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Abstract

We summarize recent works devoted to energy dependent potentials.
It concerns the class of potentials having a coupling constant depending
linearly on the energy. Introduced in the Schrddinger equation, it
produces non-linear effects. Few cases admit analytical solutions. They
are of great help to get acquainted with this non-linearity. The harmonic
oscillator and the Coulomb potential are presented as typical examples.
Applications concern heavy. quark-anti-quark systems, as well as the
many-body problem with harmonic interactions. Finally, we show that
the energy dependence does not modify the number of bound states of
attractive potentials. It can regularize some potentials singular at the
origin. For instance, the ground state energy of the -1/ potential in D=3
dimensional space becomes finite for finite energy dependence.

Motivations and generalities

Wave equations with potentials depending on the energy are known
since the early days of relativistic quantum mechanics. The Pauli-
Schrédinger equation is a typical example [1]. Recently they appear in
the Hamiltonian formalism of the relativistic many-body problem, i.e. in
the manifestly covariant formalism with constraints [2,3,4]. More
generally, energy dependent potentials have been used in the Schrodinger
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equation to simulate non-linear effect, for the soliton propagation or
interacting clusters [5,6,7] (see also [8,9,10] and [11]).

This presentation summarizes works done in collaboration with my
colleagues [12-15]. The aim was to build simple examples, toy models,
with analytical solutions if possible, in order to get acquainted with the
effect of the energy dependence of the potential and show the differences
with respect to the usual case.

The starting point is the time dependent wave equation (m=h=1)

1 0¥(r,t)/ot=[-1/2 A+ V(r,io/ot) ] ¥(r,t), (1)
V(r,10/0t) : a real function of 2 variables. Setting W(r,t) = e Et Y(r) yields
HWY¥(r) =[-12 A+ V(r,E) ] ¥(r) = E ¥(r). (2)

The first modification of the usual rules of quantum mechanics
concerns the scalar product [16, 17]. Consider two solutions of energies
E and E'

D(r,t) = e F D' D(r) and Po(r,t) = e E 9" P(r) (3)
with E - E'=¢ — 0, and the continuity equation

oP/ot = - 0j. 4)
Here,

P="(rt) Or,t) and j=-1/2 [¥ «(r,t) dD(r,t) - OV o(r,t) Oe(r,1)].

In the case of V(r,E), an additional term is needed, namely

AP0t =1 W (r,)[V(r,E) — V(r,E’)] Oy(r.t). (5)
After integration, it yields

P, =- ¥ (r,)[(V(r,E’) = V(r,E))((E’ —E)] ®y(r.t) . (6)
In the limit E' — E, the scalar product (the norm) is given by

N =] ¥ (r)[1 - OV/FE] ¥(r)dr . (7)
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Note here an essential point: in order that ‘P*(r)[l - OV/OE] ¥(r)
represents a density, it has to be positive definite. This imposes
constraints on the energy dependence for the theory to be coherent.

The orthogonality relation between two states n and n', n # n', is
given by
[, ()[1-{V(r,E)-V(r.,En)}/{En- En}Wo(r)dr = 0. (8)

The modification of the scalar product is necessary but not sufficient
to ensure the coherence of the theory.

Simple examples

It has been shown that a linear energy dependence affecting the
coupling constant leads to a coherent theory. Moreover, it can be
reformulated as an ordinary quantum theory with a non-local potential
[12,15]. We consider potentials of the following form

V(r,E)= M1 + vy E)Vy(r). 9)

In particular we shall discuss the effect of the energy dependence on
two types of power-law radial shapes:

Vo(r) =1 (10)

A. o = 2 : the harmonic oscillator potential in D=1 dimensional space :

[- 1/2 d¥/dx* + 1/2(1 + yEn)x* |¥Wa(x) = E,¥4(x). (11)

Setting

A =1+yEy; ki =2E,, (12)

leads to

[d%/dx* + Ky - M X7 ] Wa(x) = 0. (13)
The solutions are obtained by the ansatz

¥u(z) = Coha(z) exp(-z*/2) with z= V() X, (14)

which yields
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d*/dz* hy(z) - 2zd/dz hy(z) +(ke*/An” - 1)hy(z) = 0. (15)

The parameter A, depends on the state, and the solutions hy(z) are the
Hermite polynomials. Their orthogonality is ensured by the weight
function

exp[-(h + Aa)x*/2] [1 —yx7/2]. (16)

The coherence of the theory requires y < 0. The energies and the A,’s
are obtained from Eq. (15) together with

ki =Q2n+ 1) A=2E,. (17)

The eigenvalues are the roots of a second order equation. Actually,
only the positive roots are retained, the negative ones lead to non-
normalizable functions. Thus, the energy spectrum is given by

E, = (2n+1)%y + (n+ 1/2)V[1 +(2n + 1)* y%/16] ; y <0. (18)

It is easy to check that E, is a monotonically increasing function of n.
Furthermore, a saturation effect is observed : lim_{n—ow} E, = 1/y|. As
the quantum number increases, the corresponding eigenvalues reach an
upper bound, and the density of states tends to infinity.

The extension to the D=3 dimensional space is straightforward but
some care must be taken regarding the definition of the angular
momentum. This one has its usual form if the potential is spherically
symmetric.

Illustrative examples are displayed in Figl. Spectra with positive are
shown for comparison, although the model is not coherent in this case.
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Figure (1): E, as function of n for the linear E-dependent harmonic
oscillator.

Only negative values of y lead to a coherent theory [12].
B : o =-1: the Coulomb potential (D=3).

V(r, En) =M1+ yEy)/r with A<0. (19)
The reduced radial wave functions take the form
Op(r) = Co ' exp(- ant/2)Pui(r), (20)

with Py (r): the polynomial form of the confluent hyper-geometric
functions. The quantization condition implies

an = - 2M(1 +yEp)/(n + 1), n=1,2,3,... Ey = -a,%/8. 1)

The eigenvalues are given by a second order equation with roots
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E% = [-(n+])? =A% & (n+D)V{(n+]) + 2yA73/0 %Y. (22)

Only the E', roots are retained, the E' ones corresponding to non-
normalizable solutions. The energy dependence of the potential affects
essentially the lowest levels, making them less bound than in the case of
vy = 0. This is easily seen by taking the large quantum number limit,
which is independent on vy :

lim {n,] > o} Ey=-A/Q2(nH)%) (23)

For illustrative purposes, we list here eigenvalues for three values of
y corresponding to the equations (18) and (22).

Table (1): The harmonic oscillator in the one-dimensional space : Eq.

(18).

n vy =0. vy =-0.25 vy =-0.50
0 0.500 0.470 0.441
1 1.500 1.245 1.040
2 2.500 1.837 1.386
3 3.500 2.289 1.588
4 4.500 2.632 1.711
5 5.500 2.893 1.788
6 6,500 3.094 1.840
7 7.500 3.249 1.875
8 8.500 3.371 1.900
9 9.500 3.467 1.918
10 10.500 3.544 1.932

An - Najah Univ. J. Res. (N. Sc.) Vol. 25, 2011




Ronald Lombard 55

Table (2): The Coulomb potential: Eq. (22) for A = 1.0.

n y=0. vy =-0.25 vy =-0.50
0 0.50000 0.40408 0.34315
1 0.12500 0.11775 0.11146
2 0.05556 0.05406 0.05267
3 0.03125 0.03077 0.03031
4 0.02000 0.01980 0.01961
5 0.01389 0.01379 0.01370
6 0.01020 0.01015 0.01010
7 0.00781 0.00778 0.00775
8 0.00617 0.00615 0.00614
9 0.00500 0.00499 0.00498
10 0.00413 0.00412 0.00412

Application to heavy quark-anti-quark systems

The spectra of the heavy mesons, based on a quark-anti-quark model
gg, constitute a natural application. As a toy model, used can be made of

V(r,En) = [ po’r?/2 + Do IF](1 + Ey) (24)

for the qg potential. Here, u is the reduced mass, | is the angular
momentum operator and the I* term is known to simulate a potential well
intermediate between the harmonic shape and the square well potential at
low angular momentum. This model has been applied to the ce
(charmonium) and bb (bottomium) spectra.
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Table (3): The ce and bb spectra.

Charmonium Bottonium
Spectrum exp. exp.
Ip 397 397 428 428
2s 589 589 563 563
1d 713 710 759 701
2p 819 776 805 792
3s 941 943 897 895
4s 1153 1063 1098 1120
parameters
o (fm™) 2.75 2.65
Dy (MeV) 85.3 153.0
v 10° (MeV) | -4.336 -4.558 10
m (GeV) 1.207 4.401

In each case, the quark mass is linked to the total ground state
energy, i.e. to the physical mass of the qg system: M(q.,¢) = 2 mq + Ejs.
The results are summarized in table 3 and compared to experimental
values. The agreement is satisfactory, although the potential has a radial
shape quite different from those currently used in this topic [13]. For this
reason, the low levels, used to fix the parameters, are very well
reproduced, whereas the higher levels show some deviation. Note that
without the energy dependence, the harmonic oscillator potential does
not even qualitatively fit these two spectra.
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The many-body problem with an energy dependent confining
potential.

Harmonic interactions have the property of producing soluble many-
body problems. In this respect, it is interesting to check the effect of the
energy dependence. We consider N bosons of equal mass m in D=3
interacting through

V(ri— 1) =o’(1 +yE) (ri— )" (25)
Here, E is the total energy of the system.

The Hamiltonian is given by (k= 1)

H(p;, 1) = 12m Y Npi + {m 0*2}(1 +7 E) Y™ (ri— 1) (26)

The use of Jacobi coordinates allows the separation of centre of mass
motion, and leaves us with an Hamiltonian of N - 1 separable harmonic
oscillators. It reads

H(m,&) = {1/4m} YN+ D+ {m o211 +y BN g /(I + 1) . (27)

The total wave function is a product of harmonic oscillator wave
functions. The energy of each oscillator is given by

Eniji = o (1 + 1)(2 I, + 4n; + 3)/(4 m 1) (28)
with
a; =21 o/(I+1). (29)

The total energy becomes
E={o/2m} Y™ @ L+4n+3)= {a/2 m}[3(N-1)+ 2 ¥'(I; + 2n)) =

ai S/2 m. (30)
Taking into account that
o” =m’e’ N(1 +y E)/2, (31)

the energy is given by
8E*— w’NS’yE - 0’NS*=0. (32)

The only root yielding a square integrable solution is
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= vil-(l+32/0 Y .
E=o’NS*vy [1 - (1 +32/0*NS* y)"? /16 33

This result has 2 implications. First, for large quantum numbers, i.e.
as S — oo, the energy reaches an upper limit independent on N : lim _, .,
E=1/|y|.

Secondly, as N increases, the ground state energy increases. Thus,
the density of states increases up to the point where the concept of
individual states looses its meaning :

transitions among states cost no energy. This situation is illustrated in the
figure below.
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Figure (2): Few low lying eigenvalues E,; as function of the number of
particles N.
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Critical” situations

In the D=3 dimensional space, short and finite range potentials are
defined as having at the most a finite number of bound states. They
decrease asymptotically faster then 1/r*, and they are not too singular at
the origin. The spherical symmetry is assumed. It is well known that for
these potentials the existence of a bound state is linked to the value of the
coupling constant. In other words, for a given state {n,l}, a critical value
of the coupling constant A¢(nl) exists below which this state is unbound.
The critical A.(nl) is obtained by solving the Schrodinger equation at Ey
=0. Consequently, the energy dependence of the coupling constant does
not modify the A(nl).

Furthermore, for a fixed angular momentum I, the number of bound
states is given by the number of nodes of the first unbound wave
function. It increases by one unit when passing from A < A,(nl) to A >
Ac(nl). As a consequence, the number of bound states is not affected by
the energy dependence of the coupling constant. The major modifications
concern the eigenvalues and the level densities. The two examples given
above are particularly clear.

Another interesting case is the power-law potential with a = -2. In
D=3 it leads to a collapse of the ground state energy which is infinite.
Here, the energy dependence has a regularisation effect. It can be shown
that the ground state wave function is proportional to Ko(pr), the
modified Bessel function [18], and the ground state energy takes the form

Eis=-(A-1/4)/hy;y>0. (34)
Thus, for any finite value of y the ground state energy is finite.

To illustrate this situation, the E;s energies have been calculated
numerically for attractive power-law potentials with -2 < a < -0.5. The
results are displayed in Fig 3.
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Figure (3): E|; energies as function of a for different values of y.

Conclusions

The present work is devoted to energy dependent potentials. We
consider potentials having their coupling constant depending linearly on
the energy. This case leads to a coherent theory. The energy dependence
affects essentially the eigenvalues. The spectrum is compressed and the
density of states is enlarged.

For confining potentials, we note the appearance of a saturation
energy : the spectrum is bounded from above. In the many-body problem
with harmonic interactions, the saturation energy is independent of the
number of particles, while the ground state energy increases with N.
Thus, for large N, the concept of individual levels becomes dubious.
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For attractive power-law potentials, the energy dependence affects
essentially the lowest states, which are less bound. It has a regularisation
effect illustrated for a = -2. In this case, the ground state energy is finite
as soon as y # 0.
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