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 إقرار

 

 : أًا الوْقع أدًاٍ هقذم الزسالة الحي جحول العٌْاى   

 

An Inventory Control Model with (M/M/1) Queueing System 

and Lost Sales 
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An Inventory Control Model with (M/M/1) Queueing System and  

 Lost Sales 

By 

Imad Ramzi  Mohammed Jomah 

Supervised by 

Dr. Mohammed N. Asad 

Abstract 

 In this thesis We investigate M/M/1/∞- queueing systems with inventory 

management, continuous review, and lost sales. Demand is Poisson, service 

times and lead times are exponentially distributed. These distributions are 

used to calculate performance measures of the respective system. 

In case of infinite waiting room the key result is that the limiting 

distributions of the queue length processes are the same as in the classical 

M/M/1/∞-system. 

We compute performance measures and derive optimality conditions under 

different order distributions. Although we can completely determine 

analytically the steady state probabilities for the system. 

We are able to derive functional relations for replenishment order size 

distributions that is in single server system with inventory. A computer 

programs were developed in this thesis to obtain the optimal policy.  
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Chapter One 

Introduction 

Everyone during his daily activities, has to stand in queues, whether in 

banks, government departments, petrol stations, or registry offices in 

universities and so forth. Queues have become common phenomena in 

contemporary societies.  

In general we do not like to wait. But reduction of the waiting time usually 

requires extra investments. To decide whether or not to invest, it is 

important to know the effect of the investment on the waiting time. So we 

need models and techniques to analyse such situations[1]. 

 Queueing Theory is one of the methods of operations research concerned 

with mathematical analysis of the positions that make up the lines waiting 

to find a suitable solution on them, often associated queueing theory with 

inventory models. 

Queueing Theory is mainly seen as a branch of  applied probability theory. 

Its applications are in different fields. For this area there exists a huge body 

of publications, a list of  introductory or more advanced texts on queueing 

theory can be found in the bibliography[38]. Some good introductory books 

are [20], [21], [30]. 
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The importance of inventory management for the quality of service (QoS) 

of today’s service systems is generally accepted and optimization of 

systems in order to maximize QoS systems is therefore an important 

topic[28]. 

There are many different classical definitions of quality that connected with 

inventory availability ([35] p. 232).  QoS characteristics are well 

established. But evaluation of these characteristics usually is done in 

models either from inventory theory or from queueing theory. 

Berman and Sapna ([4-6]) investigate the behavior of service systems with 

an attached inventory. Their approach can be characterized as follows. 

Define a Markovian  system process and then use standard optimization 

methods to find the optimal control strategy of the inventory or at least 

structural properties of the optimal policies[29]. 

All these models assume that the demand, which arrives during the time the 

inventory is zero, is backordered. The models differ with respect to the lead 

time, service time, and arrival distributions, waiting room size, order size 

and reorder policy. In all these models a continuous review for the 

inventory is assumed. 

Mohebbi  searched on a continuous-review inventory system with lost sales 

and variable lead time, and Turning to the impact of growth use of 

computer systems[23].  
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This thesis is devoted to present explicit performance measures for service  

facilities where demand for single item from a single server queueing 

system of M/M/1-type with an attached inventory under continuous review 

and lost sales. 

We analyze single server queueing systems of M/M/1-type with an 

attached inventory. Customers arrive according to a Poisson process with 

intensity λ and each customer, who is served, needs exactly one item from 

the inventory and has an exponentially distributed service time with 

parameter μ. Consequently, the demand rate of the inventory is equal to λ if 

there are no customers waiting in queue otherwise the demand rate is equal 

to the service rate μ. The variable replenishment lead time, which is the 

time span between ordering of materials and receipt of the goods, is 

exponentially distributed with parameter ν. 

The entire order is received into stock at the same time. The type of 

inventory system is defined to be a continuous review system where the 

inventory state is inspected after every single demand event and orders are 

placed every time the inventory on hand reaches a reorder point  r . The on-

hand stock is the stock that is physically on the shelf. The systems under 

investigation differ with respect to the size of replenishment orders and the 

reorder policy. Every system under consideration has the property that no 

customers are allowed to join the queue as long as the inventory is empty. 

This corresponds to the lost sales case of inventory management. However, 

if inventory is at hand, customers are still admitted to enter the waiting 
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room even if the number of customers in the system exceeds the inventory 

on hand [28]. 

The strategy of our investigation in this thesis is as follows: 

We start from the basic concepts of  probability theory and will discuss a 

number of  important distributions which have been found useful for our 

study. Then we  will cover basic concepts of queueing theory and inventory 

theory in chapter 3, we describe the basic queueing model. Then we discuss 

some important fundamental relations for queueing and inventory systems. 

In chapter 4  after we start from the observation of  Berman and Kim 

[2],[3] whom proved that in an exponential system with zero lead times an 

optimal policy does not place an order unless the inventory is empty and a 

certain number of customers are waiting, we discuss and report our results. 

In chapter 5 we give the summary of our main results and conclusions. . 

The objectives of this study are to:  

1- discuss and activate Single server system (M/M/1-∞) with inventory and    

lost sales(definitions and theorems), 

2- find the steady state probability distribution and calculate the most   

important performance measures to our system, 

3- Investigate four examples for the replenishment order size distribution 

for M/M/1-type with an attached inventory, 
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4- compute the optimal total cost and the optimal total profit for each 

replenishment order size distribution, 

5- use the computer with some program that was developed to find the 

analytic value for performance measures of any distribution, 

6- find the optimal policy of our study  by comparing between the four  

    examples, using the computer with some program , graphs and tables.  
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Chapter Two 

Basic Concepts from Probability Theory 

This chapter was devoted to some basic concepts from probability 

theory and discussed a number of  important distributions which have been 

found useful for describing random variables in many applications.  

2.1   Random Variable   

A random variable is a real valued function defined on the sample space. 

Random variables are denoted by capitals, X, Y, etc. The expected value or 

mean of X is denoted by E(X) and its variance by σ
2
(X) where σ(X) is the 

standard deviation of X [1]. 

2.2   Probability, Conditional Probability and Independence 

Let x be a random variable that can assume only a finite number m of 

different values in the set X = {v1,v2,…, vm}. We denote pi as the 

probability that x as assumes the value vi [11]: 

                { }
ii r

xp p v  ,   i = 1,…,m. 

Then the probabilities pi must satisfy the following two conditions: 

0
i

p         and       
1

1
m

i
i

p


 . 

When the random variable x can take values in the continuum, then the 

probability that ( , )x a b :  ( ){ ( , ) }
b

r
a

p x dxx a bp     
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And so  must satisfy the following two conditions: 

( ) 0p x           and      ( ) 1p x dx





 .  

Consider a sample space Ω. Let A be a set in Ω, the probability of A is the 

function on Ω, denoted P (A), We use the notation P (A / B) for the 

conditional probability of A given B, which is the probability of the event 

A given that we know that event B has occurred [11]. 

If events A and B are independent, which means that if one of them occurs, 

the probability of the other to occur is not affected, then [37]: 

                                      P(A ∩ B) = P(A) P(B) . 

2.3  Some Probability Distributions as Models  

    There are many well-known probability distributions which are of great 

importance in the world of probability and all the applications on them , 

such as Poisson, exponential, binomial, uniform, Gaussian and geometric 

distribution. However we will discusses a number of important 

distributions which have been found useful for our study . 

2.3.1 Poisson Distribution  

The probability distribution of a Poisson random variable X  with 

parameter   μ  representing the number of successes occurring in a given 

time interval or a specified region of space is given by the formula [1] :  
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   P(X = n )   =   
!

n

e
n






,      n = 0 , 1 , 2 , … 

For the Poisson distribution we have that : E(X) = σ
2
(X) = μ .    

2.3.2 Geometric Distribution  

The probability distribution of a geometric random variable X with 

parameter p is given by :  

     P(X = n) =   (1−p) p(n-1)         ,                   n = 1 , 2 , … 

For this distribution we have :  

      E(X) =  
1

p

p
,       σ

2
(X) =  

2

(1 )

p

p
.   

2.3.3   Exponential Distribution  

The probability density function f ( t ; μ ) of an exponential distribution 

with parameter  μ  is given by[37]:  

                                         

           f ( t ; μ )  = 
0

0 , 0

t
te

t











                         

The area under the negative exponential distribution curve is determined 

as: 

F(T) =    e – μ t dt   =   [  - e – μ t   ]    =  - e – μ t  +  e 0   = 1 -  e – μ t    .  

 

http://wapedia.mobi/en/Probability_density_function


 

  

9 

It is also described as : F(T) = f(t ≤ T) = 1 -  e – μ t ,Where F(T) is the area 

under the curve to the left of T. Thus 1 - F(T) = f(t ≥ T) = e – μ t . 

If the area under the curve to the right of T. Thus we have the cumulative 

distribution function which given by :  

           F ( t ; μ )  =  
1 , 0

0 , 0

t
te

t





 


,  

For this distribution we have :    E(X) =      1 /  μ,   σ
2
(X) =      1 /  μ2. 

2.3.4 Binomial Distribution  

The binomial distribution is a discrete distribution described by the 

relationship as [30]: 

P(x) =  
x n xn

x p qC


,  

where  E(X) =  np,   σ
2
(X) =  npq,     (1 )

x n xn

x

n

x
p pc

 
  

 
 . 

2.3.5 Discrete Uniform Distribution  

If a random variable has any of n possible values that are 

equally spaced and equally probable, then it has a discrete uniform 

distribution[16]. The probability of any outcome ki  is 1 / n . 

2.4 Memoryless Property of the Exponential Random Variable 

An important property of an exponential random variable X with parameter  

μ  is the memoryless property. 

http://wapedia.mobi/en/Cumulative_distribution_function
http://wapedia.mobi/en/Cumulative_distribution_function
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Memoryless  Property states that '' the future is independent of the past " 

i.e. the fact that it hasn't  happened yet, tell us nothing about how much 

longer it will take before it does happen.  In mathematical terms : 

A variable X is memoryless with  respect  to  t   if  for all s ≥ 0  and  t ≥ 0 ;  

                             P(X > s + t | X > t ) = P(X > s ) =  e – μ s  

Also  P(X > s + t )  =  P(X > s )  P(X > t ) = e – μ s  e – μ t  = e – μ (s+t) .So the 

remaining lifetime of X, given that X is still alive at time t, is again 

exponentially distributed with the same mean 1/ μ [1].  

We often use the memoryless property in the form : P(X <  t + Δt | X > t) = 

1 –  e – μ Δt  [1]. 

2.5 Stochastic Process (Some Definitions) 

A Stochastic Process (SP) is a family of random variables {X(t) | t  T}  

defined on a given probability space, indexed by the time variable t, where 

t varies over an index set T .  

Just as a random variable assigns a number to each outcome s in a sample 

space S, a stochastic process assigns a sample function  x(t , s)   to each 

outcome s, where a sample function x(t , s)  is the time function associated 

with outcome s  of an experiment .  

A stochastic process {X(t) , t ≥ 0} is said to be a Counting Process if X(t) 

represents the total number of ''events " that have occurred up to time t . 
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A counting process X(t) must satisfy the following conditions:  

1.  X(t) ≥ 0 and X(0) = 0, 

2.  X(t) is integer valued, 

3.  If s < t  , X(s) ≤ X(t), 

4.  For s < t , X(t) - X(s) equals the number of events that have occurred on 

the 

     interval (s , t ] [8]. 

This figure shows a sample function of a  counting process 

  

Figure 2.1 A sample function of a  counting process 

One of the most important types of counting processes is the renewal 

process, to clarify this definition consider a sequence of events which 

happen first at time T0 = 0, then keep happening at random intervals, The 

events occur at times Ti (i = 1 , 2 , … ) ,  as figure below: 
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Figure 2.2 Counting process with time 

The random variable Ti  denotes the time at which the i th event occurs, and 

the values ti of  Ti  are called  points of occurrence. Suppose  Zn = Tn – 

Tn-1, then Zn denotes the time between the (n - 1)st and the n th events, 

often called renewal periods. The sequence of ordered random variables { 

Zn , n ≥ 1}  is sometimes called an interarrival process. If all random 

variables Zn are independent and identically distributed, then { Zn , n ≥ 1} 

is called a Renewal process. Renewal processes are useful for modelling 

streams of packets on a wire, jobs to be processed, etc. If a collection of 

random variables Xi all have the same distribution,  and are independent of 

each other, then we say that the Xi are independent and identically 

distributed random variables. This is often expressed as iid. 

A counting process X(t) is said to possess independent increment if the 

number of events which occur in disjoint time intervals are independent . 

That is, for any s > t > u > v > 0, the random variable X(s) - X(t), and the 

random variable X(u) - X(v) are independent . 

 

 



 

  

13 

A counting process X(t) is said to be a Poisson process with rate λ  (> 0) if  

1.  X(0) = 0. 

2.  X(t) has independent increments. 

3.  The number of events in any interval of length t " [ 0 , t ] " has Poisson  

     distribution with mean λt [41] . 

That is , for all s , t > 0 , 

          P{ X( t ) = n } =  

( )

!

( )
nt

n

te





,      n = 0 , 1 , 2 , … 

This formula is the Poisson distribution with parameter λt , for which  

          E(X(t)) =  λt        ;     σ
2
(X(t)) = λt    . 

These three conditions will be henceforth called the Three Poisson process 

conditions .  

By definition, the Poisson process has what is called  stationary 

increments . that is the number of events in the interval (s + h , t + h) has 

the same distribution as the number of events in the interval (s , t) for all t > 

s and h > 0 . In both cases , the distribution is Poisson with parameter λ              

(t -s) .  i.e . "  the random variable X(t + h) - X(s + h) , has the same 

distribution for the random variable X( t ) - X( s ) " .  

Intuitively, if we choose the time interval Δ = t – s   to be arbitrarily small 

(almost a " point " in time) , then the probability of having an occurrence 
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there is the same regardless of where the "point" is . Loosely speaking, 

every point in time has the same chance of having an occurrence . 

Therefore, occurrences are equally likely to happen at all times . This 

property is also called time-homogeneity . 

Clarify by symbols, it is easily verified that  

             P(arrival in (t , t + Δt]) = λΔt + o(Δt),       (Δt → 0 )   

Hence , for small Δt , 

             P(arrival in (t , t +Δt]) ≈  λΔt  . 

So in each small time interval of length Δt the occurence of an arrival is 

equally likely . In other words , Poisson arrivals occur completely random 

in time . 

Another important property of the Poisson process is that the inter-arrival 

times of occurrences is exponentially distributed with parameter λ. This is 

shown by considering  s  to be an occurrence and T the time until the next 

occurrence , noticing that  P( T > t ) =  P( X(t) = 0 ) = e – λt, and recalling 

the properties of independent and stationary increments. as a result, the 

mean interarrival time is given by E[T] = 1 / λ .  

By the memoryless property of the exponential distribution , the time until 

the next occurrence is always exponentially distributed and therefore , at 

any point in time, not necessarily at points of occurrences , the future 

evolution of the Poisson process is independent of the past " The process 
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forgets its past ", and is always probabilistically the same. The Poisson 

process is therefore memoryless. 

                   P(S ≤  t + Δt | S > t) =   P(S ≤ t )      ;            s , t ≥  0      . 

Actually, the independence of the past can be explained also by the Poisson 

process property of independent increments, and the fact that the future 

evolution is probabilistically the same can also be explained by the 

stationary increments property .  

We have shown that in the Poisson process, the interval between successive 

events are independent and identically distributed exponential random 

variables ' iid ' and we also identify the Poisson process as a renewal 

process with exponentially distributed intervals . 

The Poisson process is an extremely useful process for modeling purposes 

in many practical applications, such as, e.g. to model arrival processes for 

queueing models or demand processes for inventory systems. It is 

empirically found that in many circumstances the arising stochastic 

processes can be well approximated by a Poisson process . 

If a counting process X(t) is a Poisson process then , for a small interval Δt, 

we have: 

1.  P(X(Δt) = 0) = 1 -  λΔt + o(Δt)    

2.  P(X(Δt) = 1) = λΔt + o(Δt)      

3.  P(X(Δt) ≥ 2) = o(Δt)  . 
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The above three conditions will henceforth be small interval conditions 

called one at a time. 

There is another very important properties of a Poisson process, such as 

Merging property and Splitting property.  

2.6 Markov Property 

In probability theory and statistics, the terms Markov property refers to a 

property of a stochastic process. A stochastic process has the  Markov 

property if the conditional probability distribution of future states of the 

process depends only upon the present state; that is, given the present, the 

future does not depend on the past. A process with this property is called 

Markov process [21]. 

2.7 Markov Chain 

A Markov chain is a random process with the property that the next state 

depends only on the current state. That describe by a sequence of random 

variables X1 , X2 , X3 , … with the Markov property, namely that, given the 

present state, the future and past are independent. Formally,  

          P( Xn+1 = x | X1, X2, …, Xn )  =   P( Xn+1 = x | Xn ) 

The possible values of Xi from a countable set  S called the state space. 

 

 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Conditional_probability_distribution
http://en.wikipedia.org/wiki/Markov_process
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2.8 Continuous-time Markov Process  

In probability theory, a continuous-time Markov process is a stochastic 

process { X(t) : t ≥ 0 } that satisfies the Markov property and takes values 

from set called the state space; it is the continuous-time version of a 

Markov chain. The Markov property states that at any times s > t > 0, the 

conditional probability distribution of the process at time s given the whole 

history of the process up to and including time t, depends only on the state 

of the process at time t. In effect, the state of the process at time s is 

conditionally independent of the history of the process before time t, given 

the state of the process at time t [25].  

2.9 Transition Probability Matrix 

In mathematics, a stochastic matrix, probability matrix, or transition matrix 

is used to describe the transitions of a Markov chain. It has found use in 

probability theory, statistics and linear algebra, as well as computer 

science. 

There are several different definitions and types of stochastic matrices; 

● A right stochastic matrix is a square matrix each of whose rows 

consists of nonnegative real numbers, with each row summing to 1. 

● A left stochastic matrix is a square matrix whose columns consist 

of nonnegative real numbers whose sum is 1. 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Markov_process
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Markov_property
http://en.wikipedia.org/wiki/State_space
http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Conditional_independence
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Real_number
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● A doubly stochastic matrix where all entries are nonnegative and 

all rows and all columns sum to 1. 

If the state space discrete, the transition probability distribution can be 

represented by a matrix, called the transition matrix, with the (i, j)th 

element of P equal to: 

                        

Since each row of  P sums to one and all elements are non-negative, P is a 

right stochastic matrix. If the Markov chain is time-homogeneous, then the 

transition matrix P is the same after each step, so the k-step transition 

probability can be computed as the k-th power of the transition matrix  P
k
.  

2.10  Stationary Distribution 

Let Xn describe a Markov Chain having state space {1, 2, . . .,N} and 

transition probability P(i, j) from state i to state j. Vector  is called a 

stationary distribution, if elements of the vector  (possibly of infinite 

dimension) are non-negative numbers summing up to one, and if they 

satisfy the following equation: 

                                  

In matrix notation, this can be written as 

                                             =  P. 

Note that matrix notation is most useful for the finite case [17]. 

http://en.wikipedia.org/wiki/Doubly_stochastic_matrix
http://en.wikipedia.org/wiki/Finite_set
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Element_(mathematics)
http://en.wikipedia.org/wiki/Right_stochastic_matrix
http://en.wikipedia.org/wiki/Homogeneous_function
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In other words, the stationary distribution  is a normalized (meaning that 

the sum of its entries is 1) left eigenvector of the transition matrix 

associated with the eigenvalue 1. 

 Throughout the thesis we will assume that unless otherwise specified 

an underlying probability space (Ω,F, P) is given where all random 

variables are defined on. 
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Chapter Three 

 Basic Queueing Models & Inventory Systems 

In this chapter we will cover basic queueing theory concepts and 

inventory systems.We describe the basic queueing model. Then we discuss 

some important fundamental relations for this model. Although we discuss 

the essential concepts of  inventory systems. For this area there exist many 

papers and publications, a list of these or advanced texts on queueing 

theory is found in the references. Some good books on this topic are [20], 

[33]. 

3.1 Terminology 

Customers - independent inputs or entities that arrive at random times to a 

server and wait for some kind of service, then leave. Since queueing theory 

is applied in different fields, also the terms job and task are often used 

instead customer. 

Server - can only service one customer at a time, length of time to provide 

service depends on type of service, customers are served in Particular 

discipline. 

Service Channel -  mechanism by which to provide the required service, 

this may be a person (as a bank teller), or a machine, or a space (airport 

runway) or a team, or other. 
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Service Facility - also called the service center usually consists of a single 

service channel or multiple channels. The service center is often named 

processor or machine. 

Service Capacity - there may be a single server or a group of servers 

helping the customers. 

Queue - customers that have arrived at server but are waiting for their 

service to start are in the queue. 

Queue Length at time t - number of customers in the queue at time t. 

Queue Discipline -  is the order or manner in which customers from the 

queue are selected for service. 

Service Time - the time required to provide the service from the arrival of 

the customer to complete the requested service. 

Waiting Time - for a given customer, how long that customer has to wait 

between arriving at the server and when the server actually starts the 

service. 

Patient Customer -  If a customer, on arriving at the service system stays 

in the system until served, no matter how much he has to wait for service. 
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3.2 Basic Queueing Model   

The subject of queueing theory can be described as follows: consider a 

service centre and a population of customers, which at some times enter the 

service centre in order to obtain service. It is often the case that the service 

centre can only serve a limited number of customers. If a new customer 

arrives and the service is exhausted, he enters a waiting line and waits until 

the service facility becomes available. So we can identify three main 

elements of a service centre : a population of customers, the service facility 

and the waiting line. Also within the scope of queueing theory is the case 

where several service centres are arranged in a network and a single 

customer can walk through this network at a specific path, visiting several 

service centres. As a simple example of a service centre consider an airline 

counter: passengers are expected to check in, before they can enter the 

plane. The check-in is usually done by a single employee, however, there 

are often multiple passengers. A newly arriving and friendly passenger 

proceeds directly to the end of the queue, if the service facility (the 

employee) is busy[38]. 

The basic queueing model is shown in figure 3.1. 
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Figure 3.1: Components of a basic queueing process 

Throughout this chapter there are some basic components in every queuing 

system which they are discussed next. 

3.3 Basic Components of a Queueing Model  

3.3.1 Input Source (calling population): These are potential customers of 

the system. The rate at which customers arrive at the service facility is 

determined by the arrival process. An input source is characterized by[12]: 

a)   Size of  the Calling Population  

    The size represents the total number of potential customers who will 

require service.  
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According to source 

The source of customers can be finite or infinite. For example, all people of 

a city or state (and others) could be the potential customers at a 

supermarket. The number of people being very large, it can be taken to be 

infinite. Whereas there are many situations in business and industrial 

conditions where we cannot consider the population to be infinite—it is 

finite. 

According to numbers 

The customers may arrive for service individually or in groups (in batches). 

Single arrivals are illustrated by patients visiting a doctor, students reaching 

at a library counter etc. On the other hand, families visiting restaurants, 

ships discharging cargo at a dock are examples of bulk, or batch arrivals. 

According to time 

Customers arrive in the system at a service facility according to some 

known schedule (for example one patient every 15 minutes or a candidate 

for interview every half hour) or else they arrive randomly. Arrivals are 

considered random when they are independent of one another and their 

occurrence cannot be predicted exactly. The queuing models wherein 

customers’ arrival times are known with certainty are categorized as 

deterministic models. (insofar as this characteristic is concerned) and are 

easier to handle. On the other hand, a substantial majority of the queuing 
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models are based on the premise that the customers enter the system 

stochastically, at random points in time.  

Because the calculations are far easier for the infinite case, this assumption 

often is made even when the actual size is some relatively large finite 

number, and it should be taken to be the implicit assumption for any 

queueing model that does not state otherwise. The finite case is more 

difficult analytically because the number of customers in the queueing 

system affects the number of potential customers outside the system at any 

time. However, the finite assumption must be made if the rate at which the 

input source generates new customers is significantly affected by the 

number of customers in the queueing system[20]. 

Often most queueing models assume that the customers population is of 

infinite size. 

b)   Arrival Pattern  

Means the mechanism of the arrival of customers to the system. In view of  

the random nature of this process, making it difficult to predict accurately, 

it is resorting to probability distributions for this purpose. So we usually 

assume that the inter-arrival times are independent and have a common 

distribution (i.e. iid random variables). In many practical situations 

customers arrive according to a Poisson stream (i.e. exponential inter-

arrival times). 
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c)   The Behaviour of Customers  

     Customers may be patient and willing to wait (for a long time). Or 

customers may be impatient and leave after a while. For example, in call 

centres, customers will hang up when they have to wait too long before an 

operator is available, and they possibly try again after a while[1]. 

Now, Let us see some interesting observations of human behaviour in 

queues : 

• Balking - Some customers even before joining the queue get discouraged 

by seeing the number of customers already in service system or estimating 

the excessive waiting time for desired service, decide to return for service 

at a later time. In queuing theory this is known as balking. 

• Reneging - customers after joining the queue, wait for sometime and 

leave the service system due to intolerable delay, so they renege. For 

example, a customer who has just arrived at a grocery store and finds that 

the salesmen are busy in serving the customers already in the system, will 

either wait for service till his patience is exhausted or estimates that his 

waiting time may be excessive and so leaves immediately to seek service 

elsewhere. 

• Jockeying - Customers who switch from one queue to another hoping to 

receive service more quickly are said to be jockeying [12]. 
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Often most queueing models assume that the customers will join to waiting 

lines and do not leave until they are given the required service. 

3.3.2 Queue(waiting line): a queue is characterized by the maximum 

permissible number that it can contain to stand. Thus there may be a single 

queue or multiple queues according to whether this number of input is 

infinite or finite.  

In the waiting room there can be limitations with respect to the number of 

customers in the system. This is determined by  length (or size) of the 

queue which depends upon the operational situation such as: waiting room 

(physical) space, legal restrictions and attitude of the customers. 

The assumption of an infinite queue is the standard one for most queueing 

models , even for situations where there actually is a(relatively large) finite 

upper bound on the permissible number of customers, because dealing with 

such an upper bound would be a complicating  factor in the analysis. 

However, for queueing systems where this upper bound is small enough 

that it actually would be reached with some frequency, it becomes 

necessary to assume a finite queue [20].  

There are a number of ways in which customers in the queue are served 

(queue disciplines). Some of these are [30] , [38]:  
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FCFS: customers are serviced on the first-come, first-served, that mans a 

customer that finds the service center busy goes to the end of the queue. 

LIFO: (Last in, First out): a customer that finds the service center busy 

proceeds immediately to the head of the queue. She will be served next, 

given that no further customers arrive. 

Random Service: the customers in the queue are served in random order. 

Round Robin: every customer gets a time slice. If her service is not 

completed, she will re-enter the queue. 

Priority Disciplines: every customer has a (static or dynamic) priority, the 

server selects always the customers with the highest priority. This scheme 

can use preemption or not. 

Some books and papers give the symbol (SIRO) for the order discipline:  

service in random order. 

There exists another important queue discipline which is  processor sharing 

(in computers that equally divide their processing power over all jobs in the 

system). 

In our thesis for the queuing models that we shall consider, the assumption 

would be that the customers are serviced on the first-come, first-served 

basis (FCFS). 
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3.3.3  Service Facility: the service mechanism consists of one or more 

service channels. Service systems are usually classified in terms of their 

number of channels, or numbers of servers. And can be a channel service of 

a single stage or multistage. A service facility may include one person or 

several people operating as a team. Most elementary models assume one 

service facility with either one or a finite number of servers.  

There are three aspects of a service facility: the configuration of the service 

facility, the service rate and the service time. Here we spell out; 

a) Configuration of the service system : In the Configuration of the service 

system the first stage is the simplest, while the last stage is more 

complicated [12].  

i) Single Server – Single Queue - The models that involve one queue – 

one service station facility are called single server models where customer 

waits till the service point is ready to take him for servicing. Students 

arriving at a library counter is an example of a single server facility [10]. 

 

Figure 3.2: Single Server – Single Queue Model 
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ii)   Single Server – Several Queues – In this type of facility there are 

several queues and the customer may join any one of these but there is only 

one service channel. 

 

Figure 3.3: Single Server – Several Queue Model 

iii)  Several (Parallel) Servers – Single Queue – In this type of model 

there is more than one server and each server provides the same type of 

facility. The customers wait in a single queue until one of the service 

channels is ready to take them in for servicing. 
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Figure 3.4: Several, Parallel Servers – Single Queue Model 

iv)   Several Servers – Several Queues – This type of model consists of 

several servers where each of the servers has a different queue. Different 

cash counters in an electricity office where the customers can make 

payment in respect of their electricity bills provide an example of this type 

of model. 

                                                   

 

Figure 3.5: Seveal, Parallel servers – Several Queues Model 
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v)   Service Facilities in a Series – In this, a customer enters the first 

station and gets a portion of service and then moves on to the next station, 

gets some service and then again moves on to the next station. …. and so 

on, and finally leaves the system, having received the complete service. For 

example, machining of a certain steel item may consist of cutting, turning, 

knurling, drilling, grinding, and packaging operations, each of which is 

performed by a single server in a series. 

 

 

Figure 3.6: Multiple Servers in a Series 

 

b) The service rate  

The service rate describes the number of customers serviced during a 

particular time period. For example, In the clinic, providing the service on 

an average 4  customers in an hour, the service rate would be expressed as 

4 customers/hour and service time would be equal to 15 minutes/customer. 
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c) The service time 

Generally, we consider the service time only. The service time indicates the 

time required to provide the service from the arrival of the customer to 

complete the requested service.  

It is clear that in many cases we are having difficulty to determine this time 

for sure, here also show the random nature to determine the time of service, 

This requires resorting to the use of probability distributions to estimate the 

times of service, whether customers or channels that provide the service. 

Often assume that all models of queues having the same distribution for all 

channels of service. 

Usually we assume that the service times are independent and identically 

distributed, and that they are independent of the inter-arrival times. For 

example, the service times can be deterministic or exponentially 

distributed. It can also occur that service times are dependent of the queue 

length. For example, the processing rates of the machines in a production 

system can be increased once the number of jobs waiting to be processed 

becomes too large [1]. 

In practice, the most widely used distribution of service time is exponential 

distribution. In our thesis, the model (Single server) will be used 

distribution of service time is exponential distribution. 
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Remark: we obtain that the Characteristics of queuing systems :  

Arrival Process: the distribution that determines how the tasks arrives in the 

system. 

Service Process: the distribution that determines the task processing time 

Number of Servers: total number of servers available to process the tasks 

3.4 Kendall's Notation   

A commonly used shorthand notation, called Kendall notation, for such 

single queue models describes the arrival process, service distribution, the 

number of servers and the buffer size (waiting room) as follows[41]: 

  arrival process / service distribution / number of servers / waiting room  

Based on the above Characteristics, queuing systems can be classified by 

the following convention (by symbols separated by slashes):  

A / B / m / N - S 

where A denotes the distribution of the inter-arrival time, B denotes the 

distribution of the service times, m denotes the number of servers, N 

denotes the maximum size of the waiting line in the finite, case (if N = ∞ 

then this letter is omitted) and the optional S denotes the service discipline 

used (FCFS, LIFO and so forth). If S is omitted the service discipline is 

always FCFS. For A and B the following abbreviations are very 

common[38]: 
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-   M (Markov): this denotes the exponential distribution with A(t) = 1 –  e 

– λt  

and a(t) = λ e – λt, where λ > 0 is a parameter. The name M stems from the 

fact that the exponential distribution is the only continuous distribution 

with the Marko property, i.e. it is memoryless. 

-   D (Deterministic): all values from a deterministic ―distribution‖ are 

constant, 

    i.e. have the same value. 

-   Ek (Erlanger-k): Erlangen distribution. 

-   Hk (Hyper-k): hyper exponential distribution. 

-   G (General): general distribution, not further specified[33].  

As an example applied to Kendall's notation, a system with exponential 

inter-arrival and service times, one server and having waiting room only for 

N customers (including the one in service) is abbreviated by the four letter 

code:  

M/M/1 - N. 

M/M/1 is the most simple queueing system (with FCFS service) which can 

be described as follows: we have a single server, an infinite waiting line, 

the customer inter-arrival times are iid and exponentially (Poisson arrival) 

distributed with some parameter λ and the customer service times are also 
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iid and exponentially distributed with some parameter μ. This is of our 

thesis model. 

3.5   Steady State Solutions 

When a service centre is started it progresses through a number of changes. 

However, it attains stability after some time. Before the start of the service 

operations it is very much influenced by the initial conditions (number of 

customers in the system) and the elapsed time. This period of transition is 

termed as transient-state. However, after sufficient time has passed, the 

system becomes independent of the initial conditions and of the elapsed 

time (except under very special conditions) and enters a steady- state 

condition.  

We are mainly interested in steady state solutions, i.e. where the system 

after a long running time tends to reach a stable state, e.g. where the 

distribution of customers in the system does not change (limiting or 

stationary distribution). This is well to be distinguished from transient 

solutions, where the short-term system response to different events is 

investigated (e.g. a batch arrival) [38]. 
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3.6    Utilization  

An important measure for queueing systems performance is the utilization, 

denoted ρ . It is the proportion of time that a server is busy on average. In 

many systems, the server is paid for its time regardless if it is busy or not. 

If you have two identical servers and one is busy 0.4 of the time and the 

other 0.6. Then the utilization is 0.5. We always have that 0 ≤ ρ ≤1. If we 

consider an M/M/∞ queue (Poisson arrivals, exponentially distributed 

service times and infinite servers) and the arrival rate is finite, the 

utilization is zero because the mean number of busy servers is finite and the 

mean number of idle servers is infinite [41]. 

Consider a G/G/1 queue (that is, a single-server queue with arbitrary arrival 

process and arbitrary service time distribution, with infinite buffer). Let S 

be a random variable representing the service time and let the mean service 

time E[S] = 1/μ, i.e., μ denotes the service rate. Further, let λ be the mean 

arrival rate (1/ λ is the expected inter-arrival time and 1/ μ is the expected 

service time). Assume that μ > λ  so that the queue is stable, namely that it 

will not keep growing forever, and that whenever it is busy, eventually it 

will reach the state where the system is empty.  

For a stable G/G/1 queue, we have that that ρ = λ / μ. To show the latter let 

L be a very long period of time. The average number of customers (amount 

of work) arrived within time period L is: λL. The average number of 

customers (amount of work) that has been served during time period L is 
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equal to μ ρL (ρ is utilization factor).  Since L is large and the queue is 

stable, these two values are equal. Thus, μ ρL = λL. Hence, ρ = λ / μ [24]. 

The amount of work arriving per unit time equals ρ = λ E[S]. The server 

can handle 1 unit work per unit time. To avoid that the queue eventually 

grows to infinity, we have to require that ρ < 1. We note that the mean 

queue length also explodes when ρ = 1, except in the D/D/1 system, i.e., the 

system with no randomness at all. If ρ < 1, then ρ is called the occupation 

rate or server utilization or traffic intensity, because it is the fraction of 

time the server is working [1]. 

Often, we are interested in the distribution of the number (of customers, 

jobs or packets) in the system. Consider a G/G/1 queue and let p
n
 be the 

probability that there are n in the system. Having the utilization, we can 

readily obtain p
0
 the probability that the G/G/1 queue is empty. 

Specifically,  

p
0
 = 1 – ρ  = 1  -  λ / μ 

If we have a multi-server queue, e.g. G/G/c, then the utilization will be 

defined as the overall average utilization of the individual servers. That is, 

each server will have its own utilization defined by the proportion of time it 

is busy, and the utilization of the entire multi-server system will be the 

average of the individual server utilization [41].  
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When  λ
n
 (mean arrival rate of new customers when n customers are in 

system)  is a constant for all n, this constant is denoted by λ. When the 

mean service rate per busy server μ
n
 (also represents combined rate at 

which all busy servers achieve service completions) is a constant for all n ≥ 

1, this constant is denoted by μ. In this case, μ
n
 = cμ when n ≥ c, i.e., when 

all c servers are busy.  

In G/G/c, the queue will grow to infinity if λ ≥ cμ, except if it's a D/D/n 

queue. And we have to require that ρ < c. Here the occupation rate 

(utilization) per server ρ  = λ / cμ. where ρ is the expected fraction of time 

the individual servers are busy. 

3.7  Performance Measures 

Relevant performance measures in the analysis of queueing models are: 

• The distribution of the waiting time and the sojourn time of a customer. 

The sojourn time is the waiting time plus the service time. 

• The distribution of the number of customers in the system (including or 

excluding the one or those in service). 

• The distribution of the amount of work in the system. That is the sum of 

service times of the waiting customers and the residual service time of the 

customer in service. 

• The distribution of the busy period of the server. This is a period of time 

during which the server is working continuously.  



 

  

40 

In particular, we are interested in mean performance measures, such as the 

mean waiting time and the mean sojourn time [1]. 

Some of the performance measures (operating characteristics of any 

queuing system) in general interest for the evaluation of the performance of 

an existing queuing system, and to design a new system in terms of the 

level of service. 

Important Notations and Terminology: 

The notations used in the analysis of a queuing system are as follows: 

n    = number of customers in the system (waiting and in service). Also 

called  

         state of the system. 

         Queue length = n  -  number of customers being served. 

P
n 

 = probability of n customers in the system.  

P
n
(t) = probability that exactly n customers are in the system at time t. 

           Given number at time 0.  

N(t)  = number of customers in the system at time t (t ≥ 0). 

λ  = expected customer arrival rate of new customers when n customers are 

in system or average number of arrivals per unit of time in the queuing 

system. 
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μ  = expected service rate or average number of customers served per unit 

time  at the place of service. 

ρ  = server utilization factor (the expected fraction of time for which server 

is  busy). 

s = number of service facilities (parallel channels) in the system. 

N = maximum number of customers allowed in the queueing system. 

L
s
 = expected number of customers in queueing system (waiting and in 

       service). 

L
q
 = expected number of customers in the queue (queue length). 

W
s
 = expected waiting time in the system (waiting and in service). 

W
q
 = expected waiting time in the queue. 

departure rate: the mean number of customers whose processing is 

completed in 

a single unit of time. 

Response Time T: also known as the sojourn time, is the total time that a         

customers spends in the queueing system. 

             Response time = waiting time  +  sojourn time . 
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In this chapter an analysis of the queuing system will be discussed under 

steady-state conditions.  

In some cases when arrival rate of customers in the system is more than the 

service rate, then a steady - state cannot be reached regardless of the length 

of the elapsed time [13]. 

3.8   Little’s Law   

Little’s law is a general result holding even for G/G/1-Queues; it also holds 

with other service disciplines than FIFO. It establishes a relationship 

between the average number of customers in the system, the mean arrival 

rate and the mean customer response time (time between entering and 

leaving the system after getting service) in the steady state. The following 

derivation is from. 

Assume that  λ
n 

is a constant λ for all n. It has been proven that in a steady-

state queueing process[22],  

                                                          L = λ W. 

Furthermore, the same proof also shows that L
q
 =  λ W

q
 . Also  L

s
 =  λ W

s
 . 

If  λ
n
 are not equal, then λ can be replaced in these equations by λ', the 

average arrival rate over the long run. The proof found in [32]. 

 

 



 

  

43 

3.9 Relationships Among Performance Measures  

By definition of various measures of performance (operating 

characteristic), we have  

         ( )E n    
0s n n
npL




     ,  ( )E n s   ( )q n s n

n s pL



  . 

Some general relationships between the average system characteristics true 

for all queuing models are as follows[13]: 

(i) Expected number of customers in the system is equal to the expected 

number of customers in queue plus in service. 

L
s
 = L

q
  + Expected number of customers in service 

                           = L
q
  + λ /μ  

The value of expected number of customers in service, should not be 

confused with the number of service facilities but it is equal to ρ for all 

queuing models except finite queue case. 

(ii) Expected waiting time of the customer in the system is equal to the 

average waiting time in queue plus the expected service time. 

                    W
s
 = W

q
 +  1 / μ 
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(iii) Expected number of customers in the system is equal to the average 

number of arrivals per unit of time multiplied by the average time spent by 

the customer in the system.  

L
s
 =  λ W

s
  Or  W

s
 = L

s
 /  λ  . 

 

 (iv) similarly,                             L
q
 =  λ W

q
  Or  W

q
 = L

q
 /  λ  . 

 

For applying formula (iii) and (iv) for system with finite queue, instead of 

using λ, its effective value λ ( 1-P
N

) must be used. 

 (v) The probability, P
n
 of n customers in the queuing system at any time 

can be used to determine all the basic measures of performance in the 

following order. 

0n npLs n

   

W
s
 = L

s
 /  λ  ,        W

q
 = W

s
 – 1 / μ ,          L

q
 =  λ W

q
 . 

3.10 PASTA  Property  

For queueing systems with Poisson arrivals, so for M/./. systems, the very 

special property holds that arriving customers find on average the same 

situation in the queueing system as an outside observer looking at the 

system at an arbitrary point in time. More precisely, the fraction of 

customers finding on arrival the system in some state A is exactly the same 
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as the fraction of time the system is in state A. This property is only true for 

Poisson arrivals[1].  

In general this property is not true. For instance, in a D/D/1 system which 

is empty at time 0, and with arrivals at 1, 3, 5, … and service times 1, every 

arriving customer finds an empty system, whereas the fraction of time the 

system is empty is 1/2. 

This property of Poisson arrivals is called PASTA property, which is the 

acrynom  for Poisson Arrivals See Time Averages. Intuitively, this 

property can be explained by the fact that Poisson arrivals occur completely 

random in time. A rigorous proof of the PASTA property can be found 

in[39]. 

3.11 Inventory Control System 

An inventory control system is a process for managing and locating objects 

or materials. In common usage, the term may also refer to just the software 

components [14].  

3.12  General Inventory Model  

The inventory problem involves placing and receiving orders of given sizes 

periodically. From this standpoint, an inventory policy answers two 

questions: 

1. How much to order? 

2. When to order? 

http://en.wikipedia.org/wiki/Inventory_management_software
http://en.wikipedia.org/wiki/Inventory_management_software
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The basis for answering these questions is the minimization of the 

following inventory cost function: 

( Total inventory cost) = (Purchasing cost) + (setup cost) + (Holding cost) 

                                    +    (Shortage cost) 

1. Purchasing cost is the price per unit of an inventory item. At times the 

item is offered at a discount if the order size exceeds a certain amount, 

which is a factor in deciding how much to order. 

2. Setup cost represents the fixed charge incurred when an order is placed 

regardless of its size. Increasing the order quantity reduces the setup cost 

associated with a given demand, but will increase the average inventory 

level and hence the cost of tied capital. On the other hand, reducing the 

order size increases the frequency of ordering and the associated setup cost. 

An inventory cost model balances the two costs. 

3. Holding cost represents the cost of maintaining inventory in stock. It 

includes the interest on capital and the cost of storage, maintenance, and 

handling. 

4. Shortage cost is the penalty incurred when we run out of stock. It 

includes potentialloss of income and the more subjective cost of loss in 

customer's goodwill. 
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 An inventory system may be based on periodic review (e.g., ordering 

every week or every month), in which new orders are placed at the start of 

each period. Alternatively, the system may be based on continuous review, 

where a new order is placed when the inventory level drops to a certain 

level, called the reorder point. An example of periodic review can occur in 

a gas station where new deliveries arrive at the start of each week. 

Continuous review occurs in retail stores where items (such as cosmetics) 

are replenished only when their level on the shelf drops to a certain level 

[33]. 

3.13 Lost Sales And A Backorder   

The typical way service level is measured in industry is the demand filled 

over total demand. Unfilled demand becomes a backorder or lost sales. 

Lost sales demand is often not known or measured by the management[24]. 

When a demand occurs and the item is out of stock, often the customer will 

not wait for the stock to be replenished and thereby the demand is a lost 

sale (and not a backorder) [24]. 

The lost sales situation arises e.g. in many retail establishments [9], where 

the intense competition allows customers to choose another brand or to go 

to another store. This can be considered as a typical situation for being 

described by a pure inventory model. But there are other areas of 

applications, where lost sales models are appropriate as well. E.g. these 
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models apply to cases such as essential spare parts where one must go to 

the outside of the normal ordering system when a stockout occurs [7].  

The essential spare part problem is central for many repair procedures, 

where broken down units arrive at a repair station, queue for repair, and are 

repaired by substituting a failed part by a spare part from the inventory. A 

similar problem arises in production processes where rough material items 

are needed to let the production process run. Both of these latter problems 

are usually modeled using pure service systems, but these queueing 

theoretical models neglect the inventory management. Lost sales are in 

these contexts known as losses of customers. There is a huge amount of 

literature on loss systems, especially in connection with teletraffic and 

communication systems, where losses usually occur due to limited server 

capacity or finite buffer space. But there is another occurrence of losses due 

to balking or reneging of impatient customers. However, only in the 

essential spare part problem of repair facilities a sort of inventory at hand is 

considered [28]. 

Lost sales in inventory theory and losses of customers in queueing theory 

are technical terms for similar, even often the same, events in real systems. 

The difference is set by the appropriate model selection done by the 

investigators: Either emphasizing the inventory management point of view 

or emphasizing the service system’s point of view, both cases mostly 

neglect the alternative aspect [28]. 

 



 

  

49 

3.14 Quality of Service ( Q o S ) 

In the field of computer networking and other packet-switched 

telecommunication networks, the traffic engineering term quality of service 

(Q o S)  refers to resource reservation control mechanisms rather than the 

achieved service quality. Quality of service is the ability to provide 

different priority to different applications, users, or data flows, or to 

guarantee a certain level of performance to a data flow [15]. 

3.15 Lead Time  

Lead time is the time interval between the initiation and the completion of a 

production process. Or the time that it would take a supplier to delivery 

goods after receipt of order.   

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Packet-switched
http://en.wikipedia.org/wiki/Traffic_engineering_(telecommunications)
http://en.wikipedia.org/wiki/Flow_(computer_networking)
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Chapter Four 

Single Server System with Inventory and Lost Sales  

4.1 Introduction  

This chapter is devoted to present explicit performance measures for 

service  facilities where demand for single items from single server 

queueing systems of M/M/1-type with an attached inventory under 

continuous review and lost sales. We will rely on recently research and 

papers written on this subject as [28], [29]. We investigate four examples 

for the replenishment order size distribution for M/M/1-type with an 

attached inventory. For each of our examples we compute the steady state 

probability distribution and calculate the most important performance 

measures. Then we discuss the impact of  its parameters on cost structure 

as well as availability measures and service grades for the inventory to 

directly enable cost optimization in an integrated model. We will explain 

this by tables and graphs to support our results through computerized 

programs. 

4.2  Single Server System with Inventory and Lost Sales  

We analyze single server queueing systems of M/M/1-type with an 

attached inventory. Customers arrive according to a Poisson process with 

intensity λ and each customer, who is served, needs exactly one item from 

the inventory and has an exponentially distributed service time with 

parameter μ. Consequently, the demand rate of the inventory is equal to λ if 
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there are no customers waiting in queue otherwise the demand rate is equal 

to the service rate μ. The variable replenishment lead time, which is the 

time span between ordering of materials and receipt of the goods, is 

exponentially distributed with parameter ν. The entire order is received into 

stock at the same time. The type of inventory system is defined to be a 

continuous review system where the inventory state is inspected after every 

single demand event and orders are placed every time the inventory on 

hand reaches a reorder point  r . The on-hand stock is the stock that is 

physically on the shelf. The systems under investigation differ with respect 

to the size of replenishment orders and the reorder policy. Every system 

under consideration has the property that no customers are allowed to join 

the queue as long as the inventory is empty. This corresponds to the lost 

sales case of inventory management. However, if inventory is at hand, 

customers are still admitted to enter the waiting room even if the number of 

customers in the system exceeds the inventory on hand [28]. 

Let Z = ((G(t), I (t)), t ≥ 0) denote the joint queue length and inventory 

process.   

Where  G(t) denote the number of customers present at the server at time t 

≥ 0, either waiting or in service, and I(t) denote the on-hand inventory at 

time t ≥ 0. The state space of Z is EZ = {(n, k) : n ∈ № , k ∈ {0, ..., M}}, 

where M is the maximal size of the inventory, which depends on the order 

policy, see Definition 4.2.3.We shall henceforth refer to Z as the queueing-

inventory process. 
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4.2.1 Definition (The General Queueing-Inventory System) 

At a service system with an attached inventory undistinguishable customers 

arrive one by one and require service. There is a single server with 

unlimited waiting room under first come, first served (FCFS) regime and 

an inventory with maximal capacity of M (identical) items. Each customer 

needs exactly one item from the inventory for service, and the on-hand 

inventory decreases by one at the moment of service completion. If the 

server is ready to serve a customer which is at the head of the line and there 

is no item of inventory this service starts only at the time instant (and then 

immediately) when the next replenishment arrives at the inventory. 

Customers arriving during a period when the server waits for the 

replenishment order are rejected and lost to the system (―lost sales‖) [28]. 

A served customer departs from the system at once and the associated item 

is removed from the inventory at this time instant as well. If there is 

another customer in the line and at least one further item in the inventory, 

the next service starts immediately [29]. 

4.2.2 Definition (Assumption on the Random Behavior of the System ) 

For the service system with inventory management from Definition 4.2.1 

we assume: 

Customers are of stochastically identical behavior. To the server there is a 

Poisson-λ-arrival stream, λ > 0. Customers request an amount of service 

time which is exponentially distributed with mean 1. Service is provided 
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with intensity μ > 0 [28]. The replenishment lead time is exponentially 

distributed with parameter ν > 0. 

4.2.3 Definition (Reorder Policy )  

From Definition 4.2.1 we consider the following policy for Single server 

system with inventory and lost sales : 

If the inventory is depleted after the service of a customer is completed, 

then immediately a replenishment order is triggered. 

The decision of the order size may be randomized according to a discrete 

probability density function p on the integers {1, 2, . . . , M}, where M is 

the maximal capacity of  the inventory.  So the size of a replenishment 

order is k with probability pK , where pK is a discrete probability function . 

Let F p denoted to the discrete distribution function, then F p := 1 – F p its 

tail distribution function F p. We abbreviate the probability that the size of a 

replenishment order is at least  k units by qk, i.e. qk = F p (k ) = 
M

h k
hP

 . 

The mean order size is denoted by:  

                                          P = 
1

.
M

k
kpk

 . 

Where service times and inter-arrival times are independent and 

independent of the order size and lead times. All constitute an independent 

family of random variables. 

Service system which has described by the previous definitions is the lost 

sale case of classical inventory management where customer demand is not 
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backordered but lost in case there is no inventory on hand [35]. We recall  

the backordered case in periphrastic discussion at the end of this chapter.   

4.2.4 Definition ( M / M / 1 / ∞ Queueing System with Inventory )  

A service system with inventory according to Definition 4.2.1, with the 

stochastic assumptions of  Definition 4.2.2, and under some prescribed 

policy from Definition 4.2.3, is called an M/M/1/∞ system with inventory 

management under that policy. 

4.2.5 Theorem ( Joint Queueing-Inventory Process) 

For the M/M/1/∞ system with inventory according to Definition 4.2.4 the 

stochastic queueing-inventory process Z from Definition 4.2.1 is a 

homogeneous Markov process . Z is ergodic if and only if λ < μ. If Z is 

ergodic then it has a unique limiting and stationary distribution of product 

form: 

π(n, k) = K-1  
n



 
 
 

 qk    with n  N , 1 ≤ k ≤ M,                                       (1) 

π(n, k) = K-1  
n



 
 
 

  



    with n  N , k=0                                                 (2) 

and with normalization constant  K = 


 
 ( P + 




 ).                     (3) 

We note further that the normalization constant K factorizes in the 

normalization constant for the marginal queue length and for the inventory 

process as : 
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 K = KX · KY   with       KX   = 


 
       and     KY  =  P + 




  . 

The theorem 4.2.4 and proof was found in [28, p58]. Note that for   =   

the inventory is replenished instantaneously and the inventory position 0 is 

left immediately. Therefore, the stationary distribution has support N × {1, 

2, . . . , M} and is given by (1) with K = 


 
  P .  

The strong restriction in our present model which described above 

(queueing  is that we regulate reordering and admission of the customers 

only  via the inventory level. Customers are only rejected (and lost), when 

the physical inventory level reaches zero [3]. A more sophisticated policy 

would include into the decision procedure information on the actual queue 

length at the feasible decision instant. The gain of posing our restriction on 

the reorder policy is the result of Theorem 4.2.5 [28]. 

There is a policy specified which determines at each decision point whether 

a replenishment order is placed or not, and how many items are ordered. 

We assume that there is always at most one outstanding order. 

We will first carry out the calculations for the system with arbitrary random 

order size out of {1, 2, . . . , M} and reorder point 0 then show the 

important measures of system performance. And we compute the steady 

state of the system for standard simple to implement policies, and then use 

the  equilibrium probabilities to minimize asymptotic costs or maximize the 

overall profit = (revenue − costs).  
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4.2.6 Measures of System Performance  

We are interested in stationary characteristics of the queueing-inventory 

system. These are long-run characteristics as well. Note that stationarity is 

always assumed in the classical inventory theory as well. Having 

determined the stationary distribution, we can compute several measures of 

operating characteristics for the system explicitly. 

 The steady state on-hand inventory distribution of Y = (Y (t), t ≥ 0) 

is: 

P ( Y = k ) = 

1

1

,

,

0

1

Y

Y k

for kK

for k MqK
















 

                           (4)              

Here we have denoted by Y a random variable distributed like the 

stationary inventory distribution. 

 The marginal steady state queue length distribution of X = (X(t), t ≥ 

0) is equal to the steady state queue length distribution in the 

classical M / M / 1 / ∞ - FCFS system with the same parameters λ 

and μ. Therefore the mean number of customers in system is:  

0L  =  


 
. 

         And so that L  is the same as in the classical M/M/1/∞-system with  

          parameters λ, μ. Where L  is the mean number of the waiting 

customers, 
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          L  = 
2

( )


  
. 

 The stationary average on-hand inventory position is given by: 

1

1 0 1
( , )

M M

Yk n k k
I k n k kqK

 

  
                            (5)  

 The mean number of replenishments per time unit(reorder rate) is: 

R

p


 






.                                                                    (6) 

 The mean number of customers arriving per unit time is: 

A R

p
p

p

 
   

 


.                                                   (7) 

 The β-service level is a quantity-oriented service measure describing 

the proportion of demands that are met from stock without 

accounting for the duration of a stockout. β-service levels are widely 

used in practice [34]. 

         The definition of the β-service level is standard and can be found in  

          [27] and [31]. 

          β-service level = 1
p



 



.                                       (8) 

 The average number of lost sales incurred per unit of time is given 

by: 

2

LS
p


 




.                                                                   (9) 
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 The expected number of lost sales per cycle is given by: 

c
R

LS
LS





  .                                                                    (10)  

 From little's formula the customers mean sojourn time 
0w  is: 

0w  = 0

( )
A

pL
p

 

  





.                                                  (11) 

 The mean waiting time w is: 

w  = 
( )

( )
A

pL
p

  

   





.                                                 (12) 

All of above performance measures proved and discussed in detail and can 

be found in [28]. 

Note that only 
0w  and w  depend on the service rate μ. They are naturally 

larger than the mean sojourn time and mean waiting time of classical 

M/M/1- system respectively.  Some performance measures are not 

dependent on λ and ν individually but only on their proportion λ/ν, e.g. I , 

cLS and β. Concerning the influence of Fp we observe that several 

performance measures only depend on the first moment of Fp like λR , LS , 

β and w  or are completely independent of  Fp like 
cLS . I depends on the 

first and second moment of Fp. Hence, for two systems which have the 

same parameters λ, ν and μ but different order size distributions Fp and F


p 

with the same mean p  only I will be different. 
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4.2.7 Cost Structure and Overall Profit  

There are costs connected with operating the system originating from both, 

the queueing of  the customers and from holding inventory at the system. 

We have a fixed holding  cost  h  per item and time unit in the inventory, a 

fixed ordering cost  k  for each replenishment order, a shortage cost  per 

unit of lost sales, a cost  w per customer and time unit in the waiting room, 

and a cost  l per customer and time unit in service. Whenever a customer’s 

service is completed, a revenue R is payed to the system. 

The cost structure of the M / M / 1 queueing system with inventory under 

lost sales is [28]: 

      TC =  R . k  +  I  . h  +  LS  .  +  L  .  w  +    .  l                      (13) 

Where  the mean costs that occur in steady state per time unit are :  

  R . k, the fixed costs associated to replenishment orders that occur 

with reorder rate λR, 

 I  . h, the holding costs for inventory of mean size I ,  

 LS  . , the shortage costs for the mean number of lost sales LS ,  

 L  .  w, the waiting costs for the mean number L of waiting 

customers,  

   .  l, the costs for the mean number   of customers in service. 

The revenue obtained by the system’s service is per time unit: 
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 λA · R, the amount of money obtained from the served customers per 

time unit, which is proportional to the throughput. 

 The overall profit = TC – ( λA · R )                                                          (14) 

The our goal is to obtain the optimal policy by minimize asymptotic costs 

or maximize the overall profit for the M / M / 1 queueing system with 

inventory under lost sales in our study. 

4.3 Examples for the Replenishment Order Size Distribution 

In this section we investigate four examples for the replenishment order 

size distribution. We consider the fixed order size Q, which yields an (0, 

Q)-policy and the system with uniform, binomial and geometry distribution 

order sizes on {1, ..., Q}. In all cases holds M = Q. The performance 

measures for these examples, which could be obtained from 

equations(4.2.6)  are summarized as in: 

4.3.1 Deterministic Order Size 

Fixed (deterministic) order quantities are described by using one-point 

distributions for the order size distribution. Let us assume that the order 

size is fixed and equal to Q ∈ N , then for all k ∈ {1, ..., M} we have pk = 

kQ . Then 

qk  = 
1 , {1,..., }

0 ,

k Q

otherwise






      ,   The mean order size is     p  = Q. 

The most important performance measures are : 
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 The stationary average on-hand inventory position is given by: 

I  = 
1

2

Q Q

Q






,                                                            (15) 

 The mean number of replenishments per time unit(reorder rate) is: 

R  = 
Q






,                                                                           (16) 

 The mean number of customers arriving per unit time is: 

A   =  Q . 
R ,                                                                                (17) 

 The β-service level is: 

   =  
Q

Q




,                                                                            (18) 

 The average number of lost sales incurred per unit of time is given 

by: 

2

LS
Q


 




,                                                                 (19) 

 The expected number of lost sales per cycle is given by: 

c
R

LS
LS





  ,                                                                   (20) 

 From little's formula the customers mean sojourn time 
0w  is: 

0w  = 0

( )
A

QL
Q

 

  





,                                                  (21) 
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 The mean waiting time w is: 

w  = 
( )

( )
A

QL
Q

  

   





,                                               (22) 

 The steady state on-hand inventory distribution is: 

P(Y=k) = 

, 0

, 1

k
Q

k Q
Q



 



 












 


.                                           (23) 

4.3.2 Uniformly Distributed Order Size  

Let the size of a replenishment order be equally distributed on {1, ..., Q}, 

then its uniformly distributed on {1, ..., Q}. Hence  pk  = 

1
, {1,..., }

0 ,

Q
k Q

otherwise








 , 

 The mean order size is     p  = 
1

2

Q 
, 

 And  qk = 
1Q

h k h

Q k
p

Q


 
 . The most important performance 

measures are:  

 The stationary average on-hand inventory position is given by: 

I  = 
( 2) ( 1)

3( 1) 6

Q Q

Q



 

 

 
,                                                          (24) 

 The mean number of replenishments per time unit(reorder rate) is: 

R  = 
2

( 1) 2Q



  
,                                                                 (25) 
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 The mean number of customers arriving per unit time is: 

A   =  
1

2

Q 
 . 

R ,                                                                   (26) 

 The β-service level is: 

   =  
( 1)

( 1) 2

Q

Q



 



 
,                                                                (27) 

 The average number of lost sales incurred per unit of time is given 

by: 

2

2
( 1) 2

LS
Q


 


 

,                                                            (28) 

 The expected number of lost sales per cycle is given by: 

c
R

LS
LS





  ,                                                                    (29) 

 From little's formula the customers mean sojourn time 
0w  is: 

0w  = 0 ( 1) 2

( 1)( )
A

QL
Q

 

  


 

 
,                                                   (30) 

 The mean waiting time w is: 

w  = 
(( 1) 2 )

( 1)( )
A

QL
Q

  

   


 

 
,                                               (31) 
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 The steady state on-hand inventory distribution is: 

P(Y=k) = 

2
, 0

( 1) 2

2 [ 1 ]
, 1

[( 1) 2 ]

k
Q

Q k
k Q

Q Q



 



 










 

 
 

 

.                            (32) 

4.3.3 Binomial Distributed Order Size 

Let the size of a replenishment order is k ∈ {1, ..., M}, the probability of 

binomial distribution is pk = (1 )
k kQ

p p
k

 
  
 

 , where  p  denote to the 

lost sales case of shortage, (1 p ) denote to without shortage state. Also p  

must be 0 < p    1. And qk = 
Q

h k h
p .The mean order size is  p  = Qp . 

The most important performance measures are: 

 The stationary average on-hand inventory position is given by: 

I  = 

2

( 1) 2

2 2

Q Q Qpp

Qp

 

 

 


,                                                      (33) 

 The mean number of replenishments per time unit(reorder rate) is: 

R  = 
Qp



 
,                                                                       (34) 

 The mean number of customers arriving per unit time is: 

A   =  Qp  . 
R ,                                                                             (35) 
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 The β-service level is: 

   =  
Qp

Qp



 
,                                                                        (36) 

 The average number of lost sales incurred per unit of time is given 

by: 

2

LS
Qp


 




,                                                                   (37) 

 The expected number of lost sales per cycle is given by: 

c
R

LS
LS





  ,                                                                    (38) 

 From little's formula the customers mean sojourn time 
0w  is: 

0w  = 0 ( )

( )
A

QpL
Qp

 

  





,                                                         (39) 

 The mean waiting time w is: 

w  = 
( )

( )
A

QpL
Qp

  

   





,                                                      (40) 

 The steady state on-hand inventory distribution is: 

P(Y=k) = 

, 0

, 1
k

k
Qp

k Mq
Qp



 



 












 


.                                 (41) 
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4.3.4 Geometry Distributed Order Size 

Let the size of a replenishment order is k ∈ {1, ..., M}, the probability of 

geometry distribution is pk =  
1

(1 )
k

p p


 , where  p  denoted to lost sales 

case of shortage, (1 p ) denote to without shortage state. 

Also p  must be 0 < p    1. And    qk = 
1

(1 ) (1 )
k Q

p p


  . 

 The mean order size is  p  =  

1

1 ( 1) (1 ) (1 )
Q Q

Q Qp p

p



   
. The 

most important performance measures are:  

Let we have :  

 a= 
1

1 ( 1) (1 ) (1 )
Q Q

Q Qp p


    , 

 b= 
2

3 2)( (1 )
Q

QQ p   , 

 c= 
2 1

7 2)(3 (1 )
Q

QQ p


   , 

 d= 
2 2

5 )(3 (1 )
Q

QQ p


  , 

 e= 
2 3

)( (1 )
Q

QQ p


  . Then 

 The stationary average on-hand inventory position is given by: 

I  = 
2

(2 )

( )2( )

p b c d e

a pp



 

   


,                                                         (42) 
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 The mean number of replenishments per time unit(reorder rate) is: 

R  = 
p

a p



 
,                                                                        (43) 

 The mean number of customers arriving per unit time is: 

A   =  
a

p
 . 

R ,                                                                               (44) 

 The β-service level is: 

   =  
a

a p



 
,                                                                        (45) 

 The average number of lost sales incurred per unit of time is given 

by: 

2

p
LS

a p



 



,                                                                    (46) 

 The expected number of lost sales per cycle is given by: 

c
R

LS
LS





  ,                                                                    (47) 

 From little's formula the customers mean sojourn time 
0w  is: 

0w  = 0 ( )

( )
A

a pL
a

 

  





,                                                        (48) 

 The mean waiting time w is: 

w  = 
( )

( )
A

a pL
a

  

   





,                                                     (49) 
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 The steady state on-hand inventory distribution is: 

P(Y=k):    =
1

)
,

, 0

((1 ) (1 )
1

k Q

p
k

a p

p p p
k M

a p



 



 















 
 



.           (50) 

4.4 Numerical Results  

In this section we discuss the effect of some parameters on our above 

examples and its performance measures to obtain the optimal policy of M / 

M / 1 -   queueing systems with inventory under lost sales. We will rely 

on the tables and graphs which doing through computerized programs. 

4.4.1 Total Cost Algorithm for all Performance Measures 

Given: , , ,Q   , satisfying all constraints on previous definitions; 

Given: p, binomial, geometry; 

Calculate performance measures; 

    TC  =  R . k  +  I  . h  +  LS  .  +  L  .  w  +    .  l ; 

     AP = TC – ( λA · R ); 

End 

We can compute exact value for all performance measures by programs as 

on Vb.net that came with our thesis. 
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Note: you can find the program through attached CD in our thesis. 

 

4.4.1.1 Example: 

Sales company based on the sale of one type of games for children. If the 

arrival rate of customers to fund officers 30 customers per hour, the service 

rate of  35 customers per hour, and the lead time rate 0.1 unit per day . 

Depending on the following data : 

 Order size (Q) = 500 units per day, fixed cost (K) = 50 $ per order, 

 Holding cost (H) = 0.02 $ per unit per day,   

 Shortest cost (S) = 2 $ per day, waiting cost in queue (VW) =  5 $ per day, 

 

Figure 4.1: Interface  for VB.NET program 
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 P (probability that  lost sales case of shortage) = 0.4, 

Waiting cost in system (VS) = 8 $ per day, Revenue to the system (R) = 

2000 $ per day. Determine the optimal policy for ordering the type of 

games. 

Based on  the data of the problem and through vb.net, we can obtain the 

solution for our distributions that we studied as : 

Deterministic 

 

 

 

Figure 4.2: Deterministic in VB.NET 
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Uniform 

 

Binomial 

 

 

 

 

Figure 4.3: Uniform  in VB.NET 

 

Figure 4.4: Binomial  in VB.NET 
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Geometric 

 

 

From all above figures, we obtained the total cost and overall profit which 

gives the optimal policy for the company, and we conclude that the best 

suitable distribution is the geometric distribution order size in this problem. 

  4.4.2 Impact Q, P Parameters on TC of Uniform, Binomial and 

Geometric  

We investigate six examples that are grouped into two groups by different 

case for p success lost sales. Each set is composed of 3 subsets by different   

inventory sizes Q = 1:50; 1:100; 1:1000. For all examples let    = 1. Then 

we take an examples for fixed Q with different p as  0 < p ≤ 1. 

Group(i): if   0 < p ≤ 0.5, 

Figure 4.5: Geometric  in VB.NET 
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 Example 4.1:  let Q = 1 : 50, 0.2, 0.1   , show figure 4.6 and 

table 4.1, the result of this figure obtained by mat lab program shown 

in appendix A.  

0 5 10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

40

45

Q

T
c

 

 

geo Tc

bino Tc

unif Tc

 

Figure 4.6: Total cost respect to the Q parameter as Q = 1:50, 0<p≤0.5 

 

Table 4.1: Total cost respect to the Q parameter as Q = 1:50, 0<p≤0.5 

              Distribution 

Result 

geometric binomial uniform 

Total cost(Q)[min] 17.3646 14.3561 15.5908 

Overall profit[max]  859.3417 892.5602 904.1639 
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 Example 4.2: let Q = 1 : 100, 0.2, 0.1   . 

 Show figure 4.7 and table 4.2 
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Figure 4.7: Total cost respect to the Q parameter as Q = 1:100, 0<p≤0.5 

Table 4.2: Total cost respect to the Q parameter as Q = 1:100, 0<p≤0.5 

            Distribution 

Result 

geometric binomial uniform 

Total cost(Q)[min] 17.3646 14.3561 15.5908 

Overall profit[max]  902.5113 926.0685 920.6254 
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 Example 4.3: let Q = 1 : 1000, 0.2, 0.1   . 

 Show figure 4.8 and table 4.3 
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Figure 4.8: Total cost respect to the Q parameter as Q = 1:1000, 0<p≤0.5 

Table 4.3: Total cost respect to the Q parameter as Q = 1:1000, 0<p≤0.5 

             Distribution 

Result 

geometric binomial uniform 

Total cost(Q)[min] 17.3646 14.3561 15.5908 

Overall profit[max]  908.7211 930.2926 920.6254 

 



 

  

76 

Results group(i) : if   0 < p ≤ 0.5, the best optimal policy is to choice 

binomial distribution for replenishment order size Q. Because the curve of 

binomial TC is MIN. for all increasing in Q. 

This result is stay true until we change ,   parameters, to confirm it show 

below figures (4.9, 4.10, 4.11), figure 4.9 when increasing  , fix  , 
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Figure 4.9: Total cost respect to the Q parameter as Q = 1:1000, 0<p≤0.5, inc lemda 
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Figure 4.10 when increasing  , increasing  , 
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Figure 4.10: Total cost respect to the Q parameter as Q = 1:1000, 0<p≤0.5, inc V 

Figure 4.11 when decreasing  , fix  , 
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Figure 4.11: Total cost respect to the Q parameter as Q = 1:1000, 0<p≤0.5, dec 

lemda,V 
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If we change the parameters ,  , the results of our above case remain the 

same and not change.    

Group(ii): if   0.5 <  p ≤  1, 

 Example 4.4: let Q = 1 : 50, 0.2, 0.1   , show figure 4.12 and 

table 4.4 
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Figure 4.12: Total cost respect to the Q parameter as Q = 1:50, p >0.5 

Table 4.4: Total cost respect to the Q parameter as Q = 1:50, p >0.5 

            Distribution 

Result 

geometric binomial uniform 

Total cost(Q)[min] 17.7528 14.2575 15.5908 

Overall profit[max]  862.8597 916.5375 904.1639 
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 Example 4.5: let Q = 1 : 100, 0.2, 0.1   . 

 Show figure 4.13 and table 4.5 
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Figure 4.13: Total cost respect to the Q parameter as Q = 1:100, p >0.5 

Table 4.5: Total cost respect to the Q parameter as Q = 1:100, p >0.5 

            Distribution 

Result 

geometric binomial uniform 

Total cost(Q)[min] 17.7528 14.2575 15.5908 

Overall profit[max]  902.1315 930.4082 920.6254 
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 Example 4.6: let Q = 1 : 1000, 0.2, 0.1   . 

 Show figure 4.14 and table 4.6 
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Figure 4.14: Total cost respect to the Q parameter as Q = 1:1000, p >0.5 

Table 4.6: Total cost respect to the Q parameter as Q = 1:1000, p >0.5 

              Distribution 

Result 

geometric binomial uniform 

Total cost(Q)[min] 17.7528 14.2575 15.5908 

Overall profit[max]  906.2471 930.4082 920.6254 
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Results group(ii) : for 0.5 <  p ≤  1, we have two cases: 

 if Q is a small number the best optimal policy is to choice binomial 

distribution for small replenishment order size Q. since the curve of 

binomial TC is MIN. for small Q. 

  But we must choice geometric distribution for large  replenishment 

order size Q as we shown in figures 4.5, 4.6. 

This result is stay true until we change ,   parameters. As we doing 

above. 

If we fixed Q and change p as 0 < p ≤ 1. We have two examples. 

Example 4.7: if  0 < p ≤ 1, Q = 50, fixed ,  , also    = 1, show figure 

4.15, the result of this figure obtained by mat lab program shown in 

appendix B. 
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Figure 4.15: Total cost respect to the P parameter as Q = 50 fixed, 0 < p ≤ 1 
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We show that uniform TC is fixed, binomial TC is the MIN cost that is the 

optimal policy for small Q order sizes. 

Example 4.8: if  0 < p ≤ 1, Q = 100, fixed ,  , also    = 1, show figure 

4.16 
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Figure 4.16: Total cost respect to the P parameter as Q = 100 fixed, 0 < p ≤ 1 

We show that uniform TC is fixed, binomial TC is the MIN cost that is the 

optimal policy for small Q order sizes. Then more Q(100:1000:...) take 

geometric TC is the best optimal policy. 
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4.4.3 Results for our Research 

For all above examples we seen that the best optimal policy in decision 

making is to choice the binomial distribution replenishment order size 

generally. This gives us less cost and more profit to success our system. 

But if we have large Q order size we take geometric distribution. 

In other words, we think that the binomial distribution replenishment order 

size is the best if we have models with slow items, unless we take the 

geometric  distribution replenishment order size. 

4.5 Single Server System with Inventory and Backordering 

In the case of exponential inter-arrival and service times and zero lead 

times a reorder point r > 0 is suboptimal if customer demand is 

backordered and inventory holding costs are involved [3]. An optimal order 

policy for that system only places an order when the inventory level drops 

to zero and the number of customers in the system exceeds some threshold 

value [28]. 

For the case of backordering customers which arrive during a stock out and 

prescribed fixed order size with non-zero exponential lead times, the 

optimal policy is of threshold type such that with given inventory level the 

reorder decision depends on the queue length [2]. The method to prove this 

is stochastic dynamic optimization [36](no steady state analysis seems to 

be possible up to now) [28]. 
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Chapter Five 

Conclusions 

In this thesis, we have studied M / M / 1-∞ queueing systems with 

different inventory control models under lost sales. Customers are of 

stochastically identical behavior. To the server there is a Poisson-λ-arrival 

stream, λ > 0. Customers request an amount of service time which is 

exponentially distributed with mean 1. Service is provided with intensity μ 

> 0. The replenishment lead time is exponentially distributed with 

parameter ν > 0. All are independent family of random variables. 

We discussed various definitions for our system found in the thesis,Then 

we  investigate four examples for the replenishment order size distribution. 

We consider the fixed order size Q, which yields an (0, Q)-policy and the 

system with uniform, binomial and geometry distribution order sizes on {1, 

..., Q}. In all cases holds M = Q.  

We find the performance measures for these examples, and we put the cost 

structure , Then we do a comparison between these distributions in order to 

determine the best policy in the system studied. Through the study of the 

effect of changing parameters on the each distribution, and then selecting 

the lowest cost and highest profit can be obtained for the given 

distributions, we used computerized mathematical programs to clarification 

our thesis by graphs and tables .The result of our aim obtained, if we have 

models with slow items in order, the binomial distribution replenishment 
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order size is the best suitable distribution selection, unless we take the 

geometric distribution replenishment order size. 
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Appendixes 

 

Appendix A 

Total cost overall profit ( different Q, change P) 

Appendix B 

Total cost overall profit ( fixed Q, different P)
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 جامعة النجاح الوطنية 
 كميو الدراســـات العميا

 

 

 
  (M/M/1)نظام السيطرة عمى المخزون باستخدام نظام الصف 

 "م كفاية المخزونحالة عد"
 

 

 إعداد
 عماد رمزي محمد جمعو

 

 

 إشراف
 محمد نجيب أسعد. د

 
 
 

 الرياضيات المحوسبةقدمت ىذه الاطروحو استكمالا لمتطمبات درجو الماجستير في 
 . العميا في جامعو النجاح الوطنية في نابمس، فمسطين بكمية الدراسات

2011 



 

  

  ب

  (M/M/1)الصف نظام السيطرة عمى المخزون باستخدام نظام 
 "حالة عدم كفاية المخزون"

 إعداد 
 عماد رمزي محمد جمعة

 إشراف
 نجيب أسعدمحمد . د

 الممخص

وذلف  ( M/M/1)نظام السيطرة عمى المخزون باستخدام نظام الصف  تناول ىذه الأطروحة دراسة ت
حيفث . ة لمنظامضمن حالة فقدان المخزون وعدم كفايتو، وفق الشروط العشوائية والبواسونية المعتمد

يتم تدبير كميات المواد المناسبة وفقا لممواصفات المعينة في الوقت المناسب والمكان المناسب بأقل 
مفن خف ل ىفذا الفربط ينفتم نظامفا متكفام  متقفدما . تكمفة ممكنة، وربط ذل  بنظام صفو  الانتظفار

 .يستخدم فيو معادلات رياضية وطرق إحصائية محوسبة وأدوات متعددة

ي ىذه الأطروحة ناقشنا تعريفات مختمفة لنظفام السفيطرة عمفى المخفزون المفذكور، سفم درسفنا بعف  ف
الأمسمففة عمففى توزيعففات تجديففد حجففم الطمففب، سففم قمنففا بحسففاب مقففاييس الأدا  لكففل توزيفف  منفصففل تففم 

 .التحدث عنو، ووضعنا اقتران التكمفة، لتحقيق أقل تكمفة

مقارنفة بفين  - VB.netمحوسفبة عمفى المفات ب وبرنفامم  مفن خف ل بفرامم -أجرينا في الأطروحة 
تمفف  التوزيعفففات لمعرفففة التوزيففف  المناسففب الفففذس يعطففي أفضفففل سياسففة مسمفففى لمنظففام المفففذكور والفففذس 

 (.أقل تكمفة وأعمى ربح ) يحقق اليد  

 :من أىم نتائم ىذه الدراسة 

ففي  (M/M/1)الصف  إيجاد مقاييس الأدا  لنظام السيطرة عمفى المخفزون باسفتخدام نظفام  -1
 .وتوسي  ذل  لتوزيعات منفصمة مرتبطة بالنظام المذكور. حالة عدم كفاية المخزون

 .إيجاد اقتران التكمفة المرتبط بالنظام المذكور، واقتران الربح -2



 

  

  ت

أن " التوصل إلى أن التوزي  الحدس ىو الأفضل لتحقيق اليفد  والسياسفة المسمفى ففي حالفة  -3
، بينمفففا ان كانفففت كيفففر ذلففف  فيكفففون التوزيففف  اليندسفففي ىفففو "ةحركفففة الكميفففات والطمفففب بطيئففف

 . الأفضل بين التوزيعات المختارة في دراستنا

 

 

 

 




