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Multigrid methods for Elliptic Partial Differential Equations
By
Rania Taleb Mohammad Wannan
Supervisor
Dr. Anwar Saleh

Abstract

Partial differential equations appear in mathematical models that
describe natural phenomena. Various methods can be used for solving such
equations. In this thesis, an overview of classical iterative methods, as well
as, the most recent multigrid methods is given. The classical iterative
methods used are; the Jacobi, the Gauss-Seidel, and the SOR methods.
Jacobi and Gauss-Seidel methods are efficient in smoothing the error but
not in reducing it. The smoothing property of some classical methods
motivated the work done on multigrid methods. Poisson's problem in one
and two dimensions has been used as model problem in the study of
multigrid methods. The study shows that the rate of convergence of
multigrid methods does not depend on the mesh size, a feature that makes

multigrid methods good accelerator of classical methods like Gauss-Seidel.
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Chapter 1

Introduction

Many physical problems, such as fluid flow problems, are
represented by mathematical models that consist of Partial Differential
Equation (PDE) or system of PDE's together with a set of boundary
conditions. In most cases, such PDE's are of order two. Linear second-order
PDE's are classified in three categories: parabolic, hyperbolic, and elliptic.
The general second-order linear PDE in two independent variables x and y

can be written as:

Au, +Bu, +Cu, +Du, +Eu, +Fu=G
where A,B,C,D,E,F,and Gare given functions of x and y. This

equation is said to be parabolic if B> -4AC =0, hyperbolic if BZ _4AC >0
and elliptic if B> -4AC <0. For example, in one dimension, the diffusion
equation; u, —ku, =0 is parabolic. The wave equation; u, —c’u, =0 is

X

hyperbolic, while Laplace's equation in two dimensions; u, +u, =0 1is
elliptic. The PDE is incomplete without boundary and initial conditions.
There are three types of boundary conditions:

e Dirichlet boundary conditions where the solution is specified at the

boundaries.
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e Neumann boundary conditions where the normal derivative at the
boundaries is given.
e Robin boundary conditions where the solution and its normal

derivative is given in a mixed way.
In this thesis, only the Dirichlet boundary conditions are considered.
Exact (continuous) solutions of such models are not always available. In
fact, for some models, it is not known whether an analytic solution exists or
not. For this reason, approximate solutions are needed. Elliptic boundary
value problems are the type of the problems to which multigrid methods
can be applied very efficiently. Other examples of successful applications
are parabolic problems, hyperbolic problems, optimization problems.
In this thesis, multigrid methods based on finite difference discritization is
considered. First, the problem is discretized leading to a system of linear
equations if the PDE is linear and a system of nonlinear equations if the
PDE is nonlinear. Then the algebraic system is solved using the most
efficient techniques. The result is the discrete solution of the boundary
value problem.
1.1 Discretization

There are several methods to discretize a PDE some of these
methods are the finite difference methods and the finite element methods.

The finite difference is simple and is the most popular when the boundaries



4

are rectangular such as in numerical wheather prediction. Finite element
methods, are most popular when the boundaries are irregular or moving

like in simulation of the forces acting on an airplane or in a car accident.

Linear Discretization Linear
Continuous | —— (finite difference) > System
Problem

Suppose that u is the exact solution of the elliptic PDE with
independent variables x and y, where a<x<b,c<y<d, and we need to
find the approximate solution. First, we discretize the PDE. Choosing

d-c

integers n and m, and define step sizes h, _b-a and h,=—-—.
n m

Partitioning the interval [a,b] into n equal subintervals each of width h, and
the interval [c,d] into m equal subintervals of width h, as in Figurel.1. The
result is a grid on the rectangle [a,b]x[c,d] obtained by drawing vertical and
horizontal lines through the points with coordinates (x,, y j) where:
X, =a+ih,i=0,1,..n .
and y; =c+jh,,j=0,...m.
The lines x=x; and y =y, are called grid lines, and their intersections

are called grid points (mesh points). Numerical differentiation formulas are

used to replace the derivatives in the elliptic PDE, converting the elliptic



5

PDE into an algebraic equation for each grid point. For simplicity, we use
the following second-order centered-difference formulas:

a_U - Uispj — Uiy
OX 2h

2
ou Uy, —=2U; +U;

ox? h?

Similarly, for other derivatives.

Yi

Figurel.1

Example 1.1
Consider the Poisson equation:

Uy +Uy, =1

In the square region Q=[-11]x[-11] with boundary condition,
u(x,y)=0,v(x,y)e aQ . Using second—order formulas for the derivatives

with h =hy =05, give the difference equation:



6

The linear system associated with this problem has the form

4 1 0 0 0 0 0 0 u,,

I =4 1 0 1 0 0 0 0 u,,

0 1 -4 0 0 1 0 0 0 u,,

1 0 0 -4 1 0 1 0 0 u,,

0 1 0 1 -4 1 0 1 0] xlu,|=
o 0 1 0 1 -4 0 0 |1 u,

0O 0 0 1 0 0 -4 1 0 u,,

0o 0 0 0 1 0 1 -4 1 u,
0 0 0 0 0 0 1 -4] |u,

[0.25]

0.25
0.25
0.25

0.25].

0.25
0.25
0.25
0.25

Several solution methods can be used to solve the linear system resulted

from the discretization process. Direct methods such as Gaussian

elimination can be used, other more efficient direct methods also can be

used. In real problems, The systems are very large systems , and the direct

methods become inefficient, since they lead to the formation of

intermediate matrices, making the number of arithmetic operations

necessary for the solution too large. For this reason, iterative methods are

used for solving such systems. Several classical iterative methods exist.

Some of such methods are:
e Jacobi method.
e Gauss-Seidel method.

e Successive over relaxation (SOR) method.

Iterative methods begin with an initial approximation of the solution,

and generate a sequence of approximations assumed to converge to the
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exact solution. The error in such approximations is the result of machine
(rounding) error and the number of iterations used. Classical iterative
methods are easy to implement and may be successfully applied to more
general systems than most direct methods. However, iterative methods
suffer some limitations. They are characterized by slow error reduction, but
they provide rapid damping, leaving smooth error. For this reason, these
methods are called smoothers. Multigrid methods have been developed
through attempts to overcome these limitations. They use these classical
methods as smoothers.
1.2 A Brief History of Multigrid Methods

First studies investigating multigrid methods are given by Fedorenko
from 1962 to 1964, who developed the first multigrid scheme of the
Poisson equation in a unit square. His work was generalized to the general
linear elliptic PDE with variable smooth coefficients by Bachvalov in 1966.
The actual efficiency of multigrid methods was reported in a paper by
Brandt in 1973, who presented another paper in 1977, clearly outlining the
main principles and practical utility of multigrid methods. Brandt's work
drew attention and marked the beginning of rapid development. During
1975 and 1976, Hackbusch developed the fundamental elements of
multigrid methods, Hackbusch's first systematic report in 1976 contained

many theoretical and practical investigations, which were taken up and
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developed further by several authors. Since the early 1980s, the field of
multigrid extended and many researchers have contributed to this field.
Two series of conferences dedicated to multigrid methods were set up: the
European Multigrid Conference (EMG) held at Cologne in 1981 and 1985,
Bonn in 1991, Amsterdam in 1993, Stuttgart in 1996 and Ghent in 1999. In
the US, the Copper Mountain Conferences on Multigrid is held every two
year since 1983. An essential contribution to development of the multigrid
community is the MGNET website maintained by Craig C. Douglas:

http://www.mgnet.org , this is a large communication platform and a

resource on everything related to multigrid methods.
1.3 Grid structure
While, classical iterative methods use a single grid, multigrid

methods use more than one grid. In one dimension, let Q=[a,b] be a
domain. A grid Q, is defined by:

Qh:{XG[a,b]:x=a+ih,i:0,1,...n,h=b_—a} 1.3.1

|
x=a+h a*+2Zk . x=h

Figure 1.2

Domains in two dimensions may be rectangular, circular, or
irregular. And the grid may be Cartesian grid, boundary-fitted curvilinear

grid. However, only Cartesian grids will be considered.
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In this thesis, only rectangular domains with Cartesian grid are

considered.

~

R

SR

[]
=
i
Iy

/
o
B

-

.

(a) (b) (c)
Figurel.3 (a) Cartesian grid on rectangular domain
(b) Cartesian grid on irregular domain
(c) boundary-fitted curvilinear grid

If Q=[a,b]x[c,d] is rectangular domain then the grid is:

Q,, ={xy)eQ:x=a+ih,y=c+ jh,.h, :b_—a,hz :H} 13.2
' n m

Consider Q,as in equation 1.3.1. A coarser grid can be obtained by

deleting all grid points with odd index i, then we obtain:
, , n
Q, = {x elab]l:x=a+iH,H =2h,i= 0,1,....5}.

The number of subintervals N need to be divisible by 2, Q,, is called
coarse grid, and Q, is called fine grid and the process is called coarsening.

Coarsening can be done in a different way, by deleting every other grid
point or reducing subintervals by 0.5. However, dividing by two is the most

popular. Coarser grids Q,,1=0,..k, can be obtained by repeating the

process taking into account that the member of subintervals n must be in
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the form 2. The coarsest grid is Q, , and the finest gridQ, . For simplicity

we replace h, by I.

Figure 1.4 coarsening with n=8 at finest grid

In two dimensions the coarse grid is:

. o n . m
Qy :{(x,y)e Q:x=a+iH ,y=c+jH,.,i= 0,1,...5,1 = 0,1,...2}

n, m are in power of two, H, =2h.H, =2h,

Figure 1.5 coarsening with n=m=4 in the finer grid

1.4 Stencil notation

Using stencil notation is important in describing the moving

between grids operators which will be studied later.
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Let u,:Q, >R , be a grid function. We can define an operator on the

set of grid function by:

[Sk]huh(x):zk:skuh(x+kh),Where ] =1 - s, s s - ]

is the stencil.

In two dimension, the stencil is:

S.u Sou Su
[S K .k, ]hl,hz =l - Sao0  Soo Sio
Si—1 So Sia

And the operator on the set of grid function is defined by :

[Skl,kz ]hl,hz Up n, (X, Y) = (Z)Skl,kzu(x +kh,y+ kzhz)
Ky ko

Assume that the only finite number of coefficients s, , are nonzero.

Many of the stencils considered are five-point or compact nine-point

stencils.
SO 1 S—l 1 S0 1 Sl 1
Sfl 0 SO,O SI,O Sfl 0 SO,O Sl 0
So,-1 h So-t So-t S,
Five-point stencil. Compact nine-point stencil

Near the boundary points the stencils may have to be modified on the

domain. In Figure (1.6 a) the point is at the west boundary, so it is known.
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S0,1
The modified five point stencil is [Sk_kz ]h =10 s,, S| .InFigure (1.6D),
So.-1 h

the five point stencil for the northwest corner can be modified as

D
N7
Fany
A%

)
'

(@) (b)

Figure 1.6
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Chapter 2

Classical Iterative Methods

2.1 Introduction

Direct methods for the linear system proceed through a finite number
of steps and produce the exact solution to the level of rounding error. An
iterative method starts with an initial approximation and produces a
sequence of approximations (vectors) of the solution that is supposed to
converge to the exact solution. The error in the approximate solution is due
to the machine (rounding error) and to the number of terms in the sequence
(iterations) used.

For large linear systems iterative methods often have advantages
over direct methods in terms of speed and demands on computer memory.
Accuracy is proportional to the number of iterations. When the sequence is
convergent, iterations will suffice to produce an acceptable solution. This
means higher accuracy needs more iterations. The number of iterations
needed for a specific accuracy depends on the speed of convergence of the
method. Another advantage of the classical iterative methods is that they

are usually stable, and they will damp errors as process continues.
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Classical iterative methods have the disadvantage, of smoothing errors.
After few iterations, the error become smooth. and the result is slower

convergence.

Consider the linear system:

Au=f 2.1.1
We will use u =(u,,u,,.......,u,) to denote to the exact solution of this system,
and v=(v,,v,,......,v,) to denote the approximation of the exact solution.

Definition 2.1.2:

Let v be the approximation of the exact solution u of the linear system

Au =f .The error in v is:

e=u-—-v 2.1.2
The residual is:
r=f-Av 2.13
As a result:
r=Ae.

These two measures can be computed by any standard vector norm.
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Definition 2.1.2[11] vector norm:

Let " be a real vector space. A function |||:R" — R with the
properties:
0. |u|>0
1. |u/|=0if and only if u=0
2. |len| = |e[u| for any real scalar «
3. Jusvl=ful+ v

Forall u,veR", is called a vector norm. The most common norms are

1
||“||p=(zn:|ui|pjp, 1< p <o called the p-norm. If p=c then
i=1

= r1r<1ial>n<|ui| is called infinite norm. For p =2, the norm is called the

Euclidean norm.
An iterative method generate a sequence of approximations
fu™}_ using the iteration:
u™' =Tu"+C 2.14
where u" is the approximation solution after m iterations and T 18
called the iteration matrix of the iterative method. Different iterative
methods have different iteration matrices. Convergence of an iterative

method depends on the iteration matrix T for the method.
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2.2 Basic iterative methods
We will consider the following three most popular classical
iterative methods:
- Jacobi method
- Gauss-Seidel method
- SOR method
Consider the linear system Au=f . If we can split A as A=M-N
with M nonsingular, then the linear system is:
(M =N)u =f
Mu = Nu +f
and the iterative method is:
Mu™' = Nu™ +f m=0,1,..
SO
"' =Tu"+C m=0,l,. 2.2.1
where T=M"'N and C=M'f.

Now, consider the splitting A=D-L-U where D denotes the
diagonal part of the matrix A. The matrices —L and -U are strictly lower
and upper parts of A, respectively. Based on this splitting, many choices for
M and N are possible leading to different iterative methods.

Jacobi iterative method uses the splitting M = D,and N =L+U . The

iteration is given by:
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um+1=[D_1(L+U)}um + Dt m=o012. 222
=Tu" +C;
This is the matrix form of the Jacobi method, where the iteration matrix
of Jacobi method is:
T, =D7(L+U)
and
C,=D'f
This formula is important in the study of the convergence of the Jacobi

method. However, computationally, the iteration is carried out simply by

solving equation i for the unknown u;:

um™! =L{fi —Zaiju}“} i=1,.,n 223
a.

Jacobi method starts with initial approximation u’to compute a new
approximation u' using equation 2.2.3, then u' is used to computeu’, and
the process is repeated until a maximum number of iterations, or a given
tolerance (maximum error norm allowed) is reached.

The actual error u—u" in the m" approximation u™ is not computable since

. . . 1
the exact solution u is unknown. However, the estimated error u" —u" can

be easily computed.

m+l

The error norm || u u" ||, for any norm, is compared with a given
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tolerance to stop the iteration process.
A variation of Jacobi iterative method is the damped (weighted) Jacobi
iterative method. The iteration of the damped Jacobi iterative method is
given by:
u™ =Tu"+aD7'f, 0<w<l1
where:
T, =|1- o)l +aT,]
Gauss-Seidel method is similar to Jacobi method but it uses the most

recent values to update the unknowns. The iteration is:

i—1 n
Uim+1= L fl - I_Z aijU?‘H_1 - Z aIJUrJn ,i=1..,n 224
i j=l1 J=1+1

Splitting M=D-L and N=U gives:

(D-Lpu™! —uu™ +¢

x| |
um+1:[(D—L) U}um+(D—L) £ Yy

=T,u" +1,

where the iteration matrix for Gauss-Siedel method is:

T, =(D-L)'U

g =
and

I,=(D-L)'f

This is the matrix form of the Gauss-Seidel method.
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The idea of Jacobi and Gauss-Seidel methods is to generate a sequence
of approximations that converges to the solution of the system. A

corresponding sequence of residuals converges to the zero vector.

Let um+1:(um+l ,Um+1 um

-
i L e U U un) be the approximate solution

. . T
vector after m+1 iterations. With residual r™' =(r", ..r™) . Gauss-

Seidel method can be characterized by choosing u™" that satisfy

m+1

ma_ymy T 2.2.6
a.

Gauss-Seidel method can be modified by taking the form of a

weighted average of the last two iterations as:

m+1

I
=u"+o—— 2.2.7
a.

m+1

U;

Choices of positive @ will leads to faster convergence. If 0<w<1,the
method is called under relaxation method, and if » >1 the method is called
over relaxation method. These methods are used to accelerate the
convergence for the systems that are convergent by Gauss-Seidel
technique. This method is called successive over relaxation (SOR), and is

given by:

w
uim+l = (1-uM +—( z alj rjn+1 - z|+1a” T] 2238

The matrix form of the SOR method which is important in theoretical

analysis is given by:
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um+l = {(D - a)L)_1 [1-@)D-wU ]}u m . [(D - a)L)_la)}f 229

=ToorU" + Igop
Where
Teor =|(D— L)' [(1- @)D - U]
1s the iteration matrix for SOR method and
I =(D-ol)" of

Note that if @=1 the SOR method simplifies to the Gauss-Seidel

method.
2.3 Convergence of classical iterative methods

Starting with an initial vector, an iterative method generates a sequence

of vectors that approximates of the solution of the given linear system. The
sequence may converge or diverge. Convergence and divergence of the
method depends on the nature of the coefficient matrix.

In this section we will perform convergence analysis for the three
iterative methods discussed in the previous section. To study the
convergence of these methods we need some theorems and definitions.
Definition 2.3[11] matrix norm:

|| is a matrix norm on nxn matrices if:

1. |A|=0

2. |A|=0 ifand onlyif A=0
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3. leA| = |e||A| for any real scalar «
4. |A+B|<|Al+[8]

For nxn matrix A, some of known matrix norms are:

° The operator norm ||A||=ma M
vt vl
o The infinite norm |A| =max [Ad]. —maxzn:|a |
TR o

o The Euclidean norm ||A|= anzn]aur

i=1 j=1
Definition 2.4[16] spectral radius:

The spectral radius of a square matrix T is p(T)=max[4| where the

maximum is taken over all eigenvalues 2 of T .
Theorem 2.1 [11]:

For each norm and each matrix we have that p(T)<|T| , conversely, for
each matrix T and each ¢ >0 , there exists a norm such that:
< plr)se.
Proof:

Let || = p(T) and u be the eigenvector for A then:

AT L LU I T
o Ml e

To construct || such that [T||<p(T)+e , let
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A4 ¢ 0
0 A
. €
0 4
(SD,)"T(SD,)=D,"JD, =
1 0

&
oAy
&
A, &
0 4

h O -

N

3

which mean a Jordan form with¢'s above the diagonal. If we use the vector

norm
Jull=|(sD.) v,

to generate the operator norm, then

i = T g 2 T,
W e
|(sp,)"'T(sD, v

= max w
Vio M.

= "(SDE )'T(SD, j )

<p(T)+e

Theorem 2.2[11]:

The successive approximation

converges if and only if p(T)<1.

"' =Tu"+C

9

m=0,1,2....
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Proof:

Suppose the method converges and p(T)>1 then there exist an
eigenvalue 2 of T with |>1. Let u’-u be an associated eigenvector
then:

um“—u=T(um—u)= ...... :Tm“(uo—u)=/lm“(u°—u)
which is not approach to zero, and this contradicts the assumption.
Conversely, suppose that p(T)<1, then |T|<1 from previous theorem and
u™ —u =T(um —u) we have:

Ju" —u| <[l —u] <[r™

u’ —ul

which converges to zero.
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Definition 2.5[16]:

The matrix A of dimension nxn is strictly diagonally dominant if

la;| > i‘aﬁ‘ for each i =1,..n

j=1
J#i

Theorem 2.3 [11]:
Consider the linear system Au=f. If A is strictly diagonally dominant,
then the Jacobi method converges.

Proof:

The iteration matrix of the Jacobi method is:

0 a12 . aln
a‘11 all
— 8y 0 — &y,
. a22 a22
T,=D7'(L+U)= :
—a, ~—a 0
L ann ann a

Since “D’I(L+U)”w:ma>_<zn: <1, p(T,)<1 so the Jacobi method

converges.

Theorem 2.4[6]:

If A is strictly diagonally dominant then the Gauss-Seidel method

converges.
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Proof:
Let 4 be any eigenvalue of the iteration matrix of the Gauss-Seidel

method T, =(D-L)'U and let u be the corresponding eigenvector. Without
loss of generality, assume |u| =
we have:
(O-L) U= 1u,
Uu = DAu—LAu

which mean:

—Za”J a; Au, —)LZa,H, <i<n.

j=i+l

So

ﬂ’aiiui Z ij] zau Ja = n,

j=1 j=i+l

Now select an index i such that |u|=1>|u;| forall jthen:

b

i—1 n
Z |ﬂ|Z|au |+ Z|aij
j=1 j=i+l

solving for A4 and using the diagonally dominance of A, we get:

<[ S-S | <

J=i+l

then p(Tg)<l so Gauss-Seidel converges .

The following theorem gives conditions on the convergence of the SOR
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method.
Theorem 2.5[11] kahan:
For arbitrary nxn matrix A, p(Tgyg)=|w—1 therefore p(T;)<1 only if
0<w <2 where Ty, is the iteration matrix for the SOR method

Proof:

Write the characteristic polynomial of T, as:
P(2) = det(Al —Ton) = det((1l — @D LY A —Toog ).
Because | —-wD™'L is lower triangular matrix with 1 on the diagonal ,
det(l —@D'L)=1
then
(1) = det(DD (1 - @D "L )41 - (D - L) '[1- @)D + U ]
= det((A+@—1) —@AD'L-D'U)
Since 4,,....,4, are the eigenvalues of T, the constant coefficient of

the characteristic polynomial:

Now:

which implies:
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for convergences we need:

P(Toor) <1
then:
lo—1/<1
which leads to:

O<w<?2.
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Chapter 3

Multigrid methods

3.1 Introduction

Jacobi and Gauss-Seidel methods are characterized by their slow rate
of convergence [1]. They are efficient in smoothing the error but not in
reducing it. By smoothing, we mean damping the error components with
short wave length, which is done after very few iterations (relaxation
sweeps). To reduce smooth error, it takes many relaxation sweeps, which
means slow rate of convergence. If we analyze this error into components
of wavelengths, the error will have components of many different
wavelengths, there will be short wavelength error components and long
wavelength error components. For short wavelength error components,
Jacobi and Gauss-Seidel methods provide rapid damping leaving behind
longer wavelength error components (smooth). Long wavelength error
components (smooth) are responsible for the slow convergence. The basic
idea behind multigrid methods 1s to reduce long wavelength error
components.

The rate of convergence of classical iterative methods can be
improved with multigrid methods. A multigrid method begins with Jacobi

or Gauss-Seidel iterations, for the one job that they do well, removing short
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wavelength error components to leave a smooth error. The central idea is
to move to a coarse grid where transferred error is not smooth.
We illustrate this method using the simplest case a two grid method.
3.2 Two-grid method
We can introduce the two-grid method by starting from the general
iteration based on approximate solution of the defect (residual) equation. If
we discretize the PDE on uniform grid with mesh size h, we can write the
resulting set of linear equations as:
A, =1, 3.2.1
Let u, be the exact solution of equation 3.2.1. let u;]be the
approximate solution after m relaxation sweeps with error:
ey =u, —u,
and residual:
ry =f, —Au,
This leads to the following defect equation:

r, =Ae; 322
If we approximate A, by any simpler operator A where A exists, for

example A, is the diagonal part of A in Jacobi iteration, and the lower
triangular part of A, for Gauss-Seidel iteration. Then the solution é; of the

defect equation
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Agy =1

is added to the old approximation uj giving a new approximation uj".

This means:

We can describe the previous steps by the following flowchart:

Approximate solution
uy

A4

Residual

m _ m
r, =f, — Ay

Residual equation

m

Aer =r,

Residual correction

~Am
€h

New approximate solution

m+1

u, " =u; +e"

The iteration operator of this method is given by:

Then we have:

m+l _ m A -1
u, =M u, +Af,
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Another type of approximation for A is to coarsify rather than

simplify. i.e. we form a suitable approximation A, of A on coarse grid

with mesh size H =2h , and then the defect equation 3.2.2 is replaced
by:

A e} =r] 323

Because A, has smaller order, equation 3.2.3 is easier to solve than
equation 3.2.2. The residual r,] and the error e}, are grid functions on

the coarser grid Q,, therefore two linear transfer operators to move

between grids are needed. The first operator is a restriction from the

fine grid to the coarse grid:
I# : g(Qh)—> g(QH )

This operator is used to transfer the residual r" from Q, to Q, (i.e.

m _ yH_m
] =1r").

The second operator is a prolongation from the coarse grid to the fine
grid:

h
I

H g(QH )_> g(Qh)
This operator is used to transfer the error €], from Q, to Q, (i.e.
el =1el).

Finally, the new approximation u;* is computed by adding a coarse

grid correction e = I/e], to u replacing a new relaxation sweep on the

fine grid by a new and cheaper one on the coarse grid. This process is

called coarse grid correction, and it can be described as follows:
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o Compute the residual: r;' =f, — Ajuj .

o Transfer the residual to the coarse grid: r] =1.'r".
o Solve the residual equation: A, e} =r].

o Transfer the error e to the fine grid: e = 1]e],.

. Compute a new approximation: u;"' =u; +ej .

The high frequency components can be reduced by smoothing on
the fine grid using iterative methods like Jacobi and Gauss-Seidel. The
low frequency components of the error are effectively reduced by
coarse grid correction procedure. But the high frequency components of
the error are not even representable on the coarse grid see Figure [3.1]
and so cannot be reduced to zero. This leads us to combine the two
processes of smoothing and the coarse grid correction to get the two

grid method.

ANFANFAN .

Figure [3.1]: high frequency components errors are not representable (not visible)

on the coarse grid.
Each iteration step of a two-grid method consists of presmoothing, coarse
grid correction and postsmoothing part as follows:

e Pre-smoothing: compute u" by applying v, >0 steps of a given
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smoothing procedure to u".
e Coarse grid correction: use u;" to get u"™" .
e Post-smoothing: compute u]™' by applying v, >0 steps of the given
smoothing procedure to u]"™" .

Two-grid procedure can be presented by:
u e, gt S =f, —Au) el - u +e TG, 1!
1My T
r, —> Aje] =1,
But two-grid methods are of little practical significance due to the
still large complexity of the coarse grid problem. However, they serve as
the basis for the multigrid methods. Instead of solving the coarse grid
residual equation exactly, we can get an approximate solution of it by
introducing an even coarser grid, and using the two-grid iteration method.
This idea can be applied using coarser and coarser grids, down to some
coarsest grid where any solution method can be used.
3.3 Moving between grids: restriction and prolongation.
In multigrid methods, it is necessary to move approximations, residual
and errors between grids. There are two types of grid transfer: restriction

and prolongation. Restriction transfer values from fine grid to the next
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coarse grid. Prolongation transfer values from the coarse grid to the next
fine grid.

The choice of restriction and prolongation operators I* and 1/} for

intergrid transfer of grid values depends on the choice of the coarse

grid. In this thesis, only standard coarsening will be considered.

3.3.1 Restriction

The simplest restriction operator is the injection operator:

ry(p)=1,'r,(p)

, peQ, cQ
=r,(p) " h

This identifies grid function at coarse grid points by the corresponding

grid values at fine grid points as in the following figure:

Vo]
LN L

(@) (b)

Figure [3.2]: (a) Restriction by injection operator in one dimension.

(b) Restriction by injection operator in two dimensions.

Another restriction operator is the Full Weighting (FW) operator. This

operator can be illustrated by the following Figure:



Figure [3.3]: restriction by full weighting operator in one dimension

This restriction operator is represented by stencil notation as:
[1 2 1}2“
4 4 4
ie r(x)= Ihz“rh(x)z%(rh(x—h)+2rh(x)+ E(x+h)xeQ,, .
But if x is the left boundary point then the stencil is modified by:
2h
ol
4 4]
If xis the right boundary point then the stencil is:
2h
{l 2 0}
4 4 |

In two dimensions, the full weighting operator is given by:

r —12h

1 2 1
16 16 16
2 4 2
16 16 16
1 2 1
16 16 16,

which means:
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rzh(x’ Y): Ir?hrh(x’ y)
1 [4n (6 y)+2n (x+h,y)+2n, (x=h,y)+ 26, (x, y + h)+ 25, (x, y —h)
S 16|+, (x+hy+h)+r(x+hy—h)+r,(x=h,y+h)+r,(x=h,y-h)

where(x,y)e Q,, .

/
AN\

N/

Figure [3.4]: restriction by full weighting operator in two dimensions.

If x is a boundary point, full weighting operator is modified as follows:

For a north-west corner, the FW stencil is:

r T2h

0 0 0
o X 2

16 16
o 2 1
16 16,
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/4
w

Figure [3.5] : restriction by full weighting operator for corner point

If x 1s a west boundary point, then the FW stencil is:

r 12h

o 2 L
16 16
0o & 2
16 16
o 2 L
16 16,

Figure [3.6]: restriction by full weighting operator for boundary point.
Another operator is the Half Weighting (HW) operator. It is a five-

weighted average. In stencil notation, the HW reads:



(a=)
N
[w)

S oo —
S o= O

|0 phoo|—

This means:

1
r,(x,y)= §[4rh(x, y)+r(x+hy)+r(x=hy)+r(x,y+h)+r(x,y—h)]

7
] 7
Vi

\ 17

/2

Figure [3.7]: restriction by half weighting operator for an interior point

3.3.2 Prolongation

The prolongation operator maps coarse grid values onto fine grid
values. In one dimension, the values at points on the coarse grid are copied
to the corresponding fine grid points. The remaining values at the fine grid
points are computed by taking the averages of the values of the left and the
right coarse grid points.

The linear prolongation is defined as:
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6. (x)=1" 6  (x)
h 2h~2h
é2h (x) , for coarse grid points

I . .
2[e2h (x=h)+ €h (x + h)} , for points locates between

two coarse grid points.

T I I ¢ I T

Figure [3.8]: linear prolongation in one dimension.

In two dimensions, the most used prolongation is bilinear, which
1s given by:
8, 06y) =15 65 (x.y)

é2h (X, y) ,for coarse grid points

-é2h (x,y+h)+ é2h (x,y - h)] for points located between two

N | —

coarse grid points vertically
== -é2h (X +h,y)+ é2h (x—=h, y)] for points located between two

coarse grid points horizentally

(6, (x+hy+h)+é  (x+hy—h)+

1| "2h 2h P . .

— . . or points located in the
4 ezh(x—h,y+h)+e2h(x—h,y—h)

center of square whose

vertex are coarse grid points.
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This can be illustrated by the following figure:

Bal =

Eal =
|
Ba| =

\o
/
AN

i

—>0—

2

ba] H

Figure [3.9]: bilinear prolongation operator: (®) coarse grid point, (¢) fine grid point

In stencil notation we write the bilinear interpolation operator 1), as:

The brackets are reversed, since the stencil entries correspond to weights

in a distribution process as:

Another prolongation operator is a linear operator which takes place in

triangles as illustrated in the following figure:
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1
2 5 1 1
— —Poe& " —o — 2 —Poe— 2 —e
1 1 1 or 1 ) 1
2 /; 2 2 - 2
o o - 02\
1 ¥ 1 1 v 1
1 z 1 1 \ Z 1
g 2 z 2 2 2
¥ ey -1 >°% ;™
2 2 2 2

Figure [3.10]: linear prolongation operator, ( ¢ coarse grid points and ( o) fine grid
points
This linear prolongation is given by:

éh (X: y)= I Sh ézh (X’ y)

e (x,y) ,for coarse grid points
0

5 -é2h (X,y+h)+ é2h (x,y— h)] for points located between
two coarse grid points vertically.
% -é2h (x+h,y)+ é2h (x—h, y)] for points located between
= two coarse grid points horizental ly.
1 [, A
E_eZh(x+h,y+h)+e2h(x—h,y—h)] or
% -é2h (x+h,y—h)+ é2h (x—h,y+ h)]for points locate in the center

of square whose vertex are
coarse grid points.

3.4 The Multigrid cycles.
A two grid cycle consists of three steps: presmoothing, coarse grid
correction and postsmoothing. A Multigrid cycle can be obtained by

performing a number of two grid cycles, say y, at each intermediate stage

to obtain a better approximation:



Two grid method

i f Sans

y=1 Y =2 y=3

Three-grid method

y=1 Y=2
Four-grid method

Figure [3.11]: structure of one multigrid cycle for different grids and different values of
v, where @ for smoothing, @for exact solution, \ for fine to coarse, / for coarse to
fine transfer.

The two casesy =1,and y =2 are particularly interesting. In the case
y =1, the cycle is called V-cycle, and if y =2, then the cycle is called W-

cycle , and the number y is called the cycle index.
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We now describe a multigrid V-cycle with v, and v, as the numbers of the

presmoothing and postsmoothing iterations respectively. The calculation of
a new iterates u!*' from a given approximation is given in the following

algorithm [2]:

1 2
Let u, > be the solution after the presmoothing stage, u, > be the
solution after the coarse grid correction, and u' be the solution

after the postsmoothing stage.
Step 1: Presmoothing.

1
Compute u, * by applying v, iterations of the smoother

1
m

(Gauss-Siedel, Jacobi) on @, : uhm+5 =Su;y
Where S iteration matrix of the smoother.

Step 2: Coarse grid correction

Compute the residual on Q, :

1
m+—

r,=f, —Au, °’

Restrict the residual from @, to @, and initialize the coarse

grid approximation :
f,=1r, u,=0

If o, isthe coarsest grid then solve the coarse grid

equation exactly:

A, =f,, onQ,.

Else, solve the coarse grid equation:

Aju, =f,, on Q,



46

approximately by applying a multigrid V-cycle starting
on Q,
End if
Interpolate the coarse grid approximation (error) from
Q,to Q)
e, =10u,

Correct the fine grid approximation on €, :

2 1
m+= m+—

u, *=u, °+e,
Step 3: Postsmoothing.

1
Compute u, * by applying v, iterations of the smoother on

gz . m+é v m+§
h u, *=S5.2u, .

Following is the flowchart of a three grid V-cycle:

1 2
m+— m+=

m__ Sy 3
up > Uy,

m+1

3 _ Sy
up, > Uy,
2h h
1 d T,

1 2
m+— m+=

m Sy 3
u,, >U,,

m+1

3 _ S
U, >,
4h 2h
(N2 ™y

1
m+—

m _ p4h 3 m+l _ pA-lgm

fin = 1300 >uy = Ayl

Figure [3.12]: three grids V-cycle
3.5 The Full Multigrid Methods
The choice of initial approximation is important in iterative methods.

The closer the initial approximation to the exact solution, the better. But
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iterative methods are needed when exact solution is unknown. To get a
good initial approximation, a procedure called nested iteration can be used
as follows:
e Approximate the solution on the coarsest grid
e Transfer the solution to the next fine grid, for example using
interpolation.
e Use the transferred solution as an initial approximation on the
fine grid.

The process is repeated from coarse to fine grids. Combining the
nested iteration method with multigrid method gives the so called Full
Multigrid Method (FMG). The FMG starts at the coarsest grid where the
equation can be solved exactly. It then proceeds to the next finer grid,

performing one or more cycles at each level along the way as shown in

o'“c/".\/ \/ \\/

Figure [3.13]:¢® means transfer of the approximation solution to a finer grid.

Figure [3.13]
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Remark: [2]

In general it is not sufficient to start the solution process on a very
coarse grid, interpolate the approximation of the coarse grid solution to the
next finer grid, smooth the visible error components and so on until the
finest grid is reached. Actually the interpolation of the approximation leads
to nonnegligible high and low frequency error components on the fine grid
that can be reduced efficiently only by a subsequent smoothing of the error
on all grid levels. i.e. by revisiting the coarse levels in multigrid cycles.

3.6 Multigrid iteration operator
Discritization of a linear differential equation reduces the equation to a
linear system:

Ay, =1,

Given approximation u]', we find u]" by coarse grid correction method

which is given by:
up =Kl + Nf, 3.6.1
where
KM =1-11A'I'A is the coarse grid correction matrix

and N=1A'I".

m+l1 .

We can prove equation 3.6.1 using the relation between u; and uj

m+l _ _m m
u, =u, +e;,

h
=u; +1] e}
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But
e = Alr]
and
ry =1 (f, - Au?)
by substitution we get:

ul = ul 1A (F, — Aal)

which completes the proof.

For the error:

el =K/ e 3.6.2
Recall that:
ehm+1 :uh _uhm+1

If we multiply both sides of equation 3.6.2 by A,, we get the residual after

coarse grid correction:
m+1 H aA-1..m
o =AK AT

The error after v, presmoothing iterations is given by:

1
3 _ Qa0
e; =S"e,

where e, is the initial error. After coarse grid correction, the error is:
2 1
el =K'le?.

Then the error after two-grid method is given by:
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e, =Quey
where
Q, =S"K/'s" 3.6.3
is the two-grid iteration matrix.
Theorem 3.7.1[1]:
The iteration matrix Q, (v,,v,) of the multigrid method satisfies:
Q(v,v,) = Q, (v, ) 3.6.4
and
Q(v,v,) = Qv V) + S L Q) AL KT ASY 3.6.5
where:
Q) = S5 {1 - 1L ALK A S
is the iteration matrix of multigrid method.
Proof:

Equation 3.6.4 follows from equation 3.6.3. Equation 3.6.5 is proved
by induction, let the equation be true for n=k. we want to prove that it is

true at n=k+1.

1
Let e,,, be the error on Q,,, before multigrid, e}, is the error after
2
pre-smoothing, e}, is the error after coarse grid correction, and e, is the

error after post-smoothing then we have:
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1
3 _ QY a0
ek+1 - Sk+lek+1

The coarse grid problem to be solved is:

1
Akuk =-I If+1 Ak+lelf+l

3.6.6

with initial guess u, = 0. Hence the initial error e, is the negative of the

exact solution on Q, which means
1
0 -1k
ek = Ak Ik+1Ak+1e|3+l .
After coarse grid correction the error on Q, is
0
(Qk )yek
hence the coarse grid correction is given by:
0
(_ I+ (Qk )7 )"k

therefore:

2 1

3 3 k+1 7 1,0
el =6, + 1" (_I +(Qk) )ek

2 1

3 _ ) pk+lp-lyk k+1( )7 11k 3
ek+1_{| L ATTGAG LT Q) AT A Bl

Then:

2
1 _QV a3
ek+1 - Sk+lek+l

Combining equations 3.6.6, 3.6.7,and 3.6.8 ends the proof.

3.6.7

3.6.8
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Chapter four
Convergence Analysis
4.1 Introduction
4.2 Smoothing analysis
4.2.1 Smoothing property
4.2.2 Local Fourier analysis
4.3 Convergence analysis of two-grid method

4.4 Multigrid convergence
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Chapter 4
Convergence Analysis

4.1 Introduction

Studying convergence of multigrid methods is not an easy task, and is
still an open area of computational mathematics. The smoothing error
modes, which remain after relaxation on one grid, become oscillatory on
the coarse grids. Therefore, moving to coarser and coarser grid, all error
components on the finest grid become oscillatory and are reduced by
relaxation. For good multigrid method, the convergence factor of the

multigrid method, |Q,(v,,v,) need to be small and independent of h, i.e.
||Qk (v,,v, )" < constant < 1

Where Q,(v,,v,) is the iteration matrix of the multigrid method. For
this purpose we need the smoothing factorp, and two-grid convergence
factor norm |Q,.
4.2 Smoothing Analysis

Classical iterative methods are still important but less favored, because
after few iteration steps, the error of the approximations become smooth.
These methods remove high frequency components (rapidly oscillating

parts) leaving a smooth error, but low frequency components are reduced

slowly. So that these methods are called smoothers. However, these basic
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methods are known as efficient smoothers but not as efficient solvers.
I mean, they are efficient in smoothing the error but not in reducing it.

Figure 4.1 illustrates the error smoothing effect.

"'" m"llu.,'n\\@n\ “{'\ \
"m '"ll't?m#r“ ¢\\({ o
it nnun'ﬂ‘

,mmmu}}u";f,',', Nl
i llﬁr'l"lm: ‘

Initial errors Error after 5 iterations  Error after 10 iterations
Figure 4.1[2]: Error in the Gauss-Seidel approximation of the solution of Poisson

problem.

The smoothness of the error slows down the convergence of the basic
iterative method.
Example 4.1
Consider:

u, +u, =(C+y* Y 0<x<l, 0<y<l,

u0,y)=1, u(LLy)=e’, u(x,0)=1, u(x,l) =e”
Table 4.1 shows the number of iterations and the approximate computer
time needed by the Gauss-Siedel method with initial approximation u’ =0
and Tol = 10” . these results are obtained using the mathematical software
maple 12 and an intel Core 2 Duo processor. Figures 4.2, 4.3, and 4.4
shows the maximum error norm versus the number of iterations needed for

various mesh sizes.
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Table 4.1: Approximate computer time

size Number of iterations Approx1m.a te
computer time
8x & 67 0.2sec
16x16 234 3.2sec
32%x32 791 60.8sec
64x64 2587 1235.8sec
128x128 8044 21860.4sec
256%x256 20431 Four days
1.4
1_2:
1]
0.8
Emmw
0.6
0.4
027"
1%
0 50 100 150 20
n

+ + + + + +  Enmor Maxamem Morm

Figure 4.2: relation between maximum error norm and the number of iterations n,

when size 16 x16
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14-

1.2

0.8
0.5
0.4
.
1+
ﬂ.Z' +
: +

L] 1 2 M A 5l

+ + + + + +  Emor Maxamoam Moo

Figure 4.3: relation between maximum error norm and the number of iterations n,

when size 32 %32
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1 .2'_

Emoe "-ﬂ':
0.6
0.4

0.2

+ + + + + +  Emw Macammem Hom

Figure 4.4: relation between maximum error norm and the number of iterations n,

when size 128x128

The efficiency of smoothing method can be studied by the
smoothing property and by the Local Fourier Analysis (LFA).
4.2.1 Smoothing property
Discritization of the linear PDE leads to the linear system:
Au=f.
Using the splitting A=M — N, we can define the iteration method:

u™ =Tu" + L 4.2.1
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with u’ as initial approximation, m=0,1,2,3...., T=M"'N is the iteration
matrix, and L=M"'f. Convergence of the iteration 4.2.1 depends on the

iteration matrix T. After v iterations we obtain:

u' =Tu’+L

u’ =Tu' +L
=T(Tu’+L)+L
=T’u’ +(T + 1)L

w=Tu’ +L

=Tu’+(T*+T + 1)L

w =Tu +T"7+T" + 4T + )L

u' =T'u’ +Sf

where
S=(M"+T" 2 4. +IM"
Let
u' =T u'+L
and let

u=Tu+L

then we have
u —u=T@u" —u)
e’ =Te""
=TTe"?

:T ZeV72

:TVeO

The error e satisfies:

e =T" 42.2
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This equation gives the relation between the error before and after v-
smoothing iterations, but we need to measure the smoothing behavior. For

this purpose, the smoothing property will be defined. | | will denote the

Euclidean matrix norm.
Definition 4.2.1[1] Smoothing property
Let v be the number of iterations and h is the grid size used in

iteration 4.2.1 If there exist a constant C; and a function 7(v) such that:

|ATY| < Crh?n(v) .n(v) >0 for v— oo forall h

Then we say that the iteration matrix T in iteration 4.2.1 has the
smoothing property
Theorem4.2.1[1]

If the iteration matrix T in iteration 4.2.1 has the smoothing property,
then iteration (4.2.1) is convergent.
Proof:

TV

<[alar

<[Aeh ()
hence lim”T VH =0andso limHev H =0

V—o0 V—>0!

We can see it is difficult to prove the smoothing property for basic
iterative methods. In [3] the smoothing property is shown for the damped
Jacobi iterative method. The original Jacobi iteration is:

uw=ul - D’I(Auj —f)
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whereas, the damped Jacobi iteration is:
ut =y —a)D’l(Auj —f)
In many cases the diagonal is D=dh”l, de®R. Replacing
D™ by oh”l, de®R (is suitable) we obtain:
ut =y’ —a)hz(Auj —f)
then the iteration matrix:

T=1-0wh’A

A possible choice of @ is @ = CL where C, is a good bound for h*A:
T

eaf=c,
where | |is the spectral norm for matrices.

Two definitions are needed before discussing the smoothing property for
damping Jacobi.
Definition 4.2.2 [13]:( positive semi-definite)
An nxn real symmetric matrix A is positive semi-definite if:
x"Ax >0 forall xeR"
Theorem 4.2.2: [3]
Assume that A is symmetric and positive semi-definite, then the damped

Jacobi iteration satisfies the smoothing property with:
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Proof:

The matrix AT' = A(I —a)th)V is symmetric, its eigenvalues u are
A1-oh?2)', with 2 eigenvalues of A.
we have:

”AT v

= sup12(1 ~ a)hz/l)v‘ : A eigenvalues of A}

A 1is nonnegative since A is positive semi-definite, and 1-wh’1 is
nonnegative by definition of @. As all eigenvalues of A are in [O,CTh’Z],
the estimate:

“AT = supi/l(l - a)hzxi)v‘ : A eigenvalues of A}

follows.

consider x =wh’4 , X varies in [0,1] Hence we have:

“ATV = sup{CTh’zx(l —x)' 1 0<x< 1}
The maximum of x(1-x)"in [0,1] occurs when x :% . A very close
V+
upper bound for the maximum is 77(V)=§ ;1 . Hence smoothing

VAt
2

property holds.
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Note that SOR should not be used as a smoothing operator.
Hackbusch shows that SOR reduce the low frequencies components. But

the reduction of high frequencies components usually becomes even worse.

4.2.2 Local Fourier Analysis

Local Fourier Analysis (LFA) is the most powerful tool for studying
the smoothing efficiency, which was introduced by Brandt. Contributions
have been made by Stiiben, Trottenberg and Wesseling. Brandt have used
the term local mode analysis instead of LFA, both terms denote the same
approach. So LFA is used in studying the smoothing efficiency of basic
iterative methods. The aim of LFA is to compute another measure of the
smoothing behavior of an iterative method. This measure is called Fourier
smoothing factor. The Fourier smoothing factor is very important measure
for designing efficient multigrid methods. In our study we concentrate on
the Fourier smoothing factor for two smoothing methods: Jacobi method
and the Gauss-Seidel method. Before using this measure, we need to know
more about elements of Fourier analysis.

Definition 4.2.3:

The inner product of two continuous functions f and g over a set S is

defined as:

<f,g>=_|'f(x)ﬁdx
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where g(x)is the complex conjugate of g(X).

For discrete functions f and ¢ the inner product is defined as:
(f.9)=2 (0900
S

Definition 4.2.4:

Two functions are orthogonal on a set S if :

(f.g)=0

a set of functions {f, | is orthogonal set if :

(f,.f,)=0 when i=j

Lemma 4.2.1 [1] Orthogonality in one dimension.
Let | ={0,1,2,..n—1}. and (6, )=e"*, where6, :%,j eli=+-1.
Then: nzi ¥, (6,)¥,(-6,)=ns, ,» with &, the Kronecker delta.
j=0

Proof:

n-1 n-1
If k =1, then Z‘/’j (6, )(//J_ (-0,)= Zeijeke—ijak -n
=0 j=

Butif k #1, then Z‘/’ 0w (- zeu 6,-6)

which is a geometric series, so it is equal to:

1— ein(ek -6,) 1— e27zi(k—|)

27
A
1-enm )
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Theorem 4.2.3 [1] Discrete Fourier Transform in one dimension.

Every discrete function u: 1 — R, can be written as:

m+p

u; = kZCk‘//j(ek)
423

where | :{1,2,...,n—1},1//j(l9k)=EM,andgk :%,j el

For n odd, p=Oandm=nT_1.andforneven, pzlandng—l,and

. 4.2.4
Zuj‘//j (_ Hk)
=0

C, =

S|~

The functions y (@) are called Fourier modes or Fourier components.
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Proof:

If we choose c, as in equation 4.2.4, then:

m+p m+p n-1

k;anl//j( z Zull/jl ‘9 )

(k-m)(j-1)

z”zon

0
m(1-j) n

—1
:% Ule ! l//k(gj)’k(_gl)

k=0

=u;

Conversely, assume that equation 4.2.3 holds. We want to show (4.2.4)

as follows:
1 n-1 m+p n-1
=D Uy ZZC,(// 9)
n i nl “ml=0
m+p n-1

Z_quzl// )

= ché‘kl =Cy
|=—m
In two dimensions:

Let 1 ={j:j=(J.J)J, =0L....n, =1, =01,...,n, -1}

and let @:{9:(91,92); 0 :2_”"1’92 _ 27zk2}
n, n,

where k, =-m,,...,m +p,
and k, =-m,,...m, +p,

m, = (nlz_l forn odd and p, =1,m, = % —1 forn, even.and p, =0,
(nz — 1) n,
m, = — fornjodd and p, =1,m, = 5 —1forn, even.p, =0

The following lemma shows that the set:

y/:{t//j(ﬁ):jel and 96@}
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is orthogonal.
Lemma 4.2.2[1] Orthogonality in two dimension.

If we define y(0)=e", with jel, 0€O,

nn, ,if v=0
0 Af v=20’

nen S0 -0)- |

wheref,0e€0.

Proof:

From the previous lemma,
n-1 -1
Z‘// j (‘9)/’1' (_ U) = Ze”w_\/)
=1 j=1
: nJH ny—1
— Zeijl(‘gl V) Zeijz(ngvz)

h=l Jo=l
_jnn, it v=0
o if v20

Theorem 4.2.4[1] Discrete Fourier transform in two dimension.
Let 1 ={j=(j,,J,), where j, =1,2,..,n, —1and j, =1,2,...,n, —1}, then every

u:l — R can be written as:

u; = Zcé’l//j(g)a

6O

with

1
= v (—8).
CH nlnz j;ujl//j( )

where ©1s defined as in lemma 4.2.2.
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Proof: generalization of theorem 4.2.1.
Let:
Au =f

Using a classical iterative method gives:

u™ =Su" +M7'f, where A=M —N,andS=M"'N 4.2.5
After few v-iterations, the error become smooth, so that these iterative
methods are called smoothing methods. The relation between the error
before and after v-iterations is given by:

e' =S""’

Definition 4.2.4[17]:

A set jy,| of functions is complete if and only if any function in

Euclidean space can be written as a linear combination of functions

from the set {y, |.
Assume that the operator S has a complete set of eigenfunctions or
local modes (), 0 c®, where ©is some discrete index set.
Hence,
Sy (0)= 2 (8)w(9) 4.2.5
where A(0),0 € ©, are the eigenvalues of the operatorS, and w(#) is an
eigenfunction of the operatorS . In this case /(@) is called local mode.

We can write the error before v-smoothing steps as:
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n—1
e’ =Y ciw(6), where = 2k—”,k =12,..,n—1 4.2.6
n

and the error afterv-smoothing steps as:

n-1
e’ = ciw(#), whered = Zk—ﬂ,k =1,2,..,n—1 4.2.7
n

The relation between c, and ¢, is important. It gives the effect of v-
smoothing steps on the error. From equations 4.2.5, 4.2.6, and 4.2.7 we
get:

cy =2"(0)) 428

The eigenvalue A(6) is called the amplification factor of the local
mode w(9).

For the smoothing factor we need to distinguish between high and low

frequency components.

Definition 4.2.5: High and low frequencies [1]

Consider the set © = {0 0= %,k =1,2,.....,n— 1}. We say that y(6) is

a high frequency component (rough) if and only if
fecO"" = @ﬂ{%,ﬂ} ,

and is a low frequency (smooth) if and only if

fec®™=0/0""
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So that the error grid function can be presented as:

e’ = ()= D cw(0)+ > cow(0)

00 Hee"ion 00"

Definition 4.2.6 [1]: Fourier smoothing factor

The Fourier smoothing factor pof the smoothing method in

equation 4.2.5 is defined by:
o= supﬂxl(ex 10 cO"" } .

Hence, after v-smoothing iterations the amplitude of the high frequency
components of the error in equation 4.2.8 are multiplied by a factor p"or
smaller.

Examining the quality of smoothing method, we need to determine
the Fourier smoothing factor p. To do this, we have to solve the eigenvalue
problem:

Sw(0)= A0 (6), where S =M ~'N
which means
Ny (0)=A(OMy(0).
This relation can be written by stencil notation as:

Sny, . (0)=20) T may, . (0) 429
jez J7 X+ jh jez J7 X+ jh

Local Fourier analysis can be simplified by assuming that the

coefficients in the partial differential equation to be solved are constant.
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If >net ) =e"> n el then y,(0)=e"’satisfies 4.2.9 with:

jez jeN

anein
/1(9): jez

ijeijﬁ

jez

Example 4.1:

For Laplace's equation:

—U,,—u,, =0
The correspondence splitting gives:
0
4 0 N=|0
-1

M=|-1

[
—

and

i | it

_e i L 4_ail:

A0)=

the Fourier smoothing factor p = %

Finally, Table 4.2 shows the smoothing factors of Jacobi, damped
Jacobi, and Gauss-Seidel methods. It shows that Gauss-Siedel method

as the best smoother for the multigrid method.

Table 4.2[2]: Smoothing factors

Iterative Smoothing Smoothing
Method Factor
Jacobi 1 No
Damped 0.75 unsatisfactory
Jacobi
(w=0.5)
Damped 0.6 acceptable
Jacobi
(w=0.8)
GS 0.5 good
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4.3 Convergence analysis of two-grid method.
The purpose of two-grid analysis is to show that the rate of
convergence of two-grid method is independent of the grid size h. In the
first part of this section, we will show how local mode analysis can be

used to derive bounds for |Q,| quantitatively, which means that we are
interested in h-independent real bounds for |Q,|. In the second part, we

are interested in qualitative consideration that will help to make the
requirements to be satisfied by the smoother and transfer operators.
To simplify the analysis of the convergence of the two grid

method, we omit the boundary conditions and study all operators on an

infinite grid i.e. Instead of Q, :{jh: i eO,l,....,l}. And the iteration
n

matrix for two grid methods become:

Q. =Syl -1h A I A sy 43.1
on infinite grid
Where:

S, :is the iteration matrix of the smoothing method.
| :extendedunit matrix.

I, :extended prolongation operator.

I :extend restriction operator.

A, :extenededdiscrete operator on the fine grid.

A, :exteneded discrete operator on the coarse grid.

In one dimension multigrid methods can be analyzed easier.
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Studying convergence of two-grid method with qualitative
consideration depends on |Q,|, where the norm used is the Euclidean
norm. For simplicity, we assume that v, =0 i.e.

Q, =[I-11 A1/ A, Js0 432
So we can write

Q. = (A - 1h A1 JASY) 433
So that

Q.1 <[[A - 1AL | ASy 43.4

We see that [Q,| depends on A"~ 1} A1} and |ASy|. For these two

factors, we need the following definitions.
Definition 4.3.1[1] smoothing property

S has the smoothing property if there exist a constant C,and a

function 7(v,) independent of h such that:

AhS;]/1 SCSh_zn(vl) where n(vl)—>0 for v, — o0 435

Definition 4.3.2[1] Approximation property
The approximation property holds if there exists a constant C,
independent of h such that:

-1 h ,—1,H
HAh —IHA |

TR SCAhZ 436
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If these two properties hold, then it is easy to talk about the
h-independent convergence of two-grid method.
Theorem 4.3.1: h-independent two-grid rate of convergence
Let the smoothing property and approximation property hold then
there exists a number v independent of h such that:

”an S CsCAU(V1)<1 ,VV, 2V 4.3.7

Proof:

Q<A - Ay llasy

Based on the previous results, we will study the convergence of
multigrid method.
4.4 Multigrid convergence
Convergence analysis of the two-grid method, can be generalized to a

multigrid method. In this section, we assume that Au, = f, is the linear
system obtained from discetization of a PDE on Q,

Definition 4.4.1[1] smoothing property

The smoothing iteration matrix S, has the smoothing property if there
exist a constant C_ and a function 7(v,) independent of h, such that:

|AsY | <chln(v,). n(v,)— 0forv, > oo
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Definition 4.4.2[1] approximation property

The approximation property holds if there exists a constant C,
independent of h, such that:
| =LAl s gk
Lemma 4.4.1[1]

Let the smoothing property hold, and assume that there exists a

constant C_ independent of k such that:

K -
HI k—luk—lu >C,'uy,

, Vu,_, 4.4.1

then:

[Al A <, (+Q (v,.0))

Proof:

It has been shown that if S, has smoothing property, then the
smoothing method is convergent. Hence we can choose v, such that

<1

S,

From equation 4.4.1 we get:

|AL 1 ASy

<C, [l AL LTAS)
= sy - (A" - 1AL )AS!
=C,|sy —Qk(vl,O)\
<C,(1+]Q(v,,0)])

The following inequality is necessary for the next theorem
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<&, 6 SC+CLL, k=2 4.4.2

Lemma 4.4.2[1]

Assume C >1. if y>2, ¢ <( = 7/—1(;0)%1 then the solution
Y

of inequality 4.4.2 is bounded by ¢, <z <1 where z is related to ¢
by:

f=-c (%)
and z satisfies:

ZSLQ’
y—1

Proof:
We have ¢, <z, , with z, defined by:
z,=¢ and z, =4 +Cz/,
Since {zk} 1s monotonically increasing, we have z, <z, with z the

smallest solution of consider f(z)=z-Cz” . The maximum of

f(z) is reached in z=17" =(;C)y%ll <land f(z')=C .For ¢ <¢
equation (*) has a solution z<z" <1.
We have:

§=z—Czyzz—lz=—7_lz

/4 4
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Then:

ZSLQ“ .
y—1

Theorem 4.4.1[1] rate of convergence of multigrid method

Let the smoothing property and approximation property hold

assume y >2

let

H Ly, “ >2C ,;1 "“ k-1 "a Vu,

and

“ILUHH 2 Cp"uk—l

, Yu,
C,'and c,independent of k. let £ (0,1) be given. Then there is a number ¥

independent of k such that the iteration matrix Q*(v,,0) satisfies:

IR(v,0)| <& <1 if v, >V
Proof:

In chapter three, the iteration matrix of multigrid method was found as:
Q.0 = Q.0+ (8" 1L Qe Y (AL) A (S
With
Q0 = ()1 =1 (AL 1A S, )

Then we have

|Qu .00

‘S CsCA77(V1)
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choosing a number ¢ <(0,¢) with = y—_l(yc)%ln and a number ¥ such that
e

CC,n(v,)<¢, v, >V and that:
(o <+, gl Ca+0)<c+Cel, , with  C=2Cc, and

S = “Q" (v,,0)|, then it follows that

|Q*(v,,0)

‘zgkng4’<l k=23,.K
7/_

If necessary v, is increased such that: ¢ < 7/7_15

4.5 Computational results

In this section, we introduce some numerical results obtained by
several researchers. Table 4.3 shows number of iterations and times for
the defect reduction of factor 10™* for different cycles and different
restriction operator. It is obvious that V(2,1)with HW is the most
efficient.

Table 4.3[2]: V and W cycles

Cycle FW HW
iterations Time (msec) iterations Time (msec)

V(0,1 26 1290 167 7310
V({1,1) 12 759 13 740
V(1) 10 759 9 629
V(Z.,2) 9 799 8 669
W(0,1) 20 2269 34 3780
W(,1) 10 1379 10 1379
W(2,1) 9 1450 9 1479
W(2,2) 8 1469 8 1460

Table 4.4 shows the infinite norm |u—u,| of the error for the FMG and

V-cycles using different grids. It is clear that the FMG produces the least

Crror.
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Table 4.4]2]: Infinite error norm

Grid FMG V(0,1 V(.1
32x32 0.31E-5 0.26E-4 0.47E-5
64x64 0.77E-6 0.83E-5 0.12E-5

128x128 0.19E-6 0.27E-5 0.31E-6
256x256 0.48E-7 0.87E-6 0.78E-7

Table 4.5 shows the convergence factor obtained with damped Jacobi
and FW for Poisson problem for different sweeps of presmoothing. The

convergence factor when o = § better than the convergence factor when

Table 4.5[2]: Convergence factor

v=1 V=2 V=3 v=4

wzﬂ 0.6 0.36 0.216 0.137
5

a):l 0.75 0.563 0.422 0.316
2

Table 4.6 shows that the computer time is proportional to N where N is
the number of grid points in each dimension. In other words, the

computer time is of order N. this means that FMG is of order N.

Table 4.6[22]: FMG with GS as smoother

grid error CPU time Ratio
512x512 0.00767841645 36s
10241024 0.00381202826 149s 4.1388889
2048%2048 0.00190166438 598s 4.1342282

4.6 Conclusion
Basic iterative methods such as the Jacobi, Gauss-Seidel , and the SOR

methods are used to solve the linear system obtained from the discretization
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of the PDE problem. For small linear systems, these methods are efficient
but not for large systems. Jacobi and Gauss-Seidel methods (not the SOR)
are efficient as smoothers. This means they are efficient in smoothing the
error but not efficient in reducing it. Multigrid methods accelerate basic
iterative methods by making use of different grids and the smoothing
property of some classical methods. Computational results from different
sources, shows that multigrid methods are efficient in reducing smooth
errors by using coarser grids. The rate of convergence of these methods is
independent of the mesh size, a property that makes multigrid methods
superior to classical iterative methods.

The following table shows the order of different classical method, as well
as, the order of multigrid methods which is linear in N, where N is the
number of unknowns and ¢ is a given stopping criterion (tolerance).

Table 4.7[2]: Number of operations for different solvers for Poisson

problem in 2D
Method Number of operations
Gaussian elimination O(N?)
Jacobi iteration O(N°log ¢ )
Gauss-Seidel iteration O(N? log )
3
SOR O(N:loge)
Multigrid (iterative) O(N loge)
Multigrid (FMG) O(N)
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Appendix

Matlab Code for multigrid methods:

%MGLab V0.00beta Interactive Multigrid Package

% James Bordner and Faisal Saied

% Department of Computer Science

% University of Illinois at Urbana-Champaign
% 10 April 1995

include flags
include globals
include figs
demo globals

% Initialize parameter defaults

set_defaults;

% == MAIN MENU
bgec =1[0.90.9 1.0];

main_fig = figure('Position', main_position,...
'Name', 'MGLab',...
'NumberTitle', 'off’, ...
'Color','black’);

% == MGLab Menu Item

f mglab=menu_header(main_fig,'MGLab','on','on','W");
menu_item(f mglab,'Run’, 'off','on',bgc,'[sol1,resids1,its1]=run;");
menu_item(f mglab,'Show Params','off','on',bgc,'show params;');
menu_item(f mglab,'Version Info','off','on',bgc,'version_info;");
menu_item(f mglab,'Reset','off','on',bgc,'set defaults;");
menu_item(f mglab,'Restart','off','on',bgc,'close(main_fig); close;
MGLab');
menu_item(f mglab,'Quit','off','on',bgc,'close(main_fig); close');
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% == Problem Menu Item
f problem=menu_header(main_fig,'Problem’,'on','on','w");

menu_item(f problem,'Poisson','on','on’',bgc,...
'problem_flag = POISSON;generate_matrix=1;");
f problem 1 =menu_item(f problem,'Helmholtz', 'off','on',bgc,...
'problem flag = HELMHOLTZ;generate matrix=1;prob_args(1) =
10;");
f problem 11=menu_ header(f problem 1,'k =','on','on','W');
menu_item(f problem 11,-10",'off'",'on’,bgc,...
'‘prob_args(1)=-10;");
menu_item(f problem 11,-5'"'off','on',bgc,...
'prob args(1)=-5;");
menu_item(f problem 11,-1','off','on',bgc,...
'prob_args(1)=-1;');
menu_item(f problem 11,'0",'off','on',bgc,...
'prob_args(1)=0;");
menu_item(f problem 11,'1','off','on',bgc,...
'‘prob_args(1)=1;');
menu_item(f problem 11,'5')'off','on',bgc,...
'prob_args(1)=5;");
menu_item(f problem 11,'10",'off','on',bgc,...
'‘prob args(1)=10;");
menu_item(f problem 11,'10+ i','off','on',bgc,...
'prob_args(1)=10+sqrt(-1);");
f problem 2 = menu_item(f problem,'Convection-Diffusion’,
'off','on',bgc,...
'‘problem flag=CONVECT_DIFFUSE;generate matrix=1;');
f problem_21=menu_header(f problem 2,'Lambda =','on','on','w");
menu_item(f problem 21,'0",'off','on',bgc,...
'prob_args(1)=0;");
menu_item(f problem 21,'10",'off','on',bgc,...
'prob args(1)=10;");
menu_item(f problem 21,'100','off",'on’',bgc,...
'‘prob_args(1)=100;");
menu_item(f problem 21,'1000','off','on',bgc,...
'"prob_args(1)=1000;");
f problem 22=menu_header(f problem 2,'Sigma =',on','on','w");
menu_item(f problem 22.'0','on','on',bgc,...
'prob_args(2)=0;");
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menu_item(f problem 22.'5''off','on',bgc,...
'prob_args(2)=5;');
menu_item(f problem 22,'10'.'off','on',bgc,...
'prob args(2)=10;");
menu_item(f problem 22,'20'.'off','on',bgc,...
'prob args(2)=20;");
menu_item(f problem 22,'50'.'off','on',bgc,...
'prob _args(2)=50;");
menu_item(f problem 22.'100','off",'on’',bgc,...
'prob _args(2)=100;");
menu_item(f problem 22.-50','off','on’,bgc,...
'prob_args(2)=-50;");
menu_item(f problem 22.,-100','off','on',bgc,...
'prob _args(2)=-100;");
f problem 3=menu item(f problem,'Cut Square', 'off','on',bgc,...
'problem flag = CUT_SQUARE;generate matrix=1;prob_args(1) =
105");
f problem 31=menu header(f problem 3,'Alpha =",'on','on','w");
menu_item(f problem 31,'0.001','off','on',bgc,...
'‘prob_args(1)=0.001;");
menu_item(f problem 31,'0.01','off','on’,bgc,...
'‘prob _args(1)=0.01;");
menu_item(f problem 31,'0.1','off','on’,bgc,...
'‘prob _args(1)=0.1;');
menu_item(f problem 31,'l','off','on',bgc,...
'‘prob_args(1)=1;');
menu_item(f problem 31,'10".'off",'on',bgc,...
'prob_args(1)=10;");
menu_item(f problem 31,'100','off",'on’',bgc,...
'prob _args(1)=100;");
menu_item(f problem 31,'1000','off','on',bgc,...
'prob _args(1)=1000;");
menu_item(f problem,'Poisson-Boltzmann', 'off','off',bgc,...
'‘problem_flag=POISSON_BOLTZMAN;generate_matrix=1;');
f problem_4=menu_header(f problem,'Problem Size','off','on','w");
menu_item(f problem 4, 7 ''off.'on',bgc,...
[['nx1=7;ny1=7;generate _matrix=1;generate_rhs=1;'"]';...
['coarse level=min([coarse level max_level(nx1)]);']']");
menu_item(f problem 4,' 15 ''off','on',bgc,...
[['nx1=15;nyl=15;generate_matrix=1;generate_rhs=1;"]';...
['‘coarse level=min([coarse level max level(nx1)]);']']");
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)

menu_item(f problem 4,' 31 ''off','on',bgc,...
[['nx1=31;nyl1=31;generate_matrix=1;generate_rhs=1;"]';...
['‘coarse level=min([coarse level max_ level(nx1)]);']']");
menu_item(f problem 4,' 63 ''off','on',bgc,...
[[mx1=63;ny1=63;generate matrix=1;generate rhs=1;']’...
['‘coarse level=min([coarse level max level(nx1)]);']']");
menu_item(f problem 4,'127 ''off,'on',bgc,...
[[mx1=127;ny1=127;generate_matrix=1;generate rhs=1;']";...
['‘coarse level=min([coarse level max_ level(nx1)]);'']");
menu_item(f problem 4,'255 ''off','on',bgc,...
[['nx1=255;ny1=255;generate_matrix=1;generate_rhs=1;"]';...
['‘coarse level=min([coarse level max level(nx1)]);']']");

% == Solver Menu Item
f solver=menu_ header(main_fig,'Solver','on','on','w");

menu_item(f solver,'V-Cycle','off','on',bgc,...
'solver flag = VMG");

menu_item(f solver,'PCG','off','on',bgc,...
'solver flag = PCG3');

menu_item(f solver,'BiCG-STAB','off','on’,bgc,...
'solver_flag = BICG_STAB;');

menu_item(f solver,'CGS','off','on',bgc,...
'solver flag = CGS;');

menu_item(f solver, TFQMR','off','off',bgc,...
'solver flag = TFQMR}');

f solver 1=menu_item(f solver, GMRES(k)','off','on',bgc,...
'solver flag = GMRES}');

f solver 11=menu_ header(f solver 1,'k =','on','on','W');
menu_item(f solver 11,'1','off','on',bgc,'restart=1;");
menu_item(f solver 11,'5")'off','on',bgc,'restart=5;");
menu_item(f solver 11,'10','off','on',bgc,'restart=10;");
menu_item(f solver 11,'15"'off','on',bgc,'restart=15;");
menu_item(f solver 11,'20",'off','on',bgc,'restart=20;");

f solver 2 =menu_item(f solver,'SOR','off','on',bgc,...
'solver_flag = SOR}');
f solver 21=menu_header(f solver 2,'omega ="'on','on','w");
menu_item(f solver 21,'l')'off','on',bgc,'SOR omega=1;");
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menu_item(f solver 21,'1.1''off",'on',bgc,'SOR omega=1.1;");
menu_item(f solver 21,'1.2")'off",'on',bgc,'SOR omega=1.2;");
menu_item(f solver 21,'1.3")'off",'on',bgc,'SOR omega=1.3;");
menu_item(f solver 21,'1.4")'off",'on',bgc,'SOR omega=1.4;");
menu_item(f solver 21,'1.5'.'off",'on',bgc,'SOR omega=1.5;");
menu_item(f solver 21,'1.6','off",'on',bgc,'SOR omega=1.6;");
menu_item(f solver 21,'1.7''off",'on',bgc,'SOR omega=1.7;");
menu_item(f solver 21,'1.8".'off",'on',bgc,'SOR omega=1.8;");
menu_item(f solver 21,'1.9'.'off",'on',bgc,'SOR omega=1.9;");

menu_item(f solver,'Full-Multigrid','on','on',bgc,...
'solver flag = FMG;");

f solver precon=menu header(f solver,'Preconditioner','on','on','w");

menu_item(f solver precon,'V-Cycle','off','on',bgc,...
'‘precon_flag = MG_CYCLE)');

menu_item(f solver precon,'Jacobi','off','on',bgc,...
'precon_flag = JACOBI;");

menu_item(f solver precon,'Block-Jacobi','off','off',bgc,...
'‘precon_flag = BLOCK JACOBI');

menu_item(f solver precon,'Gauss-Seidel','off','on',bgc,...
'‘precon_flag = GAUSS_SEIDEL;");

menu_item(f solver precon,'ILU",'off,'off',bgc,...
'‘precon_flag = ILU");

menu_item(f solver precon,'SSOR','off','off',bgc,...
'‘precon_flag = SSOR");

menu_item(f solver precon,'None','off','on’,bgc,...
'‘precon_flag = NONE;");

f solver stop=menu_ header(f solver,'Stopping Criteria','off','on','w");
f stop_l=menu_header(f solver stop,'Residual
Tolerance','on','off','w");

menu_item(f stop 1,'None','off','on',bgc,'rtol=0;");

menu_item(f stop 1,'le-1')'off','on',bgc,'rtol=1e-1;");
menu_item(f stop 1,'le-2')'off','on',bgc,'rtol=1e-2;");
menu_item(f stop 1,'le-3'",'off','on',bgc,'rtol=1e-3;");
menu_item(f stop 1,'le-4')'off','on',bgc,'rtol=1e-4;");
menu_item(f stop 1,'le-5")'off','on',bgc,'rtol=1e-5;");
menu_item(f stop 1,'le-6','off','on',bgc,'rtol=1e-6;");
menu_item(f stop 1,'le-7''off','on',bgc,'rtol=1e-7;");
menu_item(f stop 1,'le-8','off','on',bgc,'rtol=1e-8;");
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menu_item(f stop 1,'le-9'",'off','on’,bgc,'rtol=1e-9;");
menu_item(f stop 1,'le-10",'off','on',bgc,'rtol=1e-10;");
menu_item(f stop 1,'le-12','off','on',bgc, rtol=1e-12;");
menu_item(f stop 1,'le-14",'off','on',bgc, rtol=1e-14;");
menu_item(f stop 1,'le-16','off','on',bgc,'rtol=1e-16;');
f stop 2=menu_header(f solver_stop,'(Precon)Residual Tolerance',...
'off','on','W");
menu_item(f stop 2,'None','off,'on',bgc,'prtol=0;");
menu_item(f stop 2,'le-1','off','on',bgc,'prtol=1e-1;");
menu_item(f stop 2,'le-2','off','on',bgc,'prtol=1e-2;");
menu_item(f stop 2,'le-3'")'off','on',bgc,'prtol=1e-3;');
menu_item(f stop 2,'le-4'",'off','on',bgc,'prtol=1e-4;');
menu_item(f stop 2,'le-5")'off','on',bgc,'prtol=1e-5;');
menu_item(f stop 2,'le-6','off','on',bgc,'prtol=1e-6;");
menu_item(f stop 2,'le-7','off','on',bgc,'prtol=1e-7;");
menu_item(f stop 2,'le-8','off','on',bgc,'prtol=1e-8;");
menu_item(f stop 2,'l1e-9','off','on',bgc,'prtol=1e-9;");
menu_item(f stop 2,'le-10'.'off','on',bgc,'prtol=1e-10;");
menu_item(f stop 2,'le-12'.'off','on',bgc,'prtol=1e-12;");
menu_item(f stop 2,'le-14",'off','on',bgc,'prtol=1e-14;");
menu_item(f stop 2,'le-16','off','on',bgc,'prtol=1e-16;");

f stop 3=menu_header(f solver_stop,'Iteration Limit','off','on','w");
menu_item(f stop 3,' None','off','on',bgc,'max it=0;');
menu_item(f stop 3,) 1''off','on',bgc,'max it=1;');
menu_item(f stop 3,) 2''off,'on',bgc,'max it=2;');
menu_item(f stop 3,) 3''off','on',bgc,'max it=3;');
menu_item(f stop 3, 5'.'off','on',bgc,'max it=S5;");
menu_item(f stop 3, 10','off,'on',bgc,'max it=10;');
menu_item(f stop 3, 20'.'off','on',bgc,'max_it=20;');
menu_item(f stop 3," 30','off,'on',bgc,'max_it=30;");
menu_item(f stop 3," 50','off,'on',bgc,'max_it=50;");
menu_item(f stop 3,' 100','off','on',bgc,'max_it=100;");
menu_item(f stop 3,' 200','off','on',bgc,'max_it=200;");
menu_item(f stop 3,' 300','off','on',bgc,'max_it=300;");
menu_item(f stop 3,' 500','off','on',bgc,'max_it=500;");
menu_item(f stop 3,' 1000','off','on’',bgc,'max_it=1000;");

f stop_4=menu_header(f solver stop,'Time Limit','off,'off",'w");
menu_item(f stop 4,'None','off','on',bgc,'max_time=0;');
menu_item(f stop 4,'l sec','off','on',bgc,'max_time=13;");
menu_item(f stop 4,'5 sec','off','on',bgc,'max_time=35;");
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menu_item(f stop 4,'10 sec','off','on’',bgc,'max time=10;");
menu_item(f stop 4,30 sec','off','on’',bgc,'max_time=30;");
menu_item(f stop 4,'l min','off','on',bgc,'max time=1%*60;");
menu_item(f stop 4,'S min','off','on',bgc,'max time=5*60;");
menu_item(f stop 4,'10 min','off','on',bgc,'max_time=10%60;");
menu_item(f stop 4,30 min','off','on',bgc,'max_time=30%60;");
menu_item(f stop 4,'l hour','off','on',bgc,'max time=60*60;");
f stop 5=menu header(f solver stop,MFlop Limit','off,'off','w");
menu_item(f stop 5,None','off','on',bgc,'max_mflop=0;');
menu_item(f stop 5, 1')off','on',bgc,'max mflop=1;');
menu_item(f stop 5, 5')off,'on',bgc,'max_mflop=5;");
menu_item(f stop 5,' 10','off','on',bgc,'max_mflop=10;');
menu_item(f stop 5," 20','off','on',bgc,'max_mflop=20;');
menu_item(f stop 5," 50','off','on',bgc,'max_mflop=50;");
menu_item(f stop 5,' 100','off','on',bgc,'max_mflop=100;");

% == MG Parameters

f solver mg=menu_ header(main_fig,MG-Parameters','on','on’','w");
f mg 1 =menu_header(f solver mg,'Number of Levels','on','on','w");
menu_item(f mg_1,'1",'off','on',bgc,...
'coarse level=min([1,max level(nx1)]); generate matrix=1;");
menu_item(f mg_1,2",'off','on',bgc,...
'coarse_level=min([2,max_level(nx1)]); generate matrix=1;');
menu_item(f mg 1,'3"'off','on',bgc,...
'coarse_level=min([3,max_level(nx1)]); generate matrix=1;');
menu_item(f mg 1,'4"'off','on',bgc,...
'coarse_level=min([4,max level(nx1)]); generate matrix=1;");
menu_item(f mg 1,'5",'off','on',bgc,...
'coarse_level=min([5,max level(nx1)]); generate matrix=1;");
f mg 2=menu_header(f solver mg,'Smoother','off','on','w");
f mg 21=menu_item(f mg_2,'Weighted Jacobi','on','on’,bgc,...
'smooth flag=WEIGHTED JACOBI}');

f mg 211=menu_header(f mg 21,'Weight =",'on','on",'W");
menu_item(f mg 211,'1.00",'off",'on’',bgc,'wt=1.0;");
menu_item(f mg 211,'0.95",'off",'on’',bgc,'wt=0.95;");
menu_item(f mg 211,'0.90",'off','on',bgc,'wt=0.90;");
menu_item(f mg 211,'0.85",'off",'on’',bgc,'wt=0.85;");
menu_item(f mg 211,'0.80",'off','on’',bgc,'wt=0.80;");

menu_item(f mg 2, 'Gauss-Seidel','off','on',bgc,...
'smooth_flag=GAUSS SEIDEL;');
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menu_item(f mg 2, 'Red/Black Gauss-Seidel','off','off',bgc,...
'smooth flag=RB GAUSS SEIDEL;");

f mg 22=menu_header(f mg 2,'Pre-smoothings','on’','on','w");
menu_item(f mg 22.'0",'off,'on','W','nul=0;");
menu_item(f mg 22.'1")'off,'on",'W','nul=1;");
menu_item(f mg 22.'2''off,'on','W','nul=2;");
menu_item(f mg 22.'3''off,'on','W','nul=3;");
menu_item(f mg 22,'4"'off','on','w','nul=4;");
menu_item(f mg 22,'S".'off','on','w','nul=5;");

f mg 23=menu_header(f mg 2,'Post-smoothings','off','on",'w");
menu_item(f mg 23,'0",'off','on','w','nu2=0;");
menu_item(f mg 23,'l")'off",'on','W','nu2=1;");
menu_item(f mg_ 23,2"'off",'on','W','nu2=2;");
menu_item(f mg 23,'3".'off','on','w','nu2=3;");
menu_item(f mg 23,'4"'off,'on','W','nu2=4;");
menu_item(f mg 23.'S"'off,'on','W','nu2=5;");

f mg 3=menu_header(f solver mg,'Restriction’,'off','on','w");

menu_item(f mg 3, 'Injection’,'off','on’,bgc,...
'restrict_flag=INJECTION}");

menu_item(f mg_3, 'Half Weighting','off','on',bgc,...
restrict_flag=HALF WEIGHTING;');

menu_item(f mg 3, 'Full Weighting','off','on',bgc,...
'restrict_flag=FULL WEIGHTING?');

menu_item(f mg_3, 'Bilinear Adjoint','off','off',bgc,...
restrict_flag=BILINEAR ADJOINT;");

f mg 4=menu_header(f solver mg,'Prolongation’,'off','on','w");

menu_item(f mg 4, 'Linear','off','on',bgc,...
'interp_flag=LINEAR}");

menu_item(f mg 4, 'Cubic','off','on',bgc,...
"interp_flag=CUBIC;');

menu_item(f mg 4, 'Operator-based','off','off',bgc,...
'interp_flag=OPERATOR_ BASED:");

menu_item(f mg_4, 'Explicit/Bilinear','off','off',bgc,...

'interp_flag=EXPLICIT BILINEAR;'");

f mg 5=menu_header(f solver mg,'Coarse-grid Solver','off','on','w");
menu_item(f mg_5,'Sparse GE','off','on’,bgc,...
'coarse_solver flag=DIRECT}");
menu_item(f mg 5,'Smoother','off','on’',bgc,...



90

'coarse_solver flag=SMOOQOTHER}");

menu_item(f mg_5,'PCG','off','off',bgc,...

'coarse_solver flag = PCG;");

menu_item(f mg_5,'BiCG-STAB','off','off',bgc,...

'coarse_solver flag = BICG STAB;");

f mg S1=menu_item(f mg_ 5,GMRES(k)','off','off',bgc,...

'coarse_solver flag = GMRES;");

f mg S511=menu header(f mg 51,k =",'on','on','w");
menu_item(f mg 511,'1".)'off','on',bgc,'restart=1;");
menu_item(f mg 511,'5")'off",'on’',bgc, restart=5;");
menu_item(f mg 511,'10",'off','on',bgc,'restart=10;");
menu_item(f mg 511,'15",'off','on',bgc,'restart=15;");
menu_item(f mg 511,"20'",'off','on',bgc, 'restart=20;");

f mg 6=menu_header(f solver mg,'Coarse-grid
Operator','off','on','w");

menu_item(f mg_6,'Standard 5pt','off','on',bgc,...
'coarsening_flag=STANDARD);");

menu_item(f mg 6,'Galerkin coarsening','off','off',bgc,...
'coarsening_flag=GALERKIN;3');

menu_item(f mg 6,'Coeff. Averaging','off','off',bgc,...
'coarsening_flag = AVERAGING?');

f mg 7=menu_header(f solver mg, MG Cycle','off','on','w");
menu_item(f mg 7,'V-Cycle','off','on',bgc,...
'cycle flag=V CYCLE;";
menu_item(f mg 7,'W-Cycle','off','on’,bgc,...
'cycle flag=W_CYCLE;");
menu_item(f mg_7,'Half V-Cycle','off','off',bgc,...
'cycle flag=HALF V_CYCLE;');

% == Results Menu [tem

f results=menu_header(main fig,'Visualize','on','on','w");

menu_item(f results,'Convergence History','off','on',bgc,...
"subplot(1,1,1);semilogy(its1,resids1,"r-",its1,resids1,"wo")");

menu_item(f results,'Computed Solution (surf)','off','on',bgc,...
"subplot(1,1,1);surf(reshape(soll,nx1,ny1));shading interp;');

menu_item(f results,'Computed Solution (pcolor)','off','on',bgc,...
"subplot(1,1,1);pcolor(reshape(soll,nx1,nyl));shading interp;');
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f results 1=menu_header(f results,'’X-Axis','off','on','W");
menu_item(f results 1,'Iterations','off','on’,bgc,...
'x_axis_flag=ITERATIONS;");
menu_item(f results 1,'Time','off','off',bgc,...
'x_axis_flag=TIME;");
menu_item(f results 1,'MFlops','off,'off',bgc,...
'x_axis_flag=MFLOPS;");
f results 2=menu_header(f results,'Y-Axis','off','on','w");
menu_item(f results 2,'Residual’,'off','on',bgc,...
'y _axis_flag=ITERATIONS');
menu_item(f results 2,'Precon. Residual','off','off',bgc,...
'y_axis_flag=RESIDUAL;');
menu_item(f results 2,'MFlops','off,'off",bgc,...
'y _axis_flag=PRECON_RESIDUAL;");

f demos=menu_header(main_fig,'Demos','on','on','w");
menu_item(f demos,'Smoothers','off','on',bgc,'demol;');
menu_item(f demos,'Fourier analysis','off','on',bgc,'demo2;');
menu_item(f demos, Truncation error','off','on',bgc,'demo3;');
%MG_CYCLE Multigrid cycle algorithm
%
% U OUT =MG_CYCLE(LEVEL, B, U _IN) uses the multigrid cycle
defined
% by the global variable "cycle flag" to recursively solve the linear
% system AX=B at the given level. If the optional starting value U IN
%  is not passed then U IN is set to 0's.
%
%  Accesses global variables in "include flags"

% James Bordner and Faisal Saied

% Department of Computer Science

% University of Illinois at Urbana-Champaign
% 10 April 1995

function u_out = mg_cycle(level, b, u_in)
include flags

% Use the zero vector for u_in as the default

if nargin == 2,



92

u_in = zeros(size(b));
end

if (cycle flag==V _CYCLE)
u out=vmg_cycle(level, b, u_in);
elseif (cycle flag==W CYCLE)
u out=wmg cycle(level, b, u_in);
elseif (cycle flag==HALF V CYCLE)
u_out = halfvmg_cycle(level, b, u_in);
end
%RESIDUAL Compute the residual at the given level.
%
% R = RESIDUAL(LEVEL, B, U) returns the residual R of the system
%  AU=B at the given grid level.
%
%  Accesses global variables in "include globals"

% James Bordner and Faisal Saied

% Department of Computer Science

% University of Illinois at Urbana-Champaign
% 10 April 1995

function r = residual(level, b, u)
include globals

eval([r=b - A", num2str(level), ' * u;']);
%RESTRICT Transfer residual from the current grid to the next coarser

grid.

%

% RHS C = RESTRICT(LEVEL,R) uses the restriction scheme
defined by

% "restrict_flag" to transfer the vector R on the current level LEVEL

%  to the vector RHS C on the next coarser level LEVEL+1.
%

%  Accesses global variables in "include flags"

%  Accesses global variables in "include globals"

% James Bordner and Faisal Saied
% Department of Computer Science
% University of Illinois at Urbana-Champaign
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% 10 April 1995

function rhs_c = restrict(level,r)
include globals

extract globals

include flags

% 2-D RESTRICTIONS

nx0 f=nx f+2;
ny0 f=ny f+2;
NO _f=nx0 f*ny0 f;
dx=1;

dy=nx0_f;

% Generate 10 by padding r with boundary elements (0's)

10 = zeros(NO _f,1);
foriy=1:ny f
forix=1:nx_f
0(nx0 f+1 + ix + nx0_f*(1y-1)) = r(ix+tnx_f*(iy-1));
end
end

% Generate indicies of corresponding coarse vector elements in fine vector

I =zeros(N c,1);
foriy=1:ny ¢
for ix=1'nx_c
I(ix + nx_c*(iy-1)) = 2*ix + 2*1y*nx0_f+ 1;
end
end

if restrict_flag == INJECTION
rhs ¢ =r0(I);
elseif restrict_flag == HALF WEIGHTING

rhs ¢ =.5*0(I) + ...
A25*(r0(I+dx) + rO(I-dx) + rO(I+dy) + rO(I-dy));
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elseif restrict flag ==FULL WEIGHTING
rhs ¢ =.25%0(I) + ...
A125*(r0(I+dx) + rO(I-dx) + rO(I+dy) + rO(I-dy)) + ...
0625*(r0(I+dx+dy) + rO(I-dx+dy) + rO(I+dx-dy) + rO(I-dx-dy));
elseif restrict_flag == BILINEAR ADJOINT

eval([PROLONG = ARRAY',num2str(level), ;']);
rhs ¢ = PROLONG' * 1;

end
rhs_c =4*rhs_c;

% SMOOTH Smooth a vector.

%
% U OUT = SMOOTH(LEVEL, B, U, FLAG) applies a smoother
defined by the

% global flag "smooth flag" and the system AU=B to the vector U on
the

%  given grid level. FLAG is set to 'pre', 'post', or 'coarse' and

%  defines the number of smoothings applied.

%

%  Accesses global variables in "include globals"

%  Accesses global variables in "include flags"

% James Bordner and Faisal Saied

% Department of Computer Science

% University of Illinois at Urbana-Champaign
% 10 April 1995

function u out = smooth(level, b, u, flag)

include globals
include flags

if stremp(flag, 'pre') == 1
nu =nul;

elseif strcmp(flag, 'post’) == 1
nu = nu2;
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elseif strcmp(flag, 'coarse') == 1
nu = 30;
end
eval(['A = A',num2str(level),";']);
if smooth_flag == WEIGHTED JACOBI

D = wt * (1./spdiags(A,[0]));

fori= 1:nu
u=u+ D.*(b - A*u);
end

elseif smooth flag == GAUSS SEIDEL

L =tril(A);
fori=1:nu

u=u-+L\(b-A*u);
end

elseif smooth flag==RB GAUSS SEIDEL

eval(['N = N',num2str(level),";']);
red = [1:2:N]; black = [2:2:N];
D = 1./spdiags(A,[0]);

fori= 1:mu
u(red) = (b(red) - A(red,black) * u(black)) .* D(red);
u(black) = (b(black) - A(black,red) * u(red)) .* D(black);
end

end
u_out =u;

%SOLVE Solve a linear system.

%

%[X,RESIDS,ITS]=
SOLVE(A,B,X0,RTOL,PRTOL.MAX IT,MAX TIME.MAX MFLOP,...
%  RESTART) applies a solver defined by "solver flag", with the given
%  tolerances and limits, to a linear system AX=B. The solution X,
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%  residual history RESIDS, and iterations ITS are returned.
%  Accesses global variables in "include flags"

% James Bordner and Faisal Saied

% Department of Computer Science

% University of Illinois at Urbana-Champaign
% 10 April 1995

function [x,resids,its] = solve(A,b,xO0,...
rtol,prtol,max_it,max time,max mflop,restart)

include flags

disp (sprintf('Running...\n"));
if solver_flag == VMG

[x,resids,its] = vimg (A,b,x0,rtol,prtol,max_it,max time,max mflop);
elseif solver flag == FMG

[x,resids,its] = fmg (A,b);
elseif solver flag == PCG

[x,resids,its] = pcg (A,b,x0,rtol,prtol,max_it,max time,max mflop);
elseif solver flag == BICG STAB

[x,resids,its] = pbicgstab
(A,b,x0,rtol,prtol,max_it,max time,max mflop);
elseif solver flag == CGS

[x,resids,its] = pcgs (A,b,x0,rtol,prtol,max_it,max time,max_ mflop);
elseif solver flag == GMRES

[x,resids,its] = pgmres
(A,b,x0,rtol,prtol,max_it,max time,max_mflop,restart);
elseif solver flag == SOR

[x,resids,its] = sor (A,b,x0,rtol,prtol,max_it,max time,max mflop);
end

fprintf('Relative residual = %g \n', norm(b-A*x))
disp (sprintf('Done.\n"));
%VMG_CYCLE V-Cycle algorithm.

% B,
% U OUT = VMG _CYCLE(LEVEL,U IN) uses the V-cycle to
recursively

% solve the linear system AX=B at the given level. If the optional
% starting value U _IN is not passed then U _IN is set to 0's.
%
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% James Bordner and Faisal Saied

% Department of Computer Science

% University of Illinois at Urbana-Champaign
% 10 April 1995

function u_out = ving_cycle(level, b, u_in)
% Use the zero vector for u_in as the default
if nargin == 2,

u_in = zeros(size(b));

end

if level == coarsest(level)
u out =coarse grid solve(level, b);

else
u  =smooth(level, b, u_in, 'pre');
r = residual(level, b, u);
b ¢ =restrict(level, r);
u ¢ =vmg cycle(level+1, b c);
correct = interpolate(level, u_c);
u =u + correct;
u out = smooth(level, b, u, 'post');
end
%WMG CYCLE W-Cycle algorithm.
%
% U OUT = WMG_CYCLE(LEVEL, B, U _IN) uses the W-cycle to
recursively

% solve the linear system AX=B at the given level. If the optional
% starting value U _IN is not passed then U _IN is set to 0's.
%

% James Bordner and Faisal Saied

% Department of Computer Science

% University of Illinois at Urbana-Champaign
% 10 April 1995

function u_out = wmg_cycle(level, b, u_in)
% Use the zero vector for u_in as the default

if nargin == 2,
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u_in = zeros(size(b));
end

if level == coarsest(level)
u out =coarse grid solve(level, b);
else

u  =smooth(level, b, u_in, 'pre');
r = residual(level, b, u);
b ¢ =restrict(level, r);
u ¢ =wmg cycle(level+1, b c¢);
if (level < coarsest(level)),
u ¢ =wmg cycle(level+1,b c,u c);
end
correct = interpolate(level, u_c);
u =1u + correct;

u out = smooth(level, b, u, 'post’);
end
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