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Abstract: 
Let R be a commutative ring with 1 6= 0 and Nil(R) be its set 

of nilpotent elements. Recall that a prime ideal of R is called a 
divided prime if P ½ (x) for every x 2 RnP. The class of rings: H = 
fR j R is a commutative ring and Nil(R) is a divided prime ideal of 
Rg has been studied extensively by the speaker(i.e. Badawi). 
Observe that if R is an integral domain, then R 2 H. Hence H is a 
much larger class than the class of integral domains. If R 2 H, then R 
is called a Á-ring. 
I wrote the ¯rst paper on Á-rings in 1999 :"Á-pseudo-valuation 
rings," appeared in Advances in Commutative Ring Theory, 101-
110, Lecture Notes Pure Appl. Math. 205, Marcel Dekker, New 
York/Basel, 1999.  
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