working in the field of administration and services; of whom 2.046 (40.5%) employees working in the West Bank; and 3.012 (59.5%) employees in the Gaza Strip (MOH, 2015).

3.5.2 Population Sampling

Nablus governorate hospital were targeted as a case study and focused on the medical staff whose nature of work was either, doctors, radiologist technician, laboratory technician, nursing, or pharmaceutical. The research covered three hospitals, which are properly implementing e-Health system. Table (3-1) show the size of targeted hospitals employees.

Hospital name	Number of Targeted Employee
A-Najah National	447
University Hospital	447
Rafidia Hospital	700
Specialized Arab Hospital	250
Total	1397

 Table (3-1): Size of Targeted Hospitals Employees

Source: Hospitals HR Department.

Research sample size should fit with appropriate confidence level, and appropriate confidence interval. Therefore, the confidence interval will be 5% with 95% confidence level. The total size of the employee in the targeted hospital is 1397. The researcher used an internet web site to help him in determining the acceptance sample size, which is (300) participants. Here is the formula used in our Sample Size Calculator according to the web site (Cochran, 1963). Sample Size:

$$n = \frac{Z^2 p q}{e^2}$$

Where:

n = the sample size.

Z = Z value (e.g. 1.96 for 95% confidence level).

p = percentage picking a choice, expressed as decimal (0.5 used for sample size needed) and <math>q = (1-p).

e = confidence interval.

3.6 Distribution of the Questionnaire

Stratified random sampling were adopted to collect the data from the Palestinian hospital, located in Nablus governorate. Stratified sampling refers to a type of sampling method, which divides the population into separate groups, called strata, then; a probability sample (often a simple random sample) is drawn from each group.

Stratified sampling has several advantages over simple random sampling. For example, using stratified sampling, it may be possible to reduce the sample size required to achieve a given precision, or it may be possible to increase the precision with the same sample size. Table (3-2) shows how the questionnaires were distributed throughout the targeted hospital. As well, it shows as all details about data collection and the percentage of response rate.

NO	Hospital	NO. Of	Distributed	Surveys	Valid	Response
110	name	Surveyed	Surveyed	Received	Surveys	Rate
	A-Najah					
1	National	96	120	111	96	80%
1	University	90				
	Hospital					
2	Rafidia	150	170	156	150	88.2%
2	Hospital	150	170	150	150	00.270
	Specialized					
3	Arab	54	70	61	54	77.1%
	Hospital					
	Total	300	360	328	300	83.3%

 Table (3-2): Distribution and Collection of Data

3.7 Test of Data Validity and Reliability

We seek to make research questionnaire consistent, clear, and understandable by all. In addition, the questionnaire should achieve its goals. Therefore, reliability and validity should be measured.

3.7.1 Test of Validity

Validity refers to how well a test measures what it is purported to measure. According to Sekaran and Bougie (2010) validity is a test instrument that concerned with how well a developed instrument measures what the researcher intend to measure. Additionally, when the researcher use content validity methods usually he/she go to a board of experts or judges in order to have them identifying whether the questions are valid.

In this research, the reviewed literature formed the references of questionnaire statements. Additionally, the conducted interviews extracted many ideas that contained in the questionnaire, and then the questionnaire were reviewed and discussed it with the supervisor to ensure the accuracy of questionnaire questions. The questionnaire also sent to several experts and arbitrators to get their opinions and recommendations, and discuss repeated questions, charity of the questions, the order of the questions, and if the question are directed the participants towered a specific alternative. See annex (D), Table (1).

3.7.2 Test of Reliability

Reliability indicates that the scores yield from an instrument are consistent and stable. In other words, it's the degree to which an assessment tool produces stable and consistent outcomes (Saunders et al. 2009).

To ensure the reliability of the research questionnaire, the researcher used Cronbach coefficient alpha technique which is one of the most popular reliability statistics is used today that determines the internal consistency or average correlation of items in a survey instrument to examine its reliability (Reynaldo, & Santos, 1999).

Table (3-3) shows that the results of the Cronbach alpha test are (85%) and the entire questionnaire variables are above 70% thus it is acceptable. Therefore, the questionnaire is reliable and could be redistributed.

NO.	Factors	No. Of Statements	Cronbach Alpha
1	System Characteristics	4	67%
2	Training	3	69%
3	Fair of Accountability	5	64%
4	Perceive Risk	5	65%
5	Perceive Usefulness	3	71%
6	Ease of Use	5	85%
7	Output Quality	5	85%
8	Culture	4	79%
	Total		85%

 Table (3-3): Cronbach Alpha Test

3.8 Data Analysis Technique

This section includes describing the process for analyzing the interviews as well as the process of questionnaire analysis. Again, qualitative and quantitative methods of analysis were the primary approaches of analysis.

3.8.1 Interviews Technique

Semi-structured interviews were made to collect further information about the research topic from the viewpoint of Palestinian specialists. The process of interviewing analysis starts with listening and reviewing the audio recording and take notes during the interviews, with the permission of the interviewee, and then transcribing them manually in order to prepare for the following analysis step.

The Qualitative data resulted from the interviews were analyzed by the 'thematic analysis' approach. According to Priest et al., (2002) the thematic analysis is defined as flexible and simple technique that enables a researcher to generate new ideas by identifying, analyzing, and reporting patterns (themes) within the data. Thematic analysis is considered the simplest technique for categorizing qualitative data.

According to Braun and Clarke (2006) thematic analysis has six phases:

- Phase 1: becoming familiar with the data through reading and rereading it several times.
- Phase 2: generating an initial list of items from the data set that have a reoccurring pattern.
- Phase 3: collecting the similar codes in themes that describe the data accurately.
- Phase 4: reviewing themes to make sure they support the research.
- Phase 5: defining and naming themes.
- Phase 6: producing and writing the final Report.

3.8.2 Statistical Technique

Quantitative data analysis gives the researcher numerical and quantifiable results that can be easily interpreted and understood. Regarding to this study, the data collected using a questionnaire instrument has been analyzed using the Statistical Package for the Social Sciences (SPSS) software (Greasley, 2008). SPSS version 20 was used for analyzing data. The following statistical methods are used:

- Frequencies, Percentage, Mean, and Standards Deviation tables: this method was performed to describe the research sample.
- Independent Samples T Test: to test if there are statistical differences between means of two variables.
- 3. One- Way ANOVA Tests: to test if there are statistical differences between means of three variables or more.
- 4. LSD Post Hoc Test: to specify the differences between means.
- 5. Person Correlation Coefficient: to test the correlation between the research factors.
- 6. Cronbach's Alpha: to test the reliability of the questionnaire.

3.9 Summary

This empirical study has two parts: the first is seeking for exploring the status of e-Health in targeted Palestinian hospitals, to achieve this purpose a qualitative approach within an interview strategy has been conducted. The second part is seeking to determine the factors affecting e-Health acceptance by hospitals medical practitioners, to achieve this purpose a general framework were designed, a hypothesis were developed, and a quantitative approach within a survey strategy has been conducted.

Chapter Four Data Analysis, Results and Discussion

Chapter Four Data Analysis, Results and Discussion

This chapter analyzes and presents the results of the qualitative and quantitative data collected from interviews and questionnaires. It explores the e-Health from the viewpoint of interviewees in target area. Thereafter, it shows the results of descriptive statistics and hypotheses testing derived from the Statistical Package for Social Science (SPSS) software, in order to determine the factors that affecting e-Health system acceptance in Palestinian hospitals according to the proposed framework. Furthermore, this chapter presents e-Health adoption framework using the factors that have been obtained.

4.1 Descriptive Analysis

In order to obtain the research results, SPSS software was used to analyze the questionnaires.

According to the questionnaire design, respondents have different demographic information; these differences introduce different responses toward e-Health system usage, and the factors that influence e-Health adoption within different healthcare centers and hospitals. The following results show these differences.

Demographic Information

The total number of participants from the three hospital in Nablus city was 300, with response rate 83%. The following description present the characteristics of the participants.

87

• Gender

According to Table (4-1), the sample included 185 male who form 61.7% of the participants, and 115 female who form 38.3% of the

Variable	Characteristics of the Variable	Frequencies	Percentage
	Male	185	61.7%
Gender	Female	115	38.3%
	Total	300	100%

 Table (4-1): Distribution of Gender.

This result corresponds to what is indicated by the statistics of the Ministry of Health (MOH) in 2013, which showed that the ratio of males to females- who were hired in the Palestinian hospitals- is 63% to 37% (Abu Zeinah., 2013). This explains the small percentage of respondents from female healthcare workforce compared with male healthcare workforce in hospitals.

Furthermore, the documents of Human resource department (2016) in the targeted hospitals showed that the ratio of males -who were hired in these hospitals-, is higher than females.

• Age

Age was divided into four intervals. Table (4-2) shows the details of the participants age.

Variable	Characteristics of the Variable	Frequencies	Percentage
	21- 30 years	210	70%
	31- 40 years	57	19%
Age	41- 50 years	25	8.3%
	More than 50 years	8	2.7%
	Total	300	100%

Results show that the highest percentage of respondents aged (21-30) is young which form 70% of respondents. These percentages is because the workforce in hospitals is in young age according to HRD (2016). Here we mention that the workforce in Palestinian society is in young age, which form more than 61.4% of total workforce (PCBS, 2016).

• Experience Years

Experience years was divided into four period intervals. Table (4-3) shows the details of the participants work experience years.

Variable	Characteristics of the Variable	Frequencies	Percentage
Experience Years	1- 5 years	192	64%
	6- 10 years	53	17.7%
	11-15 years	30	10%
	More than 15 years	25	8.3%
	Total	300	100%

 Table (4-3): Distribution of Experience Years.

The highest percentage of respondents is in (1-5 years) work experience. Health sector witnesses' improvement in the medical and educational aspects, and increasing demands for better health services. These required opening new health centers such as: An-Najah hospitals; which created a need to attract and employ a complete medical staff with multi-disciplinary. This percentage is compatible with the percentage of participants who aged (21-30), those who are with (1-5) years' work experience or newly employed with fresh experience. • Job

The job was divided into five intervals. Table (4-4), shows the job distribution in this research.

Variable	Characteristics of the Variable	Frequencies	Percentage
Job	Doctor	77	25.7%
	Pharmacist	19	6.3%
	Nurse	148	49.3%
	Laboratory Technician	37	12.3%
	Radiologist	19	6.3%
	Total	300	100%

The highest percentage of respondents is nurses who form 49.3% of respondents, followed by Physician (25.7%). This is because nurses constitute the largest proportion of medical staff. (Appendix E: Table 1) shows the numbers of nurses in each targeted hospital.

Furthermore, according to PCBS (2014), there were (11,633) nurses registered in Palestine in 2012, which is the highest number compared with the other jobs title, and then followed by physician (8.810).

• Completed Work by Using e-Health System

The Percentage of work completed by using e-Health system was divided into five intervals. Table (4-5), shows the details of the participants completed works percentage.

Variable	Characteristics of the Variable	Frequencies	Percentage
	100%- 80%	167	55.7%
	79%- 60%	84	28%
Completed	59%- 40%	30	10%
Work	39%- 20%	16	5.3%
	Other	3	1%
	Total	300	100%

 Table (4-5): Distribution of completed Work.

The results show that respondents -who complete (100%-80%) of work by using the system and computer- form 55.7% of respondents. This percentage can be attributed to the sensitive nature of tasks they perform, which depend totally on using the technology not the traditional technique & papers. This percentage compatible with the next percentage of system usage to complete work.

• System Usage

System usage was divided into three intervals. Table (5-6), shows the details of the participants system usage.

Variable	Characteristics of the Variable	Frequencies	Percentage
System Usage	Daily	235	78.3%
	Almost daily	50	16.7%
	Intermittently	15	5%
	Total	300	100%

Table (4-6): Distribution of System Usage.

Results show that the highest percentage of respondents according to system usage is daily, and form 78.3% of respondents. This percentage revealed the importance & usefulness of the system in performing work. Here we mention the using the system is also mandatory in health process.

• Work Place

The sample included 150 Participants work in private hospitals who form 50% of the participants, and 150 participants work in governmental hospitals who form 50% of the participants. Table (4-7) shows the work place distribution in this research.

Variable	Characteristics of the Variable	Frequencies	Percentage
Work Place	Private hospital	150	50%
	Governmental hospital	150	50%
	Total	300	100%

 Table (4-7): Distribution of Work Place.

This result were expected; because Rafidia hospital is the largest one in terms of the number of workforce, which is seven hundred, according to HRD (2016). Therefore, we distributed the highest number of questionnaires in Rafidia governmental hospital. Here we mention that the total number of respondents from private hospitals equals the respondents in public hospital, which forms (50%).

The results of analyzing demographic information data illustrate the following facts:

- 1. The highest percentage of participants is males who form 62% of respondents.
- The highest percentage of participants is young aged (21 30 years old) who form 70% of respondents.

- The highest percentage of participants in work experience field is (1-5 years), and their percentage in participation is 64%.
- The highest percentage of participants in job title field is nurse, and their percentage in participation is 49.3%.
- The highest percentage of participants in completed work by using e-Health field is (100% - 80%), and their percentage in participation is 55.7%.
- 6. The highest percentage of participants in system usage field is daily, and their percentage in participation is 78.3%.
- 7. The percentage of participants who work in government hospital is equal to the participants who work in private hospital in this research.

4.2 Statistical Differences among Survey Respondents

This section outlines the statistical differences between participants according to received data. Independent Samples Test (t-test for Equality of Means) and one-way ANOVA Test were used to explain these differences; these two tests were used because correlations between qualitative and quantitative factors were tested.

T-test method compares means of qualitative independent variable having two levels, whereas one-way ANOVA compares means of qualitative independent variable which having more than two levels. In this case, the dependent variables are quantitative.

Statistical Differences According to Gender

Gender variable has two levels so T-test method is used. Statistical differences between males and females show that there is no statistical differences between males and females is recognizing in all factors where (P > 0.05) for all. Tables (4-8), (4-9) shows full details about this results:

 Table (4-8): Statistical Differences among Participants According to

 their Gender

Factors	Gender	Ν	Mean	Std.
1 40015				Deviation
System Characteristics	Male	185	3.78	.750
System Characteristics	Female	115	3.67	.658
Tusining	Male	185	3.75	.744
Training	Female	115	3.70	.728
Foot of Accountability	Male	185	3.77	.586
Fear of Accountability	Female	115	3.72	.509
	Male	185	3.95	.576
Perceived Risk	Female	115	3.89	.558
Devestuad Lasfulness	Male	185	4.09	1.059
Perceived Usefulness	Female	115	4.09	.581
Ease of Use	Male	185	3.95	.747
Ease of Use	Female	115	4.02	.603
Intention	Male	185	3.61	.760
Intention	Female	115	3.59	.633
Output Ouglity	Male	185	3.92	.693
Output Quality	Female	115	3.94	.570
Culturo	Male	185	3.36	.873
Culture	Female	115	3.19	.720
Total Seeve	Male	185	3.82	.498
Total Score	Female	115	3.79	.408

Factors	t-test for Equality of Means		
ractors	Т	Df	Sig. (2-tailed)
System	1.237	298	.217
Characteristics	1.237	298	.217
Training	.516	298	.606
Fear of	.852	298	.395
Accountability	.032	298	.393
Perceived Risk	.908	298	.365
Perceived	.002	298	.998
Usefulness	.002	298	.990
Ease of Use	907	298	.365
Intention	.218	298	.828
Output Quality	336	298	.737
Culture	1.818	298	.070
Total Score	.625	298	.532

 Table (4-9): Independent Samples Test for Gender Differences among

 Participants

Statistical Differences According to Age

One-way ANOVA test was used to determine the correlation between participant age and other dependent variables. Statistical differences between age intervals shows that there is no statistical differences between them is recognizing in all factors where (P > 0.05) for all. This result is shown in (Annex E: Table 2- Table 3).

Statistical Differences According to Experience Years

One-way ANOVA test were used to determine the correlation between participant experience years and other dependent variables. Statistical differences between experience years intervals shows that there is no statistical differences between them is recognizing in all factors where (P > 0.05) for all. This result is shown in (Annex E: Table 4- Table 5).

Statistical Differences According to Job

One-way ANOVA test were used to outline the statistical differences between participants according to their job, this research includes five different categories of job related to e-Health system in the hospitals. Then LSD test used to detect where exactly the mean differences lie (Appendix E: Table 6 – Table 15). There are statistical differences between participants' jobs as the following:

System characteristics: ANOVA test shows statistical differences between the participants according to their job (P < .05). Nurses are more perceived about the system characteristics and consider system characteristic importance in e-Health technology acceptance (mean equals 3.88) more than doctors (mean equals 3.56), whereas pharmacists have the lowest perceived toward system characteristics of e-Health system (mean equals 3.47).

Training: ANOVA test shows statistical differences between the participants according to their job (P <.05). Nurses are more perceived about the training benefits to use e-Health system, nurses believe that training they received, could mitigate them invoke passive reaction toward the system (mean equals 3.87) than laboratory technicians (mean equals 3.81), whereas doctors have the lowest perceived toward training benefits (mean equals 3.47).

Fear of accountability: ANOVA test shows statistical differences between the participants according to their job (P < .05). Nurses have the highest

perceived toward fear of accountability when using e-Health system (mean equals 3.88), but doctors have the lowest perceived toward fear of accountability (mean equals 3.54).

Perceived risk: ANOVA test shows statistical differences between the participants according to their job (P < .05). Nurses are realizing the effects of perceived risk in e-Health technology acceptance more than Doctors (mean equals 4.02) the doctors (mean equals 3.83), whereas pharmacists have the lowest perceived risk toward e-Health system (mean equals 3.69).

Usefulness: ANOVA test shows statistical differences between the participants according to their job (P < .05). Nurses have the highest perceived usefulness of e-Health system and consider it useful (mean equals 4.25), but doctors have the lowest perceived usefulness toward e-Health (mean equals 3.87).

Ease of use: ANOVA test shows statistical differences between the participants according to their job (P < .05). Laboratory technicians are more perceived about the ease of use e-Health system and facilitate work tasks and responsibilities (mean equals 4.08) than Nurses (mean equals 3.07), whereas doctors have the lowest perceived ease of use toward e-Health system (mean equals 3.77).

Output quality: ANOVA test shows statistical differences between the participants according to their job (P <.05). Nurses have the highest perceived toward output quality when using e-Health system and believe that by using e-Health they will performs their tasks well (mean equals

4.06), but laboratory technicians have the lowest perceived output quality toward e-Health (mean equals 3.54).

Also, LSD test shows a significant difference between nurses' participants (mean 4.06) and doctors, and pharmacists (mean respectively 3.73, 3.54), and between pharmacists (mean 3.54) and laboratory technicians, and radiologist (mean respectively 3.99, 3.95), and between doctors (mean 3.73) and laboratory technicians (mean 3.99), which illustrate that nursed, laboratory technicians, and radiologist have better perceived for the output quality of e-Health system.

Culture: ANOVA test shows statistical differences between the participants according to their job (P <.05). Nurses have the highest perceived toward the impact of culture to use e-Health system (mean equals 3.19), but radiologist have the lowest perceived toward culture (mean equals 2.54).

Also, LSD test shows a significant difference between nurses participants (mean 3.19) and doctors, pharmacists, and radiologist (mean respectively 2.75, 2.75, 2.54), which illustrate that nurse have better perceived toward the impact of culture to use e-Health system.

The results of statistical differences between participants according to job title superiority appear in perception in favor of nurses in most factors that affect e-Health acceptance by practitioners, especially those related to the system characteristics, training, fear of accountability, perceived risk, output quality, and cultural factors. Nurses are interested in the system because they feel it is easy to use, reduces the time of patient care, improves the quality of work output, and it is user-friendly. Nurses have full confidentiality in e-Health system, since they are well trained in this field, they were also the first to use the system for a long time. Moreover, the system smoothed the work since they get direct orders from both doctors and management, it also mitigates the pressure they face during performing tasks, so it's well accepted.

On the contrary, doctors are less accepting the system because they felt the burden of work increases when using it. Also, the time to undertake it exceeds the amount of time required for paper charting. This can be attributed to insufficient training they got which give them an impression that the system is difficult to use and needs effort, which -by defaultaffects negatively on perceived usefulness. Additionally, because doctors are not strongly engaged to the system they will not feel fear when making medical mistakes.

Statistical Differences According to Completed Work by Using e-Health System

In this study participants' percentage of work completed by using e-Health system collected as interval, completed work classified into more than two alternative, therefore the researcher used One-way ANOVA test to check the correlation between completed work intervals and other variables. Then the researcher used LSD test to detect where exactly the mean differences lie (Annex E: Table 16 – Table 19). There are statistical differences between participants completed works as the following:

Ease of use: ANOVA test shows statistical differences between the participants according to their completed works (P <.05). Participants who completed (39% - 20%) of their work by using e- Health system have lowest perceived ease of used toward e-Health system (mean equals 3.39) compared with these who completed (100% - 80%), (79% - 60%), and (59% - 40%) of their works (mean respectively 4.05, 3.98, 3.91).

Output quality: ANOVA test shows statistical differences between the participants according to their completed works (P <.05). Participants who completed (39% - 20%) of their work by using e- Health system have lowest perceived output quality of delivering health services by e-Health system (mean equals 3.48) compared with these who completed (100% - 80%) and (79% - 60%) of their works by using the system (mean respectively 3.97, 3.98).

The results indicate that the participants who completed (39%-20%) of work by using the technology have the lowest belief that e-Health system is applicable to their job and help to performs their tasks well. This can be attributed to the shortage of using computers, which gives impression that the system isn't free of effort and difficult to use, or they are not enough familiar with emerging technology and felt that e-Health has become a burden. Moreover, those participants will not catch its benefits.

This is contrary to the impression of respondents who completed (100% -80%) of work by using the system, those felt that the system is effortless. This result can be due to the nature of tasks they perform, which depends totally on technology. Participants in this category have a good computer skills & experience through either more training or using the system for a long time. This will enable them to use the system in care processes without any difficulties, also to touch the improvement in work output quality by using the technology.

Statistical Differences According to System Usage

In this study e-Health system usage by participants who work in Palestinian target hospital collected via three different categories, this variable classified into more than two alternative, therefore the researcher used One-way ANOVA test to check the correlation between system usage categories and other variables. Then the researcher used LSD test to detect where exactly the mean differences lie (Annex E: Table 20 – Table 22). There are statistical differences between participants completed works as the following:

Training: ANOVA test shows statistical differences between the participants according to their system usage (P < .05). Participants who used e-Health system daily have the highest perceived toward the benefits of training to use e-Health system in the best way (mean equals 3.78), but the participants who used e-Health system Intermittently have the lowest

perceived toward the benefits of training to use e-Health system (mean 3.27).

According to results, participants who used e-Health system daily have the highest believe that they have been well- trained without any invoking passive reaction; they also have the ability to perform a specific task using a computer. Therefore, they realized the extent of management's commitment to the implementation of all forms of medical care that supported by emerging technologies, and they hold the e-Health functionality which they considered tangible and observable.

Using the system daily can be attributed to the users believe that e-Health performs their tasks well, more applicable to their job, increases their performance, raises the efficiency of the health process, and enhance their status more than practitioners who use the system intermittently.

This category user believe that the more training the more desire to use the system. Hence, individuals experience and knowledge in employing and using the technology made them able to touch e-Health benefits and quality based on the effectiveness of its functions and interactions. Therefore, this will positively affect their intention to more e-Health technology acceptance.

Using the system intermittently can be attributed to the nature of the performed tasks, which may depend on using both technology and papers; hence, those users do not have strong contact with the system. In addition,

poor or insufficient training they got, may prevent touching the impact of training on increasing system adoption.

Statistical Differences According to Work Place

T-test method were used to explore the statistical differences between the two levels of work place variables (Appendix E: Table 22 – Table 23). Statistical differences between governmental and private hospitals show that there is statistical differences between both is recognizing system characteristic and usefulness factors where (P > 0.05) as following:

System characteristics: there are statistical differences between participants according to the natural of place in which they work (P < .05). Participants who work in governmental hospitals perceived that the characteristics of e-Health system will increase their status more than participants work in private hospitals (mean of governmental hospitals is 3.83 and private hospital is 3.64).

Usefulness: there are statistical differences between participants according to the natural of place in which they work (P < .05). Participants who work in governmental hospitals consider e-Health system to be useful more than participants work in private hospitals (mean of governmental hospitals is 4.23 and private hospital is 3.95).

The results of statistical differences between hospitals superiority appear in perception in favor of Rafidia surgical governmental hospital in most factors that affect e-Health acceptance by practitioners, especially those related to the usefulness and benefits of the system and the powerful system characteristics.

On one hand, the public hospital participant has a belief that e-Health is applicable to their job and helps performing their tasks better, reduces the work pressure and improves the quality of delivering health services by reducing the human and medical errors. Furthermore, it is interested in implementing e-Health system with powerful characteristic, clear features, user-friendly, easy to use, compatible with the work, maintaining user privacy and security, and protected with a strong firewall, to increase the system trust, which in its role increases intention to use. These results describe the explicit of governmental hospitals attitude towards using technology dramatically and illustrate a clear evolution of the governmental hospitals' sector in Palestinian hospitals.

On the other hand, Participants in private hospitals have lower perceived system usefulness and less trust in the powerful system characteristic. This can be attributed to weakness or complexity in system design, which makes it for example: exposed to malware, hacking, and repeated system failure, the system's also interface could be unclear or it is not compatible with work. This reduces user motivation to merge this innovation in daily work, thus not touching its benefits.

The following points summarize the most important results that have been discussed above:

- 1. There is no differences between males and females about the factors related to the acceptance of e-Health systems.
- There is no relationship between participants' ages and the degree of the acceptance of e-Health systems.
- There is no relationship between participants' experience years and the degree of the acceptance of e-Health systems.
- 4. Nurses are most interested about e-Health system, because they have the highest degree about powerful system characteristics, training, fear of accountability, perceived risk, output quality, and the culture factors, while laboratory technicians have the highest degree about perceived ease of use more than other job classifications.
- The participants, who completed work by using e-Health system is low, have lowest degree about perceived ease of use and output quality of the system.
- 6. Participants who used e-Health system daily have the highest percentage toward the benefits of training to use e-Health system in the correct way.
- 7. Participants who work in governmental hospital consider e-Health system more useful and have powerful system characteristics more than participants who work in private hospitals.

4.3 E-Health System Factors Testing

In order to answer the second question: which factors have strong or weak effect on acceptance? The differences between factors which affecting the acceptance of e-Health system were investigated, the results of respondents show some differences about these factors, table (4-10) illustrate that.

Table (4-10): Total Score for all Factors According to ResearchRespondents.

Factors	Mean	Standard deviation	Percentage
System Characteristics	3.74	.717	74.8%
Training	3.73	.737	74.6%
Fear of Accountability	3.75	.558	75%
Perceived Risk	3.93	.569	78.6%
Perceived Usefulness	4.09	.905	81.8%
Ease of Use	3.97	.695	79.4%
Intention	3.60	.713	72%
Output Quality	3.93	.648	78.6%
Culture	3.29	.821	65.8%
Total Score	3.81	.465	76.2%

The table shows the following results:

- 1. The highest factor affect the acceptance of e-Health system is perceive usefulness, the results show that 81.8% of the respondents recognize that perceived usefulness could increase user acceptance of these systems.
- 2. Perceived ease of use, perceived risk, and output quality factors affect the acceptance of e-Health system in high degree compared with the other factors.

- 3. The lowest factor affect acceptance of e-Health system is culture, the results show that 65.8% of the respondents recognize that culture can increase user acceptance of e-Health systems.
- 4. The results explain the total score for all factors selected in this study that 76.2% of the respondents agree about the effect of these factors on user acceptance of e-Health systems.

4.4 Hypotheses Testing

In this study to test the research hypotheses Pearson Correlation was used. Pearson Correlation test is fit with the research purpose where one dependent factors affected by one independent hypothesized factor. Table (4-11) show the hypotheses and their testing results.

108

		D ²	Pearson	Type of	
No.	Hypotheses	\mathbf{R}^2	Correlation	Correlation	Sig.
H1	System characteristic has direct and positive effect on perceived risk of e-Health system.	.192	.438**	positive	.000
H2	Employees training has direct and positive effect on perceived risk of e-Health system.	.163	.404**	positive	.001
Н3	Fear of accountability has direct and positive effect on perceived risk of e-Health system.	.235	.199**	positive	.000
H4	System characteristic has direct and positive effect on perceived ease of use of e-Health system.	.398	.631**	positive	.000
Н5	Employees training has direct and positive effect on perceived ease of use of e-Health system.	.274	.524**	positive	.000
H6	Fear of accountability has direct and positive effect on perceived ease of use of e- Health system.	.273	.522**	positive	.000
H7	System characteristic has direct and positive effect on perceived usefulness of e-Health system.	.260	.522**	positive	.000
Н8	Employees training has direct and positive effect on perceived usefulness of e-Health system.	.157	.396**	positive	.000
Н9	Fear of accountability has direct and positive effect on perceived usefulness of e- Health system.	.195	.442**	positive	.000
H10	Perceived risk has direct and positive effect on perceived usefulness of e-Health system.	.073	.269**	positive	.000
H11	Perceived risk has direct and positive effect on perceived ease of use of e-Health system.	.276	.526**	positive	.000
H12	Output quality has positive influence on intention to use e-Health system.	.041	.203**	positive	.000
H13	Culture has positive influence on intention to use e-Health system.	.008	.089	positive	.122

Table (4-11): Results of Hypothesis Testing

** Correlation is significant at the.01 level (2-tailed).

According to the table, (4.11), all hypotheses are significant at 99% except H13. These hypotheses are derived from the previous literature review and conducted interviews, so the results supporting TAM model and empirical studies that discussed in chapter two, the following description show the relationship between all factors according to the hypotheses:

• System Characteristics Discussion

The results of Pearson Correlation of hypotheses show that system characteristics is jointly predicted by training ($\rho = 0.549$, P < 0.00), fear of accountability ($\rho = 0.615$, P < 0.00), perceived risk($\rho = 0.438$, P < 0.00), perceived usefulness ($\rho = 0.510$, P < 0.00), ease of use ($\rho = 0.631$, P < 0.00), intention ($\rho = 0.138$, P < 0.01), and output quality ($\rho = 0.627$, P < 0.00).

Perceived risk to use e-Health system has a strong relationship with system characteristics which is significant at 99% ($\rho = 0.438$). Hence, **Hypothesis 1 is supported.**

Perceived ease of use e-Health system has a strong relationship with system characteristics which is significant at 99% ($\rho = 0.631$). Hence, **Hypothesis 4 is supported.**

Perceived usefulness from using e-Health system has a strong relationship with system characteristics which is significant at 99% ($\rho = 0.510$). Hence, **Hypothesis 7 is supported.**

• Training Discussion

The results of Pearson Correlation of hypotheses show that training is jointly predicted by system characteristics ($\rho = 0.549$, P < 0.00), fear of accountability ($\rho = 0.552$, P < 0.00), perceived risk($\rho = 0.404$, P < 0.00), perceived usefulness ($\rho = 0.396$, P < 0.00), ease of use ($\rho = 0.524$, P < 0.00), intention ($\rho = 0.177$, P < 0.00), and output quality ($\rho = 0.496$, P < 0.00).

Perceived risk to use e-Health system has a strong relationship with training which is significant at 99% ($\rho = 0.404$). Hence, **Hypothesis 2 is supported.**

Perceived ease of use e-Health system has a strong relationship with training which is significant at 99% ($\rho = 0.524$). Hence, **Hypothesis 5 is supported.**

Perceived usefulness from using e-Health system has a strong relationship with system characteristics which is significant at 99% ($\rho = 0.396$). Hence, **Hypothesis 8 is supported.**

• Fear of Accountability Discussion

The results of Pearson Correlation of hypotheses show that fear of accountability is jointly predicted by system characteristics ($\rho = 0.615$, P < 0.00), training ($\rho = 0.552$, P < 0.00), perceived risk($\rho = 0.485$, P < 0.00), perceived usefulness ($\rho = 0.442$, P < 0.00), ease of use ($\rho = 0.522$, P <

0.00), intention ($\rho = 0.146$, P < 0.01), output quality ($\rho = 0.546$, P < 0.00), and culture ($\rho = 0.136$, P < 0.01)

perceived risk to use e-Health system has a strong relationship with fear of accountability which is significant at 99% ($\rho = 0.485$). Hence, **Hypothesis 3 is supported.**

Perceived ease of use e-Health system has a strong relationship with fear of accountability which is significant at 99% ($\rho = 0.522$). Hence, **Hypothesis 6 is supported.**

Perceived usefulness from using e-Health system has a strong relationship with system characteristics which is significant at 99% ($\rho = 0.442$). Hence, **Hypothesis 9 is supported.**

• Perceived Risk Discussion

The results of Pearson Correlation of hypotheses show that perceived risk is jointly predicted by system characteristics ($\rho = 0.438$, P < 0.00), training ($\rho = 0.404$, P < 0.00), fear of accountability ($\rho = 0.485$, P < 0.00), perceived usefulness ($\rho = 0.269$, P < 0.00), ease of use ($\rho = 0.526$, P < 0.00), intention ($\rho = 0.175$, P < 0.01), output quality ($\rho = 0.528$, P < 0.00), and culture ($\rho = 0.123$, P < 0.03)

Perceived risk of use e-Health system has a strong relationship with perceived usefulness which is significant at 99% ($\rho = 0.269$). Hence, **Hypothesis 10 is supported.**

Perceived risk of use e-Health system has a strong relationship with perceived ease of use which is significant at 99% ($\rho = 0.526$). Hence, **Hypothesis 11 is supported.**

• Output Quality Discussion

The results of Pearson Correlation of hypotheses show that output quality is jointly predicted by system characteristics ($\rho = 0.627$, P < 0.00), training ($\rho = 0.496$, P < 0.00), fear of accountability ($\rho = 0.546$, P < 0.00), perceived risk ($\rho = 0.528$, P < 0.00), perceived usefulness ($\rho = 0.450$, P < 0.00), ease of use ($\rho = 0.674$, P < 0.00), intention ($\rho = 0.203$, P < 0.01), and culture ($\rho = 0.117$, P < 0.04).

Intention to use e-Health system has a strong relationship with output quality which is significant at 99% ($\rho = 0.203$). Hence, **Hypothesis 12 is supported.**

• Culture Discussion

The results of Pearson Correlation of hypotheses show that culture is jointly predicted by fear of accountability ($\rho = 0.136$, P < 0.00), perceived risk ($\rho = 0.123$, P < 0.03), and output quality ($\rho = 0.117$, P < 0.04).

Intention to use e-Health system has no relationship with culture ($\rho = 0.089$). Hence, **Hypothesis 13 is not supported.**

The results indicate that all results are logical and can be adopted, when compared with previous studies in the literature, which have been addressed in Chapter Two. Table (4-12) show the relationship between research findings and previous studies

No.	Factors	Previous Studies	
1	System characteristic	(2008), Wang et al (2007), Wixom and Toda (2005), DeLone and McLean (2003).	
2	Employees training	This result agree with Al-Sayyed & Abdalhaq, (2016), Allahyari and Ramazani (2012), Al- Shorbaji (2009), Aggelidis VP, Chatzoglou PD. (2009), Khalifa & Alswailem (2015), Venkatesh and Bala (2008), Tung, Chang & Chou (2008), Wu et al., (2008), Amoako- Gyampah and Salam (2004) studies.	
3	Fear of No previous studies related to this fac		
5	accountability	a result of interviews).	
4	Perceived riskThis results agree with Featherman & Pavlou (2002), Ortega Egea & Román González (2011), Rose & Fogarty, (2006), Featherma & Pavlou, (2002) studies.		
5	Output quality	This result agree with Mutul (2015), Anja et.	
6	Culture.	This result agree Hoqu and Bao, (2015) and Jung & Loria, (2010) studies, and disagree with Ortega Egea & Roman Gonzalez (2011) study, and Aggelidis & Chatzoglon (2009).	

Table (4-12): Related Studies to Results of Hypothesis Testing

4.5 E-Health Adoption Framework in Palestine

Based on the results of hypotheses, the researcher explains the e-Health system adoption framework in Palestine. Table (4-13) summarizes the results of hypotheses between factors.

r.)	,				
Factor	System Characteristics	Training	Fear of Accountability	Perceived Risk	Perceived Perceived Ease Risk Usefulness of Use	Intention Output Culture	Output Quality	Culture
System								
Training								
Fear of								
Accountability								
Perceived Risk	H1*	H2*	H3*				HN	HN
Perceived	*VП	* 7 11	*711	Ш1Л*				
Usefulness	. +11	. CU	.011	.0111				
Ease of Use	*7H	*8H	*6H	H11*				
Intention							H12*	
Output Quality								HN
Culture								
*. Summartad Umathadia								

Table (4-13): Correlations Between Factors Influencing E-Health System.

*: Supported Hypothesis.

NH: New Hypotheses (new results).

Depending on the previous table, e-Health system Adoption Framework in Palestine is:

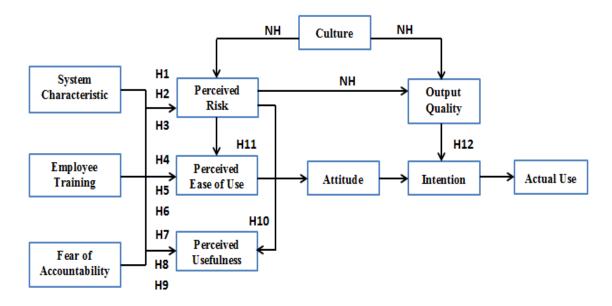


Figure (4.1): E-Health System Adoption Framework.

E-Health Acceptance Framework Based on the Correlation between

Factors

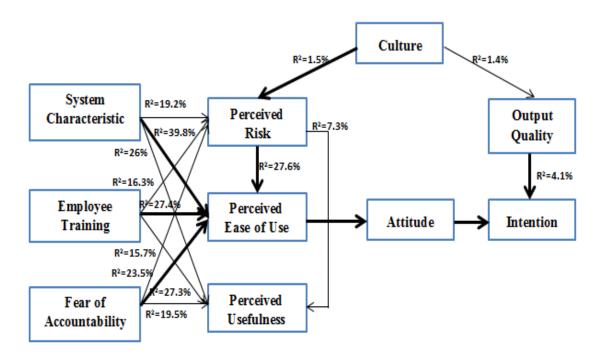


Figure (4.2): E-Health Framework Based on Factors Relationship.

4.6 Introduction to Qualitative Analysis

In order to analyze the interviews, thematic analysis technique was used; which is the most suitable used technique for scientific research.

4.6.1 Qualitative Data Analysis (Interviews Analysis)

To collect data and obtain more information about the research problem, semi- structured interviews have been conducted in order to get appointments for the interviews, the researcher connected with the Ministry of Health and top management of the three hospitals to request face-toface meetings with some aimed members to discuss the issue of interest, as soon as requests approval, the interview appointments were arranged.

The researcher gets the research interview results based on Miles, et al., (2014) approach that consist of three general steps to analyze qualitative data, they are: data reduction, data display, and conclusions drawing. Data reduction refers to how select, code, and categorize qualitative data; while data display refer to the pattern in which data will be presented such as a matrix, a graph, a diagram, or a chart (Sekaran and Bougie, 2010; Creswell, 2012). The researcher coding the interviews data with theme unit that considered the larger and the more useful unit of content analysis according to Sekaran and Bougie (2010). Table (4-13) provides a summary of all used codes, issues discussed and the identified central themes.

Codes	Issues discussed	Central themes	
Technology	Synchronous		
	Asynchronous		
System	Medical record	Tools & forms	
System	tele-monitoring		
	M-health		
Different	Healthcare services		
systems	Data upload & share	E-Health	
Names	Staff interaction	concepts	
Ivanies	Modern tech.		
Internal	Technological		
Internal	Environmental	Factors offecting	
	Social	- Factors affecting	
External	Human	- adoption	
	Financial		
	Training course		
Reward	Awareness session	Managamant	
	Clear Policies	 Management Role 	
Punishment	Instructions	Kole	
Punishment	Mandatory		
Better work	Data exchange		
Detter work	Cost decrease		
	Work enhancement	E-Health	
Enhancing	Communication	benefits	
services	Quality		
	Adjust		

Table (4-14): Summary of Identified codes, basic themes, and central themes.

The five themes emerged from the semi-structured interviews are presented below:

• The E-Health System Tools and Forms in Palestinian Hospital

The results show that synchronous e-Health tools are the least widely used in the Palestinian hospitals, when compared with asynchronous tools. This is because the infrastructure is not prepared to exchange effectively video or voice synchronously, or to use synchronized e-Health tools which need the high-speed Internet and wide range of bandwidth, and that's what did not available in the Palestinian case, due to the weakness of the physical possibilities and capabilities, and the restrictions forced by the Israeli occupation

The interviewees highlighted that the most common forms of e-Health services available in Palestinian hospitals are patient electronic records, e- prescription, X-Ray and e-laboratory. They also mentioned that some e-Health forms are still not implemented in Palestinian hospitals such as telemedicine, tele-monitoring and M-health.

The Concept of E-Health According to Specialists

The Health information systems, which are employed in hospitals, are with different names, but with same functionality. Hospitals differ in their definition of e-Health according to its usage internally, but all definitions close to each other. Some definitions are

- Is a way to enrich the healthcare process with modern technology and its tools.
- The management and control of -administrative, medical care, and accounting process- that are related to medical staff and patients.
- Platform to upload and exchange data, and a tool to enhance interaction between medical staff and all hospitals units and patients electronically.

Factors Influencing the Adoption of E-Health by Health Practitioners'

Researcher discussed with IT specialists and users' specific factors that influence e-Health adoption (the factors that explained in the research framework). They considered these factors appropriate and influence e-Health technology.

Interviewee also mention technology anxiety and self- efficacy, technical support, subjective norm, fear of failure, Individual factors Sociodemographic characteristics (age, gender, experience, etc.) and fear of being laid off, resistance to change, technology and computer self-efficacy, subjective norm, end user's intention to use the technology, staff attitudes, security, obstacle in system design, as additional factors not took in this research framework.

Management Role and Hospital Intervention to Ensure E-Health Acceptance

Interviewees focused on the role of the hospital management in promoting adoption of electronic system between medical staff, and this occurred through awareness session, training courses, formulating clear policies and instructions. Despite that, the interviewees noted that hospital management forced employees to use the prevalent system because when the management decide to adopt it in the hospitals, the employees do not have the choice to accept or reject it because using it is mandatory and they must commit to the company laws.

✤ The Benefits from Adopting E-Health System

Interviewees mention number of benefits gained from utilizing the system, such as: (1) Decreasing time, effort, and cost of delivering health services (2) Reducing administrative costs (e.g. Paper costs) (3) Improving patient safety and quality of health care (4) Reducing human and medical errors (5) Smooth sharing of information between health staff (6) Easy access to stored data by authorized people (7) Adjusting the movement of medicine from the center pharmacy (8) Adjusting accounting operation of medical services; where everything spent during patients' treatment is electronically recorded.

4.7 Summary

In this chapter the results of data analysis, which were collected via survey and interviews have been presented. The results indicated that there are some statistical differences among participants according to their job title, system usage, completed work by using the system and type of hospitals.

Furthermore, the results indicated that the highest percentage of participants are males, aged (21-30 years old), and the highest percentage of participants are who have (1-5 years) work experience, Nurses have the highest percentage according to job title and form (49.30%), (80%-100%) of the participants use the system to complete the work. Also (78.30%) of the participants use the system daily, the percentage of participants who

work in governmental hospital is equal to the participants who work in private hospital.

Additionally, all hypotheses are significant at 99%, except H13 (Culture has a positive influence on intention to use the e - health system). The results of hypotheses, which derived from the previous literature review and conducted interviews, are supporting TAM model and empirical studies.

Chapter Five Conclusions and Recommendations

Chapter Five Conclusions and Recommendations

This chapter aims to summarize the research results and conclusion, it explores the recommendation that are based on the research findings in order to develop and adopt e-Health systems. In addition, this chapter discusses the research contribution to current literature and the suggestions of conducting future studies.

5.1 Conclusion

The purpose of this research was to determine the factors that influence health practitioners' intention toward adoption of an electronic health system (e-Health) in Palestinian health sector, and then introduce e-Health technology adoption framework, which can assess the health sector to spread this developed technology among Palestinian health institutions, center, and hospitals.

The research framework was conceptualized via reviewing related literature and experts' opinions in the design process, the framework depends on Technology Acceptance Model (TAM).

This research covers three hospitals which are Rafidia Surgical Hospital, Specialized Arab, and An-najah hospitals, where distributed in Nablus governorate as the case study of this research. It utilized both qualitative and quantitative to answer the research questions and to test hypotheses. Qualitative data were collected via in depth semi-structured interviews with specialists. Furthermore, Quantitative data were related to

123

the factors that influencing e-Health acceptance collected via a survey which was distributed to a random sample (n=300) of health practitioners at hospitals.

The research questionnaire was collected, coded, and entered in to SPSS in order to examine factors affecting the acceptance of e-Health system in Palestinian health sector. Various statistical processes were employed such as frequency, means, percentages, in order to answer and test the research questions and hypotheses.

Furthermore, a qualitative data that explores the status of e-Health system and its applications, tools, infrastructure obstacles, challenges, was derived by exploratory in-depth semi-structured interviews with individuals in targeted area.

The research revealed that e-Health systems in State of Palestine hospitals is new and not mature yet and quiet limited because; it is new innovation and also not all the system forms are available. Furthermore, the systems is not available in most Palestinian hospitals and face obstacles related to users.

It is also obvious that Palestinian health sector do not have clear plans and strategies to motivate employees to adopt e-Health system usage. Hence, in order to aid hospitals to increase e-Health adoption; it is important to identify factors that influence e-Health adoption in Palestine. Therefore, we introduced acceptance model for e-Health systems. In addition, results indicate that there are significant statistical differences between the participants, they have different perceptions toward e-Health system; some of them have high intention to use the system, as well as they have a low fear of the risk and accountability. Some of them have also high intention to use e-Health but they fear of this technology. Other participants do not intend to use e-Health system. These results agree with Innovation Diffusion Theory, which classifies users of technology into three parts: innovators who like to try innovations and be ready to accept the risk. Early adopters who like to adopt innovations in the first stages of the diffusion process. Early and late majority people, who like to accept the innovation when it becomes major.

Moreover, results indicate that perceived usefulness, perceived ease of use, perceived risk, and output quality are the most significant factors affecting intention to use e-Health systems. Whereas, culture is influencing e-Health system adoption in less degree.

According to interview results, hospitals management committed to supporting e-Health system, provide appropriate e-Health physical resources, and provide adequate financial and human support for the implementation of e-Health system. In addition, the results show that asynchronous e-Health tools are the most widely used in the Palestinian hospitals. Hence, most hospitals argued that ICT need to develop and to provide it with a protection system, furthermore there is a need to improve the internet infrastructure and mobile services.

5.2 Recommendations

The health sector in Palestine needs more effort in order to adopt different technology aspects to complete work in an efficient manner. Hospitals and health centers should focus on four main fields to develop and spread technology usage among medical care employees. These fields include formulating and implementing new strategies, developing the operational process, promoting ICT sector and equipment's in order to enhance e-Health acceptance by care practitioners, and introducing high quality e-Health systems. Each field is discussed on follows:

This section answer the second sub-questions: What changes are required to improve e-Health environment?

***** Formulating and Implementing E-Health Technology Strategies

Based on research results the Palestinian health care institutions and hospitals do not have clear strategies to adopt e-Health technology. In addition, Hospitals roles are limited in defining and offering suitable e-Health services, hence it should adopt new rules to motivate and encourage employees to use technology effectively. It is worth mentioning that formulating suitable e-Health strategies are the most important issue for decision makers in hospitals if they want to understand the hospital position in order to reduce the gap between what exist and the new technology trends in e-Health field. Formulating strategies aims to adopt significant processes, which focus on technology adoption within hospitals; strategy formulation requires SWOT analysis, in order to explore and study the internal and external factors affecting e-Health technology.

The external factors are related to opportunities and threats, which include governmental regulations, the technological capabilities, economic scale, environmental issues, etc... Whereas internal factors are related to strengths and weaknesses of the hospital, which consist of hospital rules and policies, management support, employees training, availability of necessary IT resources & technical staff, infrastructure facilities, system design features, job relevance, practitioners' perceptions and their experiences in e-Health field, etc...

E-Health strategic plans must contain at least one objective about IT improvement in the organization and increase their main dependency in this field.

In order to determine successful e-Health strategies, hospitals should take into account the following:

- E-Health strategic plan must be compatible with the strategic plan of the hospital and workflow.
- Hospitals should balance between the interest of customers (patients) and employees because the employees constitute an essential part of the working process not less than the importance of customers in achieving

hospital goals. Hence, the involvement of health care employees and IT specialists in the preparation of e-Health strategies is necessary for successful strategies to develop.

- Research and development (R&D) processes play an important role in creating an environment that is able to accept the technology and able to evolve rapidly; this can be accomplished through focusing on the long-term plans that include promoting a culture of change within the hospital, in order to enhance the acceptance of new technology.
- Hospitals should set up a specialized e-Health unit or center, or enhance the role of unit or center that really exist in the preparation of e-Health strategies.

***** Promoting ICT Sector and Equipment's.

The majority of new and existing e-Health tasks and jobs now require the use of ICT, which considered currently being a vital aspect of modern health services delivering. ICT is essentially a set of tools, which health care practitioners could employ to achieve the objectives related to e-Health. The importance of telecommunications and information sector demonstrated by establishing an infrastructure that encourages hospitals to adopt new technological tools and building a technological culture among society.

The emergence of new IT and software companies with distinctive capabilities contributes significantly to encourage many hospitals to adopt e-Health technology and other useful technical tools. Also, it will provide opportunities to build a successful e-Health system.

Hospitals and ministry of health should focus on establishing strong partnerships with Ministry of Telecommunication and Information to increase technological progress and discuss ways of development through mutual cooperation between them.

Hospitals should utilize a security system to protect their database servers from viruses and hackers. This requires a cooperation with IT companies.

✤ Introducing High Quality E-Health Systems

Hospitals should pay more attention to technical issues besides operational issues; the technical issues play a significant role to introduce high-quality e-Health technology and to increase the usage. The results indicated that perceived usefulness, perceived ease of use, and perceived risk are affecting the adoption of e-Health systems. Therefore, the hospital must consider all the factors that affect the use of e-Health system. Based on these findings, the hospital should focus on creating and adopting e-Health systems, which include the following features:

- 1. Simple and User-friendly.
- 2. Secure and reliable
- 3. Available all the time.
- 4. Accessible from anywhere by authorities' users.

- 5. Achieve the privacy of employees and patients.
- 6. Support Arabic Language.
- 7. Free of effort and reduce time to perform tasks.
- 8. Free of errors and risk.

Hospitals should focus on technical issues by working on the following area:

- Hospitals should give more attention to find technical staff capable of handling with devices and systems and solving the problems that could face employees during performing work.
- Hospitals should keep the system servers up all the time. Furthermore, it should have backup servers and databases, if a malfunction occurs in the main server, there must be alternative to perform the same functions.
- Palestinian hospitals should cooperate with IT specialist and companies to assist them to implement the necessary electronic system.
- Hospitals should establish a comprehensive security system to protect e-Health servers from viruses and hackers. Security systems should be announced to all employees to trust e-Health technology.
- Hospitals should use advanced technologies for authentication process like mobile code; for example, a code will be sent to user mobile to

verify user access. Also, by determining the respective powers of employees and managers to access the information to ensure system confidentiality.

Developing the Operational Processes for E-Health Technology

Operational processes ensure a standardized approach to all procedures of activities performed. Hence, the dissemination of new technology needs effort from all hospital departments. In addition, departments should communicate and cooperate with hospital top-level management to achieve the following issues:

- 1. Hospitals should increase their role to achieve the high level of e-Health technology adoption through involving not only employees but also patients in the development process in order to decline rejection and resistance to use new technology. Also, because employees invent the obstacles that make e-Health system difficult to use; hospital should keep pace with technological advancement that benefits their work, and also apply new technology which will enhance the interactive health activities, utilize ease of use applications and tools, and show the usefulness of e-Health and its positive outcomes.
- 2. Hospitals should increase the information security, and reduce risk that would raise the employees' playfulness toward using a computer, thus enhancing their perceived ease of use the e-Health system, and thus achieving positive behavior intention to use this system.

- 3. Hospitals management should emphasize on employees who less integrate technology with their work, by giving them information about the advantages of technology in enhancing the medical process or by increasing them tasks dependence on technology.
- 4. Hospitals should have an interest in intermittently system users through giving them more training or giving them information about the benefits that can be gained through using technology. Thus fostering innovation usage.
- Management should emphasize on doctors by making pilot study to determine factors leading them to low system acceptance.
- 6. Hospitals should mitigate the invoking the passive reaction of the doctors toward e-Health. It should train them to use the computer and its programs effectively in order to encourage them to use a computer. Thus, enhancing and consolidating them believes that the e-Health technology is applicable to their job.
- 7. Management should mitigate its employees fear of accountability by talking openly about past mistakes and problems to publicly endorse the concept of blame-free error reporting, and to offer encouragement and support to those directly involved
- Palestinian hospitals should adopt all forms of e-Health services; it is notable from the research that hospital's emphasis only on the core form of e-Health systems.

- 9. Hospitals should develop a standardized evaluation system related to e-Health usage in order to feedback employees with the benefits resulting from the use of e-Health and its positive impact on their job performance. In addition, it should make employees feel more secure.
- 10. Hospitals should coordinate with experts in the field of e-Health to make employees listen to success stories, especially the elder employees and doctors. In this way, they can be aware of the usefulness of e-Health.
- 11. Hospitals should establish a legal, enforcement, and legislative system that enforces employees to carry out all instructions and laws related to e-Health technology. Reward and punishment policy should be implemented.

5.3 Research Contribution

The results of this research are great importance to researchers, Ministry of health, health institutions, and Ministry of Telecommunication and Information, in developing e-Health technology in Palestine from many aspects. Therefore, this research is considered to be a significant contribution in several areas, these contributions are:

- Helping researchers interested in developing a framework or model for e-Health technology acceptance.
- Helping hospitals concerned with application and adoption of e-Health technology successfully.

- Introducing e-Health system adoption framework in Palestine, which could effectively improve the rate of usage.
- Understanding the hospitals' medical staff behaviors, perceptions and awareness toward e-Health technology in Palestine.
- Encouraging hospital administration to re-evaluate its policies on ICT adoption, employee training, and systems management.
- Encouraging IT companies to develop e-Health requirements of tools, applications, and equipment's, also enhance the infrastructure of internet services.
- Advising the Palestinian health institutions and ministry of health in formulating the suited strategies, which will increase the rate of e-Health technology adoption and usage in Palestine.

5.4 Future Research

The following topics could be studied in the future, which may contribute to the development of e-Health technology in Palestine:

- Testing additional factors and other Palestinian governorates, which may bring a different perspective.
- 2. Studying the possibility of applying mobile health (m-health). Mobile phones will be leveraged to provide, use, access, or share information at the moment of need.

- Studying the role of Ministry of Telecommunications and Information Technology IT and software companies, Palestine Telecommunications Company (Paltel), international health institutions such as WHO, and government in improving and encouraging e-Health Technology in State of Palestine.
- 4. Studying the advantages and disadvantages of all e-Health tools, whether used or not in Palestinian hospitals, in order to guide the hospitals to use the optimal applications or tools suited to their situation and their staff capabilities.

References

- Abdekhoda, M., Ahmadi, M., Gohari, M., & Noruzi, A. (2015). The effects of organizational contextual factors on physicians' attitude toward adoption of Electronic Medical Records. Journal of Biomedical Informatics, 53(2). 174-179 http://doi.org/10.1016/j.jbi.2014.10.008
- Abu Zeinah, M., AMajid, A., & Abu Farha, R. (2013). Gender-BasedAnalysis of Public Health Sector Services: A Beneficiary-BasedStudy.Palestine.Retrievedfromhttp://www.miftah.org/Publications/Books/GRBHealthBookEn.pdf.
- Aggelidis, V. P., & Chatzoglou, P. D. (2009). Using a modified technology acceptance model in hospitals. International Journal of Medical Informatics, 78(2), 115–26. Retrieved from http://www.sciencedirect.com/science/article/pii/S138650560800089 0.
- Ahlan, A. R., & Ahmad, B. I. (2014). User acceptance of health information technology (HIT) in developing countries: A conceptual model. Procedia Technology, 16, 1287–1296. http://doi.org/10.1016/j.protcy.2014.10.145
- Allahyari, A., and Ramazani, M. (2012). Studying impact of organizational factors in information technology acceptance in accounting occupation by use of TAM model (Iranian Case Study).
 ARPN Journal of Systems and Software. 2(1), 12-17. Retrieved from https://ssrn.com/abstract=2199868.

- Al-sayyed, F., & Abdalhaq, B. (2016). Interventional factors affecting instructors adoption of e-Learning system: A case study of palestine. Journal of Theoretical and Applied Information Technology, 83(1), 119–137. Retrieved from http://www.jatit.org/volumes/Vol83No1/13Vol83No1.pdf.
- Al-Shorbaji, N. (2009). *E-Health in the eastern mediterranean region: A decade of challenges and achievements*. Eastern Mediterranean Health Journal, 14(2), 157–173. http://doi.org/Review
- Ammenwerth, E., Gräber, S., Herrmann, G., Bürkle, T., & König, J. (2003). *Evaluation of health information systems—problems and challenges.* International Journal of Medical Informatics, 71(2), 125–135. http://doi.org/10.1016/S1386-5056(03)00131-X
- Amoako-Gyampah, K., & Salam, A. F. (2004). An extension of the technology acceptance model in an ERP implementation environment. Information & Management, 41(6), 731–745. http://doi.org/10.1016/j.im.2003.08.010
- Anja, Neff; Heiko, Gewald; and Ulrich, Haase, "Why do they resist? Examining the salient factors of physicians' IT adoption behavious" (2014). *PACIS 2014 Proceedings*. 223. Retrieved from http://aisel.aisnet.org/pacis2014/223
- Anker, S. D., Koehler, F., & Abraham, W. T. (2011). *Telemedicine and remote management of patients with heart failure.* Journal of

Biomedical Informatics, 378(9792), 731–739. http://doi.org/10.1016/S0140-6736(11)61229-4.

- Austin, C., & Boxerman, S. (2003). Information systems for healthcare management (6th ed.). Chicago: Health Administration Press.
- AVASANT (2013). Palestinian ICT Market Penetration Study, Final Report. PITA, 2013, June. jrvdvRetrieved from http://www.pita.ps/sites/default/files/studies/international_market_pe netration_study.pdf
- Bennani, A., Belalia, M., Oumlil, R. (2008). "As a human factor, the attitude of healthcare practitioners is the primary step for the e-health: First outcome of an ongoing study in Morocco".
 Communications of the IBIMA Journal, 3(4). 28-34.
- Blaya, J. A., Fraser, H. S. F., & Holt, B. (2010). *E-Health Technologies Show Promise in Developing Countries.* Health Affairs journal, 29(2), 244–251. http://doi.org/10.1377/hlthaff.2009.0894
- Braun, V. & Clarke, V. (2006). "Using thematic analysis in psychology".
 Journal of Qualitative Research in Psychology. 3 (2): 77-101.
 Retrieved from: doi:10.1191/1478088706qp063oa.
- Bromley, D. B. (1990). Academic contributions to psychological counselling: I. A philosophy of science for the study of individual cases. Journal of Counselling Psychology Quarterly, 3(3), 299-307.

- Cashen, M., Dykes, P., & Gerber, B. (2004). E-Health technology and internet resources: Barriers for vulnerable populations. Journal of Cardiovascular Nursing, 19(3), 209-217.
- Castellan, C. M. (2010). Quantitative and qualitative research: A view for clarity. International Journal of Education, 2(2), 1–14. http://doi.org/10.5296/ije.v2i2.446.
- Cebul, R. D., Love, T. E., Jain, A. K., & Herbert, C. J. (2011). *Electronic health records and quality of diabetes care.* New England Journal of Medicine, 365(24), 2338–2339. http://doi.org/10.1056 /NEJMc1111722
- Chae, Y. M., Heon Lee, J., Hee Ho, S., Ja Kim, H., Hong Jun, K., & Uk Won, J. (2001). *Patient satisfaction with telemedicine in home health services for the elderly*. International Journal of Medical Informatics, 61(2–3), 167–173. http://doi.org/10.1016/S1386-5056(01)00139-3
- Chau, P., & Hu, P. (2002). Examining a model of information technology acceptance by individual professionals: An exploratory study.
 Journal of Management Information Systems 18 (4): 191–229.
- Cochran, W.G. (1963). Sampling Techniques, 2nd ed. New York: John Wiley & Sons.
- Codagnone, C., & Lupiañez-Villanueva, F. (2013). Benchmarking Deployment of eHealth among General Practitioners. - Final

Report Luxembourg. Publications Office of the European Union Retrieved from http://ec.europa.eu/information_society/newsroom /cf/dae/document.cfm?doc_id=4897

- Coeira, E. (2003). Guide to health informatics. 2nd edition. Arnold Publication.
- Collis, J. & Hussey, R. (2009) Business Research: A practical guide for undergraduate and postgraduate students, 3rd edition, New York, Palgrave Macmillan.
- Creswell, J. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. 1st edition, Boston: Pearson Education, Inc.
- Cucciniello, M., Lapsley, I., Nasi, G., & Pagliari, C. (2015).
 Understanding key factors affecting electronic medical record implementation: A sociotechnical approach. Journal of BMC Health Services Research, 15(1), 1–19. http://doi.org/10. 1186/s12913-015-0928-7.
- Currie, M., Philip, L. J., & Roberts, A. (2015). Attitudes towards the use and acceptance of eHealth technologies: a case study of older adults living with chronic pain and implications for rural healthcare. Journal of BMC Health Services Research, 15(1), 162. http://doi.org/10.1186/s12913-015-0825-0.

- Dansky, K. H., Gamm, L. D., Vasey, J. J., & Barsukiewicz, C. K. (1998).
 Electronic medical records: are physicians ready?. Journal of Healthcare Management/American College of Healthcare Executives, 44(6), 440-54.
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly Journal, 13(3), 319-340. Retrieved from http://www.jstor.org/stable/249008.
- Davis, F.D. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results, Phd Dissertation Thesis, Wayne State University. Retrieved from https://www.researchgate.net/profile/Fred_Davis2/publication/35465
 050_A_Technology_Acceptance_Model_for_Empirically_Testing_
 New_End-User_Information_Systems/links /0c960519fbaddf3ba
 7000000/A-Technology-Acceptance-Model-for-Empirically-TestingNew-End-User-Information-Systems.pdf
- DeCoster, J. (2004): Data Analysis in SPSS. Retrieved from http://www.stat-help.com/notes.html. (Acsessed Nov.17, 2016).
- DeGroot, T., & Kiker,S. (2003). A meta-analysis of the non-monetary effects of employee health management programs. Human Resource Management. 42(1), 53-69.
- Deluca, J., Enmark, R. (2000). E-Health: The changing model of healthcare. Frontiers of Health Services Management, 17(1), 3-15.

- Dillon, A. and Morris, M. (1996). User acceptance of new information technology: theories and models. In M. Williams (ed.) Annual Review of Information Science and Technology, Vol. 31, Medford NJ: Information Today, 3-32. https://www.ischool.utexas.edu/~adillon/BookChapters/User%20acceptance.htm.
- Dixit, R., Choudhary, S., Bansal, B. (2008). "E-Health: Emerging ICT, Implementation and Provisioning Issues in Health care Services" Proceedings of the National Conference on Advancements in Information Technology & Communication Technology; 2008 March 15-16; Allahabad, India.
- Douglas GP, Gadabu OJ, Joukes S, Mumba S, McKay MV, Ben-Smith A, et al. (2010). Using Touchscreen Electronic Medical Record Systems to Support and Monitor National Scale-Up of Antiretroviral Therapy in Malawi. Journal of PLOS Medicen, 7(8), 1-6.
- Eide, H., Eide, E., Kristjansdottir, O., Dulmen, S. (2010). "Mobile health care and health behavior change - Development of a system for virtual counseling based on written diary questionnaires and situational feedback". In proceedings of The International Conference on Universal Technologies; May 19-20, 2010; Oslo, Norway. Oslo: Oslo University College. 1-13.
- Eisenhardt, K. (1989). *Building theories from case study*. Academy of Management Review, 14(4), 532–550. Retrieved from

http://www.uio.no/studier/emner/matnat/ifi/INF5571/v15/timeplan/ar -docs/eisenhardt-1989.pdf

- European Commission. (2008). Survey takes pulse of e-Health in Europe and prescribes wider ICT use among doctors. Retrieved from http://europa.eu/rapid/press-release_IP-08-641_en.htm?locale=en
- European Commission. (2011). European countries on their journey towards national eHealth infrastructures. Final European progress report. Retrieved from http://ehealthstrategies.eu/report/eHealth_Strategies_Final_Report_Web.pdf
- Eysenbach, G. (2001). *What is e-Health?* Journal of Medical Internet Research, 3(2), 1–5. http://doi.org/10.2196/jmir.3.2.e20
- Feagin, J., Orum, A., & Sjoberg, G. (1991). A case for case study. 1st edition, Chapel Hill, NC: University of North Carolina Press.
- Featherman, M. S., & Pavlou, P. A. (2002). Predicting E-services Adoption: A Perceived Risk Facets Perspective. International Journal of Human-Computer Studies, 59(4), 1034–1046. Retrieved from http://melody.syr.edu/hci/amcis02_minitrack/ CR/Featherman.pdf
- Fromm, C., Kapadia, F., Molla, D. S., Sherwood, E., & Mahdi, A. R.
 (2009). ICT in Health for Development A white paper commissioned by! : UNDESA-GAID. Retrieved from

http://unpan1.un.org/intradoc/groups/public/documents/undpadm/unpan036980.pdf

- George, C., Duquenoy, P., & Whitehouse, D. (2014). E-Health: Legal,Eethical and Governance Challenges. 1st edition. London. Springer Science &Business Media. http://doi.org/10.1007/978-3-642-22474-4
- Goldstein, D. (2000). E-Healthcare: Harness The Power Of Internet E-Commerce E-Care. 1st edition. Jones & Bartlett Learning.
- Greasley, P. (2008). Quantitative data analysis using SPSS: an introduction for health and social sciences. 2nd edition, Maidenhead: McGraw-Hill / Open University Press.
- Grimson, J., Grimson, W., Hasselbring, W. (2000). The SI Challenge in Health Care. Journal of Communications of ACM, 43 (6), 48-55.
- Häyrinen, K., Saranto, K., Nykänen, P. (2008) Definition, structure, content, use and impacts of electronic health records: A review of the research literature. International Journal of Medical Informatics, 77, 291-304.
- Healy, J. C. (2008). Implementing e-Health in developing countries: Guidance and principles. ICT Applications and Cyber security Division (CYB). Policies and Strategies Department. [monografía en Internet]. Bureau for Telecommunication Development International Telecommunication Union. Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Im plementing+e-Health+in+Developing+Countries+Guidance+and +Principles#0.

- Heppner P. Paul, Wamplod, E., Kivlighan, M. (2008), Research Design in Counseling, 3rd edition, Thomson Learning. Inc.
- Holden, R. J., & Karsh, B.-T. (2010). *The technology acceptance model: its past and its future in health care.* Journal of Biomedical Informatics, 43(1), 159–172. http://doi.org/10.1016/ j.jbi.2009.07.002.
- Hoque, M. R., & Bao, Y. (2015). Cultural Influence on Adoption and Use of e-Health: Evidence in Bangladesh. Journal of Telemedicine and E-Health, 21(10), 845–851. http://doi.org/10.1089/tmj. 2014.0128.
- Huang, J.-C. (2013). Innovative health care delivery system-A questionnaire survey to ervaluate the influence of behavioral factors on individuals' acceptance of telecare. computers in biology and medicine, 43(4), 281–286. http://doi.org/10.1016/j.compbiomed.2012.12.011.
- Ibrahim, S. M. (2013). Impact of Information and Communication Technology on Healthcare in Health Centers in the West Bank – Palestine (M.Sc. dissertation, An-Najah National University). Retrieved from https://scholar.najah.edu/sites/default/ files/Saed Ibrahim_0.pdf.

- Idowu, B., Ogunbodede, E., & Idowu, B. (2003). Information and communication technology in Nigeria the health sector experience.
 Journal of Information Technology Impact, 3(2), 69–76.
 Retrieved from http://jiti.com/v03/v3n2.069-076.pdf
- International telecommunication union. (2012). **The World Telecommunication Standardization Assembly.** Dubai. Retrieved from http://www.itu.int/dms_pub/itu-t/opb/res/T-RES-T.78-2012-PDF-E.pdf
- Internet World Stats, (2016). **Internet Usage in the Middle East.** Retrieved from http://www.internetworldstats.com/stats5.htm#me. (Accessed Feb. 15,2016).
- Jalil, M. (2013). **Practical Guidelines for conducting research.** 1st edition. England: Committee for Enterprise Development.
- Josip. C, Ashly. B, Chantelle. A, Kathrin.C., Pagliari, C., McKinstry, B., Procter, p., Majeed, A., and Aziz Sheikh (2008). The Impact of eHealth on the Quality & Safety of Healthcare. Report for the NHS Connecting for Health Evaluation Programme. london. Retrieved 21 Aprial 2016 from https://www1.imperial.ac.uk/ resources/32956FFC-BD76-47B7-94D2-FFAC56979B74/.
- Jung, M., & Loria, K. (2010). Acceptance of swedish e-Health services. Journal of Multidisciplinary Healthcare, 3(2), 55–63. Retrieved from http://doi.org/10.2147/JMDH.S9159.

- Jung, M.-L. (2008). From Health to E-Health: Understanding Citizens' Acceptance of Online Health Care. (M.Sc. dissertation, Luleå University of Technology).
- Khalifa, M., & Alswailem, O. (2015). Hospital information systems (HIS) acceptance and satisfaction: A case study of a tertiary care hospital. *Procedia Computer Science*, 63, 198–204. http://www.sciencedirect.com/science/article/pii/S187705091502469
 2.
- Khasawneh, M. M., & Ibrahim, H. B. H. (2008). Adoption, diffusion, use and impact of ICT In developing countries: A case study of Jordan.
 Knowledge Management International Conference, 5(23), 428– 432.
- Kind, T., Silber, T. (2004). *Ethical issues in pediatric e-Health*. Clinical Pediatrics, 43(7), 593-599.
- Kirshenbaum, D. (2002). Ehealth: past, present, and future. Powerpoint presentation –west end associates. Retrieved from http://www.ne himss.org/pubs/Kirshenbaum.ppt.
- Kluckhohn, C. (1962). Culture and Behavior. 6th edition. New York: The Free Press of Glencoe.
- Kothari, C. (2004). Research methodology: methods and techniques. 2nd Eidition. New Delhi: New Age International (P) Ltd. Retrieved

from http://www2.hcmuaf.edu.vn/data/quoctuan/Research Methodology - Methods and Techniques 2004.pdf.

- Lee, M., C. (2010). Explaining and predicting users' continuance intention toward e-learning: an extension of the expectation-confirmation model, Computer and Education Journal, 54(2), 506
 516. http://www.sciencedirect.com/science/article/pii/S0360131509002425.
- Li, J., Khoei, A., Seale, H., Ray, P., & MacIntyre, R. (2013). *Health Care Provider Adoption of eHealth: Systematic Literature Review*.
 Journal of Medical Research, 2(1), 1–19. Retrieved from http://www.i-jmr.org/article/viewFile/ijmr v2i1e7/2
- Lin, J., & Lu, H (2000), Towards an understanding of the behavioral intention to use a web site, International Journal of Information Management, 20(3): 197-208.
- Lorig, K., Laurent, D., Deyo, R., & et al. (2002). "Can a back pain email discussion group improve health status and lower healthcare costs?". Arch Intern Med.,162(7):792-796. doi:10-1001/pubs.Arch Intern Med.-ISSN-0003-9926-162-7-ioi10219
- Luo, N., Koh, WP., Ng, WY., Yau, JW., Lim, LK., Sim, SS., Tay, EG.
 (2009). "Acceptance of information and communication technologies for healthcare delivery: a sing health polyclinics

study. **PubMed Journal**, *38*(6): 529-536. Retrieved from http://www.annals.edu.sg/pdf/38VolNo6Jun2009/V38N6p529.pdf.

- Mair, F. S., May, C., O'Donnell, C., Finch, T., Sullivand, F., & Murray, E. (2012). *Factors that promote or inhibit the implementation of e-Health systems: An explanatory systematic review*. World Health Organization, 90(5), 357–364. http://doi.org/10.2471/BLT. 11.099424
- Marrow, P. (2008). *An industrial perspective on future ICT in Hospital,* **ICT Research Centre, BT Group plc**, 1-12.
- Mekawie, N. (2013). Factors affecting adoption of eHealth in Egypt. (PHD. dissertation), London- UK. Middlesex University.
- Melas, C. D., Zampetakis, L. A., Dimopoulou, A., & Moustakis, V. (2011). *Modeling the acceptance of clinical information systems among hospital medical staff: An extended TAM model.* Journal of Biomedical Informatics, 44(4), 553–64.
 http://doi.org/10.1016/j.jbi.2011.01.009
- Meyers, J., Van Brunt, D., Patrick, K., & Greene, A. (2002). *Personalizing medicine on the Web*. Health Forum Journal, 45(1), 22-26.
- Miles, M. B., Huberman, M. a, & Saldana, J. (2014). Qualitative Data
 Analysis: A Methods Sourcebook. 3rd editon. Thousand Oaks,
 CA:SAGE. Retrieved from: http://researchtalk.com/wp-

content/uploads/2014/01/Miles-Huberman-Saldana-Drawing-and-Verifying-Conclusions.pdf

- Ministry of Communications and Information Technology (2015).
 Summary and figures on the Palestinian Information Society
 2014. Ramallah Palestine. Retrieved from http://www.mtit.pna.ps/arv/Statistics of IT 2014.pdf.
- Ministry of Health, PHIC, Health Status, Palestine, 2014, August 2015. http://www.moh.ps/Content/Books/kD3bquHr7jbwK9f6VQJAsLDC uckgEDlCZUFa9ssb62m9Eim2le562D_ECDSNEboZRJwc6HyiggS MzKUPMeDJa2vkBNlAdZOGlvNuS9CHKJjGO.pdf.
- Mou, J., & Cohen, J. (2014). Trust, Risk and Perceived Usefulness in Consumer Acceptance of Online Health Services. In Australasian Conference on Information Systems-Consumer acceptance of online health services (pp. 1–17). New Zealand. Retrieved from http://aut.researchgateway.ac.nz/handle/10292/8124
- Mutula, S. M. (2015). Factors influencing perceptions and attitudes of nurses towards the use of ICT in patient care in Kwazulu Natal province, South Africa. The African Journal of Information Systems, 8(1), 1-14. Retrieved from http://digitalcommons. kennesaw.edu/ajis/vol8/iss1/1
- Nemeth, C. P., Cook, R. I., Woods, D. D. (2005). *The messy details: insights from the study of technical work in healthcare.* IEEE

transactions on systems, man, and cypernetics – Part A: Systems and Humans, *3*(46), 689-692.

- Nicola, M., & Jarke, M. (1998). "Design and Evaluation of Wireless Health Care Information Systems in Developing Countries". In Proceedings of the IFIP 9.4 Conference: Implementation and Evaluation of Information Systems in Developing Countries; 1998 February; Bangkok.
- Nuray. G, & Özlem. B (2015). Technology acceptance in health care: an integrative review of predictive factors and intervention programs. Turkey. Social and Behavioral Science Journal, 195(3): 1698-1704. https://doi.org/10.1016/j.sbspro.2015.06.263.
- Omary, Z., Lupiana, D., Mtenzi, F., Wu, B. (2010). "Analysis of the challenges affecting e-healthcare adoption in developing countries: A case of tanzania". International Journal of Information Studies, 2(1): 38-50.
- Ortega Egea, J. M., & Román González, M. V. (2011). Explaining Physicians' Acceptance of EHCR Systems: An Extension of TAM With Trust and Risk Factors. Journal of Computers in Human Behavior, 27(1), 319–332. http://doi.org/10.1016/j.chb.2010.08.010
- Otieno, R. O. (2013). To Explore Factors Influencing the Adoption and Use of ICT in Health Care – A case of Gertrude"s Children"s Hospital.

- Pagliari, C., Sloan, D., Gregor, P., Sullivan, F., Detmer, D., Kahan, J., Oortwijn, W., and MacGillivray, S., (2005), "What Is eHealth (4): A scoping exercise to map the field", Journal of Medical Internet Research, 7 (1), 330–333. Retrieved from http://www.jmir.org/2005/1/e9/.
- Pai, F. Y., & Huang, K. I. (2011). Applying the technology acceptance model to the introduction of healthcare information systems. Technological Forecasting and Social Change, 78(4), 650-660.
- Palestinian Central Bureau of Statistics, (2011). Household Survey on Information and Communications Technology. Retrieved August 19, 2016 from: http://www.pcbs.gov.ps/Downloads/book1809.pd.
- Palestinian Central Bureau of Statistics. (2012). World Information Society Day,(May). Retrieved from http://www.pcbs.gov. ps/portals/_pcbs/PressRelease/Press_En_ITWD2013E.pdf.
- Palestinian Central Bureau of Statistics. (2014). Household Survey on Information and Communications Technology. Retrieved from http://www.pcbs.gov.ps/Downloads/book2103.pdf.
- Palestinian Central Bureau of Statistics. (2016). Database of Labor Force,2015.Ramallah-Palestine.Retrievedfromhttp://www.pcbs.gov.ps/Downloads/book2194.pdf.
- Palestinian Information Technology Association of Companies. Retrieved from http://www.pita.ps/. (Accessed Dec. 1, 2016).

- Palestinian Ministry of Health. (2014). Palestinian National Health Strategy 2014-2016. Ramallah-Palestine. Retrieved from http://www.moh.ps/Content/Books/qnUY18Rl5ytCU8paOCdKtuJdu EK3isyvayYFMJHoOPS1A32h2ttv1Y_DOHrIaecDFUGDcRA4784 Q4cmum3zeBPhP6pplSENYMOmYQ8L5OcWb2.pdf.
- Palestinian Ministry of Telecommunication and Information Technology.
 (2013). National Strategy for Information Technology,
 Telecommunication, and Mail in Palestine. Ramallah Palestine.
- PCBS & MOH: The World Health Day (April 7th, 2014). Retrieved from http://www.pcbs.gov.ps/site/512/default.aspx?tabID=512&lang=en& ItemID=1079&mid=3172&wversion=Staging. (Accessed May 5,2017).
- Priest, H., Roberts, P., and Woods, L. (2002). An overview of three different approaches to the interpretation of qualitative data. Part 1: theoretical issues. The International Journal of Research Methodology in Nursing and Health Care. 10(1):30-42.
- Rajasekar, S., Philominathan, P., Chinnathambi, V., (2013). Research methodology. cornell university Librery, 3, 1–53.
- Ralph, L., & Holloway, J. (1969). Culture: A human domain. The University of Chicago Press Journal, 4(10), 395–412.
- Remenyi, D., Williams, B., Money, A. & Swartz, E. (2003) Doing research in business and management: An introduction to process and method, London, SAGE Publications.

- Reynaldo, J. Santos, A. (1999). "Cronbach's alpha: A tool for assessing the reliability of scales", Journal of Extension, 37(2). 1-4.
- Rho, M. J., Choi, I. Y., & Lee, J. (2014). Predictive factors of telemedicine service acceptance and behavioral intention of physicians.
 International Journal of Medical Informatics, 83(8), 559–571. http://doi.org/10.1016/j.ijmedinf.2014.05.005.
- Rose, J., & Fogarty, G. J. (2006). Determinants of perceived usefulness and perceived ease of use in the technology acceptance model: senior consumers' adoption of self-service banking Technologies. Academy of World Business, Marketing and Management Development Conference Proceedings, 2(10), 122–129.
- Sackmann, S., Eymann, T., M["]uller, G. (2002). "EMIKA Real-Time Controlled Mobile Information Systems in Health Care Applications". Proceedings of the Second Conference on Mobile Computing in Medicine, GIEdition Lecture Notes in Informatics; 2002 April 11; Heidelberg, Germany. Bonn, Germany: GI. 151-158.
- Saunders, M., Lewis, P., & Thornhill, A. (2009). Research Methods for Business Students. 5th edition. Pearson Education Limited. England. http://doi.org/10.1007/s13398-014-0173-7.2.
- Schaper, L. K., & Pervan, G. P. (2007). *ICT and OTs: A model of information and communication technology acceptance and utilisation by occupational therapists.* International Journal of

- Medical
 Informatics,
 1(76),
 212–221.

 http://doi.org/10.1016/j.ijmedinf.2006.05.028
- Sekaran, U. (2003), **Research methods for business** (4th ed.). Hoboken, NJ: John Wiley & Sons.
- Sekaran, U., and Bougie, R. (2010). Research Methods for Business: A Skill Building Approach. 5th Edition. John Wiley and Sons, New York.
- Sequist, T., Cook, D., Haas, J., & et al. (2008). "Moving Health Information Technology Forward". Journal of General Internal Medicine, 23(4): 355-357. DOI: 10.1007/s11606-008-0551-y.

Solutions for development consulting co. (2013). Palestinian ICT Sector

2.0: TechnologySectorDevelopmentReportandRecommendationsRelevant toRegionalandGlobalMarketOpportunities.2013,April.Retrievedfromhttp://techpresident.com/files/MC-KetKetKet

PITA_Palestinian_ICT_Sector_2_0_Report (5).pdf

- Song, J. and Zahedi, F. (2006). *Trust in health infomediaries*, Decision Support Systems, 43(2), 390-407. https://doi.org/10. 1016/j.dss.2006.11.011.
- Street, D. M. (2004). E-health drivers, applications, challenges ahead and strategies: A conceptual framework. Med Inform, 1(1), 39–47.

- Suomi, R. (2000). "Leapfrogging for Modern ICT Usage in the Health Care Sector". presented at Proceedings of the Eighth European Conference on Information Systems; Vienna; 2000.1269-1275.
- Tan, M., & Teo, T (2000). Factors influencing the adoption of internet banking. Journal of the Association for Information System, 1, (5), 2-20. http://aisel.aisnet.org/jais/vol1/iss1/5
- Tewksbury,R.(2009). Qualitative versus quantitative methods: understanding why qualitative methods are superior for criminology and criminal justice. Journal of Theoretical and Philosophical Criminology. 1(1), 38-58.
- Triandis, H. C. (1977). Subjective culture and interpersonal relations across culture. Annals of the New York academy of sciences, 285: 418–434. doi: 10.1111/j.1749-6632.1977.tb29370.x.
- Tsiknakis, M., & Kouroubali, A. (2009). Organizational factors affecting successful adoption of innovative e-health services: A case study employing the FITT framework. International Journal of Medical Informatics, 78(1), 39–52. http://doi.org/10.1016/j.ijmedinf .2008.07.001.
- Tung, F.-C., Chang, S.-C., & Chou, C.-M. (2008). An extension of trust and TAM model with IDT in the adoption of the electronic logistics Information system in HIS in the medical industry. International Journal of Medical Informatics, 77(5), 324–335. http://doi.org/10.1016/j.ijmedinf.2007.06.006.

- United Nations Development Programme, UNDP. (2016). Human Development Report 2016-Human Development for Everyone. USA. Retrieved from http://hdr.undp.org/sites/default/files/2016_ human_development_report.pdf.
- UNSCO. (2016). UNSCO Socio-Economic Report : Overview of the Palestinian Economy in Q1 / 2016. Office of the United Nations Special Coordinator for the Middle East Peace Process. Retrieved from http://www.unsco.org/Documents/Special/UNSCO Socio-Economic Report Q1 2016.pdf.
- Venkatesh, V. (2006). Where to go from here? Thoughts on future directions for research on individual-level technology adoption with a focus on decision making. Decision Sciences, 37(4), 497– 518.
- Venkatesh, V., and Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2): 273-315.
- Venkatesh, V., and Davis, F. (2000). A Theoretical extension of the technology acceptance model: four longitudinal field studies.
 Journal of Management Science, 46 (2), 186-204.
- Venkatesh, V., Morris, M., Davis, G., and Davis, F. (2003). User acceptance of information technology: toward A unified view.
 Journal of MIS Quarterly. 27 (3). 425-478. Retrieved from

https://nwresearch.wikispaces.com/file/view/Venkatesh+User+Acce ptance+of+Information+Technology+2003.pdf.

- Viitanen, J. (2009). A User-Centred Approach to Healthcare ICT Development. (M.Sc. dissertation, Espoo, Finland: Helsinki University of Technology, Department of Computer Science and Engineering). Retrieved from http://www.soberit.hut.fi/T-121/shared/thesis/lic thesis Viitanen.pdf.
- William, C. (2000). Research methods. Journal of Business and Economic Research, 5(3), 65–72. Retrieved from http://www.cluteinstitute.com/ojs/index.php/JBER/article/download/ 2532/2578.
- Wolfstadt JI, Gurwitz JH, Field TS, Lee M, Kalkar S, Wu W, & Rochon PA. (2008). The effect of computerized physician order entry with clinical decision support on the rates of adverse drug events: a systematic review. Journal of General Internal Medicine, 23(4):451–458.
- World Health Organization (WHO). (2012). Management of PatientInformation Trends and Challenges in Member States (Vol. 6).United Nation.
- World Health Organization (WHO). Everybody's business. Strengthening health systems to improve health outcomes:

- World Health Organization (WHO). **STRATEGY 2004-2007: eHealth for Health-care Delivery**. 2004.
- World Health Organization. (2006). Constitution of The World Health Organization- Basic Document Forthy-Fifth Edition. Retrieved from http://www.who.int/governance/eb/who_constitution_en.pdf.
- Wu, J., Shen, W., & Lin, L. (2008). Testing the technology acceptance model for evaluating healthcare professionals' intention to use an adverse event peporting system. International Journal for Quality in Health Care, 20(2), 123–129. http://doi.org/10.1093/intqhc/mzm074.
- Yarbrough AK1, Smith TB. (2007). Technology acceptance among physicians: a new take on TAM. Med Care Research and Review. 64(6):650-72. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/17717378.
- Yin, R. K. (2003) Case study research: Design and methods, 3rd edition, London, SAGE Publications.
- Yu, P., Li, H., & Gagnon, M.-P. (2009). *Health IT acceptance factors in long-term care facilities: A cross-sectional survey*. International Journal of Medical Informatics, 78(4), 219–229. http://doi.org/10.1016/j.ijmedinf.2008.07.006.

Zhang, Xiaojun. Using diffusion of innovation theory to understand the factors impacting patients' acceptance and use of consumer ehealth innovations in primary health care, Doctor of Philosophy thesis, School of Computing and Information Technology, University of Wollongong, 2015. http://ro.uow.edu.au/theses/4547

Annex

Annex (A)

The Main Type of Research

The research defined as the process of collecting, analyzing, and interpreting data in order to understand a phenomenon (William, 2000). Based on available literature, three types of research were distinguished (Saunders et al., 2009).

- Descriptive research: the objective of this type is 'to portray an accurate profile of persons, events or situations'. The descriptive study is considered an attempt to provide an accurate and clear picture of the phenomena on which the research aims to collect data about.
- Explanatory research: it also named Causal research; It aims to discover relationships between two or more variables and to determine their effects on one another. It is defined as, seeking elaboration, enhancement, illustration, clarification of the results from one method with results from the other method. This type gives priority to collect and analysis the quantitative data, also collecting quantitative data first in the sequence and, it used to refine the results from the quantitative data (Jalil, 2013).
- Exploratory research: it defined as a valuable means of finding out what is happening to seek new insights; to ask questions and to assess phenomena in new light. This technique is best utilized when the researcher wishes to get better understanding and more information of a

topic. The more popular methods of exploratory research design are literature searches, depth interviews, focus groups, and case analyses.

Briefly, exploratory research define as, using the results from one method to help inform the other method. This type Emphasizes on qualitative data more than the quantitative data, also there is sequence in data gathering (first collecting qualitative data followed by quantitative data) and, the quantitative data used to build on or explain the initial qualitative findings (Jalil, 2013).

Several interviews with specialists in targeted area is conducted in order to understand the research problem accurately, and to reveal its ambiguity. Also, to answer the research questions which are in the form of 'WHAT', and to highlight the most important factors that influence the adoption of e-health in Palestine, Therefore, exploratory research is used in this area11

Approach of Research

The basic and applied researches can be either quantitative or qualitative approach or even mix of both. The researcher anticipates the type of data needed to respond to the research question.

1. Quantitative Research Approach

The quantitative research approach is based on the measurement of quantity. The process is described or expressed in terms of one or more quantities; the finding of this research is basically a number or a group of numbers (Rajasekar et al., 2013). Quantitative methods are used when the researchers want to conduct statistical analysis, cover large samples or seek precision. Additionally, the qualitative research using statistical methods often begins with the collection of database on a theory or hypothesis or experiment followed by the application of descriptive or inferential statistical methods (Rajasekar et al., 2013). Quantitative data often come from surveys, structured interviews, observation checklists, or archival records (Jalil, 2013). The outcomes are often presented in graphs and tables.

2. Qualitative Research Approach

The qualitative research approach is concerned with qualitative phenomena involving quality. It is used when in-depth information is the key. Qualitative data describes the problems, behaviors, opinions, experience, attitudes, and beliefs. Also, the data are non-numerical in nature, and can come from key informant interviews, focus group discussions, open ended questionnaires, field notes, or personal log or journals (Jalil, 2013). Qualitative research usually generates descriptive results instead of predicting results. The outcome of this approach cannot be used to generalize due to typical small sample sizes, but it is used to get an initial understating of the research topic. Additionally, this type of research is mainly considered exploratory research because its goal is to give the research a full, detailed description and understanding of the study topic (Castellan, 2010).

The main difference between qualitative and quantitative research comes from the data collection instrument and data analysis instrument used in both approaches. Qualitative research takes an inductive approach in which theory is generated from research, as opposed to the deductive approach in quantitative research, in which research used to test the theory (Saunders et al., 2009).

3. Mixed Methods Research

Mixed method is a type of research in which a researcher or team of researchers combines elements of qualitative and quantitative research approaches to provide more in-depth information, understanding, and knowledge of the research topic. The method combines multiple techniques to collect and analyze the data also to enrich the research findings, these techniques may use at the same time or one after the other. For example, the researcher might start with face-to-face interviews with several individuals or have a focusing group and then use the result and finding to construct a questionnaire to measure attitudes in a large-scale sample with the aim of carrying out the statistical analysis (Jalil, 2013).

Each type of research approach has its limitations and that a combination between both provides a better understanding of research problems than either approach alone, also can make the research more comprehensive through avoiding the weaknesses of the two approaches mentioned above (Creswell, 2012). At the same time, the use of this approach demands greater time and effort than just using quantitative or

qualitative methods (Tewksbury, 2009). There are different types of mixed methods: Exploratory, Explanatory, and triangulation

Based on the research gap, an exploratory qualitative study was undertaken. The objective of this study was to explore the field of e-Health acceptance in Nablus governorate hospitals. Once this was undertaken, a better picture of this subject was understood. A qualitative discovery and finding was used in the formulation of the hypothesis testing for the quantitative study. Thus, hybrid methods approach was utilized to extend the breadth of the subject under investigation.

Case Study Research

The case study strategy was adopts as the appropriate strategy for research. Current sections briefly describe the case study strategy and justify its preference as opposed to other strategies.

There are multiple definitions and understandings of the case study research. Bromley (1990) defined case study as a systematic inquiry into an event or a set of related events, which aims to describe and explain the phenomenon of interest. Also, the unit of analysis can vary from an individual to a corporation.

Yin (2003) pointed that the case study is an "empirical inquiry that investigates a contemporary phenomenon within its real-life context, especially when the boundaries between phenomenon and context are not clearly evident". Case study method enables a researcher to closely examine the data within a specific context. Additionally, this method selects a small geographical area or a very limited number of individuals as the subjects of study (Eisenhardt, 1989). It also has been widely used as a research approach in government, information technology, military, businesses, education, law and so on (Feagin et al., 1991).

Researchers can adopt either a single-case or a multiple-case design depending on the issue in question. Case studies may involve both qualitative and quantitative research methods. A common method in a case study are in-depth interviews, focus groups, surveys and content analysis. The triangulation of findings from different methods provides a systematic way to find out "What's going on here" in each case's real-world context and to ensure construct validity (Feagin et al., 1991).

An exploratory survey assesses the awareness and attitudes of practitioners were conducted in three Palestinian hospitals located in Nablus province: A-Najah National University Hospital, Rafidia Hospital, and Specialized Arab Hospital. The research focused on a small number of cases in order to reach factors affecting e-Health system in Palestinian health sector.

Types of Data Collection

This research draws on two channels for the collection of data, (primary and secondary date collection):

- Primary Data: In this research the primary data obtained from a semistructured interviews and structural questionnaire. The interviews conducted with some IT specialist and some system users. While the questionnaire distributed to health workers employed in the targeted Palestinian hospitals since this research aimed to describe and analyze their perspectives, then the distributed questionnaires were collected and analyzed by making statistical analysis using SPSS software.
- 2. Secondary Data: This data was used to introduce the related study of the research, and was obtained from several sources, for example books, journals, reports, internet websites, and many other resources and references that were available and related to the research title. A literature review was introduced to help in preparing the research and classified the purpose of it, which focused in determining factors affecting using e-Health systems in the Palestinian health sector.

Annex (B)

The Questions of the Interview

Al-Najah National University

Faculty of Graduate Studies

Engineering Management Program

Thesis Title

Factors Affecting the Acceptance of E-Health System

A Case Study of Nablus Governorate Hospitals

Student Name: Mai S.Qutob Student Number: 11356618

This interview is submitted in Fulfillment of the Requirements for the Degree of Masters of Engineering Management, Faculty of Graduate Studies at An-Najah National University, Nablus- Palestine.

This interviews aims to answering the following questions:

- 1. What are the methods currently used in Palestinian hospitals?
- 2. What is the impact of medical staff experience using computers and modern methods of communication on the acceptance of electronic administration?
- 3. What is the definition of Electronic health (e-Health)?
- 4. What is the impression about the benefits that can be obtained as a result of using e-Health?

- 5. Does the prevailing culture of the use of technology in the community and among employees have great influence on the use of electronic health system?
- 6. Does the development of Information and Communication Technologies (ICT) tools and networks affect the adoption of the use of this new technology?
- 7. What are the most important external factors that are affecting the using of e- Health?
- 8. What are the forms of e-Health technology adopted in hospitals?
- 9. What is the role of management when hospital implement the e-Health system?
- 10. What is the relationship between each of the following factors on the adoption of e-Health:
- Output quality?
- Usefulness?
- Ease of use
- Risk?
- Culture?
- System characteristic?
- Employee training?

Thank You

جامعة النجاح الوطنية – نابلس

كلية الدراسات العليا

برنامج ماجستير الادارة الهندسية

العوامل المؤثرة على قبول نظام الصحة الإلكترونية

دراسة حالة لمستشفيات محافظة نابلس

الباحثة مي سمير قطب

هذه المقابلة هي جزء من المتطلبات اللازمة للقيام بإعداد اطروحة الماجستير – برنامج ماجستير الادارة الهندسية، جامعة النجاح الوطنية – نابلس

تهدف هذه المقابلة الى الاجابة عن الاسئلة التالية:

- ما هي الطريقة المستخدمة حاليا داخل المستشفيات في محافظة نابلس؟ (هل هي الطريقة التقليدية ام طريقة تعتمد على وجود نظام محوسب واضح الاستخدام؟)
 - 2. ماهي العوامل الاخرى
 - ماهي المعوقات
- 4. ما هو تأثير خبرة الاطباء والطاقم الطبي دخل المستشفيات في استخدام أجهزة الحاسوب وأساليب الاتصال الحديثة على قبول النظام الصحي الالكتروني؟
- ما هو تعريف النظام الصحي الالكتروني(e-Health electronic health system) ?
 (حسب ما هو مطبق داخل المستشفى)

- 6. ما هو الانطباع حول الفوائد التي يمكن الحصول عليها نتيجة لاستخدام النظام الصحي الالكتروني؟
- 7. هل الثقافة السائدة من استخدام التكنولوجيا لها تأثير كبير على استخدام النظام الصحي الالكتروني؟
- 8. هل التطور في ادوات تكنولوجيا المعلومات والاتصالات (ICT) يؤثر على اعتماد النظام الصحى الالكترونى داخل المستشفيات؟
 - 9. ما هي العوامل الخارجية الأكثر أهمية التي تــؤثر علــي اســتخدام النظـام الصـحي الالكترونى؟
 - .10 هل اعتماد النظام الصحي الإلكتروني يؤثر على زيادة الاعمال التي يتم انجازها داخل المستشفى؟
 - 11. هل يوجد علاقة بين كل من العوامل التالية والنظام الصحي الالكتروني:
 - جودة المخرجات من استخدام النظام الالكتروني؟
 - سهولة استخدام النظام؟
 - امن النظام وضمان سريه المعلومات؟
 - تدريب العاملين على النظام الصحي الالكتروني؟
 - توفر نظام الالكترونية بخصائص وميزات قويه ؟
 - المخاطر المتوقعة من استخدام النظام الصحي الالكتروني؟
 - الثقافة السائدة نحو استخدام النظام الصحى الالكترونى؟

Annex (C)

Questionnaire of

Factors Affecting the Adoption of e-Health System

Dear Sir/ Mrs.

This research aims to investigate Factors Affecting the Adoption of Electronic Health systems (e-Health) in Palestine, and then introduce e-Health adoption framework which can help the hospitals and health centers to spread this developed technology among Palestinian healthcare sector.

We believe that you are the best source to reach the required information, which serve our community and its development. We all hope to find cooperation from you through answering the questions contained in this survey. We pledge not to enclose the identity of participants, as well as only use this information in scientific research.

Best Regards,

The Researcher

*	Part One: Personal In	formatic)n
Ge	ender		
() Male	() Female
Ag	ge		
() 21- 30 years	() 31- 40 years
() 41 – 50 years	() More than 51 years.
Ex	perience		
() 1- 5 years	() 6- 10 years
Ye	ears		
() 11 – 15 years	() More than 16 years.
Jo	b		
() Doctors	() Pharmacist
() Nurse	() Laboratory Technician
() Radiologist		
<u>Pe</u>	rcentage of work comp	leted usi	ng the system instead of paper tool:
() 100%- 80%	() 79%- 60%
() 59%- 40%	() 39%- 20%
() Other		
<u>Sy</u>	<u>stem Usage</u>		
() Daily	() Almost daily
() Intermittently		
W	ork Place		
() Private hospital	() Governmental hospital

Factor		Strongly Agree	Agree	Natural	Disagree	Strongly Disagree
System Char.	 E-Health system is ease to use and clear. Using e- health system makes things done faster and improve customer service. E-Health system is strong because the percentage of system failure during using it is low. E-Health system is protected and secured because only people who are allowed can access to system data. 					
Training	The quality of training you got to use e-Health was good and enough. Training reduces errors and actually helps to accomplish tasks better and faster. Training increased my knowledge about system features and benefits.					
Fair of Acc.	E-Health system accurate in detecting errors which done during using it. Commitment to instructions and rules about using the system reduces errors that may actually occur. I take full responsibility if I use e- Health system incorrectly. The training I got it reduce my fear and frequency of using system					

Part Two: Please select the appropriate choice that best describe your perception.

	176		
	Administration may regards me not		
	responsible one if I repeated mistakes while using the system.		
Perceive Risk	The accuracy and strength of the e- Health system design reduced the perceived risk and system faults. The system will not be used if it is difficult and unsafe. Perceive usefulness of using system increased when the perceive risk less. Using separate account for all system users by using username and password is protected e-Health system from unauthorized access. E-Health system which use within the hospital is safety and high		
Perceive Useful.	confidenceUsing e- Health system makes the completion of the tasks and duties more easier and faster and less error.Using e- Health system increases the quality of my work.Using e- Health system is very useful for staff and patients		
Ease of Use	together.Ease of use of the system increasethe efficiency and accomplish taskswithin the hospital.Ease of use of the system enhanceemployee acceptance to use it.I can interact and deal with the e-Health system in a clear andunderstandable manner.Using e-Health system does notrequire a great effort.In general e-Health system is		
	flexible and uncomplicated.		

	Security and confidentiality level of the system increase perceive		
	usefulness from it.		
	Safety and confidentiality level of		
	the medical services increased after		
Output	using e-Health system.		
Quality	E-Health helps me in reduce errors in the services provided to patients.		
	Quality reports about the system outputs affect my desire to use it.		
	E-Health system useful in		
	providing medical services with		
	high quality and great accuracy.		
	People culture and their behavior fit		
	with the medical services in		
	conventional methods more than e-		
	Health medical services.		
	The shift from traditional work		
	method to e-Health system impact my performances negatively.		
Culture	I prefer the traditional work more		
	than using e-Health even though I		
	know it's more useful.		
	The usage of e-Health system		
	facing great difficulty due to staff		
	resistance to change towards		
	modern systems.		

استبانة حول

العوامل المؤثرة على قبول نظام الصحة الإلكترونية

دراسة حالة للمستشفيات في محافظة نابلس

الاخ الفاضل / الاخت الفاضلة: تحية طيبة وبعد،

تسعى الباحثة في هذه الاستبانة الى معرفة العوامل المؤثرة على تبني نظام الصحة الالكترونية في المستشفيات الفلسطينية، ومن ثم اقتراح إطار نظري لقبول نظام الصحة الإلكترونية من اجل مساعدة المستشفيات الفلسطينية في صياغة استر اتيجيات جديدة لتبني نظام الصحة الإلكترونية، وذلك بالتنسيق مع المؤسسات ذات الصلة من أجل تحقيق النجاح المنشود على أساس الإطار المقترح.

وحيث نؤمن انكم خير مصدر للوصول الى المعلومات المطلوبة، نتوجه اليكم وكلنا أمل ان نجد التعاون من قبلكم، وذلك من خلال الإجابة على الاسئلة الموجودة في هذه الاستبانة والتي نتعهد لكم بالمحافظة على عدم اظهار هوية المجيب عنها وعدم استخدامها في اي مجال غير مجال البحث العلمي.

ولكم جزيل الشكر والتقدير.

الباحثة :مي قطب.

جامعة النجاح الوطنية – ماجستير إدارة هندسية.

	179				
		ä	الشخصي	الجزء الاول: المعلومات	*
				<u>د:</u>	الجنس
	c) انشی)) ذکر)
				يفة	<u>الوظ</u>
) ممرض	دلي () صي)) دکتور)
	الثدعة) فني)) فني مختبر)
	دلاً من الورق:	النظام ب	باستخدام	حواليمن عملي و	<u>أنجز</u>
	%60-%79 ()		%80-%100 ()
() غير ذلك	%20-%39 ()		%40-%59 ()
				دم النظام بشكل:	استذ
() متقطع) شبه يومي)) يومي)
				:	العمر
) من 31- 40 سنة ()) من 21– 30 سنة)
) اکثر من 51 سنة))من 41– 50 سنة)
				سنوات الخبرة:	عدد
) 6 من – 10)) سنة - 5 سنوات)
) أكثر من 16 سنة)) من 11– 15 ()
				العمل	مكان
) مستشفى حكومي)) مستشفی خاص)

العامل	السيؤال	أو افق بشدة	أوافق	محايد	أعارض	أعارض بشدة
	يتميز نظام الصحة الالكترونية بســـهولة					
	استخدامه ووضوحه.					
	استخدام نظمام الصحة الإلكترونية					
	سيجعل إنجاز المهام اســرع وبالتــالي					
	خدمــة عــدد اكبــر مــن المرضـــى					
خصائص	و المر اجعين.					
النظام	يتميز نظام الصحة الالكترونية بالقوة بحيث					
	لا يحصل به فشل او خلل اثناء الاستخدام.					
	يتميز النظام بسريته وحمايته للمعلومات					
	ومنع وصول الاشخاص الغير مسموح					
	لهم لمعلومات النظام.					
	نوعية التدريب الذي تلقيتـــه لاســتخدام					
	النظام الالكتروني كانت كافية وجيدة.					
	يقلل التدريب من الاخطاء التي يمكن ان					
التدريب	اقع بها ويساعدني على انجــاز المهــام					
·	بشکل افضل و اسر ع.					
	ازدادت معرفتي بخصائص النظام بعد					
	تلقي التدريب.					
	نظام الصحة الالكترونيــة دقيــق فـــي					
	اكتشاف الاخطاء اثناء الاستخدام.					
الخوف	التزامي بتعليمات وفواعد استخدام النظام					
من	يقلل من الاخطاء التي قد اقع بها عنـــد					
المساءلة	استخدامه.					
(من	اتحمل المسؤولية الكاملة مــن اســتخدام					
ارتكاب	النظام بشكل خاطئ.					
الخطأ)	قلل التدريب الذي تلقيتـــه مـــن خـــوفي					
I	1	1			1	

وترددي من استخدامه

الجزء الثاني: أرجو اختيار الدرجة التي تتناسب مع تصوراتك للأسئلة التالية:

b	181
	قد تعتبرني الإدارة شخص غير مسئول
	وغير مبالي في حــال تكــرر عنــدي
	ارتكاب الاخطاء اثناء استخدام النظام.
	ساهمت دقة وقوة تصميم النظم في
	تقليل مخاطر الامان و السرية والاعطال
	المرتبطة باستخدام التكنولوجيا.
	افضل عدم استخدام النظام اذا كان
	صعب وغير آمن.
	تزداد الفائدة المتوقعة من استخدام النظم
الخطورة	الإلكتروني كلما قلت الخطورة المتوقعة من
المتوقعة	استخدامه.
	وجود كلمة سر لحساب المستخدم تحميه
	من الدخول غير المصرح به وتعرضـــه
-	للسرقة
	يتميز نظام الصحة الإلكترونية المستخدم
	داخل المستشفى بمستوى أمان جيد
	وسريه عالية للمعلومات.
	استخدام نظام الصحة الالكترونــي يجعــل
	انجاز المهام والواجبات اسهل واسرع واقل
الفائدة	خطا
المتوقعة	استخدام نظام الصحة الالكتروني سيزيد
	من جودة عملي بشكل ملموس.
	استخدام نظام الصحة الالكتروني يعود
	بالنفع على الموظفين و المرضى معا.
	تزيد سهولة استخدام نظم الصحة
	الالكترونية من كفاءة انجـــاز الاعمـــال
	والمهام داخل المستشفى.
سهونة	تعزز سهولة استخدام النظم قبول
الاستخدام	الموظفين له.
	استطيع التفاعل والتعامل مع نظم
	الصحة الالكترونية بشكل واضح
	ومفهوم.

	162		·
	استخدام نظام الصـــحة الالكترونيـــة لا		
ڊ	يحتاج الي جهد كبير .		
ڊ	بشكل عام نظام الصحة الالكترونية مرن		
9	وغير معقد		
č	يزيد مستوى السرية والأمــان للنظــام		
	الإلكتروني من الفائــدة المتوقعــة مــن		
)	استخدامه داخل المستشفى.		
١	ارتفع مستوى الامان والسرية للخــدمات		
	الطبية المقدمة بعد استخدام النظام.		
جودة -	ساعد النظام على تقليل الاخطاء فـــى		
لمخرجات	الاعمال والخدمات المقدمة للمرضى.		
5	تؤثر تقارير جوده مخرجات الاعمال من		
	النظام على رغبتي في استخدامه.		
_	يساعد النظام على تقديم خدمات طبيه		
	بجودة عالية ودقة كبيرة.		
i	تنسجم ثقافة الناس وسلوكهم مــع تقــديم		
	الخدمات الطبية بالطرق التقليدية اكثر		
	من الخدمات الطبية الالكترونية.		
	التحول من الطريقة التقليدية الى الطريقة		
	الالكترونية اثر سلبا على ادائي.		
	افضل القيام بالأعمال بالطريقة التقليدية		
الثقافة	على الطريقة الحديثة على الــرغم مــن		
	معرفتي انها ستقيدني في عملي.		
-	يواجه استخدام نظام الصحة الإلكتروني		
	يوب مست مستم مست موسوري		
	للتغير نحو الانظمة الحديثة.		
	لللغين بحق الاستعاد العديد ا		

وشكرا على تعاونكم

182

Appendix (D)

Experts and Arbitrators

Table 1: Arbitrators and experts who reviewed the questionnaire

Name	Position	Org. Name
Dr. Mohammed Othman	Coordinator of Engineering Management Program and Head of Industrial Engineering	An-Najah University
Dr. Ayham Jaaron	Assistant professor at the Industrial Engineering Department, and Director of ABET Centre at the Engineering Faculty	An-Najah University
Dr. Yahya Saleh	Assistant professor at the Industrial Engineering Department, and Instructor of Statistics	An-Najah University
Dr.ahmad Alshraydeh	Head of Management Information Systems Department	An-Najah University

Annex (E)

Tables

Table	(1)	: Number	of Nursing.
-------	-----	----------	-------------

Name of hospital	Rafidia	Specialized Arabic	An-Najah
Number of nurses	200	130	178
Doctor	180	20	31
Laboratory technician	33	9	21
Radiologist	21	5	10
Pharmacist	10	5	9

Resource: Human resource department, 2016

Table (2): Descriptive of statistical differences among participants
according to their ages

Factors	Age	N	Mean	Std.
raciors	Age	ΤN	witan	
				Deviation
System	21-30 years	210	3.71	.722
Characteristics	31-40 years	57	3.73	.692
	41- 50 years	25	3.90	.781
	More than 51 years	8	3.97	.574
	Total	300	3.74	.717
Training	Training 21- 30 years		3.67	.777
	31-40 years	57	3.86	.556
	41- 50 years	25	3.88	.757
	More than 51 years	8	4.00	.563
	Total	300	3.73	.737
Fear of	21- 30 years	210	3.72	.546
Accountability	31-40 years	57	3.82	.479
	41- 50 years	25	3.90	.731
	More than 51 years		3.70	.763
Total		300	3.75	.558
Perceived Risk	Perceived Risk 21- 30 years		3.97	.578
	31-40 years	57	3.86	.522
	41- 50 years	25	3.74	.505
	More than 51 years	8	4.03	.759
	Total	300	3.93	.569

Factors	Age	Ν	Mean	Std.
				Deviation
Perceived	21- 30 years	210	4.10	.992
Usefulness	31-40 years	57	4.11	.615
	41- 50 years	25	4.03	.739
	More than 51 years	8	3.83	.777
	Total	300	4.09	.905
Ease of Use	21- 30 years	210	3.97	.694
	31-40 years	57	4.02	.664
	41- 50 years	25	3.92	.739
	More than 51 years	8	3.97	.935
	Total	300	3.97	.695
	21- 30 years	210	3.59	.718
	31-40 years	57	3.62	.677
Intention	41- 50 years	25	3.76	.647
	More than 51 years	8	3.13	.916
	Total	300	3.60	.713
	21- 30 years	210	3.93	.627
Output	31-40 years	57	3.91	.659
Output Quality	41- 50 years	25	3.92	.766
Quanty	More than 51 years	8	4.05	.826
	Total	300	3.93	.648
	21- 30 years	210	3.31	.943
	31-40 years	57	3.20	.889
Culture	41- 50 years	25	3.35	1.002
	More than 51 years	8	3.38	.807
	Total	300	3.29	.931
	21- 30 years	210	3.81	.465
	31-40 years	57	3.82	.428
Total Score	41- 50 years	25	3.84	.534
	More than 51 years	8	3.84	.582
	Total	300	3.81	.465

Factors	0	F	Sig.
System	Between	.804	.492
Characteristics	Groups		,2
T	Between	1.77	.153
Training	Groups		
Fear of	Between	1.18	.318
Accountability	Groups		
Perceived Risk	Between	1.57	.197
rerceived KISK	Groups		
Perceived	Between	.275	.843
Usefulness	Groups		
Ease of Use	Between	.126	.944
	Groups		
Intention	Between	1.647	.179
	Groups		
Output Quality	Between	.111	.954
Output Quality	Groups		
Culture	Between	.308	.820
Culture	Groups		
Total Saara	Between	.058	.982
Total Score	Groups		

Table (3): ANOVA Test for age differences among participants

Table (4): Descriptive of statistical differences among participants according to their Experience years.

Factors	Voor Experience	_	v	Std.
Factors	Year Experience	Ν	Mean	Std.
				Deviation
System	1-5 years	192	3.73	.697
Characteristics	6- 10 years	53	3.72	.744
	11 – 15 years	30	3.54	.866
	More than 16 years.	25	4.03	.546
	Total	300	3.74	.717
Training	1- 5 years	192	3.67	.764
	6- 10 years	53	3.87	.632
	11 – 15 years	30	3.76	.758
	More than 16 years.	25	3.91	.677
	Total	300	3.73	.737
Fear of	1- 5 years	192	3.72	.526
Accountability	6- 10 years	53	3.80	.523
	11 – 15 years	30	3.71	.684
	More than 16 years.	25	3.96	.673
	Total	300	3.75	.558

187				
Factors	Year Experience	Ν	Mean	Std. Deviation
Perceived Risk	1- 5 years	192	3.95	.586
	6-10 years	53	3.92	.538
	11 – 15 years	30	3.91	.503
	More than 16 years.	25	3.79	.587
	Total	300	3.93	.569
Perceived	1- 5 years	192	4.12	.987
Usefulness	6-10 years	53	4.03	.677
	11 – 15 years	30	4.07	.907
	More than 16 years.	25	4.04	.676
	Total	300	4.09	.905
Ease of Use	1- 5 years	192	3.96	.679
	6- 10 years	53	4.03	.682
	11 – 15 years	30	3.95	.848
	More than 16 years.	25	3.98	.686
	Total	300	3.97	.695
	1- 5 years	192	3.61	.712
	6- 10 years	53	3.60	.762
Intention	11 – 15 years	30	3.50	.643
	More than 16 years.	25	3.62	.726
	Total	300	3.60	.713
	1- 5 years	192	3.93	.628
Output	6- 10 years	53	3.91	.734
Quality	11 – 15 years	30	3.89	.627
Quanty	More than 16 years.	25	4.02	.659
	Total	300	3.93	.648
	1- 5 years	192	3.24	.793
	6- 10 years	53	3.50	.910
Culture	11 – 15 years	30	3.20	.720
	More than 16 years.	25	3.41	.914
	Total	300	3.29	.821
	1- 5 years	192	3.80	.444
	6-10 years	53	3.84	.526
Total Score	11 – 15 years	30	3.76	.526
	More than 16 years.	25	3.89	.478
	Total	300	3.81	.465

Factors		F	Sig.
System	Between Groups	2.172	.091
Characteristics			
Training	Between Groups	1.565	.198
Fear of	Between Groups	1.607	.188
Accountability			
Perceived Risk	Between Groups	.621	.602
Perceived	Between Groups	.159	.924
Usefulness			
Ease of Use	Between Groups	.140	.936
Intention	Between Groups	.213	.887
Output Quality	Between Groups	.243	.866
Culture	Between Groups	1.696	.168
Total Score	Between Groups	.495	.686

Table (5): ANOVA Test for age differences among participants

 Table (6): Descriptive of statistical differences among participants according to their Job.

Factors	Job	N	Mean	Std.
				Deviation
System	Doctor	77	3.56	.738
characteristics	Pharmacist	19	3.47	.533
	Nurse	148	3.88	.744
	Laboratory Technician	37	3.76	.582
	Radiologist	19	3.57	.600
	Total	300	3.74	.717
Training	Doctor	77	3.47	.792
	Pharmacist	19	3.53	.602
	Nurse	148	3.87	.692
	Laboratory Technician	37	3.81	.674
	Radiologist	19	3.79	.826
	Total	300	3.73	.737
Fair of	Doctor	77	3.54	.578
Accountability	Pharmacist	19	3.63	.605
	Nurse	148	3.88	.538
	Laboratory Technician	37	3.75	.528
	Radiologist	19	3.75	.370
	Total	300	3.75	.558

Factors	Job N		Mean	Std.
				Deviation
Perceived	Doctor	77	3.83	.554
Risk	Pharmacist	19	3.69	.464
	Nurse	148	4.02	.608
	Laboratory	27	2 00	470
	Technician	37	3.90	.478
	Radiologist	19	3.88	.473
	Total	300	3.93	.569
Usefulness	Doctor	77	3.87	.776
	Pharmacist	19	3.89	.629
	Nurse	148	4.25	1.029
	Laboratory	27	4.00	617
	Technician	37	4.09	.617
	Radiologist	19	3.93	.893
	Total	300	4.09	.905
	Doctor	77	3.77	.782
	Pharmacist	19	3.98	.447
	Nurse	148	4.07	.695
Ease of Use	Laboratory	27	4.08	557
	Technician	37		.557
	Radiologist	19	3.85	.635
	Total	300	3.97	.695
	Doctor	77	3.48	.690
	Pharmacist	19	3.58	.559
	Nurse	148	3.66	.747
Intention	Laboratory	37	3.57	.747
	Technician	57		./4/
	Radiologist	19	3.68	.582
	Total	300	3.60	.713
	Doctor	77	3.73	.620
	Pharmacist	19	3.54	.476
Qutnut	Nurse	148	4.06	.681
Output Quality	Laboratory	37	3.99	512
	Technician	57	5.99	.512
	Radiologist	19	3.95	.565
	Total	300	3.93	.648
	Doctor	77	3.11	.766
Culture	Pharmacist	19	3.11	.578
Culture	Nurse	148	3.44	.883
	Laboratory	37	3.36	.767

190				
	Technician			
	Radiologist	19	2.98	.623
Total		300	3.29	.821
	Doctor	77	3.63	.479
	Pharmacist	19	3.62	.298
	Nurse	148	3.93	.474
Total Score	Laboratory Technician	37	3.84	.373
	Radiologist	19	3.74	.325
	Total	300	3.81	.465

Table (7): ANOVA Test for Job differences among participants
--

Factors		F	Sig.
System Characteristics	Between Groups	3.713	.006*
Training	Between Groups	4.468	.002*
Fair of Accountability	Between Groups	5.123	.001*
Perceived Risk	Between Groups	2.449	.046*
Perceived Usefulness	Between Groups	2.641	.034*
Ease of Use	Between Groups	2.685	.032*
Intention	Between Groups	.881	.476
Output Quality	Between Groups	5.574	.000*
Culture	Between Groups	3.143	.015*
Total Score	Between Groups	7.015	.000*

Factors		(T)	Maar	C:-
Factors	(I)	(J)	Mean	Sig.
			Differen	
			ce (I-J)	
System		Pharmacists	.085	.639
Characteris		Nurses	322*	.001
tic	Doctor	laboratory	198	.160
		Technicians	190	.100
		Radiologist	007	.968
		Doctor	085	.639
		Nurses	406*	.019
	Pharmacists	laboratory		156
		Technicians	283	.156
		Radiologist	092	.687
		Doctor	.322*	.001
		Pharmacists	.406*	.019
	Nurses	laboratory	102	240
		Technicians	.123	.342
		Radiologist	.314	.068
		Doctor	.198	.160
	laboratory	Pharmacists	.283	.156
	Technicians	Nurses	123	.342
		Radiologist	.191	.338
		Doctor	.007	.968
		Pharmacists	.092	.687
	Radiologist	Nurses	314	.068
	Č I	laboratory		
		Technicians	191	.338
* That		e is significant at th	. 0.05.11	

 Table (8): LSD Test for age differences among participants (System Characteristic)

Factors	(I)	(J)	Mean D'ffean	Sig.
			Differen ce (I-J)	
Training		Pharmacists	- 059	.750
		Nurses	402*	.000
	Doctor	laboratory Technicians	343*	.018
		Radiologist	322	.082
		Doctor	.059	.750
		Nurses	343	.052
	Pharmacists	laboratory Technicians	284	.163
		Radiologist	263	.261
		Doctor	.402*	.000
		Pharmacists	.343	.052
	Nurses	laboratory Technicians	.059	.659
		Radiologist	.080	.649
		Doctor	.343*	.018
	laboratory	Pharmacists	.284	.163
	Technicians	Nurses	059	.659
		Radiologist	.021	.916
		Doctor	.322	.082
		Pharmacists	.263	.261
	Radiologist	Nurses	080	.649
		laboratory Technicians	021	.916

Table (9): LSD Test for age differences among participants (Training)

E (<u>(T)</u>		C .	
Factors	(I)	(J)	Mean	Sig.	
			Differen		
			ce (I-J)		
Fair of		Pharmacists	091	.512	
Accountabi		Nurses	337*	.000	
lity	Doctor	laboratory	211	.053	
Fair of		Technicians	211	.033	
Accountabi		Radiologist	207	.138	
lity		Doctor	.091	.512	
		Nurses	245	.065	
	Pharmacists	laboratory	120	.435	
		Technicians	120	.433	
		Radiologist	116	.512	
		Doctor	.337*	.000	
	Nurses	Pharmacists	.245	.065	
	INUISES	laboratory	.126	200	
		Technicians	.120	.209	
		Radiologist	.130	.328	
		Doctor	.211	.053	
	laboratory	Pharmacists	.120	.435	
	Technicians	Nurses	126	.209	
	-	Radiologist	.004	.979	
		Doctor	.207	.138	
	Radiologist	Pharmacists	.116	.512	
		Nurses	130	.328	
		laboratory	004	070	
		Technicians	004	.979	
* The mean difference is significant at the 0.05 level					

 Table (10): LSD Test for age differences among participants (Fair of Accountability)

_		rceived Risk)		~	
Factors	(I)	(J)	Mean	Sig.	
			Differen		
			ce (I-J)		
Perceived		Pharmacists	.139	.336	
Risk		Nurses	189*	.018	
	Doctor	laboratory	069	.541	
		Technicians	009	.341	
		Radiologist	050	.727	
		Doctor	139	.336	
		Nurses	328*	.017	
	Pharmacists	laboratory	208	.192	
		Technicians	208	.192	
		Radiologist	189	.301	
		Doctor	.189*	.018	
		Pharmacists	.328*	.017	
	Nurses	laboratory	.120	.247	
		Technicians	.120	.247	
		Radiologist	.139	.313	
		Doctor	.069	.541	
	laboratory	Pharmacists	.208	.192	
	Technicians	Nurses	120	.247	
		Radiologist	.018	.908	
		Doctor	.139	.727	
		Pharmacists	189 [*]	.301	
	Radiologist	Nurses	069	.313	
		laboratory	050	.908	
		Technicians	030	.908	
* The mean difference is significant at the 0.05 level					

 Table (11): LSD Test for age differences among participants

 (Perceived Risk)

	```	ived Userumess)	NÆ	C •		
Factors	(I)	(J)	Mean	Sig.		
			Differen			
			ce (I-J)			
Perceived		Pharmacists	020	.930		
Usefulness		Nurses	373*	.003		
	Doctor	laboratory	216	.230		
		Technicians	210	.230		
		Radiologist	055	.809		
		Doctor	.020	.930		
		Nurses	353	.107		
	Pharmacists	laboratory	195	.440		
		Technicians	195	.440		
		Radiologist	035	.904		
		Doctor	.373*	.003		
		Pharmacists	.353	.107		
	Nurses	laboratory	.158	.339		
		Technicians	.138	.339		
		Radiologist	.318	.146		
		Doctor	.216	.230		
	laboratory	Pharmacists	.195	.440		
	Technicians	Nurses	158	.339		
		Radiologist	.160	.526		
		Doctor	.055	.809		
		Pharmacists	.035	.904		
	Radiologist	Nurses	318	.146		
		laboratory	160	506		
		Technicians	160	.526		
* The mean difference is significant at the 0.05 level						

 Table (12): LSD Test for age differences among participants

 (Perceived Usefulness)

Use)					
Factors	(I)	(J)	Mean	Sig.	
			Differen		
			ce (I-J)		
Ease of Use		Pharmacists	205	.246	
		Nurses	294*	.003	
	Doctor	laboratory	307*	.026	
		Technicians	307	.020	
		Radiologist	079	.656	
		Doctor	.205	.246	
		Nurses	089	.597	
	Pharmacists	laboratory	102	.599	
		Technicians	102	.399	
		Radiologist	.126	.572	
		Doctor	.294*	.003	
	Nuraaa	Pharmacists	.089	.597	
	Nurses	laboratory	014	.915	
		Technicians	014	.915	
		Radiologist	.215	.201	
		Doctor	.307*	.026	
	laboratory	Pharmacists	.102	.599	
	Technicians	Nurses	.014	.915	
		Radiologist	.228	.240	
		Doctor	.079	.656	
		Pharmacists	126	.572	
	Radiologist	Nurses	215	.201	
		laboratory	228	.240	
		Technicians	220	.240	
* The mean difference is significant at the 0.05 level					

 Table (13): LSD Test for age differences among participants (Ease of Use)

Quality)						
Factors	(I)	(J)	Mean	Sig.		
			Differen			
			ce (I-J)			
Output		Pharmacists	.190	.161		
Quality		Nurses	335*	.088		
	Doctor	laboratory	262*	.126		
		Technicians	202	.120		
		Radiologist	220	.161		
		Doctor	190	.161		
		Nurses	525*	.153		
	Pharmacists	laboratory	452 [*]	.178		
		Technicians		.170		
		Radiologist	411 [*]	.204		
		Doctor	.335*	.088		
		Pharmacists	.525*	.153		
	Nurses	laboratory	.073	.116		
		Technicians	.075	.110		
		Radiologist	.115	.153		
		Doctor	.262*	.126		
	laboratory	Pharmacists	.452*	.178		
	Technicians	Nurses	073	.116		
		Radiologist	.042	.178		
		Doctor	.220	.161		
		Pharmacists	.411*	.204		
	Radiologist	Nurses	115	.153		
		laboratory	042	.178		
		Technicians	042	.1/0		

 Table (14): LSD Test for age differences among participants (Output Quality)

(I)	(J)	Mean	Sig.
	DI	. ,	
		.000	.233
	Nurses	441	.128
Doctor	laboratory	162	.182
_	Technicians	102	.102
	Radiologist	.211	.233
	Doctor	.000	.233
	Nurses	441 [*]	.222
Pharmacists	laboratory	162	.257
	Technicians	102	.237
	Radiologist	.211	.295
	Doctor	.441*	.128
	Pharmacists	.441*	.222
Nurses	laboratory		.167
	Technicians		.107
	Radiologist	.651*	.222
	Doctor	.162	.182
laboratory	Pharmacists	.162	.257
Technicians	Nurses	279	.167
	Radiologist	.373	.257
	Doctor	.000	.233
	Pharmacists	441 [*]	.128
Radiologist	Nurses	162	.182
_	laboratory	211	222
	Technicians	.211	.233
	Doctor Pharmacists Nurses laboratory Technicians	PharmacistsDoctorPharmacistsNursesNursesDoctorIaboratoryTechniciansRadiologistPharmacistsIaboratoryPharmacistsIaboratoryPharmacistsIaboratoryTechniciansRadiologistNursesDoctorPharmacistsIaboratoryTechniciansRadiologistNursesIaboratoryTechniciansRadiologistNursesIaboratoryTechniciansRadiologistNursesDoctorIaboratoryPharmacistsRadiologistNursesRadiologistNursesRadiologistNursesRadiologistNursesRadiologistNursesIaboratoryTechniciansRadiologistNursesIaboratoryTechniciansRadiologistNursesIaboratoryTechnicians	Differen ce (I-J)Pharmacists.000Nurses441*Doctorlaboratory TechniciansRadiologist.211Radiologist.211Pharmacistslaboratory TechniciansPharmacistslaboratory TechniciansPharmacistslaboratory TechniciansNurses162Radiologist.211Nurseslaboratory TechniciansNurses.211NursesDoctorAdiologist.211Nurseslaboratory TechniciansNurseslaboratory TechniciansNurses.279Radiologist.651*Iaboratory Technicians.279Radiologist.651*Doctor.162Iaboratory Technicians.279Radiologist.373Doctor.000Pharmacists.162Iaboratory Technicians.211Radiologist.373Doctor.000Pharmacists.162Iaboratory Technicians.211

 Table (15): LSD Test for age differences among participants (Culture)

Factors	Job	Ν	Mean	Std.
				Deviation
System	100%- 80%	167	3.81	.720
characteristics	79%- 60%	84	3.74	.685
	59%- 40%	30	3.53	.721
	39%- 20%	16	3.41	.706
	Others	3	3.25	.901
	Total	300	3.74	.717
Training	100%- 80%	167	3.77	.781
	79%- 60%	84	3.81	.628
	59%- 40%	30	3.46	.795
	39%-20%	16	3.52	.620
	Others	3	3.67	.577
	Total	300	3.73	.737
Fair of	100%- 80%	167	3.80	.550
Accountability	79%- 60%	84	3.75	.572
	59%- 40%	30	3.66	.549
	39%-20%	16	3.46	.520
	Others	3	3.40	.529
	Total	300	3.75	.558
Perceived	100%- 80%	167	3.92	.559
Risk	79%- 60%	84	4.04	.548
	59%- 40%	30	3.75	.666
	39%-20%	16	3.84	.548
	Others	3	3.73	.416
	Total	300	3.93	.569
Usefulness	100%- 80%	167	4.17	1.015
	79%- 60%	84	4.07	.731
	59%- 40%	30	4.02	.672
	39%- 20%	16	3.54	.815
	Others	3	3.78	.192
	Total	300	4.09	.905
	100%- 80%	167	4.05	.668
	79%- 60%	84	3.98	.715
	59%- 40%	30	3.91	.680
Ease of Use	39%-20%	16	3.39	.609
	Others	3	3.47	.924
	Total	300	3.97	.695

 Table (16): Descriptive of statistical differences among participants according to their Completed Works.

	200					
Factors	Job	Ν	Mean	Std.		
				Deviation		
	100%- 80%	167	3.59	.731		
	79%- 60%	84	3.66	.664		
Intention	59%- 40%	30	3.43	.728		
Intention	39%- 20%	16	3.69	.814		
	Others	3	3.50	.000		
	Total	300	3.60	.713		
	100%- 80%	167	3.97	.636		
	79%- 60%	84	3.98	.582		
Output	59%- 40%	30	3.79	.749		
Quality	39%- 20%	16	3.48	.748		
- •	Others	3	3.60	.693		
	Total	300	3.93	.648		
	100%- 80%	167	3.21	.856		
	79%- 60%	84	3.37	.782		
Culture	59%- 40%	30	3.47	.860		
Culture	39%- 20%	16	3.50	.544		
	Others	3	3.44	.192		
	Total	300	3.29	.821		
	100%- 80%	167	3.84	.463		
	79%- 60%	84	3.85	.447		
Total Score	59%- 40%	30	3.70	.496		
i utai scure	39%-20%	16	3.53	.418		
	Others	3	3.53	.512		
	Total	300	3.81	.465		

participants					
	F	Sig.			
Between	2 272	.062			
Groups	2.272	.002			
Between	1 706	.149			
Groups	1.700	.149			
Between	1 012	.108			
Groups	1.915	.108			
Between	1 709	120			
Groups	1./90	.129			
Between	1 077	.098			
Groups	1.977	.098			
Between	3 060	.004*			
Groups	5.909	.004			
Between	613	.632			
Groups	.045	.052			
Between	2 881	.023*			
Groups	2.001	.025			
Between	1 254	.288			
Groups	1.234	.288			
Between	2622	025			
Groups	2.032	.035			
	Between Groups Between Groups Between Groups Between Groups Between Groups Between Groups Between Groups Between Groups Between Groups Between Groups Between Groups Between	FBetween Groups2.272Between Groups1.706Between Groups1.913Between Groups1.913Between Groups1.798Between Groups1.977Between Groups3.969Between Groups.643Between Groups2.881Between Groups1.254Between Groups1.254Between Groups2.632			

Table (17): ANOVA Test for Completed Works differences among participants

*. The mean difference is significant at the 0.05 level.

201

participants (Ease of Use)							
Factors	(I)	(J)	Mean	Sig.			
			Differen	_			
			ce (I-J)				
Ease of Use	100%- 80%	79% - 60%	.072	.432			
		59% - 40%	.144	.289			
		39% - 20	.663*	.000			
		Other	.584	.143			
	79%- 60%	100% - 80%	072	.432			
		59% - 40%	.072	.620			
		39% - 20	.591*	.002			
		Other	.512	.202			
		100% - 80%	144	.289			
	59%- 40%	79% - 60%	072	.620			
		39% - 20	.519*	.015			
		Other	.440	.288			
		100% - 80%	663*	.000			
	39%- 20%	79% - 60%	591 [*]	.002			
	39/0-20/0	39% - 20	519 [*]	.015			
		Other	079	.854			
		100% - 80%	584	.143			
	Other	79% - 60%	512	.202			
	Outer	59% - 40%	440	.288			
		39% - 20	.079	.854			
	1:00			-			

 Table (18): LSD Test for Completed Works differences among participants (Ease of Use)

	parucipan	ts (Output Quality)	
Factors	(I)	(J)	Mean	Sig.
			Differen	
			ce (I-J)	
Output	100%- 80%	79% - 60%	012	.888
Quality	Ī	59% - 40%	.178	.162
	Ī	39% - 20	.496*	.003
		Other	.371	.320
	79%- 60%	100% - 80%	.012	.888
		59% - 40%	.190	.164
	Ī	39% - 20	.508*	.004
		Other	.383	.309
		100% - 80%	178	.162
	59%-40%	79% - 60%	190	.164
		39% - 20	.318	.109
		Other	.193	.618
		100% - 80%	496*	.003
	39%-20%	79% - 60%	508*	.004
	39/0-20/0	39% - 20	318	.109
		Other	125	.756
		100% - 80%	371	.320
	Other	79% - 60%	383	.309
	Other	59% - 40%	193	.618
		39% - 20	.125	.756
	1:00			

 Table (19): LSD Test for Completed Works differences among participants (Output Quality)

	according to their	bystem	i Usagi.	
Factors	System Usage	Ν	Mean	Std.
				Deviation
System	Daily	235	3.72	.743
characteristics	Almost daily	50	3.83	.579
-	Intermittently	15	3.62	.731
	Total	300	3.74	.717
Training	Daily	235	3.78	.734
	Almost daily	50	3.66	.577
	Intermittently	15	3.27	1.071
	Total	300	3.73	.737
Fair of	Daily	235	3.78	.577
Accountability	Almost daily	50	3.67	.444
	Intermittently	15	3.63	.585
	Total	300	3.75	.558
Perceived	Daily	235	3.94	.587
Risk	Almost daily	50	3.90	.519
	Intermittently	15	3.91	.453
	Total	300	3.93	.569
Usefulness	Daily	235	4.11	.977
	Almost daily	50	4.07	.567
-	Intermittently	15	3.89	.613
-	Total	300	4.09	.905
	Daily	235	3.98	.730
-	Almost daily	50	3.97	.547
Ease of Use	Intermittently	15	3.99	.612
-	Total	300	3.97	.695
	Daily	235	3.61	.710
-	Almost daily	50	3.58	.717
Intention	Intermittently	15	3.50	.779
-	Total	300	3.60	.713
	Daily	235	3.94	.669
Output	Almost daily	50	3.90	.539
Quality	Intermittently	15	3.89	.684
Quanty	Total	300	3.93	.648
	Daily	235	3.27	.842
	Almost daily	50	3.40	.744
Culture	Intermittently	15	3.40	.747
	Total	300	3.29	.821
	Daily	235	3.82	.482
	Almost daily	50	3.80	.366
Total Score	Intermittently	15	3.72	.502
	Total	300	3.81	.465
	10101	500	5.01	

 Table (20): Descriptive of statistical differences among participants according to their System Usage.

	participant	5	
Factors		F	Sig.
System	Between	.666	.515
Characteristics	Groups	.000	.313
Training	Between	3.740	.025*
Training	Groups	5.740	.023
Fair of	Between	1.184	.308
Accountability	Groups	1.104	.508
Perceived Risk	Between	.104	.901
rerceived Kisk	Groups	.104	.901
Perceived	Between	.431	.651
Usefulness	Groups	.431	.031
Ease of Use	Between	.005	.995
Ease of Use	Groups	.003	.995
Intention	Between	.182	.883
Intention	Groups	.162	.005
Output Quality	Between	.096	.908
Output Quality	Groups	.090	.908
Culture	Between	694	505
Culture	Groups	.684	.505
Total Soors	Between	240	721
Total Score	Groups	.340	.721

Table (21): ANOVA Test for System Usage differences among participants

*. The mean difference is significant at the 0.05 level.

Table (22): LSD Test for Completed Works differences among participants (Training)

Factors	(I)	(J)	Mean Differen ce (I-J)	Sig.
Training	Daily	Almost daily	.117	.303
		Intermittent	.511*	.009
	Almost	Daily	117	.303
	daily	Intermittent	.393	.068
	Intermittent	Daily	511*	.009
	ly	Almost daily	393	.068

*. The mean difference is significant at the 0.05 level.

205

	K Flace.	•	
Gender	Ν	Mean	Std.
			Deviation
Private	150	3.64	.809
Governmental	150	3.83	.601
Private	150	3.73	.722
Governmental	150	3.73	.754
Private	150	3.70	.585
Governmental	150	3.80	.527
Private	150	3.95	.574
Governmental	150	3.91	.565
Private	150	3.95	.823
Governmental	150	4.23	.963
Private	150	3.90	.757
Governmental	150	4.05	.622
Private	150	3.65	.663
Governmental	150	3.54	.757
Private	150	3.87	.680
Governmental	150	3.98	.612
Private	150	3.36	.747
Governmental	150	3.22	.886
Private	150	3.78	.501
Governmental	150	3.85	.425
	GenderPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivatePrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivateGovernmentalPrivate	Private150Governmental150Private150Governmental150Private150Governmental150Governmental150Private150Governmental150Private150Governmental150Private150Governmental150Private150Governmental150Private150Governmental150Private150Governmental150Private150Governmental150Private150Governmental150Private150Private150Private150Private150Private150Private150Private150Private150Private150Private150	GenderNMeanPrivate1503.64Governmental1503.83Private1503.73Governmental1503.73Private1503.73Private1503.70Governmental1503.80Private1503.95Governmental1503.91Private1503.95Governmental1503.95Governmental1503.95Governmental1503.90Governmental1503.65Governmental1503.65Governmental1503.54Private1503.87Governmental1503.98Private1503.36Governmental1503.22Private1503.78

 Table (23): Statistical Differences among Participants According to their Work Place.

Table (24): Indepe	ndent Samples	Test for V	Work Plac	e Differences
	among Par	ticipants		

	mong i ai m	I	
Factors	t-test	for Equality	of Means
	t	Df	Sig. (2-tailed)
System	2 260	298	.024
Characteristics	-2.269	298	.024
Training	026	298	.979
Fear of	-1.515	298	.131
Accountability	-1.313	298	.131
Perceived Risk	.466	298	.641
Perceived Usefulness	-2.685	298	.008
Ease of Use	-1.867	298	.063
Intention	1.339	298	.182
Output Quality	-1.392	298	.165
Culture	1.479	298	.140
Total Score	-1.357	298	.176

Table (25): Describe Pearson Correlation between all factors.

Factor		System	Traini	Fair of	Perceiv	Perceive	Ease	Intentio	Outp	Cultu
		Characteri	ng	Accountabil	ed Risk	q	of Use	u	ut	re
		stics)	ity		Usefulne			Qualit	
						SS			У	
System	Pearson	1	د ۲0**	۲1 ۲ ^{**}	130 ^{**}	£10 ^{**}	43 1 **	130*	**	100
Characteris	Correlation	Ι	64C.	C10.	001.	010	100.	001.	170.	100.
tics	Sig. (2-tailes)		000.	000.	.000	000.	000.	.017	000.	.159
	Pearson	510**	. 	×*0	ADA **	306**	50A**	177**	106 ^{**}	000
Training	Correlation	(+ C.	I	ユビビ ・		066.	+70.	.1//	.+70	070.
	Sig. (2-tailes)	000 ⁻		000 [.]	000.	000 [.]	000.	.002	000^{-1}	.122
Fair of	Pearson	۲15 ^{**}	**	-	195**	**CVV	×* 400	1 A6*	**'772	126*
Accountabil	Correlation	C10.	7CC.	I	C04.	7++.	77C.	.140	.040	001.
ity	Sig. (2-tailes)	000.	000 [.]		000 [.]	000 [.]	000 [.]	.011	000 ⁻	.018
Perceived	Pearson Correlation	.438**	.404**	.485**	1	.269**	.526**	.175**	.528**	.123*
KISK	Sig. (2-tailes)	000 ⁻	000 ⁻	000 [.]		000 ⁻	000 ⁻	.002	000 ⁻	.033
Perceived	Pearson	510^{**}	396**	442**	269^{**}	1	521**	131*	450 ^{**}	039
Usefulness	Correlation					•				
	Sig. (2-tailes)	000 ⁻	000.	000.	.000		000.	.024	000.	.504
	Pearson	K21**	**	£00**	576 ^{**}	501**	, -	162**	** КТЛ	800
Ease of Use	Correlation	100.	-14-	777.	.740	170.	T	.102	+/0.	000.
	Sig. (2-tailes)	000.	.000	000.	.000	000.		.005	.000	.895
Intention	Pearson	$.138^{*}$	$.177^{**}$	$.146^{*}$	$.175^{**}$	$.131^{*}$	$.162^{**}$	1	$.203^{**}$.089

	Correlation									
	Sig. (2-tailes)	.017	.002	.011	.002	.024	.005		000^{-1}	.122
++.O	Pearson	***	** ^{*07}	**'772	**oC>	**USV	**	200 200	Ļ	117*
Output	Correlation	170.	.470	040	070.	004.	-0.	CU2.	T	.11/
Quality	Sig. (2-tailes)	000 [.]	000^{-1}	000 [.]	000.	000^{-1}	000 [.]	000^{-1}		.042
	Pearson	001	000	176*	1.7.3*	020	000	000	*L11	, -
Culture	Correlation	100.	060.	061.	C71.	600.	000.	.009	.11/	-
	Sig. (2-tailes)	.159	.122	.018	.033	.504	.895	.122	.042	
		** Corre	lation is si	** Correlation is significant at the 0.01 level (2-tailed)	e 0 01 leve	(<i>O</i> _failed)				

*. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

208

جامعة النجاح الوطنية كلية الدراسات العليا

العوامل المؤثرة على قبول نظام الصحة الإلكترونية دراسة حالة لمستشفيات محافظة نابلس

إعداد می سمیر قطب

إشراف د. بكر عبد الحق

قدمت هذه الأطروحة استكمالاً لمتطلبات الحصول على درجة الماجستير في الإدارة الهندسية بكلية الدراسات العليا في جامعة النجاح الوطنية في نابلس، فلسطين. 2017م

العوامل المؤثرة على قبول نظام الصحة الإلكترونية دراسة حالة لمستشفيات محافظة نابلس إعداد مي سمير قطب اشراف د. بكر عبد الحق الملخص

هدفت هذه الدراسة الى معرفة العوامل المؤثرة على مدى قبول المهنيين والطبيين لاستخدام نظام الصحية الإلكترونية في المستشفيات الفلسطينية وإدخال إطار الصحة الإلكترونية الذي يمكن أن تعتمده المستشفيات والمراكز الصحية الفلسطينية من أجل الاستفادة من التكنولوجيا بشكل فعال في جميع عملياتها وانشطتها، وقد تم إجراء هذه الدراسة من خلال تطبيقها على ثلاثة مستشفيات في محافظة نابلس، وتم اختيار عينة عشوائية بسيطة من مستشفى رفيديا الجراحي، ومستشفى جامعة النجاح الوطنية، والمستشفى العربي التخصصي في محافظة نابلس.

وتم اعتماد إطار البحث الذي يقوم على نموذج قبول التكنولوجيا (TAM) من خلال استعراض الأدبيات ذات الصلة وعرض رأي الخبراء في عملية تصميم الاطار الخاص بالدراسة الذي احتوي على مجموعة من العوامل وهي كل من الفائدة المتوقعة، وسهولة الاستخدام، والموقف، ونوايا الاستخدام، وتمتد مع العوامل الخارجية، وهي)خصائص النظام، والتدريب، والخوف من المساءلة، والمخاطر المتوقعة، والثقافة، وجودة المخرجات).

واعتمدت الباحثة على الاسلوب الكمي والنوعي في اجراء الدراسة بهدف الإجابة على أسئلة البحث واختبار الفرضيات، وتم جمع البيانات النوعية عن طريق المقابلات شبه المنظمة مع المتخصصين في تكنولوجيا المعلومات ومستخدمي النظام في المستشفيات التي شملتها الدراسة من أجل الحصول على فهم أفضل لحالة نظام الصحة الإلكترونية والفوائد والتحديات والعقبات. وعلاوة على ذلك، كانت البيانات الكمية مرتبطة بالعوامل المؤثرة على قبول الصحة الإلكترونية التي تم جمعها من خلال على عينة عشوائية (ن = 300) من المهنيين الصحيين في المستشفيات المستهدفة من الدراسة، وقد اشتملت العينة على 360 استبانة، استرد منها 328 استبانة اي بمعدل استجابة وصل الى 83.3٪.

واشارت نتائج تحليل البيانات التي تم جمعها إلى أن سهولة الاستخدام والفائدة المتوقعة وجودة المخرجات هي أهم العوامل التي تؤثر على اعتماد نظام الصحة الإلكترونية من قبل مستشفيات. وبالإضافة إلى ذلك، فإن المخاطر المتوقعة، وخصائص النظام، والخوف من المساءلة، تؤثر على اعتماد الابتكار في مجال الصحة الإلكترونية بدرجة أقل من بقية العوامل التي شملتها الدراسة.

واستنادا إلى نتائج الدراسة، اشارت الباحثة الى مجموعة من التوصيات ومنها ضرورة قيام المؤسسات الصحية الفلسطينية بالعمل على صياغة استراتيجيات جديدة، وتعزيز العمليات التشغيلية، وتطوير البنية التحتية للصحة الإلكترونية، وتقديم خدمات ذات جودة عالية، والتنسيق مع كيانات أخرى مثل شركات تكنولوجيا المعلومات والاتصالات، وبرامج نقل المكاتب، والتي من شأنها أن تكون مفيدة في زيادة ثقة العاملين في مجال الرعاية الطبية من أجل نشر تكنولوجيا الصحة الإلكترونية في المجتمع الفلسطيني.