On the Size of Blocking Sets in $\mathbf{\Omega}^{+}(12, q)$ حول حجم المجموعات المظلةة $\mathbf{~}^{+}(12, q)$

Abdelsalam Abou Zayda

عبد السلام ابو زايده
Mathematics Department, Faculty of Science, Al-Aqsa University, Gaza, Palestine.
E.mail: zayda8@hotmail.com
Received: (7/3/2006), Accepted: (28/1/2007)

Abstract

Considering half-spin geometry of type $\mathrm{D}_{6,6}(\mathrm{~F})$, we investigate the size of substructures of the geometry called blocking sets. We give an upper bound on size of blocking sets.

Keyword: half-spin geometry-blocking set-Covers-classical polar spaces.

```
                                    ملخص
ل\\
داخل الهندسة (سنثبت وجودها و وعطي وصفها) و التي تسمى بالمجمو عات المغلقة، وكذللك سنقام
    حدا اقصى لحجم تلك المجموعة.
```


Introduction

In this paper, special objects inside the half-spin geometry of type $\mathrm{D}_{6,6}(\mathrm{~F})$ are described, such as blocking sets and covers. We also obtain combinatorial information since the number of points, lines, etc. is finite. In (Blokhuis, \& et.al. 1998), studied covers of the projective space of type $\operatorname{PG}(3, q)$ (and of finite generalized quadrangle) which is small. In essence, they gave a structure theorem for minimal covers S with q^{2} $+1<|\mathrm{S}|<q^{2}+q+1$. In (Aiden, \& Drudge, 1998), studied a large
minimal covers of PG (3,q). In (De Beule, 2004), gave an interesting study of blocking sets for some finite classical polar spaces. In (Cimrakova, \& Fack, 2005), presented results on smallest blocking sets in the generalized quadrangle $\mathrm{Q}(4, q)$ for $q=5,7,9,11$ and they found minimal blocking sets of size $q^{2}+q-2$.

2. Basic Definitions and Notations

Let V be a vector space over an arbitrary field F . A bilinear form B on V is a mapping $\mathrm{B}: \mathrm{V} x \mathrm{~V} \rightarrow \mathrm{~F}$, such that for $\alpha, \beta \in \mathrm{F}, x, y, z \in \mathrm{~V}$ we have:
i. $\quad \mathrm{B}(\alpha x+\beta y, z)=\alpha \mathrm{B}(x, z)+\beta \mathrm{B}(y, z)$.
ii. $\mathrm{B}(z, \alpha x+\beta y)=\alpha \mathrm{B}(z, x)+\beta \mathrm{B}(z, y)$.

Thus a bilinear form is a linear functional in each of its coordinates.
For (a subspace) $\mathrm{W} \subset \mathrm{V}$, we set
$\mathrm{W}^{\perp}{ }_{\mathrm{L}}=\{u \in \mathrm{~V}: \mathrm{B}(u, v)=0$, for all $v \in \mathrm{~W}\}$,
$\mathrm{W}^{\perp}{ }_{\mathrm{R}}=\{u \in \mathrm{~V}: \mathrm{B}(v, u)=0$, for all $v \in \mathrm{~W}\}$.
$\mathrm{W}^{\perp}{ }_{\mathrm{L}}, \mathrm{W}^{\perp}{ }_{\mathrm{R}}$ are called the left and right radicals of W with respect to B.

A bilinear form B is called symmetric if $\mathrm{B}(u, v)=\mathrm{B}(v, u)$ for all vectors $u, v \in \mathrm{~V}$. A bilinear form B is called alternate if $\mathrm{B}(u, u)=0$ for all vectors $u \in \mathrm{~V}$. If B is a symmetric form, then $\mathrm{V}^{\perp} \mathrm{R}^{=} \mathrm{V}^{\perp}{ }_{\mathrm{L}}$ is called the radical of V with respect to B and is denoted by V^{\perp}. A bilinear form B is called non-degenerate if $\mathrm{V}^{\perp}=\{0\}$. Otherwise B is called degenerate.

A vector $u \in \mathrm{~V}$ is called an isotropic vector if $\mathrm{B}(u, u)=0$, and a subspace W of V is called totally isotropic (abbreviated TI) if $\mathrm{B}(u, v)=0$ for all $u, v \in \mathrm{~W}$. A subspace W of V is called maximal totally isotropic if W is not contained properly in any TI subspace of V .

Given a set I , a geometry Γ over I is an ordered triple $\Gamma=(\mathrm{X}, *, \mathrm{D})$, where X is a set, D is a partition $\left\{X_{i}\right\}$ of X indexed by I, X_{i} are called
components, and $*$ is a symmetric and reflexive relation on X called incidence relation such that:
$x_{*} y$ implies that either x and y belong to distinct components of the partition of X or $x=y$. Elements of X are called objects of the geometry, and the objects within one component X_{i} of the partition are called the objects of type i. The subscripts that index the components are called types. The obvious mapping $\tau: \mathrm{X} \rightarrow \mathrm{I}$, which takes each object to the index of the component of the partition containing it is called the type map τ.

A point-line geometry (P, L) is simply a geometry for which $|\mathrm{I}|=2$, one of the two types is called points; in this notation the points are the members of P , and the other type is called lines. Lines are the members of L . If $p \in \mathrm{P}$ and $l \in \mathrm{~L}$, then $p * e$ stands for $p \in l$. In point-line geometry (P, L), we say that two points of P are collinear if they are incident with a common line. (We use the symbol \sim for collinear)
x^{\perp} means the set of all points in P collinear with x, including x itself.
A clique of P is a set of points in which every pair of points are collinear.

A partial linear space is a point-line geometry, in which every pair of points are incident with at most one line, and all lines have cardinality at least 2 .

A point-line geometry is called singular or (linear) if every pair of points are incident with a unique line.

A subspace of a point-line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$ is a subset $\mathrm{X} \subseteq \mathrm{P}$ such that any line which has at least two of its incident points in X has all of its incident points in X . $\langle\mathrm{X}\rangle$ means the intersection of all subspaces containing X , where $\mathrm{X} \subseteq \mathrm{P}$.

Lines incident with more than two points are called thick lines, those incident with exactly two points are called thin lines.

The singular rank of a space Γ is the maximal number n (possibly ∞) for which there exists a chain of distinct subspaces $\varnothing \neq X_{0} \subset X_{1} \subset \ldots$ $\subset X_{n}$ such that X_{i} is singular for each $i, X_{i} \neq X_{j}, i \neq j$. For example rank $(\varnothing)=-1, \operatorname{rank}(\{p\})=0$ where p is a point and $\operatorname{rank}(\mathrm{L})=1$ where L a line.

In a point-line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$, a path of length n is a sequence of $n+1$ points $\left(x_{0}, x_{1}, . ., x_{\mathrm{n}}\right)$ where, $\left(x_{\mathrm{i}}, x_{\mathrm{i}+1}\right)$ are collinear, x_{0} is called the initial point and x_{n} is called the end point.

A geodesic from a point x to a point y is a path of minimal possible length with initial point x and end point y. We denote this length by d_{Γ} (x, y).

A geometry Γ is called connected if for any two of its points there is a path connecting them.

A subset X of P is said to be convex if X contains all points of all geodesics connecting two points of X .

A gamma space is a point-line geometry such that for every pointline pair $(p, l), p$ is collinear with either no point, exactly one point, or all points of l, i.e., $p^{\perp} \cap l$ is empty, consists of a single point, or equal l.

A polar space is a point-line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$ satisfying the Buekenhout-Shult axiom:

For each point-line pair (p, l) with p not incident with l, p is collinear with one or all points of l, that is $\left|p^{\perp} \cap l\right|=1$ or else $p^{\perp} \supset l$. Clearly this axiom is equivalent to saying that p^{\perp} is a geometric hyperplane of Γ for every point $p \in \mathrm{P}$.

We write $\operatorname{Rad}(\Gamma)$ for the set $\left\{p: p^{\perp}=\mathrm{P}\right\}$, and we called it the radical of Γ.

A polar space $\Gamma=(\mathrm{P}, \mathrm{L})$ is said to be non-degenerate if $\operatorname{Rad} \Gamma=\varnothing$.
A projective plane is a point-line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$ which satisfies the following conditions:
(i) Γ is a linear space i.e, every two distinct points x, y in P lie exactly on one line,
(ii) every two lines intersect in one point,
(iii) there are four points no three of which lie on a line.

A projective space is a point-line geometry in which the following conditions are satisfied:
(i) every two distinct points lie exactly on one line,
(ii) if l_{1}, l_{2} are two lines with $l_{1} \cap l_{2} \neq \varnothing$, then $\left.<l_{1}, l_{2}\right\rangle$ is a projective plane. ($<l_{1}, l_{2}>$ means the smallest subspace of Γ containing l_{1} and l_{2}.)

A parapolar space is a point-line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$ of rank $r+1, r$ ≥ 2; and satisfies the following conditions:
(pp1) Γ is a connected gamma space.
(pp2) for every line $l ; l^{\perp}$ is not a singular space.
(pp3) for every pair of distinct points $x, y ; x^{\perp} \cap y^{\perp}$ is either empty, a point, or a nondegenerate polar space of rank r.

A strong parapolar space is a parapolar space in which $x^{\perp} \cap y^{\perp}$ is a polar space for every pair of distinct points x, y of distance 2 apart.

3. Definition of the half-spin geometry $D_{n, n}(F)$

Now we give a construction of $D_{6,6}(q)$. Let B be a symmetric bilinear form on a vector space of dimension 12 over a finite field $\mathrm{F}=\mathrm{GF}(q)$. Define the polar space $\Omega^{+}(12, q)$. Let S_{i} be the of all TI i-
dimensional subspaces of $\mathrm{V}, 1 \leq \mathrm{i} \leq 4$. Let S_{6} be the class that consists of all maximal TI subspaces of dimension 6. S_{6} is partitioned into two classes denoted by $\mathrm{M}_{1}, \mathrm{M}_{2}$ subjected to the following rule:

Two TI 6-subspaces m_{1} and m_{2} fall in the same class if their intersection is of even dimension. So the dimension of the intersection $\mathrm{m}_{1} \cap \mathrm{~m}_{2}$ is 0,2 , or 4 for distinct $\mathrm{m}_{1}, \mathrm{~m}_{2}$. Thus the points of $\mathrm{D}_{6,6}(q)$ consist of one class (M_{1}, say) of the two classes of MTI 6 -spaces, and whose set of lines corresponds to the set of all TI 4 -spaces, where a line l that corresponds to a 4 -subspace X is incident with the set of all points that corresponds to all TI 6 -spaces that contains X.

Symplecta (that are convex non-degenerate polar spaces of rank at least 2) correspond to the set of all TI 2 -subspaces, where a symplecton S that corresponds to a TI 2-subspace Y is the set of all TI 6 -subspaces that contains Y. The half-spin geometries $\mathrm{D}_{5,5}(q)$ correspond to TI 1subspaces. TI 3-subspaces correspond to projective subspaces of singular rank 3 ; A_{3} 's. TI 6 -subspaces of the second class M_{2} corresponds to projective subspaces of singular rank 5; A_{5} 's.

Let the map $\Psi: \mathrm{P} \rightarrow \mathrm{V}$ that forms a correspondence between the halfspin geometry $\mathrm{D}_{6,6}(q)$ and the classical polar space of type $\Omega^{+}(12, q)$ which is defined above, i.e., $\Psi(p)$ is the TI 6 -space corresponding to the point p. We will use Ψ for the rest of the varieties of the geometry; for example $\Psi(l)$ is the TI 4 -space corresponding to the line l, and $\Psi(\mathrm{S})$ is the TI 2 -space corresponding to the symplecton S. The inverse map Ψ^{-1} will be used for the inverse; for example $\Psi^{-1}(\pi)$ is the symplecton corresponding to the TI 2 -space π.

We summarize the most important properties of the half-spin geometry $\mathrm{D}_{6,6}(q)$ in the following theorems

1. $\mathrm{D}_{6,6}(q)$ is a strong parapolar space of Diameter 3 .
2. If S_{1} and S_{2} are two distinct symplecta, then either $S_{1} \cap S_{2}$ is empty, a line or a maximal singular subspace of both (a member of A_{3}).
3. If (p, S) is a non-incident pair of point and symplecton S , then $p^{\perp} \cap \mathrm{S}$ is either a single point or a maximal singular subspace of S.

4. The main result

Most papers are interested in the cardinality of blocking sets but in projective spaces, and in this paper we present a general definition of the blocking sets. To apply this idea on some kinds of finite geometries such as half-spin geometry $\mathrm{D}_{6,6}(q)$, description of blocking sets and upper bound of its cardinality will be investigated.

A (t, s)-blocking set of $\mathrm{PG}(n, q)$, where $n \geq 2, n \geq s \geq 1$ and $n-1 \geq t \geq 0$, is a set B of points of $\operatorname{PG}(n, q)$ satisfying the following properties :
i. any subspace of dimension n-t of $\operatorname{PG}(n, q)$ intersects B in at least one point;
ii. any s-dimensional subspace of $\operatorname{PG}(n, q)$ contains at least one point not in B

A blocking set of $\operatorname{PG}(n, q), n \geq 2$, is a set B of points of $\operatorname{PG}(n, q)$ satisfying:
i. any hyperplane (a subspace of dimension $n-1$) of $\operatorname{PG}(n, q)$ intersects B in at least one point;
ii. any line of $\operatorname{PG}(n, q)$ contains at least one point not in B.

So a blocking set is the same as a $(1,1)$-blocking set.
Now we generalize the definition of the blocking set by applying it at half-spin geometry $\mathrm{D}_{6,6}(q)$.

Firstly, we give a first part of the result by describing a blocking set of $D_{6,6}(q)$:
4.1 Theorem A blocking set of $\mathrm{D}_{6,6}(q)$ is the set of all points that are of distance at most 2 from a fixed point; namely
$\Delta^{*}{ }_{2}(p)=\{x \in \mathrm{P}: \mathrm{d}(x, p) \leq 2\}$.
Proof. Let l be a line in $\mathrm{D}_{6,6}(q)$. Let U be the correspondent TI 4space, i.e., $\mathrm{U}=\Psi(l)$. We take a fixed point of $\mathrm{D}_{6,6}(q)$, say p , then $\Psi(p)$ is a MTI 6-space. Now there are 2 cases for the intersection $\Psi(I) \cap \Psi(p)$:

1. $\Psi(1) \cap \Psi(p)=2$-space, say W; In this case the 2-space $\Psi(I) \backslash \mathrm{W}$ has the property that $(\Psi(I) \backslash \mathrm{W})^{\perp} \cap \Psi(p)=4-$ space which is equal exactly to $\mathrm{W} \cup \mathrm{D}$, where D is a TI 2 -space contained in $\Psi(p) \backslash \mathrm{W}$. Then we have a point $s=\Psi^{-1}<\Psi(I) \cup \mathrm{D}>$ such that $\Psi^{-1}<\Psi(l) \cup \mathrm{D}>\cap \Psi(p)=$ $<\mathrm{W} \cup \mathrm{D}>=4$-space and $\Psi(\mathrm{l}) \subseteq \Psi(s)$, i., e., the point s lies on the line l and $\mathrm{s} \in \Delta_{2}^{*}(p)$.
2. $\Psi(l) \cap \Psi(p)=0$-space, then $\Psi(l)^{\perp} \cap \Psi(p)$ is at most a TI 2-space, then we get the TI 6 - space $\left\langle\Psi(l), \Psi(l)^{\perp} \cap \Psi(p)\right\rangle$ which is a point, say r, where r lies on the line l and of a distance at most 2 of the point p.), i.,e., the point r lies on the line l and $r \in \Delta^{*}{ }_{2}(p)$.
The remaining part is to prove that the line l has at least a point not in $\Delta^{*}{ }_{2}(p)$. Let $\Psi(l)=<x_{1}, x_{2}, x_{3}, x_{4}>$, let p be a point such that $\Psi(p)=<y_{1}, y_{2}$, $y_{3}, y_{4}, y_{5}, y_{6}>$ and take the case at which $\mathrm{K}=\Psi(I) \cap \Psi(p)=2$-space. Since the TI 4 -space $\Psi(l)$ contained in maximal TI 6 -spaces, say, $\Psi(s)=<x_{1}, x_{2}$, $x_{3}, x_{4}, u_{1}, u_{2}>$ and $\Psi(r)=<x_{1}, x_{2}, x_{3}, x_{4}, w_{1}, w_{2}>$, then they are considered to be the corresponding two points r and s that are incident to the line l and at the same time r is collinear to s. Now we find out another point q that is collinear to the points r and p, since $\left.<w_{1}, w_{2}\right\rangle^{\perp} \cap \Psi(p)=$ TI 4space that is: $\left\langle K \cup<y_{3}, y_{4}\right\rangle>$, then we get a TI 6 -space $\Psi(q)=<K \cup$ $<y_{3}, y_{4}>\cup<w_{1}, w_{2} \gg$ that corresponds to the point q. Thus we found out a point s incident to the line l such that $\mathrm{d}(s, p)=3$ So, the point does not belong to $\Delta^{*}{ }_{2}(p)$.

Then $\Delta_{2}^{*}(p)$ is a blocking set of $\mathrm{D}_{6,6}(q)$.
Propositions 4.2 and 4.3 will be used to prove the second part of the main results. The propositions and their proofs can be found in (Cameron, 1992) and (Cimrakova, \& Fack, 2005).
4.2 Proposition (Cameron, 1992). The number of subspaces of dimension k in a vector space of dimension n over $\operatorname{GF}(q)$ is

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \ldots\left(q^{k}-q^{k-1}\right)}
$$

Proof. This is Proposition 1.4.1 in (Cameron, 1992).
Remark. This number in Proposition 4.2 is called a Gaussian coefficient, and is denoted by
4.3 proposition (Cimrakova, \& Fack, 2005). Let V be equipped with a bilinear form. Then the number of totally isotropic k-subspaces is the following:

Proof. See (Cimrakova, \& Fack, 2005).
Now we present an upper bound of a blocking set in $\mathrm{D}_{6,6}(q)$.
Theorem 4.4 Let \mathbf{B} be a blocking set in $\mathrm{D}_{6,6}(q)$. Then

$$
\left[\begin{array}{l}
6 \\
2
\end{array}\right]_{q} \prod_{i=0}^{1}\left(q^{6-i-1}+1\right)|\mathrm{B}| \leq \frac{\left(q^{6}-1\right)\left(q^{10}-1\right)\left(q^{4}+1\right)}{\left(q^{2}-1\right)(q-1)}
$$

Proof. In blocking set $\Delta_{2}^{*}(p)$, we showed that any TI 4 -space which intersects $\Psi(p)$ in a TI 2 -space, is contained in a maximal TI 6 -space. Then by the correspondence between the half-spin geometry $\mathrm{D}_{6,6}(q)$ and the hyperbolic case $\Omega^{+}(12, q)$, any line has a point in $\Delta^{*}{ }_{2}(p)$. Then any 2space that can be found in $\Psi(p)$ gives a TI 6-space which intersects $\Psi(p)$ in a 4-space. So the maximal number of 2-spaces in $\Psi(p)$ determines the maximal number of point in $\Delta^{*}{ }_{2}(p)$. Using Propositions 4.2 and 4.3 , the
number of 2 -spaces that are contained in a 6 -space can be determined by the formula

Then the upper bound of the size of B is given by: $|\mathrm{B}| \leq\left[\begin{array}{l}6 \\ 2\end{array}\right] \prod_{i=0}^{1}\left(q^{6-i-1}+1\right)$
and since $\quad\left[\begin{array}{l}6 \\ 2\end{array}\right]_{q} \prod_{i=0}^{1}\left(q^{6-i-1}+1\right)=\frac{\left(q^{6}-1\right)\left(q^{10}-1\right)\left(q^{4}+1\right)}{\left(q^{2}-1\right)(q-1)}$
it follows that

$$
|\mathrm{B}| \leq \frac{\left(q^{6}-1\right)\left(q^{10}-1\right)\left(q^{4}+1\right)}{\left(q^{2}-1\right)(q-1)}
$$

References

- Blokhuis, A. Okeefe, C.M.S. Payne, Storme, L. \& Wilbrink, H. (1998). "Minimal covers of $\operatorname{PG}(3, q)$ and finite generalized quadrangles". In Proceedings of the third international conference on finite Geometry and Combinatorics at Deinze, F. Declerck et al. (eds). Bell. Belg. Math Soc.- Simon Stevin 5. 141-157.
- Aiden, A. Bruen. \& Drudge, Keldon. (1998). "Large minimal covers of PG $(3, q)$ ". Bull. Belg. Math. Soc. (5). 207-212.
- De Beule, Jan. (2004). "Blocking sets and partial spreads in finite spaces" PHD thesis Faculteit Wetenschappen Vakgroep Zuivere Wiskunde en Computeralgebra
- Cameron, P.J. (1992). "Projective and polar spaces". QMW Maths Notes. (13). Queen Mary and Westfield College, University of London.
- Cimrakova, Miroslava \& Fack,Veerle. (2005)."On minimal blocking sets of the generalized quadrangle $\mathrm{Q}(4, q)$ " Discrete Mathematics and Theoretical Computer Science (DMTCS), AE, 299-302.

