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Study of Korselt Numbers and Sets between Theory and Application
By
Abeer Eshtaya
Supervisors:
Dr. Khalid Adarbeh
Dr. Hadi Hamad

Abstract

The Korselt numbers and sets were discussed for the first time in 2007. The
problem can be considered as a new one with limited literature making it as a
new field of research.

Let NV be a positive integer and « a non-zero integer. If N # « and p — «
divides N — « for each prime divisor p of N, then N is called an a-Korselt
number (K ,-number). The set of all o such that NV is a K ,-number is called the
Korselt set of N. The concept of K ,-number was introduced by Othman Echi
in 2007 and recently studied for different situation of N by Othman Echi, Nejib
Ghanmi, Kais Bouallgu and Richard Pinch.

Here it should be noted that the concept of Korselt numbers generalizes another
concept called the Carmichael numbers which was presented as a counterexam-
ple for the converse of Fermat’s little theorem.

This Thesis contributes to study, validate and develop all results mentioned in
the papers. Also it contributes to use the developed results to build algorithms
by MATLAB that will enrich the literature with Korselt sets of relatively large
numbers (not included in the literature) as well as testing and illustrating the

involved theory.



Introduction

In 1640, Fermat proved his well known result Fermat’s Little Theorem,
(Fletcher, 1991) which states that: If p is a prime number, then p divides a” — a
for every integer a”. On the other hand, Korselt studied the converse of Fermat’s
Little Theorem (Korselt, 1899): If N divides a” — a for any integer a, does it
follow that N is prime? He proved that a composite odd number N divides
a” — a for any integer a if and only if N is squarefree and p — 1 divides N — 1
for each prime divisor p of N, but he did not provide any numerical example of
these numbers. In 1910, Carmichael observed that the number 561 provides a
counterexample that proves the converse of Fermat’s little theorem giving him
the conclusion that the theorem is not true in general (Carmichael, 1910), which
helped in the appearance of the Carmichael numbers.

A composite number N is called a pseudoprime to the base a iff aV ! = 1
(mod N) where a € Z\{0} and gcd(a, N) = 1, and it is called an abso-
lute pseudoprime, or Carmichael number, if it is pseudoprime for all bases a
with gcd(a, N) = 1 (Lehmer, [1976) (Erdos and Monthly, 1956). These num-
bers were first described by Robert D. Carmichael in 1910 (Carmichael, [1910),
and the term Carmichael number was used by Beeger in 1950 (Beeger, |1950)).

Also, Alford, Granville and Pomerance showed that there are infinitely many

Carmichael numbers in 1994 (Alford et al., 1994).

In 2010, Echi, Bouallegue and Pinch introduced the notion of the Korselt



number. They defined that a natural number N > 1 is called an a-Korselt num-
ber with o € Z\{0} (denoted K,-number) iff p — o divides N — « for every
prime factor p of N. The Korselt set of N, denoted by K S(N), is the set of
all « € Z\{0} such that N is K,-number. The Korselt weight of N, denoted
by K, (N) is the cardinality of K.S(/V). Notice that Carmichael numbers are

exactly ki-numbers (Williams, |1977).

(Languasco et al., [2003) The Korselt numbers and sets depend on prime
numbers which is implemented in many applications. One of the most important
applications which is frequently used in daily life is cryptography which is
based on prime numbers. One of our most widely used cryptographic systems
is called R.S.A. cryptography, where the security of the R.S.A. method depends

on the following facts:
e In order to encode the message, it is necessary to build large primes.

e On the other hand, in order to break the system, it is necessary to be able

to factorize large natural numbers obtained as product of two primes.

Chapter one of this thesis introduces some basic definitions and theorems in

number theory that help us in studying the Korselt numbers.

While chapter two is devoted to study the Korselt numbers and their main

properties. For instance, it discusses the proof of the following main results:

1. If « < 1, then each composite squarefree K ,-number has at least three

prime factors.



2. There are only finitely many a-Korselt numbers with exactly two prime

factors.

Chapter three provides the relation between Korselt numbers and other classes
of numbers, as Y, -numbers and Williams numbers, where a Williams number
1s a positive integer that is both K ,-number and K _,-number (Ghanmi and Al-

Rassasi, [2013).

Chapter four 1s devoted to study the Korselt numbers of the squarefree num-
bers that have special forms as pg form and 6q form, where p and ¢ are distinct
primes.

Finally, paralleled to the theoretical part, we built our own algorithms using
MATLAB to validate the involved results and to extend the numerical results
depending on the theoretical proved facts in this work. Also, a comparison was
made between the two different algorithms by computing the time that each of

them consumed.



CHAPTER 1

PRELIMINARIES

In this chapter, the main number theory concepts and facts that are frequently
used through the thesis are introduced. Starting by defining the prime and com-

posite numbers.

1.1 Basic Definitions

Definition 1.1.1.

1. (Crandall and Pomerance, [2006) p is a prime if p € N\{0, 1} and has no
factors (the only divisors are 1 and p).

e.g: p = 5 1s a prime, because the only divisors of 5 are 1 and 5.

2. (Crandall and Pomerance, 2006)) » is a composite number iff n € N\{0, 1}
and is not a prime (n = a * b where a, b are integers and 1 < a,b < n).

e.g: n = 30 1s composite, because 30 = 5 * 6 where < 15,6 < 30.

Definition 1.1.2.

1. (Stein, [2005) The prime factorization of a number n is defined as a list
of distinct prime numbers py, ps, ..., py such that p|' « pi> x ... x pF =n
where 71, 19, ..., r; are nonzero natural numbers.

e.g: The prime factorization of 126 = 2 x 32 * 7.

2. (Weisstein, 2003)) If prime factorization of n has no repeated factors (r; =

ro = ... = 1 = 1), then n is said to be squarefree number.



e.g. 30 is squarefree, because 30 = 2! * 3! x5! and 2 # 3 # 5 are all

primes.

Definition 1.1.3.

1. (Andrews, |1994) An integer d is called the greatest common divisor of
a and b (ged(a, b)) where a, b are integers and at least one of them is not
zero iff the following is satisfied:

(a) d € N\{0},
(b) d divides both a and b and
(c) for all integer c divides both a and b is also a divisor of d.

2. (Andrews, |1994) The least common multiple of integers a and b (lcm(a, b))

is the smallest positive integer that is divisible by both a and b

Fact: (Andrews, 1994) lem(a,b) = 3.
e,g. Let @ = 15 and b = 21. Then ged(15,21) = 3 and lem(15,21) = 105.

Note that 105 = 122,

Definition 1.1.4. e (Nyblom, 2002) The integer part or the floor function

of a real number y (denoted by |y|) equals maz{z € Z : z < y}.

e (Nyblom,2002) The ceiling function of y (denoted by [y]) equals min{z €
Z:y<z}.
e.g. |3.75] =3 and [3.75] = 4.

Theorem 1.1.1. (Raji, 2013)) (The Division Algorithm) Let a« € Z and b €

N\{0}. Then there exist unique integers ¢ and r such that a = bq + r where



0<r<b-—1.

e.g. Ifa=83andb=19,then83 =19x4+ 7withqg=4andr = 7.

Theorem 1.1.2. (Shoup, 2005) (Fermat’s Little Theorem) If p is a prime num-
ber, then a? — a is a multiple of p for any integer a. (a?~! =1 (mod p)).

e.g. If 5°° = 2 (mod 7), what is value of z?

8

by Fermat’s Little Theorem, 5¢° = 1 (mod 7), hence, 5% = 5% = 18 =1

(mod 7), thus, 5°° = 5% x 5% = 25 (mod 7), this leads that 5°° = 4 (mod 7).

Definition 1.1.5. Let N be a composite number.

1. N is called a pseudoprime to the base a iff gcd(a, N) = 1 and a1 = 1

(mod ) where « is a non zero integer number.

2. N is called an absolute pseudoprime or Carmichael number if it is pseu-

doprime for all bases a with gcd(a, N) = 1.

e.g. N = 10 is a pseudoprime to the base 11, where gcd(11,10) = 1 and
111971 = 2357947691 = 1 (mod 10). Also,the smallest absolute pseudoprime
1s 561 = 3 % 11 % 17 = N (Bouallegue et al., 2010).



CHAPTER 2

KORSELT NUMBERS WITH EXAMPLES AND
SPECIFIC PROPERTIES

2.1 Korselt Numbers: Definitions and Examples

Definition 2.1.1. (Bouallegue et al., 2010) Assume that N € N\{0,1} and «
be a nonzero integer. N is an a-Korselt number iff N # « and p — « divides
N — «a for every prime divisor p of N. If N is an a-Korselt number, then we

write N is a K ,-number.

e The set of all o such that NV is a & ,-number is called the Korselt set of /V,

and denoted by KS(N).

e The cardinality of K.S(NV) is called the Korselt weight of NV, and denoted
by K (N).

Example 2.1.1.

e N =6isa K ,number. Indeed, N =2%3and2—-4=-2|6—-4=2
and3—4=—1|6—4=2. Here, KS(6) = {4} and K,,(6) = 1.

o N=770=2x%5x7x11isonly Kgand Kj4-number (refer to Table[2.3).
Hence, K.S(770) = {8,14} and K,,(770) = 2.

Remark 2.1.1. (Bouallegue et al., 2010) K{-numbers are exactly the Carmichael

numbers (by definition).



2.2 Korselt Numbers: Properties

The following results help in finding the Korselt set of a given squarefree

integer V.

Proposition 2.2.1. Let o be a nonzero integer and /V be a composite squarefree
number where the largest prime factor is ¢ and the smallest prime factor is p.
(e.g. N = 30, here, p = 2 and ¢ = 5). If N i1s a K,-number, then the following

inequalities hold:

I. > 29— N + 1. (Bouallegue et al., 2010)

2. a >N (Al-Rasasi et al., 2013)
3. a< #. (Bouallegue et al., 2010)
4. o < 3X. (Echi, 2007)

Proof.

I. o has two cases:

Casel: o > 0. Since p and ¢ are primes with p < ¢, then N > 2q. So
that, 2¢ — N < 0and 2¢g — N + 1 < 1. Hence trivially « > 2g — N + 1.
Case2: o < 0. Let N be a K,-number. Then by definition; ¢ — « divides
N — o holds, and hence % = x for some integer x. Now, as a < 0,
then both of ¢ — @ and N — « are positive. Moreover, N > ¢ implies
that N — a > ¢ — «, and hence x > 2, Consequently, % > 2. Thus,
a > 2q— N.

Now, to prove that o # 2¢g — N, using contradiction, suppose that o =

2q — N. Here, N # ¢ because N is a composite number and ¢ is a prime



number. Also, o being a non-zero implies that N # 2q, Thus, N = mgqg
where m > 3, and hence @« = 2g — mq = —(m — 2)q. Now, If sis a
prime factor of m, then since N is a K,-number, s — o = s + (m — 2)q
divides N — o = ¢(2m — 2). But gcd(s + (m — 2)q, q) equals 1 or .
If ged(s + (m — 2)q, q) = g, then this leads that ¢ divides s which is not
possible. Hence, gcd(s 4+ (m — 2)q, q) = ged(s,q) = 1, and this implies
that s + (m — 2)q divides 2m — 2. But2m — 2 = 2+ 2(m — 2) <
s + (m — 2)q because s > 2 and ¢ > 2, so, there is a contradiction.

Therefore, o # 2qg — N.

. Assume that « € KS(N). By definition of the Korselt number, ¢ — «
divides N — «. Thus, there exists a natural number y such that N — o =
y(q — ). And as N > g, this implies that y > 2.

Claim: y # 2. By contradiction, suppose that y = 2. Hence, N — o =
2q — 2a, consequently « = 2¢ — N. But by (1), a # 2q — N, this gives

a contradiction. Therefore, y > 3. This leads that N — a = y(¢ — a) >

3q—N
5 -

3(¢ — «). Hence, a >

. The case a < 0 1is trivially as # > 0. If 0 < aa < p, then a <

22 < NA2 Also, when p < @ < N, then |p — a| < [N — a| and

a—p < N —a, hence a < #. Now, when o« > N and as ¢ < N,
thena —qg > a— N > 0. But ¢ — a divides N — a (N is a K,-number),
which implies that « — N = 0, and hence o = N. But by definition of the

Korselt number, N # «, a contradiction. Thus av < N.

. Let N be a K,-number, then h = p — a divides N — « where p is a prime

factor of N. As p divides N and N > p, then N > 2p = 2(a + h).
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Thus, « < (N — «) — 2h. Also, h dividles N —aand a < N (N — «
is positive), hence, —h < N — a. This yields a < (N — «a) — 2h <
(N —a)+2(N —a) = 3(N — «), and consequently o < 3.

Example 2.2.1. Let N = 165 =3 %5 * 11. Here, g = 11 and p = 3.

e a>2—N+1=22-165+1= —142.

3g-N __ 3x11-165 _
5 = % = —06.

e o< 1653 gy

o a <3 =305 = 12375, thus, v < 123.

Remark 2.2.1.
1. N+p< 3Nand3q N> 92— N+1.

2. @ can be reached. (Bouallegue et al., 2010)

Proof.
1. As p is the smallest prime factor of N, N > 2p. Hence, N +p < N+2 =
35 . Also, as q is the largest prime factor of N, 3q_N = Qq;N + 4>

q N 4+ 1. But2¢g — N < 0, thus, 2q + 1> 2g — N + 1. Consequently

N + 1.

2. let ¢ be an odd prime number. Hence, 7% = @ = q + 1. Therefore,

N = 2qis a (q + 1)-Korselt number.

The results in the Remark 2.2.1{leads that 222 #] C [2¢—N+1,2]. So

that, using part 1 and 2 of Proposition [2.2.1] in the following algorithm, which
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are more restricted. Also, part 4 helps to find the upper bound of o without
knowing it’s prime factors.

One application of the previous proposition it can be used to write a MAT-
LAB program to find the Korselt set of numbers with 2, 3 and 4 prime factors as

described in the following flowchart (see Fig 2.1).
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a4

IfNisa
squarefree

True

p and q are prime factors of N, where p is the smallest and
q is the largest

(3¢-N)/2<0<(N+p)/2

Counter 0=(3q-N)/2 to (N+p)/2 except a=0

4

False

If primes -a£0

True

If primes -a divide N-a

True

A 4

N is not a K-
number N is a K- number

h/J\ False
If o=(N+p)/2
'\’(

/ Output KS(N) /

Figure 2.1: Flowchart represents the way to calculate the K'.S(N).




The next tables contain some squarefree numbers N with their prime factor-

ization (Pf) and K.S(N).
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Table 2.1: K S of squarefree numbers with 2 prime factors.

N [Pfof N [ KS(N)
26213 | {14}
331311 | {9,13}
34217 | {18}
355%7 |{3,6,8,11},
381219 | {20}

39| 3%13 | {12,15}

Table 2.2: KS of squarefree numbers with 3 prime factors.

N

Pfof N

KS(N)

105

3xH*x7

{6,9}

114

2%x3%19

138

2% 3 %23

165

3xbHx*x1l1

174

2% 3 %29

Table 2.3: KS of squarefree numbers with 4 prime factors.

N [Pfof N [ KS(N)
6 [2%3 {4}

10 2%5 | {4,6
1427 |{6,8)
153%5 | {4,6,7)
2113%7 | {5,6,9)
22 [2+11 | {12}

N [Pfof N |KS(N)
30 |2%x3x5 | {4,6}
42 [2x3%7 | {6}
66 |2%3*11{6,10}
78 |2x3x13|{}

102 | 2%3 %17 | {12}
N [Pfof N KS(V)
210 | 2x3x5x7 | {6}
330 | 2% 3x5x11 | {}
390 | 2% 3x5x13 | {}
162 [ 2%3#7#11] {12}

Also, to find all composite squarefree N € [0, 1000] for any «, the following

N

Pf of N

KS(N)

510

2%x3xbHx17

{}

570

2*x3*xH5Hx%x19

{1}

690

2% 3% 5Hx%x23

U

770

2xbH*x7Tx11

(8,14}

flowchart (see Fig which shows how to find them.
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0<N<1000, where N is squarefree and the number of prime factors of N is
greater than 1

If N#(I False
and PfiN)#a

Fase | Nisnota K, —

If all primes factor of N -a
number

divides N-a

N is a K- number

False

all N are checked

True

Output all N that satisty K, conditins

Figure 2.2: Flowchart represents the way to find K ,-numbers for a specific « if exist.

Table 2.4 contains all existing composite squarefree K ,-numbers of less than

1000 for o € {—10, 20}
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Table 2.4: All K,-numbers of less than 1000 for all & € {—10,20}.

« Number of K, | K,

—10 |1 935

-9 |1 231

8 [0 -

=7 |1 273

6 |0 _

-5 |1 715

—4 [0 _

-3 |2 165,357

-2 |1 598

-1 |2 399,935

1 1 561

2 0 -

3 1 35

4 8 6,10,15,30,70,130,165,238

5) 3 21,77,221

6 16 10,14,15,21,30,35,42,66,70,105,195,210,231,266,
286,805

7 6 15,55,187,247,715,759

8 10 14,35,77,110,143,170,273,638,770,935

9 16 21,33,65,77,105,165,209,231,273,345,385,399,429,
561,609,969

10 10 55,66,91,130,154,255,322,385,682,715

11 9 35,65,91,119,221,299,323,455,651

12 11 22,39,77,102,143,182,187,442,462,782,962

13 |6 33,85,133,253,493,589

14 14 26,77,91,119,143,182,209,221,230,374,399,455,494
770

15 25 39,51,55,65,85,95,119,143,187,195,221,231,247,255
323,391,399,435,455,527,627,663,715,759,935

16 |5 133,170,247,506,646

17 |5 65,77,209,377,437

18 |3 34,323,663

19 |6 51,91,187,391,403,943

20 11 38,95,110,209,290,323,437,506,551,713,902
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A summary representing the number of K ,-numbers which less than 1000

as a € [—10, 20] is depicted in Fig[2.3]

Number of Ka

Number of Ko
[ N N w
w o %3] [=]

=
o

5

-10-9 8-7-6-5-4-3-2-112 3 456 7 8 9 1011121314151617 1819 20

a

Figure 2.3: Bar chart represents —10 < o < 20 with corresponding number of K, -numbers of

less than 1000

2.3 More Properties of Korselt Numbers

Another application of Proposition [2.2.1]is the following corollary.

Corollary 2.3.1. 2007) If N is a K,-number, then N is never Ky_3 or

K n_s-number.

Proof. Using contradiction, let « = N — 3. Then by Proposition 2.2.1) o =

N —3 < %. We deduce that N < 12, and since NN is squarefree, hence,

N € {6,10}. This means that 6 is a K3-number and 10 is a K7-number, which

1S not true.

Now, Let « = N — 5, then by using Proposition

2.2.1

La=N-5<3 We

conclude that N < 20. Therefore, N € {6, 10, 14, 15}, thus 6 is a K;-number,

10 is a K5-number, 14 is a Kq9-number and 15 is a /K;jj-number, which is not

true.



17

Proposition 2.3.1. (Bouallegue et al., 2010) Let o be a non zero integer and N
be a K,-number such that gcd(N, a) = 1. Then p — « divides % — 1 where p is

a prime factor of V.

Proof. As N is a K,-number, N — a = (p — «)t for some integer ¢. Thus,
N—-—p=@p-a)t+(a—p) =(p—«a)(t—1). Since p is a prime factor of N
(p divides V), there exists a non zero integer number s such that N = ps, and
hence, N —p =p(s—1) = (p — a)(t — 1). So that p divides (p — a)(t — 1).
But ged(a, N) = 1 = ged(a, p), implies p divides (¢ — 1). Therefore, p(p — «)

divides (N — p), equivalently p — o divides > — 1.

Example 2.3.1. If N = 30. Is N a K7-number?
N =30=2x%3x5and ged(2,7) = gcd(3,7) = gcd(5,7) = 1.
When p = 2, then (p — o) = (2 — 7) = —5 does not divide % —1=14.

Hence, N is not a K7-number.

Example 2.3.2. This example shows that the condition gcd(N, o) = 1 in Propo-
sition can not be deleted.

Let N = 231 = 3 %7 % 11. Here 231 is a K_g-number and gcd(N,a) =
gcd(231,—9) = 3 # 1. This implies that N and « are not relatively prime. p =
3 is a prime factor of N, then (p—a) = (3——9) = 12, but % —1=771—-1=176
and 12 does not divide 76.

The following result adds further information about the Korselt set of a

squarefree composite number.

Proposition 2.3.2. (Al-Rasasi et al., 2013)) Assume that N # 6 is a K,-number.

If p and ¢ are two prime factors of /V, then the following properties hold.
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1. If a and p are relatively prime and ¢ divides «, then

2pq—N<a<2pq-|—N
2g—1 — = 2q+1

2. If ¢ does not divide a, then

qg+1-—
Proof. The assumption that N is a squarefree composite number implies that

N = pqF with F' € N and p, ¢ don’t divide F'.

1. Suppose that N is a K,-number. Thus, p — « divides N — a = q(%).

Here, p and ¢ are primes, hence gcd(p — «,q) = ged(p,q) = 1, which

implies that p — « divides %. Hence, Y = (p — a)t with a nonzero
integer t. Replacing N with pqF’ gives
a(tg—1) =pq(t — F) (2.1)

Claim: |¢t| # 1

By using contradiction, suppose that ¢ = 1. Hence, equation [2.1] gives

alg—1) =pq(1 - F) (2.2)

F # 1, because ' = 1 yields that either « = 0 or ¢ — 1 = 0, this
violates definition of the Korselt number, hence F' > 2. Thus, equation
2.2]implies that < 0. Also, by equation [2.2] it can be concluded that p

divides a(¢ — 1). Hence, p divides ¢ — 1 because gcd(a, p) = 1, therefore,
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p < q. Now, let f be a prime factor of F', this means f is a prime factor of

N. Replacing p with f in the beginning of the proof gives [ — a = ]\;.:IO‘

with an integer j # 1 because j = 1 implies that p—a = f —« and hence,

p = f which is not possible. Therefore, f —a < N2;a = 52, which yields
that f — p < a — f. By hypothesis, ¢ divides «, and as o < 0, hence a <
—¢q. Thus, we obtain that —p < f —p < a— f < a < —q. Consequently,
—p < —q, contradicting inequality p < q. Therefore ¢ # 1. Now, suppose
that ¢ = —1. Thus, equation 2.1] implies that a(q + 1) = pg(1 + F). ¢

divides o which yields a = a1q with oy € Z\{0, 1}. Hence,
ar(g+1)=p(l+F) (2.3)

Then, proof has to deal with two cases:

Casel: F' = 1. Equation [2.3| gives a1(q + 1) = 2p. We deduced that
aq divides 2 because gcd(ay, p) = ged(a, p) = 1. Here, a; = 2 because
a1 = 1 yields that a = ¢ which contradicts definition of the Korselt num-
ber. Thus p = ¢+ 1. But p and q are primes, and the only two consecutive
prime numbers are 2 and 3. Hence, ¢ = 2 and p = 3. Consequently
N = 6, which contradict the hypothesis.

Case2: [' # 1. Hence a(q+1) = pq(1+ F) yields that go+a = pg+ N,
hence N —a = q(a—p). Assume that f is a prime factor of F’, thus f — «
divides N — a = —q(p — «). Note that ged(f — o, q) = gcd(f,q) = 1,
therefore f — « divides p — a and consequently f — o = == where m

is a nonzero integer. But f # p, concluding m # 1. Hence, f — a €
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N—a N—« N—a N-—«a g
{— Sa T 3g s 3y g J- By Proposition 2.2.1, o« < N, hence,

N — « N —«a N — « N —«
< <.<0<..< < )
2q 3q 2q q

This leads to [ — o > —N2;0‘ — 2% and hence, [ > 5% + o = 2,

Thus, 2f > p+ a > «, then 2f > «a. But, equation [2.3] gives

ar(g+1)=p(l+F)>pf > %p:Oﬂ%;

so 2a1(q + 1) > ayqp, thus, it is deduced that ¢(p — 2) < 2. While from
equation 2.3]it leads that p divides g+ 1 because gcd(a, p) = ged(aq,p) =
1. Hence, p < ¢+ 1 and p — 1 < ¢. Multiplying (p — 1) by (p — 2) gives
(p—1)(p—2) < q(p—2) < 2, this yields that p = 2. Therefore, N = 2¢F,
which follows that ¢ — a = ¢(1 — o) divides N — a = 2gF — a1q =
q(2F — ay), and then, 1 — «; divides 2F" — ;. But oy is odd because
ged(a,p) = ged(a,2) = 1,50 2F — o is odd and 1 — «; is even, this is
contradicting the fact that 2F" — o is a multiple of 1 — «a, hence, |t| # 1.
Consequently,

N —« N —«

<p—a<
2q =P - 2q

2pq—N
2q

Then, o > p — N2_qo‘ = N 20‘—q, and gives (1 — o) >

2 5 , hence,

oz(2q*1) > 204N - Therefore, a > 29N, Also, o < 24*Y  Conse-

2q 2q 2q—1 2q+N
quently,
2pq — N o< 2pq—|—N.
2g—1 — 7 2q+ N

. Assume that ¢ does not divide «. Hence, gcd(q, g — o) = 1. It is known

that ¢ — a divides N —a = N — ¢ + q — «, concluding that ¢ — o divides
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N —q=q¥= q . This yields ¢ — o divides & q . It follows that

—N_qéq—ozSN_q.
q q
Thus finally
N N
¢+1——<a<—+qg-1L
q q

Example 2.3.3. Let N = 30 = 2%3%5. (By using MATLAB, K S(30) = {4,6})

1. Assume that p = 3, ¢ = 2 and o = 4. Note that gcd(a, p) = ged(4,3) =

12-pd1v1des4-ozand2pq —6<oz—4<2p‘“N 8.4.

2. Assumeq:Banda:4,henceq+1—% =—-6<a=4< %—i—q—l:
12

The following remark is to illustrate Proposition [2.3.2]
Remark 2.3.1. (Al-Rasasi et al., [2013))

1. If N = 6, then the inequalities of part(1) in Proposition do not hold,
because when N = 6, then p = 3,¢ = 2 and KS(N) = {4}. Also,

-N N
T =5 =2and FLr = £ =33 Buta =4 ¢ [2,3].

2. Let g be a prime factor of a squarefree composite number N, and let o €

Z\{0} such that gcd(N, a) = 1. If N is an a-Korselt number, then

N
a € ﬂ +1——q—1+ —].
q|N I

g prime

For example, let N = 15 = 3.5, then KS(15) = {4,6,7}.
Wheng=3,[g+1—- .- 1+5]=[-1,7].
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Wheng=5,[g+1-5 g1+ 2%]=[37].

Also,4,6and 7 € [—-1,7]N[3,7] = [3,7].

2.4 Finiteness K ,-Numbers with Exactly Two Prime Factors

An important fact concerning Korselt numbers is that for a given nonzero
integer «, the number of the K ,-numbers that have exactly two prime factors is

finite.

Theorem 2.4.1. Let o be a nonzero integer. There are a finite number of K-

numbers that have exactly two prime factors

The proof of this theorem depends on the following facts.

Lemma 2.4.1. Assume that « is a nonzero integer with o« € {—1,1}. If N is a

K ,-number, then NV has at least three prime factors.

Proof. By contradiction, suppose that N = pq such that p < ¢ are primes.
Here, « = 1 or —1. Thus, gcd(a, N) = 1. Then by using Proposition [2.3.1]
we get ¢ — « divides % — 1, implies ¢(q — «) divides N — ¢. This yields that
N—q>qlg—a)and N > ¢+ q(¢ —a) > ¢+ q(¢ — 1) = ¢*. Hence,
N = pq > ¢?, consequently, p > ¢ which is not true. Therefore, K,-numbers

with a = 1 or —1 have at least three prime factors.

Lemma 2.4.2. Let a be an integer with o < —2. If N is a K,-number, then N

must have at least three prime factors.

Proof. Assume that N = pq, where p and ¢ are distinct prime numbers. Let

p — a and ¢ — « divide N — a, where a < —2. If ged(N,a) = 1, then
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by the previous lemma, a contradiction and conclude that a /{,-number has at
least three prime factors. Now, suppose that ged(N, a) # 1. Then without loss
of generality, one may suppose that p divides —«. This leads that —a = pr
for a nonzero natural . But p — a divides N — «, so that p(1 4 r) divides
p(q+r). Equivalently 1+ r divides g+ r. This yields that ¢ = —r (mod 1+7r),
and hence, ¢ = 1 (mod 1 + r). Thus, this gives 1 + r divides ¢ — 1, which
implies that g — 1 > 1 + r. On the other hand, ¢ — o divides N — «, where
N—-—a=ps—a=plqg—a)+ap-—1). Soq— «adivides a(p — 1) =
—p(p — 1)r. But ged(q — o, p) = 1 because p divides « but does not divide ¢,
then ¢ — a divides (p — 1)r. Now, by claiming that ged(q — o, ) = 1, suppose
that ged(q — o, ) # 1. This leads certainly to ged(q — «, ) = ¢ (g is a prime),
then ¢ divides r and » = ¢s for a nonzero natural s. But ¢ — 1 > 1 + r, which
leads that ¢ > 2 + ¢s, a contradiction, so the claim that gcd(q — a,7) = 1 is
true. Hence, ¢ — av dividesp — 1,butq —a =q+pr =q+ (p — 1)r + r, thus
q — a.divides g 4 r. Replacing a by pr, hence g + pr divides g + r, which means
that ¢ + pr < q + r, but this is not possible. Therefore, each K,-numbers with

a < —2 have at least three prime factors.

Proposition 2.4.1. Let o be a nonzero integer and less than 2. Then each K-

number must have at least three prime factors.
Proof. Combine Lemma|2.4.1/and Lemma [2.4.2]

Lemma 2.4.3. Let a be an integer with a > 2. If N = pq with p < ¢ are two

prime numbers, then ¢ < 4a — 3.

Proof. If ¢ < 2a, then ¢ + 2 < 2o+ 2 < 2a + 2a, hence, ¢ < 4a — 2 1is

deduced, and this implies ¢ < 4o — 3. Now, assume that ¢ > 2a > «. Clearly,
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N—-—a=p(g—a)+alp—1)and ¢ — a divides N — a, this yields that ¢ — «
divides a(p — 1). But ged(q — o, ) = ged(q, ) = 1, because 1 is only less
than o and divides ¢. Hence, ¢ — a divides (p — 1). Thus, p — 1 = k(¢ — «) for
a nonzero natural k. Now, if £ = 1, then it gives ¢ —a = p — 1. Butif £ > 2,
thenp — 1 = k(¢ —a) > 2(¢q— «). Sothat g — o < p%l < — 1, and implies
that ¢ < 2a — 2 < 2a, which is contradict the fact that ¢ > 2a. This leads that
q—a=p—1.Now, p—adivides (N —a)— (p—a)(p+2a—1) = 2a(a—1).
Clearly, p does not divide «, because if not, this yields that p < « and hence,
q=p+a—1<2a—1,acontradiction. Hence, p — « divides 2(«v — 1) and

p < 3a — 2. Therefore, ¢ =p+a —1 < 4a — 3.

Proof of Theorem 2.4.1

Let o be a nonzero integer. If o < 1, then by Proposition the number of
the K,-numbers with exactly two prime factors is 0. Now, assume that o > 1
and let N be a K,-number with exactly two prime factor. If g is the greatest
prime factor of N, then by Lemma it must be less than or equal 4a0 — 3.
The proof ends by remarking that there are a finite number of prime numbers

that are less than or equal to 40 — 3.

Example 2.4.1. (Bouallegue et al., 2010) The values of o up to 2000 for which
there are no a-Korselt number with two prime factors are the following: 1, 2, 250, 330,
378, 472, 516, 546, 896, 1170, 1356, 1372, 1398, 1416, 1530, 1644, 1692, 1794,
1830 and 1962.
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CHAPTER 3

KORSELT NUMBERS AND OTHER CLASSES
OF NUMBERS

3.1 K _,-Numbers and Y, ,-Numbers

In this section, the relation between K ,-number and another class of num-
bers called Y,-numbers is discussed. Similar to the case of Korselt numbers,
Y,-numbers started with the Y;-numbers, and then a natural generalization to

any «. Let’s start by the definition of the Y;-number.

Definition 3.1.1. Let N be a composite squarefree number. N is called a Y;-
number if for any p and ¢ are distinct prime factors of NV, p Z 1 (mod ¢). The
smallest Y;-number is N = 3 x 5 = 15, and the smallest Y;-number with three

prime factors is N = 3 x5 x 17 = 255. (Bouallegue et al., 2010)

The following proposition proves that any /Kj-number is a Y;-number.

Proposition 3.1.1. If NV is a K;-number, then it’s also a Y;-number.

Proof. Suppose that N 1s a Kj-number and not a Yj-number. Then p = 1
(mod ¢) where p and q are distinct prime factor of V. This yields that ¢ divides
p — 1. But since N is a K{-number, then p — 1 divides N — 1. Thus, ¢ divides
N — 1. But ¢ divides N. Hence ¢ dividles N — (N — 1) = 1, which is a

contradiction.
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Now, a natural generalization of the Y;-numbers to any « is illustrated through

the following.

Definition 3.1.2. (Bouallegue et al., 2010) Suppose that o is a nonzero integer.
A composite squarefree number N is called a Y,,-number if p Z « (mod q),

where p and q are distinct prime divisors of V.

The following fact proves that any /K ,-number is a Y,,-number.

Proposition 3.1.2. (Bouallegue et al., 2010) Let a be a nonzero integer number.

If N is a K,-number, then it’s also a Y,-number, but the opposite is not true.

Proof. Let N = Hle p; where p;’s are distinct prime factors. Now, suppose that
N is a K,-number and not a Y,,-number. Then there are distinct s,¢ € {1, ..., k}
such that p;, = a (mod p;). Thus p; divides p; — . But as N is a K,-number,
then p; — o divides N — «, hence p; divides N — a, and then p; divides «. This
means that « = 0 (mod p;), and we conclude that p;, = 0 (mod p;), and hence
ps = pt, contradicting /N being a squarefree. Therefore, any K ,-number is also

a Y, -number.

The next example is a counter example leads that the opposite of the previous

proposition is not true.

Example 3.1.1. N = 551s a Y3-number (a = 3), is 6 a K3-number?
Here, KS(N) = KS(55) = {7,10,15} (see Table |5.1).Thus, 55 is not a K-

number.
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3.2 Williams Numbers

Definition 3.2.1. (Bouallegue et al., 2010) Let « € N\{0} and N is a positive
integer. NN is called an a-Williams number(1¥,,-number of short) if it is both a

K ,-number and a K __,-number.

Proposition 3.2.1. (Echi, 2007) Let « € Z\{0}. If a squarefree composite
number NN is a IV,-number, then the prime factors of /V is greater than or equal

to 3.

Proof. By Proposition 2.4.1], it can be concluded that & > 0 for all K,-numbers
that have the form pq, where p and ¢ are primes. Hence, for all N = pq is a

K ,-number, there is no —a € K.S(N), so N is not a W,-number.

The following algorithm is used to check if NV is a W,, or not (see Fig 3.1,

and in Tables [3.1]and [3.2] a list of both WW,-numbers and not are presented.
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Start

Read N, Pf(N) and KS(N)

If number of primes # 2

N is not a Williams
number

If both of o and -a
belong to KS(N)

N is a W,- number

Output N is not a
Output o Williams number

Stop

Figure 3.1: Flowchart to test if the number /V is W,-number or not.
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Table 3.1: Some examples of Williams numbers

N Pf(IV) KS(N)

231 3% 711 {=9,6,9,15}

1105 5x 13 % 17 {—15,1,9,15, 16,25}
3059 7% 19 %23 {=21,11,21,35}

19721 | 13 %37 # 41 {=39,9,39,65}
109411 |23 %67 # 71 {69, 64,69, 115}
455729 |37+ 109 = 113 | {—111,111,185}
715301 |43 %127 131 | {—129,129,215}
0834131 | 103 * 307 = 311 | {—309, 309, 515}

Table 3.2: Some examples of non Williams numbers

N [PIV) KS(NV)

165 | 3*x5x%11 {-3,4,9}

162 | 2#3#7+11 | {12}

770 | 2#5x7+11| {8, 14]

3007 | 31 %97 (127}

7663 | 79 % 07 (71,91,95,103, 175}
11397 [3%20% 131 | {}

Note that Pf of all numbers NN in Table [3.1]is p * (3p — 2) * (3p + 2) where p,

3p — 2 and 3p + 2 are all primes, and N = p(3p — 2)(3p + 2) is a W3,-number.

Definition 3.2.2. (Bouallegue et al., 2010) Let ¢ be a nonzero natural number
and p is a prime. Then it can be said that p is a T;-prime number if ip — (i — 1)

and ip+ (i — 1) are prime numbers. Defining T;(p) := p[ip— (i—1)][ip+ (i —1)].

Example 3.2.1. Is 13 a T3-prime number?
Yes,asp = 13and i = 3, thenip — (i — 1) = 37and ip+ (i — 1) = 41 are all
primes. Also set 75(13) = 13 % 37 %« 41 = 19721.

Example 3.2.2. The unique 75-primes are 2 and 3.
Let p be a T5-prime which is not in the set {2, 3}. Then there are two cases, either

p=1(mod3)orp=2 (mod3). Iif p=1 (mod 3),then2p+1 =3 =0
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(mod 3), which is not possible as p is a T5-prime, and hence 2p + 1 must be
a prime. Now, when p = 2 (mod 3). Then 2p — 1 = 3 = 0 (mod 3). Thus

2p — 1 is not a prime, which is a contradiction. Therefore, p € {2, 3}.

Next, it is interesting to study the relation among the K,-numbers, W,,-

numbers and 7;-prime numbers by starting the following lemma.

Lemma 3.2.1. (Bouallegue et al., 2010) Let p be a 7;-prime number. Then 7 — 1

divides p? — 1 iff T;(p) is a K;,-number.

Proof. Assume that p is a T;-prime number with T;(p) = p(ip — (1 — 1)) (ip +
(¢ —1)). Now, p, ip — (i — 1) and ip + (i — 1) are all the prime factors of
T;(p). Notice that T;(p) is K;,-number iff p — ip = (1 — )p divides T;(p) — ip,
ip—(i—1)—ip=—(i— 1) divides Tj(p) —ipandip+ (i — 1) —ip= (i — 1)
divides 7;(p) — ip. Hence, concluding that 7;(p) is K;,-number iff i — 1 divides
Ti(p) — ip. But, clearly T;(p) —ip = p[(ip — (i — 1))(ip + (i — 1)) — i] and
gced(p,i — 1) = 1, hence, i — 1 divides (ip — (i — 1))(ip + (¢ — 1)) — i where
(ip—(i—1))(ip+(i—1))—i = i2p? — (i—1)2—i = 2p?— 24+ 2i—1—i = i2(p>—
D4+(G—1)=@+1-D)@P*-D)+(G—-1) = (-1)(p*-1)+@*—1)+(i—1).

Therefore, T}(p) is an ip-Korselt number iff s — 1 divides p* — 1.

Theorem 3.2.1. (Bouallegue et al., 2010) Let p be a T3-prime number (73(p) =
p(3p — 2)(3p + 2)), then the following properties hold:

1. {=3p,3p,5p} € KS(T3(p)).

2. In particular, 73(p) is a 3p-Williams number.
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First Notice that p is an odd prime number, because if p = 2, then 3p+2 =
8 is not a prime.

Let us start by proving that 7T3(p) is Ks,-number. Indeed, p is an odd
prime, so p? is an odd number and 2 divides p> — 1, and by using lemma
T3(p) is a K3,-number. Next, to prove that 73(p) is a K_z,-number,
we have to show that each p + 3p, (3p — 2) + 3p and (3p + 2) + 3p divide
Ts(p) + 3p. But T3(p) + 3p = p(3p — 2)(3p +2) + 3p = p(p* — 1) =
p(3p — 1)(3p + 1). Both of 3p — 1 and 3p + 1 are even, and hence, 4
divides (3p — 1)(3p + 1), consequently, 4p divides p(3p — 1)(3p + 1) =
T3(p) + 3p. But 4p = p + 3p, giving p + 3p divides T3(p) + 3p. Also,
(3p—2)+3p = 2(3p—1) and divides p(3p — 1)(3p+ 1), where 3p+ 1 is
even, and (3p+2) +3p = 2(3p+ 1) and divides p(3p—1)(3p+ 1), where
3p — 1is even. Hence, T3(p) + 3p is a multiple of p + 3p, (3p — 2) + 3p
and (3p+2)+ 3p, so T5(p) is a —3p-Korselt number. Finally, to prove that
T3(p) is a 5p-Korselt number, set 75(p) — 5p = p(3p — 2)(3p+2) — bp =
p(9p*>—9) = 9p(p—1)(p-+1). Both of p—1 and p+1 are even, so 4 divides
(p—1)(p+1) and 4p divides Ip(p — 1)(p+ 1) = T3(p) — 5p, thus, p — 5p
divides T3(p) — 5p. On the other hand, (3p — 2) — 5p = —2(p + 1) and
divides 9p(p—1)(p+1), where p—1is even, and (3p+2)—5p = —2(p—1)
and divides 9p(p — 1)(p + 1), where p + 1 is even. so that T3(p) is a 5p-
Korselt number. Hence, {—3p, 3p, 5p} C KS(T5(p))

T5(p) is a 3p-Williams number. It is clear from 1 where each 3p,—3p €

KS(T3(p)).
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Refer to Table for some examples which confirms the validity of Theorem
B2.1
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CHAPTER 4

THE KORSELT SET OF SOME SPECIFIC
NUMBERS

4.1 Some Theorems and Examples about Korselt Numbers that Have pq

Form

In this chapter, a focus on the Korselt set of a product of two distinct prime
numbers is introduced. Throughout the chapter, p and ¢ are prime numbers with
p<q, q=1tpp+ssuchthat: > land1 < s < p—1and N = pqg. The
theme throughout this chapter is how are some conditions on p and ¢ determines

K S(N). Starting by the following proposition.

Proposition 4.1.1. If « € KS(NN), then the following properties hold:
l.p+gq—1€ KS(N).
2. q does not divide a.
3.g—p+1<a<p+qg—1.

4. If T = {a, where Nis a K, — number} and
T'={(i—1p+rwith2 <r <3p—2},thenT CT"

5. p — 11is a multiple of ¢ — «.

6. p — 1is amultipleof p+ s — 7.
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Proof. In view of Propositions [2.4.1| and 2.2.1_, 1t can be deduced that 2 <

a < N.

l. Leta=p+g—1.Then N—a=pg—p—q+1=plg—1)—(¢g—1) =
(p—1)(g—1). Now,p—a =p—p—q+ 1 = —(¢— 1) which divides
N—a,andqg—a=q—p—q+ 1= —(p—1) which also divides N — «.

Thus, by definition of Korselt number, N is a K ,-number.

2. On the contrary, assume that q divides a. Then o = (¢ for some 3 € Z.
Now, in view of Proposition £ must be greater than 1. There are

two possible cases:

Casel: p divides p — «. If p divides p — «, then p divides a as(p divides
p). q divides o implies that N = pq divides . Hence, N < «, which

contradicts o« < N.

Case2: p does not divide p — a. As N is a K- number, p — « divides
N —a, where N —a = p(¢—1)+ (p— «). This makes the conclution that
p — a divides p(q — 1). But p does not divide p — «, so ged(p,p — ) = 1.
Thus, p — a divides ¢ — 1 and p — Bq divides ¢ — 1. But p — 3¢ is negative
because p < ¢ < fq. This yields that |p—3¢q| = Sg—p which divides g—1,
hence, 8¢ — p < ¢ — 1, which is not possible, since fq¢ —p > 2q¢ — p > q.

Therefore, ¢ does not divide a.

3. By definition of K ,-number, ¢ — a divides N —a,and N —a = pg —q+
q—a=q(p—1)+ (¢ — a), this implies that ¢ — « divides ¢q(p — 1). By

using (2), gcd(q, g — a) = 1. Thus ¢ — « divides p — 1 which means that
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g—a<p—landa >q¢—p+1. Also—(¢g—a) <p—1,soa <p+qg—1.

Therefore,q —p+1<a<p+qg—1.

4. Note that g = ip+ s > ip,and s < p,soq < ip+p = (i + 1)p. By (3),
g—p+1<a<qg+p—1 Thus,qg—p+1>ip—p+1=(i—1)p+1and
qg+p—1<(i+1)p+p—1=(i+2)p—1. Thisyields (i—1)p+1 < a <
(i+2p—LBut(i+2p—1=(i—1+3)p—1=(i—1L)p+3p—1),

hence, one can write &« = (i — 1)p + r, with r € [2,3p — 2].

5. Let N be a K,-number. By definition of the Korselt number, ¢ — « divides
N—-—a.Now,N—a=pg—a=pg—q+q—a=qp—1)+ (¢ — «).
Hence, ¢ — « divides g(p — 1) can be deduced. By(2) gcd(q, o) = 1, so

q — « divides p — 1.

6. ¢q =ip+swithi > land s € {1,2,....p — 1}. By (5), ¢ — « divides
p—1. And by 4), « = (i — 1)p + r, with r € [2,3p — 2]. Therefore,

g—a=ip+s—(i—1)p—r=p+s—randdivides p — 1.

Remark. By part 1 of Proposition one may conclude that the Korselt set

of any squarefree number with two distinct prime factors is not empty.

Proposition 4.1.2. If p > 5 and ¢ = 2p — 3 are prime numbers, then NV is a

(¢ — p + 1)-Korselt number.

Proof. Definition of the Korselt number implies that N = pq is a K,-number
iff p — a and ¢ — a both divide N — «a.. Here, ¢ = 2p — 3, hence o = 2p — 3 —
p+1=p—2and N = p(2p — 3). Also, p —a = p — (p — 2) = 2 divides
N—a=p2p—-3)—(p—2)=2p-1)andg—a=2p-3—(p—2)=p—1

divides 2(p — 1)2. Therefore, N is a K,_,1-number.
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Example 4.1.1. Let N = 77 = 7 x 11. Note that 11 = ¢ = 2p — 3 and
q—p+1=5¢€ KS(77).

The following is an illustrative example of Proposition 4.1.1]
Example 4.1.2. Let N = 4453 = 61 x 73. Here, p = 61 and ¢ = 73.
e Proposition 4.1.1|(1) yields that p + ¢ — 1 = 133 € K.5(4453).

e Proposition 4.1.1([2) yields that for any o € K.S(4453), ¢ = 73 does not

divide any a.

e Proposition 4.1.1)3) yields g —p+ 1 < a < p+ g — 1, and hence,
13 <a<133.

e Proposition |4.1.1{4) in case ¢ = 1, this yields that (: — 1)p + r = r with
2 <r <3p—2=181. And hence, o € {2, ..,181}.

e Proposition 4.1.1)(5) yields that 73 — « divides 60, with o € [2,181].
Note that {13,43, 53, 58,61, 63, 67,68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 7
9,83, 85, 88,93, 103, 133 satisfy that 73 — a divides 60.

e Proposition 4.1.1((6) yields that 73 — r divides 60, with » = «.. Hence,
{13, 43,53,58,61,63,67,68,69,70,71,72,74,75,76,77,78,79, 83,85, 83
, 93,103, 133} satisty 73 — r divides 60.

Now, using MATLAB, K S(4453) = {43, 53,58, 63,67, 69, 70,79, 85, 133} (see
Table [5.1)). This insures that all the above items are true.

The case of gcd(p, ) = 1 has some particular results described in the fol-

lowing proposition.
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Proposition 4.1.3. Let o« € K.S(N) where « is a nonzero integer and gcd(p, ) =

1, then the following properties hold:
1. ¢ — 1 1s a multiple of p — a.
2. (i —2)p+rdivides 2p — r + s — 1.

3. (a) If ' ={«, where N is an K, — number and o # p+ q — 1} and
F={(i—-1p+rwith2 <r<2p—1},then FF C F".

(b) i € {1,2,3).

Proof.

1. N is a K,-number, so by definition of the Korselt number, p — « divides
N—a.Now,N—a=pg—p+p—a=p(g—1)+ (p—«a). Thus, p— «
divides p(q — 1), By the hypothesis gcd(«, p) = 1. Hence, p — « divides

q— 1.

2. By (1), a — p divides ¢ — 1, and by Proposition 4.1.1(4), « — p = (i —
Dp+r—p=(3G—-2)p+r.Also,qg—1=1ip+s—1=(G—-24+2)p+r—
r+s—1=[(i—2)p+r|+2p—r+s—1. Hence, (i —2)p + r divides

(i —2)p+7r|+2p—r+s—1. Thus, (i — 2)p+r divides 2p — r + s — 1.

3. (a) By Proposition[d.1.1J{), a = (i — 1)p + r with > 2. Now, using
contradiction to prove that r < 2p — 1, suppose that » > 2p. Then
by Proposition 4. 1.T[[H), 2p < r < 3p—2. Thus,0 <r—2p <p—2
and2—p <2p—r <0.Next,]1 <s<p—1,s00<s—1<p-—2.
Hence, one infer that —p+2 < 2p —r 4+ s — 1 < p — 2. That means

|2p —r+s—1| < p— 2. it can be claimed that 2p —r + s — 1 # 0.
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By hypothesis « # p+¢—1,thenp+q¢—1—a = p+ (ip +
s)—1—(@G—1)p—r=2p—r+s—1#0.By2), (i —2)p+r
divides 2p —r + s — 1. And as 2p — r + s — 1 # 0, this leads that
(t—2)p+r < |2p—r+s—1]|. Therefore, p < ip = (i —2)p+2p <
(t—2)p+71 < |2p—7+s—1| < p— 2, which is not true. So,
2<r<2p-—1.

(b) By (3)(a), r < 2p. Then, getting 2p —r + s — 1 > 0. And by (2),
(1—2)p+r divides 2p—r+s—1. Hence, (i —2)p+7r < 2p—r+s—1.
Which yields (i — 4)p < (s — r) — r — 1. By Proposition {.1.1{(6),
—p+1<p+s—r<p-—1,sor—s>1,and hence, s —r < —1.
It is deduced that (i — 4)p < —r — 2. Giving i € {1, 2, 3}.

Example 4.1.3. Let N = 1147. Here, p = 31, ¢ = 37,7 = 1 and s = 6. Note
that ged(a, 31) = 1.

e Proposition 4.1.3|(1) yields that 31 — « divides 36 for all & € K S(1147).
e Proposition 4.1.3(2) yields that —31 + r divides 67 — r with r = «.

e Proposition4.1.3|(3) yields that (i — 1)p+7r =r with2 <r <231 —-1=
61. Hence, o € {2,..,61}, where « # p+ g — 1 = 67.

Now, by using MATLAB, K S(1147) = {22, 27, 32,34, 35, 40, 43, 67} (see Ta-

ble [5.1) which agrees with the Proposition 4.1.3]

The following proposition concerns with the case ¢ > 2p*. It proves that in

this case the result set is a singleton.

Proposition 4.1.4. (Echi and Ghanmi, 2012) If ¢ > 2p?, then KS(N) = {p +

q—1}.
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The proof of this proposition depends on the following lemma, which dis-

cusses the case p divides .

Lemma 4.1.1. (Echi and Ghanmi, 2012) N is a K,-number with an integer «

and p divides « iff the following properties hold:
(I) a=1p, sdividesp — 1 and ¢ — 1 divides p + s — 1.
(M) o= (i+ 1)pand lem(p — s,14) divides s — 1.

Proof. Assume that N is a K,-number. In view of Proposition d.I1.T|{), o =
(1—1)p+r with 2 < r < 3p—2. Since p divides «, one concludes that p divides
r € {2,3,...,3p — 2}. This yields that » = p or r = 2p. Therefore, & = ip or
a=(i+1)p.

Casel: a = ip. Set N — a = p(q¢ — 1) + p — «. p divides « implies that

—

p —adivides N —a & divides ¢ — 1.

In this case, =% = —i+1landg—1=ip+s—1= (i—1)p+(p+s—1). Hence,
p—adivides N —a < i—1divides p+s—r. Now,set N—a = q(p—1)+q—a.
By Proposition 4.1.1{2), gcd(q, o) = 1. Then

g —adivides N —a & g — adividesp — 1.

Here,q —a =1ip+ s —ip = s. Thus, ¢ — adivides N — a < sdividesp — 1.
Therefore, N is a K,-number iff 2 — 1 divides p + s — 1 and s divides p — 1.
Case2: a = (i+1)p. Here, == = —iand ¢ — 1 = ip+ (s — 1). Asin the casel,

p— adivides N — a < idividess — 1. Also, g —a=ip+s—(i+1)p=s—p
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andp—1=p—s+(s—1). Thus, ¢ — adivides N — o < p — sdivides s — 1.
Therefore, NV is an K ,-number iff 7 divides s — 1 and p — s divides s — 1. These

mean that [cm (i, p — s) divides s — 1.

Example 4.1.4. e Is 10 a K ;-number?
Here, N = 10,p = 2,q = 5,7 = 2 and s = 1, where ¢ = ip + s. Now,
p = 2 which divides 4, also, 4 = ip, s = 1 dividesp—1 =1landi—1 =1
divides p + s — 1 = 2. Therefore, by using the first case of Lemma4.1.1

10 is a K 4-number.

e Is 77 a Ky4-number?
Here, N = 77,p = 7,q = 11,7 = 1 and s = 4, where ¢ = ip + s.
Now, p = 7 which divides 14, also, 14 = (i + 1)p and lem(p — s,1) =
lem(3,1) = 3 divides s — 1 = 3. So, by using the second case of Lemma

77 is a 14-Korselt number.
Remark. (Raji, 2013) If p divides «, then a € {L%Jp, (%]p},

Proof. Note that T = ip% =1+ 2 with s < p. Hence, || =iand [1] =i+ 1.
Thus, {|I]p, [1Ip}t = {ip, (i + 1)p}. By Lemma{.1.1, o € {ip, (i + 1)p},

therefore o € {[£]p, [1]p}.

Corollary 4.1.1. (Echi and Ghanmi, 2012) Assume that N is an K,-number

with an integer « and ged(p, ) = 1. if ¢ > 4p, then v = p + ¢ — 1.

Proof. Proposition4.1.3|(3)) leads that for all « € KS(N) excepta =p+q—1,

i € {1,2,3}. Which yields ¢ < 4p. Therefore, if ¢ > 4p, thena = p + q — 1.
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Now, it is time to prove Proposition

Proof of Proposition 4.1.4; By contraposition, suppose that there is o €
KS(N)suchthata # ¢ +p— 1. By Lemma[d.1.1} ¢ — 1 divides p+ s —1 > 0.
Then,7 — 1 < p+s—1,buts < p—1,thisyieldsthat: < p+ s < 2p — 1.
Which yields ¢ = ip + s < (2p — 1)p + p — 1 = 2p? — 1. This implies that, if
q > 2p*> — 1, finally KS(N) = {p+q— 1}.

Example 4.1.5. Let N = 471347 = 61 % 7727. Here, p = 61, q = 7727
and 7727 > 2 % 617 = 7442. Therefore, by Proposition KS(471347) =
(61 + 7727 — 1} = {7787).

Proposition 4.1.5. (Echi and Ghanmi, 2012) If p> — p < ¢ < 2p? and p > 5,
then K.S(N) C {ip,p+q — 1}.

Proof. Let p > 5 and p> — p < g < 2p?. Start by the claim that ¢ > 4p and
i > s— 1. Itis clear that ¢ > p? —p = p(p—1) > 4p. Hence, by Corollary
p + g — 1 is a possible value of a. Now, to show that: > s —1,let: < s — 1,

then from ¢ = ip + sand s < p — 1, it gives

¢<(s—p+s<plp—2)+p—1=p*—p—1,

which is a contradiction, since ¢ > p?> — p. Hence, i > s — 1, which leads that
i does not divide s — 1. So, by Lemmal.1.1] (¢ + 1)p is not a possible value of
«. Therefore, it is concluded that the possible values of « € K.S(N) are ip and

p+q— 1.
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Example 4.1.6. Let N = 145 = 5%29. Here, p = 5,¢ = 29and 5> —5 = 20 <
29 < 2% 52 = 50. Therefore, by Proposition {.1.5 KS5(145) C {5i,33} =
{25,33}

Proposition 4.1.6. (Echi and Ghanmi, 2012) If 4p < ¢ < p?*—p, then KS(N) C

Proof. Let 4p < q < p*> — p. Here, ¢ > 4p, then by Corollary a =
p+qg—1C KS(N). Also, by Lemma the possible values of « are ip and
(1 4+ 1)p. Thus, KS(N) C {ip, i + 1)p,p+q — 1}.

Example 4.1.7. Let N =203 =7x29. Here,p=7,¢g=29and 4 %7 = 28 <
29 < 7> — 7 = 42. Therefore, by Proposition KS(203) C {7i,7(i +
1),35) = {28, 35).

The next lemma helps to prove Proposition which discuss the case

3p < q<d4dp

Lemma 4.1.2. (Echi and Ghanmi, [2012)) Assume that /V is an K ,-number with
an integer ov # p+q—1 such that gcd(p, o) = 1. If 3p < ¢ < 4p, then ¢ = 4p—3

anda=q—p+1=3p—2.

Proof. Assuming 3p < q < 4dp gives ¢ = 3p+ swith1 < s < p — 1. Now,
Suppose a # p + ¢ — 1. Thus, by Proposition a=2p+rwith2 <r <
2p — 1. Also, as gcd(p, ) = 1, r # p. By Proposition f.1.3[(2)), p + r divides
2p—r+s—1. And2p—r+s—1=2p+2r—3r+s—1=2(p+r)—(3r—s+1).
This yields that p + r divides 3r — s + 1. By Proposition 4.1.1|(6), it can be

concluded that 1 < r — s < 2p — 1. So, Add 2r + 1 to this inequality, giving
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2r+2<3r—s+1<2p+2r =2(p+r). Butp+ rdivides 3r — s + 1, so
two cases can be had:

Casel: 3r — s+ 1 = 2(p+r). We conclude that r = 2p + s — 1, which implies
a=2p+r=2p+2p+s—1=4dp+s—1=0CBp+s)+p—1=q+p—1,a
contradiction.

Case2: 3r —s+1 = p+r. By subtract 2r — s to this equation, giving p+s—r =
r + 1. By Proposition {.1.1[(6), Thus, » + 1 divides p — 1, where p — 1 =
2r—s=2r+2—-2—s=2(r+1)—(s+2). Hence, r+ 1 divides s+ 2. But, by
Propositiond.1.1|(6), 1 < r—s. Add s+1 to this inequality, giving s+2 < r+1.
Consequently, r + 1 = s + 2. Therefore,p — 1 =2r —s=r+(r—s) =r+1,
whichyieldsq =3p+s=3p+(r+1)—-2=3p+p—1—-2=4p— 3 and

a=2p+r=2p+p—2=3p—2=q—p+ 1.

Example 4.1.8. Let N = 14701. Here, p = 61 and ¢ = 241 = 4p — 3.
K S(14701) = {181,244,301}. Note that, 181 = 3p — 2, 244 = 4p (here, p

divides ) and 301 = p+ ¢ — 1.

Proposition 4.1.7. (Echi and Ghanmi, 2012) Suppose that 3p < ¢ < 4p. Then

the following conditions are satisfied:
1. If ¢ = 4p — 3, then the following properties hold:

(@) If p=1 (mod 3), then KS(N) ={4p,q—p+1,p+q— 1}.
(b) If p £ 1 (mod 3) and p # 5,then KS(N)={q—p+1,p+q—1}.

(c) f p=>5,then KS(N) ={3p,q—p+1,p+q—1}.

2. If ¢ # 4p — 3, then KS(N) C {3p,4p,p +q — 1}.
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Proof.

1. To prove this item, it is needed to prove thateachp+q¢—1landqg—p+1
€ KS(N) for all N = pq such that p and ¢ are primes, p # 3 and ¢ =
4p — 3. Also, it is necessary to prove that 4p € K.S(N) justin case p = 1
(mod 3). By Proposition 4. 1.I[(I)), p + ¢ — 1 € K.S(N). Now, one must
prove thatg—p+1 € KS(N). Leta = g—p+1 = 4p—3—p+1 = 3p—2.
Hence,p—a =p—(3p—2) = —2(p—1),q—a =4p—3—(3p—2) = p—1
and N —a =pqg—(3p—2) =p(dp—3)— (3p—2) =4p* —3p—3p+2 =
4p?* —6p+2=2(p—1)(2p—1). Both of p — a and ¢ — o divide N — .
Therefore, by definition of the Korselt number « = ¢ —p+ 1 € KS(N).
Now, ¢ =4p — 3 =3p+ (p — 3). Thus, i = 3 and s = p — 3. Note that
s does not divide p — 1 (Counter example: Let p = 11. Thus, 11 —3 =8
does not divide 11 — 1 = 10), so by Lemma . 1.1{{T), 3p ¢ KS(N). In

view of Lemma@.1.1{{ll)), lem(p — s,i) = lem(3,3) = 3.
e If p=1 (mod 3),thenp—4 = 0 (mod 3). This yields that lcm(p—
s,1) = 3 divides s — 1 = p — 4. Hence, 4p € KS(N).
e If p £ 1 (mod 3), then p = 2 (mod 3) (p is a prime and not equal

3). Thus, p —4 = 1 (mod 3). This means that lem(p — s,i) = 3
does not divide s — 1 = p — 4. Hence, 4p ¢ KS(N).

2. By using Lemma and Lemma.1.1] it can be concluded that K'.S(N) C
{3p.4p,p +q—1}.
The following examples discuss the previous proposition cases.

Example 4.1.9. Let N = 1387 = 19 % 73. Here, p = 19, ¢ = 73. Note that
q=4p—3and p =1 (mod 3) Therefore, K S(1387) = {55,76,91}.
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Example 4.1.10. e Let N =85 =>5x17. Here, p = 5, ¢ = 17. Note that
q = 4p — 3 with p = 5. Therefore, K'S(85) = {13, 15,21}.

o Let N =451 =11=%41. Here,p =11, ¢ = 41. Note that ¢ = 4p — 3 and
p =2 (mod 3) where p # 5. Therefore, K.S(451) = {31,51}

Example 4.1.11. Let N =14 =2« 7. Here, p = 2, ¢ = 7. Note that 3p < ¢ <
4p and q # 4p — 3. Therefore, K S(14) C {6, 8}.

To study the case 2p < g < 3p, the following lemma helps.

Lemma 4.1.3. (Echi and Ghanmi, 2012) Suppose that /V is a K ,-number with
an integer « # p + ¢ — 1 and ged(p,a) = 1. If 2p < ¢ < 3p. then o €

{3¢ —5p+ 3,25 g —p+1}.

Proof. Assume 2p < q < 3p. Thus, ¢ = 2p+swith1l < s < p—1. a # p+q—1,
so by Proposition d.1.3@), « = p+r with2 < r < 2p — 1, and @ # p. By
using Proposition 4.1.3[(2), r divides ¢ — 1 = 2p + s — 1. This means that
2p+ s — 1 = Ir, where [ be a non zero integer. Then the proof has four cases.

Casel: When [ > 4; will obtain the inequality

2p+s—1
S
=Ty

Claim: p+s—r<p—1<2p+s—r).

By Proposition 4. 1.1.(6), p + s —r < p — 1. Also, s > 1, giving s > —1,

3s > —3,5—1 <45+2and%<23+1. Hence,p—l—% < p+2s—+1. Then

r S 2p+4s—1

, giving 2r < 2p+2‘9_1 = p+% < p+2s+1. Note that 2r < p+2s+1

is equivalent to p—1 < 2(p+s—r). Therefore, p+s—r < p—1 < 2(p+s—7).
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By Proposition4.1.11(6), p+s—r divides p—1. This yields that p—1 = p+s—r

andr =s+ 1. Hence,a =p+r=2p+s)—p+1l=q—p+ 1

Case2: When [ = 3, then r = %. Now, g —a = 2p+ s — (p+

r)=p+s—r=pts— Bl - rE2HL Ajge By Proposition4. 1.1](5),

¢ — o divides p — 1. hence, 222 divides p — 1. Giving p + 2s + 1 divides
3(p—1) =3(p+2s+1)— (6s+6). This implies that p+ 2s+ 1 divides 6s + 6.
Also, as 3(p — 1) is positive, then it gives 0 < 65+ 6 < 3(p+ 25+ 1). Thus, to

deal with two cases:

e 6s+6 =p+ 25+ 1. Thenp:4s+5and7":%:3s+3.

Consequently, « = p+r=p+3s+3=6p+3s—5p+3=312p+s)—
5p+ 3 =3q —5p+ 3.

© 6s+6=2(p+2s+1). Thenp=s+2andr = 2= = 2(S+2§+8_1 =

3543 — s 4 1. Itfollows thata = p+r=p+s+1=(2p+s)—p+1=

q—p-+ 1.

Case3: When! = 2, thenr = %. In this case, it has a = p +r =

2p+s—1 4p+s—1 2p+q—1
p+p2 _ 4 _ 2ptg-l

2 2

Case4: When/[ = 1,thenr = 2p+s—1=¢q—1. Hence,a = p+r=p+qg—1,

contradicting the hypothesis.

Example 4.1.12. Let N = 19109 = 97 % 197. Here, p = 97, ¢ = 197 and 2p <
q < 3p. Also, K.5(19109) = {101,194, 195,293}. Note that 101 = g — p + 1,
194 = 2p (p which divides «), 195 = % and 293 = p + ¢ — 1. one can
conclude that {101,195} C {101,109, 195} = {g—p+1,3¢ — 5p+ 3, 211},
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Proposition 4.1.8. (Echi and Ghanmi, 2012)) Suppose 2p < g < 3p, then

p+q—1

2
KS(N) € {2p.3p,3¢ = 5p +3, ———— ¢ —p+Lp+q—1}

Proof. It is clear by using Lemma@.1.3land Lemma4.1.1

Example 4.1.13. Let N = 10 = 2« 5. Here,p = 2,q¢ = 5 and 2p < g < 3p.
Therefore, by Proposition KS(10) C {4,6,8}.

The following result was proved by Echi and Ghanmi (Echi and Ghanmi,
2012).

Proposition 4.1.9. Set
qg—1 ..
I(p,q) ={p— T! k divides g — 1}

—1
J(p,q) :=={q— pT' [ divides p — 1}.

Suppose that o be an integer and p < ¢ < 2p. If @ € KS(N), then a €

I(p,q) N J(p,q) U{2p}.

But it is possible to find a counter example that make this result not true in
general. Next, an example is provided as well as a suggested correction to the

theorem.

Example 4.1.14. Let N = 77. Here,p =7,g =11 and p < q < 2p.

10
1(7,11) = {7 — 7| k divides 10},
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hence, getting k£ = 1,2, 5 and 10 which give 1(7,11) = {—3,2,5,6}. Also,
6,, .. .
J(7,11) = {11 — 7\ [ divides 6},

hence, having [ = 1,2, 3 and 6 which gives J(7,11) = {5, 8,9, 10}. Therefore,
(I(p,q) N J(p,q)) U{2p} = {5}. Note that KS(77) = {5,8,9,12,14,17} £
{5}.

The following proposition is a correction of Theorem 14 part 6 in (Echi and

Ghanmi, 2012).

Proposition 4.1.10. Set
g—1 . .
I(p,q) ={p+ Tl k divides ¢ — 1}

1
J(p,q) == {q— pT| [ divides p — 11.

Suppose that o be an integer and p < ¢ < 2p. If @« € KS(N), then o €

I(p,q) U J(p,q) U{2p}.

Proof. Here it has two cases:
Casel: p divides a. By Lemmal.1.1, « = pora = 2p. Butif « = pthen? — 1
must divide p+ s — 1 with ¢ = ip+ s, and here, : = 1 that leads : — 1 = 0 which

not divide p + s — 1, hence, a = 2p.

Case2: p doesn’t divide o, which means that gcd(p, o) = 1. By Proposition

A.1.1](3), then
g—p+1<a<p+q—1,
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SO

¢g—(p-1)<a<p+(¢g-1).

By Proposition 4.1.1(2), gcd(q, o) = 1. Hence, by Proposition 4.1.1{(5), ¢ — «

divides p — 1. Thus, p — 1 = [(¢ — «) which implies & = g — p%l with a
non-zero integer [. Also, by hypothesis, gcd(p, &) = 1. Hence, by Proposition
A.1.3|(1), p — « divides ¢ — 1 which yields o — p divides ¢ — 1 Thus, ¢ — 1 =
k(o — p) which implies a = p + %1 with a non-zero integer k. Therefore,
a € {q— pl;ll, — pl;;,...,q — pl;l} U{p+ %,p+ %,...,p—k %}, where

(k1, ..., k) are factors of ¢ — 1 and ([y, ..., [5) are factors of p — 1. Hence, from

casel and case2, it is concluded that o € I(p,q) U J(p,q) U {2p}.

Example 4.1.15. Let N = 77. Here,p =7,g =11 and p < q < 2p.

1
[(7,11) = {7 + ?0\ k divides 10},

hence, k = 1,2,5 and 10 is got which give /(7,11) = {17,12,9, 8}. Also,
6, .. .
J(7,11) = {11 — 7\ [ divides 6},

hence, | = 1,2,3 and 6 is got which gives J(7,11) = {5,8,9,10}. There-
fore, I(p,q) U J(p,q) U{2p} = {5,8,9,10,12,14,17}. Note that K.S(77) =
{5,8,9,12,14,17} C {5,8,9,10, 12, 14, 17}.

4.2 The Korselt Set of 6q. (Al-Rasasi et al., 2013)

This section is about the Korselt set of an integer that has the form 6¢, where

¢ 1s a prime number distinct from 2 and 3.
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Proposition 4.2.1. Let N = 6¢ with a prime ¢ > 5. If « € KS(N), then

ae€{qg+1,q—1,q+5,q—5}

Proof. Suppose that « € K.S(N). Thus, ¢ — « divides N — «. Here, N — a =
6g — a = 5q¢ + (¢ — «). Hence, ¢ — « divides 5¢. This yields ¢ — o €
{1, 45, +q, +5¢).

e ¢ —a # qand g — a # —bHq, because by definition of the Korselt number,
a # 0and a # N.

e Suppose that ¢ — a = —¢q. Hence, o = 2¢q. Now, 2 is a prime factor of
N implies that 2 — o = 2(1 — ¢) divides N — o = 4q. This yields that
q — 1 divides 2¢q. But gcd(q — 1,q) = 1, so ¢ — 1 divides 2. This leads
that either g — 1 = 1 or ¢ — 1 = 2. Consequently, ¢ = 2 or ¢ = 3, which

contradict the hypotheses.

e Suppose that ¢ — a = 5g. Hence, o = —4q. Again 2 — o = 2(1 + 2q)
divides N — o = 10q. Thus, 1 + 2q divides 5q. Now, gcd(1 + 2q,q) = 1
implies that 1 + 2q divides 5. This yields that 1 +2¢ = 1 or 1 + 2¢g = 5.

Consequently, ¢ = 0 or ¢ = 2, which again contradict the hypotheses.
Therefore, this indicates that ¢ — « € {+1,4+5}, hence v € {¢+1,¢—1,q +

5, —5}.

In the following theorem, the previous proposition will be used to prove that

the K.S(6¢) = () for all values of g except when g € {5,7,11,17}.

Theorem 4.2.1. Let N = 6q, where ¢ is a prime number greater than or equal

to 5. Then the following results satisfied:



1.

2.

3.

4.

Proof.

1.
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If a =q+1,then g = 5.
Ifa=qg—1,thenq € {5,7,11}.
It is not possible to have o« = ¢q + 5.

If « =q—>5,thenq € {11,17}

Suppose that & = ¢ + 1. N is a K,-number and 2 is a prime factor of V,
s02—a=1-—¢divides N —a,with N —a=5¢g—1=>5(¢q—1) +4.
It can be deduced that ¢ — 1 divides 4. Hence, ¢ — 1 € {1,2,4}. and then,
q € {2,3,5}. Also, 3 is a prime factor of NV, so 3 — o = 2 — ¢ divides
N —a, where N —a = 5¢—1 = 5(¢ —2) + 9. Thus, ¢ — 2 divides 9
can be concluded. Hence, ¢ —2 € {1,3,9} and g € {3,5, 11}. Therefore,

q € {3,5}. Butq > 5, thus ¢ = 5.

Suppose that « = ¢ — 1. Then 2 — a = 3 — ¢ divides N — «, where
N —a =5¢+1 = 5(q—3) + 16. It gives ¢ — 3 divides 16, so that,
q—3€{1,2,4,8,16} and q € {5,7,11,19}. Also, 3 —a = 4 — ¢ divides
N — awhere N — a = 5¢ + 1 = 5(q — 4) + 21, concluding that ¢ — 4
divides 21. Thus, ¢ — 4 € {1,3,7,21} and ¢ € {5,7,11}. It follows that
q€{5,7,11}.

Suppose that « = ¢ + 5, Then 2 — a = —3 — g divides N — a, where
N —a =5q¢—5 = 5(¢g+3) — 20. It gives ¢ + 3 divides 20. Hence,
q+3€{1,2,4,5,10,20} and ¢ € {7,17}. Also 3 — a = —2 — ¢ divides
N — a, where N — a = 5g — 5 = 5(q + 2) — 15. Thus, ¢ + 2 divides
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15, and consequently, ¢ + 2 € {1,3,5,15} and ¢ € {3,13}. There is no
intersection between {7, 17} and {3, 13}. Therefore, it is not possible to

have a = ¢+ 5

4. Suppose that « = ¢—5. Then 2—a = 7—q divides N —a, where N —a =
5¢+5 = 5(q¢—"7)+40. Hence, ¢ — 7 divides 40 can be deduced. And since
q—T7>5—T7= =2/ itgivesq—T7 € {-2,—1,1,2,4,5,8,10, 20,40}
and ¢ € {5,11,17,47}. But o # 0 gives ¢ € {11,17,47}. Also, 3 — av —
8 — ¢ divides N — o, where N — o = 5¢ + 5 = 5(q¢ — 8) + 45. This
yields ¢ — 8 divides 45. Since ¢ — 8 > 5 —8 = —3, it gives ¢ — 8 €
{~3,-1,1,3,5,9,15,45} and ¢ € {7,11,13,17,23,53}. Therefore, in

this case, ¢ € {11,17}.

Corollary 4.2.1. Combining the previous results, the only values of ¢ for which

KS(6q) # ¢ are5,7,11 and 17.

Example 4.2.1. (Al-Rasasi et al., 2013)
e For g =5,then KS(6q) ={q¢—1,9q+ 1} = {4,6}.
e For g = 7,then KS(6q) = {q — 1} = {6}.
e For ¢ = 11, then KS(6q) = {¢— 1,9 — 5} = {6, 10}.

e For ¢ = 17,then KS(6¢q) = {q — 5} = {12}.



53

CHAPTER 5

RESULTS AND CONCLUSION

5.1 Algorithms and Tables

The following propositions that were proven in the previous chapter are used
in the following diagram (see Figure to find the K.S(N) for all IV that have
the form p * ¢q. After that, KS(N) for all N = pg where p and ¢ are less than
100 is found. (See Table [5.1])

If ¢ > 2p?, then KS(N) = {p+q— 1}.

If p> —p < g < 2p?and p > 5, then KS(N) C {ip,p+q — 1}.

If 4p < q < p* — p, then KS(N) C {ip, (i + 1)p,p +q — 1}.

Suppose that 3p < g < 4p. Then the following conditions are satisfied:

1. If ¢ = 4p — 3, then the following properties hold:
(a) If p=1 (mod 3), then KS(N) ={4p,q—p+1,p+q—1}.
(b) If p £ 1 (mod 3),then KS(N) = {qg—p+1,p+q— 1} except
when p = 5, because in this case K.S(N) = {3p,q—p+1,p+
q—1}

2. If ¢ # 4p — 3, then KS(N) C {3p,4p,p+ q — 1}.
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e Suppose 2p < q < 3p, then

p+q—1

2
KS(N) € {2p,3p,3¢ = 5p +3, ———— g —p+Lp+q—1}

e Suppose that p < ¢ < 2p. Then, setting
q—1, ...
I(p.q) := {p + ——[kdivides (¢ — 1)}

-1 .
J(p.q) = {q — =k divides (p — 1)},

we have KS(N) C {2p} U I(p,q) U J(p,q).
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Figure 5.1: A flowchart representing a fast approach to calculate the K S(N).
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Table 5.1: KS(N) for all N = pq where p and ¢ are less than 100.

N | p | q | Category a e KS(N)
6 2 1319 4
10 2 |5 |8 4,6
14 2 |7 |7 6, 8
15 31519 4,6,7
21 |3 |7 |8 5,6,9
22 2 |11 1 12
26 2 | 13]1 14
33 3 117 9,13
34 2 1171 18
35 |5 |7 |9 3,6,8, 11
38 2 191 20
39 3 11319 12,15
46 2 1231 24
51 3 11719 15,19
55 S | 118 7,10, 15
57 3 1191 21
58 |2 1291 30
62 2 |31 )1 32
65 S 1318 9,11, 15, 17
69 |3 |23]|1 25
74 2 371 38

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
77 7 119 5,8,9,12, 14, 17
82 |2 |41]1 42
85 S | 175 15,21, 13
86 2 431 44
87 3 1291 31
91 7 1319 10, 11, 14, 19
93 3 |31 )1 33
94 2 |47 )1 48
95 S 197 15, 20, 23
106 |2 |53|1 54
it |3 371 39
115 |5 |23]1 27
118 |2 591 60
119 |7 | 178 11, 14, 15, 23
122 |12 |[61]1 62
123 |3 411 43
129 |3 43 ]1 45
133 |7 198 13, 16, 21, 25
134 |2 671 68
141 |3 471 49
142 |2 |71 |1 72

Continued on next page
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Table 5.1 — continued from previous page

N | p | q | Category a € KS(N)
143 |11 139 8,12, 14, 15,23
145 |5 (292 25,33
146 |2 |73 1 74
155 |5 [31]2 30, 35
158 |2 |79]1 80
159 |3 |53]1 55
161 |7 |23]7 21,29
166 |2 |83 1 84
177 |3 [59]1 61
178 |2 |89 |1 90
183 |3 |61]1 63
18 |5 |37|2 35,41
187 |11 |17 ]9 7,12, 15,19, 22,27
194 |2 971 98
201 |3 (671 69
203 |7 293 35
205 |5 412 45
209 |11 1919 9,14, 17, 20, 29
213 |3 |71 |1 73
215 |5 |43 ]2 47
217 |7 3113 28, 37

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
219 (3 |73 |1 75
221 |13 1719 5,11, 14, 15, 21, 29
235 |5 472 51
237 |3 |79 1 81
247 131199 7, 15,16, 22,31
249 |3 |83 |1 85
253 | 11238 13,22, 33
259 |7 3713 35,43
265 |5 531 57
267 |3 |89 |1 91
287 |7 |41]3 35,42,47
291 |3 (971 99
295 |5 |59]1 63
299 |13123|9 11, 24, 26, 35
301 |7 [43|2 49
305 |5 611 65
319 | 11{29 8 39
323 | 171199 11, 15, 18, 20, 23, 35
329 |7 |47 |2 53
335 |5 |67 |1 71
341 | 11|31 8 21, 26, 33, 41

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
355 |5 |71]1 75
365 |5 |73 |1 77
371 |7 |53 |2 59
377 131298 17,26, 27, 41
391 | 17]23|9 15,19, 39
395 |5 |79)1 83
403 |13 318 19, 28, 43
407 |11 (37 |7 47
413 |7 |59|2 65
415 |5 |83 |1 87
427 |7 | 612 67
437 | 19239 17,20, 21, 41
445 |5 |89 |1 93
451 |11 (416 31,51
469 |7 |67 ]2 73
473 |11 (43 |7 33, 44,53
481 |13 378 25,31, 39, 49
485 |5 |97 |1 101
493 | 171299 13,21, 31,45
497 |7 |T71|2 77
511 |7 |73 |2 70,79

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
517 |11 /47 |3 57
527 | 1713119 15, 23,27, 32, 47
533 | 13|41 |7 39,53
551 [ 1912919 20, 23, 26, 38, 47
553 |7 |79]2 85
559 | 13|43 |7 39, 55
581 |7 |83 |2 89
583 | 11533 55,63
589 193119 13,22, 25, 29, 34, 49
611 | 1347 |7 59
623 |7 |89 |2 95
629 | 17|37 |8 21,29, 35,53
649 | 11]59 |3 69
667 2312919 27,30, 51
671 |11 613 66, 71
679 |7 |97 |2 91, 103
689 | 13|53 |3 65
697 |17 |41 |8 25,37,57
703 |19 (37|9 28, 31, 38, 55
713 231319 20, 29, 33, 53
731 |17 143 |8 51,59

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
737 |11 |67 |3 77
767 | 131593 71
779 |19 |41 |8 23,38, 39, 59
781 |11 |71]3 66, 81
793 | 13613 65, 73
799 |17 |47 |8 51,63
803 | 11733 83
817 | 19|43 |8 25,40, 61
851 23379 26, 35, 59
869 (11|79 |3 77, 89
871 [ 13|67 |3 79
893 [ 19|47 |8 38, 65
899 291319 24,27, 30, 32, 35, 59
901 | 17|53 |7 51, 69
913 | 11|83 |3 93
923 | 13|71 |3 83
943 231419 19, 43, 63
949 13|73 |3 85
979 | 1189 |3 99
989 231439 21,44, 65
1003 | 17 |59 | 7 51,75

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
1007 | 19 | 53 | 8 71
1027 | 13 179 | 3 91
1037 | 17 | 61 |7 77
1067 | 11 |97 | 3 99, 107
1073 129 |37 |9 23, 30, 33, 35, 38, 41, 65
1079 | 13 |83 |3 95
1081 | 23 | 47 | 8 25, 46, 69
1121 |19 |59 |7 57,77
1139 | 17 | 67 |7 51, 68, 83
1147 | 31 |37 |9 22,27, 32,34, 35, 40, 43, 67
1157 {13 189 | 3 101
1159 | 19 |61 |7 79
1189 129 141 |9 27,34, 37, 39, 69
1207 | 17|71 |3 87
1219 | 23 |53 | 8 75
1241 | 17 |73 | 3 89
1247 129 143 |9 15, 36, 50, 71
1261 | 13 197 | 3 91, 109
1271 | 31 |41 |9 11, 26, 35, 36, 39, 51, 71
1273 119 | 67 |7 76, 85
1333 |31 143 |9 28, 33, 37, 38, 45,73

Continued on next page
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Table 5.1 — continued from previous page

N | p | q | Category a € KS(N)
1343 | 17 |79 | 3 95
1349 | 19 |71 |7 89
1357123159 |8 81
1363 129 |47 |9 75
1387 | 19 |73 | 4 76, 55, 91
1403 | 23 | 61 | 8 83
1411 |17 |83 |3 99
1457 | 31 |47 | 9 32,62,77
1501 | 19|79 |3 76,97
151317 189 |3 85, 105
1517 |37 141 |9 29, 32, 35, 38, 39,42, 45,47, 77
1537129539 25, 55, 81
1541 |23 |67 | 8 45, 56, 69, 89
1577 |19 |83 | 3 101
1591 |37 |43 |9 31, 34, 39, 40, 44, 79
1633 |23 |71 |7 69, 93
1643 {3153 |9 83
1649 | 17 |97 | 3 113
1679 | 23 |73 |7 95
1691 |19 189 |3 95, 107
1711 |29 |59 | 8 31, 58, 87

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
1739 |37 47 |9 35, 38, 83
1763 |41 143 |9 35, 38,39,42,44,47, 48, 83
1769 | 29 | 61 | 8 33,59, 89
1817 |23 |79 |7 101
1829 13159 |9 29, 60, 62, 89
1843 11997 |3 95,115
1891 |31 1619 46, 51, 62,91
1909 | 23 |83 |7 105
1927 | 41 |47 | 9 39,42, 43, 87
1943 129 | 67 | 8 95
1961 | 37 |53 |9 35, 41, 50, 89
2021 43 14719 41, 44, 45, 89
2047 |23 189 |6 67,111
2059 |29 |71 | 8 43, 64, 99
2077 | 31|67 | 8 37,62, 64,97
2117 129 |73 | 8 87, 101
2173 141 15319 43,45, 54,93
2183 137|599 95
2201 |31 |71 |8 41, 66, 101
2231123197 |3 119
2257 |37 16119 25,43,49, 52,57, 67,97

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
2263 |31 |73 |8 43, 67,103
2279 143 15319 39, 47, 56, 95
2291 129 |79 | 8 107
2407 129 | 83 | 8 87,111
2419 | 4159 |9 39,99
2449 131 |79 | 8 109
2479 |37 167 |9 31,70, 103
2491 |47 |53 |9 51,99
2501 |41 16119 21, 51, 53, 56,71, 101
25371431599 45, 101
2573 131|838 93,113
2581 12989 |7 87, 117
2623 14361 |9 40, 47, 55, 58, 63, 103
2627 |37 7119 35,72, 74, 107
2701 | 37|73 |9 55, 61, 74, 109
2747 141 | 67 |9 47, 63, 107
2759 |31 (89 |8 119
2773 14715919 105
2813 12997 |7 125
2867 |47 1619 59, 62, 107
2881 43 167 |9 46, 65, 109

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
2011 (41|71 |9 31,51,76, 111
2923 137179 | 8 43,76, 115
2993 14173 |9 33,53,65,77, 113
3007 | 31|97 |7 127
3053 1437119 29, 50, 57,78, 113
3071 |37 |83 |8 74,119
3127 153 15919 55,111
3139 143 |73 |9 31,52,67,79, 115
3149 | 47 1 67 |9 44,69, 113
3233 153|619 48, 57,59, 63, 65, 113
3239 141|179 |9 39, 80, 119
3293 137189 | 8 125
3337 147 7119 48,94, 117
3397 143179 |9 37, 82, 86, 121
3403 |41 |83 | 8 43,82, 123
3431 147 7319 50,71, 119
3551531679 54,119
3569 |43 1839 41, 84, 86, 125
3589 |37 |97 | 8 61, 85, 133
3599 159|619 60, 62, 63, 119
3649 |41 |89 | 8 49, 85, 129

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
3713 147179 |9 125
3763 |53 7119 58, 67, 123
3827 43|89 |8 47, 86, 87, 131
3869 |53 17319 47,71,77, 125
3901 (47|83 |9 129
3953 159|679 65, 125
2977 141 |97 | 8 57, 89, 137
4087 | 61 |67 | 9 55,62,63,64,72, 127
4171 {43 |97 | 8 55,91, 139
4183 |47 89 |9 43,91, 135
4187 |53 (79| 9 27,66,92, 131
4189 |59 |71 |9 69, 73, 129
4307 |59 |73 |9 71, 131
4331 |61 |71 |9 51, 56, 59, 66, 68, 75, 131
4399 |53 183 |9 135
4453 161 |73 19 43,53, 58, 63, 67, 69, 70, 79, 85, 133
4559 | 47|97 | 8 51,95, 143
4661 |59 |79 |9 137
4717 |53 (89 |9 141
4757 |67 |71 |9 60, 65, 68, 69, 72, 74,77, 137
4819 |61 |79 |9 59, 64, 67,74, 139

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
4891 |67 |73 |9 70,71,75,76,79, 139
4897 |59 |83 |9 141
5063 | 61 |83 |9 63, 143
5141 153197 |9 45, 101, 149
5183 |71 73|19 59, 63, 68, 72,74, 75, 80, 83, 143
5251159189 |9 60, 118, 147
5293 1677919 68, 73, 80, 145
5429 161 |89 |9 59, 69, 83, 149
5561 |67 83 |9 149
5609 |71 |79 |9 65, 69, 72, 74,77, 84, 149
572315919719 155
5767 |73 17919 67,70,71,75,76, 151
5893|7183 |9 69, 73, 153
5917 161 19719 37,67,71, 85,93, 109, 157
5963 | 67 |89 |9 23,56,78, 111, 155
6059 |73 183 |9 71,74,75, 155
6319 |71 89 |9 75,79, 82, 159
6497 | 73 189 |9 65,71, 77, 81,95, 161
6499 | 67 |97 | 9 64, 75,91, 99, 163
6557 |79 |83 |9 77, 80, 81, 161
6887 |71 197 | 9 83, 87,95, 167

Continued on next page
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Table 5.1 — continued from previous page

N | p | g | Category a € KS(N)
7031|7989 |9 83, 87, 90, 167
7081 |73 (97| 9 25,61, 79, 85, 89, 105, 121, 169
7387 | 83189 |9 87,91, 171
7663 |79 |97 | 9 71,91, 95, 103, 175
8051|8397 |9 95,99, 179
8633189197 |9 86, 93, 95, 101, 105, 185
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Figure 5.2: a and b are scatter and line charts in order represents relation between N, KS(N)
and K,,(N)

In the final stage, a comparison between methods for calculating the Korselt

numbers is made by defining composite squarefree /N from 1 to 1000 that have
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the form pq. Results showed that the way for calculating the Korselt number by

3g—N
2

checking all numbers between and w consumed more time rather than
the proposed technique in this chapter, such that the first method needed 0.39
sec on a laptop with ¢7 processor, while the improved technique consumed 0.11
sec which is more than 3 times faster than the traditional way of calculating.

This gives us the right to say the modified technique is more efficient, although

the program was not fully optimized for the time being.

5.2 Observations and Remarks on Literature

Here are some notes about the literature relevant to this work.

Theorem 1.10 in (Bouallegue et al., 2010) is divided into several parts.
Section 2.4 (Finiteness K ,-Number with Exactly Two Prime Factors) was
devoted to it because of it’s importance and to being able to demonstrate

it in a detailed way, so that the reader can easily understand it.

e Theorem 2.1 in (Al-Rasasi et al., 2013) is divided into two propositions.
Section 4.2 (The Korselt Set of 6¢q) was devoted to it in order to simplify

it for the reader.

e Because of the algorithms that were developed in this thesis, enabled us
to discover errors in the literature. Some numerical errors are observed in
one of the tables in (Bouallegue et al., 2010) (page 262), and the correction

of them is in Table 2.4l in this thesis.

e While solving some examples related to Theorem 14 in (Echi and Ghanmi,

2012), some mistakes are discovered. Items (4) and (6) of that theorem
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has some errors, so Propositions 4.1.7|and 4.1.10] are provided as well as

suggested correction in order.
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Conclusion

In this work, we have presented a new type of numbers which are not men-
tioned much in the literature, namely, Korselt numbers. Several methods to find
Korselt numbers and the relation between Korselt numbers and other classes of
numbers as Williams numbers and Carmichael numbers have been studied. The
work developed complicated algorithms to find these numbers very efficiently
and in a short time. Although these algorithms were an important addition to

this thesis, still we believe this topic has a lot to improve.
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