
Mapping from CAPS Software Architecture

Modeling Language (SAML) to ThingML

Language using Acceleo Code Generator

Ithar Saleh, Yara Shanaa, Rami Ilaiwi

Department of Networks and Information Security

An-Najah National University

Supervisor

Dr. Mohammad Sharaf

In partial fulfillment of the requirements for the degree of

Bachelor in Networks and Information Security

May, 2019

Abstract

The intent of this thesis was to provide a mechanism to map and

convert between two different IOT modeling languages: CAPS-SAML

and ThingML. This mapping and conversion was needed in order to

have automatic generated codes from models. This required great

knowledge of both languages and having a tool or a mechanism in

between to do such a conversion which would be built on scientific

and logical grounds . Our thesis presents our work which covers up all

stages from the design of the SAML models using CAPS framework,

passing by using the Acceleo code generator which does the model-to-

text transformation from SAML to ThingML and ending by the final

results of the ThingML code which will be used to generate different

programming languages codes.

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Context of the Study . 2

1.3 Objectives and Contributions . 3

1.4 Overview of the Thesis . 3

2 CAPS-SAML 4

2.1 SAML Meta Model . 5

2.1.1 SAML behavioral elements 6

3 ThingML Architecture 7

3.1 ThingML DSL . 8

3.1.1 ThingML Code generation Framework 9

4 Acceleo Code generator 10

4.1 Transformation from CAPS-SAML to ThingML 11

4.1.1 Structural Concepts of SAML and ThingML 12

4.1.2 SAML and ThingML . 18

5 Experimental Results 22

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture . . . 22

ii

CONTENTS

5.1.1 CSA-CAPS TOOL . 23

5.1.2 Smart-Agriculture Case Studies 23

5.1.3 ThingML output using Acceleo 30

5.1.4 Generating Languages from ThingML 32

6 Conclusions 37

References 38

iii

List of Figures

2.1 structural concepts SAML MetaModel 5

2.2 behavioral concepts SAML MetaModel 6

4.1 Running Acceleo . 11

4.2 Software Architecture in SAML 12

4.3 Output File name in ThingML . 12

4.4 converting a component into Thing 14

4.5 converting connections in ThingML 15

4.6 converting PrimitiveDataDeclaration values in ThingML 15

4.7 converting PrimitiveDataDeclaration values in ThingML 16

4.8 Enter Mode in SAML to On Entry in ThingML 17

4.9 Choice messages in ThingML . 19

4.10 Choice behavioral elements in ThingML 20

4.11 Messages in ThingML . 21

5.1 Humidity and Moisture Sensing. 24

5.2 Gathering Results. 26

5.3 Detecting Fire. 28

5.4 Test Model to convert . 30

5.5 Converted model in ThingML . 31

5.6 Generated code in Java . 33

iv

LIST OF FIGURES

5.7 Generated code in Posix C . 34

5.8 Generated code in Arduino C . 35

5.9 Generated code in Node.JS . 36

v

Chapter 1

Introduction

1.1 Motivations

The Internet of Things can be simplified and defined as a dynamic network which

includes its own configuration and uses the standard communication protocols.

Those things would have their requirements, specifications and attributes. IOT

systems needs vary from reliability, security, availability and integrity but they

also need a level of compliance, scalability and other important performance

metrics.

Model Driven Engineering comes to meet those needs and requirements ever

after it focuses on exploiting domain models. These models will target all the

topics related to a specific problem related to this domain. By this, Model Driven

Engineering (MDE) is meant to give an abstract knowledge about a particular

domain and by taking into consideration all related activities. MDE aims to

increase the level of productivity by using standardized models which will in-

crease the level of compatibility between systems. In short, Software architecture

aims to make fundamental structural choices which are costly to change after

implementation.

1

1.2 Context of the Study

1.2 Context of the Study

CAPS is a model driven engineering framework, used to describe the software

architecture, hardware configuration and the physical space views for situational

aware Cyper physical systems(CPS). It aims to include all things relate to Soft-

ware in one view, as well as in the Hardware and the physical space views. This

will support the concept of separation of concerns, since each view will be worked

and focused on in an isolation of the others. This means the software developer

won’t need to know about the hardware requirements or about the space dimen-

sions. CAPS also has two additional views in order to link the three modeling

views together. These two views are denoted as Mapping Modeling Language

(MAPML) and Deployment Modeling Language (DEPML).

What we need to focus on here is the Software Architecture view in CAPS.

This view looks more in deep to the Software elements and its way of behaviour

and structure. In CAPS, the Software Modeling Language (SAML) is composed

of two main elements: Components and Connections. SAML describes how com-

ponents and connections exchange messages through message ports. Each com-

ponent can declare a set of modes, each one of these modes can contain a set

of events, conditions and actions. All this represent the behaviour of the com-

ponent. The component also has application data which are defined inside the

component and manipulated using the actions.

On the other hand ThingML is a language and code generation framework,

which has been used in the development of the IOT systems. ThingML lan-

guage allows developers to customize the code generators for their specific needs.

ThingML code generation has been used to generate code in C/C++, Java and

JavaScript, and many more languages are under development these days.

ThingML has been used at first in the embedded systems like sensor net-

works in the oil and gas domains. Right now ThingML is being generally applied

2

1.3 Objectives and Contributions

to the IOT domain. Another advantage of ThingML is that it works well for

heterogeneous platforms and even heterogeneous communication protocols.

1.3 Objectives and Contributions

Both CAPS and ThingML can be considered as domain specific modeling lan-

guages (DSML) when comparing to UML, but they can be used for a wide range

of applications since they’re not limited to a specific domain of business.

Since ThingML aims to model software components and automatically gen-

erate modules of code ready to be deployed and implemented, if we could find a

way to convert from CAPS-SAML into ThingML, then we will be able to have

multiple modules of codes for the same model designed using SAML. This would

give us larger variety, scalability and better efficiency.

We have done this by using the Acceleo code generator. Acceleo is an open-

source code generator from the Eclipse Foundation which uses the model driven

engineering principles and approaches to build applications. The main aim of the

Acceleo is to perform the model to text transformation.

1.4 Overview of the Thesis

This thesis clarifies the process of mapping and converting between two model-

ing languages, using the model-to-text transformation principles by applying the

Acceleo code generator.

3

Chapter 2

CAPS-SAML

Summary

CAPS was designed and implemented based on the distribution of the modeling

information into 3 architectural views: the software structural and behavioural

view (SAML), the hardware view (HWML) and the physical space view (SPML).

This separation will enhance the principle of separation of concerns, since every

stakeholder will focus on a specific field of concerns. CAPS also has a way to

combine these three modeling views together, in order to tell those software el-

ements defined in the software model have those specific hardware requirements

which are defined in the hardware model. This is done by the MAPML which

does the mapping between the software and the hardware models. In a same

manner, the DEPML links the hardware model with the space view model, to

specify the location of each hardware element. [1]

Our focus in this work will be on the software modeling language (SAML)

which will be converted into ThingML. CAPS allows software architects to define

the software architecture of the IOT system through using the SAML modeling

language.

4

2.1 SAML Meta Model

Figure 2.1: structural concepts SAML MetaModel

SAML basically is composed of components and connections between them.

These components will exchange information using the message ports. A compo-

nent can be defined as a unit of computation with internal state and well-defined

interface [1]. The behavior of each component is determined by a set of events,

actions and conditions. Local variables can also be defined inside the component

scope which specifies the application data that will be deployed by the events,

actions and conditions.

The Component can also contain several modes which will specify the state

of this component, for example a mode can be energy saving mode or a sleeping

mode. Component can have only one active mode at a time to determine the

status of it. A mode has an action which is used for message passing from a

mode to another, this is called ExitMode which will pass messages into an event

called EnterMode. Every mode can contain several behavioral elements that all

together will represent the control flow of the component.

5

2.1.1 SAML behavioral elements

The behavioral elements in the software modeling language can be classified as
one of actions, events or conditions. An action in CAPS represents an atomic
task that can be performed by the component [1]. This action can be achieved
when an event is triggered or when a previous action in the control flow has been
completed. An action can be for example send a message to a specif port, start
or stop a timer.
Another type of the behavioral elements is events. An event is made in response
to some internal tool in the component like Timer fired or an external motivation
like a received message.
Events and actions are connected together using Links, which determine the
control flow. These links can be used to determine the order in which actions will
be executed and the actions which must be performed when an event is triggered.

Figure 2.2: behavioral concepts SAML MetaModel

6

Chapter 3

ThingML Architecture

Summary

ThingML is considered to be a language and code generation framework for het-

erogeneous systems. This approach came to support the process of generat-

ing codes from models. ThingML includes a modeling language a tool designed

to support code generation and a customizable multi-platform code generation

framework [2]. ThingML has been used to develop systems ranging from research

case studies to product development in industry projects. ThingML targets dis-

tributed IOT systems and gives a great advantage when applying in heterogeneous

platforms.

ThingML was been developed based on the Model Driven Engineering (MDE)

principles. While models in MDE can be really helpful in the requirements or

resting phases, ThingML aims to bring MDE to the late design and the imple-

mentation phases of the software life cycle as well as to support the maintenance

and evolution tasks [2].

7

3.1 ThingML DSL

3.1 ThingML DSL

ThingML language is composed of two key structures: Things which represent the

software components and Configurations which describe their interconnections.

A Thing can be defined as an implementation unit, a component or a process [2].

A Thing can assign properties, functions, messages and ports. It can also

contain a set of state machines. The properties variables are defined locally

inside the thing and can be accessed from within. Functions also can be treated

as local functions inside the thing and can’t be accessed or seen from the outside.

Ports are the only public interface in the ThingML language. They are used to

send or receive messages which are defined within a thing but can only be used

for sending or receiving through the message ports.

The internal behavior of a Thing can be achieved using a combination of:

• Fundamental programming to clarify the procedures either by using the

ThingML platform actions and expression language or by using the fea-

tures of the target language. Libraries from the targeted languages can be

wrapped and used. A mix of the two options can be implemented.

• Event-Condition-Action (ECA) which defines simple if in order to apply

rules in response of the occurrence of events.

• Composite state machine, to react and coordinate events in a stateful fash-

ion. This conforms to the UML charts.

8

3.1 ThingML DSL

3.1.1 ThingML Code generation Framework

ThingML code generation framework is composed of a family of compilers which

are able to transform a ThingML model into a fully operational code in different

languages [2]. By today, ThingML has 4 fully supported languages which are

Java, C, JavaScript and more languages are under development.

9

Chapter 4

Acceleo Code generator

Summary

Acceleo is an open- source code generator developed by the Eclipse Foundation.

It permits using model driven engineering approaches in order to get or build an

application. It performs the model-to-text transformation. Acceleo was written

in Java and deployed as a plugin in the Eclipse platform. It supports different

platforms like Windows, Linux or MAC.

Acceleo provides a mechanism for generating codes from Eclipse Modeling

Framework (EMF) based models. Acceleo allows to generate from any kind of

MetaModel compatible with EMF. It also allows the customization of the gener-

ation for a user defined template and it can generate to any text language like C,

Python, Java, etc.

10

4.1 Transformation from CAPS-SAML to

ThingML

In order to run Acceleo, we need to specify the model in xmi format, MetaModel
of the source model in ecore format. We also need to specify the location of
the generated file and the generation file which will contain the syntax of the
transformation from the model to the text.

Figure 4.1: Running Acceleo

The mapping and converting between SAML and ThingML happened by the

mapping between every element in SAML to a corresponding one in ThingML.

By the analysis of both SAML and ThingML, the component in SAML meets

the Thing in ThingML, since both of them declare a computational unit which

includes a set of behavioral elements like actions, events and conditions. The con-

nections between the components in SAML have been mapped to the connectors

in the Configurations part in the ThingML language.

We started by using the xmi file of SAML model and by starting from the

highest point in the model which is the Software architecture in SAML, then it

goes through the SA-Element to reach the component which is mapped to Thing

in the ThingML language. We then went gradually in the xmi code to complete

the mapping.

The mode in CAPS-SAML was mapped to state in ThingML and the ini-

tial mode was mapped to the initial state. The behavioral elements in SAML

like events, actions and conditions can be mapped directly to the corresponding

events, actions and conditions in ThingML.

By this way, SAML would be mapped completely by the end of this project

into ThingML and this would give us the ability of having multiple modules of

11

Figure 4.2: Software Architecture in SAML

Figure 4.3: Output File name in ThingML

different languages from one model. This work would decrease the amount of

time, work and money exploited in order to compile the model into each one of

these languages.

4.1.1 Structural Concepts of SAML and ThingML

The software modeling language (SAML) MetaModel in CAPS has two types

of concepts: Structural and behavioral concepts. The structural concepts of

SAML MetaModel declares that any software element would be a component

or a connection. This has been mapped into Thing and connector in ThingML

language.

We started the conversion by selecting the top element in SAML which is the

Software Architecture since it’s the main class in SAML so we can access all other

classes in SAML. This is shown in Figure (4.2).

We defined the target file name we want to see the result of the conversion in

and imported a special library in ThingML language for the data types definitions,

as shown in Figure (4.3).

We could after that start converting from a component into Thing. The

conversion was done as shown in Figure (4.4). Any component in SAML will

12

have some primitive data declarations and behavioral elements. In order to do

such a conversion, primitive data declarations were mapped into the variables in

ThingML language, since those data declarations will contain the values each be-

havioral element will produce or work on. The behavioral elements were mapped

into functions which will abstract their functionality. In our mapping to Functions

we excluded some behavioral elements which will be discussed later.

To achieve the connections between Components into ThingML, we mapped

them into the configuration section in the ThingML language, this was done

as shown in Figure (4.5). The configuration part will contain an instance of

every component/thing implemented in the code and will implement a connector

between every two connected components by using the source and target names

of the connection in SAML.

The messages between components will contain a value of a behavioral ele-

ment, this value will be a modification on some primitive data declaration value.

Since these messages are parts of the components and would have a value, we

have created a special kind of thing called fragment to include all primitive data

declaration values which will be used in sending or receiving messages, so that

every component has a message will just include this fragment to be able to use

their values. This is shown in Figure (4.6)

Each Component in SAML has 0 or more message ports. These message

ports might be InMessagePort or OutMessagePort. A connection will link be-

tween the OutMessagePort as a source to another InMessagePort as a target.

These ports might receive 4 different types of messages, UnicastSendMessage,

BroadcastSendMessage, MulticastSendMessage or a ReceiveMessage. This map-

ping and converting was done as shown in Figure (4.7).

13

Figure 4.4: converting a component into Thing

14

Figure 4.5: converting connections in ThingML

Figure 4.6: converting PrimitiveDataDeclaration values in ThingML

15

Figure 4.7: converting PrimitiveDataDeclaration values in ThingML

16

Figure 4.8: Enter Mode in SAML to On Entry in ThingML

The final part of the mapping to introduce is Modes. A mode in SAML could

be an initial mode or simply just a mode. The difference between them is that

a component will start its execution from the initial mode and then move to

another mode by following the behavioral links.

ThingML has a corresponding similar concept to Modes called States. ThingML

has a statechart which includes one or more states that illustrates the execution

of the Thing. Each statechart will specify the initial mode as initial state and

other modes as states. Each state typically will have an enter mode and exit

mode. The enter mode will be mapped into ’on entry’ in ThingML which will

start with the first behavioral element in the mode and then it leads to other

behavioral elements in the same order they will be executed in. This has been

done as shown in Figure (4.8).

17

Choice element was the most complicated one to convert, we needed to look

for every possible choice could be taken. The first type of choices we selected

to focus on is the messages. Messages could be unicast, multicast or broadcast.

After determining the type of message, then we need to specify the transition

movement. This has been done as shown in Figure (4.9). Transition will specify

the event, condition and the action which will be taken.

The other option for Choice if not a message, is to be a normal behavioral

element, this is shown in Figure (4.10).

The last behavioral element to cover is component messages in its 3 types.

This has been covered here to provide the transition from one place to another

in addition to the guards or the conditions. This has also been done as shown in

Figure (4.11).

4.1.2 SAML and ThingML

By this, any SAML model can be mapped and converted into ThingML easily.

The structure of SAML is summed up with a component, connections, modes,

behavioral elements and primitive data declarations. ThingML is consisting of

Thing, configuration, variables, ports and statechart.

18

Figure 4.9: Choice messages in ThingML

19

Figure 4.10: Choice behavioral elements in ThingML

20

Figure 4.11: Messages in ThingML

21

Chapter 5

Experimental Results

5.1 CSA-CAPS: a special version of CAPS for

Smart Agriculture

Climate Smart Agriculture stands for the employment of recent Information and

Communication Technologies (ICT) into Agriculture, which would make a great

difference in the production levels. Smart Agriculture aims to use modern man-

agement techniques in order to monitor, analyze and take decisions based on some

predefined criteria. Rather than applying the same amount of fertilizers over an

entire agricultural field, using a special framework designed for smart agricul-

ture would be a great enhancement and modification towards a better future.

Farming those days are consuming huge amounts of water, energy, fertilizers,

pesticides, etc, CSA-CAPS would save a lot of money, time and resources by

the pre-design and analysis before the real implementation of the system in the

reality. This section presents Climate Smart Agriculture-CAPS (CSA-CAPS), a

specialized modeling framework for smart agriculture. This framework targets

farmers, government and any interested group.

22

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

5.1.1 CSA-CAPS TOOL

CSA-CAPS comes as a modified version from CAPS, adjusted to fit well with

the Smart Agriculture field. This has been done by studying the Agriculture

and Farming domain, analyzing the needs and requirements and monitor the

outcomes. In order to make the Agriculture as smart as possible, we needed to

automate all possible duties. We gathered all services, sensors and other facilities

which could be helpful in our work.

All needed sensors and devices have been added to CAPS in order to make it

fit with our field. Those sensors varies from sensing temperature, moisture, CO

to sensing the amounts of minerals inside the soil itself. This modification was

done only on the software architecture viewpoint, since the hardware components

wont change from a sensor or another.

Farmers in their primitive ways of farming have been using random amounts

of water, fertilizers and pesticides without any previous knowledge about the real

needs. If we want to have smart Agriculture then we need more effective way of

farming. SA-CAPS was found to improve the quality and style of Agriculture. It

aims to develop the agricultural practices in order to adapt to and decrease the

impacts of climate change and at the same time to increase the food production

as possible.

Smart Agriculture aims to reduce water consumption by having better water

retention inside the soil. It aims also to keep the nutrients available most of the

time so an increased organic material accumulation will be gained.

5.1.2 Smart-Agriculture Case Studies

CSA-CAPS is a smart agriculture framework, so we have prepared 3 different

case studies relevant to this domain as follows.

23

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

Figure 5.1: Humidity and Moisture Sensing.

• Humidity and Moisture Sensing

Figure (5.1) shows the SAML model of the CSA-CAPS, simply representing

a partial example of a Smart Agriculture case study. It is important to note

that this figure is actually a screen shot of our real tool CSA-CAPS. As

noted, Figure (5.1) is composed of four main components:

1. The Sense-Moisture component is responsible for sensing the moisture

value from the soil. It includes two modes: a. Normal: when the timer

is on, the moisture sensor starts sensing the moisture value from the soil,

then saves the value in moisture primitive variable. It then uses the unicast

message to send the values to the controller component. The sensor keeps

sensing every 100000 sec. b. Critical : every 1000 sec the sensor starts

sensing the moisture value and saves it in primitive variable then uses the

unicast message to send this value to the controller component if there is

an abnormal value.

24

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

2. The Sense-Rainfall component is responsible for sensing the rainfall. It

includes one mode: a. Rainfall: it contains an interrupt sensor which senses

if there is a rainfall or not and keeps the value in a primitive variable. It

uses a unicast message to send the result to the controller component.

3. The controller component is responsible for making decision to turn the

water pump on or of. It includes one mode: a. Controlling: it receives

the values of the moisture and rainfall in receive messages then stores the

value in primitive variable to use it for making the decision depending on

the condition. For example if the Moisture is more than 3, less than 4.7

and don’t rain, the controller sends a message to the water pump to turn it

on, but if Moisture is more than 3, less than 4.7 and Rainfall, the controller

sends message to the water pump to turn it off. On the other hand, if the

Moisture is less than 3 the controller sends message to the water pump to

keep it off.

4. The water pump component is responsible for turning the pump on or

off depending on the decision from the controller. It include one mode: a.

Water Pump: this mode receives a message from the controller component

then stores it in a primitive variable, the value stored in the primitive

variable specify if the pump is turned on or not. This value will be send to

an actuator, if the value equals true the actuator turn the pump on and if

the value equals false the pump turns off.

• Gathering Results

As shown in Figure (5.2), this case is about reading sensors and storing the

readings in a server. This case study consists of seven components:

The first six components (MoistureSensor, pHSensor, CalciumSensor, Chlo-

rineSensor, HumiditySensor and PotassiumSensor) are the reading sensors

25

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

Figure 5.2: Gathering Results.

26

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

components and the seventh component is the Server component.

These sensors are for sensing the level of moisture, pH, calcium, chlorine,

humidity and potassium levels in the soil. They start sensing every 1000

seconds, and send the sensed values to the server. Then the data can be

accessed through a touchscreen mobile, this approach will help the farmer

to detect the exact level of each measurement.

As shown in the figure, each sensor component contains an initial mode

which consists of a start timer: the first behavioural element starts execut-

ing in the mode, and a sensor which is responsible for the sensing part. The

sensed values are stored in primitive variables and these variables will go

through the unicast send messages to be sent to the Server component.

The Server component is responsible for receiving the values using Receive

Message and storing them in a server, which can be accessed using a touch

screen.

• Detecting Fire

The last case study shown in Figure (5.3) is about detecting Fire in Crops.

Usually if a fire happened in the absence of Human beings, Crops will be

damaged and disasters might happen. This model gives a case where a fire

can be detected using CO, Temperature and Smoke sensors.

This model is formed up of 6 components, as follows and shown in Figure

(5.3):

1. SenseCO: this component is formed of two modes, the first one will

keep sensing as it’s the Normal mode and the CO values are within

acceptable range. This range would be less than 1200. The other

critical mode will sense for 1000 seconds in order to see if the value is

27

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

Figure 5.3: Detecting Fire.

28

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

still larger than 1200. In both cases the values will be sent to the Fire

component.

2. SenseTemp: this component will sense the Temperature and send the

value to the Fire component. Its inner scheme will work the same as

in SenseCO component with the change of conditions. If the sensed

temperature was higher than 60 degrees then it will treat it as critical

situation.

3. SenseSmoke: this component will detect if there is smoke in the air

and send the value to the Fire component. Its inner scheme will work

the same as in SenseCO component with the change of conditions since

any detected smoke would give an indication that there is Fire.

4. Fire: this component will receive CO, Temperature and smoke values,

compare them to critical values in order to see if there is a fire or not.

If the values show that there is a possible fire, a message will be sent

to another component called FireAlarmActuator.

This component also will send all the values of the sensors to the

database in order to store them for later analysis.

5. FireAlarmActuator: this component would receive a message from Fire

component informing it if there is a fire or not. This component will

turn on the Fire alarm based on the sensors values.

6. DataBase: this component would receive a message from the Fire

component including the sensed values in order to store them in the

database for any further analysis. This data can also be accessible by

a mobile application.

29

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

Figure 5.4: Test Model to convert

5.1.3 ThingML output using Acceleo

We have designed a small SAML model to convert it into ThingML so it could

be shown here easily, since our models are very large and their conversion will be

much more than can be carried in these pages.

The model is shown in Figure (5.4), it simply represents a Moisture Sensing

System. This model is composed of two main components: 1. The Moisture

Sensor component is responsible for sensing the moisture value from the soil. It

includes one mode: Moisture Mode: when the timer is on, the moisture sensor

starts sensing the moisture value from the soil, then it saves the value in a moisture

primitive variable. It then uses the unicast message to send the values to the

server component. The sensor starts sensing every 1000 sec. 2. Server: This

component is responsible for storing the moisture values in a server after receiving

them from the moisture component. These values can also be accessed using a

30

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

Figure 5.5: Converted model in ThingML

mobile application.

Figure (5.5) represents the mapping and converting result between the model

shown in Figure(5.4) and the ThingML using our transformation tool (Acceleo

code generator).

The first part represents the thing messages that includes all primitive vari-

ables which are stored in the unicast messages that will be used in the ports and

transition part.

The second part represents:

1.The thing Moisture Sensor that includes two functions: the first function

31

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

reading moisture represents the timer in the CSA-CAPS model. The second func-

tion sense moisture that represents the moisture sensor in CSA-CAPS model.

2.The Moisture Sensor thing includes the provided port which is used to send the

message to the other thing.

Each thing includes the ’statechart init’ that has the name of the initial mode

in each component. It points to the first state that will be executed in every

thing. The statechart includes a state that represents the Mode in the SAML and

it includes the on entry which is responsible for calling the functions sequentially.

The statechart also includes the transitions which represent the links between the

element in the same component in the CSA-CAPS.

The last part represents the thing server which follows the same structure of

the moisture sensor thing.

5.1.4 Generating Languages from ThingML

ThingML code generation framework defines a framework of compilers able to

transform a ThingML model into fully operational code in various languages.

We have stabilized four different languages: Java, Posix C, Arduino C and

Node.JS in order to generate the output ThingML model into the different lan-

guages.

1. Java Language, in Figure (5.6).

2. Posix C Language, in Figure (5.7).

3. Arduino C Language, in Figure (5.8).

4. Node.JS Language, in Figure (5.9).

32

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

Figure 5.6: Generated code in Java

33

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

Figure 5.7: Generated code in Posix C

34

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

Figure 5.8: Generated code in Arduino C

35

5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture

Figure 5.9: Generated code in Node.JS

36

Chapter 6

Conclusions

In summary, CAPS provides a user-friendly geographical interface for modeling

IOT systems and ThingML provides an automatic code generation framework

from models. Therefore, we have used Acceleo in order to provide a mechanism

to convert the SAML model into ThingML text model, so it can be compiled

after that into several different languages.

37

References

[1] H. Muccini and M. Sharaf, “Caps: a tool for architecting situational-aware

cyber-physical systems,” in 2017 IEEE International Conference on Software

Architecture Workshops (ICSAW), pp. 286–289, IEEE, 2017. 4, 5, 6

[2] N. Harrand, F. Fleurey, B. Morin, and K. E. Husa, “Thingml: a language

and code generation framework for heterogeneous targets,” in Proceedings of

the ACM/IEEE 19th International Conference on Model Driven Engineering

Languages and Systems, pp. 125–135, ACM, 2016. 7, 8, 9

[3] E. Coronado, J. Villalobos, B. Bruno, and F. Mastrogiovanni, “Gesture-based

Robot Control: Design Challenges and Evaluation with Humans,” 05 2017.

[4] M. Sharaf, M. Abughazala, H. Muccini, and M. Abusair, “An architecture

framework for modelling and simulation of situational-aware cyber-physical

systems,” in European Conference on Software Architecture, pp. 95–111,

Springer, 2017.

38

	1 Introduction
	1.1 Motivations
	1.2 Context of the Study
	1.3 Objectives and Contributions
	1.4 Overview of the Thesis

	2 CAPS-SAML
	2.1 SAML Meta Model
	2.1.1 SAML behavioral elements

	3 ThingML Architecture
	3.1 ThingML DSL
	3.1.1 ThingML Code generation Framework

	4 Acceleo Code generator
	4.1 Transformation from CAPS-SAML to ThingML
	4.1.1 Structural Concepts of SAML and ThingML
	4.1.2 SAML and ThingML

	5 Experimental Results
	5.1 CSA-CAPS: a special version of CAPS for Smart Agriculture
	5.1.1 CSA-CAPS TOOL
	5.1.2 Smart-Agriculture Case Studies
	5.1.3 ThingML output using Acceleo
	5.1.4 Generating Languages from ThingML

	6 Conclusions
	References

