ON COMPOSITION OPERATORS ON A ${ }^{2}$
 BY
 MAHMUD ILAYYAN MASRI
 DEPARTMENT OF MATHEMATICS AN-NAJAH NATIONAL UNIVERSITY

ABSTRACT

If Φ is an analytic function mapping the open unit disk D into itself and A^{2} is the Bergman space of analytic functions on D, the compositon operator C_{Φ} on A^{2} is defined by $C_{\phi} f=f 0 \Phi \forall f E A^{2}$

In this paper we consider the spectral radius, unitary equivalence, subnormality of C_{Φ} and study the case $\Phi(\mathrm{z})=\mathrm{z}^{\mathrm{m}}, \mathrm{m}=2,3, \ldots$. in detail.

sichor

علمى

 $\Phi(\mathrm{z})=\mathrm{z}^{\mathrm{m}}, \mathrm{m}=2,3, \ldots$

Hence, the norm of f is given by

$$
\|f\|^{2}-\langle f, f\rangle-\sum_{n-0}^{\infty} \frac{\left|a_{n}\right|^{2}}{n+1}
$$

Of special interest is the function $K_{\zeta}(z)=(1-\zeta z)^{-2}$ which serves as the "reproducing kernel" for A^{2}, i.e.,

$$
f(\zeta)=\left\langle f, k_{\zeta}\right\rangle \forall f \in A^{2} \& \quad \forall \zeta \in D .
$$

Furthermore, the functions $e_{n}(z)=\sqrt{n+1} z^{n}, n=$ $0,1,2, \ldots$ form an orthonormal basis for A^{2}. If Φ is a non-constant analytic function mapping D into itself, then Φ induces a composition operator $C_{\Phi}: A^{2} \rightarrow A^{2}$ defined by $\mathbb{C}_{\Phi} f=f \circ \Phi \forall f \in A^{2}$. Boyd [1] showed that C_{Φ} is bounded and obtained norm estimats for C_{Φ}. He studied normal, unitary, hermetian and compact composition operators on A^{2}. Furthermore, he computed the spectrum of \mathbf{C}_{Φ} for some special kinds of Φ.
Cowen [6] computed the spectral radius of C_{Φ} as an operator on the Hardy space H^{2}. Here, we compute the spectral radius of C_{Φ} as an operator on A^{2}. Also, in recent work Campbell-Wright [2] found a necessary and sufficient condition for two composition operators on H^{2} to be unitarily equivalent. We show that the same thing holds in the case of A^{2}. Moreover, we give a necessary condition for the subnormality of C_{Φ} on A^{2}.

Finally, as an example we study \mathbb{C}_{Φ} when $\Phi(z)=z^{m}, m$ $=2,3, \ldots$
2.Spectral raduis. It was fourd out that the fixed points of Φ are related to some properities of \mathbb{C}_{Φ} and to its spectral radius in particular. We say that a point $b \in \bar{D}$, the closure of D, is a fixed point of Φ if limit $_{r \rightarrow 1} \Phi(r b)=b$. We write $\operatorname{limit}_{r \rightarrow 1-\Phi^{\prime}}(r b)=\Phi^{\prime}(b)$. Although it is not apriori evident that has fixed points the following is known.
Denjoy-Wolfe Theorem $[8,9]$: let $\bar{\Phi} D \rightarrow D$ be analytic and non-elliptic robius transformation onto D. Then \exists a unique fixed point a of \bar{y} in \bar{D} such that $\left|\Phi^{\prime}(a)\right| \leq 1$.
We call the distinguished fixed point a the DenjoyWolfe point of $\overline{\text { w }}$ and we point out that if $|a|=1$, then $0<\Phi^{\prime}(a) \leq 1$ and if $|a|<1$, then $0 \leq\left|\sigma^{\prime}(a)\right|<$ 1. Now we are ready to prove the spectral radius theorem which is similar to that of [6] in the H^{2} case.

Spectral radius theoren : Let $\Phi: D \rightarrow D$ be analytic with Denjoy-iolff Point a. Then the spectral radius $r\left(\mathbb{C}_{\Phi}\right)$ of $\mathbb{C}_{\underline{\Phi}}$ is 1 when $|a|<1$ and $\left(\bar{\sigma}^{\prime}(a)\right)^{-1}$ when $|a|=1$.

$$
\begin{aligned}
\text { Proof }: r\left(\mathbb{C}_{\Phi}\right) & =\operatorname{Iimit}_{n \rightarrow \infty}\left\|\mathbb{C}_{\Phi}^{n}\right\|^{1 / n} \\
& =\operatorname{limit}_{n \rightarrow \infty}\left\|\mathbb{C}_{\Phi n}\right\|^{1 / n}
\end{aligned}
$$

Where $\Phi_{n}=\Phi 0 \Phi_{n-1}, n=1,2, \ldots \Phi_{1}=\Phi$ and $\Phi_{0}(z)=z \forall$ $z \in D($ see e.g., $[4, p .142])$.

Boyd [1] showed that

$$
\left(1-|\phi(0)|^{2}\right)^{-1} \leq\left\|C_{\phi}\right\| \leq \frac{1+\phi(0)}{1-\phi(0)}
$$

Hence,

$$
\begin{gathered}
\lim _{n-\infty} \sup \left(1+\left|\phi_{n}(0)\right|^{2}\right)^{-1 / n} \leqslant r\left(C_{\phi}\right) \leq \\
\lim _{n \rightarrow \infty} \inf \left(\frac{1+\left|\phi_{n}(0)\right|}{1-\left|\phi_{n}(0)\right|}\right)^{1 / n}
\end{gathered}
$$

Since,

$$
\begin{gathered}
\lim _{n-\infty} \inf \left(\frac{1+\left|\phi_{n}(0)\right|}{1-\mid \phi_{n}(0)}\right)^{1 / n}= \\
\lim _{n \rightarrow \infty} \inf \left(1+\left|\phi_{n}(0)\right|\right)^{2 / n}\left(1-\left|\phi_{n}(0)\right|^{2}\right)^{-1 / n} \\
=\lim _{n \rightarrow \infty} \inf \left(1-\left|\phi_{n}(0)\right|^{2}\right)^{-1 / n}
\end{gathered}
$$

We have

$$
\begin{align*}
& r\left(C_{\phi}\right)-1 i m i t_{n-\infty}\left(1-\left|\phi_{n}(0)\right|^{2}\right)^{-1 / n} \\
= & \text { limit } t_{n \rightarrow \infty}\left(1-\left|\phi_{n}(0)\right|\right)^{-1 / n} \tag{2.1}
\end{align*}
$$

Since (see [5]) $\operatorname{limit}_{n \rightarrow \infty} \Phi_{n}(0)=a, r\left(\mathbb{C}_{\Phi}\right)=1$ if $|a|<1$ by (2.1). When $|a|=1$ and $\Phi^{\prime}(a)<1$ we have [3, p. 32]

$$
\operatorname{limi} t_{n-\infty} \frac{1-\phi_{n}(0)}{1-\phi_{n-1}(0)}-\phi^{\prime}(a)
$$

Therefore, (2.1) implies

$$
\begin{aligned}
& r\left(C_{\phi}\right)-1 i m i t_{n-\infty}\left(1-\left|\phi_{n}(0)\right|\right)^{-1 / n} \\
& =\text { limit }_{n \rightarrow \infty}\left(\Pi_{k-0}^{n-1} \frac{1-\left|\phi_{k}(0)\right|}{1-\phi_{k+1}(0)}\right)^{1 / n} \\
& =1 \text { limit } t_{n \rightarrow \infty} \frac{1-\left|\phi_{n-1}(0)\right|}{1-\left|\phi_{n}(0)\right|}=\left(\phi^{\prime}(a)\right)^{-1}
\end{aligned}
$$

Next, suppose that $|a|=1$ and $\Phi^{\prime}(a)=1$. If $\left\{z_{n}\right\}$ is a sequence in D converging to a such that $\Phi\left(z_{n}\right)$ \rightarrow a as $n \rightarrow \infty$ and

$$
\alpha=1 \text { imit } t_{n-\infty} \frac{1-\left|\phi\left(z_{n}\right)\right|}{1-\left|z_{n}\right|}
$$

exists then by $\left[3, \operatorname{pp25-32]} \alpha \geq \Phi^{\prime}(a)=1\right.$. Hence , letting $z_{n}=\Phi_{n-1}(0), n=1,2, \ldots$, we get

$$
\lim _{n \rightarrow \infty} \inf \frac{1-\left|\phi_{n}(0)\right|}{1-\left|\Phi_{n-1}(0)\right|} \geq 1
$$

Therefore, by (2.1)

$$
\begin{aligned}
I\left(C_{\phi}\right) & =\operatorname{limit}_{n-\infty}\left(\Pi_{k=0}^{n-1} \frac{1-\left|\phi_{k}(0)\right|}{1-\left|\phi_{k+1}(0)\right|}\right)^{1 / n} \\
& \leq \lim _{n \rightarrow \infty} \sup \frac{1-\left|\phi_{n-1}(0)\right|}{1-\left|\phi_{n}(0)\right|} \leq 1
\end{aligned}
$$

But (2.1) again implies $r\left(C_{\Phi}\right) \geq 1$ since $1-\left|\Phi_{n}(0)\right| \leq 1$ $\forall n=1,2, \ldots$. Thus $r\left(\mathbb{C}_{\Phi}\right)=1=\left(\Phi^{\prime}(a)\right)^{-1}$.
3. Unitary equivalence. Campbell-Wright [2] proved a theorem concerning unitary equivalence of composition operators on H^{2}. Here we show that the same thing holds in the A^{2} case.

Theorem : Let Φ and Ψ be analytic functions, not disk automorphisms, that map D into itself. Suppose that the Denjoy-Wolff point a of Φ is in D with $\Phi_{\mathrm{n}}(0) \neq \mathrm{a} \forall$ positive integers n. Then C_{Φ} is unitarily equivalent to C_{Ψ} on A^{2} iff $\Psi(z)=e^{i \theta}$ $\Phi\left(e^{-i \theta} z\right)$ for some real number θ.

Proof : Let U be a unitary operator on A^{2} such that $C_{\Psi}=U^{\star} C_{\Phi} U . \operatorname{Since}|a|<1$ we have $0 \leq\left|\Phi^{\prime}(a)\right|<1$. Thus [5] implies that the non-zero solutions of the equation $£ O \Phi=f$ are the constant functions. Hence, the same is true for the equation fou $=\mathbf{f} b y$ the unitary equivalence of C_{Φ} and C_{Ψ}. Therefore, $U(1)=\gamma 1$ where $|\gamma|=1$. Since $K_{0}=1$ and $\mathbb{C}_{\Phi^{\star}}{ }_{\alpha}=$ $K_{\Phi(\alpha)}$ where $\mathbb{C}_{\Phi}{ }_{\Phi}$ is the adjoint of \mathbb{C}_{Φ}, it follows that $\forall \mathrm{n}$

$$
U K_{\Psi_{n}(0)}-U C_{\Psi_{n}^{*}}^{*}\left(k_{0}\right)=U C_{\psi}^{* n}\left(k_{0}\right)-C_{\phi}^{* n} U\left(K_{0}\right)-\gamma C_{\phi}^{*^{n}}\left(k_{0}\right)-\gamma K_{\phi_{n}(0)}
$$

In particular, when $n=1$, we get

$$
\begin{gathered}
\left(1-\Psi(0){ }^{2}\right)^{-1}-\left\|k_{\psi(0)}\right\|-\left\|U k_{\psi(0)}\right\|-\left\|\gamma k_{\phi(0)}\right\| \\
-\left\|k_{\phi(0)}\right\|-\left(1-|\phi(0)|^{2}\right)^{-1}
\end{gathered}
$$

Therefore, $\Phi(0)=e^{-i \theta} \Psi(0)$ for some real number θ. Furthermore,

$$
\begin{gathered}
\left(1-\Phi(0) \phi_{n}(0)\right)^{-2}-k_{\phi(0)}\left(\phi_{n}(0)\right)-\left\langle k_{\phi(0)}, k_{\phi_{n}(0)}\right\rangle \\
=\left\langle\gamma k_{\phi(0)}, \gamma k_{\psi_{n}(0)}\right\rangle=\left\langle U k_{\psi(0)}, U k_{\psi_{n}(0)}\right\rangle \\
=\left\langle k_{\psi(0)}, k_{\psi_{n}(0)}\right\rangle=k_{\psi(0)}\left(\psi_{n}(0)\right. \\
=\left(1-\bar{\psi}(0) \psi_{n}(0)\right)^{-2}
\end{gathered}
$$

Thus, $\Phi_{n}(0)=(\overline{\Psi(0)} / \overline{\Phi(0)}) \Psi_{n}(0)=e^{-i \theta} \Psi_{n}(0)$. It follows that the analytic functions $\Psi(z)$ and $e^{i \theta}$ $\Phi\left(e^{-i \theta_{z}}\right)$ agree on the sequence $\left\{e^{i \theta} \Phi_{n}(0)\right\}$ which converges to $e^{i \theta}$ a in D and hence $\Psi(z)=e^{i \theta_{\Phi}\left(e^{-i \theta}\right.}$ z).

Conversely, if $\beta(z)=e^{i \theta} z, z \in D$, then by [1] C_{β} is a unitary operator on A^{2} and $C_{\Phi}=$ $C^{\star}{ }_{\beta} C_{\Phi} C_{\beta}$.
4. Subnormality of \mathbf{C}_{Φ} on A^{2}. Boyd [1] proved that C_{Φ} is normal on A^{2} if $\Phi(z)=\alpha z$ for some α with $|\alpha| \leq 1$ iff $\mathbb{C}_{\Phi}^{\star}$ is a composition operator. Here, we give a necessary condition for the subnormality of C_{Φ} on A^{2}. Let S be an operator on a Hilbert space
H. S is called subnormal if there is a Hilbert space K containing H and a normal operator N on K such that N leaves H invariant and S is the restriction of N to H . Also, S is called hyponormal if $S^{*} S \geq S S^{*}$ where S^{*} is the adjoint of S.

Theorem 4.1 : If \exists a positive integer n such that

$$
\left\|C_{\phi}^{2} e_{n}\right\|<\left\|C_{\phi} e_{n}\right\|^{2} \quad(4.1)
$$

then $\mathbf{C}_{\boldsymbol{\Phi}}$ is not subnormal.

Proof : Suppose $\exists \mathrm{n}$ as in (4.1). Let $\mathrm{f}_{0}=\beta \mathrm{e}_{\mathrm{n}}$ and $\mathbf{f}_{1}=\gamma \mathrm{e}_{\mathrm{n}}$ where β and $\gamma \in \mathbb{R}$. It follows that

$$
\begin{aligned}
& \sum_{j, k-0}^{1}\left\langle C_{\phi}^{j+k} f_{j}, C_{\phi}^{j+k} e_{k}\right\rangle- \\
&\left\langle f_{0}, f_{0}\right\rangle+\left\langle C_{\phi} f_{1}, C_{\phi} f_{0}\right\rangle+\left\langle C_{\phi} f_{0}, C_{\phi} f_{1}\right\rangle+\left\langle C_{\phi}^{2} f_{1}, C_{\phi}^{2} f_{1}\right\rangle \\
&-\beta^{2}+2 \beta \gamma\left\|C_{\phi} e_{n}\right\|^{2}+\gamma^{2}\left\|C_{\phi}^{2} e_{n}\right\| \\
&-g(\beta, \gamma)
\end{aligned}
$$

Hence, (4.1) implies that the function $g(\beta, \gamma)$ has a saddle point at $(0,0)$. Thus \exists nonzero $\beta, \gamma \in \mathbf{R}$ such that

$$
\left.\sum_{j, k-0}^{1}<C_{\phi}^{k+j} f_{j}, C_{\Phi}^{j+k} f_{k}\right\rangle<0
$$

Therefore, $[4, p .117]$ implies that \mathbf{C}_{Φ} is not subnormal.

In [7] Cowed and Kriete proved that $\Phi(0)=0$ if C_{Φ} is hyponormal on H^{2}. We conjecture that the same result is true for A^{2}. Moreover, the next results are similar to theirs.

Lemma : If $0<|a|<1$ or if $|a|=1$ and $\Phi^{\prime}(a)=1$, then neither \mathbb{C}_{Φ} nor $\mathbb{C}_{\Phi}^{\star}$ is hyponormal on A^{2}.

Proof : The spectral radius theorem implies $r\left(C_{\Phi}\right)=1$ but $\left\|C_{\Phi}\right\|>1$. Therefore, [4,p.141] implies that neither C_{Φ} nor $C^{\star}{ }_{\Phi}$ is hyponormal on A^{2}.

We note that in the lemma neither \mathbb{C}_{Φ} nor $\mathbf{C}^{\star}{ }_{\Phi}$ is subnormal on A^{2} since subnormality implies hyponormality[4,p. 140].

Theorem 4.2 : If $\mathbb{C}_{\Phi}^{\star}$ is hyponormal on A^{2}, then $|a|$ $=1$ and $\Phi^{\prime}(a)<1$, or else C_{Φ} is normal on A^{2}.

Proof : By the lemma we need only examine the case $\Phi(0)=0$.
We have $S=z^{k_{A}}{ }^{2}$ is an invariant subspace of C_{Φ} on
$\mathrm{A}^{2} \forall$ positive integers k. Hence , S_{\perp} is an invariant subspace of $\mathbb{C}_{\Phi}^{\star}$. Sine S^{\perp} is finite dimensional and $\mathbb{C}_{\Phi}^{\star}$ hyponormal on it, $[4, \mathrm{p} .142]$ implies that $\mathbb{C}_{\Phi}^{\star}$ is normal on S^{+}.
Therefore, by [1] $\Phi(z)=\alpha z$ for some α with $|\alpha| \leq 1$ and consequently \mathbb{C}_{Φ} is normal.
5. Example . Let $\Phi(z)=z^{m}, m=2,3, \ldots$ and \mathbb{C}_{Φ} be the induced composition operator on A^{2}. We prove that
a) $\sigma\left(\mathbb{C}_{\Phi}\right)=\{\lambda \in \mathbb{C}:|\lambda| \leq 1 / \sqrt{m}\} U\{1\}$
where $\sigma\left(\mathbb{C}_{\Phi}\right)$ is the spectrum of \mathbb{C}_{Φ}.
b) \mathbb{C}_{Φ} is bounded below by $1 / \sqrt{\mathrm{m}}$
c) \mathbb{C}_{Φ} is not subnormal.

Proof : a) Let $f(z)=\Sigma_{k=0}^{\infty} a_{k} z^{k}$ and $g(z) \frac{1}{f} b z$ where $b=0$.
Suppose $\lambda \neq 1$ and $\left(\mathbb{C}_{\Phi}-\lambda I\right)(f)=g$. Then

$$
\sum_{k-0}^{\infty} a_{k} z^{m k}=b z+\sum_{j-0}^{\infty} \lambda a_{j} z^{j}
$$

Fixing m and equating the corresponding coefficients we get

$$
a_{1}=-\frac{b}{\lambda} \quad \text { and } \quad a_{m k}=\frac{a_{k}}{\lambda}, \quad k=1,2,3, \ldots
$$

Hence,

$$
a_{m}=-\frac{b}{\lambda^{n+1}}, n=1,2,3, \ldots
$$

Thus,

$$
\|f\|^{2}=\sum_{k-0}^{\infty} \frac{\left|a_{k}\right|^{2}}{k+1} \geq \sum_{n-1}^{\infty} \frac{\left|a_{m^{n}}\right|^{2}}{m^{n}+1}=|b|^{2} \sum_{n-1}^{\infty} \frac{1}{\lambda^{2 n+2}\left(m^{n}+1\right)}
$$

Therefore, the ratio test implies there does not exist $f \in A^{2}$ such that $\left(C_{\Phi}-\lambda I\right)(f)=g$ if $|\lambda|<$ $1 / \sqrt{\mathrm{m}}$ which means

$$
\begin{equation*}
\{\lambda \in \mathbb{C}:|\lambda|<1 / \sqrt{m}\} \subseteq \sigma\left(\mathbb{C}_{\Phi}\right) \tag{5.2}
\end{equation*}
$$

Next let $A^{2}=\left\{f \in A^{2}: f(0)=0\right\}$. If $\left.C_{\Phi}\right|_{A \delta}$ is the restriction of \mathbb{C}_{Φ} to $A^{2}{ }_{0}$ and $f(z)=\Sigma^{\infty} k=1 a_{k} z^{k}$ $\in A^{2}$, then for each $n=1,2, \ldots$ we have

$$
\begin{aligned}
& \|\left(C_{\phi}{\mid A_{0}^{2}}^{n}(f)\left\|^{2}-\right\| f \circ \phi_{n}\left\|^{2}-\right\| \sum_{k-1}^{\infty} a_{k} z^{m^{n} k} \|^{2}\right. \\
&-\sum_{k-1}^{\infty} \frac{\left|a_{k}\right|^{2}}{(k+1)} \frac{(k+1)}{\left(m^{n} k+1\right)}
\end{aligned}
$$

Since $(k+1) /\left(m^{n} k+1\right)$ decreases to $1 / m^{n}$ as $k \rightarrow \infty$ we get

$$
\left(1 / m^{n}\right)\|f\|^{2} \leq\left(C_{\phi} \mid A_{0}^{2}\right)^{n}(f)\left\|^{2} \leq\left(2 /\left(m^{n}+I\right)\right)\right\| f \|^{2}
$$

Therefore,

$$
(1 / \sqrt{m}) \leq\left\|\left(\left.\mathbb{C}_{\phi}\right|_{A_{0}^{2}}\right)^{n}\right\|^{1 / n} \leq\left(2 / m^{n}+1\right)^{1 / 2 n}
$$

letting $n \rightarrow \infty$ it follows that

$$
\begin{equation*}
I\left(\left.C_{\phi}\right|_{A_{0}^{2}}\right)=1 / \sqrt{m} \tag{5.3}
\end{equation*}
$$

Next if $\mathbb{C}_{\Phi} \mid \mathbb{C}$ is the restriction of $\mathbb{C}_{\bar{\sigma}}$ to the complex numbers then by [5] the only non-zero solutions of $\left(\mathbb{C}_{\bar{\Phi}}-\lambda I\right)(f)=0$ is $\lambda=1$ and f constant. So if $\lambda \neq 1$, then the kernel of $\mathbb{C}_{\bar{\Phi}}-\lambda \mathbb{I}$ is zero. Moreover, \forall constant α

$$
\left(C_{\phi} \mid c^{-\lambda I}\right)\left(\frac{\alpha}{1-\lambda}\right)=\alpha
$$

i.e., $\mathbb{C}_{\Phi} \mid \mathbb{C}-\lambda I$ is onto and hence invertible. Therefore,
$\sigma\left(\mathbf{C}_{\Phi} \mid \mathbb{C}\right)=\{1\}$.
Finally , since

$$
\sigma\left(C_{\phi}\right)=\sigma\left(\left.C_{\phi}\right|_{A_{0}^{2}}+\left.C_{\phi}\right|_{c}\right)-\sigma\left(C_{\phi} \mid A_{0}^{2}\right) \bigcup \sigma\left(C_{\phi} \mid c\right)
$$

(see e.g., [4,p. 43]) and observing that 1 is an eigenvalue of $\mathbb{C}_{\Phi}(5.2)$ and (5.3) imply (5.1). (b) let $f(z)=\Sigma_{K=0}^{\infty} a_{k} z^{k} \in A^{2}$. Since $(k+1) /(m k+1)$ decreases to $1 / \mathrm{m}$ as $\mathrm{k} \rightarrow \infty$ we see that \mathbf{C}_{Φ} is bounded below by $1 / \sqrt{\mathrm{m}}$ from

$$
\left\|C_{\Phi} f\right\|^{2}=\left\|\sum_{k=0}^{\infty} a_{k} z^{m k}\right\|^{2}=\sum_{k-0}^{\infty} \frac{\left|a_{k}\right|^{2}}{(k+1)}\left(\frac{k+1}{m k+1}\right) \geq \frac{1}{m}\|f\|^{2}
$$

(c) Theorem 4.1 implies that \mathbf{C}_{Φ} is not subnormal because

$$
\left\|C_{\phi}^{2} e_{k}\right\|-\sqrt{\frac{2}{m^{2}+1}}<\frac{2}{m+1}-\left\|C_{\phi} e_{1}\right\|^{2}
$$

We close this example by pointing out that

$$
C_{\phi} e_{k}=\sqrt{\frac{1+k}{1+m k}} e_{m k}, k=0,1,2, \ldots
$$

and

$$
C_{\phi}^{*} e_{k}-\left\{\begin{array}{c}
\sqrt{\frac{1+(k / m)}{1+k}} e_{k / m} \quad \text { if }(k / m) \in \mathbb{N} \\
\quad \text { if }(k / m) \notin \mathbb{N}
\end{array}\right.
$$

Where \mathbf{N} is the natural numbers.

REFERENCES

1. D.M. Boyd, Composition Operators on the Bergman Space, Collog. Math., $\underline{34}$ (1975), 127-136.
2. R. K. Campbell-Wright, On the Equivalence of Composition Operators, thesis, Purdue University, 1989.
3. C. Caratheodory, Theory of functions of a Complex Variable, vol. II, second English edition, Chelsea Publishing Co., New York 1960.
4. John B. Conway, Subnormal Operators, Pitman Publishing Inc., Boston, 1981.
5. Carl C. Cowen, Iteration and the Solution of Functional Equations for Functions Analytic in the Unit Disk, Trans Amer. Math. Soc. 256 (1981), 69-95(MR 82 i \# 30036)
6. , Composition Operators on $\mathrm{H}^{2}, \mathrm{~J}$. Operator Theory 9(1983), 77-106(MR 84d \# 47038).
7. C. C. Cowen and T. L. Kriete, Subnormality and Composition Operators on H^{2}, J. Funct. Anal. 81(1988), 298-319.
8. A. Denjoy, Sur l'iteration des fonctions analytiques, C. R. Acad. Sci. Paris 182(1926), 255-275.
9. J. Wollf, Sur l'iteration des fonctions, Cn R. Acad. Sci. Paris 182(1926) 42-43, 200-201.
