#### **Two-Sample Multivariate Test of Homogeneity**

اختبار متعدد الأبعاد للتجانس

#### Ali S. Barakat

Dept. of Statistics, Faculty of Science, An-Najah National University, Nablus, Palestine. E-mail: barakat@najah.edu Received: (13/11/2000), Accepted: (4/3/2003)

# Abstract

Given independent multivariate random samples  $X_1, X_2, ..., X_{n_1}$  and  $Y_1, Y_2, ..., Y_{n_2}$  from distributions F and G, a test is desired for  $H_0$ : F = G against general alternatives. Consider the k • (n\_1+n\_2) possible ways of choosing one observation from the combined samples and then one of its k nearest neighbors, and let  $S_k$  be the proportion of these choices in which the point and neighbor are in the same sample. SCHILLING proposed  $S_k$  as a test statistic, but did not indicate how to determine k. BARAKAT, QUADE, and SALAMA proposed a test statistic  $W = N \sum k S_k$ , which is equivalent to a sum of N Wilkoxon rank sums. The limiting distribution of the test has not been found yet.

We suggest as a test statistic  $T_m = \Sigma \Sigma h(m,j)$ 

Where  $h(m,j) = I\{j^{th} \text{ nearest neighbor of the median } m \text{ is a } y\}.$ 

The limiting distribution of  $T_m$  is normal. A simulation with multivariate normal data suggests that our test is generally more powerful than Schilling's test using k = 1, 2 or 3.

#### ملخص

لقد قدم Schilling اختبارا للتجانس باستخدام المسافة بين نقطة البداية والنقاط القريبة منها وكان عدد هذه النقاط محدودا. تم تقديم اختبار آخر من قبل بركات وقويد وسلامه آخذين بعين الاعتبار موقع النقطة القريبة واستخدام كل النقاط القريبة وليس عددا محدودا منها ولكن هذا الاختبار لم يعرف توزيعه حتى الأن. في هذا البحث نقترح اختبارا للتجانس وذلك بدءا بالنقطة التي تمثل الوسيط ومن ثم النقاط القريبة منها مرتبة حسب المسافة والأخذ بعين الاعتبار موقع النقطة ولقد تم إثبات أن توزيع هذا الاختبار هو التوزيع الطبيعي، ويتميز كذلك بأنه أقوى من اختبار المتوالية.

# 1. Introduction

Let  $X_1$ ,  $X_2$ ,....,  $X_{n_1}$  and  $Y_1$ ,  $Y_2$ , ...,  $Y_{n_2}$  be two independent random samples in  $\mathbb{R}^d$ , from distributions F and G, respectively. The problem under consideration is to test the hypothesis  $H_0$ : F = G, against the general alternative  $H_a$ :  $F \neq G$ .

Let  $Z_1, Z_2, \dots, Z_N$ , where  $N = n_1+n_2$ , is the combined sample such that

$$Z_{i} = \begin{cases} X_{i} & \text{if} & i = 1, 2, \dots, n_{1} \\ Y_{i-n_{1}} & \text{if} & i = n_{1} + 1, n_{1} + 2, \dots, N \end{cases}$$

Let  $\| \cdot \|$  be the Euclidean norm, and define "the" k-th nearest neighbor to  $Z_i$  as that point  $Z_j$  satisfying  $\|Z_{j'} - Z_i\| \prec \|Z_j - Z_i\|$  for exactly (k-1) values of j'  $(1 \le j' \le N, j' \ne i, j)$ ; we assume that there will be no ties.

Interest in statistical procedures based on such nearest neighbors has grown as high-speed computers have made the application of these techniques practicable, since the idea of making inferences about an object based on nearby objects appears to be a fundamental mechanism of human perception.

Schilling's approach <sup>[1]</sup> is as follow. Let:

 $h(i,j) = I\{k-th \text{ nearest neighbor, } Z_j, \text{ of } Z_i \text{ and } Z_i \text{ are from different samples} \}$  for k = 1, 2, ..., N-1 where I  $\{E\}$  is the indicator function of the event E and  $N=n_1+n_2$ . Count the number of k-nearest neighbor to  $Z_i$  which are in the same sample, viz.

$$T_{ik} = \sum_{j=1}^{k} [1 - h(i, j)]$$

Summing these counts over all observations yields what may be called "Schilling total", of order k:

$$T_k = \sum_{i} \sum_{j} [1 - h(i, j)] = \sum_{i} T_{ik}$$

His test statistic is

$$S_k = T_k / NK$$

An-Najah Univ. J. Res. (N. Sc), Vol. 17(1), 2003-

26

which is the proportion of all k-nearest neighbor comparisons in which a point and its neighbor are members of the same sample. Schilling shows that the asymptotic distribution of  $S_k$  under  $H_0$  is normal.

Schilling's work suggests that the choice of order is not of great importance; nevertheless, it is arbitrary, and he gives no guidance for chosing it. BARAKAT, QUADE, and SALAMA <sup>[2]</sup> proposed the sum of the Schilling totals as a test statistic, which is equivalent to a certain weighted average of the Schilling proportions:

$$W = \sum T_k = N \sum kS_k$$

Simulations with multivariate normal data show that W is generally more powerful than  $S_k$  using k=1,2, or 3. The asymptotic distribution of W has not been known.

We propose the following test statistic:

$$T_m = \sum_{k=1}^{N} \sum_{j=1}^{k} h(m, j) = \sum_k T_{mk}$$

where m is the median of the combined sample and

 $h(m,j) = I\{j \text{-th nearest neighbor of the median is a } y\}.$ 

In this test order is of great importance and all nearest neighbors to the median are used, i.e. this test uses all nearest neighbors to the median and it takes into account the position of each nearest neighbor to the median.

Under the alternative hypothesis, we expect  $T_m$  to have too small or too large values because of a lack of complete mixing of the two samples. Hence too small or too large values of  $T_m$  are significant.

### 2. Illustrative Example for Computing the Test Statistic T<sub>m</sub>

Let  $X_1 = (3,1,9)$ ,  $X_2 = (2,5,8)$ , and  $X_3 = (4,6,1)$  be the first sample and  $Y_1 = (5,9,4)$ ,  $Y_2 = (1,10,6)$ ,  $Y_3 = (2,3,5)$  and  $Y_4 = (4,8,3)$  be the second sample. The combined sample is

 $Z_{1}, Z_{2}, \dots, Z_{7}$ where:  $Z_{i} = \begin{cases} X_{i} & for & i = 1, 2, 3\\ Y_{i-3} & for & i = 4, 5, 6, 7 \end{cases}$ 

\_\_\_\_An-Najah Univ. J. Res. (N. Sc), Vol. 17(1), 2003

Find the median for the combined sample m which is equal to (3,6,5). Then calculate  $||Z_i - m||$ , i = 1,2,....,7. The combined order arrangement of  $||Z_i - m||$  from smallest to largest will give us the k-th nearest neighbor to m.

| Κ                     | : | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-----------------------|---|-------|-------|-------|-------|-------|-------|-------|
| k-th nearest neighbor | : | $Z_7$ | $Z_6$ | $Z_2$ | $Z_4$ | $Z_3$ | $Z_5$ | $Z_1$ |
| X or Y                | : | Y     | Y     | Х     | Y     | Х     | Y     | Х     |
| h(m,k)                | : | 1     | 1     | 0     | 1     | 0     | 1     | 0     |
| T <sub>mk</sub>       | : | 1     | 2     | 2     | 3     | 3     | 4     | 4     |

Therefore,

$$T_{m} = \sum_{k=1}^{7} T_{mk} = 1 + 2 + \dots + 4 = 19$$

# 3. The Null-Hypothesis Distribution of T<sub>m</sub>

If the two samples are maximally seperated then we obtain

$$max(T_m) = \frac{n_2(1+n_1+N)}{2}$$
  
and  
$$min(T_m) = \frac{n_2(n_2+1)}{2}$$

To obtain the expectation and the variance of  $T_{\rm m}$  under  $H_{\rm o}$  we need the following result:

Result 1:  
i. 
$$E[h(m, j)] = \frac{n_2}{N}$$
  
ii.  $Var[h(m, j)] = \frac{n_1 n_2}{N}$   
iii.  $Cov[h(m, j), h(m, j')] = \frac{-n_1 n_2}{N^2 (N-1)}$ 

**Proof:** 

An-Najah Univ. J. Res. (N. Sc), Vol. 17(1), 2003-

Since 
$$\Pr[h(m, j) = S] = \left(\frac{n_2}{N}\right)^s \left(\frac{n_1}{N}\right)^{1-s}$$
,  $s = 0, 1$ 

is the Bernoulli distribution, then <sup>[3]</sup>

i.  $E[h(m, j)] = \frac{n_2}{N}$ ii.  $Var[h(m, j)] = \frac{n_2}{N} \cdot \frac{n_1}{N} = \frac{n_1 n_2}{N^2}$ iii.  $E[h(m, j), h(m, j'), j \neq j'] = Pr[h(m, j) = 1 \cap h(m, j') = 1]$   $= \frac{\binom{n_2}{2}}{\binom{N}{2}}$  $= \frac{n_2(n_2 - 1)}{N(N - 1)}$ 

Cov[h(m, j), h(m, j')] = 
$$\frac{-n_1n_2}{N^2(N-1)}$$

**Result 2:** i.  $E(T_m) = \frac{n_2(N+1)}{2}$ 

ii. 
$$Var(T_m) = \frac{n_1 n_2 (N+1)}{12}$$

**Proof:** 

i. 
$$E(T_m) = E\left[\sum_{k=1}^{N} T_{mk}\right] = E\left[\sum_{k=1}^{N} \sum_{j=1}^{k} h(m, j)\right] = \sum_{k=1}^{N} k \frac{n_2}{N} = \frac{n_2(N+1)}{2}$$

\_\_\_\_\_ An-Najah Univ. J. Res. (N. Sc), Vol. 17(1), 2003

ii. 
$$\operatorname{Var}[T_{m}] = \operatorname{Var}\left[\sum_{k=1}^{N} \sum_{j=1}^{k} h(m, j)\right]$$
$$= \operatorname{Var}\left[\sum_{j=1}^{N} (N - j + 1)h(m, j)\right]$$
$$= \sum_{j} (N - j + 1)^{2} \operatorname{Var}[h(m, j)] + \sum_{j \neq j'} \sum_{j'} (N - j + 1)(N - j + 1)\operatorname{Cov}[h(m, j), h(m, j')]$$
$$= \frac{n_{1}n_{2}}{N^{2}} \sum_{j'} (N - j + 1)^{2} - \frac{n_{1}n_{2}}{N^{2}(N - 1)} \sum_{j \neq j'} \sum_{j'} (N - j + 1)(N - j' + 1)$$
$$= \frac{n_{1}n_{2}}{N^{2}(N - 1)} \left[N \sum_{j} (N - j + 1)^{2} - (\sum_{j} (N - j + 1))^{2}\right]$$
$$= \frac{n_{1}n_{2}}{N^{2}(N - 1)} \left[\frac{N^{2}(N + 1)(2N + 1)}{6} - \frac{N^{2}(N + 1)^{2}}{4}\right]$$
$$= \frac{n_{1}n_{2}(N + 1)}{12}$$

**Rresult 3:** Under  $H_o$ ,  $T_m = \sum_{k=1}^{N} T_{mk}$  has the Wilcoxon-Mann-Whitney distribution.

**Proof:** 

$$T_{m} = \sum_{k=1}^{N} T_{mk} = \sum_{k=1}^{N} \sum_{j=1}^{k} h(m, j)$$
$$= \sum_{j=1}^{N} (N = j+1)h(m, j)$$
$$= n_{2}(N+1) - W^{*}$$

An-Najah Univ. J. Res. (N. Sc), Vol. 17(1), 2003-

30.

where  $W^* = \sum_{j=1}^{N} jh(m, j)$  is the Wilcoxon rank sum statistic. So,  $T_m$  has a

Wilcoxon-Mann-Whitney distribution<sup>[4]</sup>.

**Result 4:** Under H<sub>o</sub>, T<sub>m</sub> has an asymptotic distribution which is normal.

**Proof:** From result 3, since a linear relationship exists between  $T_m$  and  $W^*$ , the Wilcoxon rank sum statistic, the properties of the tests are the same, including normality, consistency and the minimum ARE of .864 relative to the t-test <sup>[4]</sup>.

### 4. Monte Carlo Estimation of the Power of T<sub>m</sub>

In this section we consider the power of the test based on  $T_m$ , Schilling's test for k=1,2, and 3 and Barakat's test W, against a location shift. Our procedure is similar to that used by BARAKAT, QUADE and SALAMA<sup>[2]</sup>.

The power depends on the following factors:

- 1. The type I error: We set  $\alpha = 0.05$
- 2. The sample sizes: We chose  $n_1 = n_2 = 10$  and 50.
- 3. The number of dimensions: We chose d = 2,5, and 10
- 4. The common distribution of the two populations under H<sub>o</sub>: We considered only the multivariate normal distributions, then compared the power of the nearest neighbor tests with that of Hotelling's T<sup>2</sup> test.
- 5. The magnitude and direction of the shift: For  $\rho = .36$  we considered two directions, a "same direction shift" (SDS) and an "opposite direction shift" (ODS). The magnitude of the shift was calculated so as to give power .70 or .90 using Hotelling's T<sup>2</sup>-test. We also used the SDS for  $\rho = 0.0$  (but in this case there is essentially no difference). For each combination of sample size and dimension we generated 1000 sets of N( = n<sub>1</sub>+n<sub>2</sub>) d-dimensional multivariate normal observations using the IMSL programs RNMUN.

To compute the power we added the appropriate shift values to the last n members of each set of the generated sets of N d-dimensional multivariate numbers for each combination of sample size, dimension, correlation and shift, producing two samples differing by a shift, and calculated the five test statistics. The estimated power of any test statistic is then the proportion of the 1000 pairs of samples for which it exceeded its critical value.

\_An-Najah Univ. J. Res. (N. Sc), Vol. 17(1), 2003

Our results are shown in Table 1. As we expected, the power of the new test  $T_m$  is, in every case, at least as large as that of BARAKAT, QUADE, and SALAMA (1996) which is more powerful than that of Schilling's test  $S_k$  for k=1,2, and 3.

**Table (1):** Estimated power of the ( $S_k$ , k=1,2,3), W, and  $T_m$  tests for multinormal Data. Two samples of size n, in d dimensions, with common correlation  $\rho$ 

| n  | ρ   | d  | Hotelling's T <sup>2</sup> power =.70 |       |       |      | Н     | Hotelling's T <sup>2</sup> power =.90 |       |                |       |                |
|----|-----|----|---------------------------------------|-------|-------|------|-------|---------------------------------------|-------|----------------|-------|----------------|
|    |     |    | S <sub>1</sub>                        | $S_2$ | $S_3$ | W    | Tm    | $S_1$                                 | $S_2$ | S <sub>3</sub> | W     | T <sub>m</sub> |
| 10 |     | 2  | .248                                  | .426  | .495  | .723 | .839  | .444                                  | .691  | .732           | .901  | .930           |
|    | .00 | 5  | .353                                  | .560  | .610  | .845 | .780  | .573                                  | .796  | .837           | .963  | .926           |
|    |     | 10 | .699                                  | .784  | .838  | .962 | .944  | .902                                  | .960  | .967           | .999  | .988           |
|    |     |    |                                       |       |       |      |       |                                       |       |                |       |                |
|    |     | 2  | .269                                  | .455  | .520  | .762 | .819  | .466                                  | .700  | .758           | .922  | .932           |
|    | .36 | 5  | .593                                  | .685  | .795  | .924 | .986  | .814                                  | .885  | .937           | .989  | .991           |
|    | SDS | 10 | .784                                  | .929  | .966  | .995 | 1.000 | .945                                  | .994  | .997           | 1.000 | 1.000          |
|    |     |    |                                       |       |       |      |       |                                       |       |                |       |                |
|    |     | 2  | .252                                  | .410  | .444  | .650 | .678  | .438                                  | .640  | .701           | .871  | .868           |
|    | .36 | 5  | .461                                  | .497  | .595  | .674 | .615  | .669                                  | .739  | .814           | .916  | .900           |
|    | ODS | 10 | .487                                  | .693  | .747  | .852 | .875  | .760                                  | .908  | .936           | .984  | .942           |
|    |     |    |                                       |       |       |      |       |                                       |       |                |       |                |
| 50 |     | 2  | .144                                  | .231  | .276  | .746 | .730  | .205                                  | .364  | .458           | .898  | .862           |
|    | .00 | 5  | .188                                  | .227  | .280  | .726 | .641  | .290                                  | .375  | .458           | .917  | .741           |
|    |     | 10 | .205                                  | .264  | .298  | .769 | .722  | .319                                  | .430  | .474           | .932  | .806           |
|    |     |    |                                       |       |       |      |       |                                       |       |                |       |                |
|    |     | 2  | .175                                  | .227  | .290  | .769 | .766  | .258                                  | .380  | .462           | .923  | .992           |
|    | .36 | 5  | .187                                  | .278  | .350  | .862 | .783  | .313                                  | .463  | .579           | .972  | .826           |
|    | SDS | 10 | .319                                  | .406  | .487  | .950 | .865  | .468                                  | .424  | .717           | .997  | .890           |
|    |     |    |                                       |       |       |      |       |                                       |       |                |       |                |
|    |     | 2  | .157                                  | .216  | .268  | .633 | .607  | .246                                  | .350  | .443           | .852  | .787           |
|    | .36 | 5  | .184                                  | .229  | .288  | .597 | .756  | .257                                  | .371  | .445           | .842  | .848           |
|    | ODS | 10 | .211                                  | .227  | .265  | .540 | .558  | .312                                  | .374  | .418           | .782  | .708           |

In some cases, especially with smaller sample sizes and higher dimensionality, W and  $T_m$  have greater powers than Hotelling's  $T^2$ . The power for  $\rho = 0.36$  with SDS is somewhat greater, and that for  $\rho = 0.36$  with ODS is somewhat less, than that for  $\rho = 0.0$ .

An-Najah Univ. J. Res. (N. Sc), Vol. 17(1), 2003-

32 -

### Acknowledgement

The author wishes to thank Miss Samia Balalem for help in manuscript preparation

# References

- 1] SCHILLING, M.F., "Multivariate two-sample tests based on nearest neighbors", *Journal of the American Statistical Association*, **81**, (1986), 799-809.
- 2] BARAKAT, A.S., QUADE, D., and SALAMA, I.A. "Multivariate homogeneity testing using an extended concept of nearest neighbors", *Biometrical Journal* **38**, (1996), 605-612.
- 3] SEN, P.K. and SALAMA, I.A., "The Spearman Footrule and a Markov Chain Proporty", *Statistics and Probability Letters* **1**, (1983). 285-289.
- 4] Gibbons, J.D., "Nonparametric Statistical Inference" Marcel Dekker, New York, (1985).

*An-Najah Univ. J. Res. (N. Sc), Vol. 17(1), 2003*