ON COMPOSITION OPERATORS ON A² BY MAHMUD ILAYYAN MASRI DEPARTMENT OF MATHEMATICS AN-NAJAH NATIONAL UNIVERSITY

ABSTRACT

If Φ is an analytic function mapping the open unit disk D into itself and A² is the Bergman space of analytic functions on D, the compositon operator C_{Φ} on A² is defined by $C_{\Phi}f = f \Phi \forall f \epsilon A^2$.

In this paper we consider the spectral radius, unitary equivalence, subnormality of C_{\oplus} and study the case $\Phi(z) = z^m$, m = 2, 3, in detail.

ملخص

اذا كانت Φ داله تحليليه من القرص المفتوح D الى نفسه و A^2 هو فراغ برغمان المكون C $_{\Phi}$ من الدوال التحليليه على D والتي تحقق شرط تكامل معين فانه يمكن تعريف المؤثر المركب D $_{\Phi}$ على A^2 كما يلي: $\phi \circ f = f \circ \phi$ لكل f تنتمي الى A^2 .

في ورقة البحث هذه ندرس نصف القطر الطيفي والتكافؤ الأحادي والصفه شبه الطبيعية للمؤثر المذكور أعلاه. وكذلك نبحث بشيء من التفصيل في الحاله الخاصة $\Phi(z)=z^{m},\,m=2,\,3,....$ Hence, the norm of f is given by

$$\|f\|^2 = \langle f, f \rangle = \sum_{n=0}^{\infty} \frac{|a_n|^2}{n+1}$$

Of special interest is the function $K_{\zeta}(z) = (1-\zeta z)^{-2}$ which serves as the "reproducing kernel" for A^2 , i.e.,

$$f(\zeta) = \langle f, k_{\zeta} \rangle \forall f \in A^2 \& \forall \zeta \in D.$$

Furthermore, the functions $e_n(z) = \sqrt{n+1} z^n$, n = 0, 1, 2, ... form an orthonormal basis for A^2 .

If Φ is a non-constant analytic function mapping D into itself, then Φ induces a composition operator C_{Φ} : $A^2 \rightarrow A^2$ defined by $C_{\Phi}f = f \circ \Phi \forall f \in A^2$.

Boyd [1] showed that C_{Φ} is bounded and obtained norm estimats for C_{Φ} . He studied normal, unitary, hermetian and compact composition operators on A^2 . Furthermore, he computed the spectrum of C_{Φ} for some special kinds of Φ .

Cowen [6] computed the spectral radius of C_{Φ} as an operator on the Hardy space H². Here, we compute the spectral radius of C_{Φ} as an operator on A². Also, in recent work Campbell-Wright [2] found a necessary and sufficient condition for two composition operators on H² to be unitarily equivalent.We show that the same thing holds in the case of A². Moreover, we give a necessary condition for the subnormality of C_{Φ} on A².

Finally, as an example we study C_{Φ} when $\Phi(z) = z^m$, m = 2,3,...

2.Spectral raduis. It was found out that the fixed points of Φ are related to some properities of C_{Φ} and to its spectral radius in particular. We say that a point $b\in D$, the closure of D, is a fixed point of Φ if $\liminf_{r \to 1^-} \Phi(rb) = b$. We write $\liminf_{r \to 1^-} \Phi'(rb) = \Phi'(b)$. Although it is not apriori evident that Φ has fixed points the following is known. Denjoy-Wolff Theorem [8,9] : let Φ : $D \to D$ be analytic and non-elliptic Mobius transformation onto D. Then Ξ a unique fixed point a of Φ in \overline{D}

such that $|\Phi'(a)| \leq 1$. We call the distinguished fixed point a the Denjoy-Wolff point of Φ and we point out that if |a| = 1, then $0 < \Phi'(a) \leq 1$ and if |a| < 1, then $0 \leq |\Phi'(a)| < 1$. Now we are ready to prove the spectral radius theorem which is similar to that of [6] in the H² case.

Spectral radius theorem : Let Φ : D \rightarrow D be analytic with Denjoy-Wolff Point a. Then the spectral radius $r(\mathbb{C}_{\Phi})$ of \mathbb{C}_{Φ} is 1 when |a| < 1 and $(\Phi'(a))^{-1}$ when |a| = 1.

```
Proof : r(C_{\Phi}) = \text{limit}_{n \to \infty} \| C^{n}_{\Phi} \|^{1/n}
= \text{limit}_{n \to \infty} \| C_{\Phi n} \|^{1/n}
```

Where $\Phi_n = \Phi 0 \Phi_{n-1}$, n=1,2,... $\Phi_1 = \Phi$ and $\Phi_0(z) = z \forall z \in D$ (see e.g., [4,p.142]). Boyd [1] showed that

$$(1 - |\phi(0)|^2)^{-1} \le \|C_{\phi}\| \le \frac{1 + |\phi(0)|}{1 - |\phi(0)|}$$

Hence,

$$\lim_{n \to \infty} \sup (1 + |\phi_{n}(0)|^{2})^{-1/n} \le r(C_{\phi}) \le \lim_{n \to \infty} \inf (\frac{1 + |\phi_{n}(0)|}{1 - |\phi_{n}(0)|})^{1/n}$$

Since,

$$\lim_{n \to \infty} \inf \left(\frac{1 + |\phi_n(0)|}{1 - |\phi_n(0)|} \right)^{1/n} =$$

$$\lim_{n \to \infty} \inf \left(1 + |\phi_n(0)| \right)^{2/n} (1 - |\phi_n(0)|^2)^{-1/n}$$

$$= \lim_{n \to \infty} \inf \left(1 - |\phi_n(0)|^2 \right)^{-1/n}$$

We have

$$r(C_{\phi}) = limit_{n-\infty}(1 - |\phi_{n}(0)|^{2})^{-1/n}$$
$$= limit_{n-\infty}(1 - |\phi_{n}(0)|)^{-1/n} \qquad (2.1)$$

Since (see [5]) $\operatorname{limit}_{n \to \infty} \Phi_n(0) = a$, $r(C_{\Phi}) = 1$ if |a| < 1 by (2.1). When |a| = 1 and $\Phi'(a) < 1$ we have [3,p.32]

$$limit_{n-\infty} \frac{1 - |\phi_{n}(0)|}{1 - |\phi_{n-1}(0)|} - \phi'(a)$$

Therefore, (2.1) implies

$$r(C_{\phi}) = limit_{n \to \infty} (1 - |\phi_{n}(0)|)^{-1/n}$$

= limit_{n \to \infty} (\Pi_{k=0}^{n-1} \frac{1 - |\phi_{k}(0)|}{1 - |\phi_{k+1}(0)|})^{1/n}
= limit_{n \to \infty} \frac{1 - |\phi_{n-1}(0)|}{1 - |\phi_{n}(0)|} = (\phi'(a))^{-1}

Next, suppose that |a| = 1 and $\Phi'(a) = 1$. If $\{z_n\}$ is a sequence in D converging to a such that $\Phi(z_n) \rightarrow a$ as $n \rightarrow \infty$ and

$$\alpha - limit_{n-\infty} \frac{1 - |\phi(z_n)|}{1 - |z_n|}$$

exists then by [3,pp25-32] $\alpha \ge \Phi'(a) = 1$. Hence, letting $z_n = \Phi_{n-1}(0), n = 1, 2, \dots$, we get $\lim_{n \to \infty} \inf \frac{1 - |\Phi_n(0)|}{1 - |\Phi_{n-1}(0)|} \ge 1$.

Therefore, by (2.1)

$$r(C_{\phi}) = limit_{n-\infty} (\Pi_{k=0}^{n-1} \frac{1 - |\phi_{k}(0)|}{1 - |\phi_{k+1}(0)|})^{1/n}$$

$$\leq \lim_{n \to \infty} sup \frac{1 - |\phi_{n-1}(0)|}{1 - |\phi_{n}(0)|} \leq 1$$

But (2.1) again implies $r(C_{\Phi}) \ge 1$ since $1 - |\Phi_n(0)| \le 1$ $\forall n = 1, 2, ...$. Thus $r(C_{\Phi}) = 1 = (\Phi'(a))^{-1}$.

3. Unitary equivalence. Campbell-Wright [2] proved a theorem concerning unitary equivalence of composition operators on H^2 . Here we show that the same thing holds in the A^2 case.

Theorem : Let Φ and Ψ be analytic functions, not disk automorphisms, that map D into itself. Suppose that the Denjoy-Wolff point a of Φ is in D with $\Phi_n(0) \neq a \forall$ positive integers n . Then C_{Φ} is unitarily equivalent to C_{Ψ} on A^2 iff $\Psi(z) = e^{i\theta}$ $\Phi(e^{-i\theta} z)$ for some real number θ .

Proof: Let U be a unitary operator on A^2 such that $C_{\Psi} = U^* C_{\Phi} U$. Since |a| < 1 we have $0 \le |\Phi'(a)| < 1$. Thus [5] implies that the non-zero solutions of the equation fo $\Phi = f$ are the constant functions. Hence, the same is true for the equation fo $\Psi = f$ by the unitary equivalence of C_{Φ} and C_{Ψ} . Therefore, $U(1) = \gamma 1$ where $|\gamma| = 1$. Since $K_0 = 1$ and $C^*_{\Phi}k_{\alpha} = K_{\Phi}(\alpha)$ where C^*_{Φ} is the adjoint of C_{Φ} , it follows that \forall n

$$UK_{\Psi_{n}(0)} - UC_{\Psi_{n}}^{*}(k_{0}) - UC_{\Psi}^{*''}(k_{0}) - C_{\Phi}^{*''}U(K_{0}) - \gamma C_{\Phi}^{*''}(k_{0}) - \gamma K_{\Phi_{n}(0)}$$

In particular, when n = 1, we get

$$(1 - |\psi(0)|^{2})^{-1} - ||k_{\psi(0)}|| - ||Uk_{\psi(0)}|| - ||\gamma k_{\phi(0)}||$$
$$- ||k_{\phi(0)}|| - (1 - |\phi(0)|^{2})^{-1}$$

Therefore, $\Phi(0) = e^{-i\theta} \Psi(0)$ for some real number θ . Furthermore,

$$(1 - \overline{\Phi}(0) \Phi_{n}(0))^{-2} - k_{\phi(0)} (\Phi_{n}(0)) - \langle k_{\phi(0)}, k_{\phi_{n}(0)} \rangle$$
$$- \langle \gamma k_{\phi(0)}, \gamma k_{\psi_{n}(0)} \rangle - \langle U k_{\psi(0)}, U k_{\psi_{n}(0)} \rangle$$
$$- \langle k_{\psi(0)}, k_{\psi_{n}(0)} \rangle - k_{\psi(0)} (\psi_{n}(0))$$
$$- (1 - \overline{\psi}(0) \psi_{n}(0))^{-2}$$

Thus, $\Phi_n(0) = (\Psi(0)/\Phi(0)) \Psi_n(0) = e^{-i\theta} \Psi_n(0)$. It follows that the analytic functions $\Psi(z)$ and $e^{i\theta} \Phi(e^{-i\theta}z)$ agree on the sequence $\{e^{i\theta} \Phi_n(0)\}$ which converges to $e^{i\theta}$ a in D and hence $\Psi(z) = e^{i\theta}\Phi(e^{-i\theta}z)$.

Conversely, if $\beta(z)$ = $e^{i\theta}~z$, $z~\in$ D , then by [1] C_β is a unitary operator on A^2 and C_Ψ = $C^*{}_\beta C_\Phi C_\beta$

4. Subnormality of C_{Φ} on A^2 . Boyd [1] proved that C_{Φ} is normal on A^2 iff $\Phi(z) = \alpha z$ for some α with $|\alpha| \leq 1$ iff C_{Φ}^* is a composition operator. Here, we give a necessary condition for the subnormality of C_{Φ} on A^2 . Let S be an operator on a Hilbert space

H. S is called subnormal if there is a Hilbert space K containing H and a normal operator N on K such that N leaves H invariant and S is the restriction of N to H. Also, S is called hyponormal if $S^* S \ge S S^*$ where S^* is the adjoint of S.

Theorem 4.1 : If \exists a positive integer n such that

$$\|C_{\phi}^{2}e_{n}\| < \|C_{\phi}e_{n}\|^{2} \qquad (4.1)$$

then C_{Φ} is not subnormal.

Proof : Suppose \exists n as in (4.1). Let $f_o = \beta e_n$ and $f_1 = \gamma e_n$ where β and $\gamma \in \mathbb{R}$. It follows that

$$\sum_{j,k=0}^{1} \langle C_{\phi}^{j+k} f_{j}, C_{\phi}^{j+k} e_{k} \rangle =$$

$$\langle f_{\circ}, f_{\circ} \rangle + \langle C_{\phi} f_{1}, C_{\phi} f_{\circ} \rangle + \langle C_{\phi} f_{\circ}, C_{\phi} f_{1} \rangle + \langle C_{\phi}^{2} f_{1}, C_{\phi}^{2} f_{1} \rangle$$

$$-\beta^{2} + 2\beta\gamma \|C_{\phi} e_{n}\|^{2} + \gamma^{2} \|C_{\phi}^{2} e_{n}\|$$

$$-g(\beta, \gamma)$$

Hence, (4.1) implies that the function $g(\beta, \gamma)$ has a saddle point at (0,0). Thus \exists non-zero $\beta, \gamma \in \mathbb{R}$ such that

$$\sum_{j,k=0}^{1} \langle C_{\Phi}^{k+j} f_{j}, C_{\Phi}^{j+k} f_{k} \rangle < 0.$$

Therefore, [4,p.117] implies that C_{Φ} is not subnormal.

In [7] Cowen and Kriete proved that $\Phi(0) = 0$ if C_{Φ} is hyponormal on H^2 . We conjecture that the same result is true for A^2 . Moreover, the next results are similar to theirs.

Lemma: If 0 < |a| < 1 or if |a| = 1 and $\Phi'(a) = 1$, then neither C_{Φ} nor C^*_{Φ} is hyponormal on A^2 .

Proof : The spectral radius theorem implies $r(C_{\bar{\Phi}})=1$ but $\|C_{\bar{\Phi}}\| > 1$. Therefore, [4,p.141] implies that neither $C_{\bar{\Phi}}$ nor $C_{\bar{\Phi}}^*$ is hyponormal on A^2 .

We note that in the lemma neither C_{Φ} nor C_{Φ}^{*} is subnormal on A^{2} since subnormality implies hyponormality[4,p. 140].

Theorem 4.2 : If C_{Φ}^{*} is hyponormal on A^{2} , then |a| = 1 and $\Phi'(a) < 1$, or else C_{Φ} is normal on A^{2} .

Proof : By the lemma we need only examine the case $\Phi(0) = 0$. We have S = $z^k A^2$ is an invariant subspace of C_{Φ} on $A^2 \forall$ positive integers k. Hence, S_{\perp} is an invariant subspace of C^*_{Φ} .Sine S^{\perp} is finite dimensional and C^*_{Φ} hyponormal on it, [4,p. 142] implies that C^*_{Φ} is normal on S^{\perp} . Therefore, by [1] $\Phi(z) = \alpha z$ for some α with $|\alpha| \leq 1$ and consequently C_{Φ} is normal.

5. Example . Let $\Phi(z) = z^m$, m = 2, 3, ... and C_{Φ} be the induced composition operator on A^2 . We prove that

- a) $\sigma(C_{\Phi}) = \{\lambda \in \mathbb{C} : |\lambda| \le 1/\sqrt{m} \} \cup \{1\}$ (5.1) Where $\sigma(C_{\Phi})$ is the spectrum of C_{Φ} .
- b) \mathbb{C}_{Φ} is bounded below by $1/\sqrt{m}$
- c) C_{Φ} is not subnormal.

Proof : a) Let $f(z) = \Sigma^{\infty}_{k=0} a_k z^k$ and $g(z) \neq bz$ where b = 0. Suppose $\lambda \neq 1$ and $(C_{\Phi} - \lambda I)(f) = g$. Then $\sum_{k=0}^{\infty} a_k z^{\pi k} = bz + \sum_{j=0}^{\infty} \lambda a_j z^j$ Fixing m and equating the corresponding coefficients we get

$$a_1 = -\frac{b}{\lambda}$$
 and $a_{mk} = \frac{a_k}{\lambda}$, $k=1,2,3,\ldots$

Hence,

$$a_{m^n} = -\frac{b}{\lambda^{n+1}}, n=1, 2, 3, \ldots$$

Thus,

$$\|f\|^{2} - \sum_{k=0}^{\infty} \frac{|a_{k}|^{2}}{k+1} \ge \sum_{n=1}^{\infty} \frac{|a_{m^{n}}|^{2}}{m^{n}+1} - |b|^{2} \sum_{n=1}^{\infty} \frac{1}{\lambda^{2n+2}(m^{n}+1)}$$

Therefore, the ratio test implies there does not exist f $\in A^2$ such that $(C_{\Phi} - \lambda I)(f) = g$ if $|\lambda| < 1/\sqrt{m}$ which means

 $\{\lambda \in \mathbb{C} : |\lambda| < 1/\sqrt{m}\} \subseteq \sigma(\mathbb{C}_{\Phi})$ (5.2) Next let $\mathbb{A}^2_0 = \{ f \in \mathbb{A}^2 : f(0) = 0 \}$. If $\mathbb{C}_{\Phi}|_{\mathbb{A}^2_0}$ is the restriction of \mathbb{C}_{Φ} to \mathbb{A}^2_0 and $f(z) = \Sigma^{\infty} k = 1^a k^{z^k} \in \mathbb{A}^2$, then for each $n = 1, 2, \ldots$ we have

$$\| (C_{\phi} |_{\lambda_0^2})^{n} (f) \|^2 - \| f \circ \phi_n \|^2 - \| \sum_{k=1}^{\infty} a_k z^{m^{n_k}} \|^2$$
$$- \sum_{k=1}^{\infty} \frac{|a_k|^2}{(k+1)} \frac{(k+1)}{(m^{n_k}+1)}$$

Since $(k+1)/(m^nk+1)$ decreases to $1/m^n$ as $k \rightarrow \infty$ we get

$$(1/m^{n}) \|f\|^{2} \leq (C_{\phi} |_{\lambda_{0}^{2}})^{n} (f) \|^{2} \leq (2/(m^{n}+1)) \|f\|^{2}$$

Therefore,

$$(1/\sqrt{m}) \le \| (\mathbb{C}_{\phi} |_{\lambda^2})^n \|^{1/n} \le (2/m^{n+1})^{1/2n}$$

letting $n \rightarrow \infty$ it follows that

$$r(C_{\phi}|_{A_0^2}) = 1/\sqrt{m}$$
 (5.3)

Next if $C_{\bar{\Phi}}|_{C}$ is the restriction of $C_{\bar{\Phi}}$ to the complex numbers then by [5] the only non-zero solutions of $(C_{\bar{\Phi}} - \lambda I)(f) = 0$ is $\lambda = 1$ and f constant. So if $\lambda \neq 1$, then the kernel of $C_{\bar{\Phi}} - \lambda I$ is zero. Moreover, \forall constant α

$$(C_{\phi} |_{c} - \lambda I) (\frac{\alpha}{1 - \lambda}) = \alpha$$

i.e., $C_{\Phi}|_{\mathbb{C}} - \lambda \mathbf{I}$ is onto and hence invertible. Therefore, $\sigma(C_{\Phi}|_{\mathbb{C}}) = \{1\}$. Finally, since $\sigma(C_{\phi}) - \sigma(C_{\phi}|_{A_0^2} + C_{\phi}|_c) - \sigma(C_{\phi}|_{A_0^2}) \bigcup \sigma(C_{\phi}|_c)$

(see e.g., [4,p. 43]) and observing that 1 is an eigenvalue of C_{Φ} (5.2) and (5.3) imply (5.1). (b) let $f(z) = \Sigma_{K=0}^{\infty} a_k z^k \in A^2$. Since (k+1)/(mk+1) decreases to 1/m as $k \to \infty$ we see that C_{Φ} is bounded below by $1/\sqrt{m}$ from

$$\|C_{\phi}f\|^{2} - \|\sum_{k=0}^{\infty} a_{k}z^{mk}\|^{2} - \sum_{k=0}^{\infty} \frac{|a_{k}|^{2}}{(k+1)} \left(\frac{k+1}{mk+1}\right) \geq \frac{1}{m} \|f\|^{2}$$

(c) Theorem 4.1 implies that C_{Φ} is not subnormal because

$$\|C_{\phi}^{2}e_{k}\| - \sqrt{\frac{2}{m^{2}+1}} < \frac{2}{m+1} - \|C_{\phi}e_{1}\|^{2}$$

We close this example by pointing out that

$$C_{\phi}e_{k} = \sqrt{\frac{1+k}{1+mk}}e_{mk}, k=0,1,2,\ldots$$

and

$$C_{\phi}^{*}e_{k} = \begin{cases} \sqrt{\frac{1+(k/m)}{1+k}} e_{k/m} & \text{if}(k/m) \in \mathbb{N} \\ 0 & \text{if}(k/m) \notin \mathbb{N} \end{cases}$$

Where N is the natural numbers.

REFERENCES

- D.M. Boyd, Composition Operators on the Bergman Space, Collog. Math., <u>34</u> (1975), 127-136.
- R. K. Campbell-Wright, On the Equivalence of Composition Operators, thesis, Purdue University, 1989.
- C. Caratheodory, Theory of functions of a Complex Variable, vol. II, second English edition, Chelsea Publishing Co., New York 1960.
- 4. John B. Conway, Subnormal Operators, Pitman Publishing Inc., Boston, 1981.
- 5. Carl C. Cowen, Iteration and the Solution of Functional Equations for Functions Analytic in the Unit Disk, Trans Amer. Math. Soc. 256 (1981),69-95(MR 82 i # 30036)
- 6. ______, Composition Operators on H^2 ,J. Operator Theory 9(1983), 77-106(MR 84d # 47038).
- 7. C. C. Cowen and T. L. Kriete, Subnormality and Composition Operators on H², J. Funct. Anal. 81(1988), 298-319.
- A. Denjoy, Sur l'iteration des fonctions analytiques, C. R. Acad. Sci. Paris 182(1926), 255-275.
- 9. J. Wollf, Sur l'iteration des fonctions, Cn R. Acad. Sci. Paris 182(1926) 42-43, 200-201.