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ABSTRACT

If (I) is an analytic function mapping the open unit disk D into itself and A 2
is the Bergman space of analytic functions on D, the compositon operator Ca, on A 2

is defined by C.- 4,f = fac1)\-AEN 2 .

In this paper we consider the spectral radius, unitary equivalence, subnormality of
Cc) and study the case T(z) = zm, m = 2, 3, 	 in detail.
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(I)(z)= zm, m = 2, 3, ....
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Hence, the norm of f is given by

Hi11 2
-<f , f>-E:.0

Of special interest is the function KE(z). (1-Ez) -2
which serves as the "reproducing kernel" for A 2 ,
i.e.,

f(() - <f,kc›V f E A 2 & VCED.

Furthermore, the functions e n (z) = .117171 zn, n =
0,1,2,... form an orthonormal basis for A2 •
If	 is a non-constant analytic function mapping D
into itself, then 0 induces a composition operator
Co : A2 4A2 defined by Cof = fo0 V f E A2 .
Boyd [1] showed that Co is bounded and obtained
norm estimats for Co . He studied normal, unitary,
hermetian and compact composition operators on A 2 .
Furthermore, he computed the spectrum of Co for
some special kinds of 0.
Cowen [6] computed the spectral radius of Co as an
operator on the Hardy space H 2 . Here, we compute
the spectral radius of Co as an operator on A 2 .
Also, in recent work Campbell-Wright [2] found a
necessary and sufficient condition for two
composition operators on H 2 to be unitarily
equivalent.We show that the same thing holds in the
case of A 2 . Moreover, we give a necessary condition
for the subnormality of Co on A 2 .

,* 	 2
n+1
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Finally, as an example we study CD when cl)(z)= zm , m

= 2 ,3,...

2.Spectral raduis. It was found out that the fixed
points of c:) are related to some properities of C (15

and to its spectral radius in particular. We say

that a point bE-5, the closure of D, is a fixed

point of if limit r rb) = b. We write
limitr4 1_ 1 (rb) = c13 1 (b). Although it is not apriori
evident that (5 has fixed points the following is
known.

Denjoy-Wolff Theorem [8,9] : let : D D be
analytic and non-elliptic 1•:obius transformation
onto D. Then ] a unique fixed point a of 5 in 71.5
such that IV(a)I � 1.
We call the distinguished fixed point a the Den joy-
Wolff point of (3 and we point out that if lad = 1,
then 0 < o' (a) 5 1 and if lai<1, then 0 5.1(3t(a)<
1. Now we are ready to prove the spectral radius
theorem which is similar to that of (6] in the H 2

case.

Spectral radius theorem : Let () : D D be analytic
with Denjoy-Wolff Point a. Then the spectral radius
r(C) of C6 is 1 when la! < 1 and (c-5.' (a)) -1 when
lal = 1.

Proof 	 r(C) =
=

cnal/n

cq.5nO/n

■ \ •



An- Najah J. Res. , Vol . HI, 9. (1995) 	 Mahoud A. Masri

Where 4) 11 = 	 n=1,2,... 1, 1 = 	 and 410(z) = z V
z e D (see e.g., [4,p.142]).
Boyd [1] showed that

(1 - I 	 ( 0) I 2 ) -1 slI C4,11 s  1+ 4)(0) 
( 	 )

Hence,

limn_sup ( 14- lito n ( 0 ) 1 2 ) -111' �r ( C(b ) �
1+,(0)1 1/n( 	
1-4,0) I '

Since,

(
1+ 1 4)(0)1 

)1/

1- 14 ) ,(0)

inf (1+;4),(0)1) 2/n (1 - A) n (0)1 2 ) -1/n.

- 	 (1-14:0,2(0) 	 2 ) - 1113
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We have

r(Co) —11Mitn_ 00 (1 — (ti n (0) 2) - 1/n

-1Imit,„(1— kp n (o) ) -1 /n 	 (2.1)

Since (see [5]) 	 4,11(0) = a, r (C,D ) = 1 if

jai < 1 by (2.1). When lal = 1 and cla' (a) < 1 we

have [3,p.32]

	1—* ,(0) 	 ,, (a)l imi t n_ co 	4), ( )

Therefore, (2.1) implies

r (CO -liraitn_(1-14) 7 (0) 1 ) - 1/n

1 - 14)k(0) I , i / n

(1111(2:C 1 — I ■ttlk „ i (0) 	 )

	

1 — CI)n _ i (0) 1 	 , 4), (a) ),

	

-14),(0); 	 k

1 I V
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Next, suppose that lal = 1 and 0'(a) = 1 . If {z n }

is a sequence in D converging to a such that Cz n )

4 a as n 4 00 and

1- 1 (I)(zn )
a — /imi tn-. 1_1 zn 1

exists then by [3,pp25-32] a ? 4 1 (a) = 1. Hence
letting
z n = cDn_1(0), n = 1,2, ... , we get

1
lirnn..,inf 

 1-14),(0)
	zl.

1-413 _ 1 (0)1

Therefore, by (2.1)

n_i 1-14)k (0) 1  )1/n
i (C) ..limitn_.(11k-°1-110,1(0)

1- Ion-1(0) 1  � 3.
1 -'o n o)slimn_sup
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But (2.1) again implies r(C4,) 	 1 since 1-14) /1 (0)1 � 1

V n = 1,2,... 	 . Thus r(C4,) = 1 = (V(a)) -1 .

3. Unitary equivalence. Campbell-Wright [2] proved
a theorem concerning unitary equivalence of
composition operators on H 2 . Here we show that the
same thing holds in the A2 case.

Theorem : Let 4, and W be analytic functions, not
disk automorphisms, that map D into itself. Suppose
that the Denjoy-Wolff point a of c is in D with

til (0) # a V positive integers n . Then C 4, is
unitarily equivalent to CT, on A2 iff W(z) = e i0
Ce-10 z) for some real number 0.

Proof : Let U be a unitary operator on A 2 such that
CT = U* C4, U. Since lal < 1 we have 0 � IV(a)I < 1.
Thus [5] implies that the non-zero solutions of the
equation foci) = f are the constant functions. Hence,
the same is true for the equation foT = f by the
unitary equivalence of C,, and CT Therefore,
U(1) = y 1 where IYI = 1. Since K0 = 1 and C * 4,ka =

Kc(a) where C* „1, is the adjoint of C 4), it follows
that V n

UK, (0) - UC; n (k0 ) - UC,r(k0 ) - C4rU(K0 ) -yqr(k0 ) - yK4,. (0)

1 I £
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In particular, when n 	 1, we get

(1-,*(0) i 2 ) -1 -111(4,( 0 )11 - 11Ukc o ) -11y4 (0) 11

- 11k4(0)11 - (1 -
1'4)(0) 12)

- 1

Therefore, (1)(0) 	 e-i0 T(0) for some real number O.
Furthermore,

(1 -f(0)(1),(0)) -2-k.( 0 )(4),(0)) - <kso),;,(0)›

< k(I) (0 ) 	 ( 0 > < Elk* ( 0 	 Ukip 12 Co )

> - k00) (ill n (0)-<kco) , k11,2 (0)

- 	 0) IV, ( 0) )

Thus, 47. 11 (0) = (T(0)/43(0)) T n (0) = e-i0 Tn (0). It
follows that the analytic functions W(z) and e i8

47.(e -l ez) agree on the sequence fe le 4, 11 (0)) which
converges to e l e a in D and hence T(z) = e i ecD(e - ie
z).

Conversely, if p(z) ei0z,zeD, then by
[1] Cp is a unitary operator on A 2 and CT
C*pC4,Cp .

4. Subnormality of C4 on A2 . Boyd [1] proved that
C4, is normal on A 2 iff '(z) = az for some a with
'a1 � 1 iff C * (1, is a composition operator. Here, we
give a necessary condition for the subnormality of
C4, on A2 . Let S be an operator on a Hilbert space

110
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H. S is called subnormal if 'there is a Hilbert
space K containing H and a normal operator N on K

such that N leaves H invariant and S is the
restriction of N to H. Also, S is called hyponormal

if S * S S S * where S * is the adjoint of S.

Theorem 4.1 : If 9 a positive integer n such that

14,e„i< ICt e„11 	 ( 4 . 1)

then C, is not subnormal.

Proof : Suppose 9 n as in (4.1). Let f o = pen and

fl = Yen where p and y e P. It follows that

<cer 	 -

<1,, f.> < C4,1-1 , (7(1, 1.> + < (7, 4,r„, 	 + < 	 f1)

-iv +2 p y lc,t,e„r, y 214en 1
-g((i,y)
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Hence, (4.1) implies that the function g(p,y) has a
saddle point at (0,0). Thus D non-zero 0,y a such
that

L3,k-0 <C4)k .P C.j+jf +kfk> < 	 •

Therefore, 	 [4,p.117] implies that Cc, is not
subnormal.

In [7] Cowen and Kriete proved that 0(0) = 0
if CI, is hyponormal on H 2 . We conjecture that the
same result is true for A 2 . Moreover, the next
results are similar to theirs.

Lemma : If 0 < lal < 1 or if lal = 1 and 0'(a) = 1,
then neither C ci, nor C*4, is hyponormal on A 2 .

Proof : The spectral radius theorem implies r(C,)=1
but HC4A > 1. Therefore, [4,p.141] implies that
neither CI, nor C*0 is hyponormal on A 2 .

We note that in the lemma neither C,L, nor C*0
is subnormal on A 2 since subnormality implies
hyponormality[4,p. 140].

Theorem 4.2 : If ec, is hyponormal on A 2 , then lal
= 1 and 0'(a) < 1, or else C4, is normal on A2 .

Proof : By the lemma we need only examine the case

0(0) = 0.

We have S = zkA 2 is an invariant subspace of CeD on
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A2 V positive integers k. Hence , SL is an invariant

subspace of C 	 .Sine SL is finite dimensional and

C*,1, hyponormal on it, [4,p. )42) implies that C * ,1,-

is normal on Si .
Therefore, by [1] t(z) = az for some a with lal � 1
and consequently C,1, is normal.

5. Example . Let 1)(z) = z m , m = 2,3,... and C be
the induced composition operator on A 2 . We prove
that
a) a(C,D ) = {X E C :IXI 51/47n } U {1} 	 (5.1)

Where cs(CcD ) is the spectrum of C,.

b) CI) is bounded below by 1/Iii
c) C(D is not subnormal.

Proof : a) Let f(z) = E'k,0 akz k and g(z) / bz
where b = 0.
Suppose X / 1 	 and (C,1, 	 XI)(f) = g . Then

Ek _ o a kz -k-bz+E .;_, Xa i

I IA
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Fixing m and equating 	 the 	 corresponding
coefficients we get

Hence,

a -- 12 and amk A- 	 k-1,2,3,...
a
k

am 	b	 1.'1 	 •An+1

Thus,

1 	 lamn1ak I 	1 f 11 2 "rk 	2-0 k+1 ^En-1 m n+12 b 2E'n-1 X2n+2 m n ÷ i)

Therefore, the ratio test implies there does not
exist f G A2 such that (Cd, - XI)(f) = g if 'XI <
1/4it which means

(X E C : IX1 < 1/ 47) 	 ) 	 (5.2)
Next let A 2 0 = { f E A2 : f(0) = 0 }. If C4,1 ,

A i s

the restriction of C ci, to A20 and f(z) = Ewk=1akzk
E A 2 , then for each n = 1,2,... we have

( C4,14) ( f) ii 2- 1If°4) nI1 2 — 	
akzm nicH2

"E-1 	 leCt-1:1 2) (1(111(11 )
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Since (k4-1)/(m4-1) decreases to 1/ran as k 	 01 we

get

(1 /	 112 � ( C¢1 (f) 11 2 5(2/ (m n-4- 1))11-fii 2

Therefore,

( 1 /1T11 ) 	 (C1 ,kif) n il lin � (2/171 n+1) 1/2n

letting n 4 c,0 it follows that

	r (C4) 1 Aj) -1/115 	 (5.3)

Next if C-, 5 1c, is the restriction of C5 to the

complex numbers then by [5] the only non-zero

	

solutions f (Co°-- xi)(f) 	 o is X = 1 and f
constant. So if X 5!..1. 1, then the kernel of C5 _ hg
is zero. Moreover, V constant a

	(Cl c—XI) ( 	  ) —cc

■V •
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i.e., C,,IC - XI is onto and hence invertible.
Therefore,
o(C4,1c) = {1}.
Finally , since

a ( C4,) - a(ColAg+C+1c) -a(;1A)Ua(C4,)c)

(see e.g., [4,p. 43]) and observing that 1 is an
eigenvalue of C,D (5.2) and (5.3) imply (5.1).
(b) let f(z) = E'K= 0 ak zk E A 2 . Since (k+1)/(mk+1)
decreases to 1/m as k 00 we see that C ci, is bounded
below by 1/47 from

Hc4,f12 -	 a ,,,znkil 2k-0 - 	 k-0
a kl 	k+1 Ufa1 2(k+1) ( mk+1) ^ 1m

(c) Theorem 4.1 implies that C ci, is not subnormal
because

iclekH 	2 < 	 lich,e112
m 2 +1 m+i

rer
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We close this example by pointing out that

l+k Cek 	 mk eink k -0,1,2,...

and t.,\1 1+(k/m) 
1+k

0 ek/m if (k/m) N
(k/m) N

Where N is the natural numbers.
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