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Abstract 

Hyperbolic Partial Differential Equations play a very important role in 

science, technology and arise very frequently in physical applications as 

models of waves. Hyperbolic linear partial differential equations of second 

order like wave equations are the ones to be considered. In fact, most of 

these physical problems are very difficult to solve analytically. Instead, 

they can be solved numerically using some computational methods .  

In this thesis, homogeneous and inhomogeneous wave equations with 

different types of boundary conditions will be solved numerically using the 

finite difference method (FDM) and the finite element method (FEM) to 

approximate the analytical (exact) solution of hyperbolic PDEs. The 

discretizing procedure transforms the boundary value problem into a linear 

system of   algebraic equations that can be solved by iterative methods. 

These iterative methods are: Jacobi, Gauss-Seidel, SOR, and Conjugate 

Gradient methods. A comparison between these iterative schemes is drawn. 

The numerical results show that the finite difference method is more 

efficient than the finite element method for regular domains, while the 

finite element method is more accurate for complex and irregular domains. 

Moreover, we observe that the Conjugate Gradient iterative technique gives 

the most efficient results among the other iterative methods. 
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Introduction 

Partial differential equations (PDEs) are encountered in physics either 

elliptic, parabolic or hyperbolic. Hyperbolic partial differential equations 

(PDEs) are play a very important role in science, technology and arise very 

frequently in physical applications as models of waves, such as acoustic, 

elastic, seismic, shock, electromagnetic, and gravitational waves. 

In fact, most of hyperbolic partial differential equations (PDEs) that arise in 

mathematical models of physical phenomena are very difficult to solve 

analytically, so numerical methods become necessary to approximate the 

solution of such hyperbolic partial differential equations. For many 

hyperbolic partial differential problems, finite difference and finite element 

methods are the techniques of choice [19].  

Finite difference method (FDM) is the oldest method for numerical 

solution of partial differential equations which is introduced by Euler in the 

18th century. Because of this simplicity and easy to use for simple 

geometries, it is the most popular method for solving partial differential 

equations. It is based upon the application of Taylor expansion to 

approximate the differential equations. This method uses a topologically 

square network of lines to construct the discretization of the PDE [38]. 

On the other hand, the finite element method (FEM) is the general method 

for the numerical solution of partial differential equations covering all three 

main types of equations, namely elliptic, parabolic, and hyperbolic 

equations. It can be implemented to any type of PDE.  FEM is flexible and 
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accurate method but requires a good knowledge in coding. The finite 

element method (FEM) is good enough to give a vision of numerical 

solution [40], and it was introduced by engineers in the late 50’s and early 

60’s for the numerical solution of partial differential equations in structural 

engineering (elasticity equations, plate equations ). 

Today, the method is used extensively for problems in many areas 

including, but not limited to, structural engineering, strength of materials, 

fluid mechanics, nuclear engineering, electro-magnetism, convention- 

diffusion processes, wave propagation, scattering, integrated circuits, heat 

conduction, petroleum engineering, and reaction-diffusion processes [39]. 

The FEM dates back to 1909 when Ritz developed an effective method for 

the approximate solution of problems in the mechanics of deformable 

solids, it includes an approximation of energy function by the known 

functions with unknown coefficients. Minimization of function in relation 

to each unknown leads to a system of equations from which the unknown 

coefficients may be determined. One of the main restrictions in the Ritz 

method is that functions used should satisfy the boundary conditions of the 

problem [8]. 

The FEM obtained its real impetus in the 1960s and 1970s by the 

developments of the following groups:  J. H. Argyris with co-workers  

at the  University of Stuttgart, R.W. Clough with co-workers at UC 

Berkeley, O. C. Zienkiewicz with co-workers Ernest Hinton, Bruce 

Irons and others at the University of Swansea, Philippe G. Ciarlet at the 

University of  Paris and Richard Gallagher with co-workers at Cornell 

https://en.wikipedia.org/wiki/John_Argyris
https://en.wikipedia.org/wiki/John_Argyris
https://en.wikipedia.org/wiki/University_of_Stuttgart
https://en.wikipedia.org/wiki/Ray_W._Clough
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/Olgierd_Zienkiewicz
https://en.wikipedia.org/wiki/Ernest_Hinton
https://en.wikipedia.org/wiki/Bruce_Irons_(engineer)
https://en.wikipedia.org/wiki/Bruce_Irons_(engineer)
https://en.wikipedia.org/wiki/Swansea_University
https://en.wikipedia.org/wiki/Philippe_G._Ciarlet
https://en.wikipedia.org/wiki/Cornell_University
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University[8]. The FEM for solving the wave equation has been developed 

by many researchers. Very recently, Bangerth and Rannacher [2] have 

used the finite element approximation for the acoustic wave equation. Hui 

[12] has implemented the FEM of the elastic wave equation and wave 

fields simulation in two-phase anisotropic media. Margrave and 

Mahmodian [22] have applied the FEM in seismic wave modeling. 

Glowinski and Lapin [10] have obtained the solution of a wave equation 

by a mixed finite element - fictitious domain method. Ham and Bathe [11] 

have used the finite element method for wave propagation problems.  

On the other hand, the FDM was invented by a Chinese scientist named 

Feng Kang in the late 1950’s. He proposed the FDM as a systematic 

numerical method for solving partial differential equations that are applied 

to the computations of dam constructions. It is now considered that the 

invention of the FDM is a milestone of computational mathematics [38]. 

The FDM  for solving the wave equation has been developed by many 

researchers. Very recently, Oliveira [26] has used the fourth-order FDM for 

the acoustic wave equation on irregular grids. Maupin and Dmowska [23] 

have implemented the finite-difference time-domain method for modeling 

of seismic wave prop- agation. Lamoureux et al. [17] have used the 

Galerkin methods for numerical solutions of acoustic, elastic and 

viscoelastic wave equations. Chua and Stoffab [7] have studied the 

Nonuniform grid implicit spatial finite difference method for acoustic wave 

equation. Lines et al. [20] have analyzed the stability of finite difference 

wave equations computations. Saarelma [32] has used the finite difference 

https://en.wikipedia.org/wiki/Cornell_University
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time domain solver for room acoustics using graphics processing units. 

Antunes et al. [1] have applied the FDM to solve acoustic wave equation 

using locally adjustable time-steps. Moczo et al. [24] have investigated the 

accuracy of the finite difference and the finite element schemes with 

respect to p-wave to s-wave speed ratio. Dong et al. [9] have applied the 

finite element and finite difference methods to solve 2D wave equation.  

The thesis is organized as follows: Chapter one introduces the basics of the 

FDM and the FEM for homogeneous and inhomogeneous wave equations 

with different types of boundary conditions. Chapter two presents some 

iterative methods namely: Jacobi, Guass-Seidel, Successive over 

Relaxation (SOR), and Conjugate Gradient method for solving linear 

system which is implemented  by using the FDM and the FEM and their 

convergence properties. Chapter three contains some numerical examples 

and  results and finally the conclusions follows. 
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Chapter One 

Finite Difference and Finite Element Methods for Solving 

Hyperbolic Partial Differential Equations 

A second order linear partial differential equation is mainly considered 

as 

                                                              1.1)  

where             and the free term   can either be constants or 

functions of the two independent variables   and  . 

Equation (1.1) is classified into three types depending on the 

discriminant            as follows (see [6]): 

1. Hyperbolic if the discriminat is positive               . 

2. Parabolic if the discriminant is zero               . 

3. Elliptic if the discriminant is negative                . 

In this work, we will deal with hyperbolic PDEs (see [19],[37] ). 

 We will use the Finite Difference and the Finite Element methods for 

solving hyperbolic partial differential equation for both homogeneous 

and inhomogeneous wave equations. 

To implement  these methods to solve the hyperbolic PDE, a system of 

linear equations will be generated that can be solved using several 

iterative schemes such as Jacobi, Guass-Seidel, Successive over 

Relaxation (SOR), and Conjugate Gradient methods. 
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1.1 Hyperbolic  PDE Subject to Boundary Conditions 

Solution of  homogeneous and inhomogeneous wave  equation on the 

boundary of a domain   needs certain conditions where the unknown 

function (dependent variable) must satisfy these conditions on the 

boundary  . We will deal with homogeneous and inhomogeneous 

wave equations with respect to two types of boundary conditions . 

These boundary conditions  are:  

1. Dirichlet Boundary Conditions:  

The condition where the value of the unknown function is 

prescribed  on the boundary of the domain.     

2. Neumann Boundary Conditions:  

The condition where the value of the normal derivative  
  

   
 is given 

on the  boundary of the domain. 

1.2 Discretization of Hyperbolic PDE by Finite Difference Method 

This method is effective when the domain of the problem has 

boundaries with regular shapes. In this thesis, we will deal with the 

FDM  with rectangular domain of regular boundaries shapes (see [35]). 

1.3 The Principle of Finite Difference Method (FDM) 

The FDM is a numerical method for solving differential equations by 

approximating them using difference equations with errors of order 

   (      ). 
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 The given region or domain of the PDE is divided into a network of 

lines constructing rectangles called grid. The points of intersection of 

these lines are called grid points or mesh points. At each grid point, the 

differential equation is approximated by replacing the partial 

derivatives by their corresponding difference approximations. The 

replacement of partial derivatives with difference approximation 

formulas depends on Taylor's Theorem . This gives an algebraic 

equation for each grid point, in which the variable value at that point 

and a certain number of neighbour points appears as unknown. In 

other words, by knowing the value of the variable at neighbouring 

points of the unknown value makes that variable at that particular 

point can be calculated (see [19], [28] ). 

1.4 Strategy of Discretization 

Using the FDM to discretize hyperbolic PDE with its boundary 

conditions, we can consider the following inhomogeneous wave 

equation:  

                                                                                                            

The rectangular domain                                   and  

                for any           where B denotes the boundary of a 

region          is a continuous function on   and        is continuous 

on  . The continuity of both   and    guarantees a unique solution of 

equation (1.2) (see [13],[ 19]). 
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Now, we will use the finite difference algorithm for solving hyperbolic  

PDE, like equation (1.2). 

The Finite Difference Algorithm 

Step 1: Choose positive integers   and     

Step 2: Define     
     

 
  and    

   

 
     

This step partitions the interval       into   equal parts of width   and 

partitions the interval       into   equal parts of width    

Step 3: Define the mesh point (     ) as 

                      

                      

Step 2 and step 3 are illustrated in figure 1.1. 

 

Figure1. 1: discretization of a rectangular domain 
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At any interior mesh point (     ) the wave equation becomes  

                            (     )     (     )   (     )                                                                          

The difference method is obtained using the centered-difference 

quotient for the second partial derivatives given by (see [29]): 

   (     )  
 (       )    (     )   (       )

  
  

                            
  

  
 
   

   
(     )                                                  

and 

   (     )  
 (       )    (     )   (       )

  
 

                          
  

  
 
   

   
(     )           (         )                             

Substituting equations (1.4) and (1.5) into equation (1.3) gives 

  
 (       )    (     )            

  

 
 (       )    (     )            

  
 

 
 

  
*     

   

   
(     )     

   

   
(     )+   (     )                                

for each                  and                   

The boundary conditions are:  

1.                    , for                 

2.                    , for                                                                  
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3.                    , for                 

4.                    , for              .  

Now, by rearranging equation (1.6), we get: 

 

  
 (       )            

  
 

 (       )            

  
  

  

  
 (     ) 

  
 

  
 (     )  

 

  
*     

   

   
(     )     

   

   
(     )+   (     ) 

Or it can simply be written as 

  
 (       )   (       )

  
 

 (       )   (       )

  
 

  *
  

  
 

 

  
+  (     )

 
 

  
*     

   

   
(     )     

   

   
(     )+   (     )         

Multiplying both sides by      we get: 

(
  

 
)
 

[ (       )   (       )]   (       )   (       )

  *(
  

 
)
 

  + (     ) 

 
  

  
*     

   

   
(     )     

   

   
(     )+     (     )                           

Define 𝜆     ⁄  and neglecting the error term (local truncation error) 

 defined as : 
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        ²):  𝜏
   

         

   (     )     
   

   (     ). Then Simplifying 

equation (1.9) and letting       approximate           we can write the 

difference equation as  

𝜆
 
(             )                 (  𝜆

 
)          (     ) 

for each               and               .                                 

with boundary conditions: 

1.     =  (      ), for               .  

2.     =        ), for                                                                                

3.     =  (      ), for                

4.     =  (      ), for              .  

Equation (1.10) involves approximations to the unknown function 

        at the points (       ) (       ) (       ) (       ) (     ) 

These points form a regular star–shape region in the grid (as shown in 

figure 1.2).  

 

Figure1. 2: 5-points stencil of the unknown function        
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 When we use formula (1.10) with boundary conditions (1.11), then at 

all points (     ) that are adjacent to a boundary mesh point, we have 

an              by              linear system with the 

unknowns being the approximations       to  (     ) at the interior 

mesh points.  

The generated linear system can be solved by the Jacobi, Guass-Seidel, 

Successive over Relaxation (SOR), or Conjugate Gradient methods. This 

system (that involves the unknowns) produces satisfactory results if a 

relabeling of the interior mesh points is introduced (see [5],[ 39]). A 

favorable labeling of these points is:  

   (     ) and        , where                   

                              . 

1.4.1 Homogeneous Wave Equation with Dirichlet Boundary Conditions 

When the function is defined on any part of a domain    then we call 

this part Dirichlet boundary   , i.e. the unknown function   is 

prescribed on the boundary, that is,                       where 

the function   is a known function . 

       

To derive the formula of finite difference approximation with Dirichlet 

boundary condition for homogeneous  wave equation 
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we consider three points      , and     which are located on 

  axis with equal distance   between them as shown in figure 1.3 , 

 ( see [6], [13] and[37]).  

 

Figure1. 3: three points      , and     which are located on   axis 

The value of the function        at the points                

and         be        ,      ,and        , respectively. 

Now, use Taylor series to express         and         in the form of 

Taylor expansions about the point   as follows: 

            
 

  
 
  

  
   

  

  
 
   

   
   

  

  
 
   

   
   

  

  
 
   

   
   

                                                                                                                          

            
 

  
 
  

  
   

  

  
 
   

   
   

  

  
 
   

   
   

  

  
 
   

   
                                                

                                                                                                                          

Adding equations (1.13) and (1.14), gives: 

                     
 
 
   

   
   

  

  
 
   

   
         

By rearranging the above equation, we obtain: 
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Equation (1.15) is a finite difference approximation formula with the 

error term        .  

 Subtracting equation (1.14) from equation (1. 13), we get: 

                                    
  

  
   

             

  
                                           

Equation (1.16) is a finite difference approximation formula with the 

error term      . 

Similarly, consider three points        and     which are located on 

the   axis with equal distance   between them. Let the value of the 

function        at the points                and         be       ,     , 

and       , respectively as shown in figure 1.4. 

 

 

Figure 1. 4: three points        and     which are located on the   axis 

Using Taylor series to express         and         in the form of Taylor 

expansions about the point   , then the finite difference approximation 

formulas with the error term       of second order for 
   

   
   and 

  

   
     

are, respectively: 
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and 

                       
  

  
   

             

  
                                                        

 Combining   and   axis together, we get the star–shape 

 ( 5-points stencil) region about the point       as shown in figure 1.5 . 

 

Figure1. 5: combining x-axis and t-axis around the       point 

Inserting equations (1.15) and (1.17) into equation (1.12) yields: 

(  
   

   
 

   

   
)          

                   

  
 

                   

  

   

Rearranging the above equation, we get   

                                                                       

     
  

       
[                               ]                                    

In general, if   satisfies the wave  equation, then   at any point in the 

domain   satisfies equation (1.20). 
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Now, suppose we have Dirichlet boundary conditions defined on the 

rectangular domain such that         and        (see [6]) as 

shown in figure 1.6 . 

 

Figure 1. 6: Dirichlet boundary conditions defined on the rectangular domain 

Let               be given on all boundaries of the domain, that 

is       is defined on the left, up, right and down boundary walls so 

that the boundary grid points (blue points) and the corner grid points 

(green points) are known. In other words, the values of the points (      

),                              ( see [6],[34]) under the 

function   are known. For the corner grid points, we use the following 

equations  
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1.4.2 Inhomogeneous Wave Equation with Dirichlet Boundary 

Conditions 

 To derive the formula of finite difference approximation with Dirichlet 

boundary conditions for inhomogeneous wave equation: 

                                                     
   

   
 

   

   
                                           

We follow similar approach for the homogeneous wave equation with 

some amendments in equation (1.19),  that is 

     
  

       
[                                       ]            

1.4.3 Homogeneous Wave Equation with Neumann Boundary  

Conditions 

 When the normal derivative of the unknown function   is prescribed 

on the boundary of a domain  , then we call this part Neumann 

boundary    , i.e. the value of the normal derivative of the function is 

given on the boundary of the domain, where        is a given function. 

   
  

  
        

To derive the formula of finite difference approximation with 

Neumann boundary condition for the wave equation  

  
   

   
 

   

   
   

Consider that we have a rectangular domain as shown in figure 1.6.  
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Suppose that Dirichlet condition is specified on up, right and down 

walls and Neumann condition is defined on the remaining wall which is 

the left wall as follows (see [27] ): 

                                                   
  

  
 

  

  
                                                    

Now, we want to approximate equation (1.24) using the second order 

approximation using equation (1.16). This procedure puts the grid 

points       outside the domain towards the left that is located on 

imaginary boundary that their fake coordinates will be       (see 

[16],[27]). 

So, equation (1.24) is approximated using equation (1.16) at the 

line        

  

  
       

             

  
 

         

  
         

Thus, 

                                                                                                          

Now, we write equation (1.20) at the point       as 

     
 

       
[                               ]  

     
 

       
[                           ]                                   

 

Substituting equation (1.25) into equation (1.26), we get: 



 19 

      
 

       
[                                       ] 

      
 

       
[                                 ]                    

For any two positive integers   and  , we use equation (1.27) for 

           , where        is a specified function. As Dirichlet 

condition is specified on up, right, and down walls, the values 

                                      

                  are known. To find the values of corner grid 

points, we use equation (1.21). 

1.4.4 Inhomogeneous Wave Equation with Neumann Boundary 

Conditions 

Consider the inhomogeneous wave equation: 

  
   

   
 

   

   
        

with Neumann boundary condition: 

 
  

  
 

  

  
        

defined on the rectangular domain. 

Similar to the homogeneous wave equation, the difference 

approximation formula of Neumann condition at the fake grid point 

      is equation (1.25), that is (see [27]):  
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Now, using equation (1.24) to find the value of the point      , we get 

     
 

       
[                                   ]                1.28)  

Substituting equation (1.25) into equation (1.28), we get 

     
 

       
*                       (              )

          +   

Thus 

     
 

       
[                                          ] (1.29) 

If       , we use equation (1.23). 

Using the same method, we can deal with other boundary points 

except the corner points. For corner points, we use equation (1.21) to 

find their values (see [35],[36] ). 

1.5 Finite Element Method 

The Finite Element Method (FEM) is the most known numerical 

method used for solving partial differential equations to approximate 

the solution of them when the analytical (exact) solution is impossible 

to find. This method is effective when the domain of the problem has 

boundary with irregular shapes. Finite element method (FEM) can be 

applied on many scientific and engineering problems such as fluid 

flow, heat transfer, electromagnetic fields, aerospace, civil engineering, 

and so on (see [30] ).   
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The Principle of Finite Element Method (FEM) 

The following are the basic steps involved in the finite element method  

( see [15] and [33] ): 

Discretization: The discretization of the given differential equation is 

obtained by dividing the given domain   into a finite number of 

elements . The points at which those finite elements intersects are 

called nodes (blue points as in figure 1.7). The nodes and elements 

both are numbered by a suitable indices .  

Derivation of finite element equations: For any given differential 

equation, a variational formulation is constructed for each element. 

Then the element equations are obtained by substituting a typical 

dependent variable into the variational formulation. After choosing the 

variable    and the interpolation functions, the element matrices can be 

computed. 

Assembly: After the calculation of element matrices, the next step is to 

assemble those element equations so that the final solution is 

continuous. When this assembly is done, the entire system of equations 

takes the matrix form . 

Boundary conditions: Apply the boundary conditions for that 

problem to the above system of equations . 
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 Solution of the equations: Finally the system is solved by any 

available standard technique for solving system of equations, for 

example Gauss elimination. 

 

Figure1. 7: finite element on irregular shape 

1.5.1 Finite Element Method (FEM) for Dirichlet Boundary Value 

Problems 

This section discusses the finite element method that is used to solve 

one dimensional hyperbolic partial differential equation with Dirichlet 

boundary conditions in a rectangular domain and focuses on finite 

element solution using spreadsheets with triangular grid (see 

[15],[33]).  

Now, we want to approximate the solution of homogeneous wave  

equation  
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defined on a rectangular domain with Dirichlet boundary conditions 

defined on the up, left, right and down boundaries (edges) as shown in 

figure 1.8. 

The region is divided into equal triangular elements. In this  

discretization, there are global nodes such that the nodes which  are 

located on the boundaries (blue nodes) that the function   defined on 

them is known and interior nodes (green nodes) that the function   

defined on them is unknown. 

 

Figure1. 8: rectangular domain with Dirichlet boundary conditions 

  Suppose           and let   be the number of equal portions that 

are located on bottom boundary ( -axis). In this case,      portions 

(from node 1 to node 2, from node 2 to node 3, from node 3 to node 4 
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and from node 4 to node 5). The length of each portion is equal to the 

length of other portions and is equal to  
 

 
 

 

 
 . 

In similar manner, suppose           and let   be the number of 

equal portions that are located on the left boundary ( -axis). 

 In this case,      portions (from node 1 to node 10, from node 10 to 

node 11 and from node 11 to node 20). The length of each portion is 

equal to the length of other portions and is equal to 
 

 
 

 

 
    (see [30]). 

 

Figure1. 9: coordinate for each node in finite element method 

Now, we can easily find the coordinate for each node as shown in 

figure 1.9  as follows:  

Node 1: (0,0)  

Node 9:  
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Node 14:  
 

 
   

 

 
    and so on until Node 18 : (a ,b).  

Now, for each element (triangle)  , we determine the local node 

numbers 1, 2, and 3 that must be assigned so that global nodes 

associated with an element are traversed in a counterclockwise sense.  

For example: Element 1: 

At node 1: the local node number is 1, so                  

At node 2: the local node number is 2, so            
 

 
      

At node 10: the local node number is 3, so              
 

 
    

These are shown in figure 1.10. 

 

 

Figure1. 10: the local node numbers are determined on nodes start from node1, then 

node 2 and finally with node 10 (in a counterclockwise). 

Similarly, we determine the local node numbers     and   for each 

element    in the same way as in element  .  

The following must be computed for each element    : 
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For element 1:  

                             
 

 
                      

 

 
   

                  
 

 
    

 

 
  

                  
 

 
    

 

 
  

and so on.  

Now, for each element  , we want to find the       element coefficient 

matrix for which the entries are given by the equation: 

   
     

 

  
[         ], for      =1,2,3 ,                                              (1.30)  

 where 

                                       
 

 
           . 

When we find the element coefficient matrices, then the global 

coefficient matrix   is assembled from the element coefficient 

matrices. If the number of nodes is  , then the global coefficient matrix 

  will be an       matrix (in our case  =20).  

We can compute the entries of the main diagonal as follows: 
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    : is the entry that is located on row 1 and column 1 in the global 

coefficient matrix   which corresponds to node 1 that belongs to 

element 1 only. Node 1 is assigned local node number 1 in element 1 as 

shown in the following figure (1.11). 

              Local node number 1     

 

 

Figure1. 11: Node 1 is assigned local node number 1 in element 1 

        
     is the entry that is located on row 1 and column 1 in the  

element coefficient matrix for element 1.  

    : is the entry that is located on row 2 and column 2 in the global 

coefficient matrix   which corresponds to node 2 that belongs to 

elements 1, 2, and 3. Node 2 is assigned local node number 2 in 

element 1 and local node number 1 in elements 2 and 3 as shown in 

the following figure(1.12), (see [33] ). 

 

Figure1. 12: Node 2 has Local node number 2 in element 1 and Local node number 1 in 

element 2 and element 3. 

Elemen

t 1  

1
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    where is the entry    

    that is located 

on row 2 and column 2 in the element coefficient matrix for element 1 

and    
       

    are the entries that are located on row 1 and column 1 

in the element coefficient matrix for element 2 and element 3,  

respectively. 

Using the same method, we can find the remaining diagonal entries , 

for         . For other entries in the global coefficient matrix C, we 

do that using a different method described in the following 

paragraphs:  

Take, for example, the entry      in the global coefficient matrix C. It 

corresponds to node 2 and node 9. So, the link between node 2 and 

node 9 is called global link which corresponds to local link 1−2 of 

element 2 and local link 1−3 of element 3 as shown in figure 1.12. 

 Hence,  

        
       

    

The other off-diagonal entries are treated similarly.  

Now, defining vector    to be a vector of unknowns (interior nodes, 

green nodes) and vector    to be a vector of prescribed boundary 

values. In other words, is a vector of the value of nodes that are located 

on the boundaries (blue nodes) as shown in figure 1.8.  

Define matrix     to be a matrix of unknown nodes obtained from the 

global coefficient matrix   and matrix     to be a matrix of unknown 
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nodes and prescribed boundary values that is also obtained from the 

global coefficient matrix C.  

In our case,     is a 6 × 6 matrix since we have 6 interior nodes (green 

nodes) and     is a 6 × 14 matrix since we have 6 interior nodes (green 

nodes) and 14 boundary nodes (blue nodes) as shown in figure 1.8.  

The vector    of unknown nodes can be computed by using:  

                                                        
                                                     

The vector    contains the approximations to the unknown nodes 

(interior nodes), (see [33] ). 

1.5.2 Finite Element Method (FEM) with Neumann Boundary 

condition 

We derive and analyze a finite element method for the 1D wave 

equation 

                                                                                                           

 

with boundary conditions      on   where   is a bounded domain in 

the plane with boundary        is a given real-valued piecewise 

continuous bounded function in  . 

Finite Element Discretization 

We formulate a finite element method for equation (1.32) based on 

using continuous piecewise linear function in space  (see [3], [4], [40]). 

Define the following subspace of a Sobolev space: 
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               is a continuous function on      and    are piecewise 

continuous and bounded on   ,                 . 

 

                     ∫                                                        
 

       

The goal of the following development is to simplify equation (1.33) in 

the general case, and then to switch focus on a finite-dimensional 

subspace    of   spanned by the basis functions 𝜙
 
   . This will allow 

us to write out a linear system of equations for the unknown 

coefficients     . It is easy to verify by Gauss’ divergence theorem that 

            ∫         
 

  ∫     
 

    ∫     
  

                                       

where     is an area element on   . Applying this result to 

equation(1.33)  we have  

        ∫                      
 

 ∫         
  

                              

which is called the variational formulation of the wave equation. The 

solutions to equation (1.35) are called weak solutions to the wave 

equation (see [18]). 

Now, suppose the domain   is divided into finite number of elements 

(triangles)   ,            such that:  

 ̅  ⋃  ̅

 

   

        ̅        

Let     be a partition of  . Take any triangle      where:  
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diam( ) = the longest edge of  ̅ and          
        . 

Now, we can define the finit element space as follows: 

                is a continuous function on     and it is linear on each 

triangle      ,                  (see [18] ). 

Each triangle   ,            has three vertices denoted by         . 

We define the basis function  𝜙
   

as follows: 

𝜙
 
     {

        
        

 

                        

Let   be a set of vertices where 𝜙
 
      and let   be the number of 

interior vertices in    , any function      has a unique 

representation written as: 

                         ∑   𝜙 
                     

 

   

 

where          . 

The finite element solution is written as: 

                                                  ∑     𝜙 
   

 

   

                                  

where 𝜙
 
    is standard continuous piecewise linear function 

in space (see [18]).  

Substituting the approximation (1.36) into equation (1.35), we get  
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∑  ∫   

 

 𝜙
 

  
 
 𝜙

 

  
  

 

   

 ∑  
    ∫ 𝜙

 
   𝜙

 
   

 

   

 

   

 ∑  ∫ 𝜙
 
   

 

 𝜙
 

  
     

 

   

  ∫ 
 

𝜙
 
            

                                                     𝜙
 
                                                             

Let        denote the vector of unknown coefficients, 

 

           is mass matrix     in space, with coefficients 

 

    ∫ 𝜙
 
   𝜙

 
   

 

    

    (   ) is stiffness matrix     in space and              , with 

coefficients 

    ∫
 𝜙

 

  
 
 𝜙

 

   

    

    ∫ 𝜙
 
   

 

 𝜙
 

  
     

and   

    (  )     (   𝜙
 
)  

Which can be written in a matrix form as 

  

           
          

 

Using a finite difference approximation for the time derivative gives 
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So 

                                           

            .                                                                                         (1.38) 

1.6 Finite Difference Method for Two Dimensional Wave    Equation  

consider the following two dimensional inhomogeneous wave 

equation: 

                                
   

   
    (

   

   
 

   

   
)                                        

or we can simply write this equation in another form as 

                                          (        )                                                 

For a fixed time  , the surface                         

and                     for any           , where B denotes the 

boundary of a region            is a continuous function on   and 

         is continuous on  . The continuity of both   and    guarantees 

a unique solution of equation (1.40). 

Two dimensional wave equations are easily discretized by assembling 

building blocks for discretization of one dimensional wave equations, 

because the two dimensional versions just contain terms of the same 

type that occurs in one dimension. 
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Now, we will use the finite difference algorithm for solving two 

dimensional wave equation, as shown in figure (1.13) (see [19],[28]). 

We introduce a mesh in time and in space. The mesh in time consists of 

time points           , often with a constant spacing 

              . 

It  is a very common choice to use constant mesh spacings:  

                        

We consider equal mesh spacings such that            . 

 

Figure1. 13: discretization of two dimensional domain 

The unknown   at mesh point             is denoted by              or  

      . 
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The difference method is obtained using the centered-difference 

quotient for the second partial derivatives given by (see [27]): 

    
                         

     
  

     

  
 
   (        )

   
   

                                                                                                           

    
                         

  
 

  

  
 
   (         )

   
   

                                                                                                           

 and  

    
                         

  
 

  

  
 
   (        )

   
   

                                            (         )                                                   

Substituting equations (1.41), (1.42) and (1.43) into equation (1.39) 

gives 

                         

     

    
                         

  

   
                         

  

 
 

  
*     

   (        )

   
      

   (        )

   

      
   (        )

   
+                                                      

for each                                          . 

Neglecting the error term            ²)   
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*     
   

   
(        )       

   

   
(        )       

   

   
(        )+ 

  and multiplying both sides by        we get: 

                         

         
                         

  

        
                         

  
             

Define              ⁄ , we get : 

                         

                                              

                                                                                     

then Simplifying equation (1.45), hence it can be written as: 

              

   (                                   )          

                                                                                     

For                                        . 

with boundary conditions: 

1.       =           , for                 and               . 

2.       =   (         ), for               and               .        

3.       =   (         ), for               and               .        

4.       =   (         ) , for                and                 . 
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5.       =           , for                   and                 . 

6.       =           , for              and             .              (1.47) 

  Equation (1.46) involves approximations to the unknown function 

          at the points  (          ) (        ) (          ) (          )  

(          ) (          )               

When we use formula (1.46) with boundary conditions (1.47), then at 

all points (        ) that are adjacent to a boundary mesh point, we 

have an                    by                    

linear system with the unknowns being the approximations         

to  (        ) at the interior meth points (see [28]).  

The generated linear system should be solved by Jacobi, Guass-Seidel, 

Successive over Relaxation (SOR), or Conjugate Gradient methods. 

1.6.1 Two Dimensional Wave Equation with Dirichlet Boundary 

Conditions 

When the function is defined on any part of a domain    then we call 

this part Dirichlet boundary   , i.e. the unknown function   is 

prescribed on the boundary, that is,                    

          where the function   is a known function .  
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To derive the formula of finite difference approximation with Dirichlet 

boundary condition for two dimensional wave equation 

                                
 

 
 

   
    (

   

   
 

   

   
)                                

we consider three points      , and     which are located on 

  axis with equal distance   between them, then the value of the 

function          at the points                    and           be 

          ,          ,and          , respectively (see [19],[27]and [28]). 

Now, use Taylor series to express            and            in the form of 

Taylor expansions about the point   as follows: 

                
 

  
 
  

  
   

  

  
 
   

   
   

  

  
 
   

   
                                  

                
 

  
 
  

  
   

  

  
 
   

   
   

  

  
 
   

   
                                   

By adding the two equations (1.48) and (1.49), we get: 

                           
 
 
   

   
         

By rearranging the above equation, we get: 

                     
   

   
   

                         

 
 

                                

Equation (1.50) is a finite difference approximation formula with the 

error term      .  

Now, subtracting equation (1.49) from equation (1. 48), we get: 
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Equation (1.51) is a finite difference approximation formula with the 

error term      . 

Similarly, consider three points        and     which are located on 

the   axis with equal distance   between them. Let the value of the 

function         at the points                    and            be 

        ,         and           , respectively. 

Use Taylor series to express          and          in the form of Taylor 

expansions about the point   , the finite difference approximation 

formulas with the error term       of second order for 
   

   
   and 

  

   
    

are, respectively: 

        
   

   
   

                          

  
                                           

and 

          
  

  
   

                 

  
                                                             

Similarly, consider three points        and     which are located 

on the   axis with equal distance   between them. Let the value of the 

function         at the points                    and           be 

        ,         and           , respectively. 

Now, use Taylor series to express           and          in the form of 

Taylor expansions about the point  , the finite difference 



 41 

approximation formula with the error term       of second order for  
   

   
     is 

                                  
                         

     
                                      

Inserting equations (1.50), (1.54) and (1.52) into equation (1.39) 

yields: 

                         

     

   
                         

  

   
                          

  
                                   

by rearranging equation (1.55) and let              ⁄ ,  , we get   

              

   (                                   )          

                                                                                      

In general, if   satisfies the wave equation, then   at any point in the 

domain   satisfies the above equation . 

Now, suppose we have Dirichlet boundary conditions defined on the 

box-shape domain such that                   and 1      . 

Let                   be given on all boundaries of the domain, that 

is       is defined on the all boundaries. 

In other words, the values of the points (         ),               

             and               under the function   are 
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known.  For the corner grid points, we use the following equations (see 

[28]) : 

         
 

 
                             

          
 

 
                                                        

         
 

 
                               

         
 

 
                               

         
 

 
                                 

         
 

 
                                 

         
 

 
                                           

         
 

 
                                                    

1.6.2 Two Dimensional Wave Equation with Neumann Boundary 

Conditions 

 When the normal derivative of the unknown function   is prescribed 

on the boundary of a domain   , then we call this part Neumann 

boundary    , i.e. the value of the normal derivative 
  

  
          is 

given on the boundary of the domain, where          is a given 

function. 
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We derive the formula of finite difference approximation with 

Neumann boundary condition for two dimensional wave equation  

   

   
    (

   

   
 

   

   
)           

Suppose that Dirichlet condition is specified on up, right and down 

walls and Neumann condition is defined on the remaining wall which is 

the left wall as follows: 

                                                            
  

  
 

  

  
                                                

Now, we want to approximate equation (1.24) using the second order 

approximation using equation (1.16). This procedure puts the grid 

points         outside the domain towards the left that is located on 

imaginary boundary that their fake coordinates will be           

(see [21],[27]). So, equation (1.58) is approximated using equation 

(1.53) at the line         

         
  

  
     

                 

  
   

From this it follows that               . The discretized wave equation 

at the boundary point         reads 

              

   (                               )          
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We can then just insert         for        into equation (1.59) and then 

solve for the boundary  value         .So we get, 

                 (                         )           

                                                                                                               

For any positive integers     and  , we use equation (1.44) for 

           and            As Dirichlet conditions are 

specified on other boundaries, the values  are known. To find the 

corner boundary values, we use equation (1.57) (see [27] ). 
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Chapter Two  

Iterative Methods for Solving Linear Systems 

In chapter one, a linear system was generated using the finite 

difference method (FDM) and the finite element method (FEM) to 

describe the partial differential equations that can be solved by 

iterative techniques. In this chapter, we will solve such linear systems 

by iterative methods and discuss their convergence properties (see 

[31]).  

For solving an       linear system  

       

We start with an initial approximation      to the solution   and then 

generate a sequence {    }
   

 
 that converges to  .  

Most iterative techniques involve a process of converting the system  

       into an equivalent system:   

           

where   is an      matrix and   is a column vector.  

After selecting an initial approximation       , we generate a sequence 

of vectors {    }
   

 
  defined as:   

                             

The used iterative methods here are :  
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1. Jacobi Method.  

2. Gauss-Seidel Method.  

3. Successive over Relaxation (SOR) Method.  

4. Conjugate Gradient Method.  

consider the     (square) linear system: 

                             

                                                                               

                             

where  

  [

                   

                   

          
                 

],   [

  

  

 
  

]  and     [

  

  

 
  

]   

We can simply write this system in matrix form as: 

[

                   

                   

          
                 

] [

  

  

 
  

]   [

  

  

 
  

]  

Then, we can convert system (2.1) into the form:  

           

Then selecting an initial approximation       , we generate a sequence 

of vectors {    }
   

 
  defined as (see [5]):   
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2.1 Jacobi Method 

The Jacobi method is an algorithm in linear algebra for determining the 

solutions of a system of linear equations with largest absolute values in 

each row and column dominated by the diagonal element. Each 

diagonal element is solved and an approximate value plugged in. This 

process is then iterated until it converges.  

The Jacobi method is the simplest iterative method for solving a 

(square) linear system       . (see [5] ). 

The General Formula of Jacobi Method 

In general, the Jacobi iterative method is given by the sequence :  

  
    

 

   
* ∑       

     
 

   
   +             

                                                                                                      

We can derive formula (2.2) by splitting matrix   into its diagonal and 

off-diagonal parts (see [31],[5]).  

Let   be the diagonal matrix where entries are those of matrix  , let    

be the strictly lower triangular part of matrix   and let    be the 

strictly upper triangular part of matrix  . With this notation matrix   is 

split into:  
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where  

  [

               
               
          
             

]     [

             
                

          
                 

 ] 

and   

   [

                   

                          

               
                 

 ] 

By substituting formula (2.2) into        , we get:  

              

The above equation can be written as:  

                   

If     exists, then:  

                      

This result is the matrix form of the Jacobi scheme:  

                             

Using                  and         , we obtain the Jacobi 

technique of the form: 
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So, 

  
    

 

   
* ∑       

     
 

   
   +                       

Conclusion: to find      approximation we must know        

approximation for any     where     . Continuing this procedure, 

we obtain a sequence of approximations (see [5] and [29]). 

2.2 Gauss-Seidel Method 

 This iterative method is used for solving  a square linear system 

      , it is similar to the Jacobi method. 

But with the Jacobi method, the values of     
    obtained in the     

iteration remain unchanged until the entire (        iteration has 

been calculated. With the Gauss-Seidel method, we use the new values 

  
      as soon as they are known. For example, once we have 

computed   
      from the first equation, its value is then used in the 

second equation to obtain the new   
      and so on, this is the 

difference between the Jacobi and Gauss-Seidel methods (see [5]).  

The General Formula of Gauss-Seidel Method 

In general, the Gauss-Seidel iterative method is given by the sequence   

  
    

 

   
* ∑      

    ∑      
     

 

     

   

   
   +         

                                                                                                      

https://en.wikipedia.org/wiki/Jacobi_method
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We can derive formula (2.4) by substituting formula (2.3) into  

       , so we get (see  [5],[31] ):  

              

The above equation can be written as:  

                  

If        exists, then:  

                          

This result is the matrix form of the Gauss-Seidel scheme:  

                               

Using               and              , we obtain the Gauss-

Seidel technique of the form: 

                                                  .                                  

2.3 Successive over Relaxation Method (SOR Method)  

The main constraint in using this method is that the coefficient matrix 

 of the linear system       must be symmetric and positive definite. 

For any positive real number called the relaxation parameter (factor), 

          When          , the method is called Successive under 

Relaxation and can be used to achieve convergence for systems that 

are not convergent by the Gauss-Seidel method. However, if 
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       , then the method is called Successive over Relaxation 

method. If      , then we get Gauss-Seidel method (see [5],[14] ).  

The General Formula of SOR Method  

The derivation of the general formula of SOR method depends on 

Gauss-Seidel formula. Consider Gauss-Seidel formula, that is (2.4): 

  
    

 

   
* ∑      

    ∑      
     

 

     

   

   
   +        

Defining the difference: 

      
      

      

This can be written as: 

  
      

          

Now, multiplying       by the relaxation parameter    in the last 

expression, we get: 

  
      

           

                                      
       (  

      
     ) 

So,                                        
              

         
    

Substituting the Gauss-Seidel formula (2.4) into the last expression, we 

get: 

  
           

      
 

   
[ ∑      

    ∑      
      

     
   
       ]  

                                                                                                         



 51 

Formula (2.5) is called the SOR iterative method (see [5] ). 

We can express formula (2.5) in matrix form as follows (see [5], [31] ):  

Since       , then we can multiply formula  (2.5) by     to get: 

     
              

     

  * ∑      
    ∑      

     
 

     

   

   
    + 

Simplifying the last formula, we get 

     
              

     

  ∑      
     ∑      

     
 

     

   

   
    

By rearranging the above equation, we get 

     
     ∑      

   
   

   

           
       ∑      

     
 

     
    

Then, 

           (         )          

Now, if           exists, then we have:  

               (         )                     

Then, we get the matrix form of SOR method as: 

                                 

Where:              (         ) and                     
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2.4 Conjugate Gradient Method  

The conjugate gradient method is a numerical iterative method used to 

approximate the exact solution of particular linear system       

where the coefficient matrix   must be symmetric and positive definite 

(see [25]).  

General Formulas Needed to Compute The Conjugate Gradient 

Method Algorithm  

Suppose we want to solve the following     linear system:  

     

Where   is symmetric and positive definite matrix,   and   are column 

vectors (     matrices). 

The solution of        uniquely minimizes the following quadratic 

form: 

     
 

 
          

Suppose that   is a basis of   where:  

                 with respect to matrix          where  

          is a set of   mutually conjugate (orthogonal) directions.  

We will write the conjugate gradient iterative method algorithm as 

follows (see [25]): 
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Step 1: Start with initial guess    that may be considered 0 if otherwise 

is not given.  

Step 2: Calculate the residual vector     as follows:  

           

Step 3: Let the initial direction vector          , that is, the negative of 

the gradient of the quadratic function:  

     
 

 
            at         

Note that      will change in each iteration.  

Step 4: Compute the scalars   's using the formula:  

   
  

 
 
   

  
      

                  

Step 5: Compute the first iteration     using the formula:  

           

Step 6: Compute the residual vectors     's using the formula:  

                                 

Step 7: Compute the scalars     's using the formula:  

    
    

 
 
     

  
 
 
   

                  

Step 8: Compute the direction vectors     's  using the formula:  
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Step 9: Compute the iterations     using the formula ( see 

[25],[31],[39]):  

                                                        

2.5 Convergence of Iterative Methods 

In this section, the general aim is to study the convergence for each 

previous iterative method and then make a comparison between them. 

After that, we will conclude the fastest method. In any computational 

problem, we get high accuracy if the error becomes very small. In our 

iterative methods problem, the actual error   is the difference between 

the exact solution   and the approximate solution       . But we cannot 

compute its value since we do not know the exact solution. Instead of 

that, we will deal with the estimate error which is equal the difference 

between the approximate solution      and the next approximate 

solution       ( see [5] ). 

Therefore, we can compute more iterations with less errors and hence 

we get high level of accuracy.  

Suppose   is the exact solution of the following linear system:  

                                                                                                                         

This can be written in equivalent form as:  

                                                                                                       

where   is an     matrix and   is a column vector.  
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The idea of the iterative methods is to generate a sequence of vectors 

{    }
   

 
  that converges to the exact solution   of the linear system 

(2.6). (Note that each vector in the sequence is an approximation to the 

exact solution) (see [14] ). 

2.5.1 Convergence of Jacobi and Gauss-Seidel Iterative Methods 

The following theorems hold for Jacobi and Gauss-Seidel iterative 

methods :  

Theorem 2.1 (see [39]) 

For any initial approximation, a sequence of vectors {    }
   

 
 

converges to the exact solution   if and only if the spectral radius of the 

square matrix         . (  is the matrix as in (2.7) form). 

Theorem 2.2  (see [39]) 

If the coefficient matrix   for the linear system (2.6) is strictly 

diagonally dominant, then the sequence of vectors {    }
   

 
  generated 

by the Jacobi and Gauss-Seidel Iterative techniques converges to the 

unique solution of that system .  

Theorem 2.3 (see [5]) 

If         (any norm of   ) then the sequence of vectors {    }
   

 
  

converges to a vector      for any initial approximation vector 

       . 
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2.5.2 Convergence of SOR iterative Method 

Theorem 2.4 (see [39]) 

Theorem 2.1 holds for SOR method. 

Theorem 2.5 “ Ostrowski-Reich ”  (see [5]) 

If the coefficient matrix   of the linear system (2.6) is a positive 

definite matrix and the relaxation parameter (factor)        , then 

the SOR method converges for any choice of initial approximation 

vector      . 

2.5.3 Convergence of Conjugate Gradient Method 

Theorem 2.6 (see [25]) 

The sequence of vectors  {    }
   

 
  generated by the Conjugate 

Gradient method converges to the solution   of the square linear 

system        of   variables in at most   steps for any choice of 

initial approximation vector     . 

Proof: (see [25]). 

suppose   is the exact solution and      is the initial solution.  

The set of direction vectors are orthogonal so they are linearly 

independent. Therefore, they span the space    . Hence, we can write: 

                                  where    's     

Multiplying both sides of the last expression by   
  , we obtain 
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Simplify  the above expression, we get 

  
      

      

     
         

         
             

       

but       ,            , and   
           . So, it becomes: 

  
          

     

Thus, 

                                                           
  

    

  
    

                                                      

Now, we want to show that         where 

   
  

 

 
   

  
      

                  

                                

Multiply both sides of the last equation by   
   

  
       

                                 

                            
       

                                         

                             
                       

The above can be written as: 

  
       

       

Or  

  
  (     )    

Therefore, 
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  (    )    

  (       ) 

                      
 (      )    

           
         

   
           

Now, put    
       

      in equation (*), then we get: 

                       
  

    

  
    

    

This completes the proof. 
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Chapter Three 

Numerical Results 

In this chapter, we will deal with homogeneous and inhomogeneous 

one and two dimensional wave equations with Dirichlet and then with 

Neumann boundary conditions by using finite difference method. Next, 

we will deal with homogeneous and inhomogeneous one dimensional 

wave equation with Dirichlet and then with Neumann boundary 

conditions but by using finite element method. At the end of this 

chapter, we will make a comparison between the iterative methods 

that are used for solving the linear system by finite difference and 

finite element methods. 

Example 3.1  

Consider the following homogeneous one dimensional wave equation 

              

with square domain                                

                    subject to Dirichlet boundary conditions given 

on the boundaries as illustrated in figure 3.1, such that : 

                                                    

we want to approximate the solution   by using: 

1- Finite Difference Method (FDM). 

2- Finite Element Method (FEM).  
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1-Applying Finite Difference Algorithm: 

Step 1: Choose positive integers          

Step 2: Define     
     

 
 

   

 
 

 

 
  and    

   

 
  

   

 
 

 

 
    

This step partitions the interval       on  -axis into     equal parts 

of width   
 

 
 and partitions the interval       on  -axis into     

equal parts of width   
 

 
  as step 3 illustrates.  

Step 3: Define the mesh point (     ) as 

                      

                      

for      :         
 

 
      

for      :         
 

 
  

 

 
  

for      :         
 

 
  

 

 
  

for     :         
 

 
       

for      :          
 

 
      

for      :          
 

 
  

 

 
 

for      :          
 

 
   

 

 
 

for      :          
 

 
       

Step 2 and step 3 are illustrated in figure 3.1. 
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Figure3. 1: discretization of the domain for example 1 

The blue points are known boundary points and the green points are 

corner points that are easy to be calculated by equation (1.21). 

However, the black (interior) points are not known which are to be 

approximate.  

Now, we use the difference equation (1.20) to approximate the interior 

(black points) mesh points as follows: 

     
 

       
[                               ] 

For     , and     : 

     
 

      
[                             ] 

                 

                     
  

 
 [                     ]                                          
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But both      and      are known boundary points where        and 

     are unknown. So the value of      and      are         (on the left 

boundary) and         (on the down boundary), so equation (3.1) 

becomes  

                          

                                                                                                         

We can label these mesh points as follows:  

         

where                    

                      . 

                                

 
Figure3. 2: discretization the domain with dirichlet boundary condition for example 1 
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After labeling the interior mesh points as shown in figure 3.2, then 

equation (3.2) becomes:  

                                                                                                             

In similar manner, we get the following difference equations 

For      and     :                        
 

 
                                           

For      and     :                       
 

 
                                       

For      and     :                                                                

rearrange the equations (3.3),(3.4),(3.5) and (3.6) then we get 

             
 

 
 

                 

               

           
 

 
    

This linear system could be written in matrix form as 

      , where   is a vector of unknowns  

  [

     
     
     
     

]    

[
 
 
 
 
  

 

 
 
 

 ]
 
 
 
 

 

If we apply Gaussian elimination to this linear system, then we get the 

following exact solution:  
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  [

                 
                  
                 
                  

] 

We can solve this linear system by any iterative method like Jacobi 

method, Gauss-Seidel method, Successive over Relaxation (SOR) 

method and Conjugate Gradient method. 

Jacobi method 

It is given by the sequence (2.2): 

  
    

 

   
* ∑       

     
 

   
   +             

                                                                                                  

where   is the number of the unknown variables. 

  
   

     
     

    
     

      

  
   

    
     

    
     

                                                         

   
   

     
     

    
     

 
 

 
                                                                         

  
   

    
     

    
     

                                                                             

Consider the initial solution is  

     (  
   

   
   

   
   

   
   

)
 

               

For     (the first iteration): 
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So the first approximation is   

     (  
   

   
   

   
   

   
   

)
 

      
  

 
      

In similar manner, we can find      approximation if we know 

      approximation for any     where       . Continuing this 

procedure, we obtain a sequence of approximations.  

The following approximate solution   obtained by Matlab program for 

Jacobi iterative method with tolerance        : 

  [

                 
                  
                 
                  

] 

Number of iterations Cpu-time 
(seconds) 

The error 

80                                 

To see Matlab code for the Jacobi iterative method refer to appendix A. 

Gauss-Seidel method  

It is given by the sequence (2.4): 

  
    

 

   
* ∑      

    ∑      
     

 

     

   

   
   +         

                                                                                                   

where   is the number of the unknown variables. 
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Consider the initial solution is 

      (  
   

   
   

   
   

   
   

)
 

                                        

For     (the first iteration): 

  
   

     
     

    
     

         

  
   

    
     

    
     

                                                                          
   

 

    
   

    
   

 
 

 
          

 

 
 

  

 
 

  
   

    
   

    
   

                                                  

So the first approximation is  

     (  
   

   
   

   
   

   
   

)
 

      
  

 
      

The following approximate solution   obtained by Matlab program for 

Gauss-Seidel iterative method with tolerance         : 

  [

                 
                  
                  
                  

] 

Number of 
iterations 

         
(seconds) 

The error 

34                                   
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To see Matlab code for the Gauss-Seidel iterative method refer to 

appendix B. 

SOR Method  

The SOR method is given by the sequence (2.5):  

  
           

     

 
 

   
* ∑      

    ∑      
     

 

     

   

   
    +  

                                                                                                   

Choose the relaxation factor      : 

first, write the Gauss-Seidel equations  

  
   

     
     

    
     

      

  
   

    
     

    
     

                                                    

  
   

     
   

    
   

 
 

 
                      

  
   

    
   

    
   

   

Now, the SOR equations with        are: 
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Consider the initial solution is  

     (  
   

   
   

   
   

   
   

)
 

                                       

For     (the first iteration):    

  
   

          
     

           
     

    
     

    

               
   

      *    
   

    
   

+     

  
   

          
     

          
     

    
     

     

                  
   

      *   
   

    
   

+                                                    

  
   

          
     

           
   

    
   

 
 

 
   

                  
   

      *    
 

 
 +                                                                       

  
   

          
     

          
   

    
   

                                                                                                                   

                  
   

                      

So the first approximation is 

      (  
   

   
   

   
   

   
   

)
 

                     

The following approximate solution     obtained by Matlab program for 

SOR iterative method with tolerance       :  

  [

                    
                  
                   
                  

] 

Number of iterations          
(seconds) 

The error 

15                                  

To see Matlab code for the SOR iterative method refer to appendix C. 
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Conjugate Gradient method  

This algorithm can be processed as follows: 

Step 1: Start with initial guess      , say 

            

Step 2: Calculate the residual vector     as follows 

           

     [

   ⁄
 
 

  ⁄

]  [

     
     
     
     

] [

 
 
 
 

] 

So           
 

 
     

 

 
   

Step 3: Let the initial direction vector          . So 

      
 

 
     

 

 
   

Step 4: Compute the scalars    's  by the formula 

   
  

 
 
   

  
      

                 

For       : 

   
  

 
 
   

  
      

 

  
 
 
    [

  

 
       

 

 
]

[
 
 
 
 
  

 

 
 
 

 ]
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       [

  

 
       

 

 
] [

     
     
     
     

]

[
 
 
 
 
  

 

 
 
 

 ]
 
 
 
 

    

So 

   
       

  
          

Step 5: Compute the first iteration     by the formula 

           

                      
 

 
     

 

 
   

                                          

The approximate solution   with tolerance         given by Matlab 

code for conjugate gradient iterative method:  

  [

                 
                  
                  
                  

] 

Number of 
iterations 

         
(seconds) 

The error 

4                                  

To see Matlab code for the conjugate gradient iterative method refer to 

appendix D. 

Comparison between the iterative methods for example 3.1: 

Table 3.1 shows the accuracy for the different iterative methods. That’s 

to say, which of each of the following methods reduce the error 
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(nearest to the exact solution). Each of them obtains the accurate 

solution in different number of iterations. However, more iterations 

give less errors and leads to accurate solutions and this table obtains 

the cpu time and the error for each method to know the fastest and 

best method. 
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Table 3. 1: Comparison between the iterative methods for example 1 

 Method 

    's 

   Jacobi  solution Gauss-Seidel solution     SOR solution Conjugate gradiante 

method 

                                                                            

                                                                             

                                                                             

                                                                           

 Number of                    

iterations 

80 34 15 4 

Cpu-time 

(seconds) 

0.005846 0.002021 0.001800 0.0002667 

Error                

         

              

          

               

         

               

         

The exact solution is:  

  [

                 
                  
                  
                  

] 

Tolerance =     
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2-  We will apply  the finite element method  for example 1 to 

approximate the solution (as shown in figure 3.3). 

 

Figure 3. 3: discretization the domain by finite element method for example 2 

The region is divided into 18 equal triangular elements which are 

identified by encircled numbers 1 through 18 as indicated in figure 3.3. 

In this discretization there are 16 global nodes. 

Now, we will write the coordinates for each node:  

node 1 :           node 2 :  
 

 
       node 3 :  

 

 
     , node 4 :           

node 5 :      
 

 
 , node 6 :  

 

 
  

 

 
 , node 7 :   

 

 
  

 

 
 , node 8 :      

 

 
   

node 9 :      
 

 
  , node 10 :   

 

 
  

 

 
  , node 11 :  

 

 
  

 

 
 , node 12 :     

 

 
   

node 13 : ( 1 , 1 ), node 14 : (
 

 
 , 1 ), node 15 : (

 

 
 , 1 ), node 16 : ( 0 , 1 )  

For each element e, we will label the local node numbers 1, 2, and 3 of 

element e in a counterclockwise sense.  
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Table 3.2 shows that for each element we write its global nodes and 

their local node numbers and coordinates.  

Table 3. 2: the global nodes, local node numbers and the coordinates 

for each element  

Element # global 
nodes  

local node 
numbers 

The coordinates of each 
global node  

Element 1 1 1                     

2 2             
 

 
       

8 3               
 

 
    

Element 2 2 1             
 

 
       

8 2             
 

 
  

 

 
    

7 3               
 

 
     

Element 3 2 1            
 

 
     

3 2             
 

 
       

7 3             
 

 
  

 

 
    

 … …. … 
Element 17 11 1           

 

  
 
 

 
                               

12 2                
 

 
    

14 3             
 

 
       

Element 18 12 1          (    
 

 
 )                          

13 2                     

14 3             
 

 
      

Now, for each element   , the following must be computed:  

For element 1:  

             
 

 
                                   

 

 
 

             
 

 
                                     

                                                 
 

 
 

In similar manner, we compute    
    and        for each remaining 

elements where           . 
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We use equation (1.30) to write the entries of the 3 × 3 element 

coefficient matrix, let us take element 1 as an example: 

   
     

 

  
[         ], for      =1,2,3,  where 

  
 

 
            

 

 
[
 

 
 
 

 
   

 

 
]  

 

  
 

   
     

 

   
  

            
 

 
*
  

 
 
  

 
 

  

 
 
  

 
+    

   
     

 

   
  

            
 

 
*
  

 
 
 

 
 

  

 
  +   

 

 
 

   
     

 

   
  

            
 

 
*
  

 
   

  

 
 
 

 
+   

 

 
 

   
     

 

   
  

            
 

 
*
 

 
 
  

 
   

  

 
+   

 

 
 

   
     

 

   
  

            
 

 
*  

  

 
 

 

 
 
  

 
+   

 

 
 

   
     

 

   
  

            
 

 
*
 

 
 
 

 
    +  

 

 
 

   
     

 

   
  

            
 

 
*
 

 
     

 

 
+    

   
     

 

   
  

            
 

 
*  

 

 
 

 

 
  +    

   
     

 

   
  

            
 

 
*    

 

 
 
 

 
+  

 

 
 

Thus, the 3 × 3 element coefficient matrix for element 1 is:  

     [

   
      

      
   

   
      

      
   

   
      

      
   

]  

[
 
 
 
  

  

 

  

 
  

 

 

 
 

  

 
 

 

 ]
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In a similar manner, we find the 3 × 3 element coefficient matrix for 

element 2,3,4,…,18. 

     [

 

 

  

 
 

  

 
 

  

 

   

 

 

 

],      [

   

 

  

 
  

 

 

 
 

  

 
  

 

]       [

 

 

  

 
 

  

 
 

  

 

   

 

 

 

] 

     

[
 
 
 
  

  

 

  

 
  

 

 

 
 

  

 
 

 

 ]
 
 
 
 

      

[
 
 
 
 

 

 

  

 
 

  

 
 

  

 

 
  

 

 

 ]
 
 
 
 

      

[
 
 
 
  

  

 

  

 
  

 

 

 
 

  

 
 

 

 ]
 
 
 
 

  

     

[
 
 
 
 

 

 

  

 
 

  

 
 

  

 

 
  

 

 

 ]
 
 
 
 

      

[
 
 
 
  

  

 

  

 
  

 

 

 
 

  

 
 

 

 ]
 
 
 
 

       

[
 
 
 
 

 

 

  

 
 

  

 
 

  

 

 
  

 

 

 ]
 
 
 
 

 

      

[
 
 
 
  

  

 

  

 
  

 

 

 
 

  

 
 

 

 ]
 
 
 
 

       

[
 
 
 
 

 

 

  

 
 

  

 
 

  

 

 
  

 

 

 ]
 
 
 
 

       

[
 
 
 
  

  

 

  

 
  

 

 

 
 

  

 
 

 

 ]
 
 
 
 

 

      

[
 
 
 
 

 

 

  

 
 

  

 
 

  

 

 
  

 

 

 ]
 
 
 
 

       

[
 
 
 
  

  

 

  

 
  

 

 

 
 

  

 
 

 

 ]
 
 
 
 

       

[
 
 
 
 

 

 

  

 
 

  

 
 

  

 

 
  

 

 

 ]
 
 
 
 

 

      [

   

 

  

 
  

 

 

 
 

  

 
  

 

]        [

 

 

  

 
 

  

 
 

  

 

   

 

 

 

]. 

The global coefficient matrix   is then assembled from the element  

coefficient matrices. Since there are 16 nodes, the global coefficient 

matrix will be a         matrix. The one diagonal entries can be 

computed as follows:  

Take for example  : 
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For the off-diagonal entries ,for example      , the global link 7−10 

corresponds to local link 1−2 of element 8 and local link 1−3 of 

element 9 as shown in figure 3.3 and hence 

         
       

       

We can compute the value of other off-diagonal entries in the same 

manner. 
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Defining the vector     to be vector of unknowns (interior nodes) and 

vector    to be vector of prescribed boundary values (nodes that are 

located on the boundaries) as shown in table 3.3.  

 

 

 

 

 

 

 

 



 79 
Table 3. 3: represents vector of prescribed boundary values . 

Global 
node  

Boundary conditions The value of global 
node 

1     on left and down 
boundaries  

The average of its 
boundary values  
   

 
   

2     on down boundary 0 

3     on down boundary 0 

4      on down boundary and   
           on right boundary 

The average of its 
boundary values  
   

 
    

5            on right boundary     
 

 
    

 

 
 

8     on left boundary 0 

9     on left boundary 0 

12            on right boundary     
 

 
   

 

 
 

13            on right boundary 
and            on up 
boundary 

The average of its 
boundary values  
   

 
   

14            on up boundary   
 

 
     

 

 
 

15            on up boundary   
 

 
     

 

 
 

16            on up boundary 
and     on left boundary  

The average of its 
boundary values  
   

 
   

So, 

   (        
 

 
    

 

 
   

 

 
  )

 

 

Now, defining the matrix      to be the matrix of unknown nodes 

(interior nodes) and the matrix      to be the matrix of unknown nodes 

and prescribed boundary values. Both matrices      and      are 

obtained from global coefficient matrix    
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Table 3. 4: matrix      that obtained from global coefficient matrix   

    6 7 10 11 
6 4 -1 0 -1 
7 -1 4 -1 0 
10 0 -1 4 -1 
11 -1 0 -1 4 

  

Table 3. 5: matrix     that obtained from global coefficient matrix   

    1 2 3 4 5 8 9 12 13 14 15 16 
6 0 0 -1 0 -1 0 0 0 0 0 0 0 
7 0 -1 0 0 0 -1 0 0 0 0 0 0 
10 0 0 0 0 0 0 -1 0 0 0 -1 0 
11 0 0 0 0 0 0 0 -1 0 -1 0 0 

Now, the inverse of matrix     
  is  

 

   
   [

                        
                        
                        
                        

] 

The vector    of unknowns nodes can be found by using:  

       
        

Hence     [

      
      
       
       

]  [

      
      
      
      

]  

Example 3.2  

Consider the following inhomogeneous one dimensional wave 

equation 

 

 
             

with square domain                                
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                    with Neumann boundary condition 

 
  

  
 

  

  
          given on the left boundary and Dirichlet boundary 

conditions        on the remaining boundaries.  

We will use the finite difference method to approximate the solution of 

the wave equation.   

The mesh size    
 

 
 as shown in figure 3.4. 

The actual grid points (green points) will be shifted toward the left 

until locate on the fake boundary (red line). We want to put the grid 

points       outside the domain towards the left . 

Let          , the following are known as boundary conditions for  

         : 

                                               

 And the following are known as boundary conditions for  
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Figure3. 4: discretization the domain with Neumann boundary condition for example 3 

Now, we use equation (1.29) to approximate the values of boundary 

points on left boundary : 

     
 

       
[                                          ] 

For              ,                             and             

  

 
     *           

 

 
      

 

 
 
 

 
         

 

 
     + 

So   

           
  

 
      [          

 

 
     

 

 
   

 

 
  
 

 
  ]            

But      is a corner point which we can evaluate its value by equation 

(1.21)   so,  
  

 
          

 

 
 

 

 
     

 

 
     

 

 
   

 

 
  
 

 
   

Rearrange this equation, then we get 
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Now,  
  

 
     *           

 

 
      

 

 
 
 

 
         

 

 
     + 

   

 
                

 
       

 
  

 
   

 
   

 
   

 
  

 
 

But      is a corner point which we can evaluate its value by equation 

(1.21) so,  
  

 
     

 

 
 

 

 
          

 

 
     

 

 
  

 

 
  

 

 
  

 

 
 
 

 
 

Rearrange this equation, then we get 

                                       
  

 
           

 

 
      

 

 
                                              

Now, for          and          , we use equation (1.23)  
  

 
               

 

 
     

 

 
     

 

 
      

But       is a known boundary point which is equal to 1 so substitute its 

value and then rearrange the equation, then we get 

                                 
  

 
          

 

 
     

 

 
     

 

 
                                        

  

 
               

 

 
     

 

 
     

 

 
    

 

 
 

But       is a known boundary point which is equal to 1 so substitute its 

value and then rearrange the equation, then we get 

                                 
  

 
          

 

 
     

 

 
     

 

 
                                      

  

 
               

 

 
     

 

 
     

 

 
    

 

 
 

But      and      is a known boundary point which are equal to 1 so 

substitute their value and then rearrange the equation, 
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 Then we get 

                                
  

 
          

 

 
     

 

 
                                                     

 

  

 
               

 

 
     

 

 
     

 

 
  

 

 
 
 

 
 

But      and      is a known boundary point which are equal to 1 so 

substitute their value and then rearrange the equation, then we get 

                               
  

 
           

 

 
      

  

  
                                                 

Now, we have six equations (3.7, 3.8, 3.9, 3.10, 3.11 and 3.12) in six 

variables: 

  

 
           

 

 
     

 

 
 

  

 
           

 

 
      

 

 
 

  

 
          

 

 
     

 

 
     

 

 
 

  

 
          

 

 
     

 

 
     

 

 
 

  

 
          

 

 
     

 

 
 

  

 
           

 

 
      

  

  
 

Labeling the variables as follow  

                                                         

So, the linear system can be written as 
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This linear system should be written in matrix form as follows: 

[
 
 
 
 
 
 
 
 

  

 

 

 
     

 

 

  

 

 

 
    

 
 

 

  

 
    

    
  

 

 

 
 

    
 

 

  

 

 

 

     
 

 

  

 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
  

  

  

  

  

  ]
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 

 

 
 

 
   

  
 

 
 

 
 

 ]
 
 
 
 
 
 
 
 

 

If we apply Gaussian elimination to this linear system, then we get the 

following exact solution:  

  

[
 
 
 
 
 
                  
                 

                  
                  
                 

                  ]
 
 
 
 
 

 

We can solve this linear system by any iterative method like Jacobi 

method, Gauss-Seidel method, Successive over Relaxation (SOR) 

method and Conjugate Gradient method. 

Jacobi method 

The following approximate solution   obtained by Matlab program for 

Jacobi iterative method with tolerance        : 
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[
 
 
 
 
 
                  
                 

                  
                  
                 

                  ]
 
 
 
 
 

 

Number of iterations Cpu-time 
(seconds) 

The error 

95            8.867340167695303e-008 

To see Matlab code for the Jacobi iterative method refer to appendix E. 

Gauss-Seidel method  

The following approximate solution   obtained by Matlab program for 

Gauss-Seidel  iterative method with tolerance        : 

  

[
 
 
 
 
 
                  
                 

                  
                  
                 

                  ]
 
 
 
 
 

 

Number of iterations Cpu-time 
(seconds) 

The error 

49                                   

To see Matlab code for the Gauss-Seidel  iterative method refer to 

appendix  F. 

SOR Method  

We recall the SOR iterative method and we choose the relaxation factor 

     : 

The following approximate solution obtained by Matlab program for 

SOR iterative method with tolerance        : 



 87 

  

[
 
 
 
 
 
                  
                 

                  
                  
                 

                  ]
 
 
 
 
 

 

Number of iterations Cpu-time 
(seconds) 

The error 

21           7.185255812558467e-008 

To see Matlab code for the SOR iterative method refer to appendix  G . 

Conjugate Gradient method 

The following approximate solution    obtained by Matlab program for 

Conjugate Gradient iterative method with tolerance        : 

  

[
 
 
 
 
 
                  
                 

                  
                  
                 

                  ]
 
 
 
 
 

 

Number of iterations Cpu-time 
(seconds) 

The error 

6            1.121023024625157e-016 

To see Matlab code for the Conjugate Gradient iterative method refer 

to appendix H . 

Comparison between the iterative methods for example 3.2: 

Table 3.2 shows the accuracy for the different iterative methods. That’s 

to say, which of each of the following methods reduce the error 

(nearest to the exact solution), obtains the accurate solution in 

different number of iterations, the cpu time and each method error.
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Table 3. 6: Comparison between the iterative methods for example2 

         Method 
 's 

   Jacobi solution Gauss-Seidel solution     SOR solution Conjugate Gradient 
solution 

                                                                               
                                                                           
                                                                               
                                                                               
                                                                           
                                                                               

Number of   
iterations  

95 49 21 6 

Cpu-time 0.007951 0.004546 0.003395 0.000470 
Error  8.867340167695303e-

008 
               

         
7.185255812558467e-
008 

1.121023024625157e
-016 

The exact solution is:  

  

[
 
 
 
 
 
                  
                 

                  
                  
                 

                  ]
 
 
 
 
 

 

Tolerance =     
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Example 3.3  

Consider the following two dimensional inhomogeneous wave 

equation: 

       (        )     

For       , the surface                          

Subject to Dirichlet boundary conditions given on the boundaries as 

follow:                                       ,             , 

          ,             

 We want to approximate the solution   by using finite difference 

method. 

Choose positive integers                

Define            
     

 
 

   

 
 

 

 
 ,     

 

 
 . 

Now, we use the difference equation (1.46) to approximate the interior 

mesh points (green points shown in figure 3.5) as follows: 

                 (                                   ) 

                                        
     

   for                    . 

With boundary conditions: 

1.           for               and              

2.           for              and           .                                                                
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3.          , for         and       .        

4.          , for          and         . 

5.           for            and           .                                               

6.           for             and            .  

 

 

Figure3. 5: discretization the domain with Dirichlet boundary conditions for example 3 

For                  : 

                (                           )                

 (
 

 
)
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So 

          (                           )                

 (
 

 
)
 

 
 

 
 
 

 
 

But                       and        are boundary points which equal zero’s  

so, 

                                              
  

  
                                 (3.13) 

For                  : 

          (                           )                

 (
 

 
)
 

 
 

 
 
 

 
 

But                             and          since it are boundary 

points so, 

                                              
    

  
                               (3.14)     

For                  : 

          (                           )                

 (
 

 
)
 

 
 

 
 
 

 
 

But                             and          since they are 

boundary points so, 

                                              
    

  
                               (3.15)     
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For                  : 

          (                           )                

 (
 

 
)
 

 
 

 
 
 

 
 

But                            and          since they are 

boundary points so, 

                                              
    

  
                               (3.16)     

Now, we have four equations (3.13, 3.14, 3.15 and 3.16) in four 

variables, 

                          
  

  
 

                          
    

  
 

                          
    

  
 

                          
    

  
 

 

Labeling the variables as follow  

                                               

So, the linear system can be written as 
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This linear system could be written in matrix form as 

      , where     is a vector of unknowns  

  [

       
       
       
       

]    

[
 
 
 
 
 
    

  
    

  
  

  
    

  ]
 
 
 
 
 

 

If we apply Gaussian elimination to this linear system, then we get the 

following exact solution:  

  [

                  
                    
                  
                   

] 

We can solve this linear system by any iterative method like Jacobi 

method, Gauss-Seidel method, Successive over Relaxation (SOR) 

method or Conjugate Gradient method. 

Jacobi method  

The following approximate solution    obtained by Matlab program for 

Jacobi iterative method  with tolerance        : 

  [

                  
                  
                  
                  

] 

Number of iterations Cpu-time 
(seconds) 

The error 

28                                    
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To see Matlab code for the Jacobi iterative method refer to appendix I. 

Gauss-Seidel method  

The following approximate solution    obtained by Matlab program for 

Gauss-Seidel iterative method with tolerance        : 

 

  [

                  
                  
                  
                  

] 

Number of iterations Cpu-time 
(seconds) 

The error 

16             5.568056038462999e-008 

To see Matlab code for the Gauss-Seidel iterative method refer to 

appendix J. 

SOR Method  

Choose  the relaxation factor      : 

The following approximate solution   obtained by Matlab program for 

SOR method with tolerance        : 

  [

                  
                  
                   
                  

] 

Number of iterations Cpu-time 
(seconds) 

The error 

15            6.288306131363441e-008 

To see Matlab code for the SOR iterative method refer to appendix  K . 
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Conjugate Gradient method 

The following approximate solution   obtained by Matlab program for 

Conjugate Gradient method with tolerance        : 

  [

                  
                    
                  
                   

] 

Number of iterations Cpu-time 
(seconds) 

The error 

2           2.220446049250313e-016 

To see Matlab code for the Conjugate Gradient method iterative 

method refer to appendix L . 
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Table 3. 7: Comparison between the iterative methods for example 3 

          Method 
 's 

   Jacobi 
  solution 

Gauss-Seidel 
  solution  

   SOR 
 solution 

Conjugate Gradient 
solution 

                                                                                 
                                                                                 
                                                                                 
                                                                               

 Number of                    
iterations 

28 16 15 2 

Cpu-time 
(seconds) 

0.002945                            

Error                  
        

5.568056038462999
e-008 

6.288306131363441e
-008 

2.220446049250313e-
016 

The exact solution is:  

  [

                  
                    
                  
                   

] 

Tolerance =     
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3.1 Comparison between results for finite difference method and finite 

element method for example 3.1: 

A simple comparison between the results in example 3.1 are shown in 

table 3.8 and table 3.9 with tolerance =      : 

Table 3. 8: Comparison between results for finite difference method 

and finite element method for example 1 

Finite difference method 
(using Jacobi method) 

     Finite element method 

                     Node 10         
                     Node 11        
                     Node 7        
                     Node 6        

 

Table 3. 9: Comparison between FE and FD solutions               

   (   

 
) FE solution      

 
  FD solution 

0 0 0 
  ⁄                           
  ⁄                           

1   ⁄    ⁄  

3.2 Comparison between results for iterative methods   

A simple comparison between the results in example 3.1, example 3.2 

and example 3.3 respectively in table 3.1 , table 3.6  and table 3.7 with 

tolerance =      , the comparison yields by compare the number of 

iterations for converging, error and cpu-time to decide which is the 

most efficient iterative method . 
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3.3 Conclusions  

In this thesis we have used two methods to solve both homogeneous 

and in homogeneous hyperbolic PDEs subject to Dirichlet and 

Neumann boundary conditions these methods are the finite difference 

and the finite element methods. The discretization process transfers 

the boundary value problem into   algebraic linear equations . 

This linear system has been solved iteratively by several iterative 

schemes . These are : Jacobi, Gauss-Seidel, Successive over Relaxation 

(SOR), and Conjugate Gradient method. 

We observe that the finite difference method is very simple and 

efficient method for approximating the solution of the boundary value 

problem when the domain has regular shape . While the finite element 

method is more efficient for irregular domains. 

We see clearly that the Conjugate Gradient method is one of the most 

efficient and accurate method in comparison with the Jacobi, Gauss-

Seidel and the SOR  methods.  In fact, it requires less number of  

iterations and cpu-time in comparison with the others. 
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Appendix A 

% Matlab code for Jacobi iterative method 

% Iterative Solutions of linear equations: Jacobi Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u . 

clc 

clear 

format long 

tic 

A=[6 -4 1 0;-4 6 0 1;1 0 6 -4;0 1 -4 6]; 

b=[-1/3;2;0;4/3]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

k=0; 

 while err >1.0e-7 

    for i=1:4 

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 
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    end 

    err= max(abs(un'-u)); 

     k=k+1; 

M(k,:)=[un']; 

u=un'; 

end 

% show the cpu time 

toc  

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix B 

% Matlab code for Gauss-Seidel iterative method 

% Iterative Solutions of linear equations: Gauss-Seidel Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clc 

clear 

format long 

tic 

A=[6 -4 1 0;-4 6 0 1;1 0 6 -4;0 1 -4 6]; 

b=[-1/3;2;0;4/3]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

 k=0; 

 while err >1.0e-7 

     u0=u; 
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 for i=1:4 

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end 

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

K 
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Appendix C 

% Matlab code for SOR iterative method 

% Iterative Solutions of linear equations: SOR me Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clear 

format long 

tic 

A=[6 -4 1 0;-4 6 0 1;1 0 6 -4;0 1 -4 6]; 

b=[-1/3;2;0;4/3]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

w=1.02; 

err=1.0; 

k=0; 

 while err >1.0e-7 

     u0=u; 

for i=1:4 
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    u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i))); 

end 

 un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end  

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix D 

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter) 

% SOLVECG   Conjugate Gradients method. 

%    Input parameters:  

%           A : Symmetric, positive definite NxN matrix  

%           f : Right-hand side Nx1 column vector  

%           s : Nx1 start vector (the initial guess) 

%         tol : relative residual error tolerance for break 

%               condition  

%     maxiter : Maximum number of iterations to perform 

%    Output parameters: 

%           u : Nx1 solution vector 

%       niter : Number of iterations performed 

%        flag : 1 if convergence criteria specified by TOL could 

%               not be fulfilled within the specified maximum 

%               number of iterations, 0 otherwise (= iteration 

%               successful). 

tic 

A=[6 -4 1 0;-4 6 0 1;1 0 6 -4;0 1 -4 6]; 

f=[-1/3;2;0;4/3]; 

err=1.0; 

format long  

s=[0;0;0;0]; 

tol=0.0000001; 
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maxiter =6; 

u = s;         % Set u_0 to the start vector s 

r = f - A*s;   % Compute first residuum 

p = r;          

rho = r'*r; 

niter = 0;     % Init counter for number of iterations 

flag = 0;      % Init break flag 

 % Compute norm of right-hand side to take relative residuum as 

% break condition. 

normf = norm(f); 

if normf < eps  % if the norm is very close to zero, take the 

                % absolute residuum instead as break condition 

                % ( norm(r) > tol ), since the relative 

                % residuum will not work (division by zero). 

  warning(['norm(f) is very close to zero, taking absolute residuum' ...  

                     ' as break condition.']); 

    normf = 1; 

end 

while (norm(r)/normf > tol)   % Test break condition 

    a = A*p; 

    alpha = rho/(a'*p); 

    u = u + alpha*p; 

    r = r - alpha*a; 

    rho_new = r'*r; 
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    p = r + rho_new/rho * p; 

    rho = rho_new; 

    niter = niter + 1; 

    if (niter == maxiter)         % if max. number of iterations 

        flag = 1;                   % is reached, break. 

        break 

    end 

end 

% show the cpu time 

toc 

u 

 err= max(abs(u-o)) 

niter 
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Appendix E 

%Matlab code for Jacobi iterative method 

% Iterative Solutions of linear equations: Jacobi Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clc 

clear 

format long 

tic 

A=[10/8 1/4 0 -1 0 0;1/8 14/8 1/8 0 -1 0;0 1/8 14/8 0 0 -1;-1 0 0 10/8 

1/4 0;0 -1 0 1/8 14/8 1/8;0 0 -1 0 1/8 14/8]; 

b=[1/8;5/8;-11/16;1/4;3/4;1/2]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

k=0; 
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 while err > 1.0e-7 

    for i=1:6 

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    err= max(abs(un'-u)); 

     k=k+1; 

M(k,:)=[un']; 

u=un'; 

end 

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix F 

% Matlab code for Gauss-Seidel iterative method 

% Iterative Solutions of linear equations: Gauss-Seidel Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u 

clc 

clear 

format long 

tic 

A=[10/8 1/4 0 -1 0 0;1/8 14/8 1/8 0 -1 0;0 1/8 14/8 0 0 -1;-1 0 0 10/8 

1/4 0;0 -1 0 1/8 14/8 1/8;0 0 -1 0 1/8 14/8]; 

b=[1/8;5/8;-11/16;1/4;3/4;1/2]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

 k=0; 

 while err >1.0e-7 

     u0=u; 
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    for i=1:6 

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end 

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix G 

% Matlab code for SOR iterative method 

% Iterative Solutions of linear equations: SOR Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u 

clc 

clear 

format long 

tic 

A=[10/8 1/4 0 -1 0 0;1/8 14/8 1/8 0 -1 0;0 1/8 14/8 0 0 -1;-1 0 0 10/8 

1/4 0;0 -1 0 1/8 14/8 1/8;0 0 -1 0 1/8 14/8]; 

b=[1/8;5/8;-11/16;1/4;3/4;1/2]; 

%show the exact solution 

inv(A)*b; 

% Set initial value of u to zero column vector  

u=[0;0;0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

w=1.3; 

err=1.0; 

k=0; 

 while err >1.0e-7 
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     u0=u; 

for i=1:6 

    u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i))); 

end 

 un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end 

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix H 

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter) 

% SOLVECG   Conjugate Gradients method. 

%    Input parameters:  

%           A : Symmetric, positive definite NxN matrix  

%           f : Right-hand side Nx1 column vector  

%           s : Nx1 start vector (the initial guess) 

%         tol : relative residual error tolerance for break 

%               condition  

%     maxiter : Maximum number of iterations to perform 

%    Output parameters: 

%           u : Nx1 solution vector 

%       niter : Number of iterations performed 

%        flag : 1 if convergence criteria specified by TOL could 

%               not be fulfilled within the specified maximum 

%               number of iterations, 0 otherwise (= iteration 

%               successful). 

tic 

A=[10/8 1/4 0 -1 0 0;1/8 14/8 1/8 0 -1 0;0 1/8 14/8 0 0 -1;-1 0 0 10/8 

1/4 0;0 -1 0 1/8 14/8 1/8;0 0 -1 0 1/8 14/8]; 

f=[1/8;5/8;-11/16;1/4;3/4;1/2]; 

err=1.0; 

format long  

s=[0;0;0;0;0;0]; 
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tol=0.0000001; 

maxiter =20; 

u = s;         % Set u_0 to the start vector s 

r = f - A*s;   % Compute first residuum 

p = r;          

rho = r'*r; 

niter = 0;     % Init counter for number of iterations 

flag = 0;      % Init break flag  

% Compute norm of right-hand side to take relative residuum as 

% break condition. 

normf = norm(f); 

if normf < eps  % if the norm is very close to zero, take the 

                % absolute residuum instead as break condition 

                % ( norm(r) > tol ), since the relative 

                % residuum will not work (division by zero). 

  warning(['norm(f) is very close to zero, taking absolute residuum' ...  

                     ' as break condition.']); 

    normf = 1; 

end 

 while (norm(r)/normf > tol)   % Test break condition 

    a = A*p; 

    alpha = rho/(a'*p); 

    u = u + alpha*p; 

    r = r - alpha*a; 
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    rho_new = r'*r; 

    p = r + rho_new/rho * p; 

    rho = rho_new; 

    niter = niter + 1; 

    if (niter == maxiter)         % if max. number of iterations 

        flag = 1;                   % is reached, break. 

        break 

    end 

end 

% show the cpu time 

toc 

u 

 err= max(abs(u-o)) 

niter 
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Appendix I 

% Matlab code for Jacobi iterative method of FDM for 2D wave 

equation 

% Iterative Solutions of linear equations: Jacobi Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clc 

clear 

format long 

tic 

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14]; 
b= [-217/54;-217/27;-1/54;-109/27]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

k=0; 

 while err > 1.0e-7 

    for i=1:4 
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un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    err= max(abs(un'-u)); 

     k=k+1; 

M(k,:)=[un']; 

u=un'; 

 end 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k    
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Appendix J 

%Matlab code for Gauss-Seidel iterative method of FDM for 2D wave 

equation 

% Iterative Solutions of linear equations: Gauss-Seidel Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clc 

clear 

format long 

tic 

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14]; 
b= [-217/54;-217/27;-1/54;-109/27]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

 k=0; 

 while err >1.0e-7 

     u0=u; 
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    for i=1:4 

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

 end 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix K 

% Matlab code for SOR iterative method of FDM for 2D wave equation 

% Iterative Solutions of linear equations: SOR Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clc 

clear 

format long 

tic 

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14]; 
b= [-217/54;-217/27;-1/54;-109/27]; 

%show the exact solution 

inv(A)*b; 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

w=1.3; 

err=1.0; 

k=0; 

 while err >1.0e-7 

     u0=u; 
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for i=1:4 

    u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i))); 

end 

 un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

 end 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix L 

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter) 

% SOLVECG   Conjugate Gradients method of FDM for 2D wave 

equation. 

%    Input parameters:  

%           A : Symmetric, positive definite NxN matrix  

%           f : Right-hand side Nx1 column vector  

%           s : Nx1 start vector (the initial guess) 

%         tol : relative residual error tolerance for break 

%               condition  

%     maxiter : Maximum number of iterations to perform 

%    Output parameters: 

%           u : Nx1 solution vector 

%       niter : Number of iterations performed 

%        flag : 1 if convergence criteria specified by TOL could 

%               not be fulfilled within the specified maximum 

%               number of iterations, 0 otherwise (= iteration 

%               successful). 

tic 

A=[14 -4 -4 0;-4 14 0 -4 ;-4 0 14 -4;0 -4 -4 14]; 
f= [-217/54;-217/27;-1/54;-109/27]; 

err=1.0; 

format long  

s=[0;0;0;0]; 



 131 

tol=0.0000001; 

maxiter =20; 

u = s;         % Set u_0 to the start vector s 

r = f - A*s;   % Compute first residuum 

p = r;          

rho = r'*r; 

niter = 0;     % Init counter for number of iterations 

flag = 0;      % Init break flag 

% Compute norm of right-hand side to take relative residuum as 

% break condition. 

normf = norm(f); 

if normf < eps  % if the norm is very close to zero, take the 

                % absolute residuum instead as break condition 

                % ( norm(r) > tol ), since the relative 

                % residuum will not work (division by zero). 

  warning(['norm(f) is very close to zero, taking absolute residuum' ...  

                     ' as break condition.']); 

    normf = 1; 

end 

 while (norm(r)/normf > tol)   % Test break condition 

    a = A*p; 

    alpha = rho/(a'*p); 

    u = u + alpha*p; 

    r = r - alpha*a; 
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    rho_new = r'*r; 

    p = r + rho_new/rho * p; 

    rho = rho_new; 

    niter = niter + 1; 

    if (niter == maxiter)         % if max. number of iterations 

        flag = 1;                   % is reached, break. 

        break 

    end 

end 

toc 

u 

 err= max(abs(u-o)) 

niter 
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