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Ordinary and Bayesian Shrinkage Estimation
Sl ) g Apalad) aldil) 8 o aladiady jmadil)

Mohammad Qabaha
Lg_.é dada
Department of Mathematics, Faculty of Science, An-Najah National
University, Nablus, Palestine

E-mail: mohqabha@mail.najah.edu
Received: (22/11/2006), Accepted: (29/5/2007)

Abstract

In this paper a variety of shrinkage methods for estimating unknown
population parameters has been considered. Aprior distribution for the
parameters around their natural origins has been postulated and the
ordinary Bayes estimators are used in place of natural origins in the
ordinary shrinkage estimators to obtain Bayesian shrinkage estimators.
The results are applied to the problem of estimating the location and
scale parameters and the reliability function of the two-parameter
exponential distribution. Simulation experiments are used to study the
performances of these estimators.
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1. Introduction

In the estimation of an unknown parameter, some form of a prior
knowledge about the parameter which one would like to utilize in order
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to get a better estimate often exists. Thompson (1968) described a
shrinkage technique for estimating the mean of a population. Mehta and
Srinivasan (1971) proposed another class of shrunken estimator for the
mean of a population and showed that this class had a better performance
than that of Thompson in terms of mean squared error. Pandey and
Singh (1977) and Pandey (1979) described shrinkage techniques for
estimating the variance of a normal population. Lemmer (1981) gave the
concept of using an ordinary Bayes estimator instead of natural origin in
the ordinary shrinkage estimator and thus derived the concept of
Bayesian shrinkage estimation. He considered the estimation of binomial,
Poisson and normal parameters through Bayesian shrinkage techniques.
Pandey and Upadhyay(1985) considered the Bayesian shrinkage
estimation of reliability of one-parameter exponential failure
model.Yousef (1986) proved that the mean squared error of Thompson
type estimator is smaller than the remaining shrinkage estimators for
estimating the parameters of the two-parameter exponential
distribution.Yousef (1991) derived confidence bounds for reliability of
the two-parameter exponential distribution.

In this paper we consider the problem of estimating the parameters 0,
p and the reliability function R(t) of the two-parameter exponential
distribution when the prior information regarding 0, p and R(t) is
available in the form of guess values. More specifically, it is assumed
that the guessed values 6, pno and Ry(t) are close or approximately equal
to the true values of 6, u and R(t), respectively. A variety of shrinkage
methods proposed by Thompson (1968), Mehta and Srinivasan (1971),
Pandey (1979) and Lemmer (1981) are used for this purpose. We propose
the corresponding Bayesian shrinkage estimators of 0, p and R(t) after
deriving the expressions for their ordinary Bayes estimators from type II
censored sample of life testing data from the two-parameter exponential
distribution.

Simulation experiments are used to study the performances of these
estimators.
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2. Ordinary Shrinkage Estimators
Let X be the life length of a certain system which has the probability

density function f (X; 0, p) Zéexp[— X-w)/07], 0<pu <X, 6>0.

Then the reliability function of this system at time t is defined by
R(t) =exp [- (t- p)/6].
Let us consider a random sample of n items of such a system

subjected to test and the test terminated as soon as the first r (< n) items
fail. Let X = {Xq), X(2), ..., X } be the first r ordered failure times.

A
It is reasonable to take the minimum variance unbiased estimators 0,

A A
p and R(t) of 6, p and R(t) respectively, and modified these estimators by

moving them closer to 0, p and R(t) so that the resulting estimators,
AA
perhaps biased, have smaller mean squared error than that of 6, pand

A
R(t).
It is well known from Epstein and Sobel (1954) and Basu (1964) that

AN r
0= XX()+ (n1) Xy -nX(y 1/ (1), 15> 1,
i=1
A A
],l :X(l)— 6/1’1,
and —» (21
(r-2)
A
Ry = =1y t-X(0) >,
(r-1)Q
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are the minimum variance unbiased estimators of the parameters 6, pu and
R(t), respectively. The variances of these estimators (see Lee (1978), p
163), are given by

A 0’
var(0 )= 1 r>1,

VAN 2
var () =—2—, 11,
n’(r-1)
and
N
var (R(t)) =
. p-tH)m
a2 |2t-4 (2r=4) - i ( )
(2111) 3 ; i (r .1+1) 5 ) RO, 1> 1.
nTED 55 nl m=o m
The first estimator considered is
A A
T =potc(p-po), 0sc<l, (2.2)

A
where o is the guessed value of p and pr is the actual Thompson type

estimator. Thompson (1968) suggested that ¢ determined from

A
OMSE A "
Gc(m) = 0 with MSE(ur) = E(;,n—;,t)z, the mean squared
A
error of pr.
It follows that

VAN
c=(u-po) /[ (- po) +var(p)l.
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In practice ¢ is estimated by replacing the unknown parameters by
their sample estimates. Substituting the estimated value of ¢ in (2.2) we
have

2
7AN AN

A 2 A 2
pr =po+(p - po)’ / [(p-po)> +r1 6 /(n® (--1))].

For any value of ¢, 0 <c <1, and when p, tends to p, it is easily seen
from (2.2) that

A A A
MSE (pr) = c*var () + (1-c)'(p - o) <var(p ).

Secondly, we consider the Mehta and Srinivasan (1971)-type
estimator. This is given by

N A A A A
Ky = p-a(p- po)expl-b( p-po) /var(p )], (2.3)

where a and b are positive constants to be suitably chosen such that
0<a<l and b>0. No general guidance has been given on how a and b

A
should be chosen. Substituting var (u ) and unknown parameters by their

sample estimates in (2.3) we obtain

2
N A A A A

My = 1- 2 (-po) exp [-bn’(-1) (- po)/r 6 1.

It can be verified from (2.3) that the minimum and maximum values
A
of pwmis attainable when b tends to 0 and oo respectively by a suitable

choice of a, 0<a<l. So we take

A A

lim MSE (Hy) = (1-a)” var(p) + a(y - po)’
b—0

and

An - Najah Univ. J. Res. (N. Sc.) Vol. 21, 2007



106 “Ordinary and Bayesian Shrinkage Estimation”

A A
lim MSE (1), ) =var (p).
b—

Hence for 0<a<I, b>0 and p, tends to p we have

A A
MSE (um) < MSE (p).

Thirdly, we consider the Pandey (1979) - type estimator of p is given
by
A A
u, =akp+(l-kpo], 0<sk=lI, (2.4)
with k is a constant specified by the experimenter according to his belief

AN
OMSE (up)

=(. It follows that
oa

in Yo and a is determined from

A

a= dlj,t2 / [K* var (p)+d “2] where d; =k + (1-k)po/p. Usually a is
estimated by replacing the unknown parameters by their sample
estimates. Substituting the estimated value of a in (2.4) we obtain

2 3 2 2 2
A A TA A A 2/\
w-d, p/[d p+&r0 /wXcapls

A AN
with ¢ =[k+(1-k) po/p].

It can be shown from (2.4) that

MSE (ﬁp ) = ak?® var (ﬁ) +[(1-ak) p - a (1-K) po]* .

A A
It follows that MSE (e ) < MSE () only when a=1 and p, tends to

u, it is not clear otherwise.
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Finally, we consider the Lemmer (1981)-type estimator for p .
This is given by
A A
pr =ku+(1-k) po . (2.5)

AN AN

It can be seen from (2.4) and (2.5) that pp= pr ifa=I.

All the above approaches can be used to define a variety of shrunken
estimators for the parameter 0 and the reliability function R (t). The
estimators considered for the parameters p, 6 and R(t) are presented in

Table 1.
Table (1): Shrunken estimators for pu, 6 and R (t)
Parameter Ty[? e of Estimator
Estimator
A AT
- Lo
Thompson | KT = Mo+ G Mz)
A A
(1 - o) +10 /m*(r-1)
Mehta- A A A A A
= Srinivasan | pm =p-a (p-po) exp[-bn’(r -1)(pw-po)/ 16 ]
E 2 3
0 N ATA
d
g Pandey ue = —— 1 }ZL
~ AA A
‘S di p +k’r0 /m’(r-1)
g A A
3 Lemmer ue =k + (1- K)o
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... Continue table (1)

Type of

Parameter Estimator Estimator
b oy
Thompson 01 = Gt ©- 02)
AN AN
(0-00)°+0 /r -1)
Mehta- A A A A A
- Srinivasan | Om = 0 -a (0 -0p) exp [-b(r-1) (0-0¢)/ 0 ]
) N AA
5 d 6
= Pandey Op =
5 ATA A
% 0 +k*0 /r-1)
s A A
A Lemmer 15— 19 + (1-k) 0,
Thompson | | A ,
R ()= Ro() + RO~ Rolt)
A A A
(R(H)- Ro(1))’+ var(R(t))
Mehta- A A A A
_ Srinivasan | Rm()=R(t)-a (R(t) -Rot))exp[-b(R(t) -Ro(t))/
g var (R(1))]
é Pandey . A2 A
ds R(t
= Rr(t)=— & RO
> A A A A
= d3R(t) +k*var (R(t))
O
% Lemmer
~

N A
Re(t) =kR () + (1-k) Ro(t)
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A A A A A

where d =k + (1-k) po/pn, d2 =k + (1-k) 0¢/0, d3 =k + (1-k)Ro(t) /
A

R(t), k 1s a known constant between zero and one, a and b are positive
constants to be suitably chosen such that 0<a<l and b>0, po, 6y and R(t)

AA
are the guessed values for p, 0 and R(t) respectively and var (R(t)) is the

A
estimated variance of the estimator R (t) which is given by

A
n(u- t))m

. ( 2

2 [2r-4 (2r-4). . A

var(ﬁ(t))z (j; ) 1 {z PRRAGEY i 0 }ﬁ ©, 1.
nTD o n' m=o M

3. Bayesian Shrinkage Estimators
Using the set up of section 2, the likelihood function of X is given by

n! AN N
L(X /0, p) =———— exp[-(r0 +npu- n ) /0]
(m—r1)!6F

Assume that our prior knowledge about 6 and p can be expressed as

— Ba 1 0+1 )
gOW =5, (g expl-pO], 0, B,8,0>0, 0=p=<3,

where a, B, 0 are known constants. Combining the above prior with the
likelihood function we obtain the posterior probability density function of
0 and p as

AN

1 (] r+o-H N
h(0, /X )= (é) exp[-(r 0 +n p -np+P)/0], 0, B, 8, 0>0, 0<p<M,

where
M =min (8, X 1)) ,
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and

_TI'(r+a-1) 1
S - - 5
n [ R1r+(x—l R2r+a—1 ]

r
with Ry = > X(1) + (n-r)Xp-nM+Band Ry=R;+nM.
i=1
Bayes estimators of 0, pu and R(t) with respect to the squared error
loss function are given by

N I(r+0-2) - | 1
00 =] 0 h(0, WX) ou oo = - ,
0 ,[,[ ( “’ _) ns [ R1r+a-2 R2r+a_2 ]
HO = [ u h( 8, wX) 60 du F(r+oc 2) [(r+a lr)iﬂl\/l R i
n’s R
1
R2r+a-1 ] ° — (3.1)
and
A
Ro(t) =] [ @) K@, wX) du 60
_T'(r+a-1) 1 N —
B 1 rral r+a-1 ] ?
(n+Ds © (Ri+t-M) (R2 + 1)
respectively.
N AN AN

If we substitute the Bayes estimators 8o, po and Ro(t) in place of

natural origins 6y, 1o and Ry(t) in a shrunken estimators presented in
Tablel, we obtain the Bayesian shrunken estimators for the parameters 0,
p and R(t) . For example

2
/\/\ A A A A

= o+ (p-po)’ /[(p - po)? +r9 /m* (r-1],
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/\ A A A A A
u® = -a (- o) exp [-bn’(r-1) (p- uo)/re]

2
/\/\/\ /\/\ A A

whP=d p/[d p +k2r0 /n*(r-1) ] with d1 =k +(1-k) po/p ,

A\ A

A
C=kp+ (1-k) po.

are Thompson, Metha-Srinivasan, Pandey and Lemmer Bayesian
shrinkage estimators respectively for the parameter p. In the same
manner we can find the other types of Bayesian shrinkage estimators for
the parameters 0 and reliability function R(t).

4. Simulation

The researcher uses simulation experiments to study the
performances of the estimators obtained in Sections 2 and 3.A random
sample of size n from the two-parameter exponential distribution with p
=80 and 0=7 is generated . The vector X = {X(1), X2), ..., X} of the first
r-ordered observation is recorded. Then the minimum variance unbiased

AA A
estimators p, 0 and R(t) of u, 6 and R(t) respectively are computed

using the formulas in (2.1). For a known constant k between zero and
one and for specific values L, 89 and Ry(t) the quantities

A A A AA A
d ;= k+(1-k) po/p, d, = kt(1-k) 0o/0, d3 = k+(1-k) Ro(t)/R(t)are

N VAN A
obtained. Then the ordinary shrinkage estimators upr , pv, pp and

AN AN AN AN AN AN N N

A
w of u, 6r, Ov , 6, and BL of 6, and R1(t), Rm(t), Re(t) and Ri(t) of
R(t) are computed using the corresponding formulas shown in Table 1.

AN
For given values of a, B, and 9, the Bayesian estimatorspo ,60and
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A
Ro(t) of u, 6 and R(t) respectively are obtained by using the formulas

A A N
given in (3.1). Then the Bayesian estimates po , 6o and Ro(t) are

obtained and substituted in place of natural origins po, 6o and Ry(t) in
shrunken estimators obtained in Table 1. Thus the Bayesian shrunken
A A A A A A A A
estimators ur”, pm”, pe”, and p of u, Or°, OM", 0" and 0:.° of O
A A A A

and Rr’(t), Rm®(t), Re"(t), and Ri’(t)of R(t) are computed. Monote

Carlo experiments are repeated 500 times. The average of the 500 sample
A

values of each squared error, e.g. (p - p)% is taken as an estimate of the

corresponding mean squared error which is denoted by MSE.The

estimates of the mean squared errors of the various estimators of i, 8 and

R(t) and the relative efficiencies, e.g.

VANEEVAN AN AN
R(pr /p ) =MSE(pr )/ MSE(p ),

A A\ A A
R(pur /pr®)=MSE(ur )/ MSE(ur®),
are calculated for n=30, r=10,20,30, k=0.05,0.5, a=0.1,0.5, b =40, 500,
a=p=2,

0=82, u=po=380and 0 =0, =7. Results of the simulation experiments
are given in Tables 2-7.

5. Conclusions

Although the results derived above apply strictly to limited cases,
they are suggestive of some general conclusions regarding the relative
efficiencies of the various methods. It can be seen from Tables 2-4 that
MSE of Thompson, Mehta and Srinivasan, and Lemmer estimators are
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AA A A A
smaller than that of p, 0 and R(t). The advantages of purand pu are most

marked when r 1s small.

Further comparison statistics in Tables 5-7 show that when the
natural origins are close to the true values of p, 6 and R(t), the MSE of
Thompson, Mehta and Srinivasan and Lemmer ordinary shrinkage
estimators are smaller than the MSE of their corresponding Bayesian
shrinkage estimators, while the MSE of Pandey Bayesian shrinkage
estimators is smaller than that of the corresponding ordinary shrinkage
estimator. If the natural origins are far away from the true values, then
the MSE of the various ordinary shrinkage estimators is higher than that

AA A
of u, 6 and R(t), while the Bayesian shrinkage estimators still have

A A A
smaller MSE than that of p, 6 and R(t).

Table 2: Relative efficiencies of various ordinary shrunken estimators of

N
p with respect to .

Sample size n=30, p = po= 80, 6p="7.

a=.1, a=.5, _ _ _ _
) b0 b_sg0 | k=05 | k=50 | k=05 k=.50
“"8 VANEVAN
:é R(r/p) A A A A A A
zZS R(pm/ ) R(pr /) R(pe/p)
10 | 4.43x10° | 6.54 x107 | 0.544 | 4.707 | 1.258 | 2.47x107 | 249
20 |2.52x10%|0.226 0.998 |3.788 | 3.276 | 2.50x107 | 255
30 [ 1.18x 107 | 0.166 0.994 | 4.004 | 2.736 | 2.49x107% | 259
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Table 3: Relative efficiencies of various ordinary shrunken estimators of

AN

0 with respect to 0.

Sample size n=30, u =80, 6=00=7

i RO/ | oo | o [ k=05 | k=50 | k=05 | k=50
=

o R(eAM/g) R(é;/g) R(eAL/g)

10 |9.34x 10 | 6.60x10> | 0.969 |1.15 | 1.670 | 2.33x10™ | .095

20 | 1.48x107 | 0.945 0.721 |3.965 | 1.435 | 2.53x107 | .223

30 |4.13x 107 | 0.876 1.0 3.878 | 1.753 | 2.50x107 | .256

Table (4): Relative efficiencies of various ordinary shrunken estimators

AN

of R(t) with respect toR(t)

Sample size n=30, p = po =380, 0 =0p=7, t=85, R(t)=Ry(t) = .490

A a=l1, | a=5, |\ 05| k=50 | k=05 |k=.50
2 R(Rx(t) / b=40 b=500
"53..
= A A A A A A A
22| R()) R(Rm(t)/R(t)) | R(Re(t)/R(t)) | R(Rut)/R(t))
10 | 4.19x 107 | 4.40x107 | 0.463 | 2.153 | 1.161 | 7.81x107* | .201
20 |2.84x10™*|0.890 0.918 |2.908 |1.624 | 6.17x107 | .248
30 |3.26x10* | 0.154 0.965 |2.841 | 1.563 | 8.30x107 | 267
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Table 5: Relative efficiencies of various ordinary shrunken estimators of
p with respect to their corresponding Bayesian shrunken estimators.

Sample size n=30, u=80, 6=7, a=p=2, 6=282

usg . 12;;116 ba=_5.(5)’0 k=05 | k=50 | k=05 |k=50
2% | R(ur /pr) A As A As A ns
= R(pm/ pwm) R(pe /pr) R(pe/pr)
10 [5.66x 107 |9.59x10° | 8.39x107 | 3.706 | 3.741 | 3.14x107 | .287
20 [2.39x 107 |{9.32x107 | 3.66x107 | 3.989 | 2.097 | 2.41x10™ | .249
30 [ 1.27x107 [ 3.10x107 | 1.56x107 | 4.002 | 2.731 | 2.64x107 | .255

Table (6): Relative efficiencies of various ordinary shrunken estimators
of 6 with respect to their corresponding Bayesian shrunken estimators

Sample size n=30, p =80, 6=7, a=pf=2, 6 =282

" A a=1, | a=.5, _ _ _ _
EE R(6r /| b=40 | b=500 k=.05 | k=50 | k=05 |k=50
ZE /e\B N AB N AB N AB

T) R(Om/0m) R(6r/0v) R(6./6L)
10 [5.08x107[0918 [0.992 |1.428 |1.823 |5.96x10~ |0.504
20 |0.280 0.833 |0.971 |4.376 |3.865 |0.187 0.609
30 | 0.645 0.902 |0.997 |4.421 [3.626 |0.231 0.762

Table 7: Relative efficiencies of various ordinary shrunken estimators of
R(t) with respect to their corresponding Bayesian shrunken estimators

Sample size n=30, p =80, 6 =7, t=85, R(t) =.490, a=p=2, 6=82

o A a=.1, a=.5, | k=.05| k=.50 k=05 |k=.50
qg R(R1(t)/ b=40 b=500

2% AB A AB A AB A AB
= Rx(t)) R(Ru(t)/ Rm(t)) R(Re(t)/Rr(t)) | R(Rut) /Ri(t))
10 | 9.32x107 | 2.73 x10” | 6.89x10™* | 3.673 |2.896 |2.26x10™ | .232
20 | 8.81x107 | 1.01 x107 | 7.45x107 | 3.924 | 1.809 |2.59x107 |.166
30 | 0.186 5.64x107 | 3.45x107 | 3.566 |3.052 |3.67x10° | .218
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