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In this paper elastic buckling loads for thin rectangular
orthotropic plates are determined using a recently introd~c(d
technique [1J which utilizes the principle of_a mixed cDmulc-
rnentary energy approach. Buckling loads are found for V8110US

edge and loading conditions of plate. The edge cond i t ions rray

vary from simply supported all around to clamped plates, with
the loading being of uniaxial, biaxial or of shear type.
ResulTS using the potential energy method which yield an upper
bound ~o the solution are used for comparison. Convergence o~
the solution is discussed for different edge and loadin[ condi-
zicn s ci rect ar.g uLar crt l.o t rcp i c plates.
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One may eliminate Mxy by using equilibrium which yields for
the twisting moment

HXl' !,[(eN I-' + ~X)'~';'y)d}'+ rc"i,.. .•. '~ ,. ).1,..,. 'x "x . 'y"'}' 'xY""x ..•..•
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Also, work done by inplane forces, WF, is given by the fol10w-
ing expression

wF
~II [N (~W)2 + N (ClW)2 + 2N dW aWl dxdy
'l A x Clx y ClY xy a x a y (3)

The principle of mixed complementary energy states that the
variation of the quantity (U*- \'iF) should be zero, i.e.

o(U*- W )F o e 4)

The same procedure of analysis suggested in [1] is used here.
One assumes the following expansions for w, M , and M).x

wex,y) (5)
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where

w (x,y) lateral deflection of the plate

<p. (x) ,\jJ. (y) eigenfunctions of free vibration of beams
1 J

having the same boundary conditions as the

Dlate in the x and y dir~ctions, res-
p e c t iv e Ly (~S t a bu La t e d ill [SJ J

1\ \\ number of terms used in the expansion of

w(X,y)

~j ,~lx y
bending moment per unit length of sections

of plate perpendicular to the x and y axes,

respectively.

N~l ' 1~~1
x y

number of terms used in the expansion of

Mx' My series, respectively.

In order to formulate the problem, equations (2), (5), (6)

and (7) are sub s t i t uted into equations (1) and (3) and on

substituting the results in equation (4) subsequently yields

o i ,j 1,2, ... ,N", (8 )
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an 1<
0 1 , 2, ... ';~l-Iy (10)m,nde mn

The inplane loads are expressed as

N
)'

where
P common load parameter

ratios of inplane forces

Equations (8) to (lO)"i1l yield simultaneous algebraic equa-
.tions of the form :

{O} (12)

where

{q I } {a 1 1 a! 2 ... a" N
} (1::: )

,~\, h'

{ G, 2 } ;:b 11 b 12 b.. \1 ell C: : ... eN N} (l~ )
"1>1 • ~l • 1-1x x Y Y
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Eliminating {q2} from equation (12). one 'get s

NUMERICAL RESULTS

the problems of :he b~ck!ing of isotropic and orthotropic thin
rectangular ?lates.

The following cases of plate boundary conditions were
studied.

1. All edges sisply supported.
2. Simply suppor:ed in x-direction and clamped - simply

supported in y -d irect ion .
3. (1 amp e d simply supported on opposite edges.
4. Clamped on all ~~ges

The follo~ing loadings ~ere applied to the plates

1. N 1.0, x ~, 0.0 (Uniaxial buckling)'x y "xy
2 . X X 1. 0, N 0.0 (Biaxial bu c k l i n g )x 'y xy

,. = 1. 0, 1\ ~~ = 0.0 ( C::' bu c k Li n g )v. .'xy x v l~!le2.r

.. _ .J

biaxial and shear inplane fcrces, respectively.
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All computations for the eigenvalues were made using
material rigidities [2]

J) 1 I 18L8 N.m

)) 1 ;: 2.897 N.m

n. ? 10.34 N.m

;) ( G 7.17 N.m

DISCUS~ION OF RESULTS AND CONCLUSIONS

1 . .~(:~:ardingth7 method of solution itself, this method
:)]"ovcsto be reliable and versatile. This is because
the variables in the energy functional namely, ~1 , M

x Y
3.1,0:1 I:, can be modified to satisfy any force and boundary
:n,dition and serve as a good approxi!llation to the
exact solution.
E~panding w, Mx' My in generalized Fourier series gives
a greater freedom in controlling the variables that
aifect the coftvergence of the solution in comparison to
t ne potential energy method, wh ere only w is expanded
in Fourier series. In addition, in the mixed complemen-
t3ry energy method, the number of terms in series expan-
sion for w, Mx' and My are taken independent of each
other, whereas the pure complementary energy approach of
Oran [3,4] uses the same number of terms for all
v~riables in the functional.
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2. The general program used in the solution ~as first
tested for isotropic plates . This program gave the s anie

numerical values for Pcr as those given in [IJ. UpGn
~tudying the ~esults in more detail and running sev~Tal
cases, it wa s concluded that it is not necessary fOJ' the
buckling load to be associated w i t h the-fundaJeental r.ro d e
s bap e (i.e. m = 1, n = 1) as Has emphasized in [lJ. As

:, n.a t te r of fact, it is very difficult to predict the
.no de shape tliat is associated w i t h the Lcwc st bu ck Ling
load. In the results tabulated in [1], the d i f f crcnc cs
b et we en the converged potential energy and m i x ed
complementary energy an swe r s for critical load rcach more
them 50%,which is difficult to justify. ;-'lix.::([cornp Lc n.c n-

t ary energy method solutions should converge to :1I1S,,',.;r5
which should not differ too much from answers given by
potential energy method.

3. Based on the above conclusions, several cases of plate
buckling problems were run Hith various loading and
boundary conditions. In each of these cases, one observeJ
all values of Pcr obtained from the mixed complementary
energy method and which are less than the critical
buckling load obtained by the upper bound potential
energy method. From all such values one chooses the
highest value as the critical buckling load using the
mixed complementary energy method.
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I. C:e should be careful in choosing the variables t\\v,

": ' and Nt.!. For some cases of plate buckling, t h e r e
:( y

\, .11 be convergence if N is increased together wi t h
IV

\ and t-.!/;! .•
x y

c: s e rv e d if N,,!
x

Ir.e conclusions

In other cases, convergence will be

and N~I
v

given in [lJ about this point contradicts

are increased at constant N ,
\.;

t c conclusion here. In [1], it Has suggested not to t a l.c

~,,. ./ Nil nor N > N 5 inee i t \-I a 5 c l a ime d t hat t h j 5
I' X IV 1.1)'

~ uLd result'in erroneous eigenvalues for higher moJcs

t i.n t could I~ot be simulated by values of N~lx and Nt..J
y

J c wer than N.,.
T . .i reasoning given in [1] for the above conclusion "':l~.

a'30 based on the premise that the correct eigenvalue is

t :.; one associated with the fundamental buckling mode.

T'.i:; hypothesis is not correct as one may note r e s u l ts

f~r buckling of simply supported rectangular plates ~ilh
3pcct ratio alb > 1.

r.. , B .c k Li ng of plates loaded by inplane shear w a s not

d i sc u s s ed in DJ at all. There is no predominant turin

i.: the e i ge nv e c t o r s in this case, i.e., buckling occurs in

a .n ix ed mode.' This result makes the hypothesis used i),

s.mdar a r a j en for interpreting buckling loads somewhat

ai.o i g uou s .
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6. In sr udy in g the tHO available complementary energy
apj.rca ch es [1,4], it appears that the method presented
in [1] lS more versatile in terms of treatment of plates
with a variety of boundary conditions. Oran's approach
in [:] essentially is based on a Rayleigh-Ritz solution
t ec h.i i qu e w hic h involves approximate expansions for the
bending moments, t~isting moment and a transverse shear
resu~ant stress function. Such expansions are Tcl3tivc-
1)' :;1 ra i gh t f orwa rd for simply supported plates, the
onl, (ype of boGndary conditions for rectangular plates
as;tlldied by Oran. Such expansions will, in general,
not t~ so straightforward for plates with other types of
boun o nr y condi t ion s , whereas the mixed energy approach of
[1] l~nds itself very conveniently inasmuch as the dis-
p lace a.en t function w is retained in the final formulation
of th2 problem, alongwith the bending moments M and M .x Y

7. The stability criterion

may b~ used for extraction of the eigenvalues in the
mixed complementary energy approach. Such a criterion,
if im;:lemented successfully, would avoid the mul tipl ici t y

of e i y env a Lue s yielding stable equilibrium configurations.
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Tlrle I - Uniaxial Buckling of Clamped Plate

------_.
N 1.0, Ny N = 0.0x xy

---------
N " 1\1 Potential Ener~ Mixed Complementary"·W H Energyx y

2 2 3 8241.83 5285.24
3 3 3629.85
4 4 4939.59
5 5 4939.58
6 6 4962.53
7 7 4962.52

3 3 3 8001.84 4405.20
4 4 4939.59
5 5 6174.57
6 6 6175.75
7 7 6175.75

l, 4 4 8001. 85 7914.74
5 5 7914.73
6 6 7916.09
7 7 7916.07

5 5 5 7988.04 7914.73
6 6 7916.07
7 7 7916.04

6 6 6 7986.41 7732.66
7 7 7732.65
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','able II - Biaxial Buckling of Clamped Plate

N = N = 1.0, N = 0.0x y xy---_._--
N Ht: Nl-I "Potential Energy Nixed Complementary

'-I Energyx y
-------

2 2 3 2568.21 1344.06
J 3 2444.97
4 4 2444.98
5 5. 2075.57
6 6 2088.22
7 7 2088.22

3 3 3 2466.82 2115.31
4 4 2115.32
5 5 1997.18
6 6 2009.35
7 7 2009.3/1

4 t, !, 2416.13 2332.86
5 5 2335.31
6 6 2337.25
7 7 2337.25

5 5 5 2416.03 2335.08
6 6 2336.99
7 7 2337.00

6 6 6 2415.76 2335.47
7 7 2335.47

-----_ ..
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T:.bi~ III - Shear Buckling of Clamped Plate

N = N = 0.0, N = 1.0:< y :<1

K! "":·1
'f

'Pbtenti~l Energy Mixed C~mpleme~t3ry
Energy

2

3

4

5

6

7

2 2 198.97
2090.00

12781.14

8114.293 3

4 4140.09
460l. 635 5

6 4625.14

4625.14
3 ~625.1!"
1 7309.82 1297.75

15i6.022

3 3476.22

72.95.23

5 7269.67 50S5.53

6 5112.13

7

1

2

3

726S.n

5112.13
5539.89
5539.99
5540.11

4 5540.21

5 554l. 76

5365.7.4
5365.77
5366.72

:; 6

7

7

8 5366.72

7

7

8

7108.10
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