
An-Najah National University

Faculty of Graduate Studies

Numerical Methods for Solving

Hyperbolic Type Problems

By

Anwar Jamal Mohammad Abd Al-Haq

Supervisor

Prof. Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Computational Mathematics, Faculty of

Graduate Studies, An-Najah National University, Nablus, Palestine.

2017

II

Numerical Methods for Solving Hyperbolic Type

Problems

By

Anwar Jamal Mohammad Abd Al-Haq

This thesis was defended successfully on 92/3 /2017 and approved by :

Defense Committee Members Signature

 Prof. Naji Qatanani /Supervisor ...……..………

 Dr. Mahmoud Al- Manassra /External Examiner ...…..…………

 Dr. Hadi Hamad /Internal Examiner ……………….

III

Dedication

I dedicate my work to all my family members, to my parents, my love my

fiance Ahmad, my sisters, my brothers who encourage me to learn, grow

and develop and who have been a source of encouragement and inspiration

to me.

IV

Acknowledgement

In the beginning, I am grateful to God to complete this thesis. I wish to

express my sincere thanks to Prof. Dr. Naji Qatanani for providing me with

all the necessary facilities for the research and I am extremely thankful and

indebted to him for sharing expertise, sincere valuable guidance and

encouragement extended to me.

My thanks also external examiner Dr. Mahmoud Al- Manassra and to my

internal examiner Dr. Hadi Hamad for their useful and valuable comments.

Also, my great thanks are due to my family and my fiance Ahmad for their

support, encouragement and great efforts for me.

My sense of gratitude to everyone, who directly or indirectly, have lent

their hand in this venture.

V

 الإقرار

 اًا الوْقع أدًاٍ هقذم الزسالت التي تحول عٌْاى :

Numerical Methods for Solving Hyperbolic Type

Problems

أقز بأى ها اشتولت عليَ ُذٍ الزسالت اًوا ُي ًتاج جِذي الخاص، باستثٌاء ها توت الاشارة اليَ

هي قبل لٌيل أي درجت علويت أّ بحث حيثوا ّرد، ّأى ُذٍ الزسالت ككل، أّ أي جزء هٌِا لن يقذم

 علوي أّ بحثي لذٓ أي هؤسست تعليويت أّ بحثيت أخزٓ.

Declaration

The work provided in this thesis, unless otherwise referenced, is the

researcher’s own work, and has not been submitted elsewhere for any other

degree or qualification.

Student's name: :اسم الطالب

Signature: :التوقيع

Date: :التاريخ

VI

Table of Content

Dedication ... III

Acknowledgement ... IV

Declaration ... V

Table of Content .. VI

List of Figures .. VIII

List of Tables ... IX

Abstract .. X

Introduction ... 1

Chapter One ... 5

Finite Difference and Finite Element Methods for Solving Hyperbolic

Partial Differential Equations .. 5

1.1 Hyperbolic PDE Subject to Boundary Conditions 6

1.2 Discretization of Hyperbolic PDE by Finite Difference Method 6

1.3 The Principle of Finite Difference Method (FDM) 6

1.4 Strategy of Discretization .. 7

1.4.1 Homogeneous Wave Equation with Dirichlet Boundary

Conditions ... 12

1.4.2 Inhomogeneous Wave Equation with Dirichlet Boundary

Conditions ... 17

1.4.3 Homogeneous Wave Equation with Neumann Boundary

Conditions ... 17

1.4.4 Inhomogeneous Wave Equation with Neumann Boundary

Conditions ... 19

1.5 Finite Element Method .. 20

The Principle of Finite Element Method (FEM) 21

1.5.1 Finite Element Method (FEM) for Dirichlet Boundary Value

Problems ... 22

1.5.2 Finite Element Method (FEM) with Neumann Boundary 29

1.6 Finite Difference Method for Two Dimensional Wave Equation .. 33

1.6.2 Two Dimensional Wave Equation with Neumann Boundary

Conditions ... 41

Chapter Two .. 44

Iterative Methods for Solving Linear Systems ... 44

2.1 Jacobi Method .. 46

2.2 Gauss-Seidel Method ... 48

VII

2.3 Successive over Relaxation Method (SOR Method) 49

2.4 Conjugate Gradient Method ... 52

2.5 Convergence of Iterative Methods ... 54

2.5.1 Convergence of Jacobi and Gauss-Seidel Iterative Methods 55

2.5.2 Convergence of SOR iterative Method .. 56

2.5.3 Convergence of Conjugate Gradient Method 56

Chapter Three .. 59

Numerical Results ... 59

3.1 Comparison between results for finite difference method and finite

element method for example 3.1:... 97

3.2 Comparison between results for iterative methods 97

3.3 Conclusions .. 98

References ... 99

Appendix A ... 105

Appendix B ... 107

Appendix C ... 109

Appendix D ... 111

Appendix E .. 114

Appendix F .. 116

Appendix G ... 118

Appendix H ... 120

Appendix I ... 123

Appendix J ... 125

Appendix K ... 127

Appendix L .. 129

 ب ... الولخص

VIII

List of Figures
Figure1. 1: discretization of a rectangular domain 8

Figure1. 2: 5-points stencil of the unknown function 11

Figure1. 3: three points , and which are located on axis .. 13

Figure 1. 4: three points and which are located on the axis

 .. 14

Figure1. 5: combining x-axis and t-axis around the point 15

Figure 1. 6: Dirichlet boundary conditions defined on the rectangular

domain .. 16

Figure1. 7: finite element on irregular shape .. 22

Figure1. 8: rectangular domain with Dirichlet boundary conditions 23

Figure1. 9: coordinate for each node in finite element method 24

Figure1. 10: the local node numbers are determined on nodes start from

node1, then node 2 and finally with node 10 (in a

counterclockwise). .. 25

Figure1. 11: Node 1 is assigned local node number 1 in element 1 27

Figure1. 12: Node 2 has Local node number 2 in element 1 and Local node

number 1 in element 2 and element 3. 27

Figure1. 13: discretization of two dimensional domain 34

Figure3. 1: discretization of the domain for example 1 61

Figure3. 2: discretization the domain with dirichlet boundary condition for

example 1 .. 62

Figure 3. 3: discretization the domain by finite element method for example

2 .. 73

Figure3. 4: discretization the domain with Neumann boundary condition

for example 3 .. 82

Figure3. 5: discretization the domain with Dirichlet boundary conditions

for example 3 .. 90

IX

List of Tables
Table 3. 1: Comparison between the iterative methods for example 1 72

Table 3. 2: the global nodes, local node numbers and the coordinates for

each element .. 74

Table 3. 3: represents vector of prescribed boundary values 79

Table 3. 4: matrix that obtained from global coefficient matrix 80

Table 3. 5: matrix that obtained from global coefficient matrix 80

Table 3. 6: Comparison between the iterative methods for example2 88

Table 3. 7: Comparison between the iterative methods for example 3 96

Table 3. 8: Comparison between results for finite difference method and

finite element method for example 1 .. 97

Table 3. 9: Comparison between FE and FD solutions 97

X

Numerical Methods for Solving Hyperbolic Type Problems

By

Anwar Jamal Mohammad Abd Al-Haq

Supervisor

Prof. Naji Qatanani

Abstract

Hyperbolic Partial Differential Equations play a very important role in

science, technology and arise very frequently in physical applications as

models of waves. Hyperbolic linear partial differential equations of second

order like wave equations are the ones to be considered. In fact, most of

these physical problems are very difficult to solve analytically. Instead,

they can be solved numerically using some computational methods .

In this thesis, homogeneous and inhomogeneous wave equations with

different types of boundary conditions will be solved numerically using the

finite difference method (FDM) and the finite element method (FEM) to

approximate the analytical (exact) solution of hyperbolic PDEs. The

discretizing procedure transforms the boundary value problem into a linear

system of algebraic equations that can be solved by iterative methods.

These iterative methods are: Jacobi, Gauss-Seidel, SOR, and Conjugate

Gradient methods. A comparison between these iterative schemes is drawn.

The numerical results show that the finite difference method is more

efficient than the finite element method for regular domains, while the

finite element method is more accurate for complex and irregular domains.

Moreover, we observe that the Conjugate Gradient iterative technique gives

the most efficient results among the other iterative methods.

 1

Introduction

Partial differential equations (PDEs) are encountered in physics either

elliptic, parabolic or hyperbolic. Hyperbolic partial differential equations

(PDEs) are play a very important role in science, technology and arise very

frequently in physical applications as models of waves, such as acoustic,

elastic, seismic, shock, electromagnetic, and gravitational waves.

In fact, most of hyperbolic partial differential equations (PDEs) that arise in

mathematical models of physical phenomena are very difficult to solve

analytically, so numerical methods become necessary to approximate the

solution of such hyperbolic partial differential equations. For many

hyperbolic partial differential problems, finite difference and finite element

methods are the techniques of choice [19].

Finite difference method (FDM) is the oldest method for numerical

solution of partial differential equations which is introduced by Euler in the

18th century. Because of this simplicity and easy to use for simple

geometries, it is the most popular method for solving partial differential

equations. It is based upon the application of Taylor expansion to

approximate the differential equations. This method uses a topologically

square network of lines to construct the discretization of the PDE [38].

On the other hand, the finite element method (FEM) is the general method

for the numerical solution of partial differential equations covering all three

main types of equations, namely elliptic, parabolic, and hyperbolic

equations. It can be implemented to any type of PDE. FEM is flexible and

 2

accurate method but requires a good knowledge in coding. The finite

element method (FEM) is good enough to give a vision of numerical

solution [40], and it was introduced by engineers in the late 50’s and early

60’s for the numerical solution of partial differential equations in structural

engineering (elasticity equations, plate equations).

Today, the method is used extensively for problems in many areas

including, but not limited to, structural engineering, strength of materials,

fluid mechanics, nuclear engineering, electro-magnetism, convention-

diffusion processes, wave propagation, scattering, integrated circuits, heat

conduction, petroleum engineering, and reaction-diffusion processes [39].

The FEM dates back to 1909 when Ritz developed an effective method for

the approximate solution of problems in the mechanics of deformable

solids, it includes an approximation of energy function by the known

functions with unknown coefficients. Minimization of function in relation

to each unknown leads to a system of equations from which the unknown

coefficients may be determined. One of the main restrictions in the Ritz

method is that functions used should satisfy the boundary conditions of the

problem [8].

The FEM obtained its real impetus in the 1960s and 1970s by the

developments of the following groups: J. H. Argyris with co-workers

at the University of Stuttgart, R.W. Clough with co-workers at UC

Berkeley, O. C. Zienkiewicz with co-workers Ernest Hinton, Bruce

Irons and others at the University of Swansea, Philippe G. Ciarlet at the

University of Paris and Richard Gallagher with co-workers at Cornell

https://en.wikipedia.org/wiki/John_Argyris
https://en.wikipedia.org/wiki/John_Argyris
https://en.wikipedia.org/wiki/University_of_Stuttgart
https://en.wikipedia.org/wiki/Ray_W._Clough
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/Olgierd_Zienkiewicz
https://en.wikipedia.org/wiki/Ernest_Hinton
https://en.wikipedia.org/wiki/Bruce_Irons_(engineer)
https://en.wikipedia.org/wiki/Bruce_Irons_(engineer)
https://en.wikipedia.org/wiki/Swansea_University
https://en.wikipedia.org/wiki/Philippe_G._Ciarlet
https://en.wikipedia.org/wiki/Cornell_University

 3

University[8]. The FEM for solving the wave equation has been developed

by many researchers. Very recently, Bangerth and Rannacher [2] have

used the finite element approximation for the acoustic wave equation. Hui

[12] has implemented the FEM of the elastic wave equation and wave

fields simulation in two-phase anisotropic media. Margrave and

Mahmodian [22] have applied the FEM in seismic wave modeling.

Glowinski and Lapin [10] have obtained the solution of a wave equation

by a mixed finite element - fictitious domain method. Ham and Bathe [11]

have used the finite element method for wave propagation problems.

On the other hand, the FDM was invented by a Chinese scientist named

Feng Kang in the late 1950’s. He proposed the FDM as a systematic

numerical method for solving partial differential equations that are applied

to the computations of dam constructions. It is now considered that the

invention of the FDM is a milestone of computational mathematics [38].

The FDM for solving the wave equation has been developed by many

researchers. Very recently, Oliveira [26] has used the fourth-order FDM for

the acoustic wave equation on irregular grids. Maupin and Dmowska [23]

have implemented the finite-difference time-domain method for modeling

of seismic wave prop- agation. Lamoureux et al. [17] have used the

Galerkin methods for numerical solutions of acoustic, elastic and

viscoelastic wave equations. Chua and Stoffab [7] have studied the

Nonuniform grid implicit spatial finite difference method for acoustic wave

equation. Lines et al. [20] have analyzed the stability of finite difference

wave equations computations. Saarelma [32] has used the finite difference

https://en.wikipedia.org/wiki/Cornell_University

 4

time domain solver for room acoustics using graphics processing units.

Antunes et al. [1] have applied the FDM to solve acoustic wave equation

using locally adjustable time-steps. Moczo et al. [24] have investigated the

accuracy of the finite difference and the finite element schemes with

respect to p-wave to s-wave speed ratio. Dong et al. [9] have applied the

finite element and finite difference methods to solve 2D wave equation.

The thesis is organized as follows: Chapter one introduces the basics of the

FDM and the FEM for homogeneous and inhomogeneous wave equations

with different types of boundary conditions. Chapter two presents some

iterative methods namely: Jacobi, Guass-Seidel, Successive over

Relaxation (SOR), and Conjugate Gradient method for solving linear

system which is implemented by using the FDM and the FEM and their

convergence properties. Chapter three contains some numerical examples

and results and finally the conclusions follows.

 5

Chapter One

Finite Difference and Finite Element Methods for Solving

Hyperbolic Partial Differential Equations

A second order linear partial differential equation is mainly considered

as

 1.1)

where and the free term can either be constants or

functions of the two independent variables and .

Equation (1.1) is classified into three types depending on the

discriminant as follows (see [6]):

1. Hyperbolic if the discriminat is positive .

2. Parabolic if the discriminant is zero .

3. Elliptic if the discriminant is negative .

In this work, we will deal with hyperbolic PDEs (see [19],[37]).

 We will use the Finite Difference and the Finite Element methods for

solving hyperbolic partial differential equation for both homogeneous

and inhomogeneous wave equations.

To implement these methods to solve the hyperbolic PDE, a system of

linear equations will be generated that can be solved using several

iterative schemes such as Jacobi, Guass-Seidel, Successive over

Relaxation (SOR), and Conjugate Gradient methods.

 6

1.1 Hyperbolic PDE Subject to Boundary Conditions

Solution of homogeneous and inhomogeneous wave equation on the

boundary of a domain needs certain conditions where the unknown

function (dependent variable) must satisfy these conditions on the

boundary . We will deal with homogeneous and inhomogeneous

wave equations with respect to two types of boundary conditions .

These boundary conditions are:

1. Dirichlet Boundary Conditions:

The condition where the value of the unknown function is

prescribed on the boundary of the domain.

2. Neumann Boundary Conditions:

The condition where the value of the normal derivative

 is given

on the boundary of the domain.

1.2 Discretization of Hyperbolic PDE by Finite Difference Method

This method is effective when the domain of the problem has

boundaries with regular shapes. In this thesis, we will deal with the

FDM with rectangular domain of regular boundaries shapes (see [35]).

1.3 The Principle of Finite Difference Method (FDM)

The FDM is a numerical method for solving differential equations by

approximating them using difference equations with errors of order

 ().

 7

 The given region or domain of the PDE is divided into a network of

lines constructing rectangles called grid. The points of intersection of

these lines are called grid points or mesh points. At each grid point, the

differential equation is approximated by replacing the partial

derivatives by their corresponding difference approximations. The

replacement of partial derivatives with difference approximation

formulas depends on Taylor's Theorem . This gives an algebraic

equation for each grid point, in which the variable value at that point

and a certain number of neighbour points appears as unknown. In

other words, by knowing the value of the variable at neighbouring

points of the unknown value makes that variable at that particular

point can be calculated (see [19], [28]).

1.4 Strategy of Discretization

Using the FDM to discretize hyperbolic PDE with its boundary

conditions, we can consider the following inhomogeneous wave

equation:

The rectangular domain and

 for any where B denotes the boundary of a

region is a continuous function on and is continuous

on . The continuity of both and guarantees a unique solution of

equation (1.2) (see [13],[19]).

 8

Now, we will use the finite difference algorithm for solving hyperbolic

PDE, like equation (1.2).

The Finite Difference Algorithm

Step 1: Choose positive integers and

Step 2: Define

 and

This step partitions the interval into equal parts of width and

partitions the interval into equal parts of width

Step 3: Define the mesh point () as

Step 2 and step 3 are illustrated in figure 1.1.

Figure1. 1: discretization of a rectangular domain

 9

At any interior mesh point () the wave equation becomes

 () () ()

The difference method is obtained using the centered-difference

quotient for the second partial derivatives given by (see [29]):

 ()
 () () ()

()

and

 ()
 () () ()

() ()

Substituting equations (1.4) and (1.5) into equation (1.3) gives

 () ()

 () ()

*

()

()+ ()

for each and

The boundary conditions are:

1. , for

2. , for

 11

3. , for

4. , for .

Now, by rearranging equation (1.6), we get:

 ()

 ()

 ()

 ()

*

()

()+ ()

Or it can simply be written as

 () ()

 () ()

 *

+ ()

*

()

()+ ()

Multiplying both sides by we get:

(

)

[() ()] () ()

 *(

)

 + ()

*

()

()+ ()

Define 𝜆 ⁄ and neglecting the error term (local truncation error)

 defined as :

 11

 ²): 𝜏

 ()

 (). Then Simplifying

equation (1.9) and letting approximate we can write the

difference equation as

𝜆

() (𝜆

) ()

for each and .

with boundary conditions:

1. = (), for .

2. =), for

3. = (), for

4. = (), for .

Equation (1.10) involves approximations to the unknown function

 at the points () () () () ()

These points form a regular star–shape region in the grid (as shown in

figure 1.2).

Figure1. 2: 5-points stencil of the unknown function

 12

 When we use formula (1.10) with boundary conditions (1.11), then at

all points () that are adjacent to a boundary mesh point, we have

an by linear system with the

unknowns being the approximations to () at the interior

mesh points.

The generated linear system can be solved by the Jacobi, Guass-Seidel,

Successive over Relaxation (SOR), or Conjugate Gradient methods. This

system (that involves the unknowns) produces satisfactory results if a

relabeling of the interior mesh points is introduced (see [5],[39]). A

favorable labeling of these points is:

 () and , where

 .

1.4.1 Homogeneous Wave Equation with Dirichlet Boundary Conditions

When the function is defined on any part of a domain then we call

this part Dirichlet boundary , i.e. the unknown function is

prescribed on the boundary, that is, where

the function is a known function .

To derive the formula of finite difference approximation with Dirichlet

boundary condition for homogeneous wave equation

 13

we consider three points , and which are located on

 axis with equal distance between them as shown in figure 1.3 ,

 (see [6], [13] and[37]).

Figure1. 3: three points , and which are located on axis

The value of the function at the points

and be , ,and , respectively.

Now, use Taylor series to express and in the form of

Taylor expansions about the point as follows:

Adding equations (1.13) and (1.14), gives:

By rearranging the above equation, we obtain:

 14

Equation (1.15) is a finite difference approximation formula with the

error term .

 Subtracting equation (1.14) from equation (1. 13), we get:

Equation (1.16) is a finite difference approximation formula with the

error term .

Similarly, consider three points and which are located on

the axis with equal distance between them. Let the value of the

function at the points and be , ,

and , respectively as shown in figure 1.4.

Figure 1. 4: three points and which are located on the axis

Using Taylor series to express and in the form of Taylor

expansions about the point , then the finite difference approximation

formulas with the error term of second order for

 and

are, respectively:

 15

and

 Combining and axis together, we get the star–shape

 (5-points stencil) region about the point as shown in figure 1.5 .

Figure1. 5: combining x-axis and t-axis around the point

Inserting equations (1.15) and (1.17) into equation (1.12) yields:

(

)

Rearranging the above equation, we get

[]

In general, if satisfies the wave equation, then at any point in the

domain satisfies equation (1.20).

 16

Now, suppose we have Dirichlet boundary conditions defined on the

rectangular domain such that and (see [6]) as

shown in figure 1.6 .

Figure 1. 6: Dirichlet boundary conditions defined on the rectangular domain

Let be given on all boundaries of the domain, that

is is defined on the left, up, right and down boundary walls so

that the boundary grid points (blue points) and the corner grid points

(green points) are known. In other words, the values of the points (

), (see [6],[34]) under the

function are known. For the corner grid points, we use the following

equations

 17

1.4.2 Inhomogeneous Wave Equation with Dirichlet Boundary

Conditions

 To derive the formula of finite difference approximation with Dirichlet

boundary conditions for inhomogeneous wave equation:

We follow similar approach for the homogeneous wave equation with

some amendments in equation (1.19), that is

[]

1.4.3 Homogeneous Wave Equation with Neumann Boundary

Conditions

 When the normal derivative of the unknown function is prescribed

on the boundary of a domain , then we call this part Neumann

boundary , i.e. the value of the normal derivative of the function is

given on the boundary of the domain, where is a given function.

To derive the formula of finite difference approximation with

Neumann boundary condition for the wave equation

Consider that we have a rectangular domain as shown in figure 1.6.

 18

Suppose that Dirichlet condition is specified on up, right and down

walls and Neumann condition is defined on the remaining wall which is

the left wall as follows (see [27]):

Now, we want to approximate equation (1.24) using the second order

approximation using equation (1.16). This procedure puts the grid

points outside the domain towards the left that is located on

imaginary boundary that their fake coordinates will be (see

[16],[27]).

So, equation (1.24) is approximated using equation (1.16) at the

line

Thus,

Now, we write equation (1.20) at the point as

[]

[]

Substituting equation (1.25) into equation (1.26), we get:

 19

[]

[]

For any two positive integers and , we use equation (1.27) for

 , where is a specified function. As Dirichlet

condition is specified on up, right, and down walls, the values

 are known. To find the values of corner grid

points, we use equation (1.21).

1.4.4 Inhomogeneous Wave Equation with Neumann Boundary

Conditions

Consider the inhomogeneous wave equation:

with Neumann boundary condition:

defined on the rectangular domain.

Similar to the homogeneous wave equation, the difference

approximation formula of Neumann condition at the fake grid point

 is equation (1.25), that is (see [27]):

 21

Now, using equation (1.24) to find the value of the point , we get

[] 1.28)

Substituting equation (1.25) into equation (1.28), we get

* ()

 +

Thus

[] (1.29)

If , we use equation (1.23).

Using the same method, we can deal with other boundary points

except the corner points. For corner points, we use equation (1.21) to

find their values (see [35],[36]).

1.5 Finite Element Method

The Finite Element Method (FEM) is the most known numerical

method used for solving partial differential equations to approximate

the solution of them when the analytical (exact) solution is impossible

to find. This method is effective when the domain of the problem has

boundary with irregular shapes. Finite element method (FEM) can be

applied on many scientific and engineering problems such as fluid

flow, heat transfer, electromagnetic fields, aerospace, civil engineering,

and so on (see [30]).

 21

The Principle of Finite Element Method (FEM)

The following are the basic steps involved in the finite element method

(see [15] and [33]):

Discretization: The discretization of the given differential equation is

obtained by dividing the given domain into a finite number of

elements . The points at which those finite elements intersects are

called nodes (blue points as in figure 1.7). The nodes and elements

both are numbered by a suitable indices .

Derivation of finite element equations: For any given differential

equation, a variational formulation is constructed for each element.

Then the element equations are obtained by substituting a typical

dependent variable into the variational formulation. After choosing the

variable and the interpolation functions, the element matrices can be

computed.

Assembly: After the calculation of element matrices, the next step is to

assemble those element equations so that the final solution is

continuous. When this assembly is done, the entire system of equations

takes the matrix form .

Boundary conditions: Apply the boundary conditions for that

problem to the above system of equations .

 22

 Solution of the equations: Finally the system is solved by any

available standard technique for solving system of equations, for

example Gauss elimination.

Figure1. 7: finite element on irregular shape

1.5.1 Finite Element Method (FEM) for Dirichlet Boundary Value

Problems

This section discusses the finite element method that is used to solve

one dimensional hyperbolic partial differential equation with Dirichlet

boundary conditions in a rectangular domain and focuses on finite

element solution using spreadsheets with triangular grid (see

[15],[33]).

Now, we want to approximate the solution of homogeneous wave

equation

 23

defined on a rectangular domain with Dirichlet boundary conditions

defined on the up, left, right and down boundaries (edges) as shown in

figure 1.8.

The region is divided into equal triangular elements. In this

discretization, there are global nodes such that the nodes which are

located on the boundaries (blue nodes) that the function defined on

them is known and interior nodes (green nodes) that the function

defined on them is unknown.

Figure1. 8: rectangular domain with Dirichlet boundary conditions

 Suppose and let be the number of equal portions that

are located on bottom boundary (-axis). In this case, portions

(from node 1 to node 2, from node 2 to node 3, from node 3 to node 4

 24

and from node 4 to node 5). The length of each portion is equal to the

length of other portions and is equal to

 .

In similar manner, suppose and let be the number of

equal portions that are located on the left boundary (-axis).

 In this case, portions (from node 1 to node 10, from node 10 to

node 11 and from node 11 to node 20). The length of each portion is

equal to the length of other portions and is equal to

 (see [30]).

Figure1. 9: coordinate for each node in finite element method

Now, we can easily find the coordinate for each node as shown in

figure 1.9 as follows:

Node 1: (0,0)

Node 9:

 25

Node 14:

 and so on until Node 18 : (a ,b).

Now, for each element (triangle) , we determine the local node

numbers 1, 2, and 3 that must be assigned so that global nodes

associated with an element are traversed in a counterclockwise sense.

For example: Element 1:

At node 1: the local node number is 1, so

At node 2: the local node number is 2, so

At node 10: the local node number is 3, so

These are shown in figure 1.10.

Figure1. 10: the local node numbers are determined on nodes start from node1, then

node 2 and finally with node 10 (in a counterclockwise).

Similarly, we determine the local node numbers and for each

element in the same way as in element .

The following must be computed for each element :

 26

For element 1:

and so on.

Now, for each element , we want to find the element coefficient

matrix for which the entries are given by the equation:

[], for =1,2,3 , (1.30)

 where

 .

When we find the element coefficient matrices, then the global

coefficient matrix is assembled from the element coefficient

matrices. If the number of nodes is , then the global coefficient matrix

 will be an matrix (in our case =20).

We can compute the entries of the main diagonal as follows:

 27

 : is the entry that is located on row 1 and column 1 in the global

coefficient matrix which corresponds to node 1 that belongs to

element 1 only. Node 1 is assigned local node number 1 in element 1 as

shown in the following figure (1.11).

 Local node number 1

Figure1. 11: Node 1 is assigned local node number 1 in element 1

 is the entry that is located on row 1 and column 1 in the

element coefficient matrix for element 1.

 : is the entry that is located on row 2 and column 2 in the global

coefficient matrix which corresponds to node 2 that belongs to

elements 1, 2, and 3. Node 2 is assigned local node number 2 in

element 1 and local node number 1 in elements 2 and 3 as shown in

the following figure(1.12), (see [33]).

Figure1. 12: Node 2 has Local node number 2 in element 1 and Local node number 1 in

element 2 and element 3.

Elemen

t 1

1

 28

 where is the entry

 that is located

on row 2 and column 2 in the element coefficient matrix for element 1

and

 are the entries that are located on row 1 and column 1

in the element coefficient matrix for element 2 and element 3,

respectively.

Using the same method, we can find the remaining diagonal entries ,

for . For other entries in the global coefficient matrix C, we

do that using a different method described in the following

paragraphs:

Take, for example, the entry in the global coefficient matrix C. It

corresponds to node 2 and node 9. So, the link between node 2 and

node 9 is called global link which corresponds to local link 1−2 of

element 2 and local link 1−3 of element 3 as shown in figure 1.12.

 Hence,

The other off-diagonal entries are treated similarly.

Now, defining vector to be a vector of unknowns (interior nodes,

green nodes) and vector to be a vector of prescribed boundary

values. In other words, is a vector of the value of nodes that are located

on the boundaries (blue nodes) as shown in figure 1.8.

Define matrix to be a matrix of unknown nodes obtained from the

global coefficient matrix and matrix to be a matrix of unknown

 29

nodes and prescribed boundary values that is also obtained from the

global coefficient matrix C.

In our case, is a 6 × 6 matrix since we have 6 interior nodes (green

nodes) and is a 6 × 14 matrix since we have 6 interior nodes (green

nodes) and 14 boundary nodes (blue nodes) as shown in figure 1.8.

The vector of unknown nodes can be computed by using:

The vector contains the approximations to the unknown nodes

(interior nodes), (see [33]).

1.5.2 Finite Element Method (FEM) with Neumann Boundary

condition

We derive and analyze a finite element method for the 1D wave

equation

with boundary conditions on where is a bounded domain in

the plane with boundary is a given real-valued piecewise

continuous bounded function in .

Finite Element Discretization

We formulate a finite element method for equation (1.32) based on

using continuous piecewise linear function in space (see [3], [4], [40]).

Define the following subspace of a Sobolev space:

 31

 is a continuous function on and are piecewise

continuous and bounded on , .

 ∫

The goal of the following development is to simplify equation (1.33) in

the general case, and then to switch focus on a finite-dimensional

subspace of spanned by the basis functions 𝜙

 . This will allow

us to write out a linear system of equations for the unknown

coefficients . It is easy to verify by Gauss’ divergence theorem that

 ∫

 ∫

 ∫

where is an area element on . Applying this result to

equation(1.33) we have

 ∫

 ∫

which is called the variational formulation of the wave equation. The

solutions to equation (1.35) are called weak solutions to the wave

equation (see [18]).

Now, suppose the domain is divided into finite number of elements

(triangles) , such that:

 ̅ ⋃ ̅

 ̅

Let be a partition of . Take any triangle where:

 31

diam() = the longest edge of ̅ and
 .

Now, we can define the finit element space as follows:

 is a continuous function on and it is linear on each

triangle , (see [18]).

Each triangle , has three vertices denoted by .

We define the basis function 𝜙

as follows:

𝜙

 {

Let be a set of vertices where 𝜙

 and let be the number of

interior vertices in , any function has a unique

representation written as:

 ∑ 𝜙

where .

The finite element solution is written as:

 ∑ 𝜙

where 𝜙

 is standard continuous piecewise linear function

in space (see [18]).

Substituting the approximation (1.36) into equation (1.35), we get

 32

∑ ∫

 𝜙

 𝜙

 ∑
 ∫ 𝜙

 𝜙

 ∑ ∫ 𝜙

 𝜙

 ∫

𝜙

 𝜙

Let denote the vector of unknown coefficients,

 is mass matrix in space, with coefficients

 ∫ 𝜙

 𝜙

 () is stiffness matrix in space and , with

coefficients

 ∫
 𝜙

 𝜙

 ∫ 𝜙

 𝜙

and

 () (𝜙

)

Which can be written in a matrix form as

Using a finite difference approximation for the time derivative gives

 33

So

 . (1.38)

1.6 Finite Difference Method for Two Dimensional Wave Equation

consider the following two dimensional inhomogeneous wave

equation:

 (

)

or we can simply write this equation in another form as

 ()

For a fixed time , the surface

and for any , where B denotes the

boundary of a region is a continuous function on and

 is continuous on . The continuity of both and guarantees

a unique solution of equation (1.40).

Two dimensional wave equations are easily discretized by assembling

building blocks for discretization of one dimensional wave equations,

because the two dimensional versions just contain terms of the same

type that occurs in one dimension.

 34

Now, we will use the finite difference algorithm for solving two

dimensional wave equation, as shown in figure (1.13) (see [19],[28]).

We introduce a mesh in time and in space. The mesh in time consists of

time points , often with a constant spacing

 .

It is a very common choice to use constant mesh spacings:

We consider equal mesh spacings such that .

Figure1. 13: discretization of two dimensional domain

The unknown at mesh point is denoted by or

 .

 35

The difference method is obtained using the centered-difference

quotient for the second partial derivatives given by (see [27]):

 ()

 ()

 and

 ()

 ()

Substituting equations (1.41), (1.42) and (1.43) into equation (1.39)

gives

*

 ()

 ()

 ()

+

for each .

Neglecting the error term ²)

 36

*

()

()

()+

 and multiplying both sides by we get:

Define ⁄ , we get :

then Simplifying equation (1.45), hence it can be written as:

 ()

For .

with boundary conditions:

1. = , for and .

2. = (), for and .

3. = (), for and .

4. = () , for and .

 37

5. = , for and .

6. = , for and . (1.47)

 Equation (1.46) involves approximations to the unknown function

 at the points () () () ()

() ()

When we use formula (1.46) with boundary conditions (1.47), then at

all points () that are adjacent to a boundary mesh point, we

have an by

linear system with the unknowns being the approximations

to () at the interior meth points (see [28]).

The generated linear system should be solved by Jacobi, Guass-Seidel,

Successive over Relaxation (SOR), or Conjugate Gradient methods.

1.6.1 Two Dimensional Wave Equation with Dirichlet Boundary

Conditions

When the function is defined on any part of a domain then we call

this part Dirichlet boundary , i.e. the unknown function is

prescribed on the boundary, that is,

 where the function is a known function .

 38

To derive the formula of finite difference approximation with Dirichlet

boundary condition for two dimensional wave equation

 (

)

we consider three points , and which are located on

 axis with equal distance between them, then the value of the

function at the points and be

 , ,and , respectively (see [19],[27]and [28]).

Now, use Taylor series to express and in the form of

Taylor expansions about the point as follows:

By adding the two equations (1.48) and (1.49), we get:

By rearranging the above equation, we get:

Equation (1.50) is a finite difference approximation formula with the

error term .

Now, subtracting equation (1.49) from equation (1. 48), we get:

 39

Equation (1.51) is a finite difference approximation formula with the

error term .

Similarly, consider three points and which are located on

the axis with equal distance between them. Let the value of the

function at the points and be

 , and , respectively.

Use Taylor series to express and in the form of Taylor

expansions about the point , the finite difference approximation

formulas with the error term of second order for

 and

are, respectively:

and

Similarly, consider three points and which are located

on the axis with equal distance between them. Let the value of the

function at the points and be

 , and , respectively.

Now, use Taylor series to express and in the form of

Taylor expansions about the point , the finite difference

 41

approximation formula with the error term of second order for

 is

Inserting equations (1.50), (1.54) and (1.52) into equation (1.39)

yields:

by rearranging equation (1.55) and let ⁄ , , we get

 ()

In general, if satisfies the wave equation, then at any point in the

domain satisfies the above equation .

Now, suppose we have Dirichlet boundary conditions defined on the

box-shape domain such that and 1 .

Let be given on all boundaries of the domain, that

is is defined on the all boundaries.

In other words, the values of the points (),

 and under the function are

 41

known. For the corner grid points, we use the following equations (see

[28]) :

1.6.2 Two Dimensional Wave Equation with Neumann Boundary

Conditions

 When the normal derivative of the unknown function is prescribed

on the boundary of a domain , then we call this part Neumann

boundary , i.e. the value of the normal derivative

 is

given on the boundary of the domain, where is a given

function.

 42

We derive the formula of finite difference approximation with

Neumann boundary condition for two dimensional wave equation

 (

)

Suppose that Dirichlet condition is specified on up, right and down

walls and Neumann condition is defined on the remaining wall which is

the left wall as follows:

Now, we want to approximate equation (1.24) using the second order

approximation using equation (1.16). This procedure puts the grid

points outside the domain towards the left that is located on

imaginary boundary that their fake coordinates will be

(see [21],[27]). So, equation (1.58) is approximated using equation

(1.53) at the line

From this it follows that . The discretized wave equation

at the boundary point reads

 ()

 43

We can then just insert for into equation (1.59) and then

solve for the boundary value .So we get,

 ()

For any positive integers and , we use equation (1.44) for

 and As Dirichlet conditions are

specified on other boundaries, the values are known. To find the

corner boundary values, we use equation (1.57) (see [27]).

 44

Chapter Two

Iterative Methods for Solving Linear Systems

In chapter one, a linear system was generated using the finite

difference method (FDM) and the finite element method (FEM) to

describe the partial differential equations that can be solved by

iterative techniques. In this chapter, we will solve such linear systems

by iterative methods and discuss their convergence properties (see

[31]).

For solving an linear system

We start with an initial approximation to the solution and then

generate a sequence { }

 that converges to .

Most iterative techniques involve a process of converting the system

 into an equivalent system:

where is an matrix and is a column vector.

After selecting an initial approximation , we generate a sequence

of vectors { }

 defined as:

The used iterative methods here are :

 45

1. Jacobi Method.

2. Gauss-Seidel Method.

3. Successive over Relaxation (SOR) Method.

4. Conjugate Gradient Method.

consider the (square) linear system:

where

 [

], [

] and [

]

We can simply write this system in matrix form as:

[

] [

] [

]

Then, we can convert system (2.1) into the form:

Then selecting an initial approximation , we generate a sequence

of vectors { }

 defined as (see [5]):

 46

2.1 Jacobi Method

The Jacobi method is an algorithm in linear algebra for determining the

solutions of a system of linear equations with largest absolute values in

each row and column dominated by the diagonal element. Each

diagonal element is solved and an approximate value plugged in. This

process is then iterated until it converges.

The Jacobi method is the simplest iterative method for solving a

(square) linear system . (see [5]).

The General Formula of Jacobi Method

In general, the Jacobi iterative method is given by the sequence :

* ∑

 +

We can derive formula (2.2) by splitting matrix into its diagonal and

off-diagonal parts (see [31],[5]).

Let be the diagonal matrix where entries are those of matrix , let

be the strictly lower triangular part of matrix and let be the

strictly upper triangular part of matrix . With this notation matrix is

split into:

 47

where

 [

] [

]

and

 [

]

By substituting formula (2.2) into , we get:

The above equation can be written as:

If exists, then:

This result is the matrix form of the Jacobi scheme:

Using and , we obtain the Jacobi

technique of the form:

 48

So,

* ∑

 +

Conclusion: to find approximation we must know

approximation for any where . Continuing this procedure,

we obtain a sequence of approximations (see [5] and [29]).

2.2 Gauss-Seidel Method

 This iterative method is used for solving a square linear system

 , it is similar to the Jacobi method.

But with the Jacobi method, the values of
 obtained in the

iteration remain unchanged until the entire (iteration has

been calculated. With the Gauss-Seidel method, we use the new values

 as soon as they are known. For example, once we have

computed
 from the first equation, its value is then used in the

second equation to obtain the new
 and so on, this is the

difference between the Jacobi and Gauss-Seidel methods (see [5]).

The General Formula of Gauss-Seidel Method

In general, the Gauss-Seidel iterative method is given by the sequence

* ∑

 ∑

 +

https://en.wikipedia.org/wiki/Jacobi_method

 49

We can derive formula (2.4) by substituting formula (2.3) into

 , so we get (see [5],[31]):

The above equation can be written as:

If exists, then:

This result is the matrix form of the Gauss-Seidel scheme:

Using and , we obtain the Gauss-

Seidel technique of the form:

 .

2.3 Successive over Relaxation Method (SOR Method)

The main constraint in using this method is that the coefficient matrix

 of the linear system must be symmetric and positive definite.

For any positive real number called the relaxation parameter (factor),

 When , the method is called Successive under

Relaxation and can be used to achieve convergence for systems that

are not convergent by the Gauss-Seidel method. However, if

 51

 , then the method is called Successive over Relaxation

method. If , then we get Gauss-Seidel method (see [5],[14]).

The General Formula of SOR Method

The derivation of the general formula of SOR method depends on

Gauss-Seidel formula. Consider Gauss-Seidel formula, that is (2.4):

* ∑

 ∑

 +

Defining the difference:

This can be written as:

Now, multiplying by the relaxation parameter in the last

expression, we get:

 (

)

So,

Substituting the Gauss-Seidel formula (2.4) into the last expression, we

get:

[∑

 ∑

]

 51

Formula (2.5) is called the SOR iterative method (see [5]).

We can express formula (2.5) in matrix form as follows (see [5], [31]):

Since , then we can multiply formula (2.5) by to get:

 * ∑
 ∑

 +

Simplifying the last formula, we get

 ∑
 ∑

By rearranging the above equation, we get

 ∑

 ∑

Then,

 ()

Now, if exists, then we have:

 ()

Then, we get the matrix form of SOR method as:

Where: () and

 52

2.4 Conjugate Gradient Method

The conjugate gradient method is a numerical iterative method used to

approximate the exact solution of particular linear system

where the coefficient matrix must be symmetric and positive definite

(see [25]).

General Formulas Needed to Compute The Conjugate Gradient

Method Algorithm

Suppose we want to solve the following linear system:

Where is symmetric and positive definite matrix, and are column

vectors (matrices).

The solution of uniquely minimizes the following quadratic

form:

Suppose that is a basis of where:

 with respect to matrix where

 is a set of mutually conjugate (orthogonal) directions.

We will write the conjugate gradient iterative method algorithm as

follows (see [25]):

 53

Step 1: Start with initial guess that may be considered 0 if otherwise

is not given.

Step 2: Calculate the residual vector as follows:

Step 3: Let the initial direction vector , that is, the negative of

the gradient of the quadratic function:

 at

Note that will change in each iteration.

Step 4: Compute the scalars 's using the formula:

Step 5: Compute the first iteration using the formula:

Step 6: Compute the residual vectors 's using the formula:

Step 7: Compute the scalars 's using the formula:

Step 8: Compute the direction vectors 's using the formula:

 54

Step 9: Compute the iterations using the formula (see

[25],[31],[39]):

2.5 Convergence of Iterative Methods

In this section, the general aim is to study the convergence for each

previous iterative method and then make a comparison between them.

After that, we will conclude the fastest method. In any computational

problem, we get high accuracy if the error becomes very small. In our

iterative methods problem, the actual error is the difference between

the exact solution and the approximate solution . But we cannot

compute its value since we do not know the exact solution. Instead of

that, we will deal with the estimate error which is equal the difference

between the approximate solution and the next approximate

solution (see [5]).

Therefore, we can compute more iterations with less errors and hence

we get high level of accuracy.

Suppose is the exact solution of the following linear system:

This can be written in equivalent form as:

where is an matrix and is a column vector.

 55

The idea of the iterative methods is to generate a sequence of vectors

{ }

 that converges to the exact solution of the linear system

(2.6). (Note that each vector in the sequence is an approximation to the

exact solution) (see [14]).

2.5.1 Convergence of Jacobi and Gauss-Seidel Iterative Methods

The following theorems hold for Jacobi and Gauss-Seidel iterative

methods :

Theorem 2.1 (see [39])

For any initial approximation, a sequence of vectors { }

converges to the exact solution if and only if the spectral radius of the

square matrix . (is the matrix as in (2.7) form).

Theorem 2.2 (see [39])

If the coefficient matrix for the linear system (2.6) is strictly

diagonally dominant, then the sequence of vectors { }

 generated

by the Jacobi and Gauss-Seidel Iterative techniques converges to the

unique solution of that system .

Theorem 2.3 (see [5])

If (any norm of) then the sequence of vectors { }

converges to a vector for any initial approximation vector

 .

 56

2.5.2 Convergence of SOR iterative Method

Theorem 2.4 (see [39])

Theorem 2.1 holds for SOR method.

Theorem 2.5 “ Ostrowski-Reich ” (see [5])

If the coefficient matrix of the linear system (2.6) is a positive

definite matrix and the relaxation parameter (factor) , then

the SOR method converges for any choice of initial approximation

vector .

2.5.3 Convergence of Conjugate Gradient Method

Theorem 2.6 (see [25])

The sequence of vectors { }

 generated by the Conjugate

Gradient method converges to the solution of the square linear

system of variables in at most steps for any choice of

initial approximation vector .

Proof: (see [25]).

suppose is the exact solution and is the initial solution.

The set of direction vectors are orthogonal so they are linearly

independent. Therefore, they span the space . Hence, we can write:

 where 's

Multiplying both sides of the last expression by
 , we obtain

 57
Simplify the above expression, we get

but , , and
 . So, it becomes:

Thus,

Now, we want to show that where

Multiply both sides of the last equation by

The above can be written as:

Or

 ()

Therefore,

 58

 ()

 ()

 ()

Now, put

 in equation (*), then we get:

This completes the proof.

 59

Chapter Three

Numerical Results

In this chapter, we will deal with homogeneous and inhomogeneous

one and two dimensional wave equations with Dirichlet and then with

Neumann boundary conditions by using finite difference method. Next,

we will deal with homogeneous and inhomogeneous one dimensional

wave equation with Dirichlet and then with Neumann boundary

conditions but by using finite element method. At the end of this

chapter, we will make a comparison between the iterative methods

that are used for solving the linear system by finite difference and

finite element methods.

Example 3.1

Consider the following homogeneous one dimensional wave equation

with square domain

 subject to Dirichlet boundary conditions given

on the boundaries as illustrated in figure 3.1, such that :

we want to approximate the solution by using:

1- Finite Difference Method (FDM).

2- Finite Element Method (FEM).

 61

1-Applying Finite Difference Algorithm:

Step 1: Choose positive integers

Step 2: Define

 and

This step partitions the interval on -axis into equal parts

of width

 and partitions the interval on -axis into

equal parts of width

 as step 3 illustrates.

Step 3: Define the mesh point () as

for :

for :

for :

for :

for :

for :

for :

for :

Step 2 and step 3 are illustrated in figure 3.1.

 61

Figure3. 1: discretization of the domain for example 1

The blue points are known boundary points and the green points are

corner points that are easy to be calculated by equation (1.21).

However, the black (interior) points are not known which are to be

approximate.

Now, we use the difference equation (1.20) to approximate the interior

(black points) mesh points as follows:

[]

For , and :

[]

 []

 62

But both and are known boundary points where and

 are unknown. So the value of and are (on the left

boundary) and (on the down boundary), so equation (3.1)

becomes

We can label these mesh points as follows:

where

 .

Figure3. 2: discretization the domain with dirichlet boundary condition for example 1

 63

After labeling the interior mesh points as shown in figure 3.2, then

equation (3.2) becomes:

In similar manner, we get the following difference equations

For and :

For and :

For and :

rearrange the equations (3.3),(3.4),(3.5) and (3.6) then we get

This linear system could be written in matrix form as

 , where is a vector of unknowns

 [

]

[

]

If we apply Gaussian elimination to this linear system, then we get the

following exact solution:

 64

 [

]

We can solve this linear system by any iterative method like Jacobi

method, Gauss-Seidel method, Successive over Relaxation (SOR)

method and Conjugate Gradient method.

Jacobi method

It is given by the sequence (2.2):

* ∑

 +

where is the number of the unknown variables.

Consider the initial solution is

 (

)

For (the first iteration):

 65

So the first approximation is

 (

)

In similar manner, we can find approximation if we know

 approximation for any where . Continuing this

procedure, we obtain a sequence of approximations.

The following approximate solution obtained by Matlab program for

Jacobi iterative method with tolerance :

 [

]

Number of iterations Cpu-time
(seconds)

The error

80

To see Matlab code for the Jacobi iterative method refer to appendix A.

Gauss-Seidel method

It is given by the sequence (2.4):

* ∑

 ∑

 +

where is the number of the unknown variables.

 66

Consider the initial solution is

 (

)

For (the first iteration):

So the first approximation is

 (

)

The following approximate solution obtained by Matlab program for

Gauss-Seidel iterative method with tolerance :

 [

]

Number of
iterations

(seconds)

The error

34

 67

To see Matlab code for the Gauss-Seidel iterative method refer to

appendix B.

SOR Method

The SOR method is given by the sequence (2.5):

* ∑

 ∑

 +

Choose the relaxation factor :

first, write the Gauss-Seidel equations

Now, the SOR equations with are:

 68

Consider the initial solution is

 (

)

For (the first iteration):

 *

+

 *

+

 *

 +

So the first approximation is

 (

)

The following approximate solution obtained by Matlab program for

SOR iterative method with tolerance :

 [

]

Number of iterations
(seconds)

The error

15

To see Matlab code for the SOR iterative method refer to appendix C.

 69

Conjugate Gradient method

This algorithm can be processed as follows:

Step 1: Start with initial guess , say

Step 2: Calculate the residual vector as follows

 [

 ⁄

 ⁄

] [

] [

]

So

Step 3: Let the initial direction vector . So

Step 4: Compute the scalars 's by the formula

For :

 [

]

[

]

 71

 [

] [

]

[

]

So

Step 5: Compute the first iteration by the formula

The approximate solution with tolerance given by Matlab

code for conjugate gradient iterative method:

 [

]

Number of
iterations

(seconds)

The error

4

To see Matlab code for the conjugate gradient iterative method refer to

appendix D.

Comparison between the iterative methods for example 3.1:

Table 3.1 shows the accuracy for the different iterative methods. That’s

to say, which of each of the following methods reduce the error

 71

(nearest to the exact solution). Each of them obtains the accurate

solution in different number of iterations. However, more iterations

give less errors and leads to accurate solutions and this table obtains

the cpu time and the error for each method to know the fastest and

best method.

 72
Table 3. 1: Comparison between the iterative methods for example 1

 Method

 's

 Jacobi solution Gauss-Seidel solution SOR solution Conjugate gradiante

method

 Number of

iterations

80 34 15 4

Cpu-time

(seconds)

0.005846 0.002021 0.001800 0.0002667

Error

The exact solution is:

 [

]

Tolerance =

 73

2- We will apply the finite element method for example 1 to

approximate the solution (as shown in figure 3.3).

Figure 3. 3: discretization the domain by finite element method for example 2

The region is divided into 18 equal triangular elements which are

identified by encircled numbers 1 through 18 as indicated in figure 3.3.

In this discretization there are 16 global nodes.

Now, we will write the coordinates for each node:

node 1 : node 2 :

 node 3 :

 , node 4 :

node 5 :

 , node 6 :

 , node 7 :

 , node 8 :

node 9 :

 , node 10 :

 , node 11 :

 , node 12 :

node 13 : (1 , 1), node 14 : (

 , 1), node 15 : (

 , 1), node 16 : (0 , 1)

For each element e, we will label the local node numbers 1, 2, and 3 of

element e in a counterclockwise sense.

 74

Table 3.2 shows that for each element we write its global nodes and

their local node numbers and coordinates.

Table 3. 2: the global nodes, local node numbers and the coordinates

for each element

Element # global
nodes

local node
numbers

The coordinates of each
global node

Element 1 1 1

2 2

8 3

Element 2 2 1

8 2

7 3

Element 3 2 1

3 2

7 3

 … …. …
Element 17 11 1

12 2

14 3

Element 18 12 1 (

)

13 2

14 3

Now, for each element , the following must be computed:

For element 1:

In similar manner, we compute
 and for each remaining

elements where .

 75

We use equation (1.30) to write the entries of the 3 × 3 element

coefficient matrix, let us take element 1 as an example:

[], for =1,2,3, where

[

]

*

+

*

 +

*

+

*

+

*

+

*

 +

*

+

*

 +

*

+

Thus, the 3 × 3 element coefficient matrix for element 1 is:

 [

]

[

]

 76

In a similar manner, we find the 3 × 3 element coefficient matrix for

element 2,3,4,…,18.

 [

], [

] [

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

[

]

 [

] [

].

The global coefficient matrix is then assembled from the element

coefficient matrices. Since there are 16 nodes, the global coefficient

matrix will be a matrix. The one diagonal entries can be

computed as follows:

Take for example :

 77

For the off-diagonal entries ,for example , the global link 7−10

corresponds to local link 1−2 of element 8 and local link 1−3 of

element 9 as shown in figure 3.3 and hence

We can compute the value of other off-diagonal entries in the same

manner.

 78

Defining the vector to be vector of unknowns (interior nodes) and

vector to be vector of prescribed boundary values (nodes that are

located on the boundaries) as shown in table 3.3.

 79
Table 3. 3: represents vector of prescribed boundary values .

Global
node

Boundary conditions The value of global
node

1 on left and down
boundaries

The average of its
boundary values

2 on down boundary 0

3 on down boundary 0

4 on down boundary and
 on right boundary

The average of its
boundary values

5 on right boundary

8 on left boundary 0

9 on left boundary 0

12 on right boundary

13 on right boundary
and on up
boundary

The average of its
boundary values

14 on up boundary

15 on up boundary

16 on up boundary
and on left boundary

The average of its
boundary values

So,

 (

)

Now, defining the matrix to be the matrix of unknown nodes

(interior nodes) and the matrix to be the matrix of unknown nodes

and prescribed boundary values. Both matrices and are

obtained from global coefficient matrix

 81
Table 3. 4: matrix that obtained from global coefficient matrix

 6 7 10 11
6 4 -1 0 -1
7 -1 4 -1 0
10 0 -1 4 -1
11 -1 0 -1 4

Table 3. 5: matrix that obtained from global coefficient matrix

 1 2 3 4 5 8 9 12 13 14 15 16
6 0 0 -1 0 -1 0 0 0 0 0 0 0
7 0 -1 0 0 0 -1 0 0 0 0 0 0
10 0 0 0 0 0 0 -1 0 0 0 -1 0
11 0 0 0 0 0 0 0 -1 0 -1 0 0

Now, the inverse of matrix
 is

 [

]

The vector of unknowns nodes can be found by using:

Hence [

] [

]

Example 3.2

Consider the following inhomogeneous one dimensional wave

equation

with square domain

 81

 with Neumann boundary condition

 given on the left boundary and Dirichlet boundary

conditions on the remaining boundaries.

We will use the finite difference method to approximate the solution of

the wave equation.

The mesh size

 as shown in figure 3.4.

The actual grid points (green points) will be shifted toward the left

until locate on the fake boundary (red line). We want to put the grid

points outside the domain towards the left .

Let , the following are known as boundary conditions for

 :

 And the following are known as boundary conditions for

 82

Figure3. 4: discretization the domain with Neumann boundary condition for example 3

Now, we use equation (1.29) to approximate the values of boundary

points on left boundary :

[]

For , and

 *

 +

So

 [

]

But is a corner point which we can evaluate its value by equation

(1.21) so,

Rearrange this equation, then we get

 83

Now,

 *

 +

But is a corner point which we can evaluate its value by equation

(1.21) so,

Rearrange this equation, then we get

Now, for and , we use equation (1.23)

But is a known boundary point which is equal to 1 so substitute its

value and then rearrange the equation, then we get

But is a known boundary point which is equal to 1 so substitute its

value and then rearrange the equation, then we get

But and is a known boundary point which are equal to 1 so

substitute their value and then rearrange the equation,

 84

 Then we get

But and is a known boundary point which are equal to 1 so

substitute their value and then rearrange the equation, then we get

Now, we have six equations (3.7, 3.8, 3.9, 3.10, 3.11 and 3.12) in six

variables:

Labeling the variables as follow

So, the linear system can be written as

 85

This linear system should be written in matrix form as follows:

[

]

[

]

[

]

If we apply Gaussian elimination to this linear system, then we get the

following exact solution:

[

]

We can solve this linear system by any iterative method like Jacobi

method, Gauss-Seidel method, Successive over Relaxation (SOR)

method and Conjugate Gradient method.

Jacobi method

The following approximate solution obtained by Matlab program for

Jacobi iterative method with tolerance :

 86

[

]

Number of iterations Cpu-time
(seconds)

The error

95 8.867340167695303e-008

To see Matlab code for the Jacobi iterative method refer to appendix E.

Gauss-Seidel method

The following approximate solution obtained by Matlab program for

Gauss-Seidel iterative method with tolerance :

[

]

Number of iterations Cpu-time
(seconds)

The error

49

To see Matlab code for the Gauss-Seidel iterative method refer to

appendix F.

SOR Method

We recall the SOR iterative method and we choose the relaxation factor

 :

The following approximate solution obtained by Matlab program for

SOR iterative method with tolerance :

 87

[

]

Number of iterations Cpu-time
(seconds)

The error

21 7.185255812558467e-008

To see Matlab code for the SOR iterative method refer to appendix G .

Conjugate Gradient method

The following approximate solution obtained by Matlab program for

Conjugate Gradient iterative method with tolerance :

[

]

Number of iterations Cpu-time
(seconds)

The error

6 1.121023024625157e-016

To see Matlab code for the Conjugate Gradient iterative method refer

to appendix H .

Comparison between the iterative methods for example 3.2:

Table 3.2 shows the accuracy for the different iterative methods. That’s

to say, which of each of the following methods reduce the error

(nearest to the exact solution), obtains the accurate solution in

different number of iterations, the cpu time and each method error.

 88
Table 3. 6: Comparison between the iterative methods for example2

 Method
 's

 Jacobi solution Gauss-Seidel solution SOR solution Conjugate Gradient
solution

Number of
iterations

95 49 21 6

Cpu-time 0.007951 0.004546 0.003395 0.000470
Error 8.867340167695303e-

008

7.185255812558467e-
008

1.121023024625157e
-016

The exact solution is:

[

]

Tolerance =

 89

Example 3.3

Consider the following two dimensional inhomogeneous wave

equation:

 ()

For , the surface

Subject to Dirichlet boundary conditions given on the boundaries as

follow: , ,

 ,

 We want to approximate the solution by using finite difference

method.

Choose positive integers

Define

 ,

 .

Now, we use the difference equation (1.46) to approximate the interior

mesh points (green points shown in figure 3.5) as follows:

 ()

 for .

With boundary conditions:

1. for and

2. for and .

 91

3. , for and .

4. , for and .

5. for and .

6. for and .

Figure3. 5: discretization the domain with Dirichlet boundary conditions for example 3

For :

 ()

 (

)

 91

So

 ()

 (

)

But and are boundary points which equal zero’s

so,

 (3.13)

For :

 ()

 (

)

But and since it are boundary

points so,

 (3.14)

For :

 ()

 (

)

But and since they are

boundary points so,

 (3.15)

 92

For :

 ()

 (

)

But and since they are

boundary points so,

 (3.16)

Now, we have four equations (3.13, 3.14, 3.15 and 3.16) in four

variables,

Labeling the variables as follow

So, the linear system can be written as

 93

This linear system could be written in matrix form as

 , where is a vector of unknowns

 [

]

[

]

If we apply Gaussian elimination to this linear system, then we get the

following exact solution:

 [

]

We can solve this linear system by any iterative method like Jacobi

method, Gauss-Seidel method, Successive over Relaxation (SOR)

method or Conjugate Gradient method.

Jacobi method

The following approximate solution obtained by Matlab program for

Jacobi iterative method with tolerance :

 [

]

Number of iterations Cpu-time
(seconds)

The error

28

 94

To see Matlab code for the Jacobi iterative method refer to appendix I.

Gauss-Seidel method

The following approximate solution obtained by Matlab program for

Gauss-Seidel iterative method with tolerance :

 [

]

Number of iterations Cpu-time
(seconds)

The error

16 5.568056038462999e-008

To see Matlab code for the Gauss-Seidel iterative method refer to

appendix J.

SOR Method

Choose the relaxation factor :

The following approximate solution obtained by Matlab program for

SOR method with tolerance :

 [

]

Number of iterations Cpu-time
(seconds)

The error

15 6.288306131363441e-008

To see Matlab code for the SOR iterative method refer to appendix K .

 95

Conjugate Gradient method

The following approximate solution obtained by Matlab program for

Conjugate Gradient method with tolerance :

 [

]

Number of iterations Cpu-time
(seconds)

The error

2 2.220446049250313e-016

To see Matlab code for the Conjugate Gradient method iterative

method refer to appendix L .

 96
Table 3. 7: Comparison between the iterative methods for example 3

 Method
 's

 Jacobi
 solution

Gauss-Seidel
 solution

 SOR
 solution

Conjugate Gradient
solution

 Number of
iterations

28 16 15 2

Cpu-time
(seconds)

0.002945

Error

5.568056038462999
e-008

6.288306131363441e
-008

2.220446049250313e-
016

The exact solution is:

 [

]

Tolerance =

 97

3.1 Comparison between results for finite difference method and finite

element method for example 3.1:

A simple comparison between the results in example 3.1 are shown in

table 3.8 and table 3.9 with tolerance = :

Table 3. 8: Comparison between results for finite difference method

and finite element method for example 1

Finite difference method
(using Jacobi method)

 Finite element method

 Node 10
 Node 11
 Node 7
 Node 6

Table 3. 9: Comparison between FE and FD solutions

 (

) FE solution

 FD solution

0 0 0
 ⁄
 ⁄

1 ⁄ ⁄

3.2 Comparison between results for iterative methods

A simple comparison between the results in example 3.1, example 3.2

and example 3.3 respectively in table 3.1 , table 3.6 and table 3.7 with

tolerance = , the comparison yields by compare the number of

iterations for converging, error and cpu-time to decide which is the

most efficient iterative method .

 98

3.3 Conclusions

In this thesis we have used two methods to solve both homogeneous

and in homogeneous hyperbolic PDEs subject to Dirichlet and

Neumann boundary conditions these methods are the finite difference

and the finite element methods. The discretization process transfers

the boundary value problem into algebraic linear equations .

This linear system has been solved iteratively by several iterative

schemes . These are : Jacobi, Gauss-Seidel, Successive over Relaxation

(SOR), and Conjugate Gradient method.

We observe that the finite difference method is very simple and

efficient method for approximating the solution of the boundary value

problem when the domain has regular shape . While the finite element

method is more efficient for irregular domains.

We see clearly that the Conjugate Gradient method is one of the most

efficient and accurate method in comparison with the Jacobi, Gauss-

Seidel and the SOR methods. In fact, it requires less number of

iterations and cpu-time in comparison with the others.

 99

References

[1] A. Antunes, R. Leal-Toledo , O. Silveira and E. Toledo, Finite

Difference Method for Solving Acoustic Wave Equation Using

Locally Adjustable Time-steps, International Conference on

Computational Science (ICCS) Journal, Vol. 29, pp. 627–636, 2014.

[2] W. Bangerth and R. Rannacher, Finite Element Approximation

of the Acoustic Wave Equation: Error Control and Mesh

Adaptation, East-West Journal of Numerical Mathematics,

Volume 7, pp. 263–282, 1999.

[3] K. Bathe, Finite Element Procedures in Engineering Analysis,

Massachusetts Institute of Technology (MIT) Press, 2006.

[4] V. Bokil and N. Gibson, Finite Difference, Finite Element and

Finite Volume Methods for the Numerical Solution of PDEs,

Oregon State University Press, DOE Multiscale Summer School,

Corvallis, June 30, 2007.

[5] L. Burden and J. Faires, Numerical Analysis , (9th edition),

Brooks Publishing Company, 2011.

[6] D. Causon and C. Mingham, Introductory Finite Difference

Methods PDEs, Ventus Publishing , 2010.

[7] C. Chua and P. Stoffab, Nonuniform Grid Implicit Spatial Finite

Difference Method for Acoustic Wave Modeling in Tilted

Transversely Isotropic Media, Journal of Applied Geophysics,

Vol. 76, pp. 44– 49 , January 2012.

https://en.wikipedia.org/wiki/Klaus-J%C3%BCrgen_Bathe

 111

[8] R. Clough, The Finite Element Method in Plane Stress Analysis,

American Journal of Civil Engineers , 1960.

[9] Y. Dong , J. Bancroft and Xiang Du, 2D Wave-Equation

Migration by Joint Finite Element Method and Finite Difference

Method, CREWES Research Journal, Vol.15, pp. 1-10, 2003.

[10] R. Glowinski and S. Lapin, Solution of A wave Equation by A

mixed Finite Element — Fictitious Domain Method, Published

by the Computational Methods in Applied Mathematics

Journal, Vol. 4, pp. 431–444, 2004.

[11] S. Ham and K. Bathe, A Finite Element Method Enriched for

Wave Propagation Problems, Computers and Structures

Journal, Vol. 94-95, pp. 1-12, 2012.

[12] Y. Hui, Finite Element Method of the Elastic Wave Equation and

Wave-Fields Simulation in Two-Phase Anisotropic Media,

Chinese Journal of Geophysics, Vol. 45, pp. 600-610, July 2002 .

[13] H. Igel, The Finite Difference Method, Computational Seism-

ology, Ludwig-Maximilians-University Munich, Oxford University

Press, 2002.

[14] I. Kalambi , A comparison of Three Iterative Methods for The

Solution of Linear Equations, Journal of Applied Sciences and

Environmental Management (JASEM), 2008.

[15] E. Kreyszig, Advanced Engineering Mathematics, 10th edition,

John Wiley & Sons, New York, 2011.

 111

[16] M. Lamoureux , The Mathematics of PDEs and The Wave

Equation , University of Calgary, Published by Natural Sciences

and Engineering Research Council of Canada (NSERC) Journal,

Calgary, August 7–11-2006.

[17] M. Lamoureux, M. Donald and G. Margrave, Galerkin Methods

for Numerical Solutions of Acoustic, Elastic and Viscoelastic

Wave Equations, CREWES Research Journal , Vol. 24, 2012.

[18] J. Lehtinen, Time-domain Numerical Solution of the Wave

Equation, Helsinki University of Technology, February 6, 2003.

[19] K. Lie, The Wave Equation in 1D and 2D, Massachusetts Institute

of Technology (MIT) Press, Journal of Computational Physics,

University of Oslo ,18.086 Spring 2005.

[20] L. Lines, R. Slawinski and P. Bording, A recipe for Stability

Analysis of Finite-Difference Wave Equations Computations,

CREWES Research Journal, Vol.10, pp. 827-830, 1998.

[21] J. Maloney and M. Kesler ,”Analysis of Periodic Structures”

 Chap. 6 in Advances in Computational Electrodynamics: the Finite-

Difference Time-Domain Method, A. Taflove, Artech House

publishers, Norwood, 1998.

[22] G. Margrave and F. Mahmoudian, A review of The Finite Element

Method in Seismic Wave Modelling, CREWES Research Journal,

Vol.15, 2003

[23] V. Maupin and R. Dmowska , The Finite-Difference Time-

Domain Method for Modeling of Seismic Wave Propagation,

https://en.wikipedia.org/wiki/Artech_House

 112

Advances in Geophysics, Vol. 48, pp. 421-516, Elsevier - Academic

Press, 2007.

[24] P. Moczo, J. Kristek, M. Galis and P. Pazak, On Accuracy of The

Finite-Difference and Finite-Element Schemes with Respect to

P-Wave to S-Wave Speed Ratio, Geophysical Journal

International, Vol.182, pp. 493–510, July 2010.

[25] J. Nocedal and S. Wright, Numerical Optimization, Series in

Operations Research, Springer Verlag, 1999.

[26] S. Oliveira, A fourth-Order Finite-Difference Method for The

Acoustic Wave Equation on Irregular Grids, Geophysics, Vol. 68,

pp. 672–676, 2003.

[27] L. Olsen-Kettle, Numerical Solution of Partial Differential

Equations, University of Queensland, Published by Earth

Systems Science Computational Centre, 2011.

[28] H. Langtangen, Finite Difference Methods for Wave Motion,

Numerical Methods for Solving Partial Differential Equations,

Computational Partial Differential Equations, second Edition,

Springer-Verlag , University of Oslo, 2003.

[29] W. Press, S. Teukolsky, W. Vetterleng and B. Flannery, Numerical

Recipes in C, Second edition, Published by the Press Syndicate of

the University of Cambridge , 1992.

[30] J. Reddy, An Introduction to the Finite Element Method, (Third

edition), Vol. 1, McGraw-Hill Series in Mechanical Engineering,

New York, 2006.

 113

[31] Y. Saad, Iterative Methods for Sparse Linear Systems, Second

Edition, Society for Industrial and Applied Mathematics (SIAM),

2003.

[32] J. Saarelma , Finite Difference Time-Domain Solver for Room

Acoustics Using Graphics Processing Units, Aalto University

School of Electrical Engineering , Master’s Thesis Espoo,

November 11, 2013.

[33] M. Sadiku, Elements of Electromagnetics, 4th edition, Oxford

University Press, New York, 2006.

[34] R. Sekhar, Analytical and Numerical Methods for Ordinary and

Partial Differential Equations Arising in Physical Models,

Applied Mathematics, Indian Institute of Technology, Hindawi

Publishing Corporation, 2013.

[35] G. Smith, Numerical Solution of Partial Differential Equations,

Finite Difference Methods, Clarendon Press, Oxford University

Press, New York , 1987.

[36] J. Strikwerda, Finite Difference Schemes and Partial Differ-

ential Equations, Second Edition, Society for Industrial and

Applied Mathematics(SIAM), Philadelphia, 2004.

[37] J. Thomas, Numerical Partial Differential Equations, Finite

Difference Methods, Springer-Verlag, New York,1995.

[38] V. Thomee, From Finite Differences to Finite Elements, Ashort

History of Numerical Analysis of Partial Differential

Equations, Elsevier Science B.V., 2001.

 114

[39] C. Vuik, Iterative Solution Methods, Mathematics and Computer

Science, Delft Institute of Applied Mathematics, Morgan

Kaufmann Publishers, San Francisco, 2001.

[40] O. Zienkiewicz and R. Taylor, The Finite Element Method : Its

Basis and Fundamentals, Fifth Edition, Vol. 1, Published by

Butterworth-Heinemann, Oxford, 2000.

 115

Appendix A

% Matlab code for Jacobi iterative method

% Iterative Solutions of linear equations: Jacobi Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u .

clc

clear

format long

tic

A=[6 -4 1 0;-4 6 0 1;1 0 6 -4;0 1 -4 6];

b=[-1/3;2;0;4/3];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

k=0;

 while err >1.0e-7

 for i=1:4

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 116

 end

 err= max(abs(un'-u));

 k=k+1;

M(k,:)=[un'];

u=un';

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

 117

Appendix B

% Matlab code for Gauss-Seidel iterative method

% Iterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[6 -4 1 0;-4 6 0 1;1 0 6 -4;0 1 -4 6];

b=[-1/3;2;0;4/3];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

 k=0;

 while err >1.0e-7

 u0=u;

 118

 for i=1:4

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

K

 119

Appendix C

% Matlab code for SOR iterative method

% Iterative Solutions of linear equations: SOR me Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clear

format long

tic

A=[6 -4 1 0;-4 6 0 1;1 0 6 -4;0 1 -4 6];

b=[-1/3;2;0;4/3];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.02;

err=1.0;

k=0;

 while err >1.0e-7

 u0=u;

for i=1:4

 111

 u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i)));

end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

 111

Appendix D

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)

% SOLVECG Conjugate Gradients method.

% Input parameters:

% A : Symmetric, positive definite NxN matrix

% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform

% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum

% number of iterations, 0 otherwise (= iteration

% successful).

tic

A=[6 -4 1 0;-4 6 0 1;1 0 6 -4;0 1 -4 6];

f=[-1/3;2;0;4/3];

err=1.0;

format long

s=[0;0;0;0];

tol=0.0000001;

 112

maxiter =6;

u = s; % Set u_0 to the start vector s

r = f - A*s; % Compute first residuum

p = r;

rho = r'*r;

niter = 0; % Init counter for number of iterations

flag = 0; % Init break flag

 % Compute norm of right-hand side to take relative residuum as

% break condition.

normf = norm(f);

if normf < eps % if the norm is very close to zero, take the

 % absolute residuum instead as break condition

 % (norm(r) > tol), since the relative

 % residuum will not work (division by zero).

 warning(['norm(f) is very close to zero, taking absolute residuum' ...

 ' as break condition.']);

 normf = 1;

end

while (norm(r)/normf > tol) % Test break condition

 a = A*p;

 alpha = rho/(a'*p);

 u = u + alpha*p;

 r = r - alpha*a;

 rho_new = r'*r;

 113

 p = r + rho_new/rho * p;

 rho = rho_new;

 niter = niter + 1;

 if (niter == maxiter) % if max. number of iterations

 flag = 1; % is reached, break.

 break

 end

end

% show the cpu time

toc

u

 err= max(abs(u-o))

niter

 114

Appendix E

%Matlab code for Jacobi iterative method

% Iterative Solutions of linear equations: Jacobi Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[10/8 1/4 0 -1 0 0;1/8 14/8 1/8 0 -1 0;0 1/8 14/8 0 0 -1;-1 0 0 10/8

1/4 0;0 -1 0 1/8 14/8 1/8;0 0 -1 0 1/8 14/8];

b=[1/8;5/8;-11/16;1/4;3/4;1/2];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

k=0;

 115

 while err > 1.0e-7

 for i=1:6

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 err= max(abs(un'-u));

 k=k+1;

M(k,:)=[un'];

u=un';

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

 116

Appendix F

% Matlab code for Gauss-Seidel iterative method

% Iterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u

clc

clear

format long

tic

A=[10/8 1/4 0 -1 0 0;1/8 14/8 1/8 0 -1 0;0 1/8 14/8 0 0 -1;-1 0 0 10/8

1/4 0;0 -1 0 1/8 14/8 1/8;0 0 -1 0 1/8 14/8];

b=[1/8;5/8;-11/16;1/4;3/4;1/2];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

 k=0;

 while err >1.0e-7

 u0=u;

 117

 for i=1:6

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

 118

Appendix G

% Matlab code for SOR iterative method

% Iterative Solutions of linear equations: SOR Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u

clc

clear

format long

tic

A=[10/8 1/4 0 -1 0 0;1/8 14/8 1/8 0 -1 0;0 1/8 14/8 0 0 -1;-1 0 0 10/8

1/4 0;0 -1 0 1/8 14/8 1/8;0 0 -1 0 1/8 14/8];

b=[1/8;5/8;-11/16;1/4;3/4;1/2];

%show the exact solution

inv(A)*b;

% Set initial value of u to zero column vector

u=[0;0;0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.3;

err=1.0;

k=0;

 while err >1.0e-7

 119

 u0=u;

for i=1:6

 u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i)));

end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

 121

Appendix H

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)

% SOLVECG Conjugate Gradients method.

% Input parameters:

% A : Symmetric, positive definite NxN matrix

% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform

% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum

% number of iterations, 0 otherwise (= iteration

% successful).

tic

A=[10/8 1/4 0 -1 0 0;1/8 14/8 1/8 0 -1 0;0 1/8 14/8 0 0 -1;-1 0 0 10/8

1/4 0;0 -1 0 1/8 14/8 1/8;0 0 -1 0 1/8 14/8];

f=[1/8;5/8;-11/16;1/4;3/4;1/2];

err=1.0;

format long

s=[0;0;0;0;0;0];

 121

tol=0.0000001;

maxiter =20;

u = s; % Set u_0 to the start vector s

r = f - A*s; % Compute first residuum

p = r;

rho = r'*r;

niter = 0; % Init counter for number of iterations

flag = 0; % Init break flag

% Compute norm of right-hand side to take relative residuum as

% break condition.

normf = norm(f);

if normf < eps % if the norm is very close to zero, take the

 % absolute residuum instead as break condition

 % (norm(r) > tol), since the relative

 % residuum will not work (division by zero).

 warning(['norm(f) is very close to zero, taking absolute residuum' ...

 ' as break condition.']);

 normf = 1;

end

 while (norm(r)/normf > tol) % Test break condition

 a = A*p;

 alpha = rho/(a'*p);

 u = u + alpha*p;

 r = r - alpha*a;

 122

 rho_new = r'*r;

 p = r + rho_new/rho * p;

 rho = rho_new;

 niter = niter + 1;

 if (niter == maxiter) % if max. number of iterations

 flag = 1; % is reached, break.

 break

 end

end

% show the cpu time

toc

u

 err= max(abs(u-o))

niter

 123

Appendix I

% Matlab code for Jacobi iterative method of FDM for 2D wave

equation

% Iterative Solutions of linear equations: Jacobi Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14];
b= [-217/54;-217/27;-1/54;-109/27];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

k=0;

 while err > 1.0e-7

 for i=1:4

 124

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 err= max(abs(un'-u));

 k=k+1;

M(k,:)=[un'];

u=un';

 end

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

 125

Appendix J

%Matlab code for Gauss-Seidel iterative method of FDM for 2D wave

equation

% Iterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14];
b= [-217/54;-217/27;-1/54;-109/27];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

 k=0;

 while err >1.0e-7

 u0=u;

 126

 for i=1:4

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

 end

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

 127

Appendix K

% Matlab code for SOR iterative method of FDM for 2D wave equation

% Iterative Solutions of linear equations: SOR Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14];
b= [-217/54;-217/27;-1/54;-109/27];

%show the exact solution

inv(A)*b;

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.3;

err=1.0;

k=0;

 while err >1.0e-7

 u0=u;

 128

for i=1:4

 u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i)));

end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

 end

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

 129

Appendix L

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)

% SOLVECG Conjugate Gradients method of FDM for 2D wave

equation.

% Input parameters:

% A : Symmetric, positive definite NxN matrix

% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform

% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum

% number of iterations, 0 otherwise (= iteration

% successful).

tic

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14];
f= [-217/54;-217/27;-1/54;-109/27];

err=1.0;

format long

s=[0;0;0;0];

 131

tol=0.0000001;

maxiter =20;

u = s; % Set u_0 to the start vector s

r = f - A*s; % Compute first residuum

p = r;

rho = r'*r;

niter = 0; % Init counter for number of iterations

flag = 0; % Init break flag

% Compute norm of right-hand side to take relative residuum as

% break condition.

normf = norm(f);

if normf < eps % if the norm is very close to zero, take the

 % absolute residuum instead as break condition

 % (norm(r) > tol), since the relative

 % residuum will not work (division by zero).

 warning(['norm(f) is very close to zero, taking absolute residuum' ...

 ' as break condition.']);

 normf = 1;

end

 while (norm(r)/normf > tol) % Test break condition

 a = A*p;

 alpha = rho/(a'*p);

 u = u + alpha*p;

 r = r - alpha*a;

 131

 rho_new = r'*r;

 p = r + rho_new/rho * p;

 rho = rho_new;

 niter = niter + 1;

 if (niter == maxiter) % if max. number of iterations

 flag = 1; % is reached, break.

 break

 end

end

toc

u

 err= max(abs(u-o))

niter

.

2017

.

Jacobi, Gauss-Seidel, SOR, and Conjugate Gradient methods.

Conjugate Gradient

