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Abstract

Hyperbolic Partial Differential Equations play a very important role in
science, technology and arise very frequently in physical applications as
models of waves. Hyperbolic linear partial differential equations of second
order like wave equations are the ones to be considered. In fact, most of
these physical problems are very difficult to solve analytically. Instead,
they can be solved numerically using some computational methods .

In this thesis, homogeneous and inhomogeneous wave equations with
different types of boundary conditions will be solved numerically using the
finite difference method (FDM) and the finite element method (FEM) to
approximate the analytical (exact) solution of hyperbolic PDEs. The

discretizing procedure transforms the boundary value problem into a linear
system of n algebraic equations that can be solved by iterative methods.
These iterative methods are: Jacobi, Gauss-Seidel, SOR, and Conjugate
Gradient methods. A comparison between these iterative schemes is drawn.
The numerical results show that the finite difference method is more
efficient than the finite element method for regular domains, while the
finite element method is more accurate for complex and irregular domains.
Moreover, we observe that the Conjugate Gradient iterative technique gives

the most efficient results among the other iterative methods.
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Introduction
Partial differential equations (PDEs) are encountered in physics either
elliptic, parabolic or hyperbolic. Hyperbolic partial differential equations
(PDEs) are play a very important role in science, technology and arise very
frequently in physical applications as models of waves, such as acoustic,

elastic, seismic, shock, electromagnetic, and gravitational waves.

In fact, most of hyperbolic partial differential equations (PDES) that arise in
mathematical models of physical phenomena are very difficult to solve
analytically, so numerical methods become necessary to approximate the
solution of such hyperbolic partial differential equations. For many
hyperbolic partial differential problems, finite difference and finite element

methods are the techniques of choice [19].

Finite difference method (FDM) is the oldest method for numerical
solution of partial differential equations which is introduced by Euler in the
18th century. Because of this simplicity and easy to use for simple
geometries, it is the most popular method for solving partial differential
equations. It is based upon the application of Taylor expansion to
approximate the differential equations. This method uses a topologically

square network of lines to construct the discretization of the PDE [38].

On the other hand, the finite element method (FEM) is the general method
for the numerical solution of partial differential equations covering all three
main types of equations, namely elliptic, parabolic, and hyperbolic

equations. It can be implemented to any type of PDE. FEM is flexible and
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accurate method but requires a good knowledge in coding. The finite
element method (FEM) is good enough to give a vision of numerical
solution [40], and it was introduced by engineers in the late 50’s and early
60’s for the numerical solution of partial differential equations in structural
engineering (elasticity equations, plate equations ).

Today, the method is used extensively for problems in many areas
including, but not limited to, structural engineering, strength of materials,
fluid mechanics, nuclear engineering, electro-magnetism, convention-
diffusion processes, wave propagation, scattering, integrated circuits, heat

conduction, petroleum engineering, and reaction-diffusion processes [39].

The FEM dates back to 1909 when Ritz developed an effective method for
the approximate solution of problems in the mechanics of deformable
solids, it includes an approximation of energy function by the known
functions with unknown coefficients. Minimization of function in relation
to each unknown leads to a system of equations from which the unknown
coefficients may be determined. One of the main restrictions in the Ritz
method is that functions used should satisfy the boundary conditions of the
problem [8].

The FEM obtained its real impetus in the 1960s and 1970s by the
developments of the following groups: J. H. Argyris with co-workers

at the University of Stuttgart, R.W. Clough with co-workers at UC
Berkeley, O. C. Zienkiewicz with co-workers Ernest Hinton, Bruce
Irons and others at the University of Swansea, Philippe G. Ciarlet at the

University of Paris and Richard Gallagher with co-workers at Cornell
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University[8]. The FEM for solving the wave equation has been developed
by many researchers. Very recently, Bangerth and Rannacher [2] have
used the finite element approximation for the acoustic wave equation. Hui
[12] has implemented the FEM of the elastic wave equation and wave
fields simulation in two-phase anisotropic media. Margrave and
Mahmodian [22] have applied the FEM in seismic wave modeling.
Glowinski and Lapin [10] have obtained the solution of a wave equation
by a mixed finite element - fictitious domain method. Ham and Bathe [11]
have used the finite element method for wave propagation problems.
On the other hand, the FDM was invented by a Chinese scientist named
Feng Kang in the late 1950’s. He proposed the FDM as a systematic
numerical method for solving partial differential equations that are applied
to the computations of dam constructions. It is now considered that the
invention of the FDM is a milestone of computational mathematics [38].
The FDM for solving the wave equation has been developed by many
researchers. Very recently, Oliveira [26] has used the fourth-order FDM for
the acoustic wave equation on irregular grids. Maupin and Dmowska [23]
have implemented the finite-difference time-domain method for modeling
of seismic wave prop- agation. Lamoureux et al. [17] have used the
Galerkin methods for numerical solutions of acoustic, elastic and
viscoelastic wave equations. Chua and Stoffab [7] have studied the
Nonuniform grid implicit spatial finite difference method for acoustic wave
equation. Lines et al. [20] have analyzed the stability of finite difference

wave equations computations. Saarelma [32] has used the finite difference


https://en.wikipedia.org/wiki/Cornell_University

4

time domain solver for room acoustics using graphics processing units.
Antunes et al. [1] have applied the FDM to solve acoustic wave equation
using locally adjustable time-steps. Moczo et al. [24] have investigated the
accuracy of the finite difference and the finite element schemes with
respect to p-wave to s-wave speed ratio. Dong et al. [9] have applied the
finite element and finite difference methods to solve 2D wave equation.
The thesis is organized as follows: Chapter one introduces the basics of the
FDM and the FEM for homogeneous and inhomogeneous wave equations
with different types of boundary conditions. Chapter two presents some
iterative methods namely: Jacobi, Guass-Seidel, Successive over
Relaxation (SOR), and Conjugate Gradient method for solving linear
system which is implemented by using the FDM and the FEM and their
convergence properties. Chapter three contains some numerical examples

and results and finally the conclusions follows.
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Chapter One
Finite Difference and Finite Element Methods for Solving
Hyperbolic Partial Differential Equations
A second order linear partial differential equation is mainly considered

as
AUy, + Buyy, + Cuyy, + Du, + Eu, + Fu = G(x,y) (1.1)

where 4,B,C,D,E,F and the free term G can either be constants or

functions of the two independent variables x and y.

Equation (1.1) is classified into three types depending on the

discriminant (B — 4AC) as follows (see [6]):

1. Hyperbolic if the discriminat is positive (B> — 4AC > 0).
2. Parabolic if the discriminant is zero (B> — 4AC = 0).

3. Elliptic if the discriminant is negative (B*> — 4AC < 0).
In this work, we will deal with hyperbolic PDEs (see [19],[37] ).

We will use the Finite Difference and the Finite Element methods for
solving hyperbolic partial differential equation for both homogeneous

and inhomogeneous wave equations.

To implement these methods to solve the hyperbolic PDE, a system of
linear equations will be generated that can be solved using several
iterative schemes such as Jacobi, Guass-Seidel, Successive over

Relaxation (SOR), and Conjugate Gradient methods.
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1.1 Hyperbolic PDE Subject to Boundary Conditions
Solution of homogeneous and inhomogeneous wave equation on the
boundary of a domain D needs certain conditions where the unknown
function (dependent variable) must satisfy these conditions on the
boundary B. We will deal with homogeneous and inhomogeneous
wave equations with respect to two types of boundary conditions .

These boundary conditions are:

1. Dirichlet Boundary Conditions:
The condition where the value of the unknown function is
prescribed on the boundary of the domain.

2. Neumann Boundary Conditions:

ou
The condition where the value of the normal derivative o is given

on the boundary of the domain.

1.2 Discretization of Hyperbolic PDE by Finite Difference Method
This method is effective when the domain of the problem has
boundaries with regular shapes. In this thesis, we will deal with the

FDM with rectangular domain of regular boundaries shapes (see [35]).

1.3 The Principle of Finite Difference Method (FDM)
The FDM is a numerical method for solving differential equations by
approximating them using difference equations with errors of order

h* (O(R").
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The given region or domain of the PDE is divided into a network of
lines constructing rectangles called grid. The points of intersection of
these lines are called grid points or mesh points. At each grid point, the
differential equation is approximated by replacing the partial
derivatives by their corresponding difference approximations. The
replacement of partial derivatives with difference approximation
formulas depends on Taylor's Theorem . This gives an algebraic
equation for each grid point, in which the variable value at that point
and a certain number of neighbour points appears as unknown. In
other words, by knowing the value of the variable at neighbouring
points of the unknown value makes that variable at that particular

point can be calculated (see [19], [28] ).

1.4 Strategy of Discretization
Using the FDM to discretize hyperbolic PDE with its boundary
conditions, we can consider the following inhomogeneous wave

equation:
c? Uy — Uy = G(x, 1) (1.2)
The rectangular domain D = {(x,t) |a < x < b, ¢ <t < d} and

u(x,t) = g(x,t) forany (x,t) € B, where B denotes the boundary of a
region D, G(x,t) is a continuous function on D and g(x, t) is continuous
on B. The continuity of both G and g guarantees a unique solution of

equation (1.2) (see [13],[ 19]).
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Now, we will use the finite difference algorithm for solving hyperbolic

PDE, like equation (1.2).
The Finite Difference Algorithm
Step 1: Choose positive integers n and m.

Step 2: Define h = bz ndk = £
n m

This step partitions the interval [a, b] into n equal parts of width h and

partitions the interval [c, d] into m equal parts of width k.
Step 3: Define the mesh point (x;, t;) as
x;=a+ihi=12,....,n
tj = c+jk,j=12,....m

Step 2 and step 3 are illustrated in figure 1.1.

Xg=a X; X; X3 x, =Db

Figurel. 1: discretization of a rectangular domain
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At any interior mesh point (x;, t;) the wave equation becomes

Czuxx(xi, t]) - utt(xl-, t]) = G(xi,tj) (13)
The difference method is obtained using the centered-difference

quotient for the second partial derivatives given by (see [29]):

i1, ti)—2 ti) + .t
(1) = u(xis1, ty) u(;; ) +u(xig,t))
h? 0*u
12 W(fi’ t;), where &; € (x;—1,Xi41) (1.4)
and
i & -2 Lti) + St
utt(xi, tj) =u(xz 1+1) u(:é ]) u(xl ; 1)
k? 0*u
12 ﬁ(xi,,uj),where Wi € (4-1tjs1) (1.5)

Substituting equations (1.4) and (1.5) into equation (1.3) gives

2 u(xi+1; tj) — Zu(xi, tj) + u(x;—q,t;)

hZ
_ U(xi, tj+1) - ZU(xl‘, t]) + U(xl', tj—l)
kZ
1 0*u 0*u
—E C2 hzﬁ(fl,t])—kz W(xi,uj) = G(xl-,tj) (16)

foreachi = 1,2,3,... ,n—1andj = 1,2,3,... m—1.

The boundary conditions are:

L u(xo, tj) = g(xo,t), forj = 0,1,2,...,m.

2.u(xn, tj) = g(xp, t;), forj = 0,1,2,...,m, (1.7)
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3.(xi,t0) = g(x;,ty), fori = 1,2,...,n—1.

4. (x;,t) = g (x;,ty), fori = 1,2,...,n—1.

Now, by rearranging equation (1.6), we get:

ot )+ 1, ti t + St 2
C2 u(xl+1 t])hz u(xl 1 t]) _ u(xl t]+1)k2u(xl j 1) _ Z%u(xi, tj)
1 1 0*u 0*u
+2 ﬁu(xi,tj) = E C2 hz m(fi, t]) - k2 W(xl,u]) + G(xi,tj)
Or it can simply be written as
2 u(xi+1' t]) + u(xl-_l, t]) u(xl-, tj+1) + U(Xl', tj—l)
¢ h? B 2
c? 1
-2 ﬁ - ﬁ U(xi, t])
1 0*u 0*u
= E C2 hz W(fi’ t]) - kz W(Xl,/l])] + G(Xl,t]) (18)
Multiplying both sides by k?, we get:
cky*
() [eCriens ) + wCricns )] = wCri a) = (e -1)
cky?
k? 0*u 0*u
=E[ thﬁ(fi,tj) —kz F(xl,u])] +k2G(xi,tj) (19)

Define A = ck/h and neglecting the error term (local truncation error)

defined as :
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o o e
O(h? + k?): T, = c? h? a_xli (&.t) — k? a_tz (x;,14j). Then Simplifying

equation (1.9) and letting u; ; approximate u(x;, t; ) we can write the

difference equation as

2 2 )
A (ui+1’j + ui_l’j) - ui’j+1 — ui,j_l + 2 (1 — /1 )ui,]- =k G(Xl,t])

foreachi = 1,2,..,n—1and j = 1,2,...,m—1. (1.10)

with boundary conditions:

1.u0,j=g(x0,tj), for j = 0,1,2,...,m.

2. Up j= (xpt;), for j = 0,1,2,...,m. (1.11)
3.ujo=9g(xito ), fori = 1,2,...,n—1.

4. Ui m=9gx,ty ), fori = 1,2,...,n— 1.
Equation (1.10) involves approximations to the unknown function

u(x, t) at the points (x;_1,t;), (Xi+1, t;), (X, tj=1), (xi, tj41), (21, 1)

These points form a regular star-shape region in the grid (as shown in

figure 1.2).
t

d_|

iy *

t}- — * * *
iy *

e L

| | | | | -

Figurel. 2: 5-points stencil of the unknown function u(x, t)
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When we use formula (1.10) with boundary conditions (1.11), then at
all points (xl-, t]-) that are adjacent to a boundary mesh point, we have
an(n—1)x(m—-1)by(n—1)x(m—1) linear system with the
unknowns being the approximations u;; to u(xl-, tj) at the interior

mesh points.

The generated linear system can be solved by the Jacobi, Guass-Seidel,
Successive over Relaxation (SOR), or Conjugate Gradient methods. This
system (that involves the unknowns) produces satisfactory results if a
relabeling of the interior mesh points is introduced (see [5],[ 39]). A

favorable labeling of these points is:

L, = (xl-, tj) andu, = u;j, wherer =i+ (m—-1—-j)(n—1)
Vi=12,..,.n—1,and Vj =1,2,...,m— 1.

1.4.1 Homogeneous Wave Equation with Dirichlet Boundary Conditions
When the function is defined on any part of a domain D, then we call
this part Dirichlet boundary Sp, i.e. the unknown function u is

prescribed on the boundary, that is, u(x,t) = g(x,t), (x,t) € B where

the function g is a known function .
Bp:u=g

To derive the formula of finite difference approximation with Dirichlet

boundary condition for homogeneous wave equation

2—————=0 (1.12)
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we consider three pointsi+ 1,i, and i — 1 which are located on

x —axis with equal distance h between them as shown in figure 1.3,

( see [6], [13] and[37]).

L

r

-1 I i+1
Figurel. 3: three points i + 1,i, and i — 1 which are located on x —axis

The value of the function u(x,t) at the points (i —1,)),(i,)),

and (i + 1,j) beu;_q;,u;; ,and u;,4 ; , respectively.

Now, use Taylor series to expressu;_;; andu;.;; in the form of

Taylor expansions about the point i as follows:

B h ou h? 9%u h3 93u h* 9%*u
Y e R TR PLC TR ol L TR e ri por

+0(h®) (1.13)
. h du hZ 9%u h3 93u h* 9%*u
Uimgy = Ui~ it o geli =5 aali v o gali
+0(h5) (1.14)

Adding equations (1.13) and (1.14), gives:
2 0%u h* 0*u

Sezlit g gl t 0(h®)

ui+1,j -+ ui_lij == Zui,j -+ h

By rearranging the above equation, we obtain:

2 —_
J0°u _ ui+1’j Zui,j + ui_l,j

—— i = 2 + 0(h?) (1.15)
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Equation (1.15) is a finite difference approximation formula with the

error term O(h?).

Subtracting equation (1.14) from equation (1. 13), we get:

ou  Upprj — Ui
ox ' 2h

+ 0(h?) (1.16)

Equation (1.16) is a finite difference approximation formula with the

error term O (h?).

Similarly, consider three pointsj + 1,j, and j — 1 which are located on

the y —axis with equal distance h between them. Let the value of the
function u(x, t) at the points (i,j — 1), (i,j),and (i,j + 1) be u; j_4, u; j,

and u; j,4, respectively as shown in figure 1.4.

Figure 1. 4: three points j + 1,j,and j — 1 which are located on the y —axis

Using Taylor series to expressu; j,; and u;;_; in the form of Taylor

expansions about the point j, then the finite difference approximation

. az a
formulas with the error term 0 (h?) of second order fora—xLzL |j and 6—1; |j

are, respectively:
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62u ui’jﬂ - Zui,j + ui,j_l
Szl = h2 + 0(h?) (1.17)
and
ou Upjy1 — Ujjq 5
ooy = R o (h?) (1.18)

Combining x and t axis together, we get the star-shape

( 5-points stencil) region about the point (i, j) as shown in figure 1.5 .

(.j+1
(&,j—1)

Figurel. 5: combining x-axis and t-axis around the (i, j) point

Inserting equations (1.15) and (1.17) into equation (1.12) yields:

2 2
2 d°u d2°u 5 ui+1’j - Zui’j + ul‘_l’j ui’j+1 - Zui’j + ui’j_l
¢ dx2 otz )'@H — ¢ h2 h2

=0
Rearranging the above equation, we get

Czui+1’j + Czui_l’j - ui,j+1 - ui’j_l + 2(1 - cz)ui’j =0 (119)

—_ 1 2 2
Uij = 22— [ui,j+1 T Ujjo1 — CUjpqj—C ui—l,j] (1.20)

In general, if u satisfies the wave equation, then u at any point in the

domain D satisfies equation (1.20).
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Now, suppose we have Dirichlet boundary conditions defined on the
rectangular domain such that1 < i< mand1 <j < n(see [6]) as

shown in figure 1.6 .

t up
j=mn
left i=2 [ right
=11 5
; .
i=1i=2i=3 i=m
down

Figure 1. 6: Dirichlet boundary conditions defined on the rectangular domain

Letu(x,t) = g(x,t) be given on all boundaries of the domain, that
isu = gis defined on the left, up, right and down boundary walls so
that the boundary grid points (blue points) and the corner grid points

(green points) are known. In other words, the values of the points (x;, t;
), Vi=23,..m—1,Vj=23,..,n—1 ( see [6],[34]) under the
function g are known. For the corner grid points, we use the following

equations

u(1,1) = %[u(Z,l) + u(1,2)]
u(m, 1) = %[u(m —1,1) + u(m, 2)]
u(l,n) = %[u(l,n — 1) +u(2,n)]

u(m,n) = %[u(m,n — 1) +u(m—1,n))]. (1.21)
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1.4.2 Inhomogeneous Wave Equation with Dirichlet Boundary
Conditions
To derive the formula of finite difference approximation with Dirichlet
boundary conditions for inhomogeneous wave equation:
,0%u  0%°u

c ﬁ—ﬁ = G(X, t) (122)

We follow similar approach for the homogeneous wave equation with

some amendments in equation (1.19), thatis

-1
Ujj = m [ui,j+1 + Ujj-1— Czui+1,j - Czui_l,j — h? Gi,j] (123)

1.4.3 Homogeneous Wave Equation with Neumann Boundary
Conditions

When the normal derivative of the unknown function u is prescribed
on the boundary of a domain D, then we call this part Neumann
boundary By, i.e. the value of the normal derivative of the function is

given on the boundary of the domain, where g(x, t) is a given function.

ou
BN:% =g(x,t)

To derive the formula of finite difference approximation with

Neumann boundary condition for the wave equation

Consider that we have a rectangular domain as shown in figure 1.6.
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Suppose that Dirichlet condition is specified on up, right and down
walls and Neumann condition is defined on the remaining wall which is

the left wall as follows (see [27] ):

Ju Ju

Fl v —g(t) (1.24)

Now, we want to approximate equation (1.24) using the second order
approximation using equation (1.16). This procedure puts the grid
points (1, /) outside the domain towards the left that is located on

imaginary boundary that their fake coordinates will be (0,j) (see

[16],[27]).

So, equation (1.24) is approximated using equation (1.16) at the
linei =1

ou Ui41,j —Up-1,j Uzj —Ug;
—_— n = d ) — ) ’ - _ 1' .
ax ) 2h 2h 9L

Thus,

Now, we write equation (1.20) at the point (1, ) as

1
W =577 1~ [u1 i+1 T UL j—1 — C2u1+1 j Czu1—1 ]
»J] 2(C2 — 1) '] v s ']

1
ulj - < [u1 i+1 + Uq j—q1 — C2u2 i — C2u0 ] (126)
) Z(CZ — 1) ] ,J] '] ']

Substituting equation (1.25) into equation (1.26), we get:
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1 ]
Up ;= -1 [U1,j+1 +uyjoq — Uy — c?uy; — 2c*h g1, )]

1 .
1) [ul’j+1 + ul’j_l - 2C2u2’j - 2C2h g(l,])] (127)

For any two positive integers m and n, we use equation (1.27) for

2<j <n —1, whereg(l,j)is a specified function. As Dirichlet

condition is specified on up, right, and down walls, the values
fu(i,n),2<i<m-1}{u(m,j),2<j<n-1}and

{fu(i,1),2 <i <m— 1} are known. To find the values of corner grid

points, we use equation (1.21).

1.4.4 Inhomogeneous Wave Equation with Neumann Boundary
Conditions

Consider the inhomogeneous wave equation:

with Neumann boundary condition:

Ju Jdu

== 9O

defined on the rectangular domain.

Similar to the homogeneous wave equation, the difference
approximation formula of Neumann condition at the fake grid point

(0,)) is equation (1.25), that is (see [27]):

Up; = Up; +2h g(1,))
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Now, using equation (1.24) to find the value of the point (1, j), we get

1

Uyj = gy [Maen F U = gy = Uy — 12 Gy ] (1.28)

Substituting equation (1.25) into equation (1.28), we get

Uy = ;[lh 41+ Uy jg — CPUpj — € (uz  + 2h g(l,j))
] Z(CZ — 1) i '] i 4]
- h2 Gl'j]
Thus
1 .
UL = Sy [y jo1 +usj—1 — 2¢2uy; — 2he? g(1,j) — h? Gy ;] (1.29)

If i # 1, we use equation (1.23).

Using the same method, we can deal with other boundary points
except the corner points. For corner points, we use equation (1.21) to

find their values (see [35],[36] ).

1.5 Finite Element Method

The Finite Element Method (FEM) is the most known numerical
method used for solving partial differential equations to approximate
the solution of them when the analytical (exact) solution is impossible
to find. This method is effective when the domain of the problem has
boundary with irregular shapes. Finite element method (FEM) can be
applied on many scientific and engineering problems such as fluid
flow, heat transfer, electromagnetic fields, aerospace, civil engineering,

and so on (see [30] ).
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The Principle of Finite Element Method (FEM)

The following are the basic steps involved in the finite element method
(see [15] and [33] ):

Discretization: The discretization of the given differential equation is
obtained by dividing the given domain D into a finite number of
elements . The points at which those finite elements intersects are
called nodes (blue points as in figure 1.7). The nodes and elements

both are numbered by a suitable indices .

Derivation of finite element equations: For any given differential
equation, a variational formulation is constructed for each element.
Then the element equations are oblained by substituting a typical
dependent variable into the variational formulation. After choosing the
variable i and the interpolation functions, the element matrices can be

computed.

Assembly: After the calculation of element matrices, the next step is to
assemble those element equations so that the final solution is
continuous. When this assembly is done, the entire system of equations

takes the matrix form .

Boundary conditions: Apply the boundary conditions for that

problem to the above system of equations.
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Solution of the equations: Finally the system is solved by any
available standard technique for solving system of equations, for

example Gauss elimination.

Nodes

Figurel. 7: finite element on irregular shape

1.5.1 Finite Element Method (FEM) for Dirichlet Boundary Value
Problems

This section discusses the finite element method that is used to solve
one dimensional hyperbolic partial differential equation with Dirichlet
boundary conditions in a rectangular domain and focuses on finite

element solution using spreadsheets with triangular grid (see

[15],[33]).

Now, we want to approximate the solution of homogeneous wave

equation

Uy — Uy =0
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defined on a rectangular domain with Dirichlet boundary conditions
defined on the up, left, right and down boundaries (edges) as shown in

figure 1.8.

The region is divided into equal triangular elements. In this
discretization, there are global nodes such that the nodes which are
located on the boundaries (blue nodes) that the function u defined on
them is known and interior nodes (green nodes) that the function u

defined on them is unknown.

t.ﬂ.

Left Right
Tre—o—0——0
U =g
Down

Figurel. 8: rectangular domain with Dirichlet boundary conditions

Suppose 0 < x < aand let m be the number of equal portions that
are located on bottom boundary (x-axis). In this case, m = 4 portions

(from node 1 to node 2, from node 2 to node 3, from node 3 to node 4
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and from node 4 to node 5). The length of each portion is equal to the

a

length of other portions and is equal to % =7

In similar manner, suppose0 < t < band letn be the number of

equal portions that are located on the left boundary (t-axis).

In this case,n = 3 portions (from node 1 to node 10, from node 10 to

node 11 and from node 11 to node 20). The length of each portion is

equal to the length of other portions and is equal to % = g, (see [30]).

t

@fﬁ@rﬂ'@
0,0) .

) 4
.
I

=

Figurel. 9: coordinate for each node in finite element method

Now, we can easily find the coordinate for each node as shown in

figure 1.9 as follows:

Node 1: (0,0)

Node 9: (5 x 1,2 x 1)
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Node 14: (% X 3,% X 2) and so on until Node 18 : (a,b).

Now, for each element (triangle) e, we determine the local node
numbers 1, 2, and 3 that must be assigned so that global nodes

associated with an element are traversed in a counterclockwise sense.
For example: Element 1:

At node 1: the local node numberis 1, so (x;,t;) = (0,0)

At node 2: the local node number is 2, so (x,,t,) = (% ,0)

At node 10: the local node number is 3, so (x3,t3) = (O,S)

These are shown in figure 1.10.

Local node number 3

elementl

O——

Local node number 1 Local node number 2

Figurel. 10: the local node numbers are determined on nodes start from nodel, then
node 2 and finally with node 10 (in a counterclockwise).

Similarly, we determine the local node numbers 1, 2 and 3 for each

element e; in the same way as in element 1.

The following must be computed for each element e¢; :
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P =1t,-t5 Q1 = X3- X
P,=t;3-1t; Q2 = X1 - X3
P; =t -1, Q3 = X3 - X

For element 1:

b
(1,t2) = (0,0), (12, ty) = (5,0), (e t) = (0,2)

b b
P1=t2—t3 =0_§=_§
a a
Q1 = X3~ X =0_Z=_Z

and so on.

Now, for each element e, we want to find the 3 X 3 element coefficient
matrix for which the entries are given by the equation:

1 ..
Cy;© =[PP+ Q;Q;] fori,j=123, (1.30)
where

A=

N

[P2Q3 — P3Q,].

When we find the element coefficient matrices, then the global
coefficient matrix C is assembled from the element -coefficient
matrices. If the number of nodes is N, then the global coefficient matrix

C willbean N X N matrix (in our case, N=20).

We can compute the entries of the main diagonal as follows:
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Cy1: is the entry that is located on row 1 and column 1 in the global
coefficient matrix C which corresponds to node 1 that belongs to
element 1 only. Node 1 is assigned local node number 1 in element 1 as

shown in the following figure (1.11).

Local node number 1

Elemen

Figurel. 11: Node 1 is assigned local node number 1 in element 1

Ci1 = Cll(l) is the entry that is located on row 1 and column 1 in the

element coefficient matrix for element 1.

C,,: is the entry that is located on row 2 and column 2 in the global
coefficient matrix C which corresponds to node 2 that belongs to
elements 1, 2, and 3. Node 2 is assigned local node number 2 in
element 1 and local node number 1 in elements 2 and 3 as shown in

the following figure(1.12), (see [33] ).

Figurel. 12: Node 2 has Local node number 2 in element 1 and Local node number 1 in
element 2 and element 3.
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Crp = sz(l) + 611(2) + C11(3) where is the entry 622(1) that is located
on row 2 and column 2 in the element coefficient matrix for element 1
and Cll(z), 611(3) are the entries that are located on row 1 and column 1
in the element coefficient matrix for element 2 and element 3,

respectively.

Using the same method, we can find the remaining diagonal entries ,
fori =1,...,N. For other entries in the global coefficient matrix C, we
do that using a different method described in the following

paragraphs:

Take, for example, the entry C, 4 in the global coefficient matrix C. It
corresponds to node 2 and node 9. So, the link between node 2 and
node 9 is called global link which corresponds to local link 1-2 of

element 2 and local link 1-3 of element 3 as shown in figure 1.12.
Hence,

Cro = C12(2) + C13(3)
The other off-diagonal entries are treated similarly.

Now, defining vector u, to be a vector of unknowns (interior nodes,
green nodes) and vector u, to be a vector of prescribed boundary
values. In other words, is a vector of the value of nodes that are located

on the boundaries (blue nodes) as shown in figure 1.8.

Define matrix C,,, to be a matrix of unknown nodes obtained from the

global coefficient matrix C and matrix C,,,, to be a matrix of unknown
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nodes and prescribed boundary values that is also obtained from the

global coefficient matrix C.

In our case, C,,, is a 6 x 6 matrix since we have 6 interior nodes (green
nodes) and C,, is a 6 x 14 matrix since we have 6 interior nodes (green

nodes) and 14 boundary nodes (blue nodes) as shown in figure 1.8.
The vector u,, of unknown nodes can be computed by using:
Uy = _va_lcvnun (1.31)

The vector u, contains the approximations to the unknown nodes

(interior nodes), (see [33] ).

1.5.2 Finite Element Method (FEM) with Neumann Boundary
condition

We derive and analyze a finite element method for the 1D wave
equation

c?Au—uy=f onQ (1.32)

with boundary conditions u = 0 on I' where () is a bounded domain in
the plane with boundary T, fis a given real-valued piecewise
continuous bounded function in (.

Finite Element Discretization

We formulate a finite element method for equation (1.32) based on
using continuous piecewise linear function in space (see [3], [4], [40]).

Define the following subspace of a Sobolev space:
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V = {v(x,t)| vis a continuous function on (2, ax and at are piecewise

continuous and bounded on {2, anda = OonT}.

f(cz AM—uy—fv.dx =0, VveV (1.33)
)

The goal of the following development is to simplify equation (1.33) in
the general case, and then to switch focus on a finite-dimensional
subspace V}, of V spanned by the basis functions ¢, (x). This will allow
us to write out a linear system of equations for the unknown

coefficients u(t). It is easy to verify by Gauss’ divergence theorem that

vau dx = —JVU.Vudx +j v.Vu do (1.34)
Q Q G10)

where do is an area element on 9. Applying this result to

equation(1.33) we have

j (2 Vu.Vv — uyv — fr)dx — f vVu.ndo =0 (1.35)
Q )

which is called the variational formulation of the wave equation. The
solutions to equation (1.35) are called weak solutions to the wave

equation (see [18]).

Now, suppose the domain () is divided into finite number of elements

(triangles) T;, Vi = 1,2, ..., m such that:
m
Q=| |T,,whereQ = QUT.
i=1

Let T;, be a partition of 2. Take any triangle T € T}, where:
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diam(T) = the longest edge of T and h = maXxrer, diam(T) .
Now, we can define the finit element space as follows:

V, = {v(x,t)| vis a continuous function on {2, and it is linear on each

triangleT € T, anda = OonTI} (see[18]).

Each triangle T;, Vi = 1,2, ..., m has three vertices denoted by v,, v,, v;.

We define the basis function ¢, as follows:

_(lifi=]
¢:(v)) = {0 ifi#]

Vi=12,..,mandj = 1,2,3.

Let v be a set of vertices where ¢, (v) # 0 and let m be the number of

interior vertices in T, , any function a € C;, has a unique

representation written as:

m

u(v) = z w¢,(v) ,VE N

i=1
where u; = u(v;).

The finite element solution is written as:

N

w=1(t,%) = ) w(O)p,() (136)

i=1
where ¢, (x) is standard continuous piecewise linear function

in space (see [18]).

Substituting the approximation (1.36) into equation (1.35), we get
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iZNlui fﬂcz%.%dx+iatzu Jﬂqﬁi(x)qu(x) dx
N
_zui fﬂcbj(x) C;ﬁi.nda = jﬂfd’j(x) dx
i=1

Vo (x) € Vy (1.37)

Letu = u; denote the vector of unknown coefficients,

A = (a;;) is mass matrix M X M in space, with coefficients

4= | 9,008,G0) d

M = (mij) is stiffness matrix M X M in space and B = (b;;) , with

coefficients
d¢i d¢j
b; —jg‘b (x)d¢i ndo
V)T dx
and

F=(f=(r9)

Which can be written in a matrix form as
c*Mu; + Ad?u—Bu; =F

Using a finite difference approximation for the time derivative gives
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Uppr — 2U +Ujg
(At)?

(c?M —B)u; + A

So
Uipq = 2U; — U1 — (AD)2A71(c2M — B)u; + (At)?2A71F,
Vi=12..N—1. (1.38)

1.6 Finite Difference Method for Two Dimensional Wave Equation
consider the following two dimensional inhomogeneous wave

equation:

azu_ 2 62u+azu +G t 1.39
otz ¢ \oxz T 9y? (% y,t) (1.39)

or we can simply write this equation in another form as

Uy = 2 (Ugy +Uuyy ) +G (1.40)

For a fixed time t, the surface z = u(x,y,t), 0<x<a,0<y<b

and u(x,y,t) = g(x,y,t) for any (x,y,t) € B, where B denotes the
boundary of a region D, G(x,y,t)is a continuous function on D and
g(x,y,t) is continuous on B. The continuity of both ¢ and g guarantees

a unique solution of equation (1.40).

Two dimensional wave equations are easily discretized by assembling
building blocks for discretization of one dimensional wave equations,
because the two dimensional versions just contain terms of the same

type that occurs in one dimension.
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Now, we will use the finite difference algorithm for solving two

dimensional wave equation, as shown in figure (1.13) (see [19],[28]).

We introduce a mesh in time and in space. The mesh in time consists of
time points t, =0<t<¢t, , often with a constant spacing

At = tk+1 _tk .

It is a very common choice to use constant mesh spacings:
Ax = Xit1 —X;, Ay=yj+1 _y]

We consider equal mesh spacings such that h = Ax = Ay .

(k + 1) - time level \

j+1

K™ —timelevel —

j—1
i—1 I i+1
Figurel. 13: discretization of two dimensional domain
The unknown u at mesh point (x;, y;, tx) is denoted by u(x;, yj, tx) or

ui,j,k.
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The difference method is obtained using the centered-difference

quotient for the second partial derivatives given by (see [27]):

Upjrer — Ui+ Uijr—1 (A2 0*u(xy,y;, &)

et = (AD)? 12 act
where & € (Ex—1, tiy1) (1.41)
C Wiggje — 2Ug g Uiy R 0*u( p yj te)
Hax = n2 120 axt
where u; € (x;_1,%;4+1) (1.42)
and
C Upjerge — 2Ugp FUioge B2 0%uxgmp ty)
Uyy = h2 12 dy*

where 7; € (yj_l,yjH) (1.43)

Substituting equations (1.41), (1.42) and (1.43) into equation (1.39)
gives

Ui jksr — LU 5+ Upjk—1

(At)?

oUWk — 2U ik T Uk

Wi jrrge — 2Ugjx + Uij-1k
+ 2 3
_ i Cz h 6421,(‘[,[1,_’)/], tk) h (34u(xi,nj, tk)

12 0x* ay*
*u(x;, v,

— (At)? ( i y] fk)] +Gijk (1.44)

foreachi=1,2,..m—-1,j=12,..,r—1and k=1.2,..,n— 1.

Neglecting the error term O (h* + ( At)?):
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0*u a* a*

U u
c? h? W(Hp)’j; ty) + c*h? ﬁ(xi»ﬂj» te) — (At)? W(xi'yjlfk)

and multiplying both sides by (At)?, we get:

Upjk+1 — 2Uj ik + Uijr—1

Uipr ke — LUk T Uim1jk
= c?(At)? s
Uijrre — 2Ujk T Uij—1k
+ c2(At)? s + (At)*Gy i

Define s? = ¢?(At)?/h?, we get :

Ujjk+1 — 2U g + Ui jr—1
I
=8 (Ujg1,jk — 2Ujjk + Uimgji T Ui ek — 2Uijk

+ Ui joap) + (AD?Gy (1.45)
then Simplifying equation (1.45), hence it can be written as:

2
2(25 - 1)ul"j’k
_ 2 _
=S (ui+1,j,k T U1k T Ujrk T ui,j—l,k) Ui jk+1

- ul-,j’k_l + (At)zGi,]’,k (14‘6)
For i=12,..m—-1,j=12,...,r—1, k=12,..,n—1.
with boundary conditions:

Lougjr=9(x0, ¥, tx), for j = 0,1,2,...,7rand k = 0,1,2,...,n.
2.Um k=9 (Xm Y, tx), forj = 0,1,2,...,rand k = 0,1,2,...,n.
3. Uior=9 (X5, Y0, t), fori = 1,2,...,m—1and k = 1,2,..,n—1.

4uir k=9 (x,yt), fori = 1,2,..,,m—1and k = 0,1,2,...,n — 1.



37

5.ui,j,n:g(xi,yj,tn), for i = 012,....,m—1and j = 0,1,2,...,7r — 1.
6.u;j0=9(x;,yj,to), for i = 1,2,...,mand j = 1,2,...,7. (1.47)

Equation (1.46) involves approximations to the unknown function

U(x, yl t) at the pOintS (xif yj; tn+1); (xir yj; tn)) (xi+1' yj; tn)t (xi—lr yj; tn);
(xir:Vj+1: tn); (xi'yj—li tn)' (X1, ¥jr tn-1)-

When we use formula (1.46) with boundary conditions (1.47), then at

all points (xl-,yj, tn) that are adjacent to a boundary mesh point, we

have an (imn— D)X -1D)xXxn—-—1) by (m—-1)Xr—-1)xn-1)
linear system with the unknowns being the approximations u;

to u(xi, Vi tk) at the interior meth points (see [28]).

The generated linear system should be solved by Jacobi, Guass-Seidel,

Successive over Relaxation (SOR), or Conjugate Gradient methods.

1.6.1 Two Dimensional Wave Equation with Dirichlet Boundary

Conditions

When the function is defined on any part of a domain D, then we call
this part Dirichlet boundary Sp, i.e. the unknown function u is

prescribed on the boundary, that is, u(x, y,t) = g(x, y, t),
(x,y,t) € B where the function g is a known function .

Bpiu=g
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To derive the formula of finite difference approximation with Dirichlet

boundary condition for two dimensional wave equation

0'u 0%u  9%u

5z = (6_+W>+G(x y,t)

we consider three points i + 1,i, and i — 1 which are located on

x —axis with equal distance h between them, then the value of the
function u(x, y, t) at the points (i — 1,j,k),(i,j,k),and (i + 1, ], k) be

Ui—1,jk »Uijk -and Uiy i, respectively (see [19],[27]and [28]).

Now, use Taylor series to express u;_q ;, and u;;4 j, in the form of

Taylor expansions about the point i as follows:

ou h? 9%u h3 93u

Upsrjge = Ui + 5 it lit 55l H 0 (1.48)
h ou h? 9%u h® 93u
Uisgjk = Uijk — 750 it 55z i — 555 i+ 0" (1.49)

By adding the two equations (1.48) and (1.49), we get:

2 0%u
Wiprjr + Uimajx = 2Uj T R ‘352 l; + 0(h*)

By rearranging the above equation, we get:

2 —
0%u Wi — 2ujp F U1k

Pl hz + 0(h?) (1.50)

Equation (1.50) is a finite difference approximation formula with the

error term O (h?).

Now, subtracting equation (1.49) from equation (1. 48), we get:
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U Uiprjk — Ui-1,jk

i — + 0(h?) (1.51)

Equation (1.51) is a finite difference approximation formula with the

error term O(h?).

Similarly, consider three points j — 1, j, and j + 1 which are located on
the y —axis with equal distance h between them. Let the value of the
function u(x, y, t)at the points (i,j — 1, k), (i,j, k),and (i,j + 1,k) be

Ui j—100 Ui jk and u; jiqx , respectively.

Use Taylor series to express u; j_; y and u; j,1 x in the form of Taylor

expansions about the point j, the finite difference approximation

. az 3
formulas with the error term 0(h?) of second order for a_yl: |; and a—?] |

are, respectively:

d%u Upjetke — 2Uijk + Wijo1k 2
557 | = o7 + 0(h?) (1.52)
and
ou Uijr1k — WUij-1k
—_— ], = d - . . 0 h2 153
5 I — +0(h?) (1.53)

Similarly, consider three points k — 1, k, and k + 1 which are located
on the t —axis with equal distance h between them. Let the value of the
function u(x, y, t)at the points (i, j, k — 1), (i,j, k),and (i,j, k + 1) be

Ui j k-1, Ui jk and u; jr4q, respectively.

Now, use Taylor series to express u; jx_q and u; ; x4, in the form of

Taylor expansions about the point n, the finite difference
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approximation formula with the error term 0(h?) of second order for
0%u

ez In 18

o = Ykt ~ 2Ujj ke F Ui j k-1
t (At)?

(1.54)

Inserting equations (1.50), (1.54) and (1.52) into equation (1.39)

yields:
Upjrrr — 2Uj g+ Upjk—1
(A2
o Wiknje — 2Uj ikt Uiq ik
u.’. k= Zu.‘ i k + u.'._ k
+ 2 };; YR L G(x,y, ) (1.55)

by rearranging equation (1.55) and let s> = c¢?(At)?/h?, , we get

2
2(25 — 1)ui,jlk
_ 2 _
=S (ui+1,j,k T Uk T Ukt ui,j—l,k) Ui jk+1

- ui’j’k_l + (At)ZGi’j’k (156)

In general, if u satisfies the wave equation, then u at any point in the

domain D satisfies the above equation .

Now, suppose we have Dirichlet boundary conditions defined on the

box-shape domainsuchthat 1< i< m, 1<j<rand1<k<n.

Letu(x,y,t) = g(x,y,t) be given on all boundaries of the domain, that

isu = g isdefined on the all boundaries.

In other words, the values of the points (x;, y;t; ), Vi = 2,3,...,m — 1,

Vj=23,..,r—1and Vk = 2,3,...,n — 1 under the function g are
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known. For the corner grid points, we use the following equations (see
[28]) :

u(1,1,1) = %[u(Z,l,l) +u(1,2,1) + u(1,1,2)]

u(1,1,n) =-u(2,1,n) +u(1,2,n) + u(1,1,n — 1)]

_ W] -

u(l,r,1)==[u(l,r—-11)+u2,r1)+u(l,r?2)]

w

u(m,1,1) ==[uim—-1,1,1) + u(m,1,2) + u(m, 2,1)]

u(m,1,n) = 3 [ufm,1,n—1)+u(m—1,1,n) + u(m, 2,n)]

1
u(l,r,n) = 3 [u(l,r, n—1)+u2,r,n) +u(l,r—1,n)]

W] =

umr,n) ==[u(mr,n—1) +u(mr—1,n)+u(m-1,r,n)].

W

uim,r,1) ==[uim,r—1,1) +u(m—-1,r,1) + u(m,r, 2)] (1.42).

1.6.2 Two Dimensional Wave Equation with Neumann Boundary
Conditions

When the normal derivative of the unknown function u is prescribed
on the boundary of a domain D, then we call this part Neumann
boundary By , i.e. the value of the normal derivative g—z =g(x,y,t)is
given on the boundary of the domain, where g(x, y, t) is a given

function.

ou
BN:% =g(x,y,t)
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We derive the formula of finite difference approximation with

Neumann boundary condition for two dimensional wave equation

0%u , 0%u N 0%u LG 0
a2 9x2 ' ay? XY

Suppose that Dirichlet condition is specified on up, right and down
walls and Neumann condition is defined on the remaining wall which is

the left wall as follows:
du Ou 158
on  ox (1.58)
Now, we want to approximate equation (1.24) using the second order
approximation using equation (1.16). This procedure puts the grid

points (1, ], k) outside the domain towards the left that is located on

imaginary boundary that their fake coordinates will be (0, j, k).

(see [21],[27]). So, equation (1.58) is approximated using equation
(1.53) atthelinei = 1.

ou | Witk —UW-1,jk 0
dy =1 2h

From this it follows that u, ;, = ug . The discretized wave equation

at the boundary point (1, j, n) reads

2(1—25%)uy ik

o2 —
= 52(Up i + Ugjge F Unjrrpe T Usjo1k) — Un s

- ul’j’k_l + (At)zGl’j’k (1.59)
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We can then just insert u, ; forug;, into equation (1.59) and then

solve for the boundary value u, ;; .So we get,
2(1 = 25%)uy jpe = 522Uz jic + Uy jrrge + Usjo1k) — U jien
—Uy j k-1 + (AD?Gy (1.60)
For any positive integers m, r and n, we use equation (1.44) for

2< j <r—1land2 < k <n-1.AsDirichlet conditions are
specified on other boundaries, the values are known. To find the

corner boundary values, we use equation (1.57) (see [27] ).



44
Chapter Two
Iterative Methods for Solving Linear Systems
In chapter one, a linear system was generated using the finite
difference method (FDM) and the finite element method (FEM) to
describe the partial differential equations that can be solved by
iterative techniques. In this chapter, we will solve such linear systems

by iterative methods and discuss their convergence properties (see
[31]).
For solving an n X n linear system

AX = b

We start with an initial approximation x() to the solution x and then

k oo
generate a sequence {x( )}k:O that converges to x.

Most iterative techniques involve a process of converting the system
AXx = b into an equivalent system:

x =Tx+c
where T is an n X n matrix and c is a column vector.

After selecting an initial approximation x(%) , we generate a sequence

of vectors {X(k)}:;o defined as:

x®) = 1x®&D 4 ¢ k>1

The used iterative methods here are :
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1. Jacobi Method.
2. Gauss-Seidel Method.
3. Successive over Relaxation (SOR) Method.

4. Conjugate Gradient Method.
consider the n X n (square) linear system:
Ay1X1 + a1X9 + A43X3 + -+ aypx, = by
Ay1X1 + AppXy + Ay3X3 + -+ AypX, = by (2.1)

Ap1X1 + ApaXy + Ap3X3 + -+ X, = by,

where
a11 a12 aln xl bl
Az1 Qz2 - A2n X2 b
A=|" . T [x=|""|and b=]|"2
An1  QApy . Qpp Xn b,
We can simply write this system in matrix form as:
a11 alz aln x1 bl
Ay; QAyy e Aon %2 _ | by
an1 ano Annl | Xn bn

Then, we can convert system (2.1) into the form:
x=Tx+c¢

Then selecting an initial approximation x(®  we generate a sequence

of vectors {X(k)};::o defined as (see [5]):

x®) = 7xk-D ¢ k>1



46

2.1 Jacobi Method

The Jacobi method is an algorithm in linear algebra for determining the
solutions of a system of linear equations with largest absolute values in
each row and column dominated by the diagonal element. Each
diagonal element is solved and an approximate value plugged in. This

process is then iterated until it converges.

The Jacobi method is the simplest iterative method for solving a

(square) linear system Ax = b. (see [5] ).
The General Formula of Jacobi Method

In general, the Jacobi iterative method is given by the sequence :
1 n
—[z . —Clinj(k_l) + bi ,j * i, a;i * 0,
]=

a;;

fori=1.2,..,n,k €N" (2.2)

We can derive formula (2.2) by splitting matrix A into its diagonal and

off-diagonal parts (see [31],[5]).

Let D be the diagonal matrix where entries are those of matrix 4, let - L
be the strictly lower triangular part of matrix A and let-U be the
strictly upper triangular part of matrix A. With this notation matrix A4 is

split into:

A=D-L-U (2.3)
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where
a;; O 0 0 0 0
D — 0 a22 0 ,L — _6:1,21 0 0
0 0 Aun —Qp1 Ayna 0
and
0 —ay, —Ain
U= 0 0 Ayn
0 0 0

By substituting formula (2.2) into Ax = b, we get:
(D—-L-U)x=0»
The above equation can be written as:
Dx = (L+U)x+ b
If D~ lexists, then:
x = DXL + U)x+ D~ 'b
This result is the matrix form of the Jacobi scheme:
x® = D=L + U)x*D + D7 1p

Using T;

7=D"'(L + U) and ¢;=D"'h , we obtain the Jacobi

technique of the form:

x® = T, x*D 4 ¢, k>1
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So,

1 n
xi(k) = _[Z —ainj(k_l) + bi JJF L ag #F 0,i=12,..n.
Qi j=1

Conclusion: to find x®®) approximation we must know x*~—1
approximation for any k = 1 where k € N. Continuing this procedure,

we obtain a sequence of approximations (see [5] and [29]).

2.2 Gauss-Seidel Method
This iterative method is used for solving a square linear system

Ax = b, itis similar to the Jacobi method.

But with the Jacobi method, the values of x; obtained in the k%"
iteration remain unchanged until the entire (k + 1)*"iteration has
been calculated. With the Gauss-Seidel method, we use the new values
x;%*D as soon as they are known. For example, once we have
computed x; **V from the first equation, its value is then used in the
second equation to obtain the new x,**V and so on, this is the

difference between the Jacobi and Gauss-Seidel methods (see [5]).
The General Formula of Gauss-Seidel Method

In general, the Gauss-Seidel iterative method is given by the sequence

1 i—-1 n
x ) = — [—Z aijx]'(k) — z aijxj(k_l) + b;|,a; #0,
Qi j=1 j=i+1

fori=1.2,..,n,k €N (2.4)


https://en.wikipedia.org/wiki/Jacobi_method
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We can derive formula (2.4) by substituting formula (2.3) into

Ax = b,sowe get (see [5],[31] ):
(D—-L-U)x=D»
The above equation can be written as:
(D-L)x = Ux+0b
If (D — L) !exists, then:
x=D-L)*Ux+ (D-L)"1h
This result is the matrix form of the Gauss-Seidel scheme:
x® = (D — L) tux* "V + (D-L)b

Using T, =(D—L)"*Uandc, = (D—L)"'h, we obtain the Gauss-

Seidel technique of the form:

k) _ k-1
x() = Tgx( )+Cg, k>1.

2.3 Successive over Relaxation Method (SOR Method)

The main constraint in using this method is that the coefficient matrix
of the linear system Ax = b must be symmetric and positive definite.
For any positive real number called the relaxation parameter (factor),
w € (0,2). When 0 < w < 1, the method is called Successive under
Relaxation and can be used to achieve convergence for systems that

are not convergent by the Gauss-Seidel method. However, if
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1 < w < 2, then the method is called Successive over Relaxation

method. If w = 1, then we get Gauss-Seidel method (see [5],[14] ).
The General Formula of SOR Method

The derivation of the general formula of SOR method depends on

Gauss-Seidel formula. Consider Gauss-Seidel formula, that is (2.4):

1 i—1 n
Xi(k) = _[_Z (linj(k) — z ainj(k_l) + bi , Ay F 0
Qi j=1 j=i+1

Defining the difference:

Ax; = x; 0 — x; (k=1
This can be written as:

x; ) = k=D + Ay,

Now, multiplying Ax; by the relaxation parameter w in the last

expression, we get:
x; ) = x; %D + wAx;
= x, (=D 4 w(xi(k) — xi("‘l))
So, x® =1 - w)x;®D + wx;®

Substituting the Gauss-Seidel formula (2.4) into the last expression, we

get:

— w j— —
% = (1 - w)x,* "V + an [- Xzt ay®@ = Ejciiayg Y + by,

a;i * O,l = 1,2,3, W, n. (25)
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Formula (2.5) is called the SOR iterative method (see [5] ).
We can express formula (2.5) in matrix form as follows (see [5], [31] ):
Since a;; # 0, then we can multiply formula (2.5) by a;; to get:

;%% = a;(1 — w)x, &

i—-1 n
+ w [— z ainj(k) — 2 aijxj(k_l) + bi
j:l ]:l+1

Simplifying the last formula, we get

auxl(k) - (1 - w)auxl(k 2

n
— (l)z Clinj(k) — W 2 Cll'jx]'(k_l) + wb

By rearranging the above equation, we get

i-1
a;x; % + w z ) a;x; "
j=

=(1-w)ayx;*V - wz a;;x; % +wb
j=i+1

Then,
(D — wL)x® = ((1 — w)D + wU)x*V+wb

Now, if (D — wL) ™! exists, then we have:
x® =D -wl)™? (1-w)D+wU)x*V+w(D-wl)hb
Then, we get the matrix form of SOR method as:
x® = 7 xkD ¢, k>1,

Where: T, = (D — wL)™ ((1 = w)D + wU) and ¢, = (D — wL)™* b.
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2.4 Conjugate Gradient Method
The conjugate gradient method is a numerical iterative method used to
approximate the exact solution of particular linear system AXx = b

where the coefficient matrix A must be symmetric and positive definite

(see [25]).

General Formulas Needed to Compute The Conjugate Gradient

Method Algorithm
Suppose we want to solve the following n X n linear system:
Ax=D>b

Where A is symmetric and positive definite matrix, x and b are column

vectors (n X 1 — matrices).

The solution of Ax = b uniquely minimizes the following quadratic

form:
1
fx) = 5 xTAx — bTx
Suppose that p is a basis of R"where:

p={pkl|pi-px =0 with respect to matrix A,Vi#k, where

1 < i,k <n}isasetof n mutually conjugate (orthogonal) directions.

We will write the conjugate gradient iterative method algorithm as

follows (see [25]):
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Step 1: Start with initial guess x,, that may be considered 0 if otherwise

is not given.
Step 2: Calculate the residual vector 1y as follows:
1'0 = b - AXO

Step 3: Let the initial direction vector py, = r( , that is, the negative of

the gradient of the quadratic function:

fx) = § xTAx — bTx at x =x,.

Note that p; will change in each iteration.

Step 4: Compute the scalars a;'s using the formula:

ri T

a, = ,Vk=01,2,..,n— 1.

- PiA P
Step 5: Compute the first iteration x4 using the formula:
X1 =X + QoPo
Step 6: Compute the residual vectors 1y, 's using the formula:
Tie1 =Tk — QApy,Vk =0,1,2,...,n — 1.

Step 7: Compute the scalars f; 's using the formula:

T
_ Trt1 Tk

Br = ,Vk=0,12,..,n—1

Ty
Step 8: Compute the direction vectors pj 's using the formula:

Prk+1 — Tk+1 + ﬁk pk,Vk = 0,1,2, e, — 1.
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Step 9: Compute the iterations x; using the formula ( see

[25],[31],[39]):

Xp+1 = Xk +akpk,‘v’k =12,..,n—1.

2.5 Convergence of Iterative Methods

In this section, the general aim is to study the convergence for each
previous iterative method and then make a comparison between them.
After that, we will conclude the fastest method. In any computational
problem, we get high accuracy if the error becomes very small. In our
iterative methods problem, the actual error e is the difference between
the exact solution x and the approximate solution x%*) . But we cannot
compute its value since we do not know the exact solution. Instead of
that, we will deal with the estimate error which is equal the difference
between the approximate solution x(®) and the next approximate

solution x**D( see [5]).

Therefore, we can compute more iterations with less errors and hence

we get high level of accuracy.
Suppose X is the exact solution of the following linear system:
Ax = b (2.6)
This can be written in equivalent form as:
x® = Txk-D 4 ¢ k>1 (2.7)

where T is an n X n matrix and c is a column vector.
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The idea of the iterative methods is to generate a sequence of vectors

{x(")}zozo that converges to the exact solution x of the linear system

(2.6). (Note that each vector in the sequence is an approximation to the

exact solution) (see [14] ).

2.5.1 Convergence of Jacobi and Gauss-Seidel Iterative Methods
The following theorems hold for Jacobi and Gauss-Seidel iterative

methods :

Theorem 2.1 (see [39])

For any initial approximation, a sequence of vectors {X(k)};—o

converges to the exact solution x if and only if the spectral radius of the

square matrix T, p(T) < 1.(T is the matrix as in (2.7) form).
Theorem 2.2 (see [39])

If the coefficient matrix A for the linear system (2.6) is strictly

diagonally dominant, then the sequence of vectors {x(k)}lio generated

by the Jacobi and Gauss-Seidel Iterative techniques converges to the

unique solution of that system .

Theorem 2.3 (see [5])

If||T|| <1 (any norm of T) then the sequence of vectors {X(k)}:;O

converges to a vector X € R™ for any initial approximation vector

x(® e R,
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2.5.2 Convergence of SOR iterative Method

Theorem 2.4 (see [39])
Theorem 2.1 holds for SOR method.
Theorem 2.5 “ Ostrowski-Reich” (see [5])

If the coefficient matrix A of the linear system (2.6) is a positive
definite matrix and the relaxation parameter (factor) w € (0,2), then
the SOR method converges for any choice of initial approximation

vector x(® .

2.5.3 Convergence of Conjugate Gradient Method
Theorem 2.6 (see [25])

The sequence of vectors {x(")}:):O generated by the Conjugate

Gradient method converges to the solution x of the square linear
system AXx = b ofnvariables in at mostn steps for any choice of

initial approximation vector x(®.

Proof: (see [25]).

suppose X is the exact solution and x(® is the initial solution.

The set of direction vectors are orthogonal so they are linearly
independent. Therefore, they span the space R™ . Hence, we can write:

x—x® =aypo + a;p1 + aypy + - + Ay_1Pn_y, Where a;'s € R.

Multiplying both sides of the last expression by pJTA, we obtain

pjA(x —x©) = plA(apo + a1p1 + aP2 + - + Ay_1Pn-1)
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Simplify the above expression, we get

pj Ax — pj Ax©®
= aop; Apo + a1p] Ap1 + a,p] Apy + - + @1 D] APn-1

buth = Ax, ry = b — AX,, and pjAp; = 0,Vi # j. So, it becomes:
p[To = a;pj Ap;
Thus,

T
_ DbjTo

a. =
pj Ap;

]

Now, we want to show that a; = q; where

rjT;
@ =——— Vj=012,.,n—1
pj4p;

X; = Xp + aopo + a1P1 + azpy + - + aj-1Pj-1

Multiply both sides of the last equation by p]TA

p}'ij = p}'A(xo + appo + a1P1 + azp2 + -+ a;_1Pj-1)

= ,TAXO + p]TA(aopo +a1p1 + azpz + 0+ aj1Pj-1)
= p]TAXO +0

The above can be written as:
p]-Tij — p]-TAXO =0
Or
PA(X; —X0) =0
Therefore,

pjro =pj A(x —x®)

= pfA(x — x; + x; — x©)
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pTo = pj A(x—x;) + pfA(x; — x(©))

=p/(Ax— Ax;) + 0
= pj (b — Ax;)
=p;T;

Now, put p]TrO = p]Tr]- in equation (*), then we get:

T
p;7;
aj =

pjAp;

This completes the proof.
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Chapter Three

Numerical Results
In this chapter, we will deal with homogeneous and inhomogeneous
one and two dimensional wave equations with Dirichlet and then with
Neumann boundary conditions by using finite difference method. Next,
we will deal with homogeneous and inhomogeneous one dimensional
wave equation with Dirichlet and then with Neumann boundary
conditions but by using finite element method. At the end of this
chapter, we will make a comparison between the iterative methods
that are used for solving the linear system by finite difference and

finite element methods.

Example 3.1

Consider the following homogeneous one dimensional wave equation
4 uxx - utt == 0
with square domainD = {(x,t)la = 0 < x < b = 1,

c = 0 <t < d = 1} subject to Dirichlet boundary conditions given

on the boundaries as illustrated in figure 3.1, such that:
u(0,t) = 0,u(1,t) = t,u(x,0) = 0,and u(x,1) = x.
we want to approximate the solution u by using:

1- Finite Difference Method (FDM).
2- Finite Element Method (FEM).
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1-Applying Finite Difference Algorithm:

Step 1: Choose positive integersn = m = 3.

b—a 1-0 1
3

Step 2: Define h = =10 _1 ndk= 4 =10
n 3 m 3

1
3

This step partitions the interval [0,1] on x-axis into n = 3 equal parts

of width h = %and partitions the interval [0,1] on y-axis intom = 3

equal parts of width k = § as step 3 illustrates.
Step 3: Define the mesh point (x;, t;) as
x;=a+tihi =012n=3
ti=c+jk,j =012,m=3
for i=0:x0=0+(0)§ =0=a

fori=1:x1=0+(1)§ =§

fori=2:x2=0+(2)§ =§

fori=3:x3=o+(3)§=1=b
forj=0:t0=0+(0)§=0=c
1

for j=1: t1=0+(1)§=§

for j =2: t2=0+(2)§ =§

forj=3:t3=0+(3)§=1=d

Step 2 and step 3 are illustrated in figure 3.1.
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3
t u(x,1) = x
ty=1 ), T @ @
t, =§ >—o—0 0
u(0,6)=0 t;=-0—@—@—0 u(lt) = ¢
=0 6—0—0—0 » X
IU, == D Xl =$ Xz =§ Ig == 1

u(x,0) =0

Figure3. 1: discretization of the domain for example 1

The blue points are known boundary points and the green points are
corner points that are easy to be calculated by equation (1.21).
However, the black (interior) points are not known which are to be

approximate.

Now, we use the difference equation (1.20) to approximate the interior

(black points) mesh points as follows:

1

Y T 2= c2)

2 2
[ui,j+1 t+Ujj1 — C U, — C ui—l,j]

Fori=1,andj =1:

1
Uy = m [u1,1+1 + U1 —4Up411 — 4u1—1,1]

1
U = X [u1,2 T Uy —4Upq — 4u0,1] (3.1)
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But both u, ; and u, ¢ are known boundary points where u, ; and
U, ; are unknown. So the value of ug; and u; g are uy; = 0 (on the left

boundary) and u,; o = 0 (on the down boundary), so equation (3.1)

becomes
6bu; = —Up, + 44Uy,
6u gy + U, —4u,; =0 (3.2)
We can label these mesh points as follows:
Uy = Ujj
where r =i+ (m—-1—-j)(n—1)
Vi=123 and Vj = 1,2,3.

U1 = U3z, U = UL U T Uy, Upp = Uy

u(x,0) =0
Figure3. 2: discretization the domain with dirichlet boundary condition for example 1
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After labeling the interior mesh points as shown in figure 3.2, then

equation (3.2) becomes:
uq + 6u3_4‘u4 =0 (33)

In similar manner, we get the following difference equations

For i =2and j = 1: Uy — 4uz+6uy =§ (3.4)
For i=1and j = 2: 6u; —4u, + u3=—% (3.5)
Fori=2and j=2: —4u;+6u,+ u,=2 (3.6)

rearrange the equations (3.3),(3.4),(3.5) and (3.6) then we get
6u1 - 4u2 + u3 = _%
_4‘u1 + 6u2 + u4 = 2

u1 + 6U3_4U4 == 0

uz - 4‘u3+6U4 ==

W s

This linear system could be written in matrix form as

Au = b, where u is a vector of unknowns

-1

6 -4 1 0 3
-4 6 0 1 12
A= 1 0 6 —4 b= 0
0 1 -4 6 ;

If we apply Gaussian elimination to this linear system, then we get the

following exact solution:
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0.222222222222222

0.444444444444444
0.111111111111111
0.222222222222222

We can solve this linear system by any iterative method like Jacobi
method, Gauss-Seidel method, Successive over Relaxation (SOR)

method and Conjugate Gradient method.
Jacobi method
It is given by the sequence (2.2):

u(")=—[z —a;jw; %D + b;|,j # i,a; # 0,
Ajj j=1

fori=123,n=4,keN"
where n is the number of the unknown variables.
u® = —Gul 4 40D
1l = gD _ gy D
ugk) = —6u§k_1) + 4ugk_1) —%
ugk) = 4u(k 2 6ugk_1) + 2

Consider the initial solution is

u(O) — ( (0) ugo),ugo),ugo)) (0’0’0’0)T

For k = 1 (the first iteration):

u = —6ul ™ + 4wl Y = —6ul” + 4ul” = 0



65
ugl) = 4u§1_1) - 6u§1_1) = 4u§0) - 6u§0) =0
ugl) = —6u§1_1) + 4u§1_1) —% = —6u§0) + 4u§0) —§ = —

uf}l) = 4u§1_1) - 6u§1_1) +2= 4u§0) - 6u§0) +2=2

So the first approximation is

T
1 1 1 1 -1
u® = (u§ ),ug ),ug ),uf} )) = (0,0, 2)T

In similar manner, we can find u® approximation if we know
u*~Dapproximation for any k > 1 where k € N*. Continuing this

procedure, we obtain a sequence of approximations.

The following approximate solution u obtained by Matlab program for

Jacobi iterative method with tolerance 1 x 1077 :

0.222222222222222
0.444444367292111
0.111111188263445
0.2222222222222722

Number of iterations | Cpu-time | The error
(seconds)
80 0.005846 | 9.258280012081066e — 008

To see Matlab code for the Jacobi iterative method refer to appendix A.
Gauss-Seidel method

It is given by the sequence (2.4):

1 i—-1 n
w0 = — [—z a;ju;® — Z a;jw; Y + b;|,a; # 0,
Qi j=1 j=i+1

fori=12,..,.n=4,keN"

where n is the number of the unknown variables.
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u® = —ulD 4 4D
ugk) = 4u§k_1) - 6u§k_1)
ugk) = —6u§k) =+ 4u§k) —§

uf,:k) = 4u§k) — 6u§k) + 2

Consider the initial solution is

T
u(o) _ (u§0),u20),u§0)’u5}0)) — (O,O,O,O)T

For k = 1 (the first iteration):
ugl) = —6u§1_1) + 4uf}1_1) =0

ugl) = 4u§1_1) - 6u§1_1) =0 ugl) =

—6uP +4uY 2= —6x0+4x0—===
1 2 3 3 3

uM =4u” —6uM +2=4x0-6x0+2=2

So the first approximation is

T
1 1 1 1 -1
u® = (ug ),ug ),ug ),ug )) = (0,0,— 2)7

The following approximate solution u obtained by Matlab program for

Gauss-Seidel iterative method with tolerance 1 X 1077 :

0.222222057126713
_ 10.444444306864854
~10.111111248690702
0.222222336871881

Number of cpu — time | The error
iterations (seconds)
34 0.002021 7.264202403489684e — 008
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To see Matlab code for the Gauss-Seidel iterative method refer to

appendix B.
SOR Method
The SOR method is given by the sequence (2.5):

w i—1 n

+ — [— z aijuj(k) - Z aijuj(k_l) + bi ,
Qi j=1 j=i+1
a;; * O,l = 1,2,3,71 = 4,

Choose the relaxation factor w = 1.3:

first, write the Gauss-Seidel equations

u® = —Gul 4 40D
2 = 4D _ g, D)
(k) 6u§k) + 4u(k)
ugk) = 4u§k) - 6ugk) + 2
Now, the SOR equations with w = 1.3 are:
ul = (1 - 1.3)uV + (@3)[—6ul + 4u ]

ul® = (1 - 1.3)uf + (1.3)[4uY — 6ul )
uf? = (1 - 1.3)uf ™ + (1.3)[—6ul” + 4ul” - 2]

ul? = (1 - 13)ufV + (13)[4u® — 6ul” + 2]
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Consider the initial solution is

T
u©® = (u§°),u§°),u§°),u§°)) = (0,0,0,0)"

For k = 1 (the first iteration):

u = (1 - 1.3)ul" ™ + @3y [—6ulY + 4l Y]

= (-0.3)ul® + (1.3) [—6u§°) +4u®] = 0

ut? = (1-13)uf ™ + (1L3)[4u Y — 6ul ]

= (—0.3)ud” + (13) [4u” — 6u”| = 0

u$? = (1 - 1.3)uf ™ + (13)[—6u? + 4ul - 2]

= (—0.3)ul” + (1.3) [0 +0— %] — —0.43333
uM = (1 - 1.3l + 13)[4ul — 6ulV + 2]

= (=03)ul® + (1.3)[4x0—6x 0+ 2] = 2.6

So the first approximation is

u(1)=( o @ @ (1

T
ul,ufD,ufP,uf”) = (0,0,-043333,2.6)7

The following approximate solution u obtained by Matlab program for
SOR iterative method with tolerancel x 1077 :

0.222222201720116
0.444444438524804

0.111111122578101
0.222222230932695

Number of iterations | cpu — time | The error
(seconds)
15 0.001800 4.326104671714681e — 008

To see Matlab code for the SOR iterative method refer to appendix C.
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Conjugate Gradient method
This algorithm can be processed as follows:
Step 1: Start with initial guess u, , say
u =0 0 0 0)F
Step 2: Calculate the residual vector ry as follows

L)) =b_Au0

~1/3 6 —4 1 017[0
|1 21 -4 6 0o 1]|o
—| o 1 0 6 -—4||o

4/3 o 1 -4 6llo

— 1 ANT
So 19 =( 3,2,0,3)
Step 3: Let the initial direction vector po =1 . So
— 1 20 4 T
pO _( 3) )] ;3)

Step 4: Compute the scalars a;'s by the formula

rkTrk
Ay = —% ,Vk=01,2,..,n—1
Pr A Pi
For k = 0O:
rirg
An =
° PgApo
-1
A
T - 2
=|—20 =|| 2 |=5.88889
ToTo [3 3][0J
4
3



-1
6 -4 1 01|35
-1 411-4 6 0 1|2
T — | - =
p“Ap"_[3203] 1 0 6 -4|lo]T*
_ 4
0 1 -4 6l[]
So
_ 5.88889 0128019
0!0 = 46 = V.

Step 5: Compute the first iteration u; by the formula
U = Up + aPo

1 4
u;=(0 0 0 0)T+0.128019(—§,2,O,§)T

= (—0.042673,0.256038,0,0.170692)

The approximate solution u with tolerance 1 x 1077 given by Matlab

code for conjugate gradient iterative method:

0.222222222222222
_10.444444444444444
~{oa11111111111111

0.2222222222222722

Number of cpu —time | The error
iterations (seconds)
4 0.000267 1.387778780781446e — 016

To see Matlab code for the conjugate gradient iterative method refer to

appendix D.
Comparison between the iterative methods for example 3.1:

Table 3.1 shows the accuracy for the different iterative methods. That’s

to say, which of each of the following methods reduce the error
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(nearest to the exact solution). Each of them obtains the accurate
solution in different number of iterations. However, more iterations
give less errors and leads to accurate solutions and this table obtains
the cpu time and the error for each method to know the fastest and

best method.
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Table 3. 1: Comparison between the iterative methods for example 1

Tolerance =1e —

7

Method| Jacobi solution Gauss-Seidel solution | SOR solution Conjugate gradiante
u's method
Uy 0.222222222222222 | 0.222222057126713 | 0.222222201720116 0.222222222222222
Uy 0.444444367292111 | 0.444444306864854 | 0.444444438524804 | 0.444444444444444
Usg 0.111111188263445 |0.111111248690702 | 0.111111122578101 0.111111111111111
Uy 0.222222222222222 |0.222222336871881 | 0.222222230932695 0.222222222222222
Number of 80 34 15 4
iterations
Cpu-time 0.005846 0.002021 0.001800 0.0002667
(seconds)
Error 9.258280012081 7.26420240348 4326104671714 1.387778780781
066e — 008 9684e — 008 681e — 008 446e — 016
The exact solution is:
0.222222222222222
_ [0.444444444444444
0.111111111111111
0.222222222222222




73
2- We will apply the finite element method for example 1 to

approximate the solution (as shown in figure 3.3).

t
Y
u=t
'l:\.\\ 15 {’.:H\ 13
(J 1 16 18@
13 15 17
G"“n P Do r"".D
oy g . 10—" 12 %
Y=o 7 3 11 L
— . S » —
@0 ®
u=10

Figure 3. 3: discretization the domain by finite element method for example 2

The region is divided into 18 equal triangular elements which are
identified by encircled numbers 1 through 18 as indicated in figure 3.3.

In this discretization there are 16 global nodes.

Now, we will write the coordinates for each node:

nodel:(0,0),nodeZ:G ,0),node3:(§ ,0),node4:(1,0)
1 2 1 11 1
node 5: ( 1,5), node 6: (5 ,5), node 7 : (5 ,5), node 8: (0,;)
node 9: (0,%), node 10: (§ ,g), node 11: (g ,g), node 12:( 1 ,g)
node 13: (1,1),node 14: (5,1),node 15: (5, 1), node 16: (0, 1)
For each element e, we will label the local node numbers 1, 2, and 3 of

element e in a counterclockwise sense.
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Table 3.2 shows that for each element we write its global nodes and

their local node numbers and coordinates.

Table 3. 2: the global nodes, local node numbers and the coordinates
for each element

Element # global |localnode | The coordinates of each
nodes | numbers global node
Element 1 1 1 (x1,t1) = (0,0)
2 2 (x2rt2) = (5,0)
8 3 (x3,t3) = (0%)
Element2 |2 1 (1 t) = (5,0)
8 2 (x2,t2) = (%é)
7 3 (x3,t3) = (0,2)
Element3 |2 1 (xp, ) = (5,0)
3 2 (x2,t2) = (2'0)
7 3 (s.t3) = (5.7)
Element 17 |11 1 (e, t1) = (5,2)
12 2 (2t) = (1,%)
14 |3 (s, 1) = (5.1)
Element 18 |12 1 (x,,t;) = (1§)
13 2 (x2,t2) = (1,1)
14 3 (3 t3) = (5,1)

Now, for each element ¢;, the following must be computed:

For element 1:

1 1
P1=t2‘t3=_§ Q1=x3—x2=—§
1
P2:t3‘t1=§ Q= x1-x3=0
1
P; =t -t,=0 Q3=x2—x1=§

In similar manner, we compute P;s and Q;'s for each remaining

elements where i = 1,2,3.
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We use equation (1.30) to write the entries of the 3 x 3 element

coefficient matrix, let us take element 1 as an example:

1 - .
Cij(l) ~ A [Pin + Qin], fori,j=1,2,3, where

aclipo_pojo Ll 01]_1
=71l =Rl =21337 03] = 13
1 I1-1 -1 1 -1
€Y _4.1_8[P1P1+Q101] — ol ??] =1
1 I9r-11 -1 1
G, = r%[P1P2+Q1Q2] E_?§+T'O -2
1 9r_
G = 4_[P1P3+Q1Q3] > ?1-0"'__ =_%
1_8 -
1 911 = _
Cn® = PP+ Q0] =5 [L 2+ 0. =]
E -
1 Iy -1, 1 -1 1
€,V = T%[P3P1+Q3Q1]=E_O s t331= 2
1 911 1 1
C,, " = rﬁ [P,P, + Q,Q;] = 2133 T 0'0] 2
1 9
Cos = — [PP; + Q,05] =5 —0+0-1] =0
4.@ 2' 3
1 9
C2™ =[PP+ QsQz] = 5[0.2+ 10| =0
4.E 2'
1 9 11 1
C3x M = 4_E[P3P3+Q303] EOO+§§] 2

Thus, the 3 x 3 element coefficient matrix for element 1 is:

-1 -1

., © ¢,® ¢,® [ 7]
cD = 621(1) sz(l) 623(1) =|7 |
C D €™ G5 [; J

(@») Nlr—\N|
N O
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In a similar manner, we find the 3 x 3 element coefficient matrix for

element 2,3,4,...,18.

; 7 O 1 5 7 ; 3 0
CO=12 1 Z[c®=|F 1 0f,cW®W=[F 1 F
0 5 3 > 0 3 0 3 3
- -1 -1 1 -1 1 -1 -1
L - & > 7 0 11 -
& |t 1 6 — |1 e |2 1
¢ 2 2 0f.¢ 2 13 ¢ 2 2 O}
-1 1 -1 1 -1 1
5 0 3] 0 - 3l = 0 ;]
-1 -1 - - -1 -1 1 -1
2 7 VU 1 5 5 [5 - 0]
c®=|=" 1 =7 2 olco="2 1
- 1 -1 1 l -1 1J
o 2 1 < o0 1 o 2 !
- -1 -1 -1 -1 . - -1 -1
I 5 : 7 0 L+ <
ay |t 1 az) — |1 a2t 1
¢ B ) 2 0f.¢ |2 1 2 ¢ |2 2 0
-1 1 -1 1 -1 1
- 0 3 0 - 3 - 0 3
-1 -1 - - -1 —1q -1 - -
Loty 1 2t 1oty
2 2 2 2
cav =t | et I oglcae =t ; 1
2 2 | 2 2 ’ 2 2
-1 1 -1 1 -1 1
10 & 3| > 0 3 10 & 3
1 -t -1 11
2 2 2
can—|z2 1 ol cam|z2 | =
2 2 ) 2 2
-1 1 -1 1
> 0 3 0 5 3

The global coefficient matrix C is then assembled from the element
coefficient matrices. Since there are 16 nodes, the global coefficient
matrix will be a 16 X 16 matrix. The one diagonal entries can be
computed as follows:

Take for example :
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Ci1 = C11(1) =1
Cr2 = Cp™ + P +¢,¥ =2
C33 = C22(3) + C11(4) + C11(5) =2

Cy7 = sz(z) + C33(3) + C33(4) + C22(7) + C11(8) + C11(9) =4

Ci616 = C33(13) + C33(14) =1

For the off-diagonal entries ,for example C; ;,, the global link 7-10
corresponds to local link 1-2 of element 8 and local link 1-3 of

element 9 as shown in figure 3.3 and hence
C710 = C12(8) + C13(9) =-1

We can compute the value of other off-diagonal entries in the same

manner.
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|
-

1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
‘71 2 ‘71 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 ‘71 2 ‘71 0 -1 0 0 0O 0O 0 0 0 0 0 0
0 0 ‘71 1 ‘71 0O 0 0O O O O 0 0 0 0 0
0 0 0 ‘?1 2 1.0 0 O 0O O O 0O 0 0 0
o 0 -1 0 -1 4 -1 0 0 0 -1 0 0 0 0 O
0o -1 0 0 0 -1 4 -1 0 -1 0 0 0 0 0 0
0o 0 0 0 0 0 -1 2 ‘71 0O 0 0 0 0 0 0
0O 0 0 0 0 0 o0 ‘71 2 -1 0 0 0 0 0 0
o 0 0 0 0 0 -1 0 -1 4 -1 0 0 0 -1 0
o 0 0 0 0 -1 0 0 0 -1 4 -1 0 -1 0 0
o 0 0 0 0 0O 0O 0 0 0 -1 2 ‘71 0 0 0
0o 0 0 0 0O O O 0 0 -1 0 ‘71 1 ‘71 0 0
0o 0 0 0 0O O O 0O 0 0 -1 0 ‘71 2 ‘71 0
o 0 0 0 O O O 0O O -1 0 0 0 ‘71 2 ‘?1
o 0 0 0 0 0O 0O O 0O 0O 0 0 0 0 X 1

The global coefficient matrix C . Green numbers are the entries of matrix C,,,
while the blue numbers are the entries of matrix C,,,, .

Defining the vector u, to be vector of unknowns (interior nodes) and
vector u,, to be vector of prescribed boundary values (nodes that are

located on the boundaries) as shown in table 3.3.
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Table 3. 3: represents vector of prescribed boundary values .

Global Boundary conditions The value of global
node node
1 u = 0 on left and down The average of its
boundaries boundary values
9% _ 9
— =
2 u = 0 on down boundary 0
3 u = 0 on down boundary 0
4 u = 0 on down boundary and | The average of its
u(1,t) = tonrightboundary | boundary values
0+0
7 =
5 u(1,t) = tonrightboundary u(l,%) = %
8 u = 0 on left boundary 0
9 u = 0 on left boundary 0
12 u(1,t) = tonrightboundary u(l,é) = %
13 u(1,t) = tonrightboundary | The average of its
and u(x,1) = tonup boundary values
boundary 1 _q
2
14 u(x,1) = x on up boundary u(é 1) = g
15 u(x,1) = x onup boundary u(l, 1) = 1
3 3
16 u(x,1) = xonupboundary | The average of its
and u = 0 on left boundary boundary values
%% _ 9
2

So,

—<OOOO1 OO2 12
un_ ;;))3;;3; ;3

T

,0)

Now, defining the matrix C,, to be the matrix of unknown nodes

(interior nodes) and the matrix C,, to be the matrix of unknown nodes

and prescribed boundary values. Both matrices C,, and C,,

obtained from global coefficient matrix C.

are
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Table 3. 4: matrix C,, that obtained from global coefficient matrix C

Coo 6 7 10 11
6 4 -1 0 1
7 -1 4 -1 0
10 0 -1 4 1
11 -1 0 1 4

Table 3. 5: matrix C,,that obtained from global coefficient matrix C

Con | 1 2 3 |4 |5 |8 |9 12 |13 |14 |15]|16
6 |0 0 |-1 |0 [-1 |O 0 0 0 0 0 |0
7 |0 -1 |0 0 0 -1 |0 0 0 0 0 |0
10 |0 0 0 0 0 0 [-1 |0 0 0 -1 10
11 |0 0 0 0 0 0 0 -1 |0 |-1 |0 |0
Now, the inverse of matrix C,, 'is
0.2917 0.0833 0.0417 0.0833
c.o-1_— 0.0833 0.2917 0.0833 0.0417
vy 0.0417 0.0833 0.2917 0.0833
0.0833 0.0417 0.0833 0.2917

The vector u,, of unknowns nodes can be found by using:

va_lcvnun
node 6 0.2222
Hence . = node 7 0.1111
V" lnode 10 0.2222]|
node 11 0.4445
Example 3.2

Consider the following inhomogeneous one dimensional wave

equation
1
guxx - utt = xt
with square domain D = {(x,t)la = 0 < x < b =

2,
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c =0 <t < d = 2} with Neumann boundary condition

ou _ Ou _ g(t) = t given on the left boundary and Dirichlet boundary

on  ox

conditions u = 1 on the remaining boundaries.

We will use the finite difference method to approximate the solution of

the wave equation.

The mesh size h = %as shown in figure 3.4.

The actual grid points (green points) will be shifted toward the left
until locate on the fake boundary (red line). We want to put the grid
points (1, ) outside the domain towards the left.

Letm = n = 4, the following are known as boundary conditions for
2 <i<4-1:

u2,)=1,u31)=1u24) =1, and u(3,4) =1
And the following are known as boundary conditions for

2<j<4-1:u2)=1,u43)=1
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T4
ty =2
Q -+ O tgzi
2
0O <«— O tz =1
1
| L=;
i=0 X1=7 X2=12X3=2 Xy=2 X

Figure3. 4: discretization the domain with Neumann boundary condition for example 3

Now, we use equation (1.29) to approximate the values of boundary

points on left boundary :

1 ,
Ugj = m [ul,j+1 +uyj-q — 2¢%u,y ; — 2he® g(1,)) — h? Gl,j]

For 2 <j <4 -1,9,;=9(,t) = g(t) = tjand G, = xt;

14 1 11 1
U2 = [u1,3 +U 1 — Zguz,z — 25-59(1;2) — letz]

So

14u =lu:+Uu 1u !
g 412 = |U13 117 3422 73

n

But u, ; is a corner point which we can evaluate its value by equation

N| =

N

(1.21) so,
1

14 1 1 1
~u =Uu 4+ u —u -z
g 1.2 1,3 + 2 + 21,2 422 )

N| =
—

B

Rearrange this equation, then we get
(3.7)

B

10 1 _
35 Y12 ~ U3 + w422 =
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Now,

14 1 11 1
U1z = (U H Uz — 20Up3 — 22.29(1,3) — Zx1t3]

L — 1y . —2L1
SJUL3 = Upg T U —JUp3 — 20,

N|W
I
N
N W

But u, 4 is a corner point which we can evaluate its value by equation

(1.21) so,

14 1,1 1
Uy g =c4-u Uyp — Uz —
g3 =5 T Uiz T U, — JUss

N| =
N| W

N| W
e

1
8

Rearrange this equation, then we get

10

1
sU13 Ut U3 = (3.8)

®©| R

Now, for i = 2,3and j = 2,3, we use equation (1.23)

14 1 1 1
—U,H, =U Uyq — U2y — Ui, —-.1.1
3 2,2 2,3 + 2,1 ) 3,2 ) 1,2 4

But u, ; is a known boundary point which is equal to 1 so substitute its

value and then rearrange the equation, then we get

14 1 1
S U22 Uz T gUsy T LUy = (3.9)

3
4

14 _ 1 1
S U23 = Ugs T Upp — Uz — Uiz —

1.

S
N| w

But u, 4 is a known boundary point which is equal to 1 so substitute its

value and then rearrange the equation, then we get

14 1 1 5
—u2’3 - uZ’Z + —u3’3 + —u1’3 = = (310)
8 8 8 8

sy = U+ Usq — Ugg — Uyy — = 1.2

) 3,2 3,3 3,1 3 4,2 3 2,2 4'7"2

But u, , and u3 ; is a known boundary point which are equal to 1 so

substitute their value and then rearrange the equation,
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Then we get
14 1 1
?ug’z - u3’3 + guz 2 = E (311)
14u =u +u _lu _1u _1 33
8 3,3 - 3,4' 3,2 8 4,3 8 2,3 4 " 2' 2

But u, 3 and us 4 is a known boundary point which are equal to 1 so
substitute their value and then rearrange the equation, then we get

14 1 11
—Uz3—U “Uy3 = — 3.12
g Usz Uz T ooz = —— (3.12)

Now, we have six equations (3.7, 3.8, 3.9, 3.10, 3.11 and 3.12) in six

variables:

10 1 _
5 W2 “U3 T lUxp =

1
4
0, I
gU1,3 U2 T Uz3 = ¢
14 1 1
S U22 ~Uzz T gUsy T Uy =

14 1 1
g 23 ~ Uz + 433 + gé1,3

olul MW

14 1
S Us2 T Usz tUzp =

N =

14 ST S
g 433 32 T gla3 16

Labeling the variables as follow
Uyz = Up,Up3 = Uy, Uzz = Uz, Upp = Uy, Upp = Us,and Uz = Ug
So, the linear system can be written as

10 1
Uy — Uy + U =
g Wa — U T Us
10 1

Uy - Uy U, =
g 1 4+42

14 1 3
—Us — Uy + —Ug + Uy ==
SUs — Up + U +ZUy =
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14 1 1 5
Uy —Ue + U2 + Uy =2
g 2 5+83+81 8

14

1 1
—Ug — U3z + U =
g 16 3 Tgls

2
14 11

1
Uy — Ug + U, = -—=
g 3 6+82 16

This linear system should be written in matrix form as follows:

2 2 0 -1 0 0 (2]
8 4 8
11 95 1 ol 5
° ? 184 Uz ?1

-1 0o o X I o4 1

? 144 1 |[¥s g
0 -1 0 5 7 gl |3
1 14 1

0 0 _1 0 g ?_ | E ]

If we apply Gaussian elimination to this linear system, then we get the

following exact solution:
'—0.2850946780944791

0.996886585608930
—0.508479170819215
—0.232146701215866

1.020354793701415

L—0.077727725732509-

We can solve this linear system by any iterative method like Jacobi
method, Gauss-Seidel method, Successive over Relaxation (SOR)

method and Conjugate Gradient method.
Jacobi method

The following approximate solution u obtained by Matlab program for

Jacobi iterative method with tolerance 1 x 1077 :
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'—0.2850944247395257

0.996886506735022
—0.508479153526044
—0.232146409121666

1.020354725288228

L—0.077727705795126-
Number of iterations | Cpu-time | The error
(seconds)
95 0.007951 |8.867340167695303e-008

To see Matlab code for the Jacobi iterative method refer to appendix E.

Gauss-Seidel method

The following approximate solution u obtained by Matlab program for

Gauss-Seidel iterative method with tolerance 1 X 1077 :

'—0.2850944208478987
0.996886526286237
—0.508479158013127
—0.232146481525794
1.020354743039492

L—0.077727714796036-
Number of iterations | Cpu-time | The error
(seconds)
49 0.004546 9.547169982360160e — 008

To see Matlab code for the Gauss-Seidel iterative method refer to

appendix F.

SOR Method

We recall the SOR iterative method and we choose the relaxation factor

w = 1.3:

The following approximate solution obtained by Matlab program for

SOR iterative method with tolerance 1 X 1077 :
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'—0.285094626872160

0.996886576671534
—0.508479169354012
—0.232146668158265

1.020354787939089

L—0.077727724790212-

Number of iterations | Cpu-time | The error
(seconds)
21 0.003395 | 7.185255812558467e-008

To see Matlab code for the SOR iterative method refer to appendix G.
Conjugate Gradient method

The following approximate solution u obtained by Matlab program for

Conjugate Gradient iterative method with tolerance 1 X 1077 :

'—0.2850946780944791
0.996886585608930
—0.508479170819215
—0.232146701215866
1.020354793701415
L—0.077727725732509-

Number of iterations | Cpu-time | The error
(seconds)
6 0.000470 |1.121023024625157e-016

To see Matlab code for the Conjugate Gradient iterative method refer

to appendix H .
Comparison between the iterative methods for example 3.2:

Table 3.2 shows the accuracy for the different iterative methods. That’s
to say, which of each of the following methods reduce the error
(nearest to the exact solution), obtains the accurate solution in

different number of iterations, the cpu time and each method error.
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Method | Jacobi solution Gauss-Seidel solution SOR solution Conjugate Gradient

u's solution
Uy —0.285094424739525 | —0.285094420847898 | —0.285094626872160 | —0.285094678094479
Uy, 0.996886506735022 0.996886526286237 | 0.996886576671534 | 0.996886585608930
Us —0.508479153526044 | —0.508479158013127 | —0.508479169354012 | —0.508479170819215
Uy —0.232146409121666 | —0.232146481525794 | —0.232146668158265 | —0.232146701215866
Us 1.020354725288228 1.020354743039492 | 1.020354787939089 | 1.020354793701415
Ug —0.077727705795126 | —0.077727714796036 | —0.077727724790212 | —0.077727725732509

Number of 95 49 21 6

iterations

Cpu-time 0.007951 0.004546 0.003395 0.000470

Error 8.867340167695303e- 9.547169982360 7.185255812558467e- | 1.121023024625157¢

008 160e — 008 008 -016

The exact solution is:

Tolerance =1e — 7

'—0.2850946780944791
0.996886585608930
—0.508479170819215
—0.232146701215866
1.020354793701415

L—0.077727725732509-
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Example 3.3
Consider the following two dimensional inhomogeneous wave

equation:
U = 4 (Uyy + Uy, ) +xt
For 0 <t < 1,thesurfacez = u(x,y,t), 0<x<1,0<y<1.

Subject to Dirichlet boundary conditions given on the boundaries as
follow: u(0,y,t) =0, u(l,y,t) =1, u(x,0,t) =0, u(x,1,t) =1,
u(x,y,0) =0,u(x,y,1) =0.

We want to approximate the solution u by using finite difference

method.

Choose positive integers m=r =3, n = 2.

b—a 1-0
3

Define Ax =Ay =h = = =1,At=§.

3
Now, we use the difference equation (1.46) to approximate the interior
mesh points (green points shown in figure 3.5) as follows:
2(2s% = Duy e = s* (Wi je + Uimrjre + Uijere T Uijo1k)

—Ug i1 — Uiipe + (At)zGl.J.’k, for i=12,j=12, k=1.
With boundary conditions:

Lugjr =0, for j = 0,1,23 and k = 0,1,2.

2.Upjr =1forj = 01,23 and k = 0,1,2.
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3. Ujor =0,fori = 1,2and k = 1.
4.uj,,=1,fori = 1,2and k = 0,1.
5.u;j0=0,for i = 1,2,3and j = 1,2,3.

6.u;jn =0, for i = 0,1,2and j = 0,1,2.

Ui

Uy 24

Uplzp  Ugzoe Uzzp Uazo

}F

Figure3d. 5: discretization the domain with Dirichlet boundary conditions for example 3
Fori=1,j=1andk =1:

2(2.4 - 1)u1,1,1 = 4(u2,1,1 + Up,1,1 + Uq2,1 + u1,o,1) —Uy12 — U0

12
+l-) xt
(3) 1
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So

14u1,1,1 = 4(Uv2,1,1 + Up,1,1 + U121 + u1,o,1) —Uq12 — Ug10

N <1>2 11
3 3 2
Butugq4,U101,Us 12 and uy 1 ¢ are boundary points which equal zero’s

SO,

-1
54

14‘u1,1’1 - 4u2’1,1 - 4u1,2,1 - (3.13)

Fori=1,j=2andk=1:
14u, 5, = 4(“2,2,1 + U1 T U3, T u1,1,1) —Up22 — Ug20
N (1)2 11
3 32
But up,;, =0,u;31 = 1,u;,, = 0and u; , o = 0 since it are boundary

points so,

-217
14‘u1’2’1 - 4u2’2,1 - 4u1,1,1 - 5_4 (3.14‘)

Fori=2j=1landk =1:
14“2,1,1 = 4(”3,1,1 + U111 + U221 + u2,0,1) —Uz1,2 — U210
N (1)2 2 1
3 3 2
Butuz,;, =1,u397 =0,uz1, =0 and u,; o = 0 since they are

boundary points so,

—-109
14u2’1,1 - 4u1’1’1 - 4U,2’2’1 - ? (315)
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Fori=2,j=2andk =1:
lduy,4 = 4(”3,2,1 T Upq T U3, T u2,1,1) —Uz22 —Uz20
N <1>2 2 1
3 32
Butuz,; =1,u;3;7 = 1,up,, = 0and u, , o = 0 since they are

boundary points so,

-217
14u2,2’1 - 4‘u1’2’1 - 4‘u2‘1'1 == 7 (316)

Now, we have four equations (3.13, 3.14, 3.15 and 3.16) in four
variables,

_ -1
14us 9 —4uzs1 —4uip1 = )

=217
14711,2,1 - 4712,2,1 - 4u1,1,1 ~ =1

_-109
14u2,1,1 —4duy 9 — AUy = 7

=217
14uz,2,1 —4u,q1 — 4712,1,1 = 27

Labeling the variables as follow
Uppq = Up,Uypq = Uy, Upqq = Uz, and Uy q = Uy
So, the linear system can be written as

14‘“,3 _4‘u4_ _4‘u1 == ;—41

T4y —duy —duy = — 7

14‘u4 _4‘u3 _4‘u2 == #
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14, — 4wy —duy = — 7

This linear system could be written in matrix form as

Au = b,where u isavector of unknowns

r—217-

54

-4 14 0 -4, |sz
4= —4 0 14 -4 b= -1
54

0 -4 —4 14 e

_27_

If we apply Gaussian elimination to this linear system, then we get the

following exact solution:

—0.670634920634921
—0.957671957671958
—0.384920634920635
—0.671957671957672

We can solve this linear system by any iterative method like Jacobi
method, Gauss-Seidel method, Successive over Relaxation (SOR)

method or Conjugate Gradient method.
Jacobi method

The following approximate solution u obtained by Matlab program for

Jacobi iterative method with tolerance 1 x 1077 :

—0.670634815475330
_ |-0.957671852512367
~ [—0.384920529761044
—0.671957566798081

Number of iterations | Cpu-time | The error
(seconds)
28 0.002945 | 7.886969333181781e — 008
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To see Matlab code for the Jacobi iterative method refer to appendix I.

Gauss-Seidel method
The following approximate solution u obtained by Matlab program for

Gauss-Seidel iterative method with tolerance 1 X 1077 :

—0.670634893638285
_|1—0.957671942245309
~ [-0.384920619493986

—0.671957663142444

Number of iterations | Cpu-time | The error
(seconds)
16 0.003186 | 5.568056038462999e-008

To see Matlab code for the Gauss-Seidel iterative method refer to

appendix J.
SOR Method
Choose the relaxation factor w = 1.3:

The following approximate solution u obtained by Matlab program for

SOR method with tolerance 1 X 10~7 :

[ —0.670634937297569
—0.957671955782972
—0.384920624813294
| —0.671957667876347

Number of iterations | Cpu-time | The error
(seconds)
15 0.000630 |6.288306131363441e-008

To see Matlab code for the SOR iterative method refer to appendix K.
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Conjugate Gradient method

The following approximate solution u obtained by Matlab program for

Conjugate Gradient method with tolerance 1 x 1077 :

—0.670634920634921
—0.957671957671958

—0.384920634920635

—0.671957671957672

Number of iterations

Cpu-time
(seconds)

The error

2

0.000215

2.220446049250313e-016

To see Matlab code for the Conjugate Gradient method iterative

method refer to appendix L.
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Table 3. 7: Comparison between the iterative methods for example 3

Tolerance =1e — 7

—0.384920634920635
—0.671957671957672

Method | Jacobi Gauss-Seidel SOR Conjugate Gradient
u's solution solution solution solution
Uq —0.670634815475330 | —0.670634893638285| —0.670634937297569 | —0.67063492063492121
U, —0.957671852512367 | —0.957671942245309| —0.957671955782972| —0.957671957671958
Us —0.384920529761044 | —0.384920619493986| —0.384920624813294 | —0.384920634920635
Uy —0.671957566798081 | —0.671957663142444| —0.671957667876347 | —0.671957671957672
Number of 28 16 15 2
iterations
Cpu-time 0.002945 0.003186 0.000630 0.000215
(seconds)
Error 7.8869693331817 5.568056038462999 | 6.288306131363441e |2.220446049250313e-
81le — 008 e-008 -008 016
The exact solution is:
—0.670634920634921
—0.957671957671958
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3.1 Comparison between results for finite difference method and finite
element method for example 3.1:
A simple comparison between the results in example 3.1 are shown in

table 3.8 and table 3.9 with tolerance =1 x 10~ 7:

Table 3. 8: Comparison between results for finite difference method
and finite element method for example 1

Finite difference method Finite element method
(using Jacobi method)
Uq 0.222222222222222 | Node 10 0.2222
U, 0.444444367292111 | Node 11 0.4445
Usg 0.111111188263445 | Node 7 0.1111
Uy 0.222222222222222 | Node 6 0.2222

Table 3. 9: Comparison between FE and FD solutions

x u(x,2) FE solution | u(x,2) FD solution
0 0 0
1/3 0.2222 0.222222222222222
2/3 0.4445 0.444444367292111
1 2/3 2/3

3.2 Comparison between results for iterative methods

A simple comparison between the results in example 3.1, example 3.2
and example 3.3 respectively in table 3.1, table 3.6 and table 3.7 with
tolerance =1 X 1077, the comparison yields by compare the number of
iterations for converging, error and cpu-time to decide which is the

most efficient iterative method .
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3.3 Conclusions
In this thesis we have used two methods to solve both homogeneous
and in homogeneous hyperbolic PDEs subject to Dirichlet and
Neumann boundary conditions these methods are the finite difference
and the finite element methods. The discretization process transfers

the boundary value problem into n —algebraic linear equations .

This linear system has been solved iteratively by several iterative
schemes . These are : Jacobi, Gauss-Seidel, Successive over Relaxation

(SOR), and Conjugate Gradient method.

We observe that the finite difference method is very simple and
efficient method for approximating the solution of the boundary value
problem when the domain has regular shape . While the finite element

method is more efficient for irregular domains.

We see clearly that the Conjugate Gradient method is one of the most
efficient and accurate method in comparison with the Jacobi, Gauss-
Seidel and the SOR methods. In fact, it requires less number of

iterations and cpu-time in comparison with the others.
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Appendix A
% Matlab code for Jacobi iterative method
% Iterative Solutions of linear equations: Jacobi Method
% Linear system: Au=>b
% Coefficient matrix A, right-hand side vector b, unknown vector u .
clc
clear
format long
tic
A=[6-410;-4601;106-4;01-46];
b=[-1/3;2;0;4/3];
%show the exact solution
inv(A)*b
% Set initial value of u to zero column vector
u=[0;0;0;0];
% Set the iteration number = k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix
% loop for iterations
err=1.0;
k=0;
while err >1.0e-7
fori=1:4
un(i)=(b(i)-(A(i,:)*u-A(Li)*u(i))) /AGL1);
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end
err= max(abs(un'-u));
k=k+1;
M(k,:)=[un'];
u=un';
end
% show the cpu time
toc
% show the solutions
M
% show the error
err

% show the total iteration number

k
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Appendix B
% Matlab code for Gauss-Seidel iterative method
% Iterative Solutions of linear equations: Gauss-Seidel Method
% Linear system: Au=>b
% Coefficient matrix A, right-hand side vector b, unknown vector u.
clc
clear
format long
tic
A=[6-410;-4601;106-4;01-46];
b=[-1/3;2;0;4/3];
%show the exact solution
inv(A)*b
% Set initial value of u to zero column vector
u=[0;0;0;0];
% Set the iteration number = k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix
% loop for iterations
err=1.0;
k=0;
while err >1.0e-7

ul=u;
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fori=1:4
u(i)=(b(i)-(A(,:)*u-A(Li)*u(i))) /A,1);

end
un=u';
err= max(abs(un'-u0));
k=k+1;
M(k,:)=[u'];
end
% show the cpu time
toc
% show the solutions
M
% show the error
err

% show the total iteration number

K



109
Appendix C

% Matlab code for SOR iterative method
% Iterative Solutions of linear equations: SOR me Method
% Linear system: Au=>b
% Coefficient matrix A, right-hand side vector b, unknown vector u.
clear
format long
tic
A=[6-410;-4601;106-4;01 -4 6];
b=[-1/3;2;0;4/3];
%show the exact solution
inv(A)*b
% Set initial value of u to zero column vector
u=[0;0;0;0];
% Set the iteration number =k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix
% loop for iterations
w=1.02;
err=1.0;
k=0;
while err >1.0e-7

ul=u;

fori=1:4



110
u(i)=(1-w)*u(i)+(w/A(L,1))*(b(i)-(A,:)*u-Ad1) *u(i)));
end
un=u';
err= max(abs(un'-u0));
k=k+1;
M(k,:)=[u'];
end
% show the cpu time
toc
% show the solutions
M
% show the error
err

0% show the total iteration number

k
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Appendix D
function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)
% SOLVECG Conjugate Gradients method.

% Input parameters:

% A : Symmetric, positive definite NxN matrix
% f: Right-hand side Nx1 column vector
% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform
% Output parameters:

% u : Nx1 solution vector

%  niter : Number of iterations performed

%  flag:1if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum
% number of iterations, 0 otherwise (= iteration
% successful).

tic

A=[6-410;-4601;106-4;01-46];
f=[-1/3;2;0;4/3];

err=1.0;

format long

s=[0;0;0;0];

tol=0.0000001;



112
maxiter =6;
u=s; % Set u_0 to the start vector s
r=f-A*s; % Compute first residuum
pP=r
rho = r'*r;
niter =0; % Init counter for number of iterations
flag=0; % Init break flag
% Compute norm of right-hand side to take relative residuum as
% break condition.
normf = norm(f);
if normf < eps % if the norm is very close to zero, take the
% absolute residuum instead as break condition
% (norm(r) > tol ), since the relative
% residuum will not work (division by zero).
warning([ norm(f) is very close to zero, taking absolute residuum'’ ...
" as break condition.']);
normf = 1;
end
while (norm(r)/normf > tol) % Test break condition
a = A*p;
alpha =rho/(a"*p);
u = u + alpha*p;
r =r - alpha*a;

rho_new = r'*r;
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p =r +rho_new/rho * p;
rho = rho_new;

niter = niter + 1;

if (niter == maxiter) % if max. number of iterations
flag=1; % is reached, break.
break
end
end

% show the cpu time
toc

u

err= max(abs(u-o0))

niter
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Appendix E
%Matlab code for Jacobi iterative method
% Iterative Solutions of linear equations: Jacobi Method
% Linear system: Au=>b
% Coefficient matrix A, right-hand side vector b, unknown vector u.
clc
clear
format long
tic
A=[10/81/40-100;1/814/81/80-10;01/814/800-1;-10010/8
1/40,0-101/814/81/8;,00-101/8 14/8];
b=[1/8;5/8;-11/16;1/4;3/4;1/2];
%show the exact solution
inv(A)*b
% Set initial value of u to zero column vector
u=[0;0;0;0;0;0];
% Set the iteration number = k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix
% loop for iterations
err=1.0;

k=0;



115
while err > 1.0e-7
fori=1:6
un(i)=(b(i)-(A®,:)*u-A(Li)*u(i))) /A(L1);
end
err= max(abs(un'-u));
k=k+1;
M(k,:)=[un'];
u=un';
end
% show the cpu time
toc
% show the solutions
M
% show the error

err

% show the total iteration number

k



116

Appendix F
% Matlab code for Gauss-Seidel iterative method
% Iterative Solutions of linear equations: Gauss-Seidel Method
% Linear system: Au=>b
% Coefficient matrix A, right-hand side vector b, unknown vector u
clc
clear
format long
tic
A=[10/81/40-100;1/814/81/80-10;01/814/800-1;-10010/8
1/40,0-101/814/81/8;,00-101/8 14/8];
b=[1/8;5/8;-11/16;1/4;3/4;1/2];
%show the exact solution
inv(A)*b
% Set initial value of u to zero column vector
u=[0;0;0;0;0;0];
% Set the iteration number = k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix
% loop for iterations
err=1.0;
k=0;
while err >1.0e-7

ul=u;
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fori=1:6
u(i)=(b(i)-(A(,:)*u-A(Li)*u(i))) /A,1);
end
un=u';
err= max(abs(un'-u0));
k=k+1;
M(k,:)=[u'];
end
% show the cpu time
toc
% show the solutions
M
% show the error

err

% show the total iteration number

k
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Appendix G
% Matlab code for SOR iterative method
% Iterative Solutions of linear equations: SOR Method
% Linear system: Au=>b
% Coefficient matrix A, right-hand side vector b, unknown vector u
clc
clear
format long
tic
A=[10/81/40-100;1/814/81/80-10;01/814/800-1;-10010/8
1/40,0-101/814/81/8;,00-101/8 14/8];
b=[1/8;5/8;-11/16;1/4;3/4;1/2];
%show the exact solution
inv(A)*b;
% Set initial value of u to zero column vector
u=[0;0;0;0;0;0];
% Set the iteration number = k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix
% loop for iterations
w=1.3;
err=1.0;
k=0;

while err >1.0e-7
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ul=u;
fori=1:6
u(i)=(1-w)*u(i)+(w/A@1))*(b(i)-(Ad:)"u-AdL)*u(i)));
end
un=u';
err= max(abs(un'-u0));
k=k+1;
M(k,:)=[u'];
end
% show the cpu time
toc
% show the solutions
M
% show the error

err

% show the total iteration number

k
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Appendix H
function [u, niter, flag] = solveCG(A, f; s, tol, maxiter)
% SOLVECG Conjugate Gradients method.

% Input parameters:

% A : Symmetric, positive definite NxN matrix
% f: Right-hand side Nx1 column vector
% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform
% Output parameters:

% u : Nx1 solution vector

%  niter : Number of iterations performed

%  flag:1if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum
% number of iterations, 0 otherwise (= iteration
% successful).

tic

A=[10/81/40-100;1/814/81/80-10;01/814/800-1;-10010/8
1/40,0-101/814/81/8;,00-101/814/8];
f=[1/8;5/8;-11/16;1/4;3/4;1/2];

err=1.0;

format long

s=[0;0;0;0;0;0];
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tol=0.0000001;
maxiter =20;
u=s; % Set u_0 to the start vectors
r=f-A*s; % Compute first residuum
p=r
rho = r'*r;
niter = 0; % Init counter for number of iterations
flag=0; % Init break flag
% Compute norm of right-hand side to take relative residuum as
% break condition.
normf = norm(f);
if normf < eps % if the norm is very close to zero, take the
% absolute residuum instead as break condition
% (norm(r) > tol ), since the relative
% residuum will not work (division by zero).
warning(['norm(f) is very close to zero, taking absolute residuum’ ...
"as break condition.']);
normf = 1;
end
while (norm(r)/normf > tol) % Test break condition
a=A*p;
alpha =rho/(a"*p);
u = u + alpha*p;

r =1 - alpha*a;
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rho_new = r'*r;
p =1+ rho_new/rho * p;
rho =rho_new;

niter = niter + 1;

if (niter == maxiter) % if max. number of iterations
flag=1; % is reached, break.
break
end
end

% show the cpu time
toc

u

err= max(abs(u-o0))

niter
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Appendix |
% Matlab code for Jacobi iterative method of FDM for 2D wave
equation
% Iterative Solutions of linear equations: Jacobi Method
% Linear system: Au=>b
% Coefficient matrix A, right-hand side vector b, unknown vector u.
clc
clear
format long
tic

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14];
b=[-217/54;-217/27;-1/54;-109/27];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector
u=[0;0;0;0];

% Set the iteration number =k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix

% loop for iterations

err=1.0;

k=0;

while err > 1.0e-7

fori=1:4
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un(i)=(b(i)-(A(i,:)*u-A1,1)*u(i))) /A(L1);
end
err= max(abs(un'-u));
k=k+1;
M(k,:)=[un'];
u=un';
end
toc
% show the solutions
M
% show the error

err

% show the total iteration number

k
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Appendix J
%Matlab code for Gauss-Seidel iterative method of FDM for 2D wave
equation
% Iterative Solutions of linear equations: Gauss-Seidel Method
% Linear system: Au=>b
% Coefficient matrix A, right-hand side vector b, unknown vector u.
clc
clear
format long
tic

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14];
b=[-217/54;-217/27;-1/54;-109/27];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector
u=[0;0;0;0];

% Set the iteration number =k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix

% loop for iterations

err=1.0;

k=0;

while err >1.0e-7

ul=u;
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fori=1:4
u(i)=(b()-(AG,:)*u-AG)*u(@))/AGD);
end
un=u';
err= max(abs(un'-u0));
k=k+1;
M(k,:)=[u’];
end
toc
% show the solutions
M
% show the error

err

0% show the total iteration number

k
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Appendix K
% Matlab code for SOR iterative method of FDM for 2D wave equation
% Iterative Solutions of linear equations: SOR Method
% Linear system: Au=>b
% Coefficient matrix A, right-hand side vector b, unknown vector u.
clc
clear
format long
tic

A=[14 -4 -4 0;-4 140 -4 ;-4 0 14 -4;0 -4 -4 14];
b=[-217/54;-217/27;-1/54;-109/27];

%show the exact solution

inv(A)*b;

% Set initial value of u to zero column vector
u=[0;0;0;0];

% Set the iteration number = k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix

% loop for iterations

w=1.3;

err=1.0;

k=0;

while err >1.0e-7

ul=u;
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fori=1:4
u()=(1-w)*u(i)+(w/A(,1))*(b)-(AG:) u-Al) u(i));
end
un=u';
err= max(abs(un'-u0));
k=k+1;
M(k,:)=[u’];
end
toc
% show the solutions
M
% show the error

err

% show the total iteration number

k
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Appendix L
function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)
% SOLVECG Conjugate Gradients method of FDM for 2D wave
equation.

% Input parameters:

% A : Symmetric, positive definite NxN matrix
% f: Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break
% condition

% maxiter : Maximum number of iterations to perform
% Output parameters:

% u : Nx1 solution vector

%  niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum
% number of iterations, 0 otherwise (= iteration
% successful).

tic

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14];
f=[-217/54;-217/27;-1/54;-109/27];

err=1.0;
format long

s=[0;0;0;0];
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tol=0.0000001;
maxiter =20;
u=s; % Set u_0 to the start vectors
r=f-A*s; % Compute first residuum
p=r
rho = r'*r;
niter = 0; % Init counter for number of iterations
flag=0; % Init break flag
% Compute norm of right-hand side to take relative residuum as
% break condition.
normf = norm(f);
if normf < eps % if the norm is very close to zero, take the
% absolute residuum instead as break condition
% (norm(r) > tol ), since the relative
% residuum will not work (division by zero).
warning(['norm(f) is very close to zero, taking absolute residuum'’ ...
"as break condition.']);
normf = 1;
end
while (norm(r)/normf > tol) % Test break condition
a=A*p;
alpha =rho/(a"*p);
u = u + alpha*p;

r =1 - alpha*a;
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rho_new = r'*r;
p =1 + rho_new/rho * p;
rho =rho_new;

niter = niter + 1;

if (niter == maxiter) % if max. number of iterations
flag=1; % is reached, break.
break
end
end
toc
u

err= max(abs(u-o0))

niter
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