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Abstract

Noire studied several properties of weak continuity in Proc. Amer. Math.
Soc. 46(1), 120-124. In this paper it is shown that similar to most of the results
of the above paper still hold for closure and strong continuity. Example 2 is a
counterexample to a corollary to Theorem 6 of Long and Herrington. Theorem
12 of our paper is a sharper result to Theorem 5 of Noire. Several
decomposition theorems of closure and strong continuity are obtained.
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8 	 Some Remarks on Closure and Strong Continuity

1. Introduction

The concepts of 0-closure, 6-closure, 0-interior and 6-interior operators
were first introduced by Velickho. These operators have since then been studied
intensively by many authors. Although 0-interior and 0-closure operators are
not idempotents, the collection of all 5-open sets in a topological space (X, I)
forms a topology ro on X, called the semiregularization topology of F, weaker
than F and the class of all regular open sets in Tforms an open basis for Fs.
Similarly, the collection of all 0-open sets in a topological space (X,/) forms a
topology To on X, weaker than T. So far, numerous applications of such
operators have been found in studying different types of continuous like maps,
separation of axioms, and above all, to many important types of compact like
properties. In 1961, [6] introduced the concept of weak continuity as a
generalization of continuity, later in 1966, Husain introduced almost continuity
as another generalization, and Andrew and Whittlesy [2], the concept of closure
continuity which is stronger than weak continuity. In 1968, Singal and Singal
introduced a new almost continuity which is different from that of Husain. A few
years later, P. E. Long and Carnahan [8] studied similarities and dissimilarities
between the two concepts of almost continuity. The purpose of this paper is to
further the study of the concepts of closure and strong continuity. We get similar
results to those in [8], [11] applied to closure and strong continuity. Among
other results we prove that the graph mapping of f is closure continuous iff f
is closure continuous. In Theorem 3, we show that if the graph mapping off is
strongly continuous then f is strongly continuous but not conversely. Theorem
12 is a stronger result of Theorem 5 in [11]. Theorem 8 shows that a strong
retraction of a Hausdorff space is 0-closed. Several decomposition theorems of
closure and strong continuity are given in this paper. Example 2 shows that [9,
Corollary to Theorem 6] is not true.

For a set A in a space X, let us denote by Int(A) and cls(A) for the
interior and the closure of A in X, respectively. Following Velickho, a point x of
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a space X is called a 0-adherent point of a subset A of X iff cls(U)nA �0, for
every open set U containing x. The set of all 0 -adherent points of A is called
the 0-closure of A, denoted by els e A. A subset A of a space X is called 8-
closed iff A = else A. The complement of a 0 -closed set is called 0-open.
Similarly, the 0 -interior of a set A in X, written Int,9 A, consists of those points
x of A such that for some open set U containing x, cls(U)c - A. A set A is
8-open iff A Into A, or equivalently, X-A is 0-closed. Clearly every 0-closed
(8-open) is closed (open). It is well-known that one of the most weaker forms of
compactness is closure compactness (QHC). A closure compact Hausdoiff
space is called H-closed, first defined by Alexandroff and Urysohn.

A function f: X--->Y is weakly continuous at xe X if given any open set
V in Y containing f(x), there exists an open set U in X containing x such that
f(U) c cls( V). If this condition is satisfied at each XE X, then f is said to be
weakly continuous. A function f X--->Y is closure continuous (8 -continuous) at
xe- X if given any open set V c Y containing f(x), there exists an open set U in
X containing x such that f(cls(U)) cls(V). If this condition is satisfied at each
XE X, then f is said to be closure continuous (0-continuous). A function f: X-->Y
is strongly continuous (strongly 0-continuous) at xe X if given any open set V

Y containing f(x), there exists an open set U CX containing x such that
f(cls(U))c V. If this condition is satisfied at each xe X, then f is said to be
strongly continuous (strongly 0-continuous). A function f X—> Y is said to be
almost continuous in the since of Singal and Singal (briefly a. c_ S) if for each
point XE X and each open set V c Y containing f (x), there exists an open set
U X containing x such that f .(U)c Int(cls(V)). A function f X-->Y is said to be
almost continuous in the since of Husain (briefly a.c.H) if for each xEX and each
open set V c Y containing f(x), cls(f AV)) is a neighborhood of x E X. A
space X is called completely Hausdorff or Urysohn if for every x ye X, there
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I 0	 Some Remarks on Closure and Strong Continuity

exist an open set U containing x and an open set V containing y such that
cls(U)n cls(V)=4
2. The Results

Clearly cls(A) c clse A, but not equal as it is shown in the next example.
Over a regular space, it is clear that cls(A)=c1s e A.

Example 1. Let R be the reals with the cofinite topology. Then every finite
subset of R is closed, but the 0-closure of every none empty set is R.

Theorem 1. Let f:X--> Y.Then the following are equivalent:
a) f(clse A)cclsf(A), for every AcX;
b) The inverse image of every closed is 0-closed;
c) The inverse image of every open is 0-open;
d) f is strongly continuous.

	Proof (a)	 (b). Let B be a closed set and let A=f -1(B). Let xe clse A. Then
f(x) E f(clseA) ccls(f(A))c cls(B)=B. Therefore, x E f -1 (B)=A.
Thus cis() A=A.

	

(b)	 (c) . Let V be an open subset of Y and thus Y\V is closed. Let
A= f (Y\V). Then f ()AV) = X 1 f -1 (V) is 0 - closed and thus
f -1 (V) is 0-open.

(c). (d). Let x EX and let V be an open set containing f(x). By the
hypothesis, it follows that f -1 (V) is 0 -open and thus there exists
U an open set containing x such that cls(U) c r i (V). Thus
f(cls(U)) c V, proving that f is strongly continuous.

	

(d)	 (a). Let f:X—>Y be strongly continuous and let x E cl se A. Let V
be an open set containing f(x). By strong continuity of f there
exists an open set U containing x such that f(cls(U))c V.
Therefore, cls(U) meets A and thus V meets f(A). Hence
f(x)Ecls(f(A)) as we claim.
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The proofs of the following Lemmas are straightforward from the
definitions.

Lemma 1. Let f:X -*Y be strongly continuous and let g:Y--* Z be continuous.
Then gof is strongly continuous.

Lemma 2. Let f:X—>Y be closure continuous and let g:Y -Z be closure
continuous. Then go f is closure continuous.

Lemma 3. Let f:X —>Y be closure continuous and let g:Y -->Z be strongly
continuous. Then gof is strongly continuous.

Lemma 4. Let X or Y be regular. Then f:X—> Y is continuous iff f is strongly
continuous.

Remark. We conclude from Lemmas 1 & 3 that the composite of two strongly
continuous functions is strongly continuous.

In [11] it is shown that a function f is weakly continuous iff its graph
mapping g is weakly continuous. This is still true for the case of closure
continuity as it is shown in the next Theorem but it is not the case for strong
continuity as it is shown in Example 2.

Theorem 2. Let f:X -->Y be a mapping and let g:X —>XxY be the graph
mapping of f given by g(x)=(x,f(x)) for every point xG X. Then
g:X -*Xx Y is closure continuous iff f:X—> Y is closure
continuous.

Proof. If g is closure continuous. Then it follows from Lemma 2 that f is closure
continuous, since the projection map 7c: X x Y —> Y is continuous and
f=it og. Conversely, assume f is closure continuous and Let x E X and let
W be an open set in X xY containing g(x). Then there exist an open set
A c X and an open set V cY such that g(x) ---(x,f(x)) E Ax V c W.
Since f is closure continuous there exists an open set U containing x such
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1 2 	 Some Remarks on Closure and Strong Continuity

that f (cls (U)) c cls (V). 	 Let K = tin A.
Then g (cls (K)) c cls (A) x cls (V) = cls (Ax V) c cls (W), proving
that g is closure continuous.

Theorem 3. Let f:X—> Y be a mapping and let g:X—> X xY be the graph
mapping off given by g(x)=(x,f(x)) for every point x EX. If g:X
X xY is strongly continuous then f:X —>Y is strongly continuous.
Moreover, if the graph mapping g off is strongly continuous then
X is regular.

Proof. It follows directly from Lemma 1 that f is strongly continuous, since the
projection map ir:X xY—> Y is continuous and f=7 og. To prove the
regularity of X. Let x EX and let U be an open set containing x. Then
U nY is an open set containing (x,f(x)). The strong continuity of the
graph mapping of f guarantees the existence of an open set W
containing x such that g(cls(W))=cls(W) x f(cls(W)) c U xY. Thus
xEC1S(W) cU, proving that X is regular.

In [9, Corollary to Theorem 6] it is claimed that the converse of
Theorem 3 is also true which is not as it is shown in the next example.

Example 2. Let X=Y= { 1,2,3} with topologies Fx = {4), { 1}, {2}, { 1,2},X1,
Fy = {C{3},Y}; f(x)=3, for all x. Then f is strongly continuous but
the graph mapping g of f, where g(x)=(x,f(x)) is not strongly
continuous at 1 and 2.

If the domain of f is a regular space then the converse of Theorem 3 is
also true .

Theorem 4. Let f: X -->Y be a mapping with X a regular space, and let g:
X —> X x Y be the graph mapping of f given by g(x)=(x, f(x)) for
every point X E X. If f:X-3Y is strongly continuous then g:	 Xx
Y is strongly continuous.
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Proof Assume f is strongly continuous and Let x EX and let W be an open set
in Xx Y containing g(x). Then there exist an open set A cX and an open
set V c Y such that g(x)=(x, f(x))e A xV cW. Since f is strongly
continuous, there exists an open set U containing x such that
f(cls(U)) cV. By the regularity of X, there exists an open set K
containing x such that cls(K)c U nA. Therefore, g(cls(K)) c A xV cW,
proving that g is strongly continuous.

By a closure retraction we mean a closure continuous function f.X---> A,
where Ac X and flA is the identity function on A. In this case, A is said to be a
closure retraction of X

Theorem 5. Let Ac X and let f:X---> A be a closure retraction of X onto A. If
X is a completely Hausdorff space, then A is a 0 -closed subset of
X.

Proof Suppose not, then there exists a point xe els e A\ A. Since f is a closure
retraction we have f(x) # x. Since X is completely Hausdorff, there
exist open sets U and V of x and f(x), respectively, such that
cls(U)n cls(V)=4. Now let W be any open set in X containing x. Then
Un W is an open set containing x and hence cls(Un W)n AAti,
since xe cls o A. Therefore, there exists a point ye cls(Un W)n A. Since
yE A, f(y)=yE cis(U) and hence f(y) ,z cls(V). This shows that f(cls(W))
is not contained in cls(V). This contradicts the hypothesis that f is closure
continuous. Thus A is 0-closed as claimed.

Recall that an almost retraction is an almost continuous function X--->
A, where AcX and fl A is the identity function on A. In this case, A is said to be
an almost retraction of X.
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Corollary I. Let A be an almost retract of a completely Hausdorff space X.
Then A is 0-closed.

Proof. The proof follows from Theorem 5, since every almost continuous is
closure continuous.

Corollary , 2. Let A be a retract of a completely Hausdorff space X. Then A is
0-closed. By a strong retraction we mean a strongly continuous
function f:X-+ A, where AcX and fl A is the identity function on
A. In this case, A is said to be a strong retraction of X.

Theorem 6. Let Ac-X and let £X->A be a strong retraction of X onto A. If X is
Hausdorff, then A is a 0-closed subset of X.

Proof. Suppose not, then there exists a point xecls& A\ A. Since f is a strong
retraction we have f(x) � x. Since X is Hausdorff, there exist open sets
U and V of x and f(x) respectively, such that cls(U)n V=4). Now let W
be any open set in X containing x. Then Ur-) W is an open set
containing x and hence cls(Un W)nA4, since xeclse A. Therefore,
there exists a point ye cls(Un W)n A. Since ye A, f(y)=--ye cls(U) and
hence f(y)e V. This shows that f(cls(W)) is not contained in V. This
contradicts the hypothesis that f is strongly continuous. Thus A is 6-
closed as claimed.

Theorem 7. Let f X—> Y be a closure continuous and injective function. If Y is
completely Hausdorff, then X is completely Hausdorff.

Proof For any distinct points x1,x2e X, we have f(x1)f(x2), since f is injective.
Since Y is a completely Hausdorff, there exist open sets V 1 ,V2 of f(xi)
and f(x 2), respectively, such that cls(Vi)n cls(V2)=4. But since f is
closure continuous there exist UI,U2, of x 1 , x2, respectively, such that
f(cls(U 1 ))ccls(V 1 ), and f(cls(U2))ccls(V2). Thus cls(U 1 )n cls(U2)=(1),
proving that X is completely Hausdorff.

An-.Vajah Univ. I Res., Vol. 12, (1998).



Alohammad Saleh 	 15

Corollary 3. Let Ac X and let f:X --->A be a bijective closure continuous
function. If A is completely Hausdorff, then A is a 0-closed
subset of X.

Proof. Since A is completely Hausdorff, Theorem 7 implies that X is completely
Hausdorff. Therefore, Theorem 5 implies that A is 0-closed.

Theorem 8. [9, Theorem 4]. Let f:X —*Y be a strongly continuous and injective
function. If Y is a T 1 -space, then X is Hausdorff.

Corollary 4. Let AX and let f:X —›-A be a bijective strongly continuous
function. If A is a T i -space, then A is a 0 -closed subset of X.

Proof Since A is T 1 , Theorem 8 implies that X is Hausdorff. Therefore,
Theorem 6 leads that A is 0-closed.

The next theorem was given in [11] but the proof depends on a result
from [6], one could give an alternative proof similar to the proof of Theorem 10
below.

Theorem 9. Let f,g be weakly continuous from a space X into a completely
Hausdorff space Y. Then the set A={xc X:f(x)=g(x)} is a closed
set.

Theorem 10. Let f,g be closure continuous from a space X into a completely
Hausdorff space Y. Then the set A={xEX:f(x)=g(x)} is a 0-
closed set.

Proof. We will show that X\ A is 0-open. Let xe X\A. Then f(x) g(x). By
complete Hausdorffness of Y there exist open sets U and V containing
f(x), and g(x), respectively, such that cls(U)r-, cls(V)=4. By closure
continuity of f and g there exist U 1 ,U2 open nbhds of x such that
f(cls(U 1 ))ccls(U) and g(cls(U 2))c cls(V). Let W=U 1 nU2, then
cls(W)c X\A. Thus X\A is 0-open and hence A is 0-closed.
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16 	 Some Remarks on Closure and Strong Continuity

Theorem 11. [9, Theorem 2]. Let f,g be strongly continuous from a space X into
a Hausdorff space Y. Then the set A={xE X:f(x)=g(x)} is a 0-
closed set.

Definition. A subset A of a space X is said to be 0-dense if its 0-closure equals X

The next corollaries are generalizations to a well-known principle of
extension of identities.

Corollary 5. Let f,g be closure continuous from a space X into a completely
Hausdorff space Y. If f,g agree on a 0-dense subset of X. Then
f=g everywhere .

Proof. Suppose that A={xE X:f(x)=g(x)} is 0-dense. By Theorem 10, A is 0-
closed. Thus A=X.

Corollary 6. Let f,g be weakly continuous from a space X into a completely
Hausdorff space Y. If f,g agree on a dense subset of X. Then f=g
everywhere.

Proof. Suppose that A={xE X:f(x)=g(x)} is dense. By Theorem 9, A is closed.
Thus A--X.

Corollary 7. Let f,g be strongly continuous from a space X into a Hausdorff
space Y. If f,g agree on a 0-dense subset of X. Then f=g
everywhere.

Proof. Suppose that A={xe X:f(x)—g(x)) is 0-dense. By Theorem 11, A is 0-
dosed. Thus A=X.

We conclude this paper with some decomposition theorems of closure
continuity and strong continuity. First we need some lemmas from [8], [11],
[16]

Lemma 5. [11, Theorem 4]. Let f:X —>Y be a weakly continuous function.
Then cls(f -1 (V)) c f -1 (cls(V)), for every open set VcY.
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Lemma 6. [8, Lemma to Theorem 4]. Let fX —>Y be an open function. Then
f Acls(V))ccls(f AV)), for every open set V cY.

Lemma 7. [16, Theorem 4]. An open function f:X  -->Y is weakly continuous iff
it is a.c.S.

The following results are some decomposition theorems for different
forms of continuity which are similar to those in [8] and [11]. The next result is
a stronger result of Theorem 5 in [11].

Theorem 12. Let f:X-+Y be a.c.H. and cls(f AV)) c f Acls((V)) for every
open set V c Y. Then f is closure continuous.

Proof Let xE X and let V be an open nbhd of f(x). Since f is a.c.H and by our
hypothesis, cls(f AV)) is a nbhd of x and thus there exists U an open set
in X containing x such that cls(U)c cls(f AV))cf Acls(V)). Therefore
f(cls(U))c cls(V), proving that f is closure continuous.

Corollary 8. An	 a.c.H. function f X—>Y is closure continuous iff
cls (f -1 (V))c f - '(cls(V)) for every open set VcY

Preqf. Since every closure continuous is weakly continuous, the proof follows
directly from Lemma 5 and Theorem 12.

Corollary, 9. A weakly continuous function which is a.c.H is closure continuous.

Proof The proof follows directly from Lemma 5 and Theorem 12.

Theorem 13. An open a.c.H function f:X  —› Y is closure continuous iff
cls(f	 "'(cls(V)) for every open set Vc Y.

Proof. Let f be closure continuous. Lemma 7 implies that f is a.c.S. Thus by
Corollary to [8, Theorem 7], it follows that cls(f -1 (V)))=f Acls(V)), for
every open set V cY. Conversely, let xEX and let V be an open nbhd of
f(x). Since f is a.c.H., there exists an open set U containing x such that
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18	 Some Remarks on Closure and Strong Continuity

cls(U)ccls(f -1 (V))=f - '(cls(V)). Thus f(cls(U)) c cls(V), proving that f is
closure continuous

Theorem 14. Let f:X—>Y be an open and weakly continuous. Then f is a c.H.
Proof Let xeX, and let V be open set containing f(x) in Y. Since f is weakly

continuous, there exists an open set U containing x such that
f(U)c cls(V). Thus Uc f Acls(V)). Since f is open, Lemma 6 implies
that f Acls(V))e cls(f -1 (V)) and thus Uc cls(f AV)), proving that f is
a.c.H.

Theorem 15. Let f:X ---->Y be a.c.H. and cls(f -100)_f -
1 (v) for every open set

VcY. Then f is strongly continuous.

Proof. Let xE X and let V be an open nbhd of f(x). Since f is a.c.H and by our
hypothesis, cls(f AV)) is a nbhd of x and thus there exists U an open
set in X containing x such that cls(U)ecls(f AV))=f AV). Therefore
f(cls(U))e V, proving that f is strongly continuous.

Recall that a subset of a topological space is called closure compact if
each open cover of the set contains a finite subcollection whose closures cover
the set.

In [3], [14] it is shown that the image of compact is closure compact
under weakly continuous functions and the image of closure compact is closure
compact under closure continuous functions. The next result is similar for strong
continuity,

Theorem 16. Let f:X-Y be strongly continuous and let K be a closure
compact subset of X. Then f(K) is a compact subset of Y.

Proof. Let V be an open cover of f(K). Then U={VE V:Vn f(K)4} is an open
cover of f(K). For each kE K, f(k)c Vk for some Vk EU. By strong
continuity of f there exists an open set Uk eX containing k such that
f(cls(Uk))c Vk. The collection {Uk:ke K} is an open cover of K and so

An-Najah ['nil ,. J. Res., 1%0l. 12, (1998).



folnimmad Saleh	 19

since K is closure compact there is a finite subcollection {U k :kE KO,
where K 0 is a finite subset of K and { cls(Uk):kE K 0 } covers K. Clearly
{Vk kE KO covers f(K) and thus f(K) is a compact subset of Y.
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