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Numerical Methods for solving Third-Order Two Point Boundary
Value Problems
By
Saja Jamal Abu Shanab
Supervisor
Dr. Samir Matar

Abstract

Third order two point boundary value problems have clearly emerged in
many branches of science, for example technology, engineering, physics
and many others. So based on the importance of third order two point
boundary value problems, new efficient and more accurate numerical
methods were discussed, studied and analyzed.

These numerical methods are Shooting Method, Finite Difference Method,
Quartic B-Spline Method, Pade Approximation and Rational Chebyshev
Approximation Method. Each method has been studied and implemented
with examples and A MATLAB code was written for each method to
obtain very accurate results. The Numerical results will be compared to

determine the best method which is the fastest and most accurate.



Chapter One

Introduction
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Chapter One

1.1. Introduction

Boundary value problem in general arises in different fields of science,
engineering, technology, control, optimization theory, draining and coating
flows and various dynamic systems. So there are different problems
concerning two-point boundary value problems which have drawn the
attention of researchers throughout the world. And also boundary value
problems (BVPs) for higher order ordinary differential equations are
frequently encountered in several applications [15].

One of these problems where the boundary conditions are specified at two
points, these points are called endpoints. In science research, therefore
faster and accurate numerical methods for solving two-point boundary
value problems are very important. In general it's difficult to find analytic
solutions for such problems, so solutions have to be obtained by numerical
methods.

The aim of our work is to study and develop some new numerical methods
for solving third order two-point boundary value problems with higher
accuracy and writing complete algorithms and computer programs for each
method that will be developed in our work.

After taking some examples on third order two-point boundary value
problems, the results that will be obtained from each numerical method that
have been developed in our work will be compared to determine the best

method with the highest accuracy.
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1.2.  Nth Order Two-Point Boundary Value Problems
A boundary value problem is a differential equation with a set of
constraints called boundary conditions. In these problems the boundary
conditions are specified at two points.
The following equation represented the general formula for linear nth order
two-point boundary value problem [26], [31]:

YW () = ppy ™ V) + o+ P2y () + p1y(x) +po,a < x < b
where p; are functions of x for i = 0,1, ..., n, with specific boundary
conditions.

And the following equation expressed the general formula for nonlinear nth
order two-point boundary value problems with specific boundary
conditions

y® = f(x,y,y, .., y® D), a<x < b
The specific boundary conditions can be expressed in several ways, one of

them is in vector- matrix notation as

y(a) by - y(b) 51
y(n) (Cl) bnl ) nn y(n) (b) ™

Where a;;, b;; and r;are given and defined in the problem fori = 1,2,...,n
andj = 1,2,...,n. The solution for the previous nth order two-point
boundary value problem is the function y(x) that satisfies the given
boundary conditions.

1.3. Third Order Two-Point Boundary Value Problems

A type of nth order two-point boundary value problem where the order n =

3. The following equation represents the general formula for linear third
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order two-point boundary value problem with some boundary conditions
Yy () =p(x)y" () + q(x)y' () + r(x)y(x) +s(x),a <x < b
The following equation expressed the general formula for nonlinear third
order boundary value problem with some boundary conditions
y® =fxyy,y")a<sx<bh

The boundary conditions can be expressed in vector-matrix notation as

11 Az a3]| y(a) by b1z biz)| ¥(b) 1
[21 az> a23] y'(a) |+ b1 baz b23] y'(b) =[r2]

az1 azz Aaszzl|y'(a) b31 bz bs3l|y"”(b)
Where a;; and b;; are constants, for i = 1,2,3and j = 1,2,3. r;,7, and
rzare the given boundary conditions.
For example if the given boundary conditions are as the following
y(@)=a,y' d)=p4y"(a) =y
All constants will put to zeros except a4, as; and b,, which all must

equal ones, where 1, =anr,=f and r; =y as the following

1 0 o1fy@ 0 0 o0]|y®) a
0 0 0] y'@l|+|0 1 o||ly' ) =H
O 0 1U|y"(a) 0 0 0l|y"(b) Y
Previous works

As third order two-point boundary value problems arise in different areas
of applied mathematics, technology, physics and engineering, many works
have been published on studying and developing numerical methods for
solving third order two-point boundary value problems. F.A. Abd El-
Salam, A.A. El-Sabbagh and Z.A. Zaki [1], Ghazala Akram and Imran
Talib [6], Talaat S. El-Danaf [14] and S. ul Islam, I. A. Trmizi and M. A.

khan [17] have used quartic non-polynomial spline technique for solving
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third order two-point boundary value problem where the numerical solution
of a third order two-point boundary value problem is represented by quartic
non-polynomial spline function Q;(x), where Q;(x) =3S5; be the
approximated solution to the third order two-point boundary value
problem. Any quartic non-polynomial spline has the following form
Q;(x) = a; cosk(x — x;) + b; sink(x — x;) + ¢;(x — x;)* + d;(x — x;)
+e,i=0,1,..,N (1.4.1)

They have used equation (1.4.1) and its first and third derivatives to build a
system of N 4+ 1 linear equations with N 4+ 1 unknown variables.
N. N. Abd Hamid, A. Abd Majid and A. I. Md. Ismail [2] have used
Quartic B-spline interpolation method for solving linear two-point
boundary value problem and Y. Gupta and P. k. Srivastava [16] have used
cubic B-spline for solving fourth order two-point boundary value problem,
this give a help for solving the same problem but of order three.
E.A. Al-Said and M.A. Noor [4], G.B. Loghmani and M. Ahmadinia [20]
and X. Zhang [29] have developed a method using cubic B-spline to
construct an approximation solution for third order linear and nonlinear
boundary value problems.

A. S. Abdullah, Z. A. Majid, and N. Senu [3] have solved third order
nonlinear two-point boundary value problem using fifth order block
method where the advantage of this method is to solve boundary value
problem without reduce it to a system of first order ordinary differential
equations. The fifth order two-point block method where the interval [a, b]

is divided into a series of blocks with each block containing two points, this
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method will solve the nonlinear third order boundary value problem by

shooting technique using constant step size.

1.4. Applications There are many engineering and science
applications on third order two-point boundary value problem

that attract attention of scientists and researchers.

1.4.1. Hliemenz Magnetic Flow

One of the applications on third order two-point boundary value problems
iIs Hliemenz Magnetic Flow [21] where Hliemenz flow means that the
velocity of the incoming fluid is perpendicular to a plane surface. In
addition, if the fluid is electrically conducting, then the flow called
Hliemenz Magnetic Flow. The solution of this problem is important since

it’s one of the few exact solutions of Navier-Stokes equations in magneto-

hydrodynamics.
The Navier-Stokes equations for such flows are
du . dv
Py 3y = (1.5.1)
LI SV oB?(ax — u) (1.5.2)
0x ay ay? p -

With the following boundary conditions
y=0u=0v=0
y =o00:u = ax
Where
u : The x component of the velocity
v : The y component of the velocity

v : The viscosity



p : The density

a : Constant characteristic of the incoming flow

o : The electrical conductivity

B : The magnetic induction
And the first two boundary conditions are based on the physical
observations that there is neither slip nor mass transfer on the surface,
whereas the boundary condition at infinity means that the velocity of the
fluid approaches a linear relation with x.

Hliemenz separated the variables by assuming that

u = axa—F
on
And
v =—VavF(n)
Where
n=ya/vy

It can be shown that equation (1.5.1) will be satisfied identically and

equation (1.5.2) becomes as

d3F d*F dF.o ar\ _
EHFLE 1 () +M(1—E)—0 (1.5.3)
With boundary conditions
=0:F=0 ar _ 0
77 - U - Y d77
dF
= 00! —m— =
n dn

Where the dimensionless constant M is defined by



oB?

ap

1.5.2. Flow in a Channel

The second application is the problem of fluid injection through one side of
a long vertical channel [7]. The Navier-stokes and the heat transfer

equations can be reduced to the following system

" =RI(D? = ff"]+RA=0 (154)

With £(0) = £/(0) =0, f(1) = 1, f'(1) = 0 (1.5.5)
h' +RfR +1=0 (1.5.6)

With h(0) = k(1) = 0 (1.5.7)

0" + PfO' =0 (1.5.8)

With 8(0) = 0,6(1) = 1 (1.5.9)

Where

f, h : Two potential functions.

6 : Temperature distribution function.

A : Undetermined constant.

R : Reynolds number.

P : Peclet number.

The original problem is effectively broken into three subproblems. Thus the
equation (1.5.4) with given boundary conditions (1.5.5) represented a
nonlinear third-order ordinary differential equation for f, where equation
(1.5.5) represented four boundary conditions. To get the standard form for

equation (1.5.4), there is one way that is to differentiate it, obtaining that
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= RIF = ] (1.5.10)
So the problem (1.5.10) and (1.5.5) is in standard form and no longer
explicitly involves A. Then the equations (1.5.6), (1.5.7) and (1.5.8) and
(1.5.9) are two separated, linear second order problems in standard form.
The difficulty in solving the nonlinear problem (1.5.10) numerically
depends on Reynolds number R. For moderate values of R, say R = 10, the
problem is easy, but it get tougher as R increases and for R = 10,000 there
iIs a fast change in some solution values near x = 0. This is called a

boundary layer.
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Chapter Two
Shooting Method
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Chapter Two

Shooting Method

2.1. Shooting Method for Second Order Linear Two-Point Boundary

Value Problems

In numerical analysis, the shooting method is an iterative method that has
been used for solving boundary value problem by reducing it to an initial
value problem. The general idea of the shooting method based on
converting the boundary value problem into a system of initial value
problems with specified initial value conditions. The unknown initial
conditions are guessed to solve the initial value problems. The accuracy of
the guessed missing initial condition is then checked by comparing the
calculated value of the dependent variable at the terminal point with its
given value there. If a difference exists, another value of the missing initial
condition must be guessed and the process is repeated. This process is
continued until the agreement between the calculated and the given
condition at the terminal point is within the specified degree of accuracy.
The following second order linear two-point boundary value problem

y'=p)y' +qx)y+rx),a<x<byla)=ayb)=p(211)
According to Burden [12], the equation (2.1.1) will be converted into two
second order linear initial value problems

u' ' =pu'+qg)u+rx),a<x <bu(a) =au'(a) =0(2.1.2)
And

v'=p)v'+qx)v,a<x<bhv(a)=0,v'(a)=1 (2.1.3)
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The equation (2.1.2) can be written in vector notation as we let u; =u
and u, = u’, so the first initial value problem becomes as
u, =pu, +q(x)u; +r(x),a<x<b
u(a) =a,u,(a) =0
And this can be written in vector-matrix notation as
E"=[ o1 ]ﬁ+[ 0 ],a’(a)=[“] (2.1.4)
q(x) p(x) r(x) 0
Where © = [Z;] and u’ = [Z:ﬂ
In the same way, the equation (2.1.3) can be written in vector notation, let
v; =v andv, = v’, so the second initial value problem becomes as
vy =p)v, +q(x)v,a<x<hb
v1(a) =0,v,(a) =1

And this can be written in vector-matrix notation as

v = [q ?x) r (1x)] 3 3(a) = [‘1)] (2.1.5)
Where 3 = [zﬂ and v’ = [Z}]
2

Let u(x) is the solution for equation (2.1.2) and v(x) is the solution for
equation (2.1.3) then we define z(x)
Z=U+60v

where 6@ is a constant number. So
R _[ug (x) + 0v,(x)
79 =[5+ oonce)

(2.1.6)
Using equation (2.1.2) and (2.1.3), it is easy to see that
(u+60v)' =px)(u+6v) +qx)(u+6v)+r(x)
(u+0v)(a)=a,(u+6v)(a) =6

z(x) satisfies
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z"=px)z'+q(x)z+rx),z(a) =a,z'(a) = 0 (2.1.7)
The only difference between (2.1.1) and (2.1.7) is that in (2.1.7) we know
the value of z' at x = a, but do not know whether z(b) = B. If we can
choose 6 in such a way that z(b) equals g, this will mean that we have
solved the boundary value problem (2.1.1).
To determine the value of 8, we first solve the two initial value problems
(2.1.2) and (2.1.3) and find the values of u(b) and v(b), then we choose
the value 8, by requiring that z(b) = 3, so

z(b) = u(b) + 6,v(b) =B

And
g - B—u®)
T v(b)
Burden [12] assumed that
_ B —u(b)
z(x) =ulx) + Wv(x) (2.1.8)

Let equation (2.1.8) is a solution for second order linear boundary value
problem shown in (2.1.1).

To check that, we assume the first and second derivative for equation

(2.1.8)
e B —u(b)
zZ'(x)=u'(x) + —— o) v'(x) (2.1.9)
z"(x)=u"(x) + g Z)() )v”(x) (2.1.10)
Substitute equations (2.1.2) and (2.1.3) in (2.1.10)
—u(b
z"(x) = p(u’ + q()u +r(x) + % [PV + q(x)v]
" u(b ) u(b )
(x) = p(x) lu o V|t q(x )[ TOR v[+7(x)

zZ"x)=px)z' + q(x)z + r(x)
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Moreover,

z(a) = u(a) +'B;(—Z§b)v(a),z(a) =a +'B;(—Z§b).0 =«
The same

2(6) = ub) + P2 P) Ly 2b) = ub) + B — u(d) = B

v(b)
So equation (2.1.9) is a solution for the second order linear boundary value
problem (2.1.1) with its given boundary conditions (2.1.2).
The nonlinear shooting method is the same as shooting method except it’s
difficult to express the solution of nonlinear boundary value problem as a
combination of solutions of initial value problems, so we depends on the
solutions of a sequence of initial value problems involving a parameter t.
The following equation expresses the general form for nonlinear second
order boundary value problem [12]

y'=f,yy)asx<b
With the following boundary conditions
y(a) =a,yb)=p
The purpose of this method is to find t=¢t, to ensure that
Jim y(b, t,) = y(b) = B

The general form of the solution of sequence of initial value problems is

y'=fxy,y)a<x<bwithy(@)=ay' (@)=t (2.1.11)
If we rewrite the equation (2.1.11) that the solution depends on x and t
y'(x,t) = f(x,y(x, t),y'(x, t)),a <x < b,withy(a,t)=a,y'(a,t) =
t (2.1.12)
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We take the first derivative with respect to ¢t of equation (2.1.12) and

rewrite it by substituting 3—3; (x,t) = z(x, t), we get that

0
63{’ (x,y,y)z'(x,t),a<x <b

with z(a,t) = 0,z'(a,t) =1 (2.1.13)

0
26, ) = % (69,9)2(x,6) +

We use the Newton’s method to generate the sequence t; , for both initial

value problems (2.1.11) and (2.1.13) as
y(b, tk—l) - :8
z(b, ti-1)

None of these initial value problems is solved exactly, but the solutions are

ty = tk—1 —

approximated using Runge-Kutta method of order four to approximate both
solutions required by Newton’s method.
2.2. Shooting Method for Third Order Linear Two-Point Boundary
Value Problems
Let
Yy =p)y"+qx)y +r(x)y+sx),a<x<b (2.2.1)
y(@) =a,y(a)=p,y(b) =y (2.2.2)
An equation (2.2.1) and (2.2.2) is a third order linear two-point boundary
value problem with the specific boundary conditions. In shooting method
the third order boundary value problem will turn into two initial value
problems, where we replace the boundary conditions with specific initial
conditions for each initial value problem:
u" =pu”" +q)u' +r(x)u+sx),a<x<b (2.2.3)
ul(a) =a,u'(a) =0,u"(a) =0 (2.2.4)
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V' =p)v" +qx)v' +r(x)v ,a<x<bh (2.2.5)
v(a) =0,v(a) =1,v"(a) =0 (2.2.6)
Equation (2.2.3) and boundary conditions (2.2.4) can be written in vector-
matrix notation as we let
U =u,u, =u ,us =u", uy =u"
So the first initial value problem becomes as:
u; =pus +q)u, +r(xu; +s(x),a<x<bh (2.2.7)
uy(a) = a,uy(a) =0,uz(a) =0 (2.2.8)

And this can be written as:

0 1 0 0 a
E7=|:0 0 1 0 ],ﬁau==[0]
r(x) qx) p) s(x) 0

And also equation (2.2.5) and boundary conditions (2.2.6) can be written in

—

u+

vector-matrix notation as
vy =v,0, =0 ,v3=v",v3 =v"
So the second initial value problem becomes as:
v =p(X)vs +q(x)vy, +r(x)v;,a<x<bh (2.2.9)
vi(a) =0,v,(a) =1,v3(a) =0 (2.2.10)
And this can be written as:
0 1 0 0
vl:[ 0 0 1 ]ﬁ,ﬁ(a)=[1]
r(x) q(x) p) 0
We will use the Runge-Kutta method of order 4 (RK4) to find the solution
of the two initial value problems #(x) and ¥(x).Then we construct z

where:
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Z=U+0v

Z can be written in vector notation as:

uy (x) + 9v1(x)]

Z(x) = luz (x) + Ov,(x) (2.2.11)

uz(x) + 6v3(x)
where 6 is a constant number.
Let u(x) and v(x) denote the solutions to the third order linear initial value

problem (2.2.3) and (2.2.5) respectively. Define that

y —u(b)
() v(x),v(b) # 0 (2.2.12)

Then z(x) is the solution to the third order linear boundary value problem

z(x) = ulx) +

(2.2.1). To see this, first note that
y —u(b) ()
v(b)
—u(b
- v(lllog )v”(x)

z'(x)=u'(x) +
z"(x) =u"(x) +

And
y —u(b)
v(b)

Substituting equation (2.2.3) and (2.2.5) in equation (2.2.13), we get that

Yy —u(b) .,
o) [p(x)v

Z’”(X) — u///(x) + U”,(X) (2213)

z"'(x) = [pu" + q)u’ + r()u + s(x)] +

+ q(x)v' + r(x)v]

—u(b
lel(x) — p(x) YT’IZg)v”

—u((b
Y v(lllag )v] + s(x)

z"(x) =px)z" +q(x)z" + r(x)z + r(x)

u' +

y —u(b) ]

+ Q(X) [u’ +WU

+r(x)|u+

Moreover,
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y —u(b) vy —u(b)

z(a) =u(a) + 2 (0) v(a),z(a) = a+ () 0=«
The same
20) = ub) + L2 L0, 206 = u () +y — u() = y
v(b) ’

So equation (2.1.12) is a solution for the third order linear boundary value

problem (2.2.1) and boundary conditions (2.2.2).
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Chapter Three
Finite Difference Method
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Chapter Three

Finite Difference Method

3.1. Finite Difference Method for Second Order Linear Two-Point

Boundary Value Problems

The finite difference approximation for derivatives are one of the simplest
and of the oldest methods to solve differential equations where the main
idea of finite difference method is replacing the derivatives to appropriate
finite differences and the differential equation is reduced to a system of
algebraic equations. Taylor series are used to approximate derivatives as
the following [13]:
For some n; in (x;_1,Xj+1)

y(xiy1) = y(xi-y)  h?

y' () = = =" (1) (3.1.1)

Forsome &; in (x;_1,X;41)

y”(xi) =~ .V(xl+1) nyf;l) + y(xl—l) _ %y@_) (fl) (312)

And for some y; in (x;_5, X;4+5)

e s L Y(&Xigz) = 2y(x41) + 2y(xi-1) — y(xi-2)
v (x) = 3
2h
hZ

- yOw) (3.1.3)

For the following second order linear two-point boundary value problem
with given boundary conditions, let
y'=px)y' +qx)y+rx),a<x<bh (3.1.4)
y@) =a,y'(a)=p (3.1.5)
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We substitute equations (3.1.1) and (3.1.2) in (3.1.4), so we get that
y(xiv1) — 2y(x;) + y(xi-1)
hZ
= p(x,) y(xiv1) — y(xi—q)
, ' 2h

h
1z [2pCxy" (1) = y @ (€0)]

+q(x)y(x;) +r(x;)

A Finite Difference Method with truncation error of order 0 (h?) results by
using this equation together with the boundary conditions to define the
system of linear equations [12]

Wy =, Wy = f

And
~Wiyq + 2w — Wi N (Wi+1 — W1

h? 2h

)+ qew; = —r(x;) (3.1.6)

Equation (3.1.6) will be rewritten as

— (1 + gp(xi)> wi_y + (2 + h2q(x;))w; — (1 — gp(xi)> Wit1

= —h’r(x;)
Fori =1,2,...,N, the resulting system is expressed in N X N matrix form
Aw =b (3.1.7)
Where

r h
2+ h%q(x) —1+§p(x1) 0 0

h , h
-1- Ep(xz) 2+h%q(x) -1+ Ep(xz) 0
A= 0 0

h h
0 _1_Ep(xN—1) 2+ h%q(xy-1) _1+§P(xN—1)

h
0 0 —1—Ep(xN) 2+ h?q(xy) |
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w, —h%r(x,)) + (1 + %p(xl)) W,
[ W, } —h%r(xy)
w=| ¢ landb = :
[WN—l —h%r(xy_1)
N —h2r(ey) + (1= SpCen) ) Wyaa

The linear system (3.1.7) will be solved using any iterative method to find

the approximated solution w;.

3.2. Finite Difference Method for Third Order Linear Two-Point

Boundary Value Problems

Consider the following third order linear two-point boundary value
problem with the given boundary conditions:

Yy =p@)y"+qx)y' +r(x)y+skx),a<x<b (3.2.1)

y(@=a,y'(a) =,yb)=vy (3.2.2)

Now we will rewrite the equation (3.2.1) in finite difference form with the

grid point. Let N be the number of subintervals, so x;,; = x; + h, where

i=01,..,Nand x, = a
Yitz — 2Yi+1 + 2Yi1 — YVi—2 h?

2h3 - Zy(S) (aul)
Vie1 — 2y +yi.1  h?
= p(x;) | 7 — Ey(‘” D)
Vi1 —Yier R,
+q) [ -y <ni)] + ()Y +5(x)

A Finite Difference Method with truncation error of order 0 (h?) results by
using this equation together with the boundary conditions to define the
system of linear equations

w(a) = a,w'(a) = B,w(b) =y
And by multiplying the equation with 23, we get that
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Wiz = 2Wipq + 2w 1 — Wi,
= 2h[wiy1 = 2w; + w4 Ip(x;) + AP [wiq — wiq]q(x;)
+ 2h3r(x))w; + 2h3s(x;)
Wisz — 2Wipq + 2w — Wiy — 2h[wigq — 2w + w4 ]p(x;)
— h?[Wiyq — wiq1q(x;) — 2h3r(x)w; = 2h%s(x;)
Sofori=01,..,N
Wisz = [2 + 2hp(x;) + h*q(x)Iwiq + [4hp(x;) — 2R37 () w; +
[2 = 2hp(x;) + h*q(x)Iwi_q — wi_; = 2h%s(x;) (3.2.3)
And the boundary conditions become as:
w(a) = a changed tow, = a
w'(a) = to %=ﬁsincei=0
w(b) =ytowy =y
Fori =0,1,...,N, we will get N + 1 algebraic equations for the solution of
N + 1 unknown variables.
If we substitute i = 0 into equation (3.2.3), we get that
wy — [2 4+ 2hp(xo) + h*q(x)Iwy + [4hp(xo) — 2031 (o) wy
+[2 = 2hp(xo) + h?q(xo)lw_1 —w_; = 2h%s(x,)
We note that there are unwanted terms as w_, and w_, , and the same
problem happens wheni = N
Wiz — [2 + 2hp(xy) + h*q () Iwy g + [4hp(xy) — 2R%1 () [wy
+[2 = 2hp(xy) + h*q(xp)Iwy_1 — wy_p = 2h%s(xy)
fori=20,1,..,N
There are unwanted terms wy,; and wy,, .S0 we have N + 1 equations

with N 4+ 1 unknown variables with addition to w_;, w_,, wy,1 and wy,., .
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To get rid of these terms, we will use the following assumption:

Let
dw

dx
We substitute (3.2.4) in (3.2.1) and (3.2.2), so we get

=z (3.2.4)

z"=px)z' + q(x)z +r(x)w + s(x) (3.2.5)
w(a) =a,z(a) = B,wb) =y (3.2.6)
By replacing (3.2.5) using finite difference form, we get that:
Zir1 izz o = p(x;) [ 1 ] + q(x;)z; + r(x)w; + s(x;)

Ziy1 — 2Z; + Zi—q
=5 [Ziv1 — Zioa]p(x) + h2q(x)z; + RP7(x)w; + h?s(x;)
(1= 2 PGl — (24 hqC)lz + 1 +3 p() zims — RerCew
= h%s(x;)
Let
h
a;=1-5p(x)
by =—2— h*q(x;)
=1+ %p(xi)
d; = —h%r(x;)
e; = h?s(x;)
So the equation (3.2.5) becomes as
Q;Ziy1 + bizi + cizi_1 +diw; =e;, fori=0,1,...,N (3.2.7)

Equation (3.2.4) can also be written using finite difference approximation
around the point x; 1 :
2
Wi—Wiq _ %+ 2
h 2
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h
W; —W;_q — Ezi — EZi—l =0 (328)

And the boundary conditions can be written as:

Wo=a,Zy =, Wy =Y (3.2.9)

If we substitute i = 0 in equations (3.2.7) and (3.2.8), we get that
h h

WO—W_l—EZO—EZ_l =0
h h
a—W_l—E,B—EZ_1=O
h h
W_1+§Z_1 =Q—Eﬂ

And
a021 + bOZO + Coz_1 + dOWO = eo
a021 + boﬁ + COZ_1 + doaf = eo
a021 + COZ_1 == eo - bOIB - doa
Fori=1
h h
Wl_WO_Ezl_EZO =0
kb
W, —Q 2z1 2,8 =
h h
Wy =5z =a +E'B
And

a1z, + byzy + c1zo +dywy; = €4
a7z, + byzy + ¢, f +diw; = ¢4
a1z, + bz +dywy = e; — ¢
For2 <i < N —1, equations (3.2.7) and (3.2.8) can be used without any

change. For i = N, equation (3.2.8) becomes as
h h

Wy — Wy _EZN _EZN—l =0
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h h
Y = Wn-1 _EZN _EZN—l =0
WN-1 +EZN +EZN—1 =Y

And equation (3.2.7) becomes as

anZysr + byzy + cyzy_1 +dywy = ey

anZysr + byzZy + CyzZy_1 +dyy = ey

anZy+1 + byzy + CyzZy_q = ey — dyy
All boundary conditions have been taking into consideration. The above
steps eliminate wy,wy and z, as variables. Here, we have 2N +
2 equations for the solution of 2N +2 unknown variables:
w; where i=-1,1,..,N—1 and z where i=-1,1,..,N N+1

In vector-matrix form, this can be written as:

Am =k (3.2.10)
Where

- TW_11 1 - 7ol A

[Z‘ll] e

%] o

w 751

m= [Zzz] and k = Si
i I
o).  [s] |

Asry, = a—%ﬂ,rl = a+g,8,rN =y,butr; =0foralli =23,..,N—1

And Sop = €y — boﬂ - doa, S1 =€ — Clﬁ' Sy = ey — dN)/,butSl ==

e;iforalli =2,3,...,N—1
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BN
R e

A

dy-1 by-1
1 " h 0

The linear system (3.2.10) will be solved using LU Decomposition or any

iterative method like Jacobi or Gauss Seidel to find the approximated

solution.
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Chapter Four
Pade Approximation Method
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Chapter Four

Pade Approximation Method

4.1. Introduction

There are a sufficient number of polynomials to approximate any
continuous function on a closed interval to within an arbitrary tolerance,
where the advantage is that derivatives and integrals are easily determined
and polynomials are easily evaluated at arbitrary values. But polynomial
approximations have a disadvantage in tendency for oscillation.
This often causes error bounds in polynomial approximation to
significantly exceed the average approximation error, because error bounds
are determined by the maximum approximation error [12]. We now
consider methods that spread the approximation error more evenly over the
approximation interval. These techniques involve rational functions.

Let r(x) is a rational functions of degree N, and
pP(X) _ Potpax+ -t pax”
q(x) o+ q1X + -+ Gpx™

r(x) =

Where p(x) and g(x) are polynomials whose degrees sum to N, and r(x)
is the approximation function for f(x) on a closed interval I. For the
interval I containing zero it requires to have g, # 0 in order to make r(x)
is defined at zero. We can assume that q, = 1, for if this is not the case we
simply replace p(x) by p(x)/q, and q(x) by q(x)/q,. Every polynomial

is considered as a rational function if we set q(x) = 1.
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Pade Approximation technique is the extension of Taylor polynomial

approximation to rational functions [12]. If we consider that

B p(x)
fl)—1(x) =f(x) - 700

fx)q(x) —p(x)
q(x)
Let the Maclaurin series for f(x) = X%, a;x*, then
YiZoaix Zl qix' — X o pix!
f) —r(x) === - > ?
i=0 l

f@) = r(x) =

We need to choose the values of q,q,, ..., q,, and py, p4, ..., P, t0 oObtain
that £f®(0) —r® () =0fork =0,1,...,N.
(ap + ayx + azx? 4+ YA 4+ g1x + - + @ux™) — (po + prx + -

+ pnx™)
For example the Pade approximation to the function f(x) = e* of degree 4

where n =2 and m = 2 can be calculated as the Maclaurin series for
i

X
e = YiZo 7 sowe have that

x2 3 x4-
<1+x+7+z+ﬁ+ )(1+q1x+q2x2)—(p0+p1x+p2x2)

By expanding and collecting terms so that the coefficients of x* for k =
0,1,---,4 are zeros, then we have
x%:1=p,
xt14+q=p
1

x2:§+q1+q2=p2

1 1

g"‘th""h—o
. 1+1 +1 0

54 6CI1 2q2

We can solve the previous system using Maple and get that
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1 1 -1 1

P1 =§,Pz =EJQ1 =7'QZ =E

So the Pade approximation for e* of degree 4 withn =2 andm = 2 is
1 1

= .2
ex_1+2x+12x
1.1,
1—7x+ﬁx

Pade approximant is a rational approximation where Pade approximant to
the function f(z) on [a, b] is the quotient of two polynomials P,(z) and
Q,(z) of degree k and p, respectively. So we denote this quotient

P,
Riu(?) = Qi((?)

Ifk = u, Ry, (2) will be called as a diagonal Pade approximant [19], [30].

+ 0(z*#) (4.1.1)

Pade approximant Ry ,(z) will be calculated for f(z) =e” as the

following [11], [24], [28]:

IOk rk—pikr
PO=D T (12

And
Lo (k=i j
= — 1.3
W=D, GG (1)
Then the Pade Approximation (k, u) for
o7 = LK) (4.1.4)
Qu(2)

4.2. Pade Approximation (2,2) For Solving Third Order Two-Point
Boundary Value Problems

For Pade Approximation (2,2) where k =2 and u = 2, using equation

(4.1.2) and (4.1.3) we get that

2

P(2) =142+~
2= 2T 5T



Z
=1—=—+—
So
142472
o7 — 212
z  z?
l=2+12

Using Taylor series, we get that
2

u(x + h) = u(x) + hDu(x) + %Dzu(x)

So
2

h
u(x +h) = [1 + hD + EDZI u(x)
And
u(x + h) = e™u(x)
where D is the differential operator and h is the step size distance. Now
using the relation u(x + h) = e"Pu(x), e™ can be replaced by Pade

Approximation with operator D, we get that

2
1+h7D+(h1D2)
u(x+h) = ) _h_D+ hDY? u(x)
2 12
When u is a vector, this becomes
I hD+(hD)2 (+h)—1+hD+(hD)2 (x) 4.2.1
> 1 u(x = 5 1 u(x (4.2.1)

Now, consider the general form for a third order two point boundary value
problems with the following given conditions:

Yy +px)y"+qx)y ' +r(x)y=sx),a<x<b (4.2.2)

y@) =a,y' (@ =,y(b) =y (4.2.3)

System of equations (4.2.2) and (4.2.3) can be converted into first order

vector-matrix system as following:



33

i

Letuy =y, uy =y', u, =y", u; =y"" and

u; = —p(0u; — q()uy —r(x)ug + s(x)
U, Uy
Sou = llﬁ] and 4’ = |uyg
U U
O [P@ =) ][] [s()
u'=|( 1 0 0 Ui+ 0
0 1 0 Ug 0
Di=Qu+P (4.2.4)
Boundary conditions in equation (4.2.3) can also be converted as:
ug(a) = a,us(a) = B,ue(b) =y
Using equation (4.2.4) and its second derivative, where
D2 = QU+ Q*Ui+ QP + P (4.2.5)

And substituting them in equation (4.2.1) and applying them on the discrete
point x;, where x; =a+ih, i=0,1,..,N and h=(b—a)/N with N
subintervals.

So we get that

Ai+1ui+1 + Biui = Ei+1 + Fi' fOT' = 0, 1, WN—-1 (4‘26)
Where
Aiv1,11  %i+1,12  Ai+1,1,3
Ay = [ai+1,2,1 Ai+1,2,2 ai+1,2,3]
Ai+131 4i+1,32 di+1,33
bi11 bizx bias
B; =|bi21 biz2 bigs
biz1 bizz biss
And
€i+1.1 fi1
Ei,i= [ei+1,2] and F, = |fi2
€i+1,3 fis

Such that
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hZ

h !
Ait111 =1+ Epi+1 + 12 (—piy1 + pi2+1 — qi+1)
h h? .
Air112 = 5 i+ + 1 (—Qi+1 T Pi+19i+1 — Tit1)
h h?

—_ !
Ai+11,3 = Eri+1 + 12 (=741 T Pit1Ti41)

h h?

Ai+133 = 1

And
hoooR:
bj1,=-1 +5Di _E(_pi + 07 —qi)

hooR?
bi1, = 54~ E(_Qi + piq; — 11)
ho R
bi13 = ST~ E(_ri + piti)
RoR?

bizy = ) + 12P

h o h? ,
€i+11 = §3i+1 12 (—Di+1Si+1 T Sit+1)
hZ

€i+12 — — E5i+1
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€i+13 =0
2

fi1= 5Si+ E(_pisi +57)

h2
fiz = Esi

fiz=20
Here the functions p;,:,qi+1,7i+1,Si+1 and their first derivatives are
applied at point x;,, and also p;, g;, r; and their first derivatives are applied
at point x;. Note that boundary conditions are converted to uy o = a,uy o =
panduyy =7.
The result is a block matrix system of 3N equations with 3N unknown

variables, where

AU =C (4.2.7)
Such that
A By
B, A,
B, A;
A=
By_2 An_q
i By_y Ay
0 0 b0,1,1 ani11 Aniz2 O
Where B, =10 0 by, |and Ay = |anz1 anz2 O
0 0 bgs;1 ayz1 Anzz O

And U and C are defined as
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r [U2,1] L
Uy lkzl
_uO,l_ k3
[U2,2 €21
Ug,2 €22
[ Up,2 | €23
U= and C = '
Uz N-1 CN-11
Ui N-1 CN-1,2
Uo,N-1 CN-1,3
Uz, N ky
Il
L [Uz,0] | | [kgl
Where

ky = €11 — bo,1,2u1,o - bo,1,3uo,o
=C2 — bo,2,2u1,0 - b0,2,3u0,0
=0C,3— bo,3,2u1,o - bo,3,3uo,o
k, = Cni1 — An,3UoN
ks = Cn2 —An23UoN
ke = Cn3 — An33UoN
Andfori=1,2,..,N
h h? . ,
Ci1 =35 (s; +Si41) + P (—pisi + S; + Pi+1Si+1 — Siv1)
hZ
L,2 12 ( l l+1)
i3 =10
The previous linear system equation (4.2.7) can be solved using LU

Decomposition to get the approximated solution u; fori = 0,1, ..., N.
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4.3. Pade Approximation (3,3) For Solving Third Order Two-Point

Boundary Value Problems

The Pade Approximation Method (3,3) is the same as (2,2) but we set u =

3and k = 3, s0

z2  Z3

VA
P3(Z) 1+2+E+m
) __1 VA +-Z Z
Qs (z 2 710 120

Then

z% 73

VA

2710 T 120
z 72 z3
2710~ 120

Using the relation that u(x + h) = ehDu(x)
14 hP (hD)2 (hD)3

u(x +h) = 2 (thO)z (}]ig())gu(x)
1- 2 10~ 120

e =

1-

So
(hD)2 __(hD)?

[1 _hp (hD)Z 4 (D)
2 10 120

120

] (x+h)_[1+ ] u(x) (43.1)
The same as Pade Approximation (3,3), we need the second and the third
derivative of equation (4.2.4)

Di = Qi+ P (4.3.2)

DU = QU+ Q*U+QP +P (4.3.3)

D34 =[Q3+ Q" +2Q'Q + QQ']i + Q2P + 2Q'P + QP' + P" (4.3.4)

By substituting the equations (4.3.2), (4.3.3) and (4.3.4) in equation (4.3.1)

and applying the resulted equation into the discrete point x;, where i =
0,1,..,Nand h = (b —a)/N.

So we get that
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AjpqUjpq +Bu; =E;py +F;, fori=0,1,..N—1  (43.5)

Where
Ai+1,11  %i+1,12  Ai+1,1,3
A = [ai+1,2,1 Ai+1,2,2 ai+1,2,3]
Ai+1,31 Ai+1,32 4i+133
bi11 bizx bias
B; =|bi21 biz2 bizs
biz1 bizz biss
And
€i+1.1 fia
Ei,= [€i+1,z] and F; = |fi2
€i+1,3 fis
Such that

h hZ l; 2 h3 3
Air111 =1+ Epi+1 + 10 (_pi+1 +Piy1 — qi+1) ~ 120 (—Dis1

+ 2Di41Gi+1 — Tit1 — Pit1 t 3Pi41Pi+1 — 2qi41)
h hZ , 3 )
Ai+112 = ECIi+1 + 10 (—Qi41 + Pi+1Giv1 — Tiv1) — 120 (—Dis19i+1

+ Dis1Tiv1 T CIiz+1 - ql{-,i-l + 2P1{+1Qi+1 - 2T'il+1 + pi+1q{+1)
S B
Ait113 = Eriﬂ + 10 (=741 + Dig1Tie1) — 120 (—Pit1Tie1r T Git1Ti+1

124 ! !
— Tiy1 T 2041741 T Pit1Ti41)

h h? h3 5 .
Ai+121 = 5T Epi+1 ~ 120 Pi+1” — Qi+1 — Pit+1)
h? h3
Air122 =1 — Eqi+1 - ﬁ(pi+1qi+1 —Tit1 — qi41)
h? h3
Ai+1,23 = _Eri+1 - m(pi+1ri+1 —7{41)
h? h3
Ar131 = 7 + To0Pi+t
h h3

Ar132 = 75 + 120 i+
3
Air133 =1+ 120 i+t

And
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3

h h2 ’ 2 h 144
biaa=—1+5p;— E(_pi +pl—q)— T70 P +2Pi4i — Ty — P

+ 3p;p; — 2q;)
h h? h3

b1z =54~ 7 ( q; +piqi —17) — 20 piq; +piri +q7 —q;’

+2p;q; — 2r{ + plq )

h h?
bi1s =71 — ( i +pir) — 120( pir + qir; — 1" + 2piri + piry)
h h? h3 .
biz1 = 5t 1gPi —m(pl —Di)
h? h3 .
h? h3
bi,2,3 = E 120 (plrl )
h? h3
b. _
i31= 770 T 1207
h h3
biz, = 3 + qul
bi’3’3 1 + EOT
h h? . h3 .
€i+1,1 = §5i+1 ~ 70 (Sit1 — Di+1Si+1) T 120 (—Di+1Si+1
+ (pi2+1 —qi+1 — 2pz+1)51+1 +541)
h? h3
€it12 = ~710 = Si+1 T 755 120 (Si+1 — Pi+1Si+1)
h3
€i+13 — ﬁsﬁl
h hz h3 ! 2 / 1
h2 h3 .
fiz = 105 + 120 (s;i — piSi)
h3
fiz = 1205

Here the functions p;,1,qi+1,7i+1,Si+1 and their first derivatives are

applied at point x;,, and also p;, q;, ; and their first and second derivatives
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are applied at point x;. Note that boundary conditions are transferred to
Ugo = U =L andugy =y.
The result is a block matrix system of 3N equations with 3N unknown

variables, where

AU =C (4.3.6)
Such that
Ay By
B, A,
B, Aj
A= )
By_2 An—q
| BN—l AN'
0 0 bgis ayi1 Aaniz O
Where By = |0 0 byzi|and Ay = [anz21 Anzz O
0 0 bgs. ayz1 anzz O
And U and C defined as
T [U2,1] T [ k1]
U1 Kk,
[ Up,1 ] k3
U2 2T C21
Uy, [Cz,zl
[ U2 | C23
U= and ¢ = '
Uz N-1 CN-1,1
[u1,N—1] [CN—I,ZI
Ug N-1 CN-1,3
Uz N k,
[ul,N] lkSI
L U201 - L Lkg

Where

k; = €11 — bo,1,2u1,0 — b0,1,3u0,0
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Ky = ¢12 = bo22U1,0 — Do 2,300
K3 = ¢13 — bo32U1,0 — bo3,3U0,0
Ky = cyq — an13Uon
Ks = cyz — an23Uon
K¢ = cn3 — an33lon
Andfori=1,2,..,N

2 h3
0( —DiSi — l+1 + pl+1Sl+1) + == 120

+ (p? — ;i — 2pi)s; + s/’
pl+1sl+1 pl+1 ql+1 p1+1 i+1 l+1

h? h3
10( —Sit1) t == 120

_h h ,
Ci1 (Sl + Sl+1) + 1 ( p;s;

Ci2 = ( —DpiS; + Sl+1 Di+1Si+1)

Cl,3 120 (Sl + Sl+1)

The previous linear system equation (4.3.6) can be solved using LU

Decomposition to get the approximated solution u; fori = 0,1, ..., N.
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Chapter Five
Rational Chebyshev Approximation Method



43

Chapter Five
Rational Chebyshev Approximation Method

5.1. Introduction

Chebyshev polynomial approximation is a method to find good polynomial
approximation to a given function f(x) in a given intervala < x < b. The
purpose of this method is to find a good approximation for f(x) that is
rational function. The reason for doing so is that, for some functions and
some intervals, the optimal rational function approximation is able to
achieve substantially higher accuracy than the optimal polynomial
approximation with the same number of coefficients. This must be weighed
against the fact that finding a rational function approximation is not as
straightforward as finding a polynomial approximation. Let the desired
rational function R(x) have numerator of degree n and denominator of
degree m and Ty (x) is the kth-degree Chebyshev polynomial [23], [27],

Then we have

Yk=0PrTk (x)
,a<x<bh 5.1.1
=0k Tk (x) ( )

The unknown quantities that we need to find are pg,pi,02, )P0

Ry(x) =

and q4, q5, ..., @, that is, n + m + 1 quantities in all, where N =n+m
and q, = 1. Writing f(x) in a series involving Chebyshev polynomial [12]

as

[}

F0) = ) (5.12)

k=0
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Let r(x) denotes the deviation of Ry(x) from f(x), and let r denotes its

maximum absolute value as
r(x) = f() ~ Ry(x)
r(x) = 2 T () k=0 Pr Tx (x)

£ =0 Ak Ty (x)

Or
Y=o QT () Xkzo Qi Ty (x) — Y=o P Ty (X)
Y=o qi Tk (x)

r = max |r(x
asxsbl ( )l

r(x) = (5.1.3)

The best solution is to find the values of p’s and g’s that minimize r or the
coefficients q4, g5, ..., ¢y @and pg, p4, ..., Py, are chosen so that the
numerator on the right-hand side of equation (5.1.3) has zero coefficients

for T, (x) whenk = 0,1,...,N. This implies that the series

(aoTo(x) + ar Ty (x) + - )(To(x) + q1 Ty (%) + - + qmTn (X))
— (DoTo () + p1 Ty (x) + -+ + P T ()

Has no terms of degree less than or equal to N.

5.6. Rational Chebyshev Approximation Method for Solving Third
Order Two-Point Boundary Value Problems
Consider the following equation represented the general form for a third
order linear two-point boundary value problem with the following given
boundary conditions:
Yy +px)y"+qx)y' +r(x)y=s(x),a<x<b (52.1)

y(@) =a,y(a)=p,y(b) =y (5.2.2)
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System of equations (5.2.1) and (5.2.2) can be converted into first order
vector matrix system as following:
Letuy, =y, u; =y',u, =y",u;, =y"" and

up = —p(uz = q(u; —r(xXuy + s(x)

U Uy
Sou = [lﬁ] and U’ = |y
U U
. [—p(X) —q(x) —r(x)] Uz S(X)]
u = 1 0 0 Ul+1 0
0 1 0 Up 0
Di=Qi+P (5.2.3)

Boundary conditions in equation (5.2.2) can also be converted as:
up(a) = a,us(a) = B,ug(b) =y
Now let R(x) is the Chebyshev rational approximation for f(x) = e*of

degree 6 withn = m = 3, then
_ag +ayx + axx? + azx’®
" by + byx + byx? + byx3

X

e

The constants a; and b; for i = 0,1, 2, 3 will be calculated by Maple using
the following command after loading the orthopoly and numapprox
packages

r := convert(chebyshev(e*, x), ratpoly, 3,3)

So using the relation u(x + h) = e™u(x) and let u(x + h) = u;44

and u(x) = u;, SO we get that
_ ag +ahD + ay(hD)? + az(hD)?
Wit = b hD + by(hD)Z + by(hD)?

[by + byhD + b,h?*D? + b3h3D3|u;,4

= [ay + a;hD + a,h?D? + azh3D3|y; (5.2.4)
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By substituting equation (5.2.3) and its second and third derivatives in
equation (5.2.4) and applying them on the discrete point x;, where x; =
a+ih,i=0,1,..,Nandh=(b—a)/N.

So we get that

Ai+1ui+1 + Biui = Ei+1 + Fi ,fOT' [ = O, 1, WN -1 (525)

Where
Aiv111 Ai+1,1,2 Ai+1,1,3
Aiy1 = |%i+1,21 Q1,22 Ai+1,2,3
Ai+131 Ai+1,32 Ai+1,33
bi,1,1 bi,2,1 bi,1,3
B; = |biz1 bi22 bias
biz1 bizy biss
And
€i+1.1 fi,1
Eiyq = |Ci+12| and F; = |fi2
€i+1,3 fis
Such that

Qi+1,1,1 = Do — b1hpiy1 + bth(Pi2+1 —qi+1 Pz{+1) + b3h®(—piyy
+ 2Pi41qiv1 — Tivr — Pit1 + 3Pi+1Pir1 — 2qis1)
Air11,2 = —b1hqier + boR? D1 Givs — Tiver — Qisr)
+ bsh3 (=Dl 1 i1 + DisaTior + Qo1 — Qita + 2P(41G141
=21, + pi+1qg+1)
Air11,3 = —D1hripq + D h?(PigaTivn — 1i41)
+ bsh3(=plaTier + QivaTien = Tiia + 2DieaTie1 + DisaTivs)
Ajy121 = bih — bh*piq + b3h3(pi2+1 —qi+1 — p1{+1)
Ai+122 = bo — bah?qiq + b3h®(—=qiy1 + Dis1Givr — Tis1)
Ai+1,23 = —byh?1i4q + b3h® (=741 + DisaTisn)

_ 2 3
Ai+131 = by,h* — b3h°p; 44
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Ait132 = bih — b3h®qisq
Ai+1,33 = bo — b3h®rii4
And
bi11 = —ag + a;hp; — azhz(piz —q; — pl,) - a3h3(—pi3 + 2p;iq; — 1
—pi +3pipi — 2q;)
bi12 = athq; — axh*(piqi — 1 — q;)
—ash®(=piq; + piri + 47 — 4i’ + 2piq; — 21{ + p;q;)
bi13 = athry — a;h*(pyr; — 17)
- a3h3(—Pi27”i +qir, — 1+ 2piry + piri,)
biz1 = —ayh + ayh®p; — azh®*(pf — q; — pi)
bi2, = —ag + ayh?q; — azh®*(—q; + p;q; — 17)
b2z = azh*r; — azh®(—r{ + pi1y)
bi31 = —azh® + azh’p;
b3, = —a;h + azh’q;
b33 = —ag + azh’r
€i+11 = —b1hSip1 — b h*(—piy1Sis1 + Siv1)
— b3h? ((pi2+1 —qi+1 — 2P1{+1)5i+1 — Pi1Sip1 T 51{;1)
€iv12 = —bah?Siy1 — bsh® (=Pi1Sier + Sitq)
ei+13 = —b3h®siyq
fir = aihs; + azh?*(—p;s; + s{) + azh® ((Plz —q; — 2p;)s; — pisi + Si”)
fiz = axh®s; + azh®(—p;s; + ;)
fiz = azh’s;
Here the functions p;,i1,qi+1,7i+1, Si+1 and their first derivatives are

applied at point x;,, and also p;, g;, r; and their first and second derivatives
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are applied at point x;. Note that boundary conditions are transferred to
Ugo =AU =p andugy =.
The result is a block matrix system of 3N equations with 3N unknown

variables, where

AU =C (5.2.6)
Such that
Ay By
B, A,
B, Aj
A= )
By_2 An—q
| BN—l AN'
0 0 bgis ayi1 Aaniz O
Where By = |0 0 byzi|and Ay = [anz21 Anzz O
0 0 by ayz1 Anzz O
And U and C defined as
 [U21] 7 T [ka]
Uqq K,
[ Up, 1 K3
(U2 27 C21
Uy [Cz,zl
[Up,2 | C23
u=| | l|andC=| .
Uz N-1 Cn-1,1
[u1,N—1] [CN—1,2]
UoN-1 CNn-1,3
Uz N kK,
luLN] [ksl
L [Uz,0] [ Lkgl
Where

k; = €11 — bo,1,2u1,0 — b0,1,3u0,0
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Ky = €12 = bo22U1,0 = Do 23U
K3 =13 = boz2U1,0 — bo33Uo0
Ky = Cn1 — an13Uon
Ks = Cy2 — An23Uon
Ke = Cn3 — Anz3Uon
Andfori=1,2,..,N
i1 = h[=bisip1 + a5 + h?[=by(=Dis1Si41 + Sip1) + A (=p;s; + 57)]
+ h3 [_b3 ((Pi2+1 —qi+1 — 2p£+1)5i+1 — Pi1Si41 T Si,-ll-l)
tas ((Plz —q;i — 2p{)si — pisi + 51'”)]
Ciz = h?[=b;Si41 + ay5i]
+ h*[=b3(—Pis1Sis1 + Siv1) + as(—pis; + 57)]
Ci3 = h*[=b3siq + azs;]
The previous linear system shown in equation (5.2.6) can be solved using

LU Decomposition to get the approximated solution u; fori = 0,1, ..., N.
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Chapter Six
Quartic B-Spline Method
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Chapter Six

Quartic B-Spline Method

6.1. Quartic B-Spline for Solving Third Order Two-Point Boundary

Value Problems

There are many different approaches for calculating spline curves. Defining
the explanation of basic cubic spline interpolation will set the basis for
other more specific types. The problem that all designers faced was how to
construct a curve passed through a given n+1 points which
are x,, x4, ..., X,. B-splines have interesting points called global control;
this means that if one of the control points moved, this will affect the entire
curve.

The most basic method that which uses cubic spline is B-splines, where B
stands for basis [18].

B-splines have a property called local control that means if a position of
one data point have been moved this only affects a portion of the curve.
This saves the other portions of the curve that may already be acceptable.
This makes B-splines useful in geometric design and modeling [9], [25].

A spline function of degree k has a polynomial of degree less or equal to k
on each interval [x;, x;,1], where the spline function has a continuous (k —
1) derivative on interval [a, b]. There are many types of B-spline, linear,
quadratic, cubic and quartic splines. In this chapter we will use Quartic B-

Spline for solving third order linear two-point boundary value problem.



52
For the following third order boundary value problem with the given
boundary conditions:
y'"=px)y"+qx)y  +r(x)y+sx),a<x<b (6.1.1)
y@=a,y(@=g,yb)=y (6.1.2)
The main basic of B-splines is that if we let y(x) be the continuous
solution for equation (6.1.1) with boundary conditions given in (6.1.2).
Divide the range into n subintervals with step size h = b%a, by inserting
knots at the points x,, x4, ..., x, Where a = x, < x; <-- < x,, = b, then
S(x) is a quartic spline interpolating function for y(x) if [12]:
I.  S(x) is apolynomial of degree four in each interval [x;, x;.1].
I SC) =y(), S" () =" (%), " (x) =y"(x) and  S""(x;) =
¥ ().
. S(x), S'(x), S”(x) and S""'(x) are continuous on the interval [a, b].
IV. The fourth derivatives will be discontinuous on the interval [a, b].
Then S(x) can be written as:
S(x) = Xt 0% (%) (6.1.3)
The quartic B-splines are defined on n + 1 nodes and the basis function for
S(x) is defining by @;(x) for i = —4,-3,...,n—2,n—1 and c; are the
unknown real coefficients.
Therefore, for a given function y(x) where y(x) is the solution for
equation (6.1.1) and (6.1.2), there exists a unique spline S(x) that

satisfying the interpolation boundary conditions:

y(a)=a,y'(a)=F,y(b) =y



53
Quartic B-spline basis could be obtained by calculating the basis up to
order five. The first degree B-spline when k = 1 will be written as [5], [8],

[10], [22]:

1,x € [x;,x; ]}
1 _ U ri+1
Oi _{ 0,otherwise (6.1.4)
In general ¥ (x) can be defined as:
k _X=Xi k- 1 Xi+k—X
Pf(x) = el L B e xm@”l (6.1.5)
Fork =2
X — X; Xigp — X
0% (x) = Lt + 1
' Xig1 — X ' Xipz — Xig1 b

0200 = +[(x — 208} + (s — )0,
i h i/V¥Yi i+2 i+1

For k = 3, we get that
?; (x) =

X=X Xi+3 =X 5
0% + .
l 1+1

Xi+2 = Xj Xi+3 — Xi+1

3 zi — )02 + (x;
Q) (X) [(X xl)(z)l + (xl+3 x)Q)l+1]

(Z)ig(x) (x —x; ) Ql + [ — x) (42 — %) + (0 — x51) (Xi43 — x)](z)ilﬂ

2h2 [
+ (Xi43 — )*0jy,
And for k = 4, we get that

X = Xj Xita —X
Q):}(x) = ®13 + ®l+1
Xiy3 — X Xitsa — Xi41

07 () = 32 [ — x)0F + (tipa — D
®4(X) = [(x - xl) Q)l [(x - xi)z(xi+2 —X)

+ (x —x) (X453 —x)(x

= xi51) (g — 0 (6 = x141)%18741 + [(x — ) (i3 — %)?
+ (Kira = 2) (0 = x341) (Xip3 — %)

+ (iva = 02 (0 = X142)1804 + (Xivs — )B4 5]

Finally for k = 5, @7 (x) will be defined as:
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X =X Xits — X
Q)LS(X) = Q)? + ?+1
Xita — Xj Xi+s — Xi+1

B5(x) = — [(x — )8 + (xias — )01 ]
{ 4h /¥ i+5 i+1

And also @? (x) for the interval [x;, x;,5] can be written as :
@7 (x) = [(x — x)*; + [(x — %) (Xy42 — X)

1
24h*
+ (0 — %)% (i3 — 0 (x
— X)) 00 — ) (g — X) (X — x341)?

+ (Xips — 20 — x341)%18541 + [(c — %)% (xip3 — %)

+ (0 = x) (4a = %) (0 — X341) Cryy3 — %)

+ (0 — ) (Xipa — X2 (x — Xi42)

+ (g5 — ) (x — x341)* (xi3 — %)

+ (Xies = 20) (0 = X340) (g — 2) (0 = X342)

+ (45 — 1)%(x — x342)%] 015,

+ [Oc = x) (eipa = %)+ (g5 — ) (6 = x341) (Xia — X)°
+ (ips — 1)? 00 = Xi42) (Xia — X) + (rips —2)°(x

= %i+3)]Divs + (Xigs — %) *0iy4]

Following equation (6.1.4), @7, ,, @1, ,, @}, and @}, , can be written as:
1 _ {1 X E [xi+1,xi+2]}
i+1 0, otherwise
1 _ {1 X E [xi+2,xi+3]}

i+2 7 | 0, otherwise
1 _ {1 X € [xi+3»xi+4]}
i+3 =

0, otherwise

and
1 _ {1 )X € [xi+4'xi+5]}
L+4 0, otherwise

For x € [x;,x;41], Where @7 =1 and the other terms equal zeros
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?; (x) =

(x — xi)4

24h*

For x € [x;41,%;4+2], Where @1., =1 and the other terms equal zeros

1
@7 (x) = AR [ — %)% (42 — %) + (x — %) (43 — 2) (X — X341)
+ (0 = x) (Kipa — ) (X — Xi41)? + (Kips — ) (X — x41)°]
For x € [x;,2,X;43], Where @7, = 1 and the other terms equal zeros

®; (x) = [Ce = 2% (xips — )% + (2 — %) (x40 — X) (x

24h*
— Xi41) (K43 — %) + (0 — ) (18 — 2)% (X — X342)
+ (Kprs — 1) (0 — 23412 (Xi43 — X)
+ (g5 = 2) (0 — X341) (Xppa — 20) (X — X342)
+ (Xips — )% (X — X342)°]

For x € [x;,3,X;44], Where @7, . = 1 and the other terms equal zeros

87 (x) =

[ = %) (Kiga — %)% + (Kips — %) (X — Xypq) (Kjgg — X)?

24h*
+ (s — %)% (X = X342) (Xja — %) + (X5 — )3 (X — Xi43)]

For x € [x;,4,X;45], Wwhere @7., = 1 and the other terms equal zeros

07 (x) =

Th‘* (Xi45 — x)4

Finally @7 (x) can be written as piecewise function:

07 (x) =
(x = x)* x € [x;, X144

(0 = %)% (Kpyz — %) + (0 — %) (Kpy3 — 2) (X = X349) +

(0 = %) (Kpa — 2) (0 = X341)% + (Xips — 2) (X = X41)%, % € [Xip1, X0
(0 = x)? (g3 = 202 + (x = %) (Kiga — X) (8 = X340) (i3 — %) +
1 (0 = x) (i — 2)2(x = Xi42) + (g — 1) (X — X41)* (Xiyz — %) + [ (6.1.6)
24h* (Xirs — ) (X — Xip1) (Kiga — X)(x — X342) +
(Xi4s = %)%(X = X142)%, X € [Xi42, Xi43]

(0 = x) (Xppa — %)% + (Xips — 1) (X = 2x341) (Xipq — X)* +

(Kies — %)% (0 = Xpy2) Kpga — %) + (Xips — X3 (X = Xi43), X € [Xj43,X;14]
(Xirs — X)*, X € [Xj14, Xi15] %
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Note that @7 (x) is continuous on the first, second and third derivatives, as

the following table:

Table 6.1: the first, second and the third derivatives for the basis

functions @7 (x)

0i(x) 0;(x) i (x) 0;" (%)
X; 0 0 0 0
Xii1 1/24 1/6h 1/2h? 1/h3
Xito 11/24 1/2h —1/2h? —3/h3
Xit3 11/24 —1/2h —1/2h? 3/h3
Xiia 1/24 —1/6h 1/2h? —1/h3
Xit+5 0 0 0 0

So, the solution of the equations (6.1.1) and (6.1.2) will be approximated as

n-—1

SG) =YD & ) i),

i=—4

For the point x; , there are four nonzero quartic B-spline basis
B2, (x), 03 4 (x;), B2, (x;) and @3_, (x;), so the approximation

solution at the point x; can be written as

0<i<n

S(x;) = €i—a® ;4 () + ¢;230%_5(x;) + €205 (%) + ;2104 (%)

~ y(x;) (6.1.7)
And also
') = €i-a®%imy (%) + 1-30% ;5 () + €12 0%, (%)
+ 61051 () ~ y' (%) (6.1.8)
S" ()
= Ci—4®5i—4”(xi) + Ci—3®5i—3”(xi) + Ci—2®5i—2”(xi) + Ci—1@5i—1”(xi)
~ y'"(x;) (6.1.9)
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And
$"(x) = €ima®%iy () + 3B 5 () +¢ia®% 1, (%)
+eq8%, () =y (%) (6.1.10)

By substituting the relation (6.1.6) in equations (6.1.7-6.1.10), we obtain

that:
S(x;) = %(ci_4 + 11¢;_5 + 11¢;_, +¢ci—1) (6.1.11)
S'(x;) = 6_1h (—ci—4 —3ci_3+ 3ci_5 +ci_1) (6.1.12)
5" (x;) = % (Cica —Cimz — €z +Ci-1) (6.1.13)
S"(x;) = %(—ci_4 + 3c;_3 —3ci_, +ci_1) (6.1.14)

Since S(x;) = y(x;), S'(x;) = y'(x), $"(x) = y" (x;) and S (x;) =
y'""(x;), we obtain that
") = p(x)S" () + q(x)S" (%) + r(x)S(x;) +s(x;)  (6.1.15)
And the boundary conditions in equation (6.1.2) will be shown as:
S(xg) =a,5 (x9) =B,S(xp) =v (6.1.16)
By substituting the equations (6.1.11-6.1.14) in equation (6.1.15), we

obtain that
1 1
3 (—Ci—q4 +3ci—3 — 3¢y + i) = P(xi)[ﬁ
1 1
ci—1)] + Q(xi)[a (—Ci—qg —3Ci—3 +3cip +ci—1)] + r(xi)[z (Ci—g +
11¢;_5 + 11c¢;_5 + ¢c;—1)] + s(x;)

(Cimg — Ci—z —Ci—p +

—Ci—q +3Ci3 — 3;«;1'—2 +Cig
= D; [E (Cia — Ci3 —Cip + Ci—l)]
h2
+ q; v (—Ci—qa —3ci—3 + 3¢i_5 + Ci—1)]

h3
+ T !ﬁ (Ci—4- + 11Ci—3 + 11Ci—2 + Ci—l)] + hBSi
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h h? h3 h h2 11h3

[ h h? 11h3
. '1 h h? h3
P 2Pi T e T

r]cl | = h3s;

Let
I S
h2 11h3

h
b =3 +—-p: + —qg: — ——
l +2pl+2ql 24

L Y S £
i = ZPi 5 di 24
__h o h3

ki = h3Si

T

L4}

And
a;Ci_4 + bici_3+dici_,+eci_1=k;,i=01,..,n (6.1.17)
Also substituting (6.1.11) and (6.1.12) in boundary conditions (6.1.16) we
get that
S(a)=a,wheni =0
S(xg) = 2—14(C_4 +11c_3+ 11c_, +c_4)

1
ﬁ(c_4 +11lc_ 3+ 11lc_,+c )=« (6.1.18)

S'(a) =B ,wheni =0

1
S'(xp) = ( C_4 —3C_3+3c_,+c_q)
1

a( C_4 3C_3 + 3C_2 + C—l) == :B (6119)

S(b)=y,wheni=n
1
S(xy) = ﬁ(cn—zl + 11cp_3 + 11cyp + Ccpoyq)
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%(cn_4 +11c,_3+11c,_p + Cp_1) =¥ (6.1.20)
The equations (6.1.17), (6.1.18), (6.1.19) and (6.1.20) form n + 4 linear
equations with n + 4 unknown coefficients ¢;,i = —4,-3,...,.n—2,n—1
Let F is a vector matrix of size n + 4, where F, = a, F;, = B, F,+, = y and
Fi.s=k;i=01,..,n

In vector matrix form, Ac = F, where

1 11 11 1 1
- = = =0 . e 0

24 24 24 24 Q-
-1 -1 1 1 )
—- = = = 0 - : B
6h 2h 2h 6h I
ap by do e 0
0 a by di e k.l

A= .| F =
0 k-

: a, b, d, e, n

0 11 11 1 LY -
s 24 24 24 24

And

c=[c_4,C 3,Cp . ,Cne3,Cpe2, Cno1]’
This forms a linear system of n + 4 linear equations with n + 4 unknown
coefficients; it can be solved using direct method such as LU

Decomposition or any method of iterative methods such as Gauss-Seidel.
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Chapter Seven
Numerical Comparison and Examples
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Chapter Seven

Numerical Comparison and Examples

7.1 Linear Shooting Method Algorithm

The following algorithm implements the Linear Shooting Method for
solving linear third order two-point boundary value problem using the

Matlab software.

Algorithm 7.1
To approximate the solution of the following third order boundary value
problem:
y'"' =p)y" +qx)y +r(x)y+sx),a<x<b
with y(a) = a,y"(a) = B, y(b) =y

Inputs:

Endpoints a and b, boundary conditions «,f and y and number of

subintervals N.

Outputs:

x; ,W1;. Approximated value, Exact; and Error;

foreachi=1,2,...,N+1
Step 1:
Set h = =2
N
U0 = &,Uz0 =0,u30 =0

V1o =0,V30=1,v30=0
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Step 2:
Fori=0,1,...,N —1 ,dostep 3 and 4 ( The Runge-Kutta method is used

instep3and4)

Step 3:
Setx =a+ih

Step 4:

k1,1 = huz,i
k1,2 = hu3'i

kis =hlp(Xuz; + g(x)uy; + r(x)uy; +s(x)]

1
k2,1 = h[uz,i + Ekl,Z]
1
k,, = hluz; + §k1,3]
h 1 h 1
k,3 = h[p(x + E) (us; + §k1,3) +q(x + E) (uz,; + §k1,2)
h 1 h
+r(x+=)(uy; +=ky1) +s(x+ )]
! 2 ’ 2 2
ks, = hlu,; + Ekz,z]
1
ks, = hluz; + §k2,3]
h 1 h 1
k3,3 = h[p(x + E)(u&i + Ekz,s) +q(x+ E)(uz,i + Ekz,z)

1

h
> k1) +s(x+ E)]

+r(x + g) (ug; +
kay = hluy; + %k3,2]
kyp = hlus; + %k3,3]
kaz = h[p(x+h)(us; +ks3z) +q(x +h)(uz; +k3o) +r(x + h)(uy,
+ k31) + s(x + h)]
Upipr = Uy T % [k11 + 2k 1 + 2k31 + Ky ]
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1
Upip1 = Uy T+ 5 (k12 + 2k, + 2k35 + ky o)

1
Uziyp = Uz T+ g [k1,3 + 2k2,3 + 2k3,3 + k4,3]

Ji1 = hvz,i
Ji2 = hv3,i
J13 = hlp(X)vs; + q(X)v,; + 1(x)vy ;]
. 1,
J21 = h[vz,i + 511,2]
. 1,
J2,2 = hlvs; + 511,3]
| A 1 h 1 h
J23 = h[p(x + E)(V&i + 511,3) +q(x+ E)(Vz,i + Eh,z) +r(x+ E)(vl,i
1,
+ 511,1)]
, 1,
J31 = hlvy,; + E]z,z]
, 1,
J32 = hlvs; + 512,3]
| h 1 h 1 h
J33 = hlp(x + E)(v&i + 512,3) +q(x + E)(vz,i + E]z,z) +r(x + E)(vu
1,
+ ?12,1)]
Jaq = h[vz,i + §j3,2]

. 1,
Ja2 = h[vs,i + 513,3]

Ja3 = hlp(x + h)(v3,i +j3,3) +q(x+ h)(vz,i +j3,2) +r(x+ h)(v1,i
+ J3,1)]

1 . . .
Viit1 = V1, + g []1,1 + 2]2,1 + 2]3,1 +J4,1]

1 . . .
Vyiv1 = Uy + g []1,2 + 2j,, + 2j3, +]4,2]

1. . . .
V3it1 = V3; + g []1,3 + 2j,3 + 2j33 +]4,3]

Step 5:

Set Wl,O =
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N Yy —Un
20 Uin
Step 6:

Fori=0,1,..,N
Set Wll == ul’l’ + WZ’Ovl’i
W2, =uy; + wy o0y

W3, =uy; + wy oy

Step 8:

Fori=0,1,..,N

Set

xp=a+ix*xh

err; = abs(Exact; — W1;)
Output( x; , Exact; ,W1; ,err;)

Stop (The process is complete)

7.2. Finite Difference Method Algorithm

Algorithm 7.2
To approximate the solution of the following third order boundary value
problem:
" =p)y" +q)y" +r(x)y +sx),a<x <b,
y(@) = a,y'(a) =B, y(b) =y

Inputs:

Endpoints a and b — boundary conditions «,f andy — number of

subintervals N.
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Outputs:

x; , W;: Approximated value,Exact; and Error; for eachi =1,2,....,N +

1

Step 1:

Step 2:
Fori=1,2,..,N+1dostep3and4

Step 3:

Set x=a+(i—1)*h;

Step 4:

Seta; =1-— gp(xi)
by =—2—h*q(x;)
=1+ gp(xi)

d; = —h%r(x;)

e; = h?s(xy)

Step 5:
Define the five diagonals A1, B1,C1, D1, k1 for the matrix A

Step 6:

h
SetAl; = ¢y, Alyyyq = > Alyniz = Ay

h
Bll = E,BlZN = ay



Clyy = E:C12N+1 = byy1

kll = 0, klz = 0, klZN—l =1

Step 7:
Fori=2,3, ..., N set

A12i = bi

Step 8:
Fori=1,3,5,...,2N — 3 set

Bliyz = —-

2

Step 9:

Fori =2,4,6,..,2N — 4 set
—h

Cliv, ==

Step 10:
Fori=1,2,...,N — 1 set
Clz(i—1)+3 =diy1

Dlz(i—1)+2 = q;

k112 = Ciyo

Step 11:
Definef, set

_ h
f1—a_§,3

f2=e _}591,8_511“
f3=“+§ﬁ



fa=e;—cp
fon+1 =Y

fon+2 = eny1 — dytrY

Step 12:
Fori=5,7,..,2N — 1 set

fi=0

Step 13:
Fori =6,8,...,2N set

fi=e

Step 14:
Findy = inv(4) = f

Step 15:
Set Wl = Qq, WN+1 =Y
Fori=2,3,..,N set

Wi =21

Step 16:
Fori=1,2,..,N+ 1 Set

x;=a+({—1)*xh

err; = abs(Exact; — W;)

Output( x; , Exact; ,W; ,err; )
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Step 17:

Stop (The process is complete)

7.3. Pade Approximation (2,2) Method Algorithm

We will test Pade Approximation (2,2) and (3,3) for solving linear third
order two-point boundary value problem.

The following algorithm implements the Pade Approximation Method (2,2)
for solving linear third order two-point boundary value problem using

Matlab software.

Algorithm 7.3
To approximate the solution of the following third order boundary value
problem:
Y +p)y" +qx)y" +r(x)y =skx),a<x <b,
y(@) = ay'(a) =p,yb) =y

Inputs:

Endpointsa andb - boundary conditions a,f andy — number of

subintervals N.

Outputs:

x; , W;: Approximated value,Exact; and Error; foreachi =1,2,....,N

Step 1:
h_b—a

N
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Step 2:
Fori=1,2,..,N+1dostep3and4

Step 3:
Set

x=a+({—1)*h

Step 4:

Set
2

h !
a1, =1+ Epi + E(_Pi + piz —q;)

h h? .
A12 = 5 4i + 1 (—q; + iq; —11)
h 2
A13 = 5T + 1 (=7 +piry)
h h?
Aiz1 = 5~ 5P
hZ
Ajz2 =1 EQi
h2
ai2,3 Eri
hZ
a;s1 E
al,3,2 - = 2
aj33 =1

2
b1, =-1+ 2P~ E(_Pf +p7 — )

ho R
b1, = ST (—q; + piq; — 11)
h !
bi13 = STi— 1o (=1 +poi1y)
h h?
biz1 = ) + ?Pi
bz, =—-1+ EQi
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h2

bi,2,3 = Eri

h2
bi,3,1 = _E

h
bi,3,2 = _E
bizs = —1
Step 5:

Fori=1,2,..,N dostep 6

Step 6:

Set
2

h h , ,
Cia =75 (s; +5i41) + 1z (—pisi +5; + Pit1Si+1 — Si+1)
hZ
Ciz = E (Si — Si+1)

iz =0

Step 7:

Define the five diagonals a, b, c,d, e, f, k, | for the matrix A and the vector

column C.

Step 8:

Fori=1,2,...,N set
Azi-2) = Aj+1,1,1
Aki-1) = Aj+1,2,2

azi = Ai4+1,3,3

b(3i—2) = dj+11,2

b(3i—1) = 0aj+12,3



C3i-2) = Aj+121
C3i-1) = 4j+1,3,2
d(si—z) =0ai+1,1,3

€3i-2) = Ai+1,31

Step 9:

Fori=1,2,..,N —1set
C3i = bit1,13

€@3i-1) = bit11,2

e3; = bit123

f(3i—2) = bi+1,1,1

f(3i—1) = bi+1,2,2

f3i = biy133

k(3i—2) = bi+1,2,1

k(3i—1) = bi+1,3,2

l(3i—2) = bi+1,3,1

Step 10:
Fori=1,2,..,N — 2 set
C3i+1 = Cit11

C3iv2 = Cit1,2

Csi43 = Ci+1,3

Step 11:
Set



Aizy = b1,1,1

Aysy = b1,2,1

Azsy = b1,3,1

Azy_23v =0

Azy_13v =0

Aznzn =0

Ci =11 — b1128 — b113
Cy =cC12 —b1z28 — b1p3
C3 =c13 —b1328 —bi33
C3n—2 = Cng1 — Ana3Y
C3n—1 = Cno — Ano3Y

Gy = Cn3 —Aan33Y

Step 12:
[, u] = lu(A4)
t=inv()*C

y =inv(u) =t

Step 13:
Set

Step 14:
Fori=1,2,...,N — 1 set

Wiv1 = ysi

72



73
Step 15:
Fori=1,2,..,N+ 1 Set
x;i=a+({—1)*h
err; = abs(Exact; — W;)
Output( x; , Exact; ,W; ,err;)

STOP. (The procedure was successful.)

7.4. Pade Approximation (3,3) Method Algorithm

The following algorithm implements the Pade Approximation (3,3) Method
for solving linear third order two-point boundary value problem using
Matlab software.
Algorithm 7.4
To approximate the solution of the following third order boundary value
problem:
" +p()y" +q@)y" +r(x)y =sx),a<x <b,

y(@) = a,y'(a) =B, y(b) =y

Inputs:

Endpointsa and b — boundary conditions «,f andy — number of

subintervals N.

Outputs:

x;,W;: Approximated value, Exact; and Error; for each i=

1,2,.. ,N+1
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Step 1:
b—a

N

Step 2:
Fori=1,2,..,N+1dostep3and4

Step 3:
Set

x=a+({—1)*h

Step 4:
Set
h 2 h3
a1 =1+ SDi + E(—Pf +pt—q;)— m(—PiS +2piq; — 1 — Dy
+ 3pipi — 2q;)
h h? . h3 ) ) iy
Aj12 = ECIi + 10 (—q; +piqi — 1) — 120 (—piqi +piri + 97 — q;
+2piq; — 21y +p;q;)
h hz ! h3 2 144 ! !
g3 =57+ 1o (—r{ + pimy) — 120 (—piri +qir; — 1y +2pi7i + oy
hoR? RS ,
Aiz1=—5—7=Pi—=-W0i“—q —p;)
2 10 120
hZ 3
Ajzz =1 —10% _ﬁ(pi(fh — 71— q;)
h? h3
Aj23 = _Eri ~ 120 (piri — 17)
h? h3
%31 =15 + 1207
h h3
a; 3,2 > + 120 %
h3
al33 1 +m7ﬂl
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h R h3 X ,
biga=-1+5pi— E(_pi +pf —q) - 120 P +2pidi —Ti — Py
+ 3pipi — 2q;)
h h? h3 .
bi12 = S~ ( q; +piq; —17) — 120( piq; + piri + 47 — q;

+ 2p;q; — 21{ + piq; )

h h2 14} !/ !/
bi1z = 57 —( T +pin) — 120( pir + qiry — 1 + 2piri + pir))
h h2 LGP
h !
h? h3
bi,2,3 = E 120 (plrl )
h? k3
bizr =—151F 1207
h k3

bis, = > + mqi
bi’3’3 _1 + FOT

Step 5:

Fori=1,2,..,N dostep 6

Step 6:
Set

_h 2 h? ,
Cia (Sl + Sl+1) + 10( i — DPiSi — l+1 + pl+1Sl+1) + 120( piS;

+ (p? — qi — 2p{)si + s{' — Di+1Sis1

+ (pi2+1 —qi+1 — 2pl+1)51+1 + 541
h? h3
Ci,Z 10 ( Sl+1) +—= 120 ( — DiS; + Sl+1 pi+1Si+1)

Ci,3 (SL + Sl+1)
120
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Step 7:
Define the five diagonals a, b, c,d, e, f, k, L for the matrix A and the vector

column C.

Step 8:

Fori=1,2,..,N set
Aki-2) = Aj+1,1,1
Azi-1) = Aj+1,2,2

az; = Aj+1,;3,3

b(3i—2) = Aj+1,1,2
b(3i—1) =0ai+12,3
C3i-2) = Aj+121
Ci3i-1) = Aj+1,3,2
d(3i—2) =0ai+1,1,3

€3i-2) = Ai+1,31

Step 9:
Fori=1,2,..,N —1set
C3i = biy113

€3i-1) = bit11,2

e3; = bi1123

f(3i—2) = biy1,11

f(3i—1) = bi+1,2,2

f3i = bit133

k(3i—2) = bi+1,2,1
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k(3i—1) = bi+1,3,2

l(3i—2) = bi+1,3,1

Step 10:
Fori=1,2,..,N — 2 set
C3i+1 = Cit11

C3i2 = Cit1,2

C3i43 = Cit1,3

Step 11:
Set

A1,3N = b1,1,1

A2,3N = b1,2,1

Azsy = b1,3,1

A3N—2,3N =0

A3N—1,3N =0

Aznsn =0

Ci =11 — b1120 — b113
Cy =12 —b1z28 — bip3
C3 =c13 —b1328 —bi33a
C3n—2 = Cng — Ana3Y
C3n—1 = Cn2 — An23Y

Gy = Cn3 —an33Y

Step 12:
[[,u] = lu(A)
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t=inv(l)*C

y =inv(u) =t

Step 13:
Set

Step 14:
Fori=1,2,..,N —1set

Wiv1 = Y3

Step 15:
Fori=1,2,..,N+ 1 Set

x;=a+({—1)*xh
err; = abs(Exact; — W;)
Output( x; , Exact; ,W; ,err; )

STOP. (The procedure was successful.)

7.5. Rational Chebyshev Approximation Method Algorithm

The following algorithm implements the Rational Chebyshev Approximation

Method for solving linear third order two-point boundary value problem using

the Matlab software.

Algorithm 7.5

To approximate the solution of the following third order boundary value

problem:

y" +p(x)y" +q(x)y +r(x)y =s(x),a <x < b,
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y(@ = ay'(a) =Byb) =y
Inputs:
Endpoints a and b — boundary conditions o, andy — number of

subintervals N, a; and b; fori = 0,1, 2, 3.

Outputs:

x; , W;: Approximated value,Exact; and Error; for each i =1,2,....,N +

Step 2:
Fori=1,2,..,N+1dostep3and4

Step 3:
Set

x=a+({—1)xh

Step 4:
Set

;11 = bo — bihp; + bzhz(piz —4q; — Pl’) + bsh®(=p; + 2piq; — 1 — /'
+3pip; — 24;)

Qi12 = —bihq; + bh*(piqi — i — q;)
+ b3h3(—'PiZCIi +piri + qf —qi' + 2piq; — 2r{ + piq;)

a;13 = —b hry + byh*(pyr; — 1) + bsh3i

(i1 = bih — byh?p; + b3h®(p? — q; — pi)
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Q22 = bo — b,h*q; + bsh*(—q; + piq; — 17)
Qi3 = —byh?ry + b3h® (=1 + pi1y)
i31 = byh* — b3h°p;
Q32 = bih — b3hq;
Qi33 = by — b3h°1;
bi11 = —ay+ a;hp; — azhz(piz —q; — p{) - a3h3(_pi3 +2piq; — 1y
—pi' +3pipi — 2q;)
bi12 = ayhq; — axh*(piqi — 1 — q;)
— a3h3(—Pi2ql' +piri +af —q;' +2pjq; — 2r{ + PiQ£)
b1z = arhr; — ah?(piri — 1)
- a3h3(—Pi2Ti +qir, — 1+ 2pir; + piri’)
bip1 = —aih + ah*p; — azh®(pf — q; — p;)
bi2 = —ay + axh?q; — azh®(—q; + p;q; — 17
bi23 = ah?r; — azh®(—r{ + p;1y)
bi31 = —ayh?* + azh’p;
b3, = —a;h + azh’q;

— 3
bi’3’3 —_ _ao + a3h Tl

Step 5:
Fori=1,2,..,N dostep 6

Step 6:
Set

Ci1 = h[=b;siy1 + a;5;] + h? [=by(—Dit+1Si41 + Si,+1) + a;(—p;s; + 5{)]
+h3 [_b3 ((Pi2+1 —qi+1 — 2p1{+1)5i+1 — Pi1Sip1 T Si’-’|-1)
+ a; (('Plz —q; — 2p;)s; — piSi + 5{')]
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Ci2 = hz[_b25i+1 + a,s;]
+ h3[=b3(=pi+1Si41 + Sip1) + az(=p;is; +5))]

iz = h®[—b3s;41 + azs;]

Step 7:

Define the five diagonals a, b, c, d, e, f, k, | for the matrix A and the vector

column C.

Step 8:
Fori=1,2,..,N set
Ai-2) = Ai+1,1,1
Azi-1) = Aj+1,2,2

az; = Aj+1,;3,3

b(3i—2) = Aj+1,1,2
b(3i—1) =0aij+12,3
C3i-2) = Aj+121
Ci3i-1) = Aj+1,3,2
d(3i—2) =0ai+1,1,3

€3i-2) = Ai+1,31

Step 9:
Fori=1,2,..,N — 1set
C3; = bi+1,1,3

€@3i-1) = bit11,2

e3; = bit1.2,3

f(3i—2) = bi+1,1,1
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f(3i—1) = bi+1,2,2
f3i = biv133
k(3i—2) = bi+1,2,1
k(3i—1) = bi+1,3,2

l(3i—2) = bi+1,3,1

Step 10:
Fori=1,2,..,N — 2 set
C3i+1 = Cit11

C3i+2 = Civ1,2

C3i43 = Cit1,3

Step 11:
Set

A1,3N = b1,1,1
A2,3N = b1,2,1
A3,3N = b1,3,1
A3N—2,3N =0
A3N—1,3N =0
A3N,3N =0

C, = €11 — b1,1,2,3 - b1,1,3“

0
Il

Ci2 — b1,2,zﬁ - b1,2,3“
C; = C1,3 — b1,3,2ﬂ - b1,3,3“
C3y—p2 = Cna1 — Qn,1,3Y

C3y—1 = Cn2 — Qn23Y
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C3y = Cy3 — ayn33Y

Step 12:
[[,u] = lu(4)
t=inv(l)*C

y =inv(u) xt

Step 13:
Set

Step 14:
Fori=1,2,...,N — 1 set

Wiv1 = Y3

Step 15:
Fori=1,2,..,N+ 1 Set

x;=a+({—1)*xh

err; = abs(Exact; — W;)

Output( x; , Exact; ,W; ,err;)

STOP. (The procedure was successful.)

Quartic B-Spline Method Algorithm

The following algorithm implements the Quartic B-Spline Method for
solving linear third order two-point boundary value problem using the

Matlab software.
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Algorithm 7.6
To approximate the solution of the following third order boundary value
problem:
y"=p)y" +qx)y" +r(x)y +s(x),a<x <b,
y(@ = ay'(a) =Byb) =y

Inputs:

Endpoints a and b — boundary conditions o,3andy — number of

subintervals N.

Outputs:

x; , W;: The approximated value at the point X;.
x;, Wd;: Approximated first derivative at x;Exact; and Error; for

eachi=1,2,.... N+1

Step 1:
Set

b—a
h =—=
N

Step 2:
Fori=1,2,..,N+1dostep3and4

Step 3:
Set
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x=a+(({—1)*h

Step 4:
Set
h h? h3
i=-—1 _Epl 6 —q; — 24
h h? 11h3
b; = 3+t 4~ — "

h h? 11h3

d;==3+5pi— 0~ 5, Ti
P T

i 2Pi T g i T g
ki=h3Si

Step 5:
Define the matrix M of size (N + 4) = (N + 4) and the vector matrix F of

size N + 4.
Step 6:
Set
11 11 1

A1,1 = ﬁrALz = ﬁ;ALs = ﬁ»AM = ﬁ

-1 -1 1 1
A2,1 = a;Az,z = ﬁ:Azs = ﬁ:AzA = a

11 11

An+4,n+1 = ﬁiAn+4,n+2 = ﬁ1A2+4,n+3 = ﬁrAn+4,n+4 = ﬁ

Fi=a,F,=3F .=V

Step 7:
Fori=1,2,..,N + 1set

Fiyp =k
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Step 8:
Fori=1,2,...,N + 3 set
Fori=1,2,..,N + 3, then check

Ifi =jandi > 3 set

Elseifi —j = 2 set
Ay =a;,
Elseifi—j=1or (i #2&j +#1)set
Ajj=Dbi
Elseifi —j=—1andi > 3 set
Ajj=e_,
End if clause
End for loop
End for loop

Step 9:

Ser An43n+a = €n+1

Step 10:

Initialize Gauss Seidel method, define D, L and U matrices all of size (N +

4) x (N + 4).

Step 11:
For i=12,..,N+4 set

forj=1,2,..,N + 4 check

Ifi =j set



Else if i > j set
Else if i > j set

End if clause
End for loop
End for loop

Step 12:
Set

Tys =inv(D —L)*U
Cys = inv(D — L) xF

Step 13:
Fork=1,2,..,20 set

c =Ty *c+ Cys

Step 14:
Fori=1,2,..,N+ 1 Set

xi=a+({—1)xh
W, = %(ci + 11cjpq + 11ci45 + ci43)Wd,;

= % (—c; — 3¢i1q1 + 3Ci1p + Cita)
err; = abs(Exact; — W;)

Output( x; , Exact; ,W; ,err;)
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Step 15:
STOP. (The procedure was successful.)

7.6.  Numerical Examples and Results

To Test the efficiency and effectiveness of the numerical methods that have
been developed and studied in previous chapters, we will test the following
examples:

7.7.1 Example 1

Consider the following third order linear boundary value problem:

y'"(x) — 2x%y" + 3xy’ + 5x%y = e?*(3x3 —x*—-5x—4) , on the
interval 0 < x <1

With the following boundary conditions: y(0) =1,y'(0) =1,y(1) = 0.
The exact solution is y(x) = e?*(1 — x) [3], the following tables represent
the results that have been obtained after solving example 1 using the
previous methods.

Linear Shooting Method for solving example 1

Using Linear Shooting method in algorithm 7.1 for solving example 1, the

following table represents the numerical and the exact results for N = 10 :



Table 7. 1: the exact and the approximated solutions for x; where i =

89

01,..,10
X; Exact; /4%, Err;
0.0 1.0 1.0 0.0
0.1 1.099262482344153 | 1.099265828452194 3.3%x107°
0.2 1.193459758113016 | 1.193466184474031 6.4 x107°
0.3 1.275483160273356 | 1.275492310188409 91x10°°
0.4 1.335324557095481 | 1.335335953325634 1.1%107°
0.5 1.359140914229523 | 1.359153919449132 1.3%107°
0.6 1.328046769094619 | 1.328060530165123 1.3%x10°°
0.7 1.216559990053402 | 1.216573356253661 1.3%107°
0.8 0.990606484879023 | 0.990617884322122 1.1%107°
0.9 0.604964746441295 | 0.604971994973641 7.2%10°°
1.0 0.0 0.0 0.0
Maximum Error = 1.3 * 107°
1.4 =
> — -\\\
1.2} P e \
14 %
08} ‘\,\\
sEl \
0.4F
0.2f Exact Solution I"I-
Approximated Solution by Shooting Method \,l
DD D.I1 D.‘2 0.13 D.Iti U.‘5 D,IE D.IF’ D,IB D.IQ 1

Figure7. 1: The exact and the approximated solutions for example 1 using Linear Shooting

Method

Finite Difference Method for solving example 1

Using Finite Difference method in algorithm 7.2 for solving example 1, the
following table represents the numerical and the exact results for N = 10

and for N = 20 :



Table 7. 2: the exact and the approximated solutions for x; where i =

90

0,1,..,10

X; Exact; Err;,h = 0.1 Err;,h = 0.05
0.0 1.0 0.0 0.0
0.1 |1.099262482344153 251074 6.4 x 107>
0.2 |1.193459758113016 3.5%107* 9.0 107>
0.3 |1.275483160273356 3.1x107* 8.0 * 107°
0.4 |1.335324557095481 1.3%107* 3.5%107°
0.5 |[1.359140914229523 1.5%107* 3.8x107°
0.6 |1.328046769094619 6.3 107* 1.3x107*
0.7 |1.216559990053402 9.0 107* 2.2%107%
0.8 [0.990606484879023 1.1+ 1073 2.8+ 107*
0.9 |0.604964746441295 9.6 x107* 2.4 %1074
1.0 0.0 0.0 0.0

The Maximum Error for N = 10 and N = 20 equal 1.3 *x 1073, 2.8« 10~*

respectively.
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06

0.4

02

Exact Solution

< Approximated Solution by Finite Difference \,.

D 1 1 1 1 1 1 1 1 1 é)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure7. 2: The exact and the approximated solutions for example 1 using Finite Difference

Pade Approximation (2,2) Method for solving example 1

Using Pade Approximation (2,2) in algorithm 7.3 for solving example 1,
the following table represents the numerical and the exact results for N =

10:
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Table 7. 3: the exact and the approximated solutions for x; where i =

01,..,10

X; Exact; Wi, Err
0.0 1.0 1.0 0.0
0.1 1.099262482344153 1.099262637328588 1.5% 1077
0.2 1.193459758113016 1.193459146746167 6.1 %1077
0.3 1.275483160273356 1.275481055696274 2.1%10°°
0.4 1.335324557095481 1.335320481926064 4,07 » 107°
0.5 1.359140914229523 1.359134711390886 6.2 % 107°
0.6 1.328046769094619 1.328038692822045 8.07 x 107°
0.7 1.216559990053402 1.216550822459394 9.16 * 10~°
0.8 0.990606484879023 0.990597684447372 8.8%107°
0.9 0.604964746441295 0.604958635681406 6.1 x10°°
1.0 0.0 0.0 0.0
Maximum error=9.16 * 1076
1 " 4 T T ; ";‘l’#f’_-;'___i__‘-‘\__\_‘q__‘;—\\
12} ##,4-/-/ \*\‘ B
S %
1_:’/./ \-k .
08} ‘ :
\\\I
06t YA
\
041 Il'\ 1
D2F Exact Solution \I"\\ o
+  Approximated Solution by Pade (2,2) '\\
DU 0}1 U.I2 U.I3 D.Ill U.IE U.IB 04[7 U4I8 Uf9 ‘

Figure?. 3: The exact and the approximated solutions for example 1 using Pade (2,2)

Pade Approximation (3,3) Method for solving example 1
Using Pade Approximation (3,3) method in algorithm 7.4 for solving
example 1, the following table represents the numerical and the exact

results for N = 10 :



Table 7. 4: the exact and the approximated solutions for x; where i =

92

0,1,..,10
X; Exact; Wi, Err;
0.0 1.0 1.0 0.0
0.1 1.099262482344153 | 1.099262482230163 1.1 1071
0.2 1.193459758113016 | 1.193459758250832 1.3 % 10710
0.3 1.275483160273356 | 1.275483160952334 6.7 * 10710
0.4 1.335324557095481 | 1.335324558507911 1.4 %107°
0.5 1.359140914229523 | 1.359140916444255 2.2 %107°
0.6 1.328046769094619 | 1.328046772023375 2.9%107°
0.7 1.216559990053402 | 1.216559993407880 3.3%x107°
0.8 0.990606484879023 | 0.990606488116544 3.2%107°
0.9 0.604964746441295 | 0.604964748696508 2.2%107°
1.0 0.0 0.0 0.0
Maximum error= 3.3 * 107°
1.4 T —— 7
12f P o \ﬂ\ -
A %
19" \}.5{‘ :
08t ; 4
06t lgt .
‘,\I
0.4} b
02r Exact Solution l.\"\ ij
£ Approximated Solution by Pade (3,3) \‘-.
DU 0.11 0.12 0.13 0.14 0.15 [].IB 0.17 U.IS 0.19 T

Figure7. 4: The exact and the approximated solutions for example 1 using Pade Approximation
(3,3) Method

Rational Chebyshev Approximation Method for solving example 1
Using Rational Chebyshev method in algorithm 7.5 for solving example 1,
the following table represents the numerical and the exact results for N =

10 :



Table 7. 5: the exact and the approximated solutions for x; where i =

93

01,..,10
X Exact; /4% Err;
0.0 1.0 1.0 0.0
0.1 1.099262482344153 | 1.099262399475198 8.2 1078
0.2 1.193459758113016 | 1.193459542032773 2.1%1077
0.3 1.275483160273356 | 1.275482772625478 3.8x1077
0.4 1.335324557095481 | 1.335323976618905 5.8% 1077
0.5 1.359140914229523 | 1.359140143653942 7.7 « 107
0.6 | 1.328046769094619 | 1.328045844367949 | 9.2+ 107
0.7 |1.216559990053402 | 1.216558992590456 | 9.9 * 107
0.8 | 0.990606484879023 | 0.990605557684333 | 9.2 % 10~/
0.9 |0.604964746441295 | 0.604964115140274 | 6.3 % 10~/
1.0 0.0 0.0 0.0
Maximum error=9.9 = 10~7
1.4 T =
- g L.
12} i %

. .
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Approximated Solution by Chebyshev Approximation
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Figure7. 5: The exact and the approximated solutions for example 1 using Chebyshev

Approximation Method
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Quartic B-Spline Method for solving example 1

After using Quartic B-Spline method in algorithm 7.6 for solving example

1, the following table represents the numerical and the exact results for

N =10:

Table 7. 6: the exact and the approximated solutions for x; where i =

0,1,..,10
X; Exact; Wi, Err;
0.0 1.0 1.0 0.0
0.1 |1.099262482344153 | 1.099418824326585 1.5%107*
0.2 |1.193459758113016 | 1.194050846836718 5.9 % 1074
0.3 |1.275483160273356 | 1.276726270264298 1.2 %1073
0.4 | 1.335324557095481 | 1.337355898391887 2x1073
0.5 |1.359140914229523 | 1.361988520776878 2.8%1073
0.6 |1.328046769094619 | 1.331593386424681 3.5%1073
0.7 |1.216559990053402 | 1.220491960777112 3.9x%1073
0.8 |0.990606484879023 | 0.994342933228970 3.7 %« 1073
0.9 |0.604964746441295 | 0.607558821690503 2.5% 1073
1.0 0.0 0.0 0.0
Maximum error= 3.9 x 1073
1.4 T —% T
e T “___—_H'\,\
12t R R
i N
i \\,
\.\’-4
08} 5
06t \\.
‘.\\
0.4 !
02r Exact Solution l.'\'—
Approximated Solution by Quartic B-Spline '\.‘I
DU 0.11 0.12 0.13 0.14 0.15 D.lB 0.17 0.18 0.19 1

Figure7. 6: The exact and the approximated solutions for example 1 using Quartic B-Spline
Method
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Figure7. 7: The exact and the approximated solutions for example 1 using the numerical

methods

7.7.2 Example 2
Consider the following third order linear boundary value problem:
y'""(x) — xy(x) = e*(x3 — 2x? — 5x — 3),x € [0,1]
With the following boundary conditions: y(0) =0,y'(0) =1,y'(1) =
—e , Where the exact solution is y(x) = x(1 — x)e* [1].
Linear Shooting Method for solving example 2
Consider
Yy =p@)y"+qx)y'+r(x)y+sx),a<x<bh (7.7.1)
y@=a,y(@=8,y'(b)=vy (7.7.2)
The previous linear third order boundary value problem will be turn into
two initial value problem, as
u" =p)u”" +q)u’ +r(x)u+sx),a<<b (7.7.3)
u(a) =a,u’(a) =0,u""(a) =0 (7.7.4)
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V' =p)v" +qx)v' +r(x)v,a<x<bh (7.7.5)
v(a) =0,v(a)=1,v"(a) =0 (7.7.6)
Let z(x) is the solution for equation (7.7.1) with its boundary conditions in
(7.7.2), and u(x) and v(x) are the solution for the two initial value
problem (7.7.3) and (7.7.5) with their given boundary conditions, and
define that
z(x) = u(x) + 6v(x) (7.7.7)

_ y —u'(b)
z(x) =u(x) + Tb)v(x) (7.7.8)

Then z(x) is the solution to the third order linear boundary value problem

(7.7.1). To see this, first note that

z'(x) =u'(x) + ’(bg( )) v'(x)
z'"(x)=u"(x) + Tb)v”(x)
And
27 () = w0 () + L) (7.7.9)

v'(b)
Substituting equation (7.7.3) and (7.7.5) in equation (7.7.9), we get that

_’b
z”@»=mwm"+«@w+r@w+sun+17%%%mmw'

+ q()v' +r(x)v]

—u' —u'(b
R I TR RIREY

Y= u’(b)
+ r(x) [u + W

z"(x) =px)z" +q(x)z' + r(x)z + s(x)

v] + s(x)

Moreover,

W () R AION

z(a) = u(a) + 7 (b) v(a),z(a) = 7 (0)
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The same

2/(b) = (b) + L= D)

WV’(b),Z’(b) =u'(b)+y—-u'(b) =y

So equation (7.7.8) is a solution for the third order linear boundary value
problem (7.7.1) and boundary conditions (7.7.2).

After using Linear Shooting method in algorithm 7.1 for solving example
2, the following table gives the numerical and the exact results for N = 10:

Table 7. 7: the exact and the approximated solutions for x; where i =
0,1..,10

X Exact; Wi, Err;

0.0 0.0 0.0 0.0

0.1 0.099465382626808 | 0.099464021880689 1.3 %1077
0.2 0.195424441305627 | 0.195421705670486 2.7 %1077
0.3 0.283470349590961 | 0.283466232021989 4.1 %1077
0.4 0.358037927433905 | 0.358032432697738 5.4 %107
0.5 0.412180317675032 | 0.412173468394630 6.8 10°°
0.6 0.437308512093722 | 0.437300356493690 8.1 %107
0.7 0.422888068568800 | 0.422878690368993 9.3%107°
0.8 0.356086548558795 | 0.356076079559584 1.0 * 107>
0.9 0.221364280004125 | 0.221352916022185 1.1%107°
1.0 0.0 -0.000011979046890 | 1.19 x 107>

Maximum error= 1.19 = 107>
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Figure?. 8: The exact and the approximated solutions for example 2 using Linear Shooting

Method

Finite Difference Method for solving example 2

Before using the algorithm 7.2 we must modified it according to the given

boundary conditions in example 2, so we get that

Wo =a,Zg=f,zy =Y

Am =k
where
'l1 gl [0 0
O Co 0 do
0 0] 1 7“ [0 o]
0 0 d; b 0 a;
A=
-h
ool
0 on—g dn-1

7] 0 0]
by_1 0 0
—h [1 0
2

CN dN aN_
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[l e

7] 5

and m = [}Z]ﬂ and k = Z
2y sy
[F6R] I

Asr = a—%ﬁ,rl = a+§ﬁ,rN =§y, butr; =0foralli =2,3,...,N —

1

And sc = e. — bof§ —doax,5; = €, — 18, SN—1 = €y—1 — AN—1Y ,SN =

ey — byy,buts; = e;foralli =2,3,...,N -2

After using Finite Difference method in algorithm 7.2 for solving example

2, the following table represents the numerical and the exact results for

N =10and N = 20:

Table 7. 8: the exact and approximated solutions for x; where i =

0,1,..,10

X; Exact; Err;,h = 0.1 Err;,h = 0.05
0.0 0.0 0.0 0.0
0.1 |0.099465382626808 3.3x107* 8.3x107°
0.2 |0.195424441305627 8.4x*10* 21x10"*
0.3 ]0.283470349590961 1.5%1073 3.8 107"
0.4 |0.358037927433905 23%1073 5.9 x10~*
0.5 [0.412180317675032 3.3%x1073 8.5%107*
0.6 |0.437308512093722 45%1073 1.1x1073
0.7 |0.422888068568800 591073 1.4 %1073
0.8 |0.356086548558795 7.5%1073 1.8 %1073
0.9 |0.221364280004125 9.2+ 1073 2.2%1073
1.0 0.0 0.0112 2.8%1073

Maximum error for N = 10 and N = 20 equal 0.0112 and 2.8 * 1073

respectively.




100

0.45 T
.
0.4f //0 O\\ _
035F /0 \a\ 1
03} P \ 1
,/G Y,
025+ / \ i
o
02F & é?ﬁ 4
i |
b \
015 / Yoo
/ ‘\'\‘
01t /d \
/
005t / 44
\
DCé/ Exact Solution \l
QO Approximated Solution by Finite Difference

_005 1 1 1 1 1 1 1 1 1

1] o1 02 03 04 05 0B 07 08 08 1

Figure7. 9: The exact and the approximated solutions for example 2 using Finite Difference
Method

Pade Approximation (2,2) Method for solving example 2

For the given boundary conditions in example 2, the algorithm 7.3 will be

updated as
0 b0,1,1 0 an 1,1 0 an 1,3
BO =10 b0,2,1 0 and AN+1 = aN,2,1 0 aN,2,3
0 b0’3’1 O aN,3,1 0 aN,3,3
And

Ky =cy1—an12lin

Ks =cy2 — a2l n

Ke = Cy3 — a3l
After using Pade Approximation (2,2) method in algorithm 7.3 for solving
example 2, the following table represents the numerical and the exact

results for N = 10 :
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Table 7. 9: the exact and approximated solutions for x; where i =

01,..,10
X; Exact; /4% Err;
0.0 0.0 0.0 0.0
0.1 | 0.099465382626808 | 0.099465624667358 2.4 %1077
0.2 | 0.195424441305627 | 0.195425003027445 561077
0.3 | 0.283470349590961 | 0.283471326653904 9.7 %1077
0.4 | 0.358037927433905 | 0.358039436258280 1.5%107°
0.5 | 0.412180317675032 | 0.412182498655699 2.1%107°
0.6 | 0.437308512093722 | 0.437311533377447 3.0« 10°°
0.7 | 0.422888068568800 | 0.422892130502515 4.0 10°°
0.8 | 0.356086548558795 | 0.356091888936601 5.3 %107
0.9 | 0.221364280004125 | 0.221371180264582 6.9 %« 107°
1.0 0.0 0.000008415014490 8.4 x10°°
Maximum error = 8.4 * 107°
0.45 . —= "‘“x-;
0.4r /+ \\\
A
035t Fa pt
P4 Y
03t +/ \"\\
025} // "\
V4 it
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015+ /“/ \
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005k /'/ Exact Solution \ﬁ'._
/,-'/ +  Approximated Solution by Pade (2,2) l"-.ﬂ
001 02 03 04 05 06 07 08 09

Figure7. 10: The exact and the approximated solutions for example 2 using Pade
Approximation (2,2) Method

Pade Approximation (3,3) Method for solving example 2

For the given boundary conditions in example 2, the algorithm 7.4 will be

updated as
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0 b0,1,1 0 an1,1

By =10 bgz1 0] and Ay = |21

0 bo,3,1 0 an 31

ky = Cni1 — An,12Up N
ks = Cn2 — An22Up N

ke = Cn3 — An32Up N

0 ayi3
0 ayzs3
0 an 3,3

After using Pade Approximation (3,3) method in algorithm 7.4 for solving

example 2, the following table represents the numerical and the exact

results for N = 10 :

Table 7. 10: the exact and the approximated solutions for x; where i =

01,..,10

Xi Exact; Wi, Err;

0.0 0.0 0.0 0.0

0.1 | 0.099465382626808 | 0.099465437841428 5.5% 1078
0.2 | 0.195424441305627 | 0.195424662234985 221077
0.3 | 0.283470349590961 | 0.283470846757753 5.2 1077
0.4 | 0.358037927433905 | 0.358038811454920 49 %1077
0.5 | 0.412180317675032 | 0.412181699415514 1.3%107°
0.6 | 0.437308512093722 | 0.437310502937840 1.9%107°
0.7 | 0.422888068568800 | 0.422890/80839658 2.7%10°°
0.8 | 0.356086548558795 | 0.356090096121791 3.5%107°
0.9 | 0.221364280004125 | 0.221368779088166 4.4 %10°°
1.0 0.0 0.000005275790723 5.15%10°°

Maximum error=5.15 = 107°
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Figure7. 11: The exact and the approximated solutions for example 2 using Pade
Approximation (3,3) Method

Rational Chebyshev Approximation Method for solving example 2

For the given boundary conditions in example 2, the algorithm 7.5 will be

updated as
0 b0,1,1 O
BO = O b0,2,1
0 b0’3’1 O
And
k4 ==
k5 =
k6 =

an 1,1

Of and Ayy1 = |aANn21

an 3,1

Cn1 — An12Ug N
Cn2 — Anp22Up N

Cn3 — An32Up N

0 an 1,3
0 an 2,3
0 an 3,3

After using Rational Chebyshev Approximation method in algorithm 7.5

for solving example 2, the following table represents the numerical and the

exact results for N = 10 ;
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Table 7. 11: the exact and approximated solutions for x; where i =

01,..,10
X Exact; /4%, Err;
0.0 0.0 0.0 0.0
0.1 0.099465382626808 | 0.099465290939128 91x%10°8
0.2 0.195424441305627 | 0.195424326064729 1.1 %1077
0.3 | 0.283470349590961 | 0.283470290095864 5.9 % 1078
0.4 | 0.358037927433905 | 0.358038016475043 8.9x10°8
0.5 0.412180317675032 | 0.412180664286605 3.4 %1077
0.6 0.437308512093722 | 0.437309244823395 73 %1077
0.7 | 0.422888068568800 | 0.422889339372624 1.2 %x107°
0.8 0.356086548558795 | 0.356088537448285 1.9+ 10°°
0.9 0.221364280004125 | 0.221367200595080 2.9 %10°°
1.0 0.0 0.000003814283018 3.8%x107°
Maximum error= 3.8 * 10~°
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Figure7. 12: The exact and the approximated solutions for example 2 using Rational

Chebyshev Approximation Method

Quartic B-Spline Method for solving example 2
For the given boundary conditions in example 2, we get that

y(a) = a will be approximated as S(x,) = a,sofori =0

1
ﬁ(c_4 +11lc_ 3+ 11lc_,+c_) =a (7.7.10)
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y'(a) = B will be approximated as S’ (x,) = ,sofori =0
1

a(—c_4 —3c_3+3c_,+c_1)=p (7.7.11)
y'(b) = y will be approximated as S'(x,) =y, so for i = n, we get that
1
a(—cn_4 —3cp3+3ch2+Cro1) =Y (7.7.12)

Then,
a;Ci_4 + bici_3+dic;_, +eici_1=k;,i=01,..,n (7.7.13)
Equations (7.7.10), (7.7.11), (7.7.12) and (7.7.13) form a linear system with
n + 4 unknowns ¢; fori = —4,-3,..,n—2,n—1
Ac=F (7.7.14)
Where F is a vector matrix of sizen + 4, where Fy =, F, = [, Fpiu =V
and

Fl+3 == kl’l = 0,1, ,Tl

1 11 11 1 0 0
24 24 24 24 a
-1 -1 1 1 0 8
6h 2h 2h 6h k
Ao bO dO € 0 ko
0 a, bl dl €1 !
A= . , F =
. . . . 0 k,
0 a, b, d, e, |y
0 0 -1 -1 1 1
L 6h 2h 2h 6h

This forms a linear system on N + 4 linear equations with N + 4 unknown

coefficients.

After using Quartic B-Spline method in algorithm 7.6 for solving example
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7.2, the following table represents the numerical and the exact results for
N=10:
Table 7. 12: the exact and the approximated solutions for x; where i =
0,1..,10

X; Exact; Wi, Err;
0.0 0.0 0.0 0.0
0.1 | 0.099465382626808 | 0.099518676503010 5.3 %1075
0.2 | 0.195424441305627 | 0.195627794661920 2.0 x107%
0.3 | 0.283470349590961 | 0.283904646003533 43 %1074
0.4 | 0.358037927433905 | 0.358765551436395 7.2%107%
0.5 | 0.412180317675032 | 0.413242188079152 1.0+ 1073
0.6 | 0.437308512093722 | 0.438720718504239 1.4 %1073
0.7 | 0.422888068568800 | 0.424638045977124 1.7 1073
0.8 | 0.356086548558795 | 0.358128703960093 2.0 %1073
0.9 | 0.221364280004125 | 0.223614960619726 2.2% 1073
1.0 0.0 0.002331664349832 2.3%1073
Maximum error= 2.3 x 1073
0.45 —
041 /// ‘\\
035} A
>4 \
03f P
025} / '\'\"
02} 4 \
D15+F // |
: //
01F e
//
nosf /
: ;’// Exact Solution \
Approximated Solution by Quartic B-Spline A
-D'DSU Uf1 U.I2 U,I3 D.Ill D.IE U.IB 04[7 U4I8 Uf9 1

Figure7. 13: The exact and the approximated solutions for example 2 using Quartic B-Spline
Method
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Figure7. 14: The exact and the approximated solutions for example 2 using all numerical

methods

7.7.3 Example 3

Consider the following third order linear boundary value problem:
y'"x)+yx)=(x—4)sinx+ (1 —x)cosx,x € [0,1]

With the following boundary conditions: y(0) =0,y'(0) = —-1,y'(1) =

sin 1, where the exact solution is y(x) = x(x — 1) sinx [3].

Linear Shooting Method for solving example 3

After using Linear shooting method in algorithm 7.1 for solving example 3,

the following table represents the numerical and the exact results for N =

10 :
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Table 7. 13: the exact and the approximated solutions for x; where i =

01,..,10

Xi

Exact;

W1,

Err;

0.0

0.0

0.0

0.0

0.1

-0.089850074982145

0.090522437138974

0.180372512121119

0.2

-0.158935464636049

0.181703523734594

0.340638988370643

0.3

-0.206864144662938

0.273674764096053

0.480538908758991

0.4

-0.233651005385190

0.366010665011299

0.599661670396489

0.5

-0.239712769302102

0.457754390210411

0.697467159512513

0.6

-0.225856989358014

0.547449809476706

0.773306798834720

0.7

-0.193265306171307

0.633179883141782

0.826445189313089

0.8

-0.143471218179905

0.712611225649064

0.856082443828968

0.9

-0.078332690962748

0.783044597578950

0.861377288541698

1.0

0.0

0.841470984807897

0.841470984807897

Maximum error= 0.86137

1

08

Exact Solution
v Approximated Solution by Shooting Method

06

0.4

02F

04

02k —

-0.4
0

Figure7. 15: The exact and the approximated solutions for example 3 using Linear Shooting

Method

Finite Difference Method for solving example 3

After using Finite difference method in algorithm 7.2 for solving example

3, the following table represents the numerical and the exact results for

N =10:
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Table 7. 14: the exact and the approximated solutions for x; where i =

01,..,10

X; Exact; Wi, Err;
0.0 0.0 0.0 0.0

0.1 | -0.089850074982145 | -0.089781284582543 6.8 107>
0.2 | -0.158935464636049 | -0.158827170975968 | 1.08 * 10~*
0.3 | -0.206864144662938 | -0.206745723337955 | 1.18 * 10~
0.4 | -0.233651005385190 | -0.233551944929851 9.9 % 107>
0.5 |-0.239712769302102 | -0.239662666246607 5%107°
0.6 | -0.225856989358014 | -0.225885513752673 2.8%107°
0.7 | -0.193265306171307 | -0.193402137491925 1.3 %107
0.8 | -0.143471218179905 | -0.143745951576379 | 2.74 % 10~*
0.9 | -0.078332690962748 | -0.078774713891856 | 4.42 * 10~*
1.0 0.0 -0.000638339391634 | 6.38x107*

Maximum error= 6.38 * 104

Figure7. 16: The exact and the approximated solutions for example 3 using Finite Difference

Method
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Pade Approximation (2,2) Method for solving example 3

After using Pade Approximation (2,2) in algorithm 7.3 for solving example

3, the following table represents the numerical and the exact results for

N =10:

Table 7. 15: the exact and the approximated solutions for x; where i =

01,..,10

X; Exact; Wi, Err

0.0 0.0 0.0 0.0

0.1 | -0.089850074982145 | -0.089850066525210 | 8.45 * 10~°
0.2 | -0.158935464636049 | -0.158935458683938 | 5.95 % 10~°
0.3 | -0.206864144662938 | -0.206864152098574 | 7.43 x 10~°
0.4 | -0.233651005385190 | -0.233651036672231 | 3.12 * 108
0.5 | -0.239712769302102 | -0.239712834140077 | 6.48 « 108
0.6 | -0.225856989358014 | -0.225857096337676 | 1.06 * 10~
0.7 | -0.193265306171307 | -0.193265462435046 | 1.56 * 10~
0.8 | -0.143471218179905 | -0.143471429092252 2.1%1077
0.9 | -0.078332690962748 | -0.078332959796112 | 2.68 % 10~
1.0 0.0 -0.000000327640807 | 3.27 « 1077

Maximum error=3.27 «* 10~7

0 :
\-.‘ Exact Solution r,-'f
\\ +  Approximated Solution by Pade (2,2) /
\

005F 4 ?

\ /

\‘ "J

\ #

+ i

01F \ /
kY /
by
015} 45 o
* E:
\\ ",/
LY /
hY 7*{
02+ 5%\ P
b o S
_025 1 1 1 1 1 1 1 1
0 0.1 0.2 03 04 05 06 07 08 09 1

Figure7. 17: The exact and the approximated solutions for example 3 using Pade
Approximation (2,2) Method
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Pade Approximation (3,3) Method for solving example 3

After using Pade Approximation (3,3) in algorithm 7.4 for solving example

3, the following table represents the numerical and the exact results for

N =10:

Table 7. 16: the exact and the approximated solutions for x; where i =

01,..,10

X; Exact; Wi, Err;

0.0 0.0 0.0 0.0

0.1 |-0.089850074982145 | -0.089850074981677 | 3.69 * 1013
0.2 |-0.158935464636049 | -0.158935464636163 | 1.14* 10713
0.3 | -0.206864144662938 | -0.206864144664671 | 1.73 * 1012
0.4 |-0.233651005385190 | -0.233651005389533 | 4.34 * 10~ 12
0.5 |-0.239712769302102 | -0.239712769309969 | 7.86 * 1012
0.6 |-0.225856989358014 | -0.225856989370212 | 1.21 % 10~ 1!
0.7 |-0.193265306171307 | -0.193265306188504 | 1.71 % 10”11
0.8 |-0.143471218179905 | -0.143471218202601 | 2.26 « 10~11
0.9 |-0.078332690962748 | -0.078332690991246 | 2.84 % 10”11
1.0 0.0 -0.000000000034380 | 3.43 = 101!

Maximum error= 3.43 x 10~ 11

04

—H

Exact Solution
Y £ Approximated Solution by Pade (3.3)

005F 4

01 \

015

0.2F

-0.25
0

Figure7. 18: The exact and the approximated solutions for example 3 using Pade
Approximation (3,3) Method




112
Rational Chebyshev Approximation Method for solving example 3
After using Rational Chebyshev in algorithm 7.5 for solving example 3, the
following table represents the numerical and the exact results for N = 10 :

Table 7. 17: the exact and the approximated solutions for x; where i =
0,1,..,10

X Exact; /4%, Err;
0.0 0.0 0.0 0.0
0.1 | -0.089850074982145 | -0.089850024655716 | 5.03 * 1078
0.2 | -0.158935464636049 | -0.158935416397238 | 4.82 * 1078
0.3 | -0.206864144662938 | -0.206864145816339 | 1.15* 107°
0.4 | -0.233651005385190 | -0.233651096722768 | 9.13 * 1078
0.5 |-0.239712769302102 | -0.239712983787528 | 2.14 % 1077
0.6 | -0.225856989358014 | -0.225857350922651 | 3.61 * 1077
0.7 | -0.193265306171307 | -0.193265828645045 | 5.22 * 1077
0.8 | -0.143471218179905 | -0.143471904378819 | 6.68 * 10~7
0.9 | -0.078332690962748 | -0.078333531954009 8.4x%1077
1.0 0.0 -0.000000974562619 | 9.74 1077
Maximum error=9.74 = 1077
0 7
\‘ Exact Solution I,""
‘\.. Approximated Solution by Chebyshev Approximation /
005} \
\\,
01} \ /;'
015} \"'\‘ /
-.\‘ /
\\k /‘/
ol \,\ /
e Vi
\_.%_H_ g
-0'250 0}1 D.I2 D,I3 D.IA 0s D.IB D‘[?' D‘IS 079 1

Figure7. 19: The exact and the approximated solutions for example 3 using Rational

Chebyshev Approximation Method
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Quartic B-Spline Method for solving example 3
After using Quartic B-Spline in algorithm 7.6 for solving example 3, the
following table represents the numerical and the exact results for N = 10 :

Table 7. 18: the exact and the approximated solutions for x; where i =
0,1,..,10

X Exact; /4%, Err;

0.0 0.0 0.0 0.0

0.1 | -0.089850074982145 | -0.089852249326635 | 2.17 * 107°
0.2 | -0.158935464636049 | -0.158944492680312 | 9.02 * 10~°
0.3 | -0.206864144662938 | -0.206884777759470 | 2.06 * 107>
0.4 | -0.233651005385190 | -0.233687555723246 | 3.65 * 10~°
0.5 |-0.239712769302102 | -0.239768602603939 | 5.58 * 10~°
0.6 | -0.225856989358014 | -0.225934028642328 7.7 x107°
0.7 |-0.193265306171307 | -0.193363554090052 | 9.82 % 10~°
0.8 |-0.143471218179905 | -0.143588305637233 | 1.17 * 10~*
0.9 | -0.078332690962748 | -0.078463459830076 1.3%107*
1.0 0.0 -0.000136127745933 | 1.36x10~*

Maximum error=1.36 = 104

0
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\ Approximated Solution by Quartic B-Spline
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1
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Figure7. 20: The exact and the approximated solutions for example 3 using Quartic B-Spline

Method
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Figure7. 21: The exact and the approximated solutions for example 3 using all numerical
methods
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Conclusion

The numerical results that have been obtained from testing the numerical
methods that have been studied and developed through this work show the
following conclusions:

For example 1, we have applied the following numerical methods: Linear
Shooting Method, Finite Difference Method, Pade Approximation (2,2)
Method, Pade Approximation (3,3) Method, Rational Chebyshev
Approximation Method and Quartic B-Spline Method and obtained the

following results:

Numerical Methods Maximum Error CPU Time
Linear Shooting Method 1.3%107° 0.133600 seconds
Finite Difference Method 1.0 1073 0.109797 seconds
Pade Approximation (2,2) P

Method 9.16 * 10 0.159932 seconds
Pade Approximation (3,3) _9
Method 3.3 10 0.256540 seconds

Rational Chebyshev
Approximation Method
Quartic B-Spline Method 3.9%1073 0.112895 seconds

9.9 x 1077 0.243652 seconds

From the above table we can see that Pade Approximation (3,3) Method is
the most efficient method for solving example 1.
We have used the numerical methods that have been developed in our work

for solving example 2 and get the following results:
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Numerical Methods Maximum Error CPU Time
Linear Shooting Method 1.19 x107° 0.102304 seconds
Finite Difference Method 1.12 * 1072 0.329263 seconds
Pade Approximation (2,2) _6

Method 8.4+ 10 0.133821 seconds
Pade Approximation (3,3) i
Method 5.15% 10 0.126747 seconds

Rational Chebyshev i
Approximation Method 3.8*%10 0.254738 seconds
Quiartic B-Spline Method 23x1073 0.124506 seconds

From the above table we can see that Rational Chebyshev Approximation

Method is the most efficient method for solving example 2.

We have used the numerical methods that have been developed in our work

for solving example 3 and get the following results:

Numerical Methods

Maximum Error

CPU Time

Linear Shooting Method 0.86137 0.148834 seconds
Finite Difference Method 6.38 x 10~* 0.129586 seconds
Pade Approximation (2,2) _7
Method 3.27 x 10 0.103488 seconds

Pade Approximation (3,3) P
Method 3.43 x 10 0.105732 seconds

Rational Chebyshev _7

Approximation Method 9.74 * 10 0.098478 seconds
Quiartic B-Spline Method 1.36 x 107* 0.168454 seconds

From the above table we can see that Pade Approximation (3,3) Method is

the most efficient method for solving example 3.
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