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Preface

The problem of best approximation is the problem of finding , for a given
point x and a given set G in a normed space (X,||.[]) , 2 point g in G which
should be nearest to x a mong all points of the set G.
However , in our study , we shall mainly take as X not an arbitrary normed
space but Orlicz space , we shall denote by P(x,G) , the set of all elements
of best approximants of X in G .
e P(x,G)= { go € G:llx-goll =inf { Ix-gll: g G}}
The problem of best approximation began , in 1833, with P. L. Chebyshev
who considered the problem in the space of all real valued continuous
function defined on [a,b] , a closed real interval in R..
My thesis consist of four chapters . Each chapter is divided into sections .
A number like 2.1.3 indicates item (definition , theorem , corollary or
lemma ) number 3 in section 1 of chapter 2 . Each chapter begins with a
clear statement of the pertinent definitions and theorems together with
illustrative and descriptive material . At the end of this thesis we present a
collection of references .
In chapter (1) we introduce the ‘basic resuﬁs and definitions which shall be
needed in the following chapters . The topics include projection , normed
space , compactness , Hilbert space and measure theory . This chapter is

absolutely fundamental . The results have been stated without proofs , for
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theory may be looked up in any standard text book in Functional Analysis .
A reader who is familiar with these topics may skip this chapter and refer
to it only when necessary .
Chapter (2) will be devoted to give an introduction to fundamental ideas of
Best Approximation in Normed Space . We will start by introducing the
definition of best approximants of x € Xina closed subspace G of X . We
denote the set of all best approximation of x in G by P(x,G) . In section (2)
we study the properties of P(x,G) . In section (3) we define proximinal set
and Chebyshev subspace , and we mention some conditions that can assure
that G is proximinal in X . Finally ,we define LP-summand and give a
simpler proof for the fact that “every a closed subspace of a Hilbert space
is proximinal ” .
Chapter (3) has two purposes . First , we review the properties of Orlicz
spaces . Second , we introduce some of the basic theory of proximinality in
Orlicz space . This material was designed to meet the needs of chapter (4).
W. Deeb and R. Khalil proved the following results .
(1) If G is 1-complemented in X, then G is proximinal in X, [1, p.529].
(2) If L*,G) is proximinal in L4, X) , then G is proximinal in X . (3,
p.8], [2,p.297],[4,p.37].

3 If L'(u,G) is proximinal in L'(1,X), then L*(1,G) 1s proximinal in

L2(,X) . [1,p.528] -
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Some questions a bout proximinality in L%y, X) now suggest themselves .
(1) Let X be a Banach space and let G be proximinal in X . Under what
conditions can it be asserted that G is 1-complemented in X ?

(2If G is proximinal in X ,Under what conditions can it be concluded that
L*u,G) is proximinal in L%u,X) ? In particular , is the proximinatily of G
in X a sufficient condition ?

(3) If L*(w,G) is proximinal in L®(1,X) . Under what condition can be
asserted that L'(11,G) is proximinal in L'(wX) .

These questions are addressed in the section (1) of chapter (4) .

The answer depends on the S-property .

Some interesting results have been a chieved . A mong of whichitis
shown that if G has the S-property then L%(11,G) has the S-property . It is

also proved that if G has the S-property then

é 1 _ P!
L, 75 (0)) = Fag00(0) .
I ask our God to be our assistant to continue our efforts so as to a chieve

the hopes and desires of all scholars in mathematics .
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Chapter 1

Preliminaries

This chapter contains some definitions and basic result about normed

space , Hilbert space , compactness , Banach space , projection and

measure theory which will be used in the subsequent chapters .

1. Normed Linear Spaces :

Definition 1.1.1:[9, p.35]. Let X be a linear space over K. A norm on X

is a function ||.|| : X—>R such that for x,y € Xand k € K, we have :

() |x]| = 0 and |jx||= 0 if and only if x=0.

(1) |Ix + yll < i)l + Iyl -

(ii1) [lkx]| = [k[ ]I .

A normed linear space X is a linear space X with a norm ||.|{ on it .

Theorem 1.1.2 : [9, p.35].

(1) Every normed space is a metric space with respect to the metric
d(x, y) =I}x-¥l.

(2) For any two elements x and y of a normed space we have

LI - iyl < ix -yl

(3) A norm is a real-valued continuous function .

Definition 1.1.3 : [9, p.18] . Let(X, [.||) be a normed linear space and

G < X .Forx € X, we define the distance of a point x from the subset G

as :
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d(x,G) =inf {[|x-y|| : ye G}
Theorem 1.1.4 :[12,p.147] . Let X be a normed linear space and G be a

subspace of X, then

(D d(x + g,G) = d(x,G) xeX,geG)

(2) d(x +y,G) < d(x,G) + d(y,G) x,yeX)

(3) d(ax,G) = |a| d(x,G) (x € X, o= scalar)
(4)] d(x,G) - d(3,G) | <l - y| (x,y € X)

Proof : For (1) . Let x € X, g € G and € >0 be arbitrary . By the
definition of d(x,G) =inf { ||x - g]| : g € G} there exist gy € G s.t

lIx- gl <d(x,G)+ e
consequently , we have

dix+gG) <l x+g-(go+ )l =|x - goll £ d(x,G) +
Butx € X, g € G and e > 0 were arbitrary , hence

d(x + g,G) < d(x,G) xeX,ge@)..... (1)
Applying these relation for x +g € Xinstead of x and -g € G instead of
g € G, we obtain

d(x,G) < d(x + g,G) (xeX,geG)..... (2)
From (1), (2) we getd(x+g,G)=d(x,G) (xeX,geG).
For (2) of the theorem ; Let x , y € Xand e > 0 be arbitrary . By the

definition of d(x,G) and d(y,G) there exist g, , g2 € G s.t
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Ix-gill<d(x,Gy+e/2, ly - gl <d(y,G) + /2.
Consequently , we have
d(x+y,G) < |lx+y - (g1 + gl < [Ix - gill +[ly - gall £ d(x,G) +d(y,G) + &
Butx,y e X, and € > 0 were arbitrary , hence
d(x +y,G) <d(x,G) +d(y,G) (x,yeX).
For (3) : Let x € X, o #0be ascalar and € > 0 be arbitrary and take
gy € G satisfying
lix - goll < d(x,G) + € /e
We have
d(ax,G) < Jlox - ogoll = |ot] [1X - goll < e} d(x,G) + €
But x, a # 0 and € were arbitrary , it follows that
d(ax,G) £ o] d(X,G) oo, (1)
Applying this relation for ax instead of x and 1/« instead of a we obtain
d(x,G) = d(1/a . 0x,G) < o] d(ox,G)
Hence |o] d(x,G) £ d(0X,G) cooeerviviiininrnnnnns (2)
From (1) and (2) and since d(0,G) = 0 we get
d(ax,G) = |a] d(x,Q)
For (4) : Let x , y € Xand € >0 be arbitrary and take g € G satisfying

ly - goll =d(y,G) + €

We have
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d(x,G) < |Ix - goll < llx - yll +lly - goll < |} - yll + dy.G) + €
But x , y and € were arbitrary , there follows
d(x,G) - d(y,G) < lix - vl (x,yeX)
In these relations , interchange x and y yields ;
d(y,G) - d(x,6) < [|x - vll
Hence |d(x,G)-d(y,G)|<|x-vll. |
Definition 1.1.5: {11, p.153].
1) A subset H of a vector space X is called a hyperplane if there exists a
linear functional f# 0 defined on X such that
H={xeX:f{x)=0}
2) A subset H of a vector space X is called an affine hyperplane if there
exists a linear functional f # 0 defined on X and a real number o such that
H={xeX:f(x)=a}.
Theorem 1.1.6 : [12 , p.24] . Let X be a normed linear space, and
H = {y € X, f(y)=a} be ahyperplane of X, f beinga continuous linear
functional on X, o a scalar and let x € X . Then the distance of the point x
to the hyperplane H is
d(x,H) = [f(x) - of /||l
Theorem 1.1.7 : [7 , p.74] . Every finite dimensional subspace G ofa

normed space X is closed in X..
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Now for linear maps , we have the following theorem .

Theorem 1.1.8 : [11, p.26] . Let X and Y be normed spaces .

(a) A linear map T : XY is continuous if and only if T is bounded .

(b) The null space N(T) of anon zero continuous linear map is a closed
subspace of X .

2. Compactness :-

Definition 1.2.1 : [7 , p.77} . A metric space X is said to be compact if
every sequence in X has a convergent subsequence . A subset M of X is
said to be compact if every sequence in M has a convergent subsequence
whose limit is an element of M .

A general property of compact sets is expressed in :

Lemma 1.2.2 : [7 , p.77] . A compact subset of a metric space is closed
and bounded .

However , for a finite dimensional normed space we have :

Theorem 1.2.3 : [7 , p.77] . In a finite dimensional normed space X, a
subset of X is compact if and only if it is closed and bounded .

In connection with continuous mapping a fundamental property is that
compact sets have compact images , as follow we have :

Theorem 1.2.4 : [7 , p.81].Let X and Y be metric spaces and T : X—Y
be a continuous mapping . Then the image of a compact subset M of Xis

compact .
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From this theorem we conclude that the following property , weli-known
from Calculus for continuous functions , carries over to metric space .
Theorem 1.2.5:[7 ,p.81]. A continuous mapping T of a compact subset
M of a metric space X into R assumes its maximum and minimum on M.
3. Banach Space and Hilbert Space :-

Definition 1.3.1 :[7,p.58]. A complete normed space is called a Banach
space .

Remark 1.3.2 : [9, p.47] .

(1) The set of all bounded linear maps on a normed space X into a normed
space Y is denoted by B[X,Y] . If X =Y , B[X] denotes B[X,X] .

(2) The set of all bounded linear functionals on a normed space X is
denoted by X* .

For fe X*,any element x € X - {0} with the property that .

f(x) = ||f]| ||x]| is called a maximal element of f.

Definition 1.3.3:[12,p.110]. A normed space X is strictly convex if and
only if every functional f # 0 e X* has at most one maximal element of
norm 1. An equivalent form : a normed space X is strictly convex if

l[x+yll =lx|| + liyll and [[x]|=1lyll implies that x=y .

Remark 1.3.4 : [11, p.32] . An arbitrary f € c¢* can be expressed as

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



10

f(x) = yo Lim x, + Eyn x, where
X=(X],X2 X3, ) € candy=(Yo,Y1,Y2 ....) such that ;|yi[<ooand

01 = Iyol + 21
Definition 1.3.5: [9, p.176] . Let X be a vector space over the field K. An

inner product on X is a function

< ,>: XxX-=>K such that forallx, ¥ |y € Xand o € K.
(1) <x+ x',y)=<x,y>+<x' ,¥>

(2) <ox, y>=0<X,y>

B)<x,y> =<y, x>
(4)<x,x>20 ¥xe X and <x,x>=0 iff x=0.
An inner product space is a linear space with an inner product on it .

Definition 1.3.6 : [9 , p.182] . A Hilbert space X is a Banach space in

which the norm satisfies the parallelogram law .

x+yl2+x-ylP =2 1XIF + 2yl x,y eX

Definition 1.3.7 : [7 , p.131] . Two vectors x and y in an inner-product

space are called orthogonal , (written x L), if<x,y>=0.

Theorem 1.3.8 : [7 , p.135] . Let X be an inner-product space and

x,ye X.Thenforx Ly we have ||x + yIF = 1x|2 + I
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In the case of a general Hilbert space X , we obtain an interesting
representations of X as a direct sum of a closed subspace M and its
orthogonal complement
Mi={xeX, xLM}

which is the set of all vectors orthogonal to each member of M. The next
theorem is sometimes called the projection theorem .

Theorem 1.3.9 :[11 ,p.96].1f Mis a closed subspace of a Hilbert space
X, then

X=MoM"

4. Projection :-

Definition 1.4.1: (9, p.85].1If X is a normed space and P € B[X] satisfies
P2 =P, then P is called a projection .

Theorem 1.4.2 :[9,p.85].IfPisaprojectionona Banach space X, and
if M and N are itsrange and null space , respectively , then M and N are

closed subspaces and

X=M®&N
Theorem 1.4.3 :[9,p.85].Let X be a Banach space , and let M and N be
closed subspace of X such that
X=M®®&N
The mapping defined on each z=x+y,X¢€ M,y e Nby P(z)=xisa

projection on X whose range is M and whose null space is N .
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5. Lebesgue Measure and Integrable Function :-
In this section we shall review the theory of the Lebesgue measure and the
p-integrable function .
Definition 1.5.1 : [10, p.9] .
(a) A collection 7 of subsets of a set X is said to be a c-algebra of Xif it
has the following properties .
O Xe
(i) If A e ,then A° € % where A® is the complement of A relative to

X.

(i) IfA=UA,, A, 7 forn=123,...,then A € 7 .

(b) If 7is a c-algebra in X, then X is called a measurable space , and the
members of % are called the measurable sets in X..

(c) If X is a measurable space , Y is a topological space , and fisa
mapping of Xinto Y, then fis said to be measurable provided that f(V)
is a measurable set in X for every openset Vin'Y .

For E c X, let % g denote the characteristic function of E ; i.e,
xe()=| 1 ifteE
0 ifte E

It is measurable iff E is measurable .
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Definition 1.5.2 : [8 ,p.113]. A function f: T->Xis said to be simple if

its range contains only finitely many points X;,Xa,.......Xn and if £7(x) is

measurable fori=1,2,.....,n. Such a function then can be written as

f= ; x; ¥ g where foreachi, Ei= f'l(xi) . Define

n

!fdp=z x; WE; N E)

If f is a non-negative measurable function on E , define

deu=sup{ Js dp:0<s<f,s issimple and measurable on E }

Definition 1.5.3 : [10, p.17] .

(a) A measure is a function pt , defined on a c-algebra 7% , whose range is

in [0,00] and which is countably additive . This means thatif {A,} isa

disjoint countable collection of members of 7% , then

(U A = & (A,)

i‘.Ma

(b) A measure space is a measurable space which has a measure defined on
the G-algebra of its measurable sets .

A property which is true except for a set of measure zero is said to hold
almost everywhere .

Remark 1.5.4 : [10 , p.21] . The following propositions are immediate
consequences of the definitions . Functions and sets are assumed to be

measurable on a measure space E .
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.
(a)Ifo<sf=<g then Jf < gg.

(b) IfFAcBand >0, then dep. < l;..fdp..
(c) If ¢ is constant , then Jc dp=cp(E).

(d) IfE = E, U E; where E; and E; are disjoint , then

deu=afdp + E;[fdu
(e) IffZOandedu=0,then f= 0 almost everywhere on E .

Definition 1.5.5 :[1,p.527]. Let X be a real Banach space , and (T,u) be
a finite measure space . The space of Bochner p-integrable functions

defined on (T,p) with values in a Banach space X is denoted LP(1,X) .

For f e L(1,X) , we write

Jiror aw)®  1<p<e
1, = J IO due 0<p<1
ess. sup IOl p=c

where ess. sup ||[f()|=inf {M:p {t:|[f{))>M}=01}.
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Chapter 2
Approximation in Normed Spaces
1. Introduction : Let X =(X||.]) be a normed space, G be a subspace of
X and x € X, an element go € G is called a best approximant of x in G if
% - gol| = d(x,G) =inf {{ix - gl : g € G} -

We sec that for x € X a best approximant go € G is an element of minimal
distance from the given x . Such a go € G may or may not exist .

We shall denote the set of all elements of best approximants of x in G by
P(x,G)i.e P(x,G)={ g€ G:lx-gl=dxG)}.

2. The Set of Best Approximants :-

In this section, we introduce some basic properties of P(x,G) , we use the
book of Erwin Kreyszig for this purpose , so we start with the following .

Example 2.2.1 : Let X = (X,]|-1) be the normed space of ordered pairs

x = (X1,Xz) of real numbers with norm defined by ||x||; = x1 | + [x2] -

Let us take x = (1,-1) and the subspace G = {g=(g,g) g € R} then for

all g € G, we clearly have
Ix-gh=N-gl+kl-alzll-g+i+gl=2

Hence d(x,G) 22 coovvinerncnnnns (D

Also(1,1) e G,and d(x,G) <|[x- (LDI=2 covverieenns (2)

From (1) and (2) we get d(x,G) =2 and
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P(x,G)={geG:g=(gng)andlg|<1}.
From this example we conclude that P(x,G) need not be a subspace .
Theorem 2.2.2 : Let G be a subspace of a normed space X..
(i) if x € G, then P(x,G) = {x} .
(i) if G is not closed and x € G\G , then P(x,G) = .
Proof :- For (i), letx € G, theninf { {|x-g|| : g G} =0.Thus,if
y € P(x,G) then ||x - y|| = 0 hence x =y since X is a normed space .
For (i) , let x € G\G . Thismeansthat Vne N,3x, € G
s.t||xs-x|| € 1/n.ie d(x,G)=0.Hence P(x,G)=¢. B
Now provided P(x,G) # ¢ , we shall prove that either P(x,G) contains
‘exactly one element or else an infinite number of elements .
Theorem 2.2.3 : Let X be a normed space , x € X, and letGbea
subspace of X, then P(x,G) is a convex set .
Proof : Let 8 be the distance from x to G . The statement holds if P(x,G) is
empty or has just one point . Now suppose thaty, z € P(x,G) such that
y#z.So
Ix-yll=lx-z||=5.
We will show thatif 0<a <1, andif
w=ay+ (1 -a)z, thenw e P(x,G)

to show this :
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[x - Wil = JIx - (ay + (1 - @)2)]]
=|ix - ay - (1 - &)z + ax - ox]
= [Jou(x - y) + (1 - o)(x - )|

Sofx-yll+(1-0)llx -2

= d+(1-a)d
=9
Thérefore ||x - W|| £ 8 ovurennnen. (1)
Alsow € G, since G is a subspace , 50 ; 8 < [|x - W]| ceerenrenennan, (2)

From (1) and (2) we get that {jx - w|| =8 , so w € P(x,G) . Since
y , z € P(x,G) were arbitrary ; P(x,G) is convex.. ]
Theorem 2.2.4 : Let G be a subspace of a normed space X, then for
x e X.
(1) P(x,G) is a bounded set .
(ii) If G is a closed subspace , then P(x,G) is a closed set .
Proof : For (i), let gy € P(x,G) , we have by definition ||x - go|| =& where
d=inf{|lx-g|l:geG}.
Now ol =llga-x+x]
< llgo - xI1 + [Ix}
<X+ i), since 0 € G

=2 il
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Thus P(x,G) is bounded .
For (ii} , we show that if a sequence (g,) € P(x,G) such that g,—g then
g € P(x,G) .Nowg, e P(x,G) Vne N,sollx-g=dx,G)=6,YneN.
Also g, € G . Since G is a closed subspace ,theng € G.
But the function F, : G—>R defined by F(g) = |Ix - g|| V g € G is
continuous by part (3) of Theorem (1.1.2) . So F,(g.)—>F.(g) implies that
lIx - galf = {1x - gl
But|x-gli=6VneN,so|x-g|=5.
Therefore g € P(x,G). B
Theorem 2.2.5 : Let G be a subspace of a normed space X . Forx € X:
(1) if z € P(x,G) then az € P(ax,G) for all scalars o .
(iiyifz € P(x,G) thenz+ g € P(x + g,G) forallg € G..
Proof : For (i) ; if g € G and « a scalar # 0 we have
llox - gll = |edd [1x - (1/e0).gl| 2 o] [|x - z]| = [Jax - aZ]]
Thus az € P(ax,G).
For (ii) ; if € € G we have
Ix+g-gllzlx-zi=[x+g-(z+g)

whence z+g € P(x+g,G) . [

An element x of a normed linear space X is said to be orthogonal to an
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element y € X ,and we write x Ly, if we have ||x + ay|| 2 [|x]| for every
scalar o . In a Hilbert space X we have x L y if and only if <x,y>=0.

An element x of anormed linear space X is said to be orthogonal to a set
GcXandwewritex LG, ifwehavex Lg (g € G).

The relationship between orthogonality and best approximation is given by
the following theorem .
Theorem 2.2.6 : [12 , p.92]. Let X be a normed space , G a subspace of
X,x e X\G andgo € G.Wehave gy € P(x,G) ifand only if x- go L G .
Proof : By the definition , orthogonality means that

Ix-go+agl2x-gll (g€ G,o=scalar)
and this is obviously equivalent to saying that gy € P(x,G) . E
3. Proximinal Set :-

"Theorem 2.2.2 shows that if X is a normed space and G a subspace of
X , then forevery x € G the set P(x,G) is non empty , and if the subspace
G is not closed , then for every x & G\G the set P(x,G)is empty .
Furthermore , for the elements x of X\G the set P(x,G) may or may not be
empty . The subspaces G < X which have the property that P(x,G) # ¢ for
every X € X are called proximinal sets in X . Some authors use the term
distance set , or existence set for proximinal sets .

Remark 2.3.1 : In a normed spaces X, the condition that G is a closed
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subspace of X is not sufficient for G to be proximinal in X as shown by the

following example .

Example : Let X = ¢ = the space of all sequences of complex numbers

that converge to zero , with norm ||x|| = sup |x,| , and let

G={x=(Xs) €Cp: iz’“xn=0} :
n=1
G is closed but not proximinal . To show that define a linear functional
f:cp—Cbyf(x)= iz‘“ x, forall x=(x,)€¢p.
n=1

Then f € ¢, and [[f] = 1 by Remark (1.3.4) and hence Gisaclosed

subspace of ¢y by part (2) of Theorem (1.1.8).

Now let x = eV =(1,0,0,......) € ¢o .

Then d(e",G)=1/2 by Theorem (1.1.6).

We claim that there does not exist any g € G s.t eV - gl| =172,

Assume on the contrary that 3 g=(g) € Gs.t |6 - gl = 1/2, then
I1-g/<1/2 and

lgi| < 1/2 forallk 22 . Since ) 2™ g, =0, we get that

a<12)gl=] 32" gl € 32" gl S 172 327 = 1/4 .

n22 nz2

So we must have equalities in (*) , and that can happen only if |g,| = 1/2 for

all n . But this contradicts our assumption that g € co.Thus Gisnot

proximinal in ¢y . |
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We call a linear subspace G of a normed space Xa semi—Chebyshev
subspace if for every x € X the set P(x,G) contains at most one element .
An example of such subspaces is that of the subspaces G with the property
that the set P(x,G) is empty for all x € X\G . We will see such a space in
Remark (4.1.2) . G is called a Chebyshev subspace if it is simultaneously
proximinal and semi-Chebyshev . i.e if for every x € Xthe set P(x,G)
contains exactly one element .
Theorem 2.3.2 : For a subspace G of a normed space X, the following are
equivalent :
(1) G is proximinal in X.
(i) X=G + P5'(0) where F5 (0)={xeX:0eP(xG)}.
Proof : If G is proximinal and x € X, gy € P(x,G) , then

x=go+ (x-g0) € G+ F5 (0).
Conversely if we have (ii) and x € X, x =go+tywheregoe G,y €
Pgl (0) then 0 € P(y,G) = P(x - g0,G) , implies d(x - g0,G) = ||x - gol| .

= d(x,G) =||x - gol| - Hence gy € P(x,G) . |
Theorem 2.3.3 : Let G be a compact subspace of a normed space X, then
G is proximinal in X.. 5 4 27 8 7
Proof : Fix x € X, since the mapping Ty : G—R defined by T (g) = ||x - g]|

is continuous by part (3) of Theorem (1.1.2), then T(G) < R is compact by
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Theorem (1.2.4). So T(G) is closed and bounded in R by Theorem (1.2.3).
Theorem (1.2.5) implies inf T(G) € T(G) = {lix-gll:g € G}.Hence
there exists gg € G such that |[x - go|| = inf {||x-gll : g€ G} .This
proves that g € P(x,G) . Since x is an arbitrary , P(x,G) # ¢ forallx € X L
While compactness of G is a sufficient condition for a best approximant to
exist , itis clearly not necessary . For, consider the noncompact subspace
G={(x0):xeR} of R?. Clearly G is proximinal in R?.
Corollary 2.3.4 : Every closed and bounded subspace of a finite
dimensional normed space X is proximinal in X..
Proof : Every closed and bounded subspace of a finite dimensional space
is compact by Theorem (1.2.3) . B
Theorem 2.3.5 : Let G be a finite dimensional subspace of a normed space
X, then G is proximinal in X..

Proof : Let x € X be given, consider the closed Ball .
B={geG: lgl<2lx}

Then 0 € B , so that for the distance from x to B we obtain
dx, B)=inf {I)x-gll : g€ B } <[lx- 0| =]

Nowifge Gandg ¢ B , then ||g|| > 2 ||x|| and

1 - gll = lell - Ixll > Ixll 2 d(x, B ) woveree (1
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IfgeGandgeE,thend(x,E)st-gH .................. 2)

(1) and (2) imply that d(x, B ) is a lower bound of the set
{IIx-gll:geG}.

Hence d(x, B ) < d(x,G).

Also B =G = d(x,G)<d(x, B).

This shows that d(x,E) = d(x,G) . Since B is closed and bounded and

since G is finite dimensional ; Theorem (1.2.3) implies B is compact .

Theorem (2.3.3) implies that B is proximinal in X . Hence, if a best

approximant to x exists , it must lie in B . Thus G is proximinal

in X. i
It is not possible to drop the finite dimensional requirement of this

theorem . For , let X be the space of continuous functions defined on

[0,1/2] with Leo norm . i.e ||fll»= max |f(x) .

0sxsls2

Let G be the subspace of polynomials ,and let g(x)=1/(1-x).For any
e > 0 , there exists a polynomial pe such that |g(x)-p<(x)| < € for all
x € [0,1/2] [ Welerstrass Approximation Theorem ].

Hence d(g,G) = 0 . However , since g is nota polynomial , we see that
thereisnop e G satisfying d(g,®)=|lg-pli=0.

We present the following example to show that proximinal subspaces need
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not be finite dimensional ; thus proving ihat the converse of the foregoing
theorem is not true .

Example 2.3.6 : The infinite dimensional subspace ¢, of ¢ is proximinal in
c.

Proof : On ¢, define the linear functional f by f{x) =1lim x, =x.
Then ¢o = { x= (%) € ¢: f{x)=0 } is the hyperplane of ¢ and d(x,c) = |x|
by Theorem (1.1.6) .
Let g =(g,) be defined as, g,=x,-X.
Now g e coand ||Ix-g||=sup { [X,- g :ne N}

=sup { [X,- (%a-X)|: ne N}

= x|
Hence d(x,c) =|x - gl and s0 ; g € P(x,¢) .
Since x was arbitrary ; ¢ is proximinal in ¢ . |
Theorem 2.3.7:[12, p.93] . Let X be a normed space and G a hyperplane
in X , passing through 0 . G is proximinal in X if and only if there
exists an element z € X - {0} such that 0 € P(z,G) . (i.e z L G).
Proof : Assume that G is proximinal and take arbitrary x € X - G,
yo € P(x,G) . Then forz=x -y, # 0 we have 0 € P(2,G) .
Conversely , assume that there exists z € X - {0} such that 0 € P(z,G) and

let x € X - G be arbitrary .
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Take f € X* such that

G={yeX : f{yy=0},
and put

yo=x - (f{x)/ f(2)) z
(we have f(z) # 0 since , otherwise z € G, s0 0 € P(z,G) = {z} , and hence
z=0, a contradiction to the hypothesis) .
We have then

f(yo) =0
Whence y, € G. Also, since (f(z) / f{(X)) (v - yo) € G foreveryy € G, we
have

lIx - yoll = [ f(x) / f(2)] l|z]| < | £(x) / £(2)] llz - (]’z2) / £(x)) (y - yolll = |Ix - ¥l

Whence y, € P(x,G) . Since x € X - G has been arbitrary , it follows that G
is proximinal in X . |
4. Approximation in Hilbert space
Before we prove that all closed subspaces of a Hilbert space are proximinal
we need the following definition .
Definition 2.4.1:[6,p.279]. A closed subspace G of a Banach space X is
called an LP-summand , 1 < p < o , if there is a boundéd projection
P : X—G which is onto , and ||x||" = |P(X)|{" + ||x - P(x)||° forallx € X.
Theorem 2.4.2 : If G is an LP-summand of a Banach space X, then G is

proximinalin X. 1 <p<ow.
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Proof: Let x € X, forevery g € G we have
[ - gll” = IP(x - g)IP + [Ix - g - P(x - g)II”

=IP(x) - gl” + lIx - P)|°

2 -POP
Hence [|x - g|| 2 [{x - P(x)]]
i.e P(x) € P(x,G) . Thus G is proximinal in X . fl
Erwin kreyszig [7] proved that if G 1s a closed subspace of a Hilbert space
X , then G is proximinal in X . He used Cauchy sequence and
parallelogram law to prove this theorem . Here we give a simpler proof .
Theorem 2.4.3 :Let G be any closed subspace of a Hilbert space X, then
G is a Chebyshev subspace .
Proof : Since G is a closed subspace of a Hilbert space X . Theorem
(1.3.9) implies X =G® G where G'={g e X : g1 G}.Henceevery
element x € X has a unique representation ie x = g + z where
g e G,z e G'. Now we define the projection P : X-»>G by P(x) =g .
Clearly P is onto and bounded .
Also ifx=g+z andz L gthen|z+ g||* = ||z|]* + llg||* by Theorem (1.3.8),
so IX|? = |Ix - PP + ||Px)|]* i.e G is an L-summand of X, hence
Theorem (2.4.2) implies that G is proximinal in X .

Now we show that P(x,G) contains exactly one element .
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Let x € X, assume g;,g; € P(x,G) such that g, # g . Since g1,g: € Gand G
is subspace , then (g, + g2)/2 € G . By the parallelogram law for :

(x-g1)/2 and (x-g,)/2 wehave

1k - ga)/2 + (x - g2)/21 + g2 + g2l = 2 fi(x - g0)/21 + 2 [ - 2)/2)f
or [Ix-(gi+ g2l <172 ||x - gl + 1/2 [|x - gall* = [d(x,G)]’ . This implies
that ||x - (g, + g2)/2 || < d(x,G) .
Which contradicts the definition of d(x,G) . Hence G is a Chebyshev

subspace . B

Corollary 2.4.4 : Any closed subspace of R", C" is a Chebyshev subspace.
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Chapter 3

Best Approximation in Orlicz Space

1. Orlicz Spaces :

In order to study Orlicz spaces , it is necessary to introduce the definition
of modulus functions .

Definition 3.1.1 : [5 , p.159] . A function ¢ :[0,00)—>[0,0) is called a
modulus function if the following are satisfied :

(i) ¢ is continuous at zero from the right and strictly increasing .

(i) 6(0)=0.

(iii) ¢ is subadditive L.e p(x+ y) < ¢(x) +¢(y) . V x,y € [0,0)

Examples of such functions are ¢(x)=x", 0 <p<l, and §(x) =In(1+x) .
In fact , if ¢ isa modulus function and a 2 0 then ¥ (x) = ¢(x) / (1+¢(x))
and Wy(x) = ad(x) are modulus functions . Further , the composition of two
modulus functions is a modulus function .

Theorem 3.1.2 : Every modulus function is continuous on [0,) .

Proof : Let xo € [0,00) . We show that ¢ is continuous at Xg , i.e

lim ¢(x) = ¢(xo) . At first we show that

|6(x) - (I < ¢(Ix - yI) for all x,y € [0,00) .
Now |x| = [x -y + y| £ |x - y| + |y| , since ¢ is strictly increasing and

subadditive we get ¢(|x]) < ¢(|x-y| )+ ¢yl ).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



N G DR G DR (€L 0 ) I — (1)

Also

lyl =ly - x+x| <|x-y|l+ x|, implies ¢ [y| ) - $(|x]) = o({x-y]) --..-.(2)
From (1) and (2) we get :

16(1%) - 6(ly1) | S 9(x-3)  forall xy € [0,09).

Now given € > 0 , there exist 8(e) > 0 such thatif 0<x<3(€)then
|6(x)| < € , because ¢ is continuous at 0. But | $(x) - ¢(x0) | < ¢(Jx - Xo|) < &
if |x - x| <8(€).Hence ¢ is continuous at X, . Since X, is arbitrary , ¢ is
continuous on [0,00)} . |
Definition 3.1.3 : {5, p.159] . Let X be areal Banach space, and (T,u) be
finite measure space . For a given modulus function ¢ , we define the
Orlicz space as :

LX) = { £: X JoIf0I) duy <oo }

The function d : L, X) x L1, X)—[0,0) , given by

d(Ee) = J 6D - (oIl dnct

defines a metric on L%u,X) , under which it becomes a complete metric
linear space [4, p.70] .

For f e LY, X) , we write

1= J $CIEOI) dneo.-
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'Yhe spaces of p-Bochner integrable functions LP(1,X) , 0 < p<1,by
Definition (1.5.5) are reduced to be a special case of the Orlicz space under
the modulus function §(x)=x" 0<p<1.
The following theorem relates L'(),X) and L*(u,X) for all modulus
functions ¢ .
Theorem 3.1.4 : [5, p.159] . If ¢ is a modulus function , then

L'(0X) < LY(1.X) .
Proof : For each real number x , we have [x] Sx<'[x] + 1 ; where [ ]
denotes the greatest integer function . But ¢ is strictly increasing and
subadditive , then

6(x) < §({x] + 1) S §([x]) + ¢(1) < [x] $(1) + ¢(1)

<x (D) + (1) =(x+1)¢(1).

If x>1,thend(x)<2x¢(1);and if x<1,then ¢(x)<¢(1).
Now,letfe L'(11,X),andletA={teT : |f(t)=<1}

B={teT : [if®l>1}

18 = o 1ol duo
= Jocuton) anw+ JaCieon) duo
< [o(1) du@® + [2 IFON d(1)dn(t)

<¢(1) W(T) +2¢(1) [Iflly <eo  since f e L'(1,X).
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Hence f € LX) . | E
2. Best Approximation in L? (1, X)
In this section we investigate when L¥(,G) is proximinal in L, X) where
G is a closed subspace of a Banach space X..
We present the following useful theorem .
Theorem 3.2.1 :[4, p.73].Let G be a closed subspace of a Banach space
X , if g is a best approximant of f in L*,G) . Then g(t) is a best
approximant of f(t) in G for almostallt e T .
The following theorem establishes the relation between proximinality in
L1, X) and L'(1,X) .
Theorem 3.2.2 : [4 ,p.73].Let G be a closed subspace of Banach space
X, the following are equivalent :
(i) L%, G) is proximinal in L(u,X) .
(ii) L'(,G) is proximinal in L'(1,X) .
Proof : (i)—>(ii) . Let f € L'@,X) , since L'(1,X) < L¥p,X) then
f e L¢(u,X) , but L*(u,G) is proximinal in L*(11,X) so there exist
ge L¥u,G) such that

If- glly < [IE- hily ¥ h e LARG).
Theorem (3.2.1) implies

If) - gl < |Ifit) - yll Vy e Gforalmostallte T...... (1)
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Since U € G we get
IIECt) - g(®ll < 1£e) - O] = |||
Hence
lg®Il = lle(®) - £0) + £
< lle(ty - fo)ll + o)l
<2l
Therefore g € L' (11,G) .
From (1) we get
If() - 2] < [Ift) - h(®)]| ¥ h e L¥(w,G) ae.t
Integrating both sides we get
£ - glh < If - bl ¥ h e L¥w,G) .

Therefore L'(11,G) is proximinal in L'(11,X) .

Conversely , (ii)—>(i) . Define the map J : L*(u,X)—L'(j,X) by J(f) = £

where

QI

?(t)=[¢( KO £ ) =0
0 f(t)=0

At first we show that f e L'(n,X)

1F1h = JnFon aue
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SULOD 1ol d
= U i) )

= Jo(lifoN) duco

= Iffly <.

Second , we claim that J is onto .

Let g € L'(11,X) and let f(t) = &' (Qle®) g(t) gt)y=0
Ha(®l]
0 g(t)=0

Then [l = { 4C 1)) du@)

- o' (lg(h || 1 du(t)
Tj’dp[—-_—--—ng(t)n 1g®ll

= [eil an®

= |lglls

Hence f e LY, X) and J(f) =g .

Finally since ¢ is one-to-one it follows that J is one-to-one . It is now clear

that

JLG) =L'(1G) -

Now , let f e L¥uX) . Then J(f) = fe L'(11,X) and there exists

& e L'(G) such that |- & [ < [IT-h [ for all heL'(wG).By

Theorem (3.2.1) ; we have
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150 - 8ol <1f@ -yl forally e G aet.
Since ge L'(1,G) and J is onto , there exists g € L¥p,G)s.t. J(g) = g.

Hence || f(t) - (lle®ID) IO e | <) f©) - IOl Yy | aedt
oC IIEDI) eI SC IO

and forally e G.

Now take h € L(u,G) . Then ¢(IifH1) h() e G aedt
£

Hence ||f(t) - w(t)]] < [If(t) - h(t)] a.et andforallhe LYu,G),

where w(t) = o(llg®IN IO gt
SC I ligl!

using the fact that |lg(t)ll < 2 |If()|] we will show that w € L¥(t,G) as

follows

(w(o)ll = ol DL - llgll
SCEIN g

< 20 |IFOI) - IO
oCHIEOI)

=2 |[fll
Hence w € L*(j1,G) . Thus L(,G) is proximinal in LX) . |
In a similar way we can prove the following theorem .

Theorem 3.2.3 :[2,p-297].LetGbea closed subspace of Banach space
X . If 1 <p <o the following are equivalent :

(i) L°(1,G) is proximinal in LP (p,X) -
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(i) LY(u,G) is proximinal in L'(1,X) .
Forp =, we have :
Theorem 3.2.4 :[1,p.528]. Let G be a closed subspace of Banach space
X . If L'(W,G) is proximinal in L'(u,X) ,then L®(u,G) is proximinal in
L7(1,X) .
Proof :Letfe L™(,X). Since L”(1,X) < L'(11,X) , we have f € L'(11,X) .
By assumption , there exists f; € L'(11,G) such that

I - fll = d(EL' (1G)) -
By Theorem (3.2.1), it follows that

[If(t) - fi(V)|| = d(f(1),G) a.e.t.
Hence ||f(t) - fi(t)]| <[|f(t)-y|]| aet.,andforally e G.
In particular

If(t) - £1(O)] < |If(t) - g(t)] a.e.t. , and forall g € L'(1n,G) .
But L°(11,G) € L'(11,G) , and hence , for every h € L*(11,G) we have

[lf(E) - i)l < |If(t) - h()]] a-e.te e (*)
Now , since 0 € G, we get [|fy(t)]| < 2]|f(t)|| a.e.t . Hence f; € L*(11,G).
Thus it follows from (*) that

if - £i]l <|If - bl for every h € L*(,G) .
Consequently L”(it,G) is proximinal in L"(u,X) . [

Theorem 3.2.5 : Let G be a closed subspace of a Banach space X . If
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L°(11,G) is proximinal in L*u,X) , then G is proximinal in X .
Proof : Let x € X , we define f(t)y=xforallte T.Thenfe L1, X) .
Since L*p,G) is proximinal in L%, X) , there exists g € L*(ut,G) such that
If - glly = d(EL*,G)) . Theorem (3.2.1) implies ||f(t) - g(®)ll < [If(t) - |
aet and for all y € G . Hence [|x - gt)]| € ||x - yl[forally e G.
Consequently G is proximinal in X . 1]
Forp=c0, we have:
Theorem 3.2.6 : Let G be a closed subspace of a Banach space X. If
L*(11,G) is proximinal in L®(u,X) , then G is proximinal in X..
Proof : Let x € X . Consider the function f(t)=xforallte T. Then
f e L”(,X) . Hence there exists g € L™(1,G) s.t |If - gllo = d(f,L7(1,G)) .

Theorem [11, p.36] ; |If - gl = sup d(f(1),G).
Hence ||f - g||l» = sup d(x,G) . Since f(t)=x forallte T.

If- gllo = d(x,G) . But d(x,G) =sup { [x-gOll : te T}.
=[x - gt)]] £d(x,G), forallte T.
Therefore G is proximinal in X, |

For 1<p<w,wehave:

Theorem 3.2.7 : [3 , p.8].Let G be a closed subspace of a Banach space
X . If L*(w,G) is proximinal in L?(p,X) , then G is proximinal in X for

1<p<00.
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Proof : If LP(1,G) is proximinal in LP(,X) . Theorem (3.2.3) implies
L'(1,G) is proximinal in L'(4,X) . Theorem (3.2.4) implies L™(n,G)is
proximinal in L”(41,X) . Theorem (3.2.6) implies G is proximinal in X. |

Definition 3.2.8 : [1, p.529] . A subspace G of a Banach space X is called
1-complemented in X if there is a closed subspace W in X such that
X =G ® W and the projection P ; X—>W is a contractive projection .
Lemma 3.2.9 : [l , p.529] . If G is 1-complemented in X,thenGis
proximinal in X .
Proof : Let X =G ® W and x € X .Thenx=g+w,whereg € G,
w € W and |w]] < [Ix|| . Weshow thatl|x - gl| <[x-y|/ forally € G. If
possible assume that there exist g, # g € G s.t Ix-g1l] < l|x-gl| .
Set w; = x - g . By the uniqueness of the representation of x , we have
w e W.
Hence w; = g+ w,, where gz € G, wy € Wand ||wal] < [[wi| . Therefore
x=wtg =(@tw)+g=(gtg)+tw,
and consequently g = g; + g, and w = w, . Thus
(Wil = [[wal| < [[wll.
But by assumption , |wil =[x - gill <[} - gll = Wil -
This contradicts the assumption . Consequently ||x - g|] <||x - yl| for all

y € G . Hence G is proximinal in X. |
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Remark 3.2.10 : If G is l-complemented in X , then G may notbe a
Chebyshev subspace . |
Proof : Let X=R?and G= { (g,g) : g € R } with ||(x,y)]| = Ix| + |y] .
Then G is not Chebyshev by Example (2.2.1) .
Now,let W={(0,w) : we R}.Then
(xy)=(x)+(0,y -x).
Hence R>*=G O W.
We define P : X—>W as
P(x,y) = P[ (x,x) + (0,y - x) ] = (0,y - X)
Now  |lw]|=1l(0,y - )l =ly - x| < [yl + |x| = ()] -
Hence P is a contractive projection .
Therefore G is 1-complemented in R? .
Theorem 3.2.11 : If G is l-complemented in X , then L'(w,G) is 1-
complemented in L'wX).
Proof : Let X =G @ W and let P : X—>W be contractive projection . Hence
x = (I -P)(x)+P(x)and |[P()| < ||x]| . For f € L'(1n,X), set f; = (I - P)of
f; = Pof a.e.t. Then

il = | 16001 due = Jipcoy auw < Jirol auw = 1l <oo

Hence f, € L'(1, W) . Also
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umﬁJmmmww!mmmwmm=!mwwmmwm

[Pl duo s 1ol dno + Jueol anw

T

< Jmon due +

=2 ||fi}y <.
Hence f; € LY(,G) . Clearly f=fi + f;.
Since W is a closed subspace of X, then L'(p,W) is a closed subspace of
Li(,X) . Alsoif f e L'(,W) 0 L'(,G) then f e L'(, W) and f e L'(1,G)
=f(t)e Wandf(t) e G YteT,butGnW={0}.
=Sft)=0 VteT=>1f= 0 (zero function) .
Hence L'(n,X) = LG @ L!(uW) . Define the map D
Ll X)~>L' (W) by P(f) = Pof = f2 for all f e L'(WX), P is a
contractive projection . So L'(1,G) is 1-complemented in L'(p,X) . |
Corollary 3.2.12 : If G is 1-complemented in X , then L'(1,G) is

proximinal in L'(1,X) .

Proof : The corollary follows from the above Theorem and Lemma

(3.2.9). |
Definition 3.2.13:[4,p.72]. Aclosed subspace G of a Banach space Xis
called a ¢-summand of X if there is 2 bounded projection P : X—G such

that

b () = & (PG + 6 (JIx - P]) forallx & X
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where ¢ is a modulus function .
Theorem 3.2.14 : [4 , p.72] . If Gisa ¢-summand of Banach space X,
then G is proximinal in X.
Proof : Letx € X, forevery g € G we have
o (lix-gll) =6 (IIPG-g)Il ) + ¢ (li(x - 2) - Pee-g)ll)
=0 (IP(x) - gll )+ ¢ (lIx- PG
26 (Jx-PEI)
Since ¢ exists and strictly increasing . Hence [jx - gl = |x - PX)]] .
i.e P(x) € P(x,G) . Thus G is proximinal in X . |
Remark 3.2.15 : If G is a ¢-summand of Banach space X, thenGisa
Chebyshev subspace .
Proof : Assume that G is a¢-summand of X . Theorem (3.2.14) implies
P(x) € P(x,G) .
Now suppose g* is another closest element to x .
ie ||x- g*.ll =||x = PO cvverirennens *
Butx-g* e X
o (x - g*I) = (IPGx - gD + ¢ (IIx - g* - P(x - "))
= ¢ (IP(x) - g*|l) + ¢ (I - PCIID
by (*) ¢ (IP(x)-g*N=0.50,  Px)=g*.

Therefore P(x) is the unique closest element .
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, p.73] . LetGbea proximinal subspace of Banach

Thus G is a Chebyshev subspace .
Theorem 3.2.16 : [4
space X . Then for every simple function f € LX), P(f,L¢(u,G)) is not
empty .

Proof : Let = Z:aiin where E; are disjoint measurable sets in T .
Set g = Z‘bi g Whereb; € P(a;,G) . Ifhisan element in L¢(1.L,G) , then
f - hils= TI SCIIF) - h(Oll ) dp(t)
= 2 Jo i - holh) dh)

= 2[4l - b1 dn00)

i=l

> 2 (e - bil) dn(o

- [4(I - 2011 410

=|If- glls

Therefore ||f - glly < If - hlly ¥ h e L'(n,G). Thus g € P(fL°(1,G)) - |
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Chapter 4
S-property
Introduction : Let X be a Banach space and G a closed subspace of X.
The space G is said to have the S-property if z, € P(x,,G) and z; € P(x2,G)
then z; + z, € P(x; + x2,G) forall x; , X, € X.. In this chapter we prove that
if G has the S-property , then L*(u,G) is proximinal in L%y, X) if and only
if G is proximinal in X . As an application of this result we prove that
L'(n,G) is proximinal in L'(1,X) if and only if L”(11,G) is proximinal in
L*(u,X) , in case G has the S-property .
An example of a subspace G — X which has the S-property is the
following .
Example 4.1.1 : Let X=R’.Set G={ (x,0) : x € R }with the Euclidean
norm .
Now if x, = (m,n), then P(x;,G) = {(m,0)} ie z = (m,0).
andif x,=(r,5), then P(x,,G) = {(1,0)} i.e z= (r,0).
But X, + x; = (m+r,n+s) ; so P(x; + x2,G) = {(m+r,0)} i.e
(m+r,0)=2z,+ 2.
Therefore G has the S-property .

Remark 4.1.2 :In a Banach space X, if G has the S-property , it does not

necessarily follow that G is proximinal in X . For example , if X = ¢y with
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Il = sup [ and G = { x =(x)) € co : 227, =0} . Remark (2.3.1)

implies G is not proximinal in Cp .

Now letx € ¢g - G and suppose that P(x,G)# ¢ieIze Gstze P(x,Q);

so 0 € P(x-zG)by part (2) of Theorem (2.2.5) . This means there exists

X -z € ¢y - {0} such that0 € P(x-2z,G) . Theorem (2.3.7) implies G is

proximinal in co which is a contradiction . Therefore P(x,G) = ¢ for every
xecy-G.

Hence G has the S-property .

We shall now give various closed subspaces of a Banach space which have

the S-property .

Theorem 4.1.3 : If G is a ¢-summand of X, then G has the S-property .

Proof : Let z, € P(x,G) , 2, € P(x2,G) . Since Gisa ¢-summand of X,

then there exist a projection E : X—G s.t E(x) is a unique best approximant

of x in G for all x € X by Theorem (3.2.14) and Remark (3.2.15) . Hence
7, = E(x;) and z; = E(x3) .

But z, + z; = E(x)) + E(x2) = E(x; + X2) since E is linear .

This implies that z; +z; € P(x; + X2,G) . Thus G has the S-property . |

Theorem 4.1.4: If G is 1-complemented and Chebyshev in X, then G has

the S-property .
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Proof : Letz; € P(x,,G), z; € P(x,,G) , since G is 1-complemented in X,
there is a closed subspace W c XstX=G® W.This implies x; and X,
can be written , uniquely , in the form
X1=g1 twp, X2=g T W
where g1, g€ G,andw; ,w, € W,
From the proof of Lemma (3.2.9) and the assumption that G is Chebyshev ,
we getthat z,=g,,2,=g;.
Now x;+x={(g +g)+(witwa).
Since G is a subspace ,so g+ g € G.
Also W is a subspace , so w; +w; €W .
It now follows that z, + z; = g1 + g2 € P(x; + x5,G) .
Thus G has the S-property . |

Theorem 4.1.5 : Let G be a closed subspace of a Hilbert space X, then G
has the S-property .

Proof : Let z; € P(x,,G) and z; € P(x,,G). We show 2, +z; € P(x; + x5,G).
Theorem (2.2.6) implies x;-2; L G, and X3 - 2, 1 G . Hence

<xy - z;,g> =0 and <x, - z5,g>=0 for allge G.

Now <X, + X; - (21 +22),8> = <X; - 2,€> T <X2 - 22,8~ = Oforallge G.

Hence x; + Xp - (2, +2) L G . Theorem (2.2.6) implies

Z1+Zy € P(X] + Xz,G)
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Thus G has the S-property . 5
Theorem 4.1.6 : If G is a semi-Chebyshev hyperplane in a Banach space X
passing through zero , then G has the S-property .
Proof : Case (1) : If G is proximinal in X . Let f € X* so that
G={ye X, f{yy=0}.Fixanarbitrary z € X\Gso; f(z) # 0, and let
yo=x-f(x)/f(z).z wherexe X
So f(yg) = 0, whence yo € G .Consequently
X=G®W where W={w=o0z : ascalar} ... *
Now let z; € P(x;,G) , 2 € P(x,,G) . It will be shown that
z1 + 23 € P(x;) + %,G) .
By (*) every x; € X, x; € X can be written , uniquely , in the form
X1=g oz, X7 = 22 F 0aZ cverieneeeiieiinnas

where g, , g, € G and @, , o are scalars .

Now assume that g' € P(x; + x»,G) , then by **
g' e P(g; + g2 + (o + 02)z,G) . Theorem (2.2.5) implies

g =(gi+g)+( +a)w where weP(zG)
=g+ oW+ gt 0w
Since w € P(z,G) , Theorem (2.2.5) implies

g; + oyw € P(g, + 0,2,G) = P(x1,G) -
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And g+ opw e P(gy + 0p2,3) = P(x,,G) .
Hence

g1t oyw =2z

g2 + OL,W = 2y
Consequently g’ =z1+z;.
Therefore z, + z; € P(x; + X2,G) . Thus G has the S-property .
Case (2):If G is not proximinal in X . Theorem (2.3.7) implies P(x,G) = ¢
for every x € X - G . Thus G has the S-property . B

We now state and prove an important result for G with S-property .

Theorem 4.1.7 : Let X be any Banach space , and G a closed subspace of

X which has the S-property , then P; (0) is a closed subspace of X and
F'(0)nG={0}.

Proof : Let x; , X3 € PG_l (0), so; 0 € P(x;,G) and 0 € P(x,,G) . Since G

has the S-property we get 0 € P(x; +x,,G) . Hence x; + X3 € P(;' (0).*

Let x € ' (0) and o be any scalar . Then

d(ax,G) = |a| d(x,G) = |a |Ix|| = llox]| = 0 € P(ax,G) => ax € PG_I (0). **

By (*), (**) B'(0) is a subspace of X .

Now let (x,) be a sequence in fgl (0) and x € X such that lim x, = x . Since

G is a subspace of X, 0 € G, d(x,G) < ||x]] ......(1) .
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Given € > 0 there exist a natural number N(€} such that j|x; - X|| < € for
alln>N(e).
Fix n 2 N(€) to have :
[1xI} = {lx - %n + Xal| < |Ix - Xqf| + {ixall
< e+l - dx,G) + d(x,G) |
< €+ Ixll - d(x,G) | + d(x,G)
= & +]d(x,,G) - d(x,G) | + d(x,G) since x, € 7 (0)
< € +|[x, - X + d(x,G)
<2e +d(x,G)
Hence ||x|| £ d(x,G) ......(2)
From (1), (2) we get ||x|| = d(x,G) . So, 0 € P(x,G) hence x € Pc;l (0).
Thus Z'(0) is closed .
Letge FZ'(0)nG=>ge F'(0)andg e G.
=>0eP(gGlandge G.
= |lgl|=d(g,G)and g € G.
=gl =0.
=g=0
Therefore F5'(0) G = {0} . B
The next theorem shows that if we add the condition that G has the S-

property then the converse of Lemma (3.2.9) will be true .
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Theorem 4.1.8 : Let X be any Banach space , and G a ciosed subspuace of
X which has the S-property . G is proximinal in X if and only if Gis 1-
complemented in X.

Proof : If G is l-complemented in X , then by Lemma (3.2.9) it is
proximinal in X .

Suppose now that G is proximinal in X . Theorem (2.3.2) implies

X=G+ PG_' (0) . Theorem (4.1.7) shows that E}l (0) is a closed subspace

of Xand B5' (0) G = {0} . Hence X=G @ £ (0).

Now define P : X— P’ (0) by
P(x)=P(g+z)=zwherex=g+z,ge€G,z¢€ PG_I(O).

Xl > d(x,G) = d(g + 2,G)

= d(z,G)

I
N

Therefore ||x|| = ||z]| .

Hence P is a contractive projection . Thus G is 1-complemented in X . B
An important application of the previous theorem is the following .
Theorem 4.1.9 :Let X be any Banach space , and G be a closed subspace
of X which has the S-property . The following are equivalent :

(i) G is proximinal in X .

(i1) L'(1,G) is proximinal in L'(1,X) .
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(iii) L*(1,G) is proximinal in L¥(1,X) .
Proof : (i)—(ii) , assume G is proximinal in X . Theorem (4.1.8) implies G
is 1-complemented in X . Corollary (3.2.12) implies L'(11,G) is proximinal
inL'(1,X) . |
(i)—>(iii) , assume L'(u,G) is proximinal in L'(y,X) . Theorem (3.2.2)
implies L¥u,G) is proximinal in L, X) .
(iii)}—>(i) , assume that L¢(p.,G) is proximinal in L*(1,X). Theorem (3.2.5)
implies G is proximinal in X.
We shall now give various corollaries of this theorem .
Corollary 4.1.10 : Let X be a Banach space , and G is a ¢-summand of X,
then L¥(,G) is proximinal in L%, X) .
Proof : The corollary follows from the above Theorem and Theorems
(4.1.3), (3.2.14) . B
Corollary 4.1.11 : Let G be a closed subspace of a Hilbert space X, then
L*,G) is proximinal in L¥(u,X) .
Proof : The corollary follows from the above Theorem and Theorems
(2.4.3),(4.1.5). 4]

Corollary 4.1.12 : If G is a Chebyshev hyperplane in a Banach space X
passing through zero , then L*(1,G) is proximinal in LY, X) .

Proof : The corollary follows from the above Theorem and Theorem

(4.1.6) . 549787 |
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In particular , it follows that every Orlicz space Lf(1,X) wiere Xisa

Banach space and strictly convex has at least one proximinal linear

subspace .

Now we state and prove our main result .

Theorem 4.1.13 : Let X be any Banach space , and G be a closed subspace

of X with the S-property . Then L'(u,G) is proximinal in L'(1,X) if and

only if L*(u,G) is proximinal in L*(1,X) .

Proof : If L'(u,G) is proximinal in L'(y,X) , then by Theorem (3.2.4)

L”(u,G) is proximinal in L™(p,X) .

Conversely if L™(u,G) is proximinal in L*(1,X) , then G is proximinal in X

by Theorem (3.2.7) .

Theorem (4.1.9) , implies L'(1,G) is proximinal in L'(j1,X) . g

2. Further Results :-

Theorem 4.2.1 : Let X be a Banach space and G be a closed subspace of

X , if G has the S-property in X , then L(,G) has the S-property in

Lo, X) .

Proof : Letg, € P(f;,L*,G)) and g € P(fz,Lé(u,G)) , we will show that :
g1 +g: € P(fi + £, LY(n,G))

Now

g1 € P(f;,L%u,G) . Theorem (3.2.1) implies
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gi(t) € P(fi(t),G) forall almost t € Toeeee (1)
Also
g, € P(£,L%(n,G)) . Theorem (3.2.1) implies
ga(t) € P(£f(1),G) for all almost t € T ceveeerane (2)
Since G has the S-property , from (1) and (2) we get
(g, + g2)(1) € P((fy + £)(1),G) forallalmost t € T.
Hence
d((f, + £)©.,G) = |(fi + 2O - (&1 + &)(O]
Hence |[(£; + £)() - (21 + 2Ol <l[(Fy + ) -yl aet,and V yeG
In particular
(E + £)(0 - (g + g2l < [I(F + £)(O - h()l] aet,and Vh e L*(1G)
Since ¢ is strictly increasing , then
b (ICE + £2)() - (21 + 22)O) < ¢ (I(f + £2)(1) - h(t)])) a.etand
v h e L*(,G)
Integrating both sides we get
I(E + £ - (@1 + @)l < II(E + ) -blly ¥ h e L{uG)
Hence d(f, + £,LY0,G)) = [I(fy + £2) - (& + 22)llo
Therefore g, + g2 € P(f; + f2,L°(1.G)) -

Thus L¥(t,G) has the S-property . K

The following theorem describes the relationship between P]:,‘(“ (0) and
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Lo, B (0)) .

Theorem 4.2.2 : Let X be a Banach space , and G be a closed subspace of

X . If G has the S-property , then P;:(LUG)(O) =L, &' (0)).

Proof : Let f € L%, B5'(0)) . This means f(t) € F5'(0), and that ||f]|, < .
Now
f(t) e E;'](O) : s0, 0 € P(f(),G) ; hence d(f(1),G) = ||[f(1)]| .
Le [fl <|If() - gl YeeG
In particular
IFOI < 1)) - h@)l] ¥ h € LAG)
since ¢ is strictly increasing , then

¢ (IFDID < ¢ (If) - b)) ¥ h e L'GwG)
Integrating both sides we get
Ifils <JIf - bl ¥V h e L*(G1,G)

Hence d(£,L*(1,G)) = lflls
1
Therefore 0 € P(EL}(1,G)) = f e By ,(0)
Thus
LA, B (0) © By (0 coeneenen (1)

Let f e By . (0) . We claim that f & L%y, F'(0)) ice. [Iflly<co and

f(t) e F='(0).
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Now
fe By 0) cL¥u,X) . Hence [[flly < .overeeee... @)
Also 0 € P(fL*(1,G)) . Theorem (3.2.1) implies
0 € P(f(1),G) a.e.t.
Thus f(t) € Z5'(0) weoreverrreeernnnn. 3)
From (2) and (3) we get

fe LYy, £5'(0))

Therefore
1
Pl}(p,c)(o) < Lo, Pc;_l (1)) J— (4)
From (1) and (4) we get P;*I(u,c)(o) = L*(p, %‘ (0)).

Lemma 4.2.3 : Let X be a Banach space , and G, , G; are closed subspaces

of X.If G; =G, then P5(0) < F; (0)

Proof: Letx € B3 (0) = 0 € P(x,G;) = d(x,Gy) =|Ix||, but G, = G,

= [Ixl = d(x,G1) 2 d(x,G2} = [|x]| -

Therefore d(x,G;) =||x|| . Hence x Péll (0). B
Theorem 4.2.4 : Let X be a Banach space , and G a closed subspace of X

which has the S-property . If G is proximinal in X then Pgl(O) is

proximinal in X and has the S-property .
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Proof : Let x € X . The proof of Theorem (4.1.8) itnuplies x can be written ,

uniquely , in the form

x=g+z where g€ G and z € F;(0) weenenn... (1)
NowgeG = glw Vwe F0) = gl B0 = 0ePF (0)
= d(g, B 0)) = [Ig]] ccoreererennne 2)
From (1) and (2) we get

d(x - 2,B5'(0)) = [Ix - 2] = d(x, B'(0)) = [Ix - 2
Therefore z € P(x, Pél(O)) ie z=x-g where g € P(x,G) ....... (3)
Thus B5'(0) is proximinal in X .
To show F;'(0) has the S-property .
Let z, € P(x;, I5'(0)) and 2z, € P(xp, B5' (0))
From (3) we get X, - z; € P(x,,G) and x, - z; € P(x,,G)

Since G has the S-property , then

X1+ X2-(z1 + 23) € P(xy + x3,G)

= 2+ 2, € P(x; + X, F5 (0))
Thus P (0) has the S-property .
Theorem 4.2.5: Let X be a Banach space , and G is proximinal in X . If G

1
has the S-property then P}%'(O)(O) =G.
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Proof:Let ge G = zLlg YV ze P5(0) = gL F5(0)
= 0ePgF(0) = ge Fup®.
Therefore G < P;Eln © (1) B (1)
Now,letx € tpa (0)(0) Then by the proof of Theorem (4.1.8) we have
x=x;+%x where x; € G and x; e F5(0).
Since G < P"(O)(O) , X1 € PI:I(O)(O) .Thenx, =x-x; € Pf_rl](o)(o) .
Butx, € B (0). Theorem (4.1.8) implies x;=x-x;=0.
= X=% = Xe(
Therefore P 7 (0)(0) (anll € SRTSR (2)

Thus we proved that G = ,r ©) © .

Theorem 4.2.6 : Let X be a Banach space , and G is proximinal in X . If G
has the S-property then L*1,G)=L'(1n,G) .

Proof : Theorem (3.1.4) implies L'(1,G) < (TR C) I (1)
also L'(, 75 (0)) < LG, B (0))-

Lemma (4.2.3) implies P L‘(u P—I(O)(O) c P;(u PEL(0) O .

Theorem (4.2.2) implies L¥(, P;E:I(O)(O)) < L'(n, P,:;-(O)(O)) .

Theorem (4.2.5) implies L¥11,G) € L'(1L,G) vrevevrevencene (2)
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From (1) and (2) we get L¢(p,G) = Ll(u,G) . |
Let X be a Banach space , and G be proximinal in X, then any map which
associates with each element of X one of its best approximantin G is
called a proximity map . This mapping is , in general , non linear .
Theorem 4.2.7 : Let X be a Banach space , and G be a Chebyshev
subspace of X . There exists a linear proximity map if and only if G has the
S-property .
Proof : Let E be a linear proximity map . we claim that G has the S-
property .
Let z; € P(x1,G), and z; € P(x3,G) . We show that

Z1 + 23 € P(x) + %,G)
Now

z1 + 2o = E(x1) + E(x2) = E( + X3) € P(x) + x2,G) .
Therefore G has the S-property .
Conversely , assume that G has the S-property .
Define E : X—G such that E(x) € P(x,G) .
Now , we claim that E is linear .
Let X, , X, € X, we show that E(x; + x3) = E(x;) + E(x2) .
Now , E(x,) € P(x,,G) and E(x;) € P(x;,G) .

Since G has the S-property , then E(x|) + E(x2) € P(x; + x2,G) .
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Also E(x; + X2) € P(x; + %2,G) . Since G is a Chebyshev subspace tlien
E(x; +X2) = E(x1) T E(X2) cevevvrrrvinnnnns (D
Let x € X, a scalar then E(x) € P(x,G) . Theorem (2.2.5) implies
o . E(x) € P(ax,G), also E{ax) € P(ax,G) .
Since G is a Chebyshev subspace of X then
E(@x)=o . E(X) coerrrerereecne (2)
By (1) and (2) E is a linear . |
If S is a compact Hausdroff space and X is a Banach space , then C(§,X)
will denotes the Banach space of all continuous maps f from S into X with

norm defined as ||f]| = sup ||f(s)|] .

Theorem 4.2.8 : Let S be a compact Hausdroff space , and G be a
Chebyshev subspace of a Banach space X which has the S-property . If
C(S,G) be a Chebyshev subspace of C(S,X) then C(S,G) has the S-property
in C(5,X) .
Proof : Since G isa Chebyshev and has the S-property . Theorem (4.2.7)
implies there exists a linear proximity map E : X-—>G . Then define the
map.

F: C(5,X)—>C(S,G) by

F(H)=Eof .

Qur claim is that F is a linear proximity map .
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If ge C(S,G)then
lI£(s) - E(f(s)I] < [I(s) - &(s)i
Foralls e S, f e C(S,X) . Hence
If- E o il <||f - gl for all g € C(S,G)
Therefore
F(f) e P({,C(S,G))
And consequently
F is a proximity map .
Let f,g € C(S,X), we claim that F(f+ g) = F(f) + F(g)
F(f+ g)(s) = E (f(s) + &(s))
= E(f(s)) + E(g(s)) since E is linear
=E of(s)+E o g(s)
=(Eof + Eog)Qs)
Hence F(f +g)=Eof+Eog
= F(f) + F(L) ceoverorrerreren (1)
Let f e C(S,X), and o (scalar)
F(af)®) =E (af(t)
= o E ((t)) since E is linear
= a [(E o £)(t)]
=a (F(H)(®)
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By (1) and (2) F is linear .
Theorem (4.2.7 ) implies C(S,G) has the S-property . |
In [7 , p.333] , it isshown thatif X is a Hilbert space , then X is strictly

convex . In the following , we give another proof .

Theorem 4.2.9 : If X is a Hilbert space , then X is strictly convex.

Proof : Assume that X is not strictly convex , whence there exists an

f e X* with||fl =1 which has two distinct maximal elements x,y of norm
|Ix|| = |lyll = 1 by Definition (1.3.3).
Pt G=[x-yl={a(x-¥): o. scalar }.

(Il = |G| = 1fx - )l < |l lix - gll =Tix - gll - for allge G.

Hence 0 € P(x,G).

Also Iyl = f) = Ity - @l < I ly - gll =y - gll forallge G.

Thus 0 € P(y,G) = 0 € P(-¥,G) .

But G is a closed subspace of a Hilbert space . Theorem (4.1.5) implies G

has the S-property . Then 0 € P(x - y,G) which contradicts the fact

x -y € G- {0}. Therefore X is strictly convex .
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