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FP-LAPW calculations of the electronic properties and structural phase 

transitions in CoO and CdO 

By 

Kamal Falah Naji Mostafa 

Supervised by 

Dr. Mohammed Abu Ja'far 

 

Abstract 

 

  In this thesis the Full-Potential Linearized Augmented Plane-Wave (FP-LAPW) 

method depending on the Density Functional Theory (DFT) was used to find the 

atomic structures of materials, the electronic properties and to investigate the 

structural phase transformations of CdO and CoO compounds under high pressure, 

and to know the conductivity and the ground state for these compounds. In these 

calculations the gradient generalized approximation (GGA),  the local density 

approximation(LDA), W-Cohen approximation have been used. 

 

 For CdO, the equations of state (EOS’s) of rocksalt (RS), zincblende (ZB),  

cesium chloride (CsCl) and wurtzite (WZ)  have been calculated. From these 

EOS’s the transition under high pressure is occurred from rocksalt (RS) to cesium 

chloride (CsCl), from wurtzite (WZ) to cesium chloride (CsCl), from wurtzite 

(WZ) to rocksalt (RS), from zincblende (ZB) to rocksalt (RS), from zincblende 

(ZB) to cesium chloride (CsCl), and from wurtzite (WZ) to zincblende (ZB). The 

energy band gaps for all structures of CdO have been calculated. It is ~ - 0.5 eV 

for RS structure, so this structure indicates to be a semimetal. The CsCl structure 

indicates to be a semimetal too, because its band gap is ~ - 1.1 eV. The energy 

band gap is ~ 0.1 eV for ZB structure, which means the CdO compound is a 

semimetal in this structure. And it is ~ 0.1 eV for WZ structure, so the CdO 
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compound is a semimetal too.  The structural properties have also been calculated 

for all structures. We found the rocksalt (RS) structure is the ground state for CdO 

compound.  

 

The same work done for CoO and the same method with the same approximations 

was used, the equations of state (EOS’s) of rocksalt (RS), zincblende (ZB), and 

cesium chloride (CsCl), have been calculated. From these EOS’s, the transition 

under high pressure is occurred from rocksalt (RS) to cesium chloride(CsCl, from 

zincblende (ZB) to rocksalt (RS),  and from zincblende (ZB) to cesium chloride 

(CsCl). The energy band gaps for all structures of CoO have been calculated. It is  

(  - 0.5       - 0.17 eV) for ZB, so this structure indicates a semimetal. It is between 

(0.77        1.1 eV) For CsCl, which means the CoO compound is a semimetal in 

this structure. Finally the energy band gaps is between (0.15       0.42 eV) for RS 

structure by using LDA and W-Cohen methods, so the structure is semimetal, but 

it is ~ 0.01 eV by using GGA method, so this structure is a semimetal too. The 

structural properties have also been calculated for all structures. We found the 

zincblende (ZB) structure is the ground state for CoO compound. 
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Chapter One 

 

Introduction 

 
 The transition metal oxides (TMO) are systems with large variability of structures 

and chemical bonding, which brings about an alluring of magnetic, electrical, and 

optical properties. A strong interaction between chemical compositions of TMO, their 

transport characteristics, magnetic orders and crystal structures produce a rich field 

for fundamental research and technological applications.   

 

 The TMO are very interesting materials, because they present many diverse physical 

properties that depend on the cationic species. We can find superconductivity in 

cuprates , ferroelectricity, piezoelectricity and high permittivity dielectricity in 

titanates colossal magnetoresistance (CMR) and spin polarized current in manganites, 

only to cite the most famous compounds. There physical properties can be turned by 

external parameters like: temperature, applied magnetic or electric field, doping lattice 

stress and strain[1]. 

 

 The unique characteristics of these compounds and the increasing stringent 

requirement of the semiconductor industry for new of memories, smaller transistors 

and smart sensors make these materials very promising for future electronics. The 

ability of making devices with TMO like field effect transistor (FET) junctions, 

micro-electromechanical system is important tool for studying the physical properties 

of TMO and for applications. 

 

 Reversible electric charge induction by field effect devices on TMO is a particular 

interest for smart applications and basic science, contrary to conventional 
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semiconductors, oxides metals present a broad spectrum of magnetic and transport 

properties that are affected by their charge density, due to generally high charge 

density of oxides compounds, high dielectric constant barriers and strong electric 

field are strictly required for observing detectable modulations. Fabrication of thin 

film dielectric barriers presents some troubles related to the difficulty to a good 

stoichiometry of the barrier itself, wile maintaining unaltered properties of the bottom 

oxide material[2]. 

 

 There are several techniques to grow TMO films and to fabricate device out of them, 

the principle deposition techniques are sputtering, molecular beam epitaxy, pushed 

laser deposition, while for micro and nano-machining ultraviolet or x ray 

photolithography combined with dry or wet etching, focused ion beam, electronic 

beam lithography, local anodic oxidation by a scanning probe microscopy are 

generally used. 

 

 During the last 70 years TMO have been one of the most studied class of solids, 

these studies have led to new ideas[3] concerning the electronic structures of TMO. 

Strong evidence for classification of the late 3d TMO as charge transfer gap 

insulators has been reported by Sawatzky and allen [4].  

 

  II-VI, III-V and group-IV wide-gap semiconductor materials are very important 

because of their opto-electronic technological applications as a commercial short 

wavelength light-emitting diode[5], laser diode candidate by p-type doping with 

nitrogen, transparent conductors, solar cells, high-density optical memory, visual 

display [6]. This is important because of the role of the d-electrons in the Valence 

band in hybridization which needs to open gap at the crossing make angular 

momentum labelling no longer suitable[7]. 
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 A crystal is made up of a large number of interacting particles. To describe what 

would happen to these crystals when pressurized, many methods of different 

potentials and techniques[8] have been used to study the structural phase 

transformations of these crystals zincblende (ZB),rocksalt (RS),cesium chloride 

(CsCl) and wurtzite (WZ) under high pressure and deal with these problems. 

 

 For many years transparent conductive oxide layers have been studied extensively, 

researchers have focused on a cadmium oxides CdO because of a wide range of 

technical applications for instances as transparent electrodes in photovoltaic and 

display devices, sensors, saller cells, photo transistors, diodes,  transparent electrodes 

, gas sensors . These applications of CdO are based on its specific optical and 

electrical properties. For example CdO films show high transparency in the visible 

region of the solar spectrum. As well as a high ohmic conductivity, the intensity of 

optical and electrical effects of CdO depends on the deviations from ideal CdO 

stoichiometry, as well as on the size and shape of the particles[9]. The CdO is n-type 

semiconductors that crystallizes in rocksalt structure , and presents an optical ban-gap 

of about 2.3 eV, with an indirect band gap of 1.36eV[10]. There are some physical 

and chemical properties of CdO, the colour is red or brown, melting point is 1426 C , 

density is 8.15 g/cm3 , vapour pressure is 1 mm Hg at 1000 C, insoluble in water, 

molar mass is 128.41g / mole [11].  

 

 There are a few researches done about CdO under high pressure . Schleife  et al[12] 

calculated  the  transition pressure from RS to CsCl is happen at 85 Gpa, while 

Jaffe et al [13] calculated the  transition pressure from RS to CsCl at 515 Gpa. The 

experimental value was 90.6 Gpa, and the stability of the ground state phase 

was RS [14]. CdO has a cubic structure of  RS type at ambient conditions. Its 

structure remains stable up to the melting temperature at room pressure and up to 35 

GPa pressure at room temperature from  a previous report by Dirckamer et al [15]. In 
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the first- principle calculations , the potential phases such as RS, CsCl , ZB, nickel 

arsenide, orthorhombic cmcm and WZ structures were calculated in their equilibrium 

geometries and curves of the energy-volume (E-V) relationship were obtained. The 

bulk modulus and equilibrium lattice parameter were estimated by fitting the energy 

as a function of volume according the Murnagan equation of state (EOS) [16]. The 

phase transition pressure was estimated from the intersection of the E-V curves of RS 

and CsCl phases.  

  

Cobalt oxide CoO also is one of the most studied transition metal oxides for 

numerous scientific technologies. It has many industrial applications, such as catalyst 

for oxygen evolution and oxygen reduction reactions [17]. It is also widely used as an 

electrochromic material [18]. Solar selective absorber, and catalyst in the 

hydrocracking processing of crude fuels [19], and in newly invented application in 

electrochemical capacitors[20]. 

 

CoO appears as olive-green to red crystals, or greyish or black powder. It is used 

extensively in the ceramics industry as an additive to create blue colored glazes and 

enamels as well as in the chemical industry for producing cobalt(II) salt. CoO crystals 

adopt the rocksalt structure with a lattice constant of 4.2615 Å [21]. 

 

 High pressure behaviors of wurtzite-type hexagonal CoO nanocrystals were 

investigated by in situ high pressure synchrotron radiation X-ray diffraction 

measurements up to 57.4Gpa at ambient temperature [22]. It is found that bulk 

modulus of hexagonal CoO phase is about 115Gpa at zero pressure. During 

compression, the hexagonal CoO phase transfers into rocksalt-type cubic phase in the 

pressure range of 0.8-6.9 Gpa .The volume collapse accompanied by the transition 

was estimated to be about 20%. This is irreversibly phase transformation, that is the 

cubic CoO phase remains after pressure release. Based on the data of peak width vs 
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pressure, a cubic-to-rhombohedral phase transition was detected for the 

nanocrystalline cubic CoO phase with the transition pressure of about 36 Gpa, lower 

than 43 Gpa for bulk cubic CoO phase. The bulk modulus of the nanoctystalline 

cubic CoO phase of about 258 Gpa is larger than 180 Gpa for the corresponding bulk 

cubic CoO phase[23].  

 

  Density-functional theory (DFT) provides a foundation for modern electronic 

structure calculations, and the local-density approximation (LDA) and the 

generalized gradient approximation (GGA) are an efficient methods to calculate 

the ground state of material. Time-dependent DFT can in principle describe the 

exited state [24].  In this study we are going to use the full-potential linearized 

augmented plane wave (FP-LAPW), implemented in WIEN2K computer code 

[25],within the LDA, GGA and the improved W–GGA approximations. Using FP-

LAPW method, the Kohn-Sham equation can be solved, in which the wave 

function is expanded in atomic orbitals in spherical regions around the atomic 

positions, while in the region between the spheres. it is expanded in plane waves. 

The wave functions and their derivatives are made continuous at the boundary of the 

spheres.  

 

 The FP-LAPW method places no restrictions on the form of crystalline 

potential and is known to yield reliable structural parameters for 

 semiconductors, metals, and insulators. WIEN2K allows us to perform electronic 

structure calculations of solids using DFT , and it is based on FP-LAPW one 

among the most accurate schemes for band structure calculation. 
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The objects of this study are to:  

 

1- calculate the structural parameters of the zincblende (ZB), rocksalt(RS),  

     cesium chloride(CsCl) and wurtzite(WZ) phases of CdO compound.  

 

2- calculate the structural parameters of the ZB, RS, CsCl and WZ phases  

     for CoO compound. 

 

3- determine the equations of state of ZB, RS, CsCl and WZ phases of CdO 

    and CoO by calculating the total energy at different volumes and fitting    

    the calculated values to Murnaghan’s EO'S .           

     

4-determine the transition pressure of WZ to RS, ZB to RS and WZ to ZB  

    structural phases transformations for CdO and CoO. 

 

5-determine the band structure of ZB, RS, CsCl and WZ phases of CdO  

    and CoO.        

 

This thesis is organized as follows: 

In chapter 2 we describe the Density Functional Theory and the method which 

we used in the calculations. In chapter 3 we describe the crystal structures and 

its phases . In chapter 4 we discuss and report our results. In chapter 5 we give 

the summery of our main results and conclusions. 
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Chapter Two 

 

Theory of calculations 

2.1 Introduction 

 

Solid materials and their mechanical properties are of great technological 

interest. They are governed by very different length and time scales which may 

differ by many orders of magnitude depending on their applications. Let us 

focus on the length scale, where from meters (m) down to micrometers (μ). 

Classical mechanics and continuum models are the dominating concepts to 

investigate  the properties of the corresponding materials. However, when one 

comes to the nanometer (nm) scale or atomic dimensions measured in Å, the 

mechanical properties are determined by the electronic structure of the solid. In 

the development of modern materials an understanding on an atomic scale is 

frequently essential in order to replace trial and error procedures by a systematic  

materials design. In this context the electronic properties of solids need to be 

described by a quantum mechanical treatment. Modern devices in the electronic 

industry provide such an example, where the increased miniaturization is one of 

the key advances. Other applications are found in the area of  magnetic 

recording or other storage media. One possibility to study complex systems that 

contain many atoms is to perform computer simulations. Calculation of solids in 

general (metals, insulators, minerals, etc.) can be performed with a variety of 

methods from classical to quantum mechanical (QM) approaches. The former 

are force field or semi-empirical schemes, in which the forces that determine the 

interactions between the atoms are parameterized in such a way to reproduce a 

series of experimental data such as equilibrium geometries, bulk moduli or 

special vibrational frequencies (phonons). These schemes have reached a high 

level of sophistication and are often useful within a given class of materials 



 
  

8

provided good parameters are already known from closely related systems. If, 

however, such parameters are not available, or if a system shows unusual 

phenomena that are not yet understood, one often must rely on ab initio 

calculations. They are more demanding in terms of computer requirements and 

thus allow only the treatment of smaller unit cells than semi-empirical 

calculations. The advantage of first-principle (ab initio) methods lies in the fact 

that they do not require any experimental knowledge to carry out such 

calculations. The fact that electrons are indistinguishable and are Fermions 

requires that their wave functions must be anti-symmetric when two electrons 

are interchanged. This situation leads to the phenomenon of exchange and 

correlation. There are two types of approaches for a full quantum mechanical 

treatment, Hartree Fock (HF) and the Density Functional Theory (DFT). The 

traditional scheme is the HF method which is based on wave function 

description [26]. 

 

2.2 The Born-Oppenheimer approximation 
 
A solid is a collection of heavy, positively charged particles (nuclei) compared 

to lighter, negatively charged particles (electrons). If the structure composed of 

N nuclei and each has Z electrons, then, the theorists came face to face with a 

problem of N (nuclei) + ZN (electrons) electromagnetically interacting particles. 

This is a many-body problem, and because these particles are so light compared 

with classical scale, it is a quantum many body problem. In principle, to study 

the materials and their properties, the theorist has to solve the time independent 

Schrödinger equation. 

                 

                                                                                               (2.1)  

Here,   is the wave function of all participating particles and  is the exact  

many-particle Hamiltonian for this system. 
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                                                  +                           (2.2)         

                                                            
 

The mass of the nucleus at Ri is Mi, the electrons have mass me and are at ri. The 

first term is the kinetic energy operator for the nuclei (Tn), the second for the 

electrons (Te). The last three terms describe the Coulomb interaction between 

electrons and nuclei (Ven), between electrons and other electrons (Vee), and between 

nuclei and other nuclei (Vnn). It is out of question to solve this problem exactly[27]. 

 

The nuclei are much heavier and therefore much slower than the electrons.  We 

can hence ‘freeze’ them at fixed positions and assume the electrons to be in 

instantaneous equilibrium with them. In other words: only the electrons are kept 

as players in our many body problem [28]. The nuclei are deprived from this status, 

and reduced to a given source of positive charge, they become ‘external’ to the 

electron cloud. After having applied this approximation, we are left with a 

collection of NZ interacting negative particles, moving in the (now external or 

given) potential of the nuclei. The nuclei do not move any more, their kinetic 

energy is zero and the first term disappears. The last term reduces to a constant. 

We are left with the kinetic energy of the electron gas, the potential energy due to 

electron-electron interactions and the potential energy of the electrons in the (now 

external) potential of the nuclei. We write this formally as:  

                                                                                                                 (2.3) 

 

It is interesting to note here that the kinetic and electron-electron terms of 2.3 

depend only on the fact that we are dealing with a many-electron system (and not 

with a many-proton system for instance, where the strong nuclear force would play 



 
  

10

a role). They are independent of the particular kind of many-electron system [29]. 

This part is universal System-specific information (which nuclei, and on which 

positions) is given entirely by  .  

 

2.3 Density Functional Theory (DFT) 

 

The well-established scheme to calculate electronic properties of solids is based 

on DFT, for which Walter Kohn has received the Nobel Prize in chemistry in 

1998. DFT is a universal approach to the quantum mechanical many-body 

problem, where the system of interacting electrons is mapped 

in a unique manner onto an effective non-interacting system with the same total 

density. Hohenberg and Kohn [30] have shown that the ground state electron 

density ρ (in atoms, molecules or solids) uniquely defines the total energy Etot of 

a system and is a functional Etot(ρ) of the density: 

         Etot(ρ)= Ts(ρ) + Eee(ρ) + ENe(ρ) + Exc(ρ) + ENN                              (2.4) 

 

The different electronic contributions are conventionally labeled as, 

respectively, the kinetic energy (of the non-interacting particles), the electron–

electron repulsion, nuclear–electron attraction, and exchange-correlation 

energies. The last term corresponds to the repulsive Coulomb energy of the 

fixed nuclei ENN. According to the variational principle a set of effective one-

particle Schrödinger equations, the so-called Kohn–Sham (KS) equations [31], 

must be solved. Its form is 

             (2.5)                         

when written in Rydberg atomic units for an atom with the obvious 

generalization to molecules and solids. The four terms represent the kinetic 

energy operator, the external potential from the nucleus, the Coulomb-, and 
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exchange-correlation potential, VC and Vxc: The KS equations must be solved 

iteratively till self-consistency is reached. The iteration cycles are needed 

because of the interdependence between orbitals and potential. In the KS scheme 

the electron density is obtained by summing over all occupied states, i.e., by 

filling the KS orbitals (with increasing energy) according to the aufbau principle. 

                                                                                (2.6) 

 

From the electron density the VC and Vxc potentials for the next iteration can be 

calculated, which define the KS orbitals. This closes the self consistency cycle 

(SCF) loop. The exact functional form of the potential Vxc is not known and thus 

one needs to make approximations. Early applications were done by using 

results from quantum Monte Carlo calculations for the homogeneous electron 

gas, for which the problem of exchange and correlation can be solved exactly, 

leading to the original local density approximation (LDA). LDA works 

reasonably well but has some shortcomings mostly due to the tendency of over 

binding, which cause e.g., too small lattice constants. 

 

Modern versions of DFT, especially those using the generalized gradient 

approximation (GGA), improved  the LDA by adding gradient terms of the 

electron density and reached (almost) chemical accuracy, as for example the 

version by Perdew, et al [32]. 

 

In the study of large systems the strategy differs for schemes based on HF or 

DFT. In HF based methods the Hamiltonian is well defined but can be solved 

only approximately (e.g., due to limited basis sets). In DFT, however, one must 

first choose the functional that is used to represent the exchange and correlation 

effects (or approximations to them) but then one can solve this effective 

Hamiltonian almost exactly, i.e., with very high precision. Thus in both cases an 
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approximation enters (either in the first or second step) but the sequence is 

reversed. This perspective illustrates the importance in DFT calculations of 

improving the functional, since this defines the quality of the calculation. 

 

2.4 The exchange-correlation functional  

 

 Apart from the preceding Born-Oppenheimer approximation, no other 

approximations were made, but we neglected so far the fact that we do not know the 

exchange-correlation functional [33]. A widely used approximation-called the 

Local Density Approximation (LDA) is to postulate that the exchange-

correlation functional has the following form: 

                                                               (2.7) 

The function (not:  functional)  (ρ) for the homogeneous electron gas, (The 

homogeneous electron gas, uniform electron gas) is an imaginary solid where all 

nuclear charge is homogeneously smeared out over space. This material is completely 

isotropic, and identical on every length scale. Therefore the electron density is constant: 

ρ = N/V, with N the number of electrons in the material, and V its volume. The 

parameter ρ is the only thing we need to specify a particular homogeneous electron gas 

completely. If the electrons do not interact, we are in the case of the free electron gas, 

which can be solved analytically in a straightforward way. The problem is much more 

difficult for an interacting electron gas. Here numerical calculations for the total energy 

are possible by quantum Monte-Carlo. Subtracting the non-interacting kinetic energy 

and the Hartree energy gives a numerical result for the exchange-correlation energy. If 

this is done for several densities ρ the function (ρ) is obtained. Note that (ρ) is a 

function of ρ, not a functional) and is numerically known. 

 

This postulate is somehow reasonable: it means that the exchange-correlation energy 

due to a particular density  could be found by dividing the material in 
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infinitesimally small volumes with a constant density [34]. Each such volume 

contributes to the total exchange correlation energy by an amount equal to the exchange 

correlation energy of an identical volume filled with a homogeneous electron gas, 

which has the same overall density as the original material has in this volume.  No 

law of nature guarantees that the true Exc  is of this form, it is only a reasonable 

guess.  By construction, LDA is expected to perform well for systems with a 

slowly varying density.  But rather surprisingly, it appears to be very accurate in 

many other (realistic) cases too. A next logical step to improve on LDA, is to make 

the exchange-correlation contribution of every infinitesimal volume not only 

dependent on the local density in that volume, but also on the density in the 

neighboring volumes. In other words, the gradient of the density will play a role. 

This approximation is therefore called the Generalized Gradient Approximation 

(GGA). Although GGA performs in general slightly better than LDA, there are a 

few draw backs. There is only one LDA exchange-correlation functional, because 

there is a unique definition for . But there is some freedom to incorporate the 

density gradient, and therefore several versions of GGA exist.  Moreover, in practice 

one often fits a candidate GGA-functional with (hopefully only a few) free 

parameters to a large set of experimental data on atoms and molecules.  The best 

values for these parameters are fixed then, and the functional is ready to be used 

routinely in solids. Therefore such a GGA-calculation is strictly spoken not an ab-

initio calculation, as some experimental information is used.  Nevertheless, there 

exist GGA’s that are parameter free [35]. 

 

2.5 The Local - Density Approximation (LDA) 

 

The local-density approximation (LDA) is an approximation of the exchange-

correlation (XC) energy functional in density functional theory (DFT) by taking 

the XC energy of an electron in a homogeneous electron gas of a density equal 
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to the density at the electron in the system being calculated (which in general is 

inhomogeneous). This approximation was applied to DFT by Kohn and Sham in 

an early paper[36]. The Hohenberg-Kohn theorem states that the energy of the 

ground state of a system of electrons is a functional of the electronic density, in 

particular the exchange and correlation energy is also a functional of the density 

(this energy can be seen as the quantum part of the electron-electron 

interaction). This XC functional is not known exactly and must be approximated 

[37]. LDA is the simplest approximation for this functional, it is local in the 

sense that the electron exchange and correlation energy at any point in space is a 

function of the electron density at that point only[38]. The LDA functional 

assumes that the per-electron exchange-correlation energy at every point in 

space is equal to the per-electron exchange-correlation energy of a homogeneous 

electron gas[39]. The XC correlation functional is the sum of a correlation 

functional and an exchange functional [40] 

        Exc=Ex +Ec                                                                                       (2.8) 

 

2.6 Generalized Gradient Approximation (GGA) 
 

Many modern codes using DFT now use more advanced approximations to 

improve accuracy for certain physical properties. The DFT calculations in this 

study have been made using the Generalized Gradient Approximation (GGA) . 

As stated above, the LDA uses the exchange-correlation energy for the uniform 

electron gas at every point in the system regardless of the homogeneity of the 

real charge density. For non uniform charge densities the exchange-correlation 

energy can deviate significantly from the uniform result. This deviation can be 

expressed in terms of the gradient and higher spatial derivatives of the total 

charge density. The GGA uses the gradient of the charge density to correct for 

this deviation. For systems where the charge density is slowly varying, the GGA 
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has proved to be an improvement over LDA[41]. Generalized gradient 

approximations (GGA’s) seek to improve upon the accuracy of the local-spin-

density (LSD) approximation in electronic-structure calculations.  

 

2.7 Choice of method 

 

As a consequence of the aspects described above different methods have their 

advantages or disadvantages when it comes to compute various 

quantities. For example, properties that rely on the knowledge of the density 

close to the nucleus (hyperfine fields, electric field gradients, etc.), require an 

all-electron description rather than a pseudo-potential approach with un-physical 

wave functions near the nucleus. On the other hand for studies, in which the 

shape (and symmetry) of the unit cell changes, the knowledge of the 

corresponding stress tensor is needed for an efficient structural optimization. 

These tensors are much easier to obtain in pseudo-potential schemes and thus 

are available there. In augmentation schemes such algorithms become more 

tedious and consequently are often not implemented. On the other hand all-

electron methods do not depend on choices of pseudo-potentials and contain the 

full wave function information. Thus the choice of method for a particular 

application depends on the property of interest and may affect the accuracy, ease 

or difficulty to calculate a given property. 

 

2.7.1 The linearized-augmented plane wave method (LAPW) 

 

One among the most accurate schemes for solving the Kohn–Sham equations is 

the full-potential linearized-augmented-plane wave (FP-LAPW) method 

suggested by Andersen [42] on which our WIEN code is based. In the LAPW 

method [43] a basis set is introduced that is especially adapted to the problem by 
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dividing the unit cell into (I) non-overlapping atomic spheres (centered at the 

atomic sites) and (II) an interstitial region Figure 2.1. For the construction  of 

basis functions but only for that purpose the Muffin-tin Approximation (MTA) 

is used according to which the potential is assumed to be spherically symmetric 

within the atomic spheres but constant outside. In the two types of regions 

different basis sets are used.    

                                   
                        Figure 2.1 Partitioning of the unit cell into atomic spheres (I) and 
                                                 an interstitial region (II). 

 

 

(I) inside atomic sphere t, of radius Rt, a linear combination of radial 

functions times spherical harmonics Ylm(r) is used  

  

             (2.9) 

 

where  is the (at the origin) regular solution of the radial Schrödinger 

equation for energy  (usually chosen at the center of bands with the 

corresponding l-like character) and  is the energy derivative of  

evaluated at the same energy . A linear combination of these two functions 

linearized the energy dependence of the radial function; the coefficients Alm and 

Blm are functions of kn (see below) and are determined by requiring that this 

basis function matches (in value and slope) the Plane Wave (PW) labelled with 
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kn, the corresponding basis function of the interstitial region. The functions  

and  are obtained by numerical integration of the radial Schrödinger equation 

on a radial mesh inside the sphere. 

 

 (II) in the interstitial region a PW expansion is used 

                                                                                 (2.10) 

where kn = k + Kn  ; Kn are the reciprocal lattice vectors and k is the wave vector 

inside the first Brillouin zone. Each PW is augmented by an atomic like function 

in every atomic sphere as described above. The solutions to the Kohn–Sham 

equations are expanded in this combined basis set of LAPW's according to the 

linear variation method 

                                                                              (2.11) 

and the coefficients Cn are determined by the Rayleigh–Ritz variational 

principle. The convergence of this basis set is controlled by a cutoff parameter 

RmtKmax = 6–9, where Rmt is the smallest atomic sphere radius in the unit cell 

and Kmax is the magnitude of the largest Kn vector in equation (2.13). In order to 

improve upon the linearization (i.e.to increase the flexibility of the basis) and to 

make possible a consistent treatment of semi-core and valence states in one   

energy window (to ensure orthogonality) additional (kn independent) basis 

functions can be added. They are called local orbitals (LO) [44] and consist of a 

linear combination of two radial functions at two different energies (e.g. at the 

3s and 4s energies) and one energy derivative (at one of these energies):  

                      (2.12) 

 

 The coefficients Alm, Blm and Clm are determined by the three requirements that 

 should be normalized and has zero value and slope at the sphere boundary.    
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 2.7.2 Different implementations of augmented plane wave (APW)  

 

The energy dependence of the atomic radial functions described above can be 

treated in different ways. In APW this is done by finding the energy that 

corresponds to the eigen-energy of each state. This leads to a non-linear 

eigenvalue problem, since the basis functions become energy dependent. In 

LAPW a linearization of the energy dependence is introduced by solving the 

radial Schrödinger equation for a fixed linearization energy but adding the 

energy derivative of this function. The corresponding two coefficients can be 

chosen such as to match (at the atomic sphere boundary) the atomic solution to 

each PW in value and slope, which determine the two coefficients of the 

function and it’s derivative. LAPW leads to a standard general eigenvalue 

problem but the PW basis is less efficient than in APW. A new scheme, APW 

plus local orbitals, combines the advantages of both methods. The matching is 

only done in value, but this new scheme leads to a significant speed-up of the 

method (up to an order of magnitude) while keeping the high accuracy of 

LAPW. A description of these three types of schemes (APW, LAPW, APW+ lo) 

mentioned above is the basis for the new  WIEN2k code [45].   

 

2.7.3 The full-potential scheme 

 

The muffin-tin approximation (MTA) was frequently used in the 1970s and 

works reasonable well in highly coordinated (metallic) systems such as face 

centered cubic (fcc) metals. However, for covalently bonded solids, open or 

layered structures, MTA is a poor approximation and leads to serious 

discrepancies with experiment. In all these cases a treatment without any shape 

approximation is essential. Both, the potential and charge density, are expanded 
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into lattice harmonics (inside each atomic sphere) and as a Fourier series (in the 

interstitial region).   

                     (2.13) 

 

Thus their form is completely general so that such a scheme is termed full-

potential calculation. The choice of sphere radii is not very critical in full 

potential calculations in contrast to MTA, in which one would obtain different 

radii as optimum choice depending on whether one looks at the potential 

(maximum between two adjacent atoms) or the charge density (minimum 

between two adjacent atoms). Therefore in MTA one must make a compromise 

but in full-potential calculations one can efficiently handle this problem.  

 

  2.7.4 Computational aspects 

 

In the newest version WIEN2k [25] the alternative basis set (APW + lo) is used 

inside the atomic spheres for those important orbitals (partial waves) that are 

difficult to converge (outermost valence p-, d-, or f-states) or for atoms, where 

small atomic spheres must be used . For all the other partial waves the LAPW 

scheme is used. In addition new algorithms for solving the computer intensive 

general eigenvalue problem were implemented. The combination of algorithmic 

developments and increased computer power has led to a significant 

improvement in the possibilities to simulate relatively large systems on 

moderate computer hardware. Now personal computers  (PCs) or a cluster of 

PCs can be efficiently used instead of the powerful workstations or 

supercomputers that were needed about a decade ago. Several considerations are 

essential for a modern computer code and were made in the development of the 

new WIEN2k package [25]. 
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Accuracy is extremely important in the present case. It is achieved by the  

well-balanced basis set, which contains numerical radial functions that are 

recalculated in each iteration cycle. Thus these functions adapt to effects due to 

charge transfer or hybridization, are accurate near the nucleus and satisfy the 

cusp condition.  

 

The PW convergence can essentially be controlled by one parameter, namely the 

cutoff energy corresponding to the highest PW component. There is no 

dependence on selecting atomic orbitals or pseudo-potentials. It is a full 

potential and all electron method. Relativistic effects (including spin orbit 

coupling) can be  treated with a quality comparable to solving Dirac's equation. 

 

Efficiency and good performance should be as high a possible. The smaller 

matrix size of the new mixed basis APW+ lo/LAPW helps to save 

computer time or allows studying larger systems. 
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Chapter Three 

 

 Crystal Structures  
 

3.1 Introduction 

 

Lattices are regular arrays of imaginary points in space. A real crystal has atoms 

associated with these points. The location of an atom of element at each lattice 

point, the atoms of the element is said to be the basis associated with each lattice 

point: 

 

                      Lattice  +  Basis   =   Crystal Structure 

 

The basis need not consist of just one atom, consider a motif consisting of a pair 

of an element atoms, with coordinates (0, 0, 0)a and (0.25,  0.25,  0.25)a relative 

to a lattice point. A crystal structure is composed of a basis, a set of atoms 

arranged in a particular way, and a lattice. Basis is located upon the points of a 

lattice, which is an array of points repeating periodically in three dimensions. The 

points can be thought of as forming identical tiny boxes, called unit cells, that fill 

the space of the lattice. The lengths of the edges of a unit cell and the angles 

between them are called the lattice parameters. The symmetry properties of the 

crystal are embodied in its space group [47]. A crystal's structure and symmetry 

play a role in determining many of its properties, such as electronic band 

structure, and optical properties.    
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3.2 Closed-packed crystal structures 

 

3.2.1 Simple cubic structure (sc) 

It might be thought that the simplest cubic packing would simple have a cubic 

unit cell with only one lattice point in the unit cell. This structure is shown in 

Figure 3.1, each atom has six nearest neighbours, touching along the cube edges. 

In spite of its apparent simplicity, there is only one element that crystallises with 

the simple cubic structure, namely polonium.  

 

 

 
     
       Figure 3.1 Simple  cubic (sc) packing of spheres 
 

3.2.2 Body- centred cubic (bcc) 

Several metallic elements, including some of the alkali metals and iron, have a 

packing that is a little less efficient than close packing. This packing is easily 

described as a cubic cell with a second atom in the middle, with each atom 

having eight touching neighbouring atoms. This structure is called body-centred 

cubic abbreviated as bcc, and is shown in Figure 3.2. 
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                                   Figure 3.2  Body- centred cubic (bcc). 

 

3.2.3 Face-centred cubic (fcc) 

The face-centred cubic is one of the most common types of crystal lattices. In 

addition to the eight atoms located at the corners of the cube, the face centred 

cell contains an additional atom in each face of the cube, the face-centred cube 

lattice is adopted by many element. this structure is shown in Figure 3.3. 

                                            
       
                                     Figure 3.3 face-centred cubic (fcc)   

 

3.2.4 Hexagonal close packed (hcp) 

In hexagonal closed packed (hcp) arrangement of atoms, the unit cell consists of 

three layer of atoms, the tope and the bottom layers contains six atoms at the 

corners of hexagon and one atom at the centre of each hexagon, the middle layer 

contains three atoms nestled between atoms of the top and bottom layers, hence 

the name closed packed. 
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                         Figure 3.4 Hexagonal close packed  (hcp)  

 

3.3 Diatomic compounds 

 

The crystal structure has two main components, the lattice that gives the 

periodicity and the contents the unit cell associated with each lattice point. For 

the bcc structure the primitive unit cell contained just one atom. However for 

hcp structure the unit cell contains two atoms, and for other structures of the 

elements there are even more atoms in the unit cell. All the structures we now 

consider have more than one type of atom in the unit cell. All the principles we 

have discussed with regard to the crystal structure of the elements. The most 

common structures of the diatomic compounds are all cubic and named sodium 

chloride structure (NaCl), cesium chloride structure (CsCl) and zinc sulfide 

(ZnS) structures. 

 

3.3.1 Sodium chloride structure (NaCl) 

The NaCl structure has a fcc lattice. There is one type of atom at position  (0, 0, 

0)a and another position (0.5, 0.5 , 0.5)a , the other atom in the conventional 

cubic unit cell are generated by addition of  the three vectors to the face centres, 

namely by addition of (0.5, 0.5, 0)a, ( 0.5, 0, 0.5)a , and (0, 0.5, 0.5)a to the two 

initial atomic positions. The NaCl structure is shown in the Figure 3.8,  an easy 

way to describe this structure is to begin with one atom type in a cubic closest-

packed structure (ccp). There is a set of equivalent empty sites with coordinates 
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( 0.5, 0, 0)a , (0, 0.5, 0)a , (0, 0, 0.5)a and (0.5, 0.5, 0.5)a . The sites are at the 

centres of groups of six ions with perfect octahedral arrangement. In the NaCl 

structure, the sites are occupied by the second set of atoms. As a results of the 

symmetry both types of atoms have six neighbours of the other type with perfect 

octahedral arrangement. The space group of RS state is Fm_3m with number 

225 and the primitive vectors for RS are :  

 

 zayaa ˆ
2

ˆ
21 +=

r
        zaxaa ˆ

2
ˆ

22 +=
r

            yaxaa ˆ
223 +=

rr
                (3.1) 

   where  a  is the lattice constant. 

       
           Figure 3.5 CdO compound  in RS structure. 

 

3.3.2 Cesium Chloride structure (CsCl) 

The CsCl structure appears to related to the bcc packing, the unit cell of a cube, 

with an atom of one type at the origin, and another type of atom in the centre of 

the cube. Because the two atoms are different, the site at the centre of the unit 

cell is no longer another lattice point, and the CsCl structure must not be 

confused with the bcc lattice. The lattice type is therefore primitive cubic. The 

CsCl structure is shown in Figure 3.6 , each atom has eight neighbour of 

opposite type. the space group of ZB state is F43_m with number 221 and the 

primitive vectors of ZB are:  
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   zayaa ˆ
2

ˆ
21 +=

r
          zaxaa ˆ

2
ˆ

22 +=
r

              yaxaa rr

2
ˆ

23 +=                      (3.2)                         

 
           Figure 3.6 CdO compound  in CsCl structure. 

 

3.3.3 Zincblende structure (ZB) 

The cubic ZnS structure is related to the diamond structure. The lattice is fcc, in 

the diamond structure we started from the ccp structure, and added a second set 

of atoms of one of the two sets of tetrahedral sites. In ZnS structure one type of 

atom occupies the initial ccp arrangement, with coordinates  (0, 0, 0)a etc…., 

and another type of atom occupies one of the set of tetrahedral sites at (0.25, 

0.25, 0.25)a etc. The ZB structure is shown in Figure 3.7, the space group of ZB 

state is F43_m with number 216 and the  primitive vectors of ZB are:  

 

   zayaa ˆ
2

ˆ
21 +=

r
          zaxaa ˆ

2
ˆ

22 +=
r

              yaxaa rr

2
ˆ

23 +=                      (3.3)    
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                   Figure 3.7 CdO compound  in ZB structure. 
 

3.3.4 Wurtzite structure (WZ) 

Zinc sulfide crystallizes in two different forms: Wurtzite and Zincblende. If the 

sulfide ions originally adopt a hexagonal closest-packed structure, the ZnS 

crystal is Wurtzite. But if the sulfide ions originally adopt a cubic closest-packed 

structure, the ZnS crystal is Zinc Blende. In the wurtzite structure the basis: Zn 

at (1/3, 2/3 , 0)a and S at: (1/3, 2/3, u)a. The space group of WZ structure  is 

P63-mc with number 186 and the primitive vectors are 

   yaxaa ˆ
2
3ˆ

21 +=
r           yaxaa ˆ

2
3ˆ

22 +=
r          zca ˆ3 =

r
                             (3.4) 

The metal oxides such as CdO adopt the wurtzite structure as shown in Figure 3.8.  

 
       Figure 3.8 CdO compound  in WZ structure. 
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Chapter Four 

 

Results and Discussions  
 

4.1 Introduction  

 

   The transition metal oxides are very important to be studied under high 

pressure because of the role that the d-electrons play in hybridization, covalent 

bonds, polarity and narrow energy band gap, where few valence electrons will 

gain enough energy to make transition, and for many applications for these 

compounds. 

 

Materials at high pressure occur at the centres of planets and stars, but high 

pressure may also be applied to small laboratory samples in controlled manner 

using devices such as the diamond anvil (DAC). The static pressure applied in a 

DAC is a continuously variable parameter which can be used for systematic 

studies of the parameters of solids as a function of the inter-atomic distances. 

One of the interesting phenomena that may occur under applied pressure is a 

sudden change in the arrangement of the atom, i.e., structural phase transition. 

The Gibbs free energies of the different possible arrangement of atoms vary 

under compression, and at some stage it becomes favourable for material to 

change the type of atomic arrangement. A phase transition is said to have 

occurred if the change is discontinuous or continuous but with a change in 

crystal symmetry. The pressures achieved in a DAC can lead to a reduction in 

the volume by more than a factor of 2, causing enormous changes to the inter-

atomic bonding[48]. 
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4.2 CdO compound  

 

The main aim of studying this compound is to investigate the stability of its 

ground state, and studying its structural phases, Rocksalt (RS), Cesium Chloride 

(CsCl), Zincblende (ZB) and Wurtzite (WZ). The structural parameters  and the 

energy band gaps for each phase are calculated using the FP-LAPW approach 

depending on the density functional theory using GGA, LDA and W-Cohen. We 

also studied the transition pressure  between its structures, from RS to CsCl, WZ 

to CsCl , WZ to RS, WZ to ZB, ZB to CsCl, and from ZB to RS structures. 

  

4.2.1 Structural parameters for CdO compound  

 

One of the main aim of our study is to calculate the structural parameters of 

CdO in the RS, CsCl, ZB, and wurtzite structures by using FP-LAPW in GGA, 

LDA, and W-Cohen methods. We can obtain the lattice constants a, b and c, 

bulk modulus B , and first derivative of the bulk modulus B' for CdO structures 

which is called the structural parameters. 

 

4.2.1.1 Rocksalt structure for CdO compound  

 

We found the lattice parameters for CdO in RS structure by GGA, LDA, and W-

Cohen. The position of Cd is (0,0,0) a and the position of O is (0.5, 0.5, 0.5) a 

,Rmt =2.05 a.u for Cd and Rmt =1.75 a.u for O. The suitable Rkmax of RS 

structure was found to be 8 for LDA and  W-Cohen methods, while it was 8.5 

for GGA method. The suitable k-point is 4500 with reduced kpoint =120 in the 

irreducible Brillouin zone. The Brillouin zone integrations were performed with 

a 16x16x16 K-mesh. Gmax was 16 for GGA, but it was 15 for W-Cohen and 14 

for LDA. 
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The structural parameters are found from optimizing job by fitting the results 

with Murnaghan’s equation of state and plotting the energy versus volume 

graph.    

                           

 
          Figure 4.1 Energy versus volume for CdO in RS structure by GGA method. 

 

From figure 4.1 we found the minimum volume V, bulk modulus B, first 

derivative of the bulk modulus B' and minimum energy E. 

 

The volume of the unit cell for RS structure is     

                                                   
4

3aV =                                                  (4.1) 

 Then we can write    as                                     

                                                [ ] 31.4Va =                                        (4.2) 
where V is the volume of the unit cell, and a = b = c are the lattice parameters. 

Table 4.1 shows the structural parameters in RS structure. 

 

 



 
  

31

  Table4.1 Structural parameters of CdO in RS structure.   
E(Ry)   B' B (Gpa)V.(a.u)3a.( Å) Method Phase 

 Present present 
Other 
calc Present Present Exp  

Other 
calc present     

-11331.64228 4.8885 

130b 
130.5c  

160.5225168.1533

4.697c   
4.77a     
4.779b 

4.64 LDA 

RS 
-11342.56863 4.8599 124.1466183.37374.77 GGA 

-11340.92803 4.8601 146.2835174.60574.70 
W-
Cohen 

 
a   Reference [48],              b   Reference [12],         c   Reference [49]. 

.  

 4.2.1.2 CsCl structure for CdO compound  

 

The position of Cd is (0, 0, 0) a  and the position of O is (0.5,  0.5,  0.5) a   

Rmt = 2.05 a.u for Cd and Rmt =1.75 a.u for O. The suitable Rkmax of CsCl 

structure was found to be 8 for LDA and W-Cohen methods, and it was 8.5 for 

GGA method. The suitable k-point is 4500 with reduced kpoint =120 in the 

irreducible Brillouin zone. The Brillouin zone integrations were performed with 

a 16x16x16 K-mesh. Gmax was 16 for GGA, but it was 15 for W-Cohen and 14 

for LDA.  

 
        Figure 4.2 Energy versus volume for CdO in CsCl structure with GGA method. 
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From Figure 4.2, energy versus volume we found V, B, B', and E. Also we found 

the lattice parameters a = b = c from  

                            V =  a3                                                                       (4.3) 

Then             

                           a  =  [V]1/3                                                                  (4.4) 

 Table(4.2) shows the structural parameters in CsCl structure. 

 
Table 4.2 Structural parameters of CdO in CsCl structure. 

E(Ry) B' B (Gpa) V.(a.u)3 a.( Å) Method Phase 

 Present Present 
Other 
calc Present  Present 

Other 
calc Present     

-11331.586654.9646 

114a 

168.0635155.4991

2.94a 

2.85 LDA 

CsCl 
-11342.50854 4.8596 127.2875170.40882.93 GGA 

-11340.87161 4.9794 151.1457161.77862.88 
W-
Cohen 

 

a  Reference [48]. 

 

4.2.1.3 Zincblende structure for CdO compound 

 

The position of Cd is (0, 0, 0)a  and the position of O is (0.25,  0.25,  0.25)a   

Rmt = 2.05 a.u for Cd and Rmt =1.75 a.u for O, The suitable Rkmax of ZB 

structure was found to be 8 for LDA and W-Cohen, and it was 8.5 for GGA. The 

suitable k-point is 4500 with reduced kpoint =120 in the irreducible Brillouin 

zone. The Brillouin zone integrations were performed with a 16x16x16 K-mesh. 

Gmax was 16 for GGA, but it was 15 for W-Cohen and 14 for LDA.  
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        Figure 4.3 Energy versus volume for CdO in ZB structure with LDA method.  
 

From Figure 4.3, energy versus volume we found V, B, B', and E. Also we found 

the lattice parameters a = b = c from                

                                       
4

3aV =                                                            (4.5) 

Then the lattice parameters        

                                    [ ] 31.4Va =                                          (4.6) 

 

Table 4.3 shows the structural parameters in ZB structure. 
Table 4.3 Structural parameters of CdO in ZB structure. 

E(Ry) B' B (Gpa) V.(a.u)3 a.( Å) Method Phase 

 Present Present 
Other 
calc Present  present 

Other 
calc present     

-11331.62805 5.1376 

82a      
93.9b    

121.9463211.1032

5.15a 
5.148b  

5.0 LDA 

ZB 
-11342.56546 4.7268 93.2264230.0555.15 GGA 

-11340.91622 5.064 108.7127219.40975.07 
W-
Cohen 

 

a  Reference [48]        ,   b  Reference [12] . 
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4.2.1.4 Wurtzite structure for CdO compound 

 

We chose  the values of a , b , c and the ratio of c/a as arbitrary numbers and the 

angles α = β = 90 and γ = 120, Rmt = 2.05 a.u for Cd and Rmt =1.75 a.u for O. 

The suitable Rkmax of W structure is 8 for LDA and W-Cohen, and it was 8.5 

for GGA. The suitable k-point is 6000 with reduced kpoint =624 in the irreducible 

Brillouin zone. The Brillouin zone integrations were performed with a 22x22x21 

K-mesh. Gmax is 16 for GGA, but it was 15 for W-Cohen and 14 for LDA. The 

position of Cd is (⅓ ,  ⅔ ,  0)a  and the position of O is (⅓ ,  ⅔ ,  u)a. Tables 4.4, 

4.5 and 4.6 show the minimum energy for this work. 

 
            Table 4.4 Finding u of CdO by GGA method. 

No. 
           
U 

            Etotal 
(Ry) 

        
No. 

           
U              Etotal(Ry) 

1 0.325 -22658.060941
        
10 0.370 -22685.130542 

2 0.330 -22658.077081
        
11 0.375 -22685.131529 

3 0.335 -22685.089822
        
12 0.380 -22685.131592 

4 0.340 -22685.100399
        
13 0.385 -22685.131664 

5 0.345 -22685.109463
        
14 0.390 -22685.131339 

6 0.350 -22685.116263
        
15 0.395 -22685.094358 

7 0.355 22685.122002
        
16 0.400 -22685.075637 

8 0.360 -22685.125906
        
17 0.405 -22685.063765 

9 0.365 -22685.128260
        
18 0.410 -22685.060110 
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                   Table 4.5 Finding u of CdO by W-Cohen method.          

No. 
           
U 

            Etotal 
(Ry) 

        
No. 

           
U              Etotal(Ry) 

1 0.325 -22681.778429
        
10 0.370 -22681.830827 

2 0.330 -22681.785471
        
11 0.375 -22681.831685 

3 0.335 -22681.796586
        
12 0.380 -22681.831976 

4 0.340 -22681.802805
        
13 0.385 -22681.832018 

5 0.345 -22681.811450
        
14 0.390 -22681.831772 

6 0.350 -22681.817605
        
15 0.395 -22681.831440 

7 0.355 22681.823192
        
16 0.400 -22681.830791 

8 0.360 -22681.826692
        
17 0.405 -22681.828658 

9 0.365 -22681.829209
        
18 0.410 -22681.826438 

 

 

                      Table 4.6 Finding u of CdO by LDA method. 

No. 
           
U 

            Etotal 
(Ry) 

        
No. 

           
U              Etotal(Ry) 

1 0.325 -22663.179791
        
10 0.370 -22663.246811 

2 0.330 -22663.195376
        
11 0.375 -22663.248015 

3 0.335 -22663.206847
        
12 0.380 -22663.248198 

4 0.340 -22663.216738
        
13 0.385 -22663.248365 

5 0.345 -22663.225705
        
14 0.390 -22663.247470 

6 0.350 -22663.231705
        
15 0.395 -22663.247133 

7 0.355 22663.237808
        
16 0.400 -22663.246029 

8 0.360 -22663.241474
        
15 0.405 -22663.243875 

9 0.365 -22663.245961
        
16 0.410 -22663.242102 
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The minimum energy was found to be (-22685.131664 Ry) as shown in  table 

4.4, which means the correct value for u is (0.385). Then by fitting the results 

with Murnaghan’s equation of states and plotting the energy versus volume 

graph, we found the minimum volume V, bulk modulus B, first derivative of the 

bulk modulus B' and minimum energy E. Then we found the values  a, c, c/a. 

Tables 4.7, 4.8 and 4.9 show these values. 

 

 
                    Table 4.7 Finding c/a of CdO in GGA method. 

no. Value 
a=b 
(a.u) C (a.u) c/a Etotal (Ry) 

1 -10 6.67710 10.68434 1.6001 -22685.112597 
2 -5 6.79915 10.87864 1.6000 -22685.127097 

3 0 
   

6.91640 11.06624 1.6000 -22685.119973 
4 5 7.02980 11.24769 1.6000 -22685.131634 
5 10 7.13966 11.42346 1.6000 -22685.128614 

 

 

 

 

                     Table 4.8 Finding c/a of CdO in W-Cohen method. 

no. Value 
a=b 
(a.u) c (a.u) c/a Etotal (Ry) 

1 -10 6.67710 10.68434 1.6001 -22681.835066 
2 -5 6.79915 10.87864 1.6000 -22681.828639 

3 0 
   

6.91640 11.06624 1.6000 -22681.834967 
4 5 7.02980 11.24769 1.6000 -22681.807174 
5 10 7.13966 11.42346 1.6000 -22681.831986 
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                         Table 4.9 Finding c/a of CdO in LDA method. 

no. Value 
a=b 
(a.u) C (a.u) c/a Etotal (Ry) 

1 -10 6.67710 10.68434 1.6001 -22663.285352 
2 -5 6.79915 10.87864 1.6000 -22663.257605 

3 0 
   

6.91640 11.06624 1.6000 -22663.212371 
4 5 7.02980 11.24769 1.6000 -22663.248357 
5 10 7.13966 11.42346 1.6000 -22663.232678 

 

 

 

  Then fitting these data in Fortran program called polyfit to get the best value 

for c/a  by GGA, GDA and W-Cohen methods, we found this value is 

(c/a=1.60),then from the graph of energy versus volume we found V, B, B', and 

E. Also we found the lattice parameters a , b , c from  

The volume of the unit cell for wurtzite is    

                                      caV 2

2
3

=                                                        (4.7)  

by rewriting this equation         

                                     )(
2
3 3 acaV =                                                    (4.8) 

        then                             

                                    
31

)(3
2

⎥
⎦

⎤
⎢
⎣

⎡
=

ac
Va                                                      (4.9)  

 

By substituting the volume (V) from the graph of energy versus volume  and c/a 

from the table in equation (4.9), we can find the value of a , b and c exactly. The 

last step we used the new values of a , b , c and u to find the band gap, by doing 

a new optimizing job. Table 4.10 shows these values. 
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              Table 4.10 Structural parameters of CdO in wurtzite structure. 

Other calculations  
Present calculations 

parameter W-Cohen GGA LDA 
    3.66a          ,   

3.678b  3.60633.66343.5607a(Å) 
      5.865 a      ,      

5.825b      5.775.865.697c(Å) 
      1.6 a           ,       

1.58 b       1.61.61.6c/a 
     0.35 a       ,   

0.3849 b  0.3850.3850.385U 
  438.57459.4927422.1589V.(a.u)^3 

         86 a          ,   

92.7 b  108.6394.27180.81B(Gpa) 
     4.52 a           ,   

4.7 b  4.914.624.924B' 
  -22681.8-22685.2-22663.3E(RY) 

 
                    a  Reference [48]  ,   b  Reference [12]. 

 

 

4.2.2 Band structure for CdO compound 

 

The studying of band structures and calculating the energy band gaps are very 

important for any material to determine whether this material is metal, 

semiconductor or insulator. 

 

Figures 4.4 to 4.7 show the band structure for CdO in all its structures. 
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       Figure 4.4 Band structure of CdO in ZB with (from left to right) GGA , LDA and  
                          W-Cohen methods respectively. 
 

 
       Figure 4.5 Band structure of CdO in CsCl with (from left to right) GGA , LDA and  
                          W-Cohen methods respectively. 
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     Figure 4.6 Band structure of CdO in RS with (from left to right) GGA , LDA and  
                          W-Cohen methods respectively. 
 

     
Figure 4.7 Band structure of CdO in Wurtzite with (from left to right) GGA , LDA and  
                          W-Cohen methods respectively. 
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The energy band gap for rocksalt was found to be - 0.50047 eV, - 0.44788 eV and 

- 0.52308 eV for GGA, LDA and W-Cohen respectively, but for Cesium chloride 

the energy gap was found to be -1.03891 eV, -1.28324 eV and -1.18536 eV for 

GGA, LDA and W-Cohen respectively, therefore the band structure indicates a 

semimetal. For Zincblende the energy gap was found to be 0.17466 eV for GGA, 

0.12668 eV for LDA and 0.18937eV for W-Cohen respectively. Finally for 

wurtzite structure the energy gap was found to be 0.13684 eV for GGA, 0.13872 

eV for LDA and 0.11352 eV for W-Cohen respectively. But other calculation was 

found to be 0.66 eV. Table 4.11 shows the energy band gap of all structures 

studied in this thesis. 

 
     Table 4.11 The energy band gap of CdO in RS, CsCl, ZB and WZ structures. 

energy band gap(eV) 
Method Structure Other calculationPresent

0.66a 
 
 
 

-0.50047 GGA 

RS 
-0.44788 LDA 
-0.52308 W-Cohen 
-1.03891 GGA 

CsCl 
-1.28324 LDA 
-1.18536 W-Cohen 
0.17466 GGA 

ZB 
0.12668 LDA 
0.18937 W-Cohen 

      0.13684 GGA 

WZ 
      0.13872 LDA 
      0.11352 W-Cohen 

             

              a  Reference [12] .     

 

4.2.3 Phase transition pressure for CdO compound 

 

The lattice parameters should change from a structure to another under certain 

pressure which is called transition pressure (Pt ). We can find the value of this 

pressure from  graph energy versus volume for the two phases. By making a line 
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which has same tangent for both curves, then the slope of the tangent represents 

the transition pressure (Pt ) as follows:     

  

                      V
EPt Δ

Δ
−=

                                                         
(4.10) 

 

Then multiply the slope by the factor 14684.9761724 in order to get the 

transition pressure (Pt ) in Gpa. 

Figure 4.8 shows the EO'S for both RS & CsCl structures using GGA method. 

The  transition pressure was found to be 51.5 Gpa. 

 

 
 

Figure 4.8 Equations of state for CdO in RS and CsCl structures  by GGA method. 
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Figure 4.9 shows the EO'S for both RS & CsCl structures using LDA method. 

The  transition pressure was found to be 72.75 Gpa . 

 

 
Figure 4.9 Equations of state for CdO in RS and CsCl structures  by LDA method. 

 
 

Figure 4.10 shows the EO'S for both RS & CsCl structures using W-Cohen 

method. The  transition pressure was found to be 78.8 Gpa . 

 
 Figure 4.10 Equations of state for CdO in RS and CsCl structures  by W-Cohen 
                     method. 
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Figure 4.11 shows the EO'S for both wurtzite & CsCl structures using GGA 

method. The  transition pressure was found to be 12.46 Gpa . 

 
 

   Figure 4.11 Equations of state for CdO in Wurtzite and CsCl structures  by GGA  
                       method. 

 
 

Figure 4.12 shows the EO'S for both wurtzite & CsCl structures using LDA 

method. The  transition pressure was found to be 13.74 Gpa . 

 
Figure 4.12 Equations of state for CdO in Wurtzite and CsCl structures  by LDA 

                             method. 
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Figure 4.13  shows the EO'S for both wurtzite & CsCl structures using W-Cohen 

method. The  transition pressure was found to be 15.87 Gpa . 

 
 
Figure 4.13 Equations of state for CdO in WZ and CsCl structures by W-Cohen method. 
 

Figure 4.14 shows the EO'S for both ZB & CsCl structures using GGA method. 

The  transition pressure was found to be 6.84 Gpa . 

 
Figure 4.14 Equations of state for CdO in ZB and CsCl structures  by GGA method. 
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Figure 4.15 shows the EO'S for both ZB & CsCl structures using LDA method. 

The  transition pressure was found to be 2.5 Gpa . 

 
 

Figure 4.15 Equations of state for CdO in ZB and CsCl structures  by LDA method. 
 

Figure 4.16 shows the EO'S for both ZB & CsCl structures using W-Cohen 

method. The  transition pressure was found to be 5.67 Gpa . 

 
 Figure 4.16 Equations of state for CdO in ZB and CsCl structures  by W-Cohen     
                      method. 
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Transition  from wurtzite to ZB couldn't be calculated as shown in figures 4.17, 

4.18 and 4.19 since the curves laid over each other. 

 
Figure 4.17 Equations of state for CdO in Wurtzite and ZB structures  by GGA method. 

 

 

 
 

Figure 4.18 Equations of state for CdO in Wurtzite and ZB structures  by LDA method. 
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   Figure 4.19 Equations of state for CdO in ZB and WZ structures  by W-Cohen 

                                method. 
 
 

 Figures 4.20, 4.21 and 4.22 show the EO'S for both ZB & RS using GGA, LDA 

, W-Cohen methods respectively. Figures 4.23, 4.24 and 4.25 show the EO'S for 

both wurtzite & RS structures using GGA, LDA , W-Cohen methods 

respectively. It is very clear that the energy between any two phases in these 

figures is continuously diverge with increasing pressure, indicating a phase 

transformation from ZB to RS, and  from wurtzite to CsCl is impossible under 

high pressure [50].         
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Figure 4.20 Equations of state for CdO in ZB and RS structures  by GGA method. 

 
 

 
Figure 4.21 Equations of state for CdO in ZB and RS structures  by LDA method. 
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Figure 4.22 Equations of state for CdO in ZB and RS structures  by W-Cohen method. 

 
 
 

 

 
Figure 4.23 Equations of state for CdO in Wurtzite and RS structures  by GGA method. 
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Figure 4.24 Equations of state for CdO in Wurtzite and RS structures  by LDA method. 

 
 

 
 

  Figure 4.25 Equations of state for CdO in WZ and RS structures by W-Cohen 

                      method. 
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Figures 4.26, 4.27 and 4.28 show the four structures together on laid on one 

graph using LDA, GGA and W-Cohen methods. These graphs also show RS 

structure is the ground state for CdO compound. 

 
 

Figure 4.26 Equations of state for CdO in RS, CsCl, ZB and WZ structures  by GGA method. 

 

 
Figure 4.27 Equations of state for CdO in RS, CsCl, ZB and WZ structures  by W-Cohen  

                       method. 
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Figure 4.28 Equations of state for CdO in RS, CsCl, ZB and WZ structures  by LDA method. 

 

 

Table 4.12 shows the value of the transition pressure between the phases of CdO 

compound.  

 
   Table 4.12 The transition pressure between RS, CsCl, ZB and WZ structures for CdO. 

Other calc Exp  
Present calculations Studied 

parameter Transition W-Cohen GGA LDA 
89 b ,    81.7 c 90.6 a 78.8251.572.57Pt(Gpa) RS-CsCl 

  
  
  
  
  

15.8712.4613.74Pt(Gpa) WZ-CsCl 
xxxxxx3.76.2Pt(Gpa) WZ-RS 

5.676.842.5Pt(Gpa) ZB-CsCl 
xxxxxx 7.71.85Pt(Gpa) ZB-RS 
xxxxxx xxxxxx xxxxxxxPt(Gpa) ZB-WZ 

 
                    a  Reference [14],     b  Reference [48],       c  Reference [51]. 
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4.3 CoO compound  

 

As we did for CdO compound we also did for CoO compound. We studied its 

structural phases, Rocksalt (RS), Cesium Chloride (CsCl) and Zincblende (ZB). 

We  calculated the structural parameters  and the energy band gaps for each 

phase by using the FP-LAPW approach depending on the density functional 

theory using GGA, LDA and W-Cohen methods. We also studied the transition 

pressure between its phases,  from RS to CsCl , ZB to CsCl, and from ZB to RS 

structures. Also we investigated the stability of its ground state. 

 

4.3.1 Structural  parameters for CoO compound  

 

We calculated the structural parameters of CoO in its state RS , CsCl and ZB by 

using FP-LAPW in GGA, LDA, and W-Cohen methods. We obtained these 

structural parameters  a, b, c, B and B' for CoO structures, from Energy versus 

volume graph. 

 

4.3.1.1 Rocksalt structure for CoO compound 

 

We found the structural parameters for CoO in RS structure by GGA, LDA, and 

W-Cohen. The position of Co is (0, 0, 0)a and the position of O is (0.5,  0.5,  

0.5)a . Rmt is the atomic sphere radius( muffin-tin-radius)for atoms under study. 

The WIEN2k code can set this Rmt automatically, Rmt =2.05 a.u for Cd and    

Rmt =1.75 a.u for O. Kmax is the maximum value for the K vector in the 

reciprocal lattice, and R is the average value of the Rmt for all atomic spheres, 

Tables from 4.13 to 4.16 show the tests done to choose RKmax and Kpoints for 

RS CsCl and ZB structures, where the best values for RKmax and Kpoints which 

have the minimum energy. From table 4.13 and table 4.14 we found that the best 
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RKmax was found to be 8 for LDA and W-Cohen, and 8.5 for GGA, but the 

suitable kpoints is 3000 with 84 reduced Kpoints in the irreducible Brillouin zone. 

The Brillouin zone integrations were performed with a 14x14x14 K-mesh. Gmax 

was 16 for GGA, but it was 15 for W-Cohen and 14 for LDA. Table 4.17 shows 

the structural parameters in RS structure.   
 

Table 4.13 Test to find Rkmax for RS, CsCl and ZB structures.                     

 
 

     

 

 

 

 

 

 

 

 

 
 

          Table 4.14 Choosing the best kpoints for CsCl structure by GGA method. 

No
. Kpoints Kreduced Matrix Etotal  (Ry) 
1 2000 56 12×12×12 -2937.302095 
2 2500 84 13×13×13 -2937.302147 
3 3000 84 14×14×14 -2937.302247 
4 3500 120 15×15×15 -2937.302200 
5 4500 120 16×16×16 -2937.302141 
6 6500 165 18×18×18 -2937.301296 
7 8500 220 20×20×20 -2937.302085 
8 9500 286 21×21×21 -2937.302187 
9 12500 364 23×23×23 -2937.302044 

 

           

Rkmax test for RS by GGA  

method 

No RKmax Etotal (Ry) 

1 6 -2937.294677 

2 7 -2937.302249 

3 7.5 -2937.314771 

4 8 -2937.321839 

5 8.5 -2937.333026 

6 9 -2937.327451 

7 9.5 -2937.313279 

8 10 -2937.302755 

Rkmax test for ZB by W-Cohen 

method 

No Rkmax Etotal (Ry) 

1 6 -2936.305738 

2 6.5 -2936.310663 

3 7 -2936.315833 

4 7.5 -2936.327593 

5 8 -2936.336551 

6 8.5 -2936.327472 

7 9 -2936.316401 

8 9.5 -2936.310859 

9 10 -2936.302493 

Rkmax test for CsCl by LDA 

method 

no Rkmax Etotal (Ry) 

1 6 -2931.708736 

2 6.5 -2931.714871 

3 7 -2931.726534 

4 7.7 -2931.735255 

5 8 -2931.744189 

6 8.5 -2931.735223 

7 9 -2931.728645 

8 9.5 -2931.721987 
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          Table 4.15 Choosing the best kpoints for RS structure by LDA method. 

No
. Kpoints Kreduced Matrix Etotal (Ry) 
1 2000 56 12×12×12 -2931.841312 
2 2500 84 13×13×13 -2931.841374 
3 3000 84 14×14×14 -2931.841419 
4 3500 120 15×15×15 -2931.841386 
5 4500 120 16×16×16 -2931.841326 
6 6500 165 18×18×18 -2931.841343 
7 8500 220 20×20×20 -2931.841286 
8 9500 286 21×21×21 -2931.841223 
9 12500 364 23×23×23 -2931.841207 

              

 

             

          Table 4.16 Choosing the best kpoints for ZB structure by W-Cohen method.  
No
. Kpoints Kreduced Matrix Etotal (Ry) 
1 2000 56 12×12×12 -2936.308155 
2 2500 84 13×13×13 -2936.308143 
3 3000 84 14×14×14 -2936.308187 
4 3500 120 15×15×15 -2936.308137 
5 4500 120 16×16×16 -2936.308107 
6 6500 165 18×18×18 -2936.308143 
7 8500 220 20×20×20 -2936.307985 
8 9500 286 21×21×21 -2936.308111 
9 12500 364 23×23×23 -2936.307967 

 

 

 
Table4.17 Structural parameters of CoO in RS  structure by GGA, LDA and W-Cohen approximations. 

     E.(Ry)    B' B (Gpa) V.(a.u)3 a.( Å) Method Phase 

 PresentPresent  
Other 
calcPresentPresentExp

Other 
calc Present     

-2931.8373857.6723 

250a 

369.0392110.7171

4.254b4.11a 
 

4.034 LDA 

RS 
-2937.373399 5.2089 230.8117118.2647 4.123 GGA 

-2936.34284 6.6579 300.921 114.0237 4.073 
W-
Cohen 

 
a  Reference [52],          b  Reference [53]. 
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4.3.1.2 CsCl structure for CoO compound 

The position of Co is (0, 0, 0)a and the position of O is (0.5,  0.5,  0.5) a  

Rmt = 2.05 a.u for Cd and Rmt =1.75 a.u for O. The best RKmax was found to be 8 

for LDA and  W-Cohen, 8.5 for GGA, but the suitable kpoints is 3000 with 84 

reduced Kpoints in the irreducible Brillouin zone. The Brillouin zone integrations 

were performed with a 14x14x14 K-mesh. Gmax was 16 for GGA, but it was 15 

for W-Cohen and 14 for LDA. Table 4.18 shows the structural parameters in 

CsCl structure. 
        Table 4.18 Structural parameters of CoO in CsCl  structure by GGA, LDA and W-Cohen    

                           approximations. 

    E.(Ry)       B' B (Gpa) V.(a.u)3 a.( Å) method Phase 
 Present Present Present Present Present     
-2931.787457 5.1247 326.2657105.08492.5LDA 

CsCl 
-2937.313853 4.8377 248.6075113.48662.562GGA 
-2936.28824 4.6296 297.9795109.04692.53W-Cohen 

 
 

4.3.1.3 Zincblende structure for CoO compound 

The position of Co is (0, 0, 0)a and the position of O is (0.25,  0.25,  0.25)a   

Rmt = 2.05 a.u for Cd and Rmt =1.75 a.u for O. The best RKmax was found to be 8 

for LDA and W-Cohen, 8.5 for GGA, and the suitable kpoints is 3000 with 84 

reduced Kpoints in the irreducible Brillouin zone. The Brillouin zone integrations 

were performed with a 14x14x14 K-mesh. Gmax was 16 for GGA, but it was 15 

for W-Cohen and 14 for LDA. Table 4.19 shows the structural parameters in ZB 

structure.   
Table 4.19 Structural parameters of CoO in ZB  structure by GGA, LDA and W-Cohen    

                approximations. 
 

 
        
 

 

 

       E.(Ry)       B' 
         

B (Gpa) V.(a.u)3 a.( Å ) method Phase 

      Present 
  
Present Present   Present Present    

-2931.865184 9.2155360.4126136.03284.32LDA 

ZB 

-2937.401025 9.7195286.6523145.79414.421GGA 

-2936.368621 7.9247284.7843138.7984.349
W-
Cohen 
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4.3.2 The energy band gaps for CoO compound 
 
The energy band gap for rocksalt was found to be 0.01122 eV for GGA, 0.42596 

eV for LDA and 0.14552 eV for W-Cohen, but for Cesium chloride the energy 

gap was found to be 0.77975 eV for GGA, 1.0956 eV for LDA and 0.76518 eV 

for W-Cohen. Finally, for Zincblende the energy gap was found to be - 0.54942 

eV for GGA, - 0.17252 eV for LDA and - 0.50409 eV for W-Cohen. But other 

calculation was found to be 2.5 eV. Table 4.20 shows the energy band gap for  all 

structures.  
  Table 4.20 The energy band gaps for  CoO in ZB, RS and CsCl structures. 

 

 

 

 

 

 

 

 

 

 

 
 

             a Reference [52],          b Reference [54],           c Reference [55]. 
 

 

Figures 4.29, 4.30 and 4.31 show the energy band structures for all CoO 

structures. 

Energy band gap(eV) 
 

Method Structure  Present 
Experiment Other calculations   

2.5 c 
 

 
0.0a 

 
3.5b 

-0.54942 GGA 

ZB 
-0.17252 LDA 
-0.50409 W-Cohen 
0.01122 GGA 

RS 
0.42596 LDA 
0.14552 W-Cohen 
0.77975 GGA 

CsCl 
1.09560 LDA 
0.76518 W-Cohen 
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      Figure 4.29 Band structure of CoO in RS with (from left to right) GGA , LDA and  
                           W-Cohen methods respectively.    
 
  

 
    Figure 4.30 Band structure of CoO in ZB with (from left to right) GGA , LDA and 
                        W-Cohen methods respectively. 
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    Figure 4.31 Band structure of CoO in CsCl with (from left to right) GGA , LDA and 
                        W-Cohen methods respectively. 
                         
  
 
 
 
4.3.3 Phase transition pressure for CoO compound 

 

The same way which was done for the transition under high pressure for CdO 

compound we did for CoO compound. 

 

Figure 4.32 shows the EO'S for both RS & CsCl structures using GGA method. 

The  transition pressure was found to be 126.78 Gpa. 
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Figure 4.32 Equations of state for CoO in RS and CsCl structures  by GGA method. 

 
 

Figure 4.33 shows the EO'S for both RS & CsCl structures using LDA method. 

The  transition pressure was found to be 104.206 Gpa . 

 
Figure 4.33 Equations of state for CoO in RS and CsCl structures  by LDA method. 
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Figure 4.34 shows the EO'S for both RS & CsCl structures using W-Cohen 

method. The  transition pressure was found to be 160.014 Gpa . 

 
Figure 4.34 Equations of state for CoO in RS and CsCl structures  by W-Cohen method. 

 
 

Figure 4.35 shows the EO'S for both ZB & CsCl structures using GGA method. 

The  transition pressure was found to be 35.35 Gpa . 
 

 
Figure 4.35 Equations of state for CoO in ZB and CsCl structures  by GGA method. 
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Figure 4.36 shows the EO'S for both ZB & CsCl structures using LDA method. 

The  transition pressure was found to be 37.66 Gpa . 

 
Figure 4.36 Equations of state for CoO in ZB and CsCl structures  by LDA method. 

 
 

Figure 4.37 shows the EO'S for both ZB & CsCl structures using W-Cohen 

method. The  transition pressure was found to be 38.68 Gpa . 

 
Figure 4.37 Equations of state for CoO in ZB and CsCl structures  by W-Cohen method. 



 
  

64

Figure 4.38 shows the EO'S for both RS & ZB structures using GGA method. 

The  transition pressure was found to be 18.44 Gpa . 

 
Figure 4.38 Equations of state for CoO in ZB and RS structures  by GGA method. 

 
 

Figure 4.39 shows the EO'S for both RS & ZB structures using LDA method. 

The  transition pressure was found to be 16.54 Gpa . 

 
 

Figure 4.39 Equations of state for CoO in ZB and RS structures  by LDA method. 
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Figure 4.40 shows the EO'S for both RS & ZB structures using W-Cohen 

method. The  transition pressure was found to be 17.03 Gpa . 

 
 

Figure 4.40 Equations of state for CoO in ZB and RS structures  by W-Cohen method. 
 

Figures 4.41, 4.42 and 4.43 show the four structures together on laid on one 

graph using LDA, GGA and W-Cohen methods . These graphs also show ZB 

structure is the ground state for CoO compound. 

 
 

Figure 4.41 Equations of state for CoO in RS, CsCl and ZB  structures  by GGA method. 
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  Figure 4.42 Equations of state for CoO in RS, CsCl and ZB  structures  by LDA method. 

 

 
 

 
 

 Figure 4.43 Equations of state for CoO in RS, CsCl and ZB  structures  by W-Cohen method.          
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Table 4.21 shows the value of the transition pressure between the phases of CoO 

compound.  

 

 

         Table 4.21 Transition pressure between the structures of CoO. 

present calculations 
Studied 

parameter Transition 
W-Cohen GGA LDA   

160.014 126.78104.206Pt(Gpa) RS-CsCl 
38.68 35.3537.66Pt(Gpa) ZB-CsCl 
17.03 18.4416.54Pt(Gpa) ZB-RS 
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Chapter Five 

 
Conclusions 

 
5.1 Introduction 
 
In this thesis, the Full-Potential Augmented plane Wave (FP-LAPW) approach 

with LDA, GGA and W-Cohen methods  is used to investigate the structural 

properties and  stability of the WZ, ZB, CsCl and RS structures for CdO 

compound, and ZB, RS and CsCl phases for CoO compound, This method is 

also used to calculate the equation of state (EOS’s) of  (WZ), (ZB), (RS), and 

(CsCl) structures for both CdO and CoO compounds. From these (EOS’s) the 

lattice parameter a, the bulk modulus B, the pressure derivative B', the 

equilibrium volume of the crystal V0 and the transition pressure Pt have been 

investigated. Also the energy band gaps were calculated using the same method 

for all structures mentioned above. The main results and conclusion of this study 

can be summarized as follows: 

 

5.2 Structural parameters for CdO and CoO compounds 

The calculations of structural parameters (a, B, B`) and the minimum energy E 

using FP-LAPW approach with LDA, GGA and W-Cohen methods for CdO and 

CoO are found to be in good agreement with the available theoretical 

[12,48,51,52,54] and experimental [14,49,53,55] results. Tables 4.1, 4.2, 4.3 and 

4.10 show these results of CdO compound for RS, CsCl, ZB and WZ phases 

respectively in GGA, LDA and W-Cohen approximations, while tables 4.17, 

4.18 and 4.19 show these results of CoO compound, for RS, CsCl and ZB 

phases respectively.   
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5.3 The energy band gaps for CdO and CoO compounds 

 

The studying of band structures and calculating the energy band gaps are very 

important for any material to determine whether this material is metal, 

semiconductor or insulator. The calculations of the energy band gaps are found 

to be in good agreement with the available theoretical results 

 

5.3.1 The energy band gaps for CdO compound 

 

The energy band gaps for CdO in RS structure with GGA, LDA, W-Cohen 

methods are found to be - 0.50047eV, - 0.44788 eV, - 0.52308 eV  respectively, 

and for CdO in CsCl structure with GGA, LDA, W-Cohen are found to be          

-1.03891 eV , -1.28324 eV ,-1.18536 eV respectively, but for CdO in ZB 

structure with GGA, LDA, W-Cohen are found to be almost zero eV for all 

phases. Finally for CdO in WZ structure with GGA, LDA, W-Cohen are found 

to be  zero eV, but the other calculations are 0.66 eV[12] Table 4.11 shows these 

results. 

          

5.3.2 Calculations of energy band gaps for CoO compound 

 The band gaps for CoO in RS structure with GGA, LDA, W-Cohen are found to 

be 0.01122 eV, 0.42596 eV, 0.14552 eV  respectively, and for CoO in CsCl 

structure with GGA, LDA, W-Cohen are found to be 0.77975 eV , 1.0956 eV , 

0.76518 ev respectively. Finally for CoO in ZB structure with GGA, LDA, W-

Cohen are found to be - 0.54942 eV , - 0.17252 eV, -0.50409 eV respectively, 

but the other calculation is 2.5 eV [52]. Table 4.20 shows these results.  
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5.4 Transition pressure for CdO and CoO compounds 

 

The lattice parameters should change from a structure to another under certain 

pressure which is called transition pressure . We found the value of this pressure 

from the slope of the graph energy versus volume for the two phases.  
 

5.4.1 Transition pressure for CdO compound 

 

The transition pressure for CdO compound occurs from RS to CsCl, WZ to 

CsCl, WZ to RS , ZB to CsCl, ZB to RS structure. The transition pressure from 

RS to CsCl  was found 51.5 Gpa by GGA method, 72.57 Gpa by LDA method 

and 78.82 Gpa by W-Cohen method, but the transition pressure  from WZ to 

CsCl was found 12.46 Gpa by GGA,13.74 Gpa by LDA,15.87 Gpa by W-

Cohen, and  the transition pressure  from WZ to RS was found 3.7 Gpa by 

GGA,6.2 Gpa by LDA,  the transition pressure also  from ZB to CsCl was found 

6.84 Gpa by GGA ,2.5 Gpa by LDA,5.67 Gpa by W-Cohen. Finally the 

transition pressure  from ZB to RS was found 7.7 Gpa by GGA,1.85 Gpa by 

LDA, and no transition pressure from ZB to WZ structure. Table 4.12  Shows 

these results.  
                         
5.4.2 Transition pressure for CoO compound 

 

The transition pressure for CoO compound occurs from RS to CsCl,  ZB to RS 

and from ZB to CsCl structure. The transition pressure from RS to CsCl  was 

found to 126.78 Gpa by GGA method, 104.206 Gpa by LDA method and  

160.014 Gpa by W-Cohen method, but the transition pressure  from ZB to RS 

was found 18.44 Gpa by GGA,16.54 Gpa by LDA,17.03 Gpa by W-Cohen. The 

transition pressure from ZB to CsCl was found to 35.35 Gpa by GGA method, 
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37.66 Gpa by LDA method, and 38.68 Gpa by W-Cohen method. Table 4.21 

shows these results. 
                        

5.5 Ground state for CdO and CoO compounds 

 

5.5.1 Ground state for CdO compound 

 

The ground state for the CdO compound is RS structure. Tables 4.1, 4.2, 4.3 and 

4.10 tables show the minimum energy for the structures of CdO compound. E is 

-11342.56863 Ry , -11342.56546 Ry , -11342.50854 Ry,  -11342.6 Ry  for RS , ZB , 

CsCl and W respectively by GGA approximations. The ground state for the CdO 

compound is RS structure. 

 

5.5.2 Ground state for CoO compound 

 

The ground state for CoO compound is ZB structure, tables 4.17, 4.18 and 4.19 

show the minimum energy for the structures of CoO compound, E is 

 -2937.373399 Ry , -2937.401025 Ry, -2937.313853 Ry   for RS , ZB and CsCl 

respectively by GGA approximations. The ground state for the CoO compound 

is ZB structure. 

 

5.6 Nature of CdO and CoO compounds 

 

5.6.1 Nature of CdO compound 

 

CdO compound behaves as a negative energy band gaps in RS and CsCl 

structures. Table 4.11 shows the energy band gaps for these structures. For RS 

the  energy band gap is about - 0.500, - 0.448, - 0.523 eV by GGA, LDA and W-
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Cohen approximations respectively. For CsCl the  energy band gap is ab -1.039, 

-1.283, -1.185 eV by GGA, LDA and W-Cohen approximations respectively. 

CdO compound behaves as semimetal  in its structures ZB and WZ. For ZB the  

energy band gap is about 0.175, 0.127, 0.189 eV by GGA, LDA and W-Cohen 

approximations respectively. While for WZ the energy band gap is about 0.137, 

0139, 0.114 eV by GGA, LDA and W-Cohen approximations respectively, since 

this compound behaves as semimetal in RS, CsCl, ZB and WZ structures. 

   

5.6.2 Nature of CoO compound 

 

Table 4.20 shows the energy band gaps of CoO compound for its phases. For ZB 

the  energy band gap is about - 0.549, - 0.173, - 0.504 eV by GGA, LDA and W-

Cohen approximations respectively. CoO compound behaves as semimetal in 

CsCl structure because the  energy band gap is about 0.779, 1.096, 0.765 eV by 

GGA, LDA and W-Cohen approximations respectively. While for RS structure 

the  energy band gap is about 0.011, 0.426, 0.146 eV by GGA, LDA and W-

Cohen approximations respectively, which means that this compound behaves as 

semimetal in RS, CsCl, and ZB structures. 
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أ 

 جامعه النجاح الوطنية

 كليه الدراســـات العليا
 

  

للخصائص الالكترونية و انتقالات الحالة التركيبية     FP-LAPW  اتحساب

 CdOو   CoO  لمركبات

  

  

  إعداد

 كمال فلاح ناجي مصطفى

  

  إشراف

  رمحمد أبو جعف. د

  

  

 ذه الاطروحه استكمالا لمتطلبات درجه الماجستير في الفيزياء بكلية الدراساتقدمت ه  

                              . في جامعه النجاح الوطنية في نابلس، فلسطين االعلي
2009  



 
  

ب

   لمركباتية للخصائص الالكترونية و انتقالات الحالة التركيب   FP-LAPWحسابات  

CoO  وCdO   
  إعداد 

  لاح ناجي مصطفىكمال ف

  إشراف

 رمحمد أبو جعف. د

 الملخص
تناول هذه الأطروحة دراسة بعض أكاسيد العناصر الانتقالية لما لها من أهمية كبيرة و بخاصـة فـي   ت

 هما أكسيد الكادميوم, حيث تناولنا دراسة مركبين من هذه الأكاسيد , المجالين الالكتروني و الصناعي

(CdO)   و أكسيد الكوبالت(CoO) , و , فقمنا بدراسة الخصائص البنيوية و البلورية لهذين المـركبين

إيجاد طاقة الفجوة التي , حساب مستويات الطاقة, دراسة التركيب الالكتروني, من أهم هذه الخصائص 

هناك طرق و أسـاليب كثيـرة   ).شبه موصل أو عازل, موصل( من شأنها أن تحدد موصلية المركب 

-FP(لكنا اعتمدنا في دراستنا هذه أسـلوب خـاص يسـمى    , هذه المركباتاستخدمت في دراسة مثل 

LAPW (و الذي يعمل ضمن برنامج حاسوبي يسمى)WIEN2K ( الذي يمكننا من استخدام أكثر من

الجدير ذكره أن دراسة مثل هذه المركبات . (W-Cohen)و , (LDA) , (GGA)أسلوب تقريبي مثل 

و , المحافظة على الوقت و المال: ليا أو تجريبيا لعدة أسباب منهاحاسوبيا أفضل بكثير من دراستها عم

فقد تم حساب معادلة    (CoO)و  (CdO)في دراستنا لمركبي . الحصول على نتائج دقيقة قليلة الخطأ

 Cesium Chloride, (RS) Rocksalt: ،Zincblende (CsCl)الحالة لكل التراكيب الممكنة لهما 

(ZB)  . (WZ) Wurtzite,الحجـم  حساب , وتم تحديد أبعاد البلورة لكل تركيب من التراكيب السابقة

بلوره ومن ثم تم حساب الضغط الانتقالي الذي تتحول عنده  البلورة من  والضغط الذي تتكون عنده كل

كما تم حساب مستويات الطاقة و إيجاد طاقة الفجـوة لكـل تركيـب مـن     ,  تركيب إلى تركيب آخر

  .المركبين



 
  

ج

  :م نتائج هذه الدراسة من أه

    و WZ   لتركيبـة )   eV 0.13( مـا يقـارب  : كما يلـي   CdOتتراوح طاقة الفجوة لمركب  -1

        (eV 0.5 -) فإنهـا تقـارب    RSأما في تركيبـة  .  ZB لتركيبة)    eV 0.17( كذلك ما يقارب

مركب هو  شبه معدن مما يعني أن هذا ال   (eV 1.2 -)فإنها تقارب  CsClو كذلك في تركيبة    

  . لجميع هذه التراكيب

 إلكترون فولـت 0.77 )         0.11( ما بين: كما يلي CoOبينما تتراوح طاقة الفجوة لمركب  -2

 لتركيبـة  إلكترون فولـت  0.17-)        - 0.54( و كذلك فهي أيضا ما بين .CsCl   لتركيبة

ZB . أما في تركيبةRS    0.01 فإنها تقارب eV)(   باستخدام الأسـلوب التقريبـي (GGA) ,

 و  LDA باستخدام الأسلوب التقريبـي  إلكترون فولت 0.42)        0.15( كذلك فإنها ما بين

W-Cohen مما يعني أن هذا المركب هو  شبه معدن لجميع هذه التراكيب . 

 .تحت ضغط معين يمكن للتركيب أن ينتقل إلى تركيب آخر  -3

 .العاديةالحرارة  اتعند  درج CdOلأساسي والطبيعي لمركب هو التركيب ا (RS)تركيب  -4
 

 .العاديةعند  درجات الحرارة  CoOهو التركيب الأساسي والطبيعي لمركب  (ZB)تركيب  -5
 

   .بشكل كبير مع الحسابات النظرية  والتجريبية السابقة و الحسابات التي حصلنا عليها تتطابق  -6

 




