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Abstract 

The ground state energy of shallow donor impurity in 

GaAs/AlGaAs heterostructure with an applied magnetic field along 

z direction, using exact diagonalization method, had been 

calculated. The effects of the impurity distance on the ground state 

energy versus the confining frequency and magnetic field strength 

had been investigated. The impurity binding energy of the ground 

state had been calculated as a function of impurity position, 

confining frequency and magnetic field strength. In addition, the 

combined effects of pressure and temperature, on the binding 

energy as a function of magnetic field strength had been studied 

using the effective-mass approximation. The result is that, the donor 

impurity binding energy enhances with increasing the pressure 

while it decreases as the temperature decreases.  
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Chapter One 

Introduction 

1.1 Quantum Heterostructure 

The optical, electrical, and transport properties of the semiconductor materials 

are sensitive to many effects like applied electric field, applied magnetic field, 

pressure, temperature, impurity presence and it's position. The semiconductor 

heterostructure is a nano-material scale which typically varies between 1-100 

nm ranges. The donor impurity in a semiconductor system with applied 

magnetic field form the interesting problem to study for all semiconductor 

structure from the quantum bulk ( 3D ) up to quantum dot (QD) (the zero 

dimension 0D ), where the donor binding energy enhances as the 

dimensionality of the heterostructure decreases [1-3]. The change in the 

density of states (DOS) of the heterostructure, for the QD shows as repeated 

delta function unlike continuous behavior for 3D, 2D, 1D quantum well wire 

(QWWs) systems [4].      

Donor impurity in a quantum bulk makes change in optical and electrical 

properties because of the effective charge and effective mass addition to the 

system. The energy gap of the quantum bulk system change due to the 

small impurity binding energy and the coulombic interaction between the 

bulk charge carrier (electron) with the donor impurity [5-6].  

Reducing the dimensionality from 3D to 2D cause the quantum well (QW), 

alter the electrical, optical, transport properties. The donor impurity binding 
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energy depends significantly on the quantum well layer thickness, impurity 

position, quantum well QW shape and width. In particular the binding 

energy of the donor impurity had been calculated as a function of well 

width and the impurity position [1, 7-8]. The effects of the applied electric 

field on the donor impurity binding energy, which is known as Stark effect, 

had been studied [9].  

The low dimensional structures (quantum well-wire (QWW) and quantum 

dot (QD)), can be obtained it by continuous reducing of the dimensionality 

of the electron movement space, and this fabricated by applying additional 

confinement potential on the 2D structure to confine the electron to move 

in a plan. Investigation of this system forms the interesting problem due to 

its special properties which are varying by changing the radius of the 

QWW and QD [10, 11]. The presence of the impurity can alter the 

performance of the quantum devices and the transport properties. As a 

quasi two dimension structure, the QWW has important advantage which is 

the high mobility transistor. The optical properties of the QW, QWWs, and 

QD show a significant dependence on the dimensionality of the nano 

system [12-13]. The importance of study the quantum dots comes from its 

applications, where it make the laser production with wave length that hard 

or impossible to achieve in previous time. In addition, QD has many 

applications in the solar cell, quantum computer, and single electron 

transistor [14].  

Different studies of the donor impurity located in the low-dimensional 

structure had been carried. The donor impurity ionization energy affected 
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by a high magnetic field, where the ionization energy increasing with it 

[15]. The binding energy of a hydrogenic impurity in InSb/GaAs 

semiconductor materials with the presence of parallel magnetic field to the 

QWW axis has been obtained as a function magnetic field strength, wire 

radius, and the location of the donor impurity from the QWW axis [16]. In 

addition, the most interesting phenomena are to study the effect of the 

temperature and pressure on the donor impurity binding energy in reduced 

dimensions [17]. 

The great potential of the modern nanotechnology used to produce the zero 

dimensional structure QD (electron confined in all direction) using 

different methods like etching and molecular beam epitaxy [18]. The effect 

of the strong electron confinement in a nano structure leads to a small 

energy separation between the subbands; increase the dipole transition 

value [19].  

The donor impurity binding energy increases continuously as the QD size 

decreases; also it depends on the donor impurity position [20]. Increasing 

the applied magnetic field will increases the binding energy of the donor 

shallow impurity in a plane and reduces the polarizability. The electrical 

and optical properties of the impurities for different QD shape 

(homogenous and inhomogenous QD) are strongly affected by the presence 

of the donor impurity [21]. 

In this work we will focus on the heterostructure with impurity nearby in 

the presence of applied magnetic field, where the electron interacts with the 

impurity ion located along the vertical z-axis direction by Coulomb 
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potential, taking into consideration the effects of the pressure and 

temperature on the GaAs/AlGaAs material parameters: the effective mass 

and dielectric constant.  

1.2 Heterostructure and confinement potential 

Consider the heterostructure in the x-y plane with the impurity in the z axis 

at the distance (0, 0, d), with a uniform external magnetic field of strength 

B which applied along the z direction, as illustrated in figure 1.1. 

  
Figure (1.1): An electron at position 𝝆 ⃗⃗⃗⃗ confined in the x y- plane interacting with a 

positive donor impurity located at position 𝒅⃗⃗⃗ = 𝒅 𝒌̂ along z axis and subject to a 

uniform magnetic field along the growth axis  𝑩⃗⃗⃗⃗⃗⃗ = 𝑩 𝒌̂. 

The structure of this system is sketched in figure 1.2, which includes two 

AlGaAs layers separated by GaAs layer, one of the AlGaAs layer doped 

with donor impurity located at distance ( d ) along the growth axis. 
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AlGaAs used as a barrier material in GaAs based heterostructure devices 

like in quantum well infrared photodetector (QWIP)[22]. And known about 

AlGaAs dust it is an irritant to skin, eyes and lungs [23].  

  
Figure (1.2): The structure of two-dimensional electron confined in GaAs layer 

bounded to an off donor impurity located in the AlGaAs layer. 

1.3 Literature survey 

Heterostructure material properties affected by several terms: the magnetic 

field, electrical field and the presence of donor impurity position, the most 

important and affected quantity is the energy. The donor impurity affects 

the Hamiltonian by adding a coulomb term which can be solved by several 

methods. Analytical, numerical, perturbation, variation, and diagonalization 

method were used to solve donor impurity problem. The donor binding 

energy had been studied for the QW by using variational method. The 

ground binding energy of the QW had been computed as a function of the 

donor impurity position and the QW width under different electric field 

strengths [9, 24].  In Ref [20, 25] the donor impurity energy spectrum had 

been studied for two dimensional heterostructure. In Ref. [20], the donor 
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impurity energy for the ground and excited state had been computed as a 

function of magnetic field strength, for both weak and strong magnetic 

field, using exact and perturbation methods [25].  

Chuu et al in [26] obtained the donor impurity energy levels analytically for 

both donor impurity located at the quantum dots center, and for donor 

impurity located at the axis of the quantum-well wire. Zhu and Gu in Ref. [27] 

investigated the energy transition on shallow donor impurity states in a 

harmonic QD by using analytical method with the presence of the magnetic 

field. The energy transition change with the magnetic field strength, where the 

result show the high effects of magnetic fields on donor impurity energy states 

transition [27]. The dependence of the diamagnetic susceptibility and the 

binding energy of the donor impurity on the pressure and the temperature had 

been shown analytically.  Khordad and Fathizadeh in Ref. [28] found in their 

recent study the diamagnetic susceptibility increases by increasing the 

pressure and it decreases with increasing the temperature. Peter in Ref. [29] 

the binding energy levels of shallow hydrogenic impurities are reported in a 

parabolic QD with pressure effect using variational approach. Where they 

found that the ionization energy is purely pressure dependence. Also 

Merchancano et al Ref. [30] had calculated the binding energy of hydrogenic 

impurities in a spherical QD using the variational and perturbation approaches 

as a function of pressure, QD size, and the impurity position. They found that 

the binding energy increases with increasing the pressure [30]. The combined 

effects of pressure and temperature on the binding energy of donor impurity in 
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a spherical QD with the presence of the electric field or without had been 

investigated [12, 31]. 

The problem of two electrons QD had been solved using exact 

diagonalization method with including the pressure and temperature 

effects. The magnetization and magnetic susceptibility of confined 

electrons in parabolic quantum dot was considered in experimental studies 

and theoretical calculations [32, 33]. 

Very recent, Elsaid et al  in Ref.  [34-42].has studied the electronic, 

thermodynamic and magnetic properties of two electrons confined in a 

single quantum dot and coupled quantum dots (CQD). 

Alfonso et al in [43] had studied the energy states of an electron confined 

in a two dimensional (2D) plane and bound to an off-plane shallow donor 

center in the presences of an external magnetic field by using  variatonal 

and numerical approach. 

In this work, we will investigate the combined effects of pressure, 

temperature, magnetic field strength and the impurity position on the 

ground state binding energy of the donor impurity in heterostructure 

materials.  In this study, we have computed the ground state energy level of 

donor impurity in a heterostructure by solving the donor impurity 

Hamiltonian using exact diagonalization method. In addition, we have 

study the effect of magnetic field strength, the confining frequency, 

pressure, and temperature on the binding energy. 
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1.4 Research objectives 

There are two main aims of this research that can be summarized as 

follows: 

1. To obtain the ground state energy of this system by solving the 

Hamiltonian using the exact numerical diagonalization method and 

compare the results with the 1/N expansion [45]. The ground state 

energy will be calculated at specific values of the impurity distance 

(d) and the magnetic field strength.  

2. To investigate the effect of pressure P and temperature T on the 

impurity ground state binding energy as a function of the magnetic 

field strength (γ and 𝜔𝑐), impurity position (d), P and T. 

1.5 Outlines of thesis 

In this work, the ground state energy of GaAs/AlGaAs quantum 

heterostructure has been calculated as a function of the magnetic field 

strength with varying the impurity position and the confining frequency 

using the exact diagonalization method to solve the systems hamiltonian . 

Secondly, the effect of the pressure and temperature on the computed 

energy spectra of the quantum heterostructure will be found by using the 

effective mass approximation as a function of magnetic field strength, and 

the confining frequency. All numerical results are computed using 

Mathmatica Language Package. 

The rest of this thesis is organized as follows: the Hamiltonian theory of 

donor impurity, the exact diagonalization technique and the parameters like 
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effective mass and dielectric constant on the pressure and temperature are 

presented in chapter II. In chapter III, the computed results of the donor 

impurity energy and the effects of the temperature and pressure had been 

displayed and discussed. The final chapter devoted for conclusions and 

future work. 
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Chapter two 

Theory of donor impurity confined in heterostructure 

This chapter mainly describes three important parts of the donor impurity 

formulation: The quantum heterostructure Hamiltonian, the exact 

diagonalization method and the pressure and temperature effects on the 

computed donor impurity ground state binding energy by the effective-

mass approximation. 

2.1 The Hamiltonian of donor impurity in a heterostructure in the 

presence of the magnetic field 

The system is a quantum heterostructure in the x-y plane with the impurity 

in the z axis at the distance d, in the presence of a uniform external 

magnetic field strength B applied along the z direction. 

The interaction between the electron in the GaAs layer and the impurity 

located in AlGaAs barrier is purely coulomb interaction. The Hamiltonian 

for this system is solved and discussed in appendix A.  

The Hamiltonian operator for this model can be written as: 

𝐻̂ = − (𝜌−1 2⁄
𝜕2

𝜕𝜌2
𝜌1 2⁄ +

1

𝜌2
(

𝜕2

𝜕𝜙2
+

1

4
)) +

1

4
ω2ρ2 − 𝑖γ

𝜕

𝜕𝜙
−

2

|ρ − d⃗⃗|
  (2.1) 

This Hamiltonian in Eq. 2.1 can be separated into two parts as: 

Ĥ = Ĥ⊥ + 𝑉(𝜌)                                              (2.2) 
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where: 

Ĥ⊥ = − (𝜌−1 2⁄
𝜕2

𝜕𝜌2
𝜌1 2⁄ +

1

𝜌2
(

𝜕2

𝜕𝜙2
+

1

4
)) +

1

4
ω2ρ2 − 𝑖γ

𝜕

𝜕𝜙
        (2.3) 

and 

𝑉(𝜌) = −
2

|ρ − d|
= −

2

√𝜌2 + 𝑑2
                             (2.4) 

The potential 𝑉(𝜌) represents the Coulomb term. The Hamiltonian Ĥ⊥is a 

harmonic oscillator type with well known solution as shown later in eq.2.7 

[19]. The complete details of donor Hamiltonian is shown in appendix A. 

In general, there is no analytical solution available for the complete donor 

impurity Hamiltonian. 

2.2 Exact diagonalization method 

In this thesis, we will use the exact diagonalization technique to solve the 

donor impurity Hamiltonian in problem given by Eq.(2.1) and study its 

electronic properties. 

 For zero donor impurity case Ĥ⊥, Eq.(2.1) reduces to harmonic oscillator 

type with a well known eigenstates |n,m> and eigenenergy. The basis 

(|n,m> = 𝜓𝑛,𝑚(𝜌, 𝜑)) harmonic oscillator type wave function will be used  

to diagonalize the total Hamiltonian and obtain the ground state energy of 

the impurity system. 

The basis wave functions are:  

|n, m > = 𝜓𝑛,𝑚(𝜌, 𝜑) =
1

√𝟐𝝅
𝑅𝑛,𝑚(𝜌)𝑒𝑖𝑚𝜑                     (2.5)                     

where, 𝑅𝑛,𝑚(𝜌)=𝑒−
1

2
𝜌2𝛼2

𝜌|𝑚|𝛼|𝑚|√
2𝛼2𝑛!

(𝑛+|𝑚|)!
Ln

|m|
(𝜌2𝛼2)             (2.6) 
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and eigenenergies  

     𝐸𝑛,𝑚 = (2𝑛 + |𝑚| + 1)ℏ𝜔                      (2.7)                

where Ln
|m|

(𝜌2𝛼2) is the standard associated Laguerre polynomials [19]. 

And 𝛼 is an inverse length dimension constant which is given by: 

α =  √
mω

ℏ
                                                       (2.8) 

These harmonic oscillator basis |n, m >  will be used to calculate the 

matrix elements of the full donor impurity Hamiltonian Eq.(2.1) 

⟨𝑅𝑛,𝑚(𝜌)|Ĥ|𝑅𝑛́,𝑚(𝜌)⟩. We obtained the eigenenergies by using exact 

diagonalization method technique. Which explained in Appendix B. 

In each calculation step the number of basis |n, m > will be varied until a 

satisfy factor converging eigenenergies are achieved. The stability 

converging procedure is displayed in figures (3.1, 3.2, and 3.3). 

The donor impurity binding energy (EB) is defined as the difference 

between the energy states of the Hamiltonian (Eq. 2.1) without the presence 

of the impurity (E) and with its presence (E0).  

EB =E-E0                                            (2.9) 

2.3 The Pressure and Temperature effects on the impurity binding 

energy in a heterostructure.  

The effects of the pressure (P) and the temperature (T) on the energy of the 

ground state can be investigated using effective mass approximation 

method (EMA). The pressure and temperature dependence of the material 
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electron effective mass, 𝑚∗( 𝑃 , 𝑇) and dielectric constant 𝜖𝑟( 𝑃 , 𝑇 ) are 

inserted in the impurity Hamiltonian as shown below 

Ĥ(𝜌) =
1

2𝑚∗(𝑃, 𝑇)
[𝑝⃗(𝜌) +

𝑒

𝑐
𝐴(𝜌)]

2

 +
1

2
𝑚∗(𝑃, 𝑇)𝛾2𝜌2

−  
𝑒2

𝜖𝑟(𝑃, 𝑇)√𝜌2 + 𝑑2
                                 (2.10) 

The mathematical dependences of 𝜖𝑟( 𝑃 , 𝑇 ) and 𝑚∗( 𝑃 , 𝑇) are given 

explicitly in appendix C.  
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Chapter three 

Results and discussion 

In this chapter we will show and discuss our computed results which are 

displayed in figures (from 3.1 to 3.19) and Tables 1-3 for heterostructure 

system made from GaAs. The material parameters are: dielectric 

constant   𝜖 = 12.4, effective Rydber  𝑅∗ = 5.926 𝑚𝑒𝑉 and the effective 

mass of an electron 𝑚∗ = 0.067 𝑚𝑒 ambient zero temperature and 

pressure. The impurity is located along z axis at the distance d, and with the 

presence of a uniform external magnetic field (B) along the z direction. 

3.1 Binding energy of the donor impurity  

In the first step of our present computational tasks, we have calculated the 

ground state eigenenergy (where m=0) for the donor impurity of 

GaAs/AlGaAs heterostructure as a function of the magnetic field strength 𝛾 

with impurity located at the origin (d=0) for two specific values of the 

confinement frequency strength   ω0 = 5.412 𝑅∗, and ω0 = 3.044 R∗. The 

accuracy of our obtained results are tested against the corresponding ones 

produced by of  
𝟏

𝑵
 expansion method [45]. The 

𝟏

𝑵
   Expansion method is a 

powerful technique used to solve the spherical symmetric Hamiltonian 

function for any range of magnetic field strength as discussed in Ref  

[46,47]. Table 3.1 shows the comparison between the ground state (m=0) 

computed energy for the present exact diagonalization method and the 
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corresponding energy produced by 
𝟏

𝑵
 expansion method. The comparison 

made in Table 3.1, shows a good agreement between both methods. 

Table 3.1 : The ground state (m=0) energy (in R*) by the computed 

energy for the exact diagonalization method against 
𝟏

𝑵
 expansion 

method R3f.[45] for versus range of magnetic field strength . 

 

To test the convergence issue of our exact diagonalization technique, we 

have plotted in figures 3.1, 3.2, and 3.3 the computed ground state energies 

(E) of the donor impurity Hamiltonian against the number of basis (n) from 

1 to 38 for various value of confinement frequency ωo , impurity distance 

d, and at magnetic field strength ωc = 2 𝑅∗. The figures clearly show the 

numerical stability in our computed scheme. The ground state approaches a 

limiting value as the number of basis increases. For example in Fig.3.2.a, 

the ground state energy approaches E= −1.4 R* as we increase the number 

of basis up to 35. 
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Fig. 3.1.a  

Fig. 3.1.b 

 Figure (3.1): The ground state energy of the quantum heterostructure for fixed value of 

 𝛚𝐜 = 𝟐 𝑹∗  and at d = 0 𝒂∗  against the number of basis for:   𝒂) 𝛚𝟎 =

𝟑. 𝟎𝟒𝟒  𝑹∗  𝐚𝐧𝐝  𝐛)  𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝑹∗. 
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Fig. 3.2.a 

Fig. 3.2.b 

Figure (3.2): The ground state energy of the quantum heterostructure for fixed value of 

 𝛚𝐜 = 𝟐 𝑹∗  and at d = 0.1 𝒂∗  against the number of basis for:  𝒂) 𝛚𝟎 =

𝟑. 𝟎𝟒𝟒  𝑹∗  𝐚𝐧𝐝  𝐛)  𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝑹∗. 
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Fig. 3.3.a 

Fig. 3.3.b 

Figure (3.3): The ground state energy of the quantum heterostructure for fixed value of 

 𝛚𝐜 = 𝟐 𝑹∗  and at d = 0.5 𝒂∗  against the number of basis for:  𝒂) 𝛚𝟎 =

𝟑. 𝟎𝟒𝟒  𝑹∗  𝐚𝐧𝐝  𝐛)  𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝑹∗. 



19 

 

 

Figures 3.4 a and b display the energy of the donor impurity energy as a 

function of the magnetic field strength  ωc, for confinement frequencies 

 ω0 = 3.044R∗ and ω0 = 5.412R∗ , respectively. The solid line of the 

system indicates the absence of the impurity, and the dashed one indicates 

the presence of the impurity. It is clear from Fig. 3.4 that the effect of the 

impurity is decreasing the energy of the system. The presence of donor 

impurity lowers the energy of the heterostructure energy due to it negative 

coulomb attraction. 

The energy of the heterostructure shows a significant dependence on the 

impurity position. Increasing the impurity distance (d) changing the system 

from 2D to 3D (bulk), and in this case the energy increases due to its great 

reduction in the attractive coulomb energy           (𝑉(𝜌)~ −
1

√𝜌2+𝑑2
 ), as 

displayed clearly in figure 3.5.  For fixed values of impurity position (d), 

the energy of the donor Hamiltonian enhances as the confinement strength 

(ω0 )  increases from 3.044 R* to 5.412R*. This energy behavior agrees 

with our expectation.  



20 

 

 

 

Fig. 3.4.a 

 

Fig. 3.4.b 

Figure (3.4): The ground state energy of the quantum heterostructure for absence and 

presence of the impurity against the magnetic field strength 𝛚𝐜 𝐭𝐡𝐞 dashed line with 

impurity and solid line for without impurity system  𝐟𝐨𝐫: 𝐚) 𝛚𝟎 = 𝟑. 𝟎𝟒𝟒 𝑹∗  and b)  

𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝑹∗. 
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Figure (3.5): The ground-state for fixed value of 𝛚𝐜 = 𝟐 𝑹∗against the distance for 

two  𝛚𝟎 , 𝛚𝟎 = 𝟑. 𝟎𝟒𝟒 𝐑∗𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞  𝒂𝒏𝒅 𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝑹∗  the solid line. 

In the second computation step, we computed the ground-state eigenenergy 

(E) and the binding energy (EB), for specific values of ω0 and versus values 

of (d), against the magnetic field strength ωc . In figure 3.6, we have 

presented the donor impurity ground state energy versus the magnetic field 

strength ωc , for (a) d = 0 𝑎∗, (b) d = 0.1 𝑎∗, and (c) d = 0.5 𝑎∗.  It's clear 

from the three figures, and for particular fixed values of ω0  and d that the 

energy increases as magnetic field strength ωc increases. For fixed values 

of d and  ωc, the energy of donor impurity Hamiltonian increases 

as  ω0   increases. 

For example at ωc = 6 𝑅∗ and d=0 a*, the donor impurity energy 

E=−2.6716033 𝑅∗ for ω0 = 3.044 𝑅∗ while for ω0 = 5.412 R∗ the 

energy is E=−1.7453226 𝑅∗ . 



22 

 

 

 

Fig. 3.6.a 

Fig. 3.6.b 
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Fig. 3.6.c 

Figure (3.6): The variation of the ground state energy with respect to the magnetic field 

strength 𝛚𝐜 ,  𝛚𝟎 , 𝛚𝟎 = 𝟑. 𝟎𝟒𝟒 𝐑∗𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞  𝒂𝒏𝒅 𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝑹∗  the solid line, 

(a) for d=0 𝒂∗ , (b) d=0.1 𝒂∗, and (c) d=0.5 𝒂∗. 

Figure 3.7 shows the dependence of the ground state binding energy (BE) 

on the magnetic field strength ωc, for versus values of impurity distance d : 

(a) d=0 𝑎∗, (b) d=0.1𝑎∗, and (c) d=0.5𝑎∗ and confinement frequencies  

(𝜔0 =3.044 R* and 𝜔0 =5.412R*). The binding energy EB against the 

magnetic field strength for all distances (d), has the same behavior. The 

donor impurity binding energy almost shows the same qualitative behavior 

while its quantitative behavior changes as the impurity position (d) 

changes. 
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Fig 3.7.a 

 

Fig 3.7.b 
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Fig 3.7.c 

Figure 3.7: The ground-state binding energy against  𝛚𝐜 , where  𝛚𝟎 =

𝟑. 𝟎𝟒𝟒  𝑹∗ 𝐟𝐨𝐫 𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞, 𝐚𝐧𝐝  𝛚𝟎 = 𝟓. 𝟒𝟏𝟐  𝑹∗ 𝐟𝐨𝐫 𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞 (a) d = 0 𝒂∗ ,   (b) 

d = 0.1 𝒂∗, and (c) d=0.5𝒂∗. 

Table 3.2 listed the donor impurity energy and binding energy as a function 

of magnetic field strength  ωc for  ω0 = 3.044 𝑅∗ and for various values of 

d. For  ω0 = 3.044 𝑅∗ and d=0 a* , the binding energy increases as the 

magnetic field strength increases. This behavior persists for all d-values. 

However, the binding energy decreases as the impurity (d) increases. We 

can see a significant decrease in the binding energy as d increases from 

d=0.1 a* to d=0.5 a*. For example at  ω0 = 3.044 𝑅∗ and  ωc = 2 𝑅∗ the 

binding energy decreases significantly from 4.62499 R* to 2.55177 R*. This 

result is due to the great reduction in the coulomb impurity energy (Eq. 

2.4), as we mentioned earlier. The same qualitative behavior can also be 
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observed in Table 3.3 with different quantitative behavior for ω0 =

5.412 𝑅∗. 

Table 3.2: The donor impurity energy (E(R*), and donor impurity 

binding energy (EB(R*)) against the magnetic field strength   𝛚𝐜 and 

various impurity position (d) for 𝛚𝟎 = 𝟑. 𝟎𝟒𝟒 𝑹∗. 

 

 

 

 

 

 



27 

 

 

Table 3.3: The donor impurity energy (E(R*), and donor impurity 

binding energy (EB(R*)) against the magnetic field strength   𝛚𝐜 and 

various impurity position (d) for  𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝑹∗ 

 

3.2 Pressure and Temperature effects 

In this section, we study the effects of the pressure and temperature on the 

ground-state binding energy of the donor impurity. We show in the Figures, 

from Fig.3.8 to Fig.3.19, the behavior of the donor binding energy (EB) as a 

function of the magnetic field strength  ωc , impurity position (d), 

temperature (T), pressure (P) and confinement frequency  ω0. Figure 3.8 a 

shows the donor binding energy against the magnetic field strength for 

three different temperatures (5K, 100K, and 200K) and fixed values of 

pressure, impurity position d=0 𝑎∗ and confinement frequency ω0 =

3.044 R∗. For fixed temperature, the figure clearly shows the enhancement 

of the binding energy as the magnetic field strength ωc increases. This 
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enhancement in the donor binding energy can be attributed to the parabolic 

magnetic confinement term  
1

4
ω2ρ2  in eq.(2.3). For fixed values of 

magnetic field strength ωc , the binding energy decreases when the 

temperature increases, as clearly shown in figure 3.8.a. Similar behavior of 

the donor binding energy is displayed in figure 3.8.b for different, ω0 =

5.412 𝑅∗. 

In figure 3.9 we have show the dependence of the donor binding energy on 

the temperature for: fixed values of Pressure (P=10 Kbar),  ωc = 2 𝑅∗ , 

 𝑑 = 0 𝑎∗ and various confinements ( ω0 = 3.044 𝑅∗  and ω0 =

5.412 R∗). The binding energy again shows a clear decreasing behavior as 

the temperature of the system increases. The dependence of the material 

parameter the effective mass m*(P,T) and dielectric constant 𝜖𝑟(𝑃, 𝑇)  on 

the temperature and pressure explain in Table C.1, where m* decreases and 

 𝜖𝑟 increases with increasing T which diminish donor impurity binding 

energy EB.  
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Fig. 3.8.a 

 

Fig. 3.8.b 

Figure 3.8: The binding energy for d=0 𝒂∗ at constant Pressure (P=10 Kbar) as a 

function of 𝛚𝐜 for 3 temperatures (5K, 100K, and 200K) for  (𝐚) 𝛚𝟎 =

𝟑. 𝟎𝟒𝟒 𝑹∗   𝐚𝐧𝐝  𝐛)  𝛚𝟎 = 𝟓. 𝟒𝟏𝟐  𝐑∗. 
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Figure 3.9 the binding energy change for d=0 𝒂∗ at constant Pressure (P=10 Kbar) 

and 𝛚𝐜 = 𝟐 𝑹∗ with respect to the temperature  𝐟𝐨𝐫 𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝑹∗ 

𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞 𝐚𝐧𝐝 𝐟𝐨𝐫𝛚𝟎 = 𝟑. 𝟎𝟒𝟒 𝐑∗ 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞  

We show in figures 3.10 (a) and (b), the behavior of the donor binding 

energy as a function of the magnetic field strength ωc  , ω0 =

5.412 𝑅∗  and ω0 = 3.044 R∗ for different values of pressure (0, 10, and 

20) Kbar, impurity position d=0𝑎∗, and temperature T=20 K. The donor 

binding energy shows a significant increase as the magnetic 

field  ωc  increases, increasing ωc  decrease the electron-atom distance 

which increase the electron confinement. The binding energy again shows a 

great enhancement as the pressure increases, while keeping the magnetic 

field values unchanged. 
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Fig.3.10.a 

 

Fig.3.10.b 

Figure 3.10: The variation of ground-state binding energy for d=0𝒂∗ against the 𝛚𝐜 at 

fixed Temperature (20K) and for three different values of pressure (0, 10, and 20 Kbar) 

a)  𝛚𝟎 = 𝟑. 𝟎𝟒𝟒  𝑹∗ 𝒃)  𝛚𝟎 = 𝟓. 𝟒𝟏𝟐𝐑∗ 
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In figure 3.11, we fixed the temperature (T=20K)                

ωc = 2𝑅∗ 𝑎𝑛𝑑  𝑑 = 0 𝑎∗  parameters, while changing the pressure. We 

observe a great enhancement in the donor binding energy as the pressure 

increases for ω0 = 3.044 𝑅∗  and ω0 = 5.412 R∗. This behavior because 

increasing the pressure increase m* and decrease 𝜖𝑟 which enhance EB.  

 

Figure 3.11:  the variation of ground-state binding energy for d = 0 𝒂∗ against the 

pressure at fixed Temperature (20K) and 𝛚𝐜 = 𝟐 𝑹∗ for  𝛚𝟎 =

𝟑. 𝟎𝟒𝟒  𝑹∗𝐚𝐧𝐝    𝐟𝐨𝐫  𝛚𝟎 = 𝟓. 𝟒𝟏𝟐𝐑∗ 
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In Figure 3.12 (a) and (b), we show the effect of changing the temperature 

at impurity position (d= 0.1 a*) on the binding energy. Again, the binding 

energy shows great enhancement as we increase the magnetic field strength 

ωc for fixed values of the parameters: Temperature (T= 5, 100, and 200K), 

Pressure (P=10 Kbar) and confinements frequency ω0 =

3.044 𝑅∗and ω0 = 5.412 R∗. We display in figure 3. 13 the donor binding 

energy against the temperature (T), while the rest of the physical 

parameters of the system are kept fixed. The binding energy shows an 

important dependence on the temperature, and the B.E decreases with 

increasing the temperature.  The decreasing reason of EB again comes from 

the effects of m* and  𝜖𝑟 as mention on the explanation of figure 3.8 and 3.9.  
 

 

Fig. 3.12.a 
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Fig. 3.12.b 

Figure 3.12: The ground-state binding energy for d=0.1𝒂∗ at constant Pressure (P=10 

Kbar) as a function of 𝛚𝐜 and for three temperatures (5K, 100K, and 200K):   𝐚) 𝛚𝟎 =

𝟑. 𝟎𝟒𝟒 𝑹∗   𝐚𝐧𝐝 𝐛) 𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝐑∗. 

 

Figure 3.13: The ground-state binding energy for d = 0.1 𝒂∗ at constant pressure (P=10 

Kbar) and 𝛚𝐜 = 𝟐 𝑹∗, and temperature  𝐟𝐨𝐫 𝛚𝟎 = 𝟑. 𝟎𝟒𝟒 𝑹∗  𝐝𝐚𝐬𝐡𝐞𝐝 𝐥𝐢𝐧𝐞  

𝐚𝐧𝐝 𝐟𝐨𝐫𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝐑∗ 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞. 
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In figure 3.14 (a) and (b), we illustrate the pressure effect on the donor 

binding energy for d=0.1𝑎∗ against the magnetic field strength ωc. 

Fig.3.14.a obviously shows that the binding energy increases as the 

magnetic field strength enhances while the pressure (0, 10, and 20 Kbar), T 

and d, and ω0 = 3.044 𝑅∗ are fixed. Fig.3.14.b shows the same behavior of 

the EB but for different confinements  ω0 = 5.412 𝑅∗ . Effective-mass 

approximation investigate the pressure effects on m* and  𝜖𝑟 , where it 

shown in Table C.1 which explain the reason of enhancing EB. 

Fig. 3.14.a 
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Fig. 3.14.b 

Figure 3.14: the variation of binding energy for d=0.1𝒂∗ against the 𝛚𝐜 at fixed 

Temperature (20K) for three pressure values (0, 10, and 20 Kbar) a) for 𝛚𝟎 =

𝟓. 𝟒𝟏𝟐 𝑹∗𝒃) 𝐚𝐧𝐝 𝐟𝐨𝐫𝛚𝟎 = 𝟑. 𝟎𝟒𝟒 𝐑∗. 

In Fig. 3.15, we plot the binding energy for the ground state as a function of 

the pressure for fixed values of T=20K, d = 0.1 𝑎∗, ωc = 2𝑅∗, and at different 

confinements: ω0 = 3.044𝑅∗ and ω0 = 5.412 R∗. The EB shows a great 

enhancement as the pressure increases for fixed values of confinement 

frequency because of increasing m* and    decreasing   𝜖𝑟 .  
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Figure 3.15: the variation of ground-state binding energy for d=0.1𝒂∗ as a function of 

the pressure at fixed Temperature (20K) and 𝛚𝐜 = 𝟐 𝑹∗ for 𝛚𝟎 = 𝟑. 𝟎𝟒𝟒 𝑹∗𝐚𝐧𝐝 𝛚𝟎 =

𝟓. 𝟒𝟏𝟐 𝐑∗ 

Figure 3.16 (a) and (b), show the binding energy as a function of magnetic 

field strength but for d=0.5𝑎∗. We have shown in figure 3.17 the 

dependence of the donor binding energy against the temperature for 

d=0.5𝑎∗ and various confinement frequencies ω0 = 3.044 𝑅∗ and ω0 =

5.412 R∗and the rest parameter are fixed. The behavior is in agreement 

with the results explained in Fig. 3.9 (d=0𝑎∗) but for d=0.5𝑎∗. 

The results presented in figure 3.18 (a) and (b) show the same qualitative 

behavior as given in figure 3.10 a and b (d=0 a*). Fig. 3.18 shows the effect 

of pressure for (d=0.5𝑎∗) on the EB as a function of magnetic field strength. 

With make comparison between two d values (d=0 and 0.5 a*) as we 

increase d, the binding energy increases due to the great reduction in the 
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coulomb attraction energy ( eq. 2.4). In figure 3.19, we display the results 

of the donor binding energy for d=0.5𝑎∗. The behavior agrees with the EB 

behavior given in Fig.3.11 (for d=0 a* with same reason). 

 

 

Fig. 3.16.a 

 

Fig.3.16.b 

Figure 3.16: the binding energy for d=0.5𝒂∗ at constant Pressure (P=10 Kbar) as a 

function of 𝛚𝐜 for 3 temperatures (5K, 100K, and 200K):  𝐚) 𝛚𝟎 =

𝟑. 𝟎𝟒𝟒 𝑹∗ 𝐚𝐧𝐝 𝐛)  𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝐑∗ . 
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Figure 3.17: the binding energy for d=0.5 𝒂∗ at constant Pressure (P=10Kbar) 

and 𝛚𝐜 = 𝟐 𝑹∗ against temperature  𝐟𝐨𝐫 𝛚𝟎 = 𝟑. 𝟎𝟒𝟒 𝐑∗ 𝐟𝐨𝐫 𝐭𝐡𝐞  𝐝𝐚𝐬𝐡𝐞𝐝 

  𝐥𝐢𝐧𝐞 𝐚𝐧𝐝 𝐟𝐨𝐫 𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝑹∗𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞. 
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Fig. 3.18.a 

 

Fig. 3.18.b 

Figure 3.18: the binding energy for d=0.5𝒂∗ against the 𝛚𝐜 at fixed Temperature (20 k) 

for three pressure values (0, 10, and 20 Kbar): a) for 𝛚𝟎 = 𝟑. 𝟎𝟒𝟒 𝑹∗𝒃) 𝐚𝐧𝐝 𝐟𝐨𝐫𝛚𝟎 =

𝟓. 𝟒𝟏𝟐 𝐑∗ 
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Figure 3.19: the variation of ground-state binding energy for d = 0.5 𝒂∗ against the 

pressure at fixed Temperature (20K) and 𝛚𝐜 = 𝟐 𝑹∗ : a) for 𝛚𝟎 =

𝟑. 𝟎𝟒𝟒 𝑹∗𝐚𝐧𝐝 𝒃)  𝐟𝐨𝐫𝛚𝟎 = 𝟓. 𝟒𝟏𝟐 𝐑∗ 

The results presented in this chapter show explicitly the dependency of the 

donor binding energy on the system physical parameters: pressure, 

temperature, the magnetic field strength, and confinement frequency for 

fixed values of the impurity position. The effects can be explained within 

the form of the effective mass approximation. The effective mass 𝑚∗  affect 

on the vertical part of the Hamiltonian in the (Ĥ⊥𝑒𝑞. 2.3) while the 

dielectric constant  𝜖𝑟    affect on the coulomb term (𝑉(𝜌) 𝑒𝑞. 2.4) as shows 

explicitly. The variation of the material parameters: 𝑚∗ and 𝜖𝑟    with the 

pressure and temperature are shown by arrows in Appendix C Table C.1. 

These behaviors are deduced form the mathematical dependence of  

∈𝑟 (𝑃, 𝑇)  and  𝑚∗(𝑃, 𝑇)  given by equations  C.1 and C.2 
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Chapter four 

Conclusion 

In conclusion, we had solved the donor impurity Hamiltonian in a 

heterostructure subjected to an applied magnetic field using the exact 

diagonalization method. The ground-state energy of GaAs/AlGaAs 

heterostructure had been computed. Furthermore, the impurity effect on the 

ground-state energy had been shown. In addition, the influence of the 

hydrostatic pressure, temperature and magnetic field on the binding energy 

of the donor impurity can be summarized as follows: the donor impurity 

binding energy is a decreasing function of temperature for fixed values of 

pressure and magnetic field. Also the donor impurity binding energy is 

increasing function of pressure for fixed values of temperature and 

magnetic field. For strong magnetic field strength, the donor binding 

energies enhances significantly for any hydrostatic pressure and 

temperature values as we expected. 

The effective-mass approximation is used to investigate the pressure and 

temperature dependency of binding energy for the ground state of 

GaAs/AlGaAs.  

In this work, the magnetic field strength, the impurity presence, the 

impurity position effect on the energy and the pressure and temperature 

effects on the binding energy had been studied. However, other quantities 

like magnetization, magnetic susceptibility, and the full electronic energy 

spectra of the donor impurity in the heterostructure are very important 

issues to be considered in future.  
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Appendix A: The quantum heterostructure Hamiltonian 

The interaction between the electron in the GaAs layer and the 

impurity which located in AlGaAs barrier at distance d along z-axis is 

purely coulomb interaction. The Hamiltonian for this system given in  

𝐻̂ =
1

2m∗
[𝐩(ρ) +

e

c
𝐀(ρ)]

2
+

1

2
m∗ω0

2ρ2 −
e2

ϵ|𝛒−d⃗⃗⃗|
           (A.1) 

       Where ω0 , and ϵ are defined as the confining frequency and the 

dielectric constant for the GaAs medium, respectively. ωc is the cyclotron 

frequency, 𝛒 and 𝑑 describe the electron and impurity position, 

respectively. The symmetric gauge is used, so the vector potential 𝐴 can be 

written as, 

𝐀(ρ) =
1

2
B × ρ =

1

2
B (−y, x, 0)                           (A.2) 

[𝐀 × 𝐩] = 𝟎                                       (A.3) 

 The Hamiltonian in equation A.1 can be expanded in terms of 

coordinates and momentum as follows: 

𝐻̂ =
1

2m∗
[𝐩(ρ)2 +

e

c
𝐀(ρ)2 + 2

e

c
𝐩(ρ). 𝐀(ρ)] +

1

2
m∗ω0

2ρ2 −
e2

ϵ|𝛒−d⃗⃗⃗|
     

(A.4) 

By using the symmetric gauge, the Hamiltonian part can be written as: 
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𝐻̂ =
1

2m∗
(𝐩(ρ)2 +

e2

c2

1

4
 𝐁2ρ2 + (−1) 

e

c
 𝐋⃗ . 𝐁⃗⃗⃗) +

1

2
m∗ω0

2ρ2 −
e2

ϵ|𝛒 − d⃗⃗|
 

(A.5) 

Where the magnetic field is uniform and taken to be along z direction. 

𝐋⃗. 𝐁⃗⃗⃗ = LzB                                      (A.6) 

With 𝜔𝑐 =
𝑒𝐵

𝑐 𝑚
   the magnetic field strength . Eqn. A.5 can be written as 

=
1

2m∗
(𝐩(ρ)2 +

e2

c2

1

4
 𝐁2ρ2 + (−1) 

e

c
 𝐋⃗ . 𝐁⃗⃗⃗) +

1

2
m∗ω0

2ρ2 −
e2

ϵ|𝛒 − d⃗⃗|
(A. 7) 

𝐻̂ =
𝐩2

2m∗
+

1

2
ω2m∗ρ2 +

1

2
ωc𝐋𝐳 −

e2

ϵ|𝛒−d⃗⃗⃗|
                (A.12) 

By substitute Lz and p2 

𝑳𝒛 = −𝑖ℏ
𝜕

𝜕𝜙
                                     (A.13) 

𝐩 = −𝑖ℏ∇                                        (A.14) 

𝛁𝟐 = 𝑟−1 2⁄ 𝜕2

𝜕𝑟2
 𝑟1 2⁄ +

1

𝑟2
 (

𝜕2

𝜕𝜙2
+

1

4
)                        (A.15) 

 

 

=
𝐩2

2m∗
+

1

8
ωc

2m∗ρ2 +
1

2
ωc𝐋𝐳 +

1

2
m∗ ω0

2𝛒2 −
e2

ϵ|𝛒 − d⃗⃗|
                   (A. 8)  

 

 

= 
𝐩2

2m∗ +
1

2
(
ωc

2

4
+ ωo

2) m∗ρ2 +
1

2
ωc𝐋𝐳 −

e2

ϵ|𝛒−d⃗⃗⃗|
                            (A.9) 

Where 

              𝜔2= (
ωc

2

4
+ ωo

2)                                         (A.11) 
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the equation (A.12) becomes  

𝐻̂ = −
ℏ2

2m∗ (𝜌−1 2⁄ 𝜕2

𝜕𝜌2  𝜌1 2⁄ +
1

𝜌2  (
𝜕2

𝜕𝜙2 +
1

4
)) +

1

2
ω2m∗ρ2 −

𝑖ℏ

2
ωc

𝜕

𝜕𝜙
−

e2

ϵ|𝛒−d⃗⃗⃗|
                                                   (A.16)  

We have used the following Atomic Rydberg units 

𝑒2 = 2, ℏ = 1, m∗ =
1

2
, 𝜖 = 1 

And    𝜸 =
𝝎𝒄

𝟐
 

𝐻̂ = − (𝜌−1 2⁄
𝜕2

𝜕𝜌2
 𝜌1 2⁄ +

1

𝜌2
 (

𝜕2

𝜕𝜙2
+

1

4
)) +

1

4
ω2ρ2 − 𝑖γ

𝜕

𝜕𝜙
 

−
2

|𝛒−d⃗⃗⃗|
                                          (A.17) 
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Appendix B : The exact diagonalization method 

 

By considering the eigenvalue formula as 

Ĥ|𝜓 > = 𝐸|𝜓 >                                     (𝐵. 1) 

Where 

|𝜓 > =  ∑ |𝑓𝑛〉
𝑛

                                   (𝐵. 2) 

Where |𝑓𝑛〉   as defined in Eqn. 2.5.Then by multiplying equation (𝐵. 1) by 

<𝑓𝑚 | for each side and notice that   ∑ < 𝑓𝑚|𝐻|𝑓𝑛 > =  ∑ 𝐻𝑚𝑛𝑛𝑛   

 The equation become  

∑ 𝐻𝑚𝑛
𝑛

= 𝐸𝑛 ∑ < 𝑓𝑚|𝑓𝑛 >
𝑛

=  𝐸𝑛 𝛿𝑚𝑛                               (𝐵. 3) 

Where  

 ∑ ⟨𝑓𝑚|𝑓𝑛 ⟩𝑛 =  𝛿𝑚𝑛                                                   (𝐵. 4) 

< 𝐸𝑛 >=< 𝑓𝑚|𝐻̂|𝑓𝑛 >                                           (𝐵. 5) 

writing this equation in integration form , one has 

𝐸𝑛 =  ∫ 𝜓∗ 𝐻̂ 𝜓 𝜌 𝑑𝜌 𝑑𝜑
∞

−∞
                             (𝐵. 6) 

Then diagonalize the matrix by 

∑[𝐻𝑚𝑛

𝑛

−  𝐸𝑛𝛿𝑚𝑛] = 0                                           (𝐵. 7) 

Then the characteristic equation is 

𝐷𝑒𝑡[𝐻𝑚𝑛 − 𝐸𝑛𝛿𝑚𝑛] = 0                                              (𝐵. 8) 
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Appendix C: The dependence of the physical parameters of the media 

on the pressure and temperature. 

For quantum heterostructure made of GaAs the dielectric constant 

 𝜖𝑟(𝑃, 𝑇) and the electron effective mass  𝑚∗(𝑃, 𝑇) are presented by [Ref 

44]  

∈𝑟 (𝑃, 𝑇)

= {
12.74 exp(−1.73 × 10−3𝑃) exp[9.4 × 10−5(𝑇 − 75.6)] for T < 200 K

13.18 exp(−1.73 × 10−3𝑃) exp[20.4 × 10−5(𝑇 − 300)] forT ≥ 200 K
   (C. 1) 

𝑚∗(𝑃, 𝑇) = [1 + 7.51 (
2

𝐸𝑔
г(𝑃, 𝑇)

+
1

𝐸𝑔
г(𝑃, 𝑇) + 0.341

)]

−1

𝑚0        (C. 2) 

𝐸𝑔
г(𝑃, 𝑇) = [1.519 − 5.405 × 10−4 𝑇2

𝑇+204
] + 𝑏𝑃 + 𝑐𝑃2          (C. 3)  

    Where 𝑚0is the free electron mass,  𝐸𝑔
г(𝑃, 𝑇) is the pressure and 

temperature dependent energy band gap for GaAs quantum heterostructure 

at Г point, b= 1.26× 10−1eV GPa−1and c = -3.77× 10−3eV GPa−2. 

       The effective Ryrberg in term of pressure and temperature is used as 

the energy unit. 

𝑅𝑦
∗ (𝑃, 𝑇) =

𝑒2

2𝜖(𝑃, 𝑇)𝑎𝐵
∗ (𝑃, 𝑇)

                                      (𝐶. 4) 
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Where 𝑎𝐵
∗ (𝑃, 𝑇) is the effective Bohr radius which given as : 

𝑎𝐵
∗ (𝑃, 𝑇) =

𝜖(𝑃, 𝑇)ħ2

𝑚∗(𝑃, 𝑇)𝑒2
                                            (𝐶. 5) 

Finally the effective Ryrberg can be written as: 

𝑅𝑦
∗ (𝑃, 𝑇) =

𝑒4𝑚∗(𝑃, 𝑇)

2(𝜖(𝑃, 𝑇))
2

ħ2
                                         (𝐶. 6) 

 

Table (C.1) shows the increasing (  )/ decreasing  (  )  of the physical 

parameters are indicated by the rows (      ) , respectively. 

 𝑚∗(𝑃, 𝑇) ∈𝑟 (𝑃, 𝑇) 

Pressure (P)    

Temperature (T)    
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التاثيرات المشتركة للضغط، درجة الحرارة، والمجال 
المغناطيسي على مستويات الطاقة للشوائب المانحة 

 في تركيب غير متجانس
GaAs/AlGaAs  

 
 
 

 إعداد
 سماح فايز نمر أبوزيد

 
 

 إشراف
 أ.د. محمد السعيد

 
كلية  درجة الماجستير في الفيزياء فيقدمت هذه الأطروحة استكمالا لمتطلبات الحصول على 

 نابلس. -، فلسطينالدراسات العليا في جامعة النجاح الوطنية
2017 



 ب

 

 

التاثيرات المشتركة للضغط، درجة الحرارة، والمجال المغناطيسي على مستويات الطاقة للشوائب 
 المانحة في تركيب غير متجانس

GaAs/AlGaAs  
 إعداد

 سماح فايز نمر ابو زيد
 إشراف

 أ.د. محمد السعيد

 الملخص

 GaAs/AlGaAsحساب مستويات الطاقة الدنيا للشوائب المانحة في التركيب الغير متجانس ل 
 باستخدام طريقة حساب قطرية المصفوفة. وتم zالالمجال المغناطيسي باتجاه محور  تأثيرتحت 

ة تأثير موقع الشوائب المانحة على مستويات الطاقة الدنيا بوجود تردد الحصر وشد منالتحقق 
لى عبالاعتماد قد تم حساب طاقة الربط للمستويات الدنيا للشوائب المانحة المجال المغناطيسي. 
م ت ،بالإضافة الى ذلك المغناطيسي.شدة المجال  و الحصر،تردد  المانحة،كل من موقع الشوائب 

سي عن التأثير المشترك للضغط ودرجة الحرارة على طاقة الربط بدلالة شدة المجال المغناطيدراسة 
ا لدنيالمستويات وكانت النتيجة انه بزيادة الضغط تزداد طاقة الربط ل ،طريق تقريب الكتلة الفعلي

 ، اما بزيادة درجة الحرارة فإنها تنخفض.للشوائب المانحة


