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By 
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Abstract 
 

Partial differential equations appear in mathematical models that 

describe natural phenomena. Various methods can be used for solving such 

equations. In this thesis, an overview of classical iterative methods, as well 

as, the   most recent multigrid methods is given. The classical iterative 

methods used are; the Jacobi, the Gauss-Seidel, and the SOR methods. 

Jacobi and Gauss-Seidel methods are efficient in smoothing the error but 

not in reducing it. The smoothing property of some classical methods 

motivated the work done on multigrid methods.  Poisson's problem in one 

and two dimensions has been used as model problem in the study of 

multigrid methods. The study shows that the rate of convergence of 

multigrid methods does not depend on the mesh size, a feature that makes 

multigrid methods good accelerator of classical methods like Gauss-Seidel.  
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Chapter 1 
 

Introduction 
 

  Many physical problems, such as fluid flow problems, are 

represented by mathematical models that consist of Partial Differential 

Equation (PDE) or system of PDE's together with a set of boundary 

conditions. In most cases, such PDE's are of order two. Linear second-order 

PDE's are classified in three categories: parabolic, hyperbolic, and elliptic. 

The general second-order linear PDE in two independent variables x  and y  

can be written as: 

 
GFuEuDuCuBuAu yxyyxyxx =+++++  

 
  where ,,,,,, FEDCBA and G are given functions of x  and y . This 

equation is said to be parabolic if 042 =− ACB , hyperbolic if 042 >− ACB  

and elliptic if 042 <− ACB . For example, in one dimension, the diffusion 

equation; 0=− xxt kuu    is parabolic. The wave equation; 02 =− xxtt ucu  is 

hyperbolic, while Laplace's equation in two dimensions; 0=+ yyxx uu  is 

elliptic. The PDE is incomplete without boundary and initial conditions. 

There are three types of boundary conditions: 

• Dirichlet boundary conditions where the solution is specified at the 

boundaries. 
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• Neumann boundary conditions where the normal derivative at the 

boundaries is given. 

• Robin boundary conditions where the solution and its normal 

derivative is given in a mixed way. 

In this thesis, only the Dirichlet boundary conditions are considered. 

Exact (continuous) solutions of such models are not always available. In 

fact, for some models, it is not known whether an analytic solution exists or 

not. For this reason, approximate solutions are needed. Elliptic boundary 

value problems are the type of the problems to which multigrid methods 

can be applied very efficiently. Other examples of successful applications 

are parabolic problems, hyperbolic problems, optimization problems.  

In this thesis, multigrid methods based on finite difference discritization is 

considered. First, the problem is discretized leading to a system of linear 

equations if the PDE is linear and a system of nonlinear equations if the 

PDE is nonlinear. Then the algebraic system is solved using the most 

efficient techniques. The result is the discrete solution of the boundary 

value problem.  

1.1 Discretization 

  There are several methods to discretize a PDE some of these 

methods are the finite difference methods and the finite element methods. 

The finite difference is simple and is the most popular when the boundaries 
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are rectangular such as in numerical wheather prediction. Finite element 

methods, are most popular when the boundaries are irregular or moving 

like in simulation of the forces acting on an airplane or in a car accident.  

 
 
  Suppose that u  is the exact solution of the elliptic PDE with 

independent variables x  and y , where dyc , ≤≤≤≤ bxa , and we need to 

find the approximate solution. First, we discretize the PDE. Choosing 

integers n  and m , and define step sizes  1 n
abh −

= and 
m

cdh −
=2 . 

Partitioning the interval [ ]ba,  into n  equal subintervals each of width 1h  and 

the interval [ ]dc,  into m  equal subintervals of width 2h  as in Figure1.1. The 

result is a grid on the rectangle [ ] [ ]dcba ,, ×  obtained by drawing vertical and 

horizontal lines through the points with coordinates ( )ji yx ,  where: 

       niihaxi ,...,1,0,1 =+=  . 

and mjjhcy j ,...,1,0,2 =+= .  

  The lines ixx =  and jyy = are called grid lines, and their intersections 

are called grid points (mesh points).  Numerical differentiation formulas are 

used to replace the derivatives in the elliptic PDE, converting the elliptic 

Linear 
Continuous 

Problem 

Discretization    
(finite   difference) 

Linear 
System 
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PDE into an algebraic equation for each grid point. For simplicity, we use 

the following second-order centered-difference formulas:  

                                        h
uu

x
u jiji

2
11 −+ −

≈
∂
∂  

2

2

x
u

∂
∂

≈   2
11 2

h
uuu jiijji −+ +−  

     Similarly, for other derivatives.     

                               y  

 

 

 

 

                                                    

Figure1.1 

Example 1.1   

     Consider the Poisson equation:  

1=+ yyxx uu  

 In the square region [ ] [ ]1,11,1 −×−=Ω  with boundary condition, 

Ω∂∈∀= ),(,0),( yxyxu . Using second–order formulas for the derivatives 

with 5.021 == hh , give the difference equation: 

25.011141 =−+++−+−+ ijuijujiuijujiu ,   1≤  i , j ≤  3 

x  
0xa = nxb =1x

0yc =

myd =

1y

...

  .       .     .         .  
 .            .      .      .

.      .        .     .  

. 

. 

. 
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      The linear system associated with this problem has the form 

 

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

33

32

31

23

22

21

13

12

11

u
u
u
u
u
u
u
u
u

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0

. 

 Several solution methods can be used to solve the linear system resulted 

from the discretization process. Direct methods such as Gaussian 

elimination can be used, other more efficient direct methods also can be 

used.  In real problems, The systems are very large systems , and the direct 

methods become inefficient, since they lead to the formation of 

intermediate matrices, making the number of arithmetic operations 

necessary for the solution too large. For this reason, iterative methods are 

used for solving such systems. Several classical iterative methods exist. 

Some of such methods are: 

• Jacobi method. 

• Gauss-Seidel method.  

• Successive over relaxation (SOR) method. 

Iterative methods begin with an initial approximation of the solution, 

and generate a sequence of approximations assumed to converge to the 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

−
−

−

410100000
141010000
014001000
100410100
010141010
001014001
000100410
000010141
000001014



 
 

7

exact solution. The error in such approximations is the result of machine 

(rounding) error and the number of iterations used.  Classical iterative 

methods are easy to implement and may be successfully applied to more 

general systems than most direct methods. However, iterative methods 

suffer some limitations. They are characterized by slow error reduction, but 

they provide rapid damping, leaving smooth error. For this reason, these 

methods are called smoothers. Multigrid methods have been developed 

through attempts to overcome these limitations. They use these classical 

methods as smoothers.  

1.2  A Brief History of Multigrid Methods 

  First studies investigating multigrid methods are given by Fedorenko 

from 1962 to 1964, who developed the first multigrid scheme of the 

Poisson equation in a unit square. His work was generalized to the general 

linear elliptic PDE with variable smooth coefficients by Bachvalov in 1966. 

The actual efficiency of multigrid methods was reported in a paper by 

Brandt in 1973, who presented another paper in 1977, clearly outlining the 

main principles and practical utility of multigrid methods. Brandt's work 

drew attention and marked the beginning of rapid development. During 

1975 and 1976, Hackbusch developed the fundamental elements of 

multigrid methods, Hackbusch's first systematic report in 1976 contained 

many theoretical and practical investigations, which were taken up and 
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developed further by several authors. Since the early 1980s, the field of 

multigrid extended and many researchers have contributed to this field. 

Two series of conferences dedicated to multigrid methods were set up: the 

European Multigrid Conference (EMG) held at Cologne in 1981 and 1985, 

Bonn in 1991, Amsterdam in 1993, Stuttgart in 1996 and Ghent in 1999. In 

the US, the Copper Mountain Conferences on Multigrid is held every two 

year since 1983. An essential contribution to development of the multigrid 

community is the MGNET website maintained by Craig C. Douglas: 

http://www.mgnet.org , this is a large communication platform and a 

resource on everything related to multigrid methods.  

       1.3 Grid structure 

While, classical iterative methods use a single grid, multigrid 

methods use more than one grid. In one dimension, let [ ]ba,=Ω  be a 

domain. A grid hΩ  is defined by: 

           [ ]
⎭
⎬
⎫

⎩
⎨
⎧ −

==+=∈=Ω
n

abhniihaxbaxh ,,...1,0,:,    1.3.1 

  

Figure 1.2 

Domains in two dimensions may be rectangular, circular, or 

irregular. And the grid may be Cartesian grid, boundary-fitted curvilinear 

grid. However, only Cartesian grids will be considered.  

………… x=b
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In this thesis, only rectangular domains with Cartesian grid are 

considered. 

  
                     (a)                                     (b)                                   (c) 

   Figure1.3  (a) Cartesian grid on rectangular domain  
                                (b) Cartesian grid on irregular domain 

(c) boundary-fitted curvilinear grid                                      
   

         If  [ ] [ ]dcba ,, ×=Ω  is rectangular domain then the grid is: 

( ){
⎭
⎬
⎫−

=
−

=+=+=Ω∈=Ω
m

cdh
n

abhjhcyihaxyxkh 2121, ,.,:,            1.3.2 

Consider hΩ as in equation 1.3.1. A coarser grid can be obtained by 

deleting all grid points with odd index i , then we obtain: 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧ ==+=∈=Ω

2
,....1,0,2,:, nihHiHaxbaxH . 

The number of subintervals n  need to be divisible by 2 . HΩ is called 

coarse grid, and hΩ is called fine grid and the process is called coarsening. 

Coarsening can be done in a different way, by deleting every other grid 

point or reducing subintervals by 0.5. However, dividing by two is the most 

popular. Coarser grids 
lhΩ , kl ,...,0= , can be obtained by repeating the 

process taking into account that the member of subintervals n must be in 
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the form k2 . The coarsest grid is 0hΩ , and the finest grid
khΩ . For simplicity 

we replace lh  by l . 

                                                                                                     

                                                                                     2Ω  

                                                                                     1Ω           

                                                                                     0Ω  

Figure 1.4 coarsening with n=8 at finest grid 

     

    In two dimensions the coarse grid is: 

( )
⎭
⎬
⎫

⎩
⎨
⎧ ==+=+=Ω∈=Ω

2
,...1,0,

2
,...1,0,2H,1:,,

mjnijcyiHaxyxKH   

n, m are in power of two, 222,121 hHhH ==  

           

  

 

 

 

Figure 1.5 coarsening with n=m=4 in the finer grid 

1.4 Stencil notation 

 Using stencil notation is important in describing the moving 

between grids operators which will be studied later.  
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Let ℜ→Ωhhu :  , be a grid function. We can define an operator on the 

set of grid function by: 

[ ] ( ) ( )∑ +=
k

hkhhk khxusxuS , where [ ] [ ].... 101 sssS hk −=  

 is the stencil. 

In two dimension, the stencil is: 

 [ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−

−

−

.......

.......

....

....

....

.......

.......

1,11,01,1

0,10,00,1

1,11,01,1

,,
2121

sss
sss
sss

S
hhkk                    

 And the operator on the set of grid function is defined by : 

[ ] ( ) ( )
( )
∑ ++=

21

21212121
,

2211,,,, ,,
kk

kkhhhhkk hkyhkxusyxuS  

Assume that the only finite number of coefficients 
21 ,kks are nonzero. 

Many of the stencils considered are five-point or compact nine-point 

stencils. 

h
s

sss
s

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

1,0

0,10,00,1

1,0

                        

h
sss
sss
sss

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−

−

−

1,11,01,1

0,10,00,1

1,11,01,1

  

 Five-point stencil.                              Compact nine-point stencil 

Near the boundary points the stencils may have to be modified on the 

domain. In Figure (1.6 a) the point is at the west boundary, so it is known. 
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The modified five point stencil is [ ]
h

hkk

s
ss

s
S

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−1,0

0,10,0

1,0

, 0
21

. In Figure (1.6 b), 

the five point stencil for the northwest corner can be modified as 

[ ]
h

hkk

s
ssS

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−1,0

0,10,0, 0
0

21
. 

                                                        

                                            (a)                          (b) 

Figure 1.6 
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Chapter 2 
 

Classical Iterative Methods 
 

2.1 Introduction 
 

Direct methods for the linear system proceed through a finite number 

of steps and produce the exact solution to the level of rounding error. An 

iterative method starts with an initial approximation and produces a 

sequence of approximations (vectors) of the solution that is supposed to 

converge to the exact solution. The error in the approximate solution is due 

to the machine (rounding error) and to the number of terms in the sequence 

(iterations) used.  

For large linear systems iterative methods often have advantages 

over direct methods in terms of speed and demands on computer memory. 

Accuracy is proportional to the number of iterations. When the sequence is 

convergent, iterations will suffice to produce an acceptable solution. This 

means higher accuracy needs more iterations. The number of iterations 

needed for a specific accuracy depends on the speed of convergence of the 

method. Another advantage of the classical iterative methods is that they 

are usually stable, and they will damp errors as process continues. 
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Classical iterative methods have the disadvantage, of smoothing errors. 

After few iterations, the error become smooth. and the result is slower 

convergence.  

 Consider the linear system:   

fu =A                                              2.1.1 

We will use ),.......,,( 21 nuuu=u  to denote to the exact solution of this system, 

and ),.......,,( 21 nvvv=v  to denote the approximation of the exact solution.  

Definition 2.1.2: 

     Let  v be the approximation of the exact solution u of the linear system 

fu =A .The error in v is: 

 e = u – v                                               2.1.2 

The residual is: 

r = f – Av                                               2.1.3 

As a result: 

                                             r = Ae . 

These two measures can be computed by any standard vector norm.  
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Definition 2.1.2[11] vector norm:        

        Let nℜ  be a real vector space. A function  ℜ→ℜn:.  with the 

properties: 

0.  0≥u  

1. 0=u if and only if 0u =  

2. uu αα =  for any real scalar α  

3. vuvu +≤+  

For all  nℜ∈vu,  , is called a vector norm.  The most common norms are  

pn

i

p
ip u

1

1
|||| ⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

u ,  ∞<≤ p1  called the p-norm.  If  ∞=p  then 

ini
u

≤≤∞
=

1
maxu  is called infinite norm. For 2=p ,  the norm is called the 

Euclidean norm.                      

   An iterative method generate a sequence of approximations 

∞
=0}{ m

mu using the iteration:            

Cuu +=+ mm T1                                 2.1.4 

where mu   is the approximation solution after m iterations and T is  

called the iteration matrix of the iterative method. Different iterative 

methods have different iteration matrices. Convergence of an iterative 

method depends on the iteration matrix T for the method. 
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2.2 Basic iterative methods   

          We will consider the following three most popular classical 

iterative methods:  

      - Jacobi method 

      - Gauss-Seidel method 

      - SOR method 

   Consider the linear system fu =A  .  If we can split A  as  NMA −=  

with M nonsingular, then the linear system is:  

fu =− )( NM  

fuu += NM  

and the iterative method is: 

fuu +=+ mm NM 1      ,..1,0=m  

so  

                                     Cuu +=+ mm T1     ,..1,0=m                2.2.1 

where NMT 1−=  and fC 1−= M . 

   Now, consider the splitting ULDA −−=  where D  denotes the 

diagonal part of the matrix A . The matrices UL and −−  are strictly lower 

and upper parts of A , respectively. Based on this splitting, many choices for 

M and N are possible leading to different iterative methods. 

       Jacobi iterative method uses the splitting ULNDM +==  and , . The 

iteration is given by: 
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                     ( ) fuu 111 −+⎥⎦
⎤

⎢⎣
⎡ +−=+ DmULDm  ..2,1,0=m          2.2.2 

                                   j
m

jT Cu +=      

 This is the matrix form of the Jacobi method, where the iteration matrix 

of Jacobi method is: 

)(1 ULDTj += −  

and                                               

fC 1−= Dj  

This formula is important in the study of the convergence of the Jacobi  

method.  However, computationally, the iteration is carried out simply by 

solving equation i for the unknown iu : 

                           ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑+ m

jiji
ii

m
i uaf

a
u 11     ni ,...,1=                     2.2.3       

Jacobi method starts with initial approximation 0u to compute a new 

approximation 1u  using equation 2.2.3, then  1u  is used to compute 2u , and 

the process is repeated until a maximum number of iterations, or a given 

tolerance (maximum error norm allowed) is reached.    

The actual error muu−  in the thm  approximation mu  is not computable since 

the exact solution u  is unknown. However, the estimated error mm uu −+1 can 

be easily computed.       

The error norm |||| 1 mm uu −+ , for any norm, is compared with a given                       
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tolerance to stop the iteration process.  

    A variation of Jacobi iterative method is the damped (weighted) Jacobi 

iterative method.  The iteration of the damped Jacobi iterative method is 

given by: 

fuu 11 −+ += DT m
dj

m ω , 10 << ω  

     where: 

( )[ ]jdj TIT ωω +−= 1  

Gauss-Seidel method is similar to Jacobi method but it uses the most 

recent values to update the unknowns. The iteration is: 

        1+m
iu = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑
+=

−∑
−

=
+− m

ju
n

ij ija
i

j
m
juijaif

iia 1

1

1
11   , ni ,...,1=         2.2.4 

 Splitting M=D-L and N=U gives: 
 
                                            ( ) fuu +=+− mUmLD 1  

                                           

                                      ( ) ( ) fuu 111 −−+⎥⎦
⎤

⎢⎣
⎡ −−=+ LDmULDm

     2.2.5 

                                            g
m

gT Iu +=  
where the iteration matrix for Gauss-Siedel method is: 

( ) ULDTg
1−−=  

and            

( ) fI 1−−= LDg  

This is the matrix form of the Gauss-Seidel method. 
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       The idea of Jacobi and Gauss-Seidel methods is to generate a sequence 

of approximations that converges to the solution of the system. A 

corresponding sequence of residuals converges to the zero vector.                           

          Let  ( )Tm
num

ium
iumum

i ,....,,1
1,....,1

1
1 +

−
+=+u  be the approximate solution 

vector after m+1 iterations. With residual ( )Tm
ni

m
i

m
i rr 11

1
1 ,...... +++ =r . Gauss-

Seidel method can be characterized by choosing 1+m
iu   that satisfy  

                                            
ii

m
iim

i
m
i a

r
uu

1
1

+
+ +=                     2.2.6      

  Gauss-Seidel method can be modified by taking the form of a       

weighted average of the last two iterations as:  

                                      
ii

m
iim

i
m
i a

r
uu

1
1  

+
+ += ω                                            2.2.7 

Choices of positive ω  will leads to faster convergence.  If 10 <<ω ,the 

method is called under relaxation method, and if 1>ω  the method is called 

over relaxation method. These methods are used to accelerate the 

convergence for the systems that are convergent by Gauss-Seidel 

technique. This method is called successive over relaxation (SOR), and is 

given by:  

 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
+=

−+∑
−

=
−+−=+ n

ij
m
juijam

ju
i

j ijaif
iia

m
ium

iu
1

11

1
11 ωω                        2.2.8 

The matrix form of the SOR method which is important in theoretical 

analysis is given by:      
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 ( ) ( )[ ] ( ) fuu ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ −−+−−−−=+ ωωωωω 1111 LDmUDLDm         2.2.9 

               SOR
m

SORT Iu +=   
 
Where  

                   ( ) ( )[ ][ ]UDLDTSOR ωωω −−−= − 11  

is the iteration matrix for SOR method and 

                                  ( ) fI ωω 1−−= LDSOR   

Note that if 1=ω  the SOR method simplifies to the Gauss-Seidel 

method. 

2.3 Convergence of classical iterative methods 

       Starting with an initial vector, an iterative method generates a sequence 

of vectors that approximates of the solution of the given linear system. The 

sequence may converge or diverge. Convergence and divergence of the 

method depends on the nature of the coefficient matrix.  

      In this section we will perform convergence analysis for the three 

iterative methods discussed in the previous section. To study the 

convergence of these methods we need some theorems and definitions. 

Definition 2.3[11] matrix norm:          

.   is a matrix norm on n×n matrices if: 

1. 0≥A  

2. 0=A   if and only if 0=A   
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3. AA αα =  for any real scalar α  

4. BABA +≤+  

For nn×  matrix A , some of known matrix norms are: 

• The  operator norm   
u
Au

A
nu

u
ℜ∈
≠

=
0

max   

• The infinite norm  ∑
=≤≤

∞

∞

≠∞
==

n

j
ijniu

a
u
Au

A
110

maxmax  

• The Euclidean norm    ∑∑
= =

=
n

i

n

j
ijaA

1 1

2                              

Definition 2.4[16] spectral radius:  

          The spectral radius of a square matrix  T  is ( ) λρ max=T    where the     

maximum is taken over all eigenvalues λ   of  T  . 

Theorem 2.1 [11]: 

For each norm and each matrix we have that ( ) TT ≤ρ  , conversely, for  

 each matrix T  and each 0>ε  , there exists a norm such that: 

( ) ερ +≤ TT . 

 Proof: 

  Let ( )Tρλ =  and  u  be the eigenvector for λ  then: 

λ
λ

==≥=
≠ u

u
u

Tu
v

Tv
T

v 0
max . 

     To construct . such that  ( ) ερ +≤ TT  , let   
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JTSS =−1  be Jordan form and =εD  diagonal (1 , 12 ,........,, −nεεε ) then  

( ) ( ) == −−
εεεε JDDSDTSD 11

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

m

m

m

k

λ
ε

λ
ελ

ε
λ
ε

λ
ε

λ
ελ

0........0
..........

0.0.......
.........
..........
..........
..........
.......0..
..........
.........0
0.......0

1

1

1

 

 

which mean a Jordan form withε 's above the diagonal. If we use the vector 

norm 

( )
∞

−= uSDu 1
ε  ……. (*) 

to generate the operator norm, then 

 

( )
( )

( ) ( )

( ) ( )
( ) ερ

εε

εε

ε

ε

+≤

=

=

==

∞

−

∞

∞

−

≠

∞

−
∞

−

≠≠

T

SDTSD

v

vSDTSD

uSD

TuSD

u
Tu

T

v

uu

      

      

max      

maxmax

1

1

0

1

1

00

 

Theorem 2.2[11]: 

           The successive approximation  Cuu +=+ mm T1  ,  ....2,1,0=m  

converges if and only if ( ) 1<Tρ . 
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Proof: 

          Suppose the method converges and ( ) 1≥Tρ  then there exist an 

eigenvalue λ   of T with 1≥λ . Let uu −0  be an associated eigenvector 

then: 

( ) ( ) ( )uuuuuuuu −=−==−=− +++ 01011 ...... mmmm TT λ  

which is not approach to zero, and this contradicts the assumption. 

Conversely, suppose that ( ) 1<Tρ , then 1<T  from previous theorem and 

( )uuuu −=−+ mm T1   we have: 

uuuuuu −≤−≤− ++ 011 mmm TT  

which converges to zero. 
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Definition 2.5[16]: 
 

The matrix A of dimension nn×  is strictly diagonally dominant if   

∑
≠
=

>
n

ij
j

ijii aa
1

  for each ni ,...1=  

Theorem 2.3 [11]: 

  Consider the linear system fu =A . If A is strictly diagonally dominant, 

then the Jacobi method converges.  

Proof: 

       The iteration matrix of the Jacobi method is: 

 ( ) =+= − ULDTj
1     

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

0...
......
......
......

...0

...0

21

22

2

22

21

11

1

11

12

nn

n

nn

n

n

n

a
a

a
a

a
a

a
a

a
a

a
a

 

Since ( ) 1max
11

1 <=+ ∑
≠
=≤≤∞

−
n

k jj

jk

jn
jk

a
a

ULD , ( ) 1<jTρ  so the Jacobi method 

converges. 

 Theorem 2.4[6]: 

       If A is strictly diagonally dominant then the Gauss-Seidel method       

converges.  
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 Proof: 

   Let  λ  be any eigenvalue of the iteration matrix of the Gauss-Seidel 

method ( ) ULDTg
1−−=  and let u  be the corresponding eigenvector. Without 

loss of generality, assume 1=
∞

u   

we have: 

( )( ) uu λ=− − ULD 1 , 

uuu λλ LDU −=  

which mean: 

j

i

j
ijiii

n

ij
jij uauaua ∑∑

−

=+=

−=−
1

11
λλ  , 1 ni ≤≤ . 

So 

∑∑
+=

−

=

−−=
n

ij
jij

i

j
jijiii uauaua

1

1

1
λλ , 1 ni ≤≤ , 

Now select an index i  such that  ji uu ≥= 1  for all j then: 
  

                                  
∑∑

+=

−

=

+≤
n

ij
ij

i

j
ijii aaa

1

1

1
λλ  , 

solving for λ  and using the diagonally dominance of A, we get: 
   

                                  
1

1
1

11
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≤

−
−

=+=
∑∑
i

j
ijii

n

ij
ij aaaλ  

then ( ) 1<gTρ  so Gauss-Seidel converges . 

 

    The following theorem gives conditions on the convergence of the SOR          
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    method. 

    Theorem 2.5[11] kahan: 

  For arbitrary  n×n matrix A, ( ) 1−≥ ωρ SORT  therefore ( ) 1<SORTρ  only if 

20 <<ω  where SORT  is the iteration matrix for the SOR method 

Proof: 

     Write the characteristic polynomial of SORT  as: 

( )( )( )SORSOR TILDITI −−=−= − λωλλϕ 1det)det()( . 

     Because LDI 1−−ω  is lower triangular matrix with 1 on the diagonal ,    

     ( ) 1det 1 =− − LDI ω  

 then  

( ) ( ) ( ) ( )[ ][ ]( )UDLDILDIDD ωωωλωλϕ +−−−−= −−− 1det 111  

                          ( )( )UDLDI 111det −− −−−+= ωωλωλ                                                                  

Since nλλ ,.....,1   are the eigenvalues of SORT ,  the constant coefficient of    

the characteristic polynomial: 

( ) ( )( ) ( )n
i

n

i
I 11det0

1
−±=−±=Π±=

=
ωωλϕ , 

 Now: 

1max
1

−≥
≤≤

ωλini
 

which implies: 

( ) 1−≥ ωρ SORT  
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for convergences we need: 

( ) 1<SORTρ  

 then: 

 11 <−ω  

which leads to: 

20 <<ω . 
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Chapter 3 
 

Multigrid methods 
 

3.1 Introduction 
 

Jacobi and Gauss-Seidel methods are characterized by their slow rate 

of convergence [1]. They are efficient in smoothing the error but not in 

reducing it. By smoothing, we mean damping the error components with 

short wave length, which is done after very few iterations (relaxation 

sweeps). To reduce smooth error, it takes many relaxation sweeps, which 

means slow rate of convergence. If we analyze this error into components 

of wavelengths, the error will have components of many different 

wavelengths, there will be short wavelength error components and long 

wavelength error components. For short wavelength error components, 

Jacobi and Gauss-Seidel methods provide rapid damping leaving behind 

longer wavelength error components (smooth). Long wavelength error 

components (smooth) are responsible for the slow convergence. The basic 

idea behind multigrid methods is to reduce long wavelength error 

components.     

The rate of convergence of classical iterative methods can be 

improved with multigrid methods. A multigrid method begins with Jacobi 

or Gauss-Seidel iterations, for the one job that they do well, removing short 
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wavelength error components to leave a smooth error.  The central idea is 

to move to a coarse grid where transferred error is not smooth. 

We illustrate this method using the simplest case a two grid method. 

3.2 Two-grid method 

We can introduce the two-grid method by starting from the general 

iteration based on approximate solution of the defect (residual) equation. If 

we discretize the PDE on uniform grid with mesh size h , we can write the 

resulting set of linear equations as: 

                  hhhA fu =                                              3.2.1 

Let hu  be the exact solution of equation 3.2.1. let m
hu be the 

approximate solution after m relaxation sweeps with error: 

m
hh

m
h uue −=  

and residual:   

m
hhh

m
h A ufr −=  

This leads to the following defect equation: 

                               m
hh

m
h A er =                                           3.2.2 

 If we approximate hA  by any simpler operator  hÂ  where 1ˆ −
hA exists, for 

example hÂ  is the diagonal part of hA in Jacobi iteration, and the lower 

triangular part of hA  for Gauss-Seidel iteration. Then the solution m
hê of the 

defect equation  
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m
h

m
hhA re =ˆˆ

 

   is added to the old approximation m
hu  giving a new approximation 1+m

hu . 

This means: 

m
h

m
h

m
h euu ˆ1 +=+

 

We can describe the previous steps by the following flowchart: 

 

 

 

 

 

 

 

 

 

 

 

      The iteration operator of this method is given by: 

hhh AAIM 1ˆ −−=  

Then we have:  

hh
m
hh

m
h AM fuu 11 ˆ −+ +=  

Approximate solution 
  m

hu 

Residual  
m
hhh

m
h A ufr −=  

Residual equation  
m

h
m
hhA re =ˆˆ 

Residual correction 
m
hê    

New approximate solution 
meuu ˆ1 +=+ m

h
m
h  
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Another type of approximation for hA  is to coarsify rather than 

simplify. i.e. we form a suitable approximation HA  of hA  on coarse grid 

with mesh size hH 2=  , and then the defect equation 3.2.2 is replaced 

by: 

                            m
H

m
HHA re =                                              3.2.3 

Because HA  has smaller order, equation 3.2.3 is easier to solve than 

equation 3.2.2.  The residual m
Hr  and the error m

He  are grid functions on 

the coarser grid HΩ , therefore two linear transfer operators to move 

between grids are needed. The first operator is a restriction from the 

fine grid to the coarse grid:  

( ) ( )HghgH
hI Ω→Ω:  

 This operator is used to transfer the residual m
hr  from hΩ  to HΩ  (i.e. 

m
h

H
h

m
H I rr = ). 

The second operator is a prolongation from the coarse grid to the fine 

grid: 

( ) ( )hH
h
H ggI Ω→Ω:  

This operator is used to transfer the error m
He  from HΩ  to hΩ (i.e. 

h
H

h
H

m
h I ee = ). 

Finally, the new approximation 1+m
hu  is computed by adding a coarse 

grid correction h
H

h
H

m
h I ee =  to m

hu  replacing a new relaxation sweep on the 

fine grid by a new and cheaper one on the coarse grid. This process is 

called coarse grid correction, and it can be described as follows: 
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• Compute the residual: 
m
hhh

m
h A ufr −= . 

• Transfer the residual to the coarse grid: 
m
h

H
h

m
H I rr = . 

• Solve the residual equation: 
m
H

m
HHA re = . 

• Transfer the error m
He  to the fine grid: 

h
H

h
H

m
h I ee = . 

• Compute a new approximation: m
h

m
h

m
h euu +=+1 . 

          The high frequency components can be reduced by smoothing on 

the fine grid using iterative methods like Jacobi and Gauss-Seidel. The 

low frequency components of the error are effectively reduced by 

coarse grid correction procedure. But the high frequency components of 

the error are not even representable on the coarse grid see Figure [3.1]  

and so cannot be reduced to zero. This leads us to combine the two 

processes of smoothing and the coarse grid correction to get the two 

grid method. 

    

 

 

 

   Figure [3.1]: high frequency components errors are not representable (not visible)      

                         on the coarse grid. 

Each iteration step of a two-grid method consists of presmoothing, coarse 

grid correction and postsmoothing part as follows:   

• Pre-smoothing: compute m
hu  by applying 01 ≥v  steps of a given      
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         smoothing procedure to m
hu . 

• Coarse grid correction: use m
hu  to get )(newm

hu . 

• Post-smoothing: compute 1+m
hu  by applying 02 ≥v  steps of the given 

smoothing procedure to 
)(newm

hu . 

Two-grid procedure can be presented by: 

m
hu ⎯⎯⎯ →⎯smoothing m

hu → m
hhh

m
h A ufr −=                    1+⎯⎯⎯ →⎯+→ m

h
smoothingm

h
m
h

m
h ueue  

                                         ↓H
hI                   h

HI↑  

                                             m
H

m
HH

m
H A rer =→    

    But two-grid methods are of little practical significance due to the 

still large complexity of the coarse grid problem. However, they serve as 

the basis for the multigrid methods. Instead of solving the coarse grid 

residual equation exactly, we can get an approximate solution of it by 

introducing an even coarser grid, and using the two-grid iteration method. 

This idea can be applied using coarser and coarser grids, down to some 

coarsest grid where any solution method can be used. 

3.3 Moving between grids: restriction and prolongation. 

      In multigrid methods, it is necessary to move approximations, residual 

and errors between grids. There are two types of grid transfer: restriction 

and prolongation. Restriction transfer values from fine grid to the next 
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coarse grid. Prolongation transfer values from the coarse grid to the next 

fine grid. 

      The choice of restriction and prolongation operators H
hI  and  h

HI  for 

intergrid transfer of grid values depends on the choice of the coarse 

grid. In this thesis, only standard coarsening will be considered. 

3.3.1 Restriction 

    The simplest restriction operator is the injection operator: 

                ( ) ( )
( )p

pIp

h

h
H
hH

r
rr

=
=

          
,      hHp Ω⊂Ω∈  

This identifies grid function at coarse grid points by the corresponding 
grid values at fine grid points as in the following figure: 

 

 

 

 

                        

(a)                                                     (b)   

Figure [3.2]: (a) Restriction by injection operator in one dimension. 

                             (b) Restriction by injection operator in two dimensions. 

Another restriction operator is the Full Weighting (FW) operator. This 

operator can be illustrated by the following Figure: 
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Figure [3.3]: restriction by full weighting operator in one dimension 

This restriction operator is represented by stencil notation as: 

h

h

2

4
1

4
2

4
1

⎥⎦
⎤

⎢⎣
⎡  

i.e. ( ) ( ) ( ) ( ) ( )( ) hhhhh
h

hh xhxrxrhxrxIx 2
2 ,2

4
1

Ω∈+++−== rr .  

But if x  is the left boundary point then the stencil is modified by: 

h

h

2

4
1

4
20 ⎥⎦

⎤
⎢⎣
⎡  

If x is the right boundary point then the stencil is: 

h

h

2

0
4
2

4
1

⎥⎦
⎤

⎢⎣
⎡  

In two dimensions, the full weighting operator is given by: 

h

h

2

16
1

16
2

16
1

16
2

16
4

16
2

16
1

16
2

16
1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

which means: 
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( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎥⎦

⎤
⎢
⎣

⎡
−−++−+−+++++
−+++−+++

=

=

hyhxrhyhxrhyhxrhyhxr
hyxrhyxryhxryhxryxr

yxrIyxr

hhhh

hhhhh

h
h

hh

,,,,
,2,2,2,2,4

16
1             

,, 2
2

 

where ( ) hyx 2, Ω∈ . 

 

 

 

 

 

 

 

Figure [3.4]: restriction by full weighting operator in two dimensions. 

 If x  is a boundary point, full weighting operator is modified as  follows: 

 For a north-west corner, the FW stencil is: 

h

h

2

16
1

16
20

16
2

16
40

000

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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Figure [3.5] : restriction by full weighting operator for corner point  

 If x  is a west boundary point, then the FW stencil is: 

h

h

2

16
1

16
20

16
2

16
40

16
1

16
20

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

 

 

 

 

 

 

 Figure [3.6]: restriction by full weighting operator for boundary point.  

      Another operator is the Half Weighting (HW) operator. It is a five-

weighted average. In stencil notation, the HW reads: 
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h

h

2

0
8
10

8
1

8
4

8
1

0
8
10

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

This means: 

( ) ( ) ( ) ( ) ( ) ( )[ ]hyxrhyxryhxryhxryxryxr hhhhhh −+++−+++= ,,,,,4
8
1,2  

 

 

 

 

 

 

 

Figure [3.7]: restriction by half weighting operator for an interior point 

3.3.2 Prolongation       

   The prolongation operator maps coarse grid values onto fine grid 

values. In one dimension, the values at points on the coarse grid are copied 

to the corresponding fine grid points. The remaining values at the fine grid 

points are computed by taking the averages of the values of the left and the 

right coarse grid points.  

The linear prolongation is defined as: 
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( ) ( )
( )

( ) ( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥⎦
⎤

⎢⎣
⎡ ++−=

=

points. grid coarse  two                                                  

between locates pointsfor  ,  2ˆ2ˆ
2
1

 points grid coarsefor  ,                                     2ˆ

          

2ˆ2ˆ

hxhehxhe

xhe

xheh
hIxhe

 

   

 

 

 

Figure [3.8]: linear prolongation in one dimension.   

        In two dimensions, the most used prolongation is bilinear, which 

is given by: 

( ) ( )

( )

( ) ( )[ ]

( ) ( )[ ]

( ) ( )
( ) ( )

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−++−

+−++++

−++

−++

=

=

points. grid coarse areex       vert                                                            
  whosesquare ofcenter                                                                   

in the located pointsfor 
,2ˆ,2ˆ

,2ˆ,2ˆ

4
1

lyhorizental points grid coarse                                                     

obetween tw located pointsfor    ,2ˆ,2ˆ2
1

y verticallpoints grid coarse                                                    

obetween tw located pointsfor   ,2ˆ,2ˆ2
1

points grid coarsefor ,                                        ,2ˆ

            

,2ˆ2,ˆ

hyhxhehyhxhe

hyhxhehyhxhe

yhxheyhxhe

hyxhehyxhe

yxhe

yxheh
hIyxhe
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This can be illustrated by the following figure: 

 

 

 

  

 

Figure [3.9]: bilinear prolongation operator:  (  ) coarse grid point, (  )  fine grid point 

In stencil notation we write the bilinear interpolation operator h
hI 2 as: 

h

h

h
hI

2121
242
121

4
1

2
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤
=  

The brackets are reversed, since the stencil entries correspond to weights 

in a distribution process as: 

 

 

 

Another prolongation operator is a linear operator which takes place in 

triangles as illustrated in the following figure: 
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  or 

 

 

Figure [3.10]: linear prolongation operator, (  ) coarse grid points and   (  ) fine grid 

points 

This linear prolongation is given by: 

( ) ( )

( )

( ) ( )[ ]

( ) ( )[ ]

( ) ( )[ ]
( ) ( )[ ]

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
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⎩
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⎪
⎪
⎪

⎨

⎧
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=

=

points. grid coarse                                                             
are vertex  whosesquare of                                                             

center in the  locate pointsfor  ,2ˆ,2ˆ2
1

or  ,2ˆ,2ˆ2
1

ly.horizental points grid coarse     two                                                  

between located pointsfor      ,2ˆ,2ˆ2
1

y. verticallpoints grid coarse     two                                                  

between located pointsfor       ,2ˆ,2ˆ2
1

points grid coarsefor ,      ,2ˆ

              

,2ˆ2,ˆ

hyhxhehyhxhe

hyhxhehyhxhe

yhxheyhxhe

hyxhehyxhe

yxhe

yxheh
hIyxhe

 

3.4 The Multigrid cycles. 

A two grid cycle consists of three steps:  presmoothing, coarse grid 

correction and postsmoothing.  A Multigrid cycle can be obtained by 

performing a number of two grid cycles, say γ ,  at each intermediate stage 

to obtain a better approximation: 

  

 

  

 

 

 

 

 

 

   

 

 

 

 

 

 

  

  



 
 

44

                                         
m

H
m
HH reA =  

 

                                                                                 Two grid method 

 

 

 

 

                   γ = 1                         γ =2                              γ = 3 

Three-grid method 

 

 

 

 

                   γ = 1                                                γ = 2 

Four-grid method 

Figure [3.11]: structure of one multigrid cycle for different grids and different values of 

γ, where        for smoothing,        for exact solution,    for fine to coarse,     for coarse to 

fine transfer.  

The two cases 2 and ,1 == γγ  are particularly interesting. In the case 

1=γ , the cycle is called V-cycle, and if 2=γ , then the cycle is called W-

cycle , and the number γ  is called the cycle index. 
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    We now describe a multigrid V-cycle with 21  and vv  as the numbers of the 

presmoothing and postsmoothing iterations respectively. The calculation of 
a new iterates 1+m

hu  from a given approximation is given in the following 

algorithm [2]:  

Let 
3
1

+m

hu   be the solution after the presmoothing stage, 
3
2

+m

hu   be the 
solution after the coarse grid correction, and 

1+m
hu  be the solution 

after the postsmoothing stage. 

Step 1:  Presmoothing.  

             Compute 3
1

+m

hu  by applying 1v  iterations of the smoother          

             (Gauss-Siedel, Jacobi) on hΩ : m
h

v
h

m

h S uu 13
1

=
+

   

             Where S iteration matrix of the smoother. 

Step 2:  Coarse grid correction 

             Compute the residual on hΩ :   

3
1

+
−=

m

hhhh A ufr    

         Restrict the residual from hΩ  to HΩ  and initialize the coarse    

         grid approximation : 
0    , == Hh

H
hH I urf  

              If HΩ   is the coarsest grid then solve the coarse grid    

              equation  exactly: 

HHHHA Ω= on     ,fu . 

           Else, solve the coarse grid equation: 

HHHHA Ω= on     ,fu  
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                 approximately by applying a multigrid V-cycle starting     
                on HΩ    

         End  if  
         Interpolate the coarse grid approximation (error) from 

      hΩΩ toH  :  

H
h
Hh I ue =  

        Correct the fine grid approximation on hΩ  : 

h

m

h

m

h euu +=
++

3
1

3
2

 

Step 3: Postsmoothing. 

             Compute 3
1

+m

hu  by applying 2v iterations of the smoother on 

              hΩ  :                3
2

3
1

2
++

=
m

h
v
h

m

h S uu . 

Following is the flowchart of a three grid V-cycle: 

                                                                       13
2

3
1

21 +++
⎯→⎯⎯→⎯ m

h
Sm

h

m

h
Sm

h

v
h

v
h uuuu  

             h
h

h
h II 2
2                                                                                ↑↓  

                 1
2

3
2

2
3
1

22
1

2
1

2                                          +++
⎯→⎯⎯→⎯ m

h
Sm

h

m

h
Sm

h

v
h

v
h uuuu  

                              h
h

h
h II 2

4
4
2                                              ↑↓  

                                               m
hh

m
h

m

h
h
h

m
h AI 4

1
4

1
4

3
1

2
4
24 furf −++

=→=  

Figure [3.12]: three grids V-cycle 

 3.5 The Full Multigrid Methods  

        The choice of initial approximation is important in iterative methods. 

The closer the initial approximation to the exact solution, the better. But 
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iterative methods are needed when exact solution is unknown. To get a 

good initial approximation, a procedure called nested iteration can be used 

as follows: 

• Approximate the solution on the coarsest grid 

• Transfer the solution to the next fine grid, for example using 

interpolation. 

• Use the transferred solution as an initial approximation on the 

fine grid. 

The process is repeated from coarse to fine grids. Combining the 

nested iteration method with multigrid method gives the so called Full 

Multigrid Method (FMG). The FMG starts at the coarsest grid where the 

equation can be solved exactly. It then proceeds to the next finer grid, 

performing one or more cycles at each level along the way as shown in 

Figure [3.13] 

 

 

 

 

Figure [3.13]:     means transfer of the approximation solution to a  finer grid. 
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Remark: [2] 

     In general it is not sufficient to start the solution process on a very 

coarse grid, interpolate the approximation of the coarse grid solution to the 

next finer grid, smooth the visible error components and so on until the 

finest grid is reached. Actually the interpolation of the approximation leads 

to nonnegligible high and low frequency error components on the fine grid 

that can be reduced efficiently only by a subsequent smoothing of the error 

on all grid levels.  i.e. by revisiting the coarse levels in multigrid cycles. 

3.6 Multigrid iteration operator 

Discritization of a linear differential equation reduces the equation to a 

linear system: 

hhhA fu =  

Given approximation m
hu , we find 1+m

hu  by coarse grid correction method 

which is given by: 

h
m
h

H
h

m
h NK fuu +=+1                                  3.6.1 

where                     

h
H
hH

h
H

H
h AIAIIK 1−−=  is the coarse grid correction matrix     

 and   H
hH

h
H IAIN 1−=  . 

We can prove equation 3.6.1 using the relation between m
hu  and 1+m

hu : 

m
H

h
H

m
h

m
h

m
h

I eu

euu

+=

+=+

m
h

1
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But 

m
HH

m
h A re 11 −+ =  

 and  

)( m
hh

h
H

m
H AI ufr −=   

  by substitution we get: 

)(11 m
hh

h
HH

h
H

m
h

m
h AIAI ufuu −+= −+  

which completes the proof. 

For the error: 

m
h

H
h

m
h K ee =+1                                           3.6.2 

Recall that:  

11 ++ −= m
hh

m
h uue . 

If we multiply both sides of equation 3.6.2 by hA , we get the residual after 

coarse grid correction: 

m
hh

H
hh

m
h AKA rr 11 −+ =  

The error after 1v  presmoothing iterations is given by:  

03
1

1
h

v
h S ee =   

where  0
he   is the initial error.  After coarse grid correction, the error is: 

3
1

3
2

h
H
hh K ee = . 

Then the error after two-grid method is given by: 
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0
2

1
hh Q ee =  

         where 

12
2

vH
h

v SKSQ =                                    3.6.3 

          is the two-grid iteration matrix. 

Theorem 3.7.1[1]: 

        The iteration matrix ),( 21 vvQk  of the multigrid method satisfies: 

     ),(~),( 212212 vvQvvQ =                                        3.6.4 

and  

( ) 12 11
1112121 ),(~),( v

kk
k
kkk

k
k

v
kkk SAIAQISvvQvvQ −−

−−−+= γ                3.6.5 

where: 

{ } 12 11
1121 ),(~ v

kk
k
kk

k
k

v
kk SAIAIISvvQ −−

−−−=  

is the iteration matrix of multigrid method. 

Proof: 

       Equation 3.6.4 follows from equation 3.6.3.  Equation 3.6.5 is proved 

by induction, let the equation be true for n=k. we want to prove that it is 

true at n=k+1. 

        Let 0
1+ke  be the error on 1+Ω k  before multigrid, 3

1

1+ke  is the error after 

pre-smoothing, 3
2

1+ke  is the error after coarse grid correction, and 1
1+ke  is the 

error after post-smoothing then we have: 
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0
11

3
1

1
1

+++ = k
v
kk S ee                                           3.6.6 

The coarse grid problem to be solved is: 

3
1

111 +++−= kk
k
kkk AIA eu   

with initial guess 00 =ku . Hence the initial error  0
ke  is the negative of the 

exact solution on  kΩ  which means 

                                                      3
1

111
10

+++
−= kk

k
kkk AIA ee  . 

 After coarse grid correction the error on kΩ  is 

( ) 0
kkQ eγ  

hence the coarse grid correction is given by:  

( )( ) 0
kkQI eγ+−  

 therefore: 

( )( ) 013
1

1
3
2

1 kk
k
kkk QIIe ee γ+−+= +

++  

( ){ } 3
1

111
11

11
113

2

1 +++
−+

++
−+

+ +−= kk
k
kkk

k
kk

k
kk

k
kk eAIAQIAIAII γe                 3.6.7 

Then: 

3
2

11
1

1
2

+++ = k
v
kk eSe                                            3.6.8 

Combining equations 3.6.6, 3.6.7,and 3.6.8 ends the proof.  
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Chapter four 

Convergence Analysis 
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4.3 Convergence analysis of two-grid method 

4.4 Multigrid convergence 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

53

Chapter 4 
Convergence Analysis 

 

4.1 Introduction 

     Studying convergence of multigrid methods is not an easy task, and is 

still an open area of computational mathematics. The smoothing error 

modes, which remain after relaxation on one grid, become oscillatory on 

the coarse grids. Therefore, moving to coarser and coarser grid, all error 

components on the finest grid become oscillatory and are reduced by 

relaxation.  For good multigrid method, the convergence factor of the 

multigrid method,  ( )21 ,vvQk   need to be small and independent of h, i.e.      

( ) 1constant, 21 <≤vvQk  

       Where  ( )21,vvQk   is the iteration matrix of the multigrid method. For 

this purpose we need the smoothing factor ρ , and two-grid convergence 

factor norm 2Q . 

4.2 Smoothing Analysis  

Classical iterative methods are still important but less favored, because 

after few iteration steps, the error of the approximations become smooth. 

These methods remove high frequency components (rapidly oscillating 

parts) leaving a smooth error, but low frequency components are reduced 

slowly. So that these methods are called smoothers.  However, these basic  
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methods are known as efficient smoothers but not as efficient solvers. 

I mean, they are efficient in smoothing the error but not in reducing it. 

Figure 4.1 illustrates the error smoothing effect. 

     

     Initial errors             Error after 5 iterations     Error after 10 iterations         

Figure 4.1[2]: Error in the  Gauss-Seidel approximation of the solution of Poisson     

                        problem. 

The smoothness of the error slows down the convergence of the basic 

iterative method.  

Example 4.1 

Consider: 

( ) ,10   ,10     22 <<<<+=+ yxeyxuu xy
yyxx    

xy exuxueyuyu ==== )1,(  ,1)0,(  ,),1(  ,1),0(   

 Table 4.1 shows the number of iterations and the approximate computer 

time needed by the Gauss-Siedel method with initial approximation 0u =0  

and  Tol = 10-5 . these results are obtained using the mathematical software 

maple 12 and an intel Core 2 Duo processor. Figures 4.2, 4.3, and 4.4 

shows the maximum error norm versus the number of iterations needed for 

various mesh sizes.  
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Table 4.1: Approximate computer time 

size Number of iterations Approximate 
computer time 

8× 8 67 0.2sec 
16×16 234 3.2sec 
32×32 791 60.8sec 
64×64 2587 1235.8sec 

128×128 8044 21860.4sec 
256×256 20431 Four days 

 

 

Figure 4.2: relation between maximum error norm and the number of iterations n,  

                   when size 16×16 



 
 

56

 

Figure 4.3: relation between maximum error norm and the number of  iterations n,   

                  when size 32×32 
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Figure 4.4: relation between maximum error norm and the number of iterations n,  

                  when size 128x128 

      The efficiency of smoothing method can be studied by the 

smoothing property and by the Local Fourier Analysis (LFA).  

4.2.1 Smoothing property  

          Discritization of the linear PDE leads to the linear system: 

fu =A . 

 Using the splitting NMA −= , we can define the iteration method: 

                      Luu +=+ mm T1                          4.2.1 
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with 0u  as initial approximation, m=0,1,2,3…., NMT 1−=  is the iteration 

matrix, and fL 1−= M .  Convergence of the iteration 4.2.1 depends on the 

iteration matrix T. After v iterations we obtain: 

fuu
Luu

Lu
uu

Lu
LLu

Luu
Luu

ST
ITTTT

ITTT
LT

ITT
TT

T
T

vv

vvvv

+=

++⋅⋅+++=

+++=

+=

++=

++=

+=

+=

−−

0

210

20

23

02

0

12

01

)(
.
.
.

)(     

)(      
)(     

 

where  
( ) 121 .... −−− +++= MITTS vv  

Let   

Luu += −1vv T  

and let 
u = Tu + L 

then we have  

)( 1 uuuu −=− −vv T  
1−= vv Tee  

2−= vTTe     
22 −= vT e  

. 
0evT=   

    The error e  satisfies:  

                  0ee vv T=                                              4.2.2 
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This equation gives the relation between the error before and after v -

smoothing iterations, but we need to measure the smoothing behavior. For 

this purpose, the smoothing property will be defined.   will denote the 

Euclidean matrix norm. 

Definition 4.2.1[1] Smoothing property 

 Let v  be the number of iterations and h  is the grid size used in 

iteration 4.2.1 If there exist a constant TC  and a function ( )vη  such that: 

                           ( ) ( ) ∞→→≤ − vvvhCAT T
v for     0 ,  2 ηη  for all h 

Then we say that the iteration matrix T  in iteration 4.2.1 has the 

smoothing property 

Theorem4.2.1[1] 

   If the iteration matrix T in iteration 4.2.1 has the smoothing property, 

then iteration (4.2.1) is convergent.  

Proof: 

  
( )

0lim so and 0lim hence

 ,  211

==

≤≤

∞→∞→

−−−

v

v

v

v

T
vv

T

vhCAATAT

e

η
  

     We can see it is difficult to prove the smoothing property for basic 

iterative methods. In [3] the smoothing property is shown for the damped 

Jacobi iterative method. The original Jacobi iteration is: 

( )fuuu −−= −+ jjj AD 11  
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 whereas, the damped Jacobi iteration is: 

( )fuuu −−= −+ jjj AD 11 ω   

In many cases the diagonal is ℜ∈= − dIdhD    ,2 . Replacing 

ℜ∈−− dIhD    ,by     21 ω  (is suitable) we obtain:  

( )fuuu −−=+ jjj Ah21 ω  

then the iteration matrix: 

AhIT 2ω−=  

A possible choice of T
T

C   where
C
1  is  =ωω   is a good bound for Ah2 : 

TCAh ≤2  

where is the spectral norm for matrices.  

Two definitions are needed before discussing the smoothing property for 

damping Jacobi. 

Definition 4.2.2 [13]:( positive semi-definite)  

    An n×n real symmetric matrix A is positive semi-definite if: 

0≥AxxT  for all nx ℜ∈  

Theorem 4.2.2: [3] 

 Assume that A is symmetric and positive semi-definite, then the damped 

Jacobi iteration satisfies the smoothing property with: 
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      ( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=

2
1

1
8
3

v
vη  

Proof: 

    The matrix ( )vv AhIAAT 2ω−=  is symmetric, its eigenvalues μ  are 

( )vh λωλ 21− , with λ  eigenvalues of A.  

we have: 

( ){ }AhAT vv  of seigenvalue :1sup 2 λλωλ −=  

λ  is nonnegative since A is positive semi-definite, and λω 21 h−  is 

nonnegative by definition of ω . As all eigenvalues of A are in [ ]2,0 −hCT , 

the estimate: 

( ){ }AhAT vv  of seigenvalue :1sup 2 λλωλ −=  

follows.  

consider λω 2hx =  , x varies in [0,1] Hence we have: 

( ){ }10  :1sup 2 ≤≤−= − xxxhCAT v
T

v  

 

The maximum of ( )vxx −1 in [0,1] occurs when 
1

1
+

=
v

x  .  A very close 

upper bound for the maximum is ( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=

2
1

1
8
3

v
vη . Hence smoothing 

property holds. 
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      Note that SOR should not be used as a smoothing operator. 

Hackbusch shows that SOR reduce the low frequencies components. But 

the reduction of high frequencies components usually becomes even worse.  

4.2.2 Local Fourier Analysis 

     Local Fourier Analysis (LFA) is the most powerful tool for studying 

the smoothing efficiency, which was introduced by Brandt. Contributions 

have been made by Stüben, Trottenberg and Wesseling. Brandt have used 

the term local mode analysis instead of LFA, both terms denote the same 

approach. So LFA is used in studying the smoothing efficiency of basic 

iterative methods. The aim of LFA is to compute another measure of the 

smoothing behavior of an iterative method. This measure is called Fourier 

smoothing factor. The Fourier smoothing factor is very important measure 

for designing efficient multigrid methods. In our study we concentrate on 

the Fourier smoothing factor for two smoothing methods: Jacobi method 

and the Gauss-Seidel method. Before using this measure, we need to know 

more about elements of Fourier analysis. 

    Definition 4.2.3:  

       The inner product of two continuous functions  f  and g  over a set S is 

     defined as: 

∫=
S

dxxgxfgf )()(,  
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   where )(xg is the complex conjugate of g(x). 

   For discrete functions  f  and  g the inner product is defined as: 

∑=
S

xgxfgf )()(,  

    Definition 4.2.4: 

       Two functions are orthogonal on a set S if : 

0, =gf  

  a set of functions { }n
iif 1= is orthogonal set if : 

0, =ji ff   when ji ≠  

 

Lemma 4.2.1 [1] Orthogonality in one dimension.  

 Let { }1,....2,1,0 −= nI . and ( ) 1,,2  where, −=∈== iIj
n
ke k

ij
kj

k
πθθψ θ .  

Then: ( ) ( ) kl

n

j
ljkj nδθθ =−ΨΨ∑

−

=

1

0

, with klδ the Kronecker delta. 

Proof: 

       If ( ) ( ) neelk
n

j

ijij
kjk

kk ==−= ∑∑
−

=

−

=

1

0

1-n

0j
j then , θθθψθψ .  

But if lk ≠ , then ( ) ( ) ( )∑∑
−

=

−

=

=−
1

0

1-n

0j
j

n

j

ij
ljk

lke θθθψθψ  

 which is a geometric series, so it is equal to: 

( )

( )

( )

( )
.0

1

1
1
1

2

2

=
−

−
=

−
−

−

−

−

−

lk
n

i

lki

i

in

e

e
e
e

lk

lk

π

π

θθ

θθ
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Theorem 4.2.3 [1] Discrete Fourier Transform in one dimension. 

          Every discrete function ℜ→Iu : , can be written as: 

                                                
( )                             .∑

+

−=

=
pm

mk
kjkj cu θψ

          4.2.3 

{ } ( ) .,2 and , ,1,...,2,1     where Ij
n
kenI k

ij
kj

k ∈==−=
πθθψ θ

 
.                                                                                   

( )∑
=

−=

==
−

==

1-n

0j

 1                                                

and 1,-
2

 and 1 even, for  and .
2

1 and 0 odd, For 

kjjk u
n

c

nmpnnmpn

θψ
           4.2.4                              

The functions ( )θψ j  are called Fourier modes or Fourier components. 
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 Proof: 

      If we choose kc as in equation 4.2.4, then: 

( ) ( ) ( )
( )( )

( )
( ) ( )

j

n

k
lkjk

n

l

n
jlmi

l

n

l

n

k

n
ljmki

l

pm

mk

n

l
kjkll

pm

mk
kjk

u

eu
n

eu
n

u
n

c

=

−=

=

−=

∑∑

∑ ∑

∑ ∑∑

−

=

−

=

−

−

=

−

=

−−

+

−=

−

=

+

−=

                     

1                     

   1                     

1

1

0

1

0

2

1

0

1

0

2

1

0

θψθψ

θψθψθψ

π

π

 

Conversely, assume that equation 4.2.3  holds. We want to show (4.2.4) 

as follows: 

( ) ( ) ( )

( ) ( )

.

1

0

1

0

1

0

                            

1                            

11

k

pm

ml
kll

pm

ml

n

j
ljkjl

pm

ml

n

l
ljkjl

n

j
kjj

cc

c
n

c
n

u
n

==

−=

−=−

∑

∑ ∑

∑∑∑

+

−=

+

−=

−

=

+

−=

−

=

−

=

δ

θψθψ

θψθψθψ

. 

In two dimensions: 

( ){ }

( )

( )

( ) 0even.p for  1
2

1, and  oddfor  
2

1

,0 and even. for   1
2

,1 and  odd for  
2

1
,...,   and     
,...,k    where

2,2:,let    and

 1,...,1,0,1,...,1,0,,:Let  

22
2

222
2

2

11
1

111
1

1

2222

1111

2

2
2

1

1
121

221121

=−==
−

=

=−==
−

=

+−=
+−=

⎭
⎬
⎫

⎩
⎨
⎧

====Θ

−=−===

nnmpnnm

pnnmpnnm

pmmk
pmm

n
k

n
k

njnjjjjjI

πθπθθθθ

 

The following lemma shows that the set: 

( ){ }Θ∈∈= θθψψ   and  : Ijj   
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 is orthogonal. 

Lemma 4.2.2[1] Orthogonality in two dimension. 

( )  ,  ,  with  ,   define   weIf Θ∈∈= θθψ θ Ije ij
j  

( ) ( )
⎩
⎨
⎧

≠
=

=−∑
= θυ

θυ
υψθψ

    if ,           0
    if ,     

 then    21
1-n

1j

nn
jj , 

 where Θ∈υθ, .  

Proof: 

From the previous lemma, 

   

( ) ( )

⎩
⎨
⎧

≠
=

=

=

=−

∑∑

∑∑
−

=

−
−

=

−

−

=

−

=

θυ
θυ

υψθψ

θθ

θ

    if ,           0
    if ,     

                            

                             

  

 21

1

1

)(
1

1

)(

1

1

)(
1-n

1j

2

2

222
1

1

111

nn

ee

e

n

j

vij
n

j

vij

n

j

vij
jj

 

 

Theorem 4.2.4[1] Discrete Fourier transform in two dimension. 

     Let ( ){ }1,...,2,1 and 1,...,2,1  where, , 221121 −=−=== njnjjjjI , then every 

ℜ→Iu :  can be written as:  

( )∑
Θ∈

=
θ

θ θψ jj cu , 

with 

( )θψθ −= ∑
∈

j
Ij

ju
nn

c
21

1 . 

 where Θ is defined as in lemma 4.2.2. 
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Proof: generalization of theorem 4.2.1.  

 Let:  

                                    fu =A  

Using a classical iterative method gives: 

                  MS and ,   where, -111 NNMAMS mm =−=+= −+ fuu                 4.2.5 

After few v -iterations, the error become smooth, so that these iterative 

methods are called smoothing methods. The relation between the error 

before and after v -iterations is given by: 

0ee vv S=  

Definition 4.2.4[17]: 

       A set { }jψ  of functions is complete if and only if any function in 

Euclidean space can be written as a linear combination of functions 

from the set { }jψ .                           

       Assume that the operator S has a complete set of eigenfunctions or 

local modes ( )θψ , Θ∈θ , where Θ is some discrete index set. 

       Hence,  

( ) ( ) ( )θψθλθψ vvS =                                    4.2.5 

 where ( ) Θ∈θθλ  , , are the eigenvalues of the operator S , and ( )θψ  is an 

eigenfunction of the operator S . In this case ( )θψ  is called local mode. 

       We can write the error before v -smoothing steps as: 
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 ( )∑
−

=

=
1

1

00
n

k
c θψθe , where 1,...,2,1,2

−== nk
n
kπθ                 4.2.6 

and the error after v -smoothing steps as: 

( )∑
−

=

=
1

1

n

k

vv c θψθe , where 1,...,2,1,2
−== nk

n
kπθ                 4.2.7 

      The relation between vcc θθ  and 0  is important. It gives the effect of  v -

smoothing steps on the error. From equations 4.2.5, 4.2.6, and 4.2.7 we 

get: 

             ( ) 0
θθ θλ cc vv =                                      4.2.8                             

        The eigenvalue ( )θλ  is called the amplification factor of the local 

mode ( )θψ . 

For the smoothing factor we need to distinguish between high and low 

frequency components.  

 

Definition 4.2.5: High and low frequencies [1] 

      Consider the set  
⎭
⎬
⎫

⎩
⎨
⎧ −===Θ 1......,,2,1,: nk

n
kπθθ . We say that ( )θψ  is 

a high frequency component (rough) if and only if 

⎥⎦
⎤

⎢⎣
⎡Θ=Θ∈ ππθ ,

2
Ihigh , 

and is a low frequency (smooth) if and only if  

highlow ΘΘ=Θ∈ /θ  . 
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So that the error grid function can be presented as: 

( ) ( ) ( )∑∑∑
Θ∈Θ∈Θ∈

+==
lowhigh

ccc
θ

θ
θ

θ
θ

θ θψθψθψ 0000e  

Definition 4.2.6 [1]: Fourier smoothing factor  

       The Fourier smoothing factor ρ of the smoothing method in 

equation 4.2.5 is defined by:  

( ){ }.:sup highΘ∈= θθλρ . 

Hence, after v -smoothing iterations the amplitude of the high frequency 

components of the error in equation 4.2.8 are multiplied by a factor vρ or 

smaller. 

Examining the quality of smoothing method, we need to determine 

the Fourier smoothing factor ρ . To do this, we have to solve the eigenvalue 

problem: 

( ) ( ) ( ) NMSS 1 where, −== θψθλθψ  

which means 

( ) ( ) ( )θψθλθψ MN = . 

This relation can be written by stencil notation as: 

( ) ( ) ( )∑
Ζ∈ +=∑

Ζ∈ + j jhxjm
j jhxjn θψθλθψ                4.2.9 

Local Fourier analysis can be simplified by assuming that the 

coefficients in the partial differential equation to be solved are constant. 
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If  ( ) ∑∑
Ν∈Ζ∈

+ =
j

ij
j

ix

j

ijx
j eneen θθθ

 
then  ( ) θθψ ix

x e= satisfies 4.2.9 with: 

( )
∑
∑

Ζ∈

Ζ∈=

j

ij
j

j

ij
j

em

en

θ

θ

θλ  

Example 4.1: 

      For Laplace's equation: 
0=−− yyxx uu  

The correspondence splitting gives: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

1
041

0
M       

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
100

1
N  

 
     and   

( )
21

21

4 θθ

θθ

θλ ii

ii

ee
ee

−− −+−
+

=  

     the Fourier smoothing factor 
2
1

=ρ  

     Finally, Table 4.2 shows the smoothing factors of Jacobi, damped 

Jacobi, and Gauss-Seidel methods. It shows that Gauss-Siedel  method 

as the best smoother for the multigrid method. 

Table 4.2[2]: Smoothing factors  
Smoothing Smoothing  

Factor 
Iterative 
Method    

No        1   Jacobi  
unsatisfactory 0.75 Damped 

Jacobi 
(w=0.5) 

acceptable 0.6 Damped 
Jacobi 

(w=0.8)  
good 0.5 GS 
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4.3 Convergence analysis of two-grid method.  

       The purpose of two-grid analysis is to show that the rate of 

convergence of two-grid method is independent of the grid size h. In the 

first part of this section, we will show how local mode analysis can be 

used to derive bounds for 2Q  quantitatively, which means that we are 

interested in h-independent real bounds for 2Q . In the second part, we 

are interested in qualitative consideration that will help to make the 

requirements to be satisfied by the smoother and transfer operators. 

          To simplify the analysis of the convergence of the two grid 

method, we omit the boundary conditions and study all operators on an 

infinite grid i.e.  Instead of 
⎭
⎬
⎫

⎩
⎨
⎧ ∈=Ω

n
jjhh

1,....,1,0: . And the iteration 

matrix for two grid methods become: 

[ ] 12 1
2

v
hh

H
hH

h
H

v
h SAIAIISQ −−=                           4.3.1 

on infinite grid 

Where: 

 

.
.

grid coarse on theoperator  discrete exteneded :
grid fine on theoperator  discrete exteneded:   

operator.n restrictio extend :  

operator.on prolongati extended :  
 matrix.unit  extended :    

method. smoothing  theofmatrix iteration   theis :2

H

h

H
h

h
H

v
h

A
A
I

I
I
S

 

 In one dimension multigrid methods can be analyzed easier. 
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    Studying convergence of two-grid method with qualitative 

consideration depends on 2Q , where the norm used is the Euclidean 

norm. For simplicity, we assume that 02 =v  i.e.  

[ ] 11
2

v
hh

H
hH

h
H SAIAIIQ −−=                                     4.3.2 

So we can write 

( )( )111
2

v
hh

H
hH

h
Hh SAIAIAQ −− −=                                4.3.3 

So that 

 2Q 111 v
hh

H
hH

h
Hh SAIAIA −− −≤                             4.3.4 

    We see that 2Q   depends on H
hH

h
Hh IAIA 11 −− −  and 1v

hhSA . For these two 

factors, we need the following definitions.  

Definition 4.3.1[1] smoothing property  

      S  has the smoothing property if there exist a constant sC and a 

function ( )1vη   independent of h  such that: 

         ( ) ( ) ∞→→−≤ 1for    01    where1
21 vvvhsC

v
hShA ηη                        4.3.5 

Definition 4.3.2[1] Approximation property  

      The approximation property holds if there exists a constant AC  

independent of h  such that: 

        211 hACH
hIHAh

HIhA ≤−−−                               4.3.6 
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       If these two properties hold, then it is easy to talk about the              

h -independent convergence of two-grid method. 

Theorem 4.3.1: h -independent two-grid rate of convergence 

      Let the smoothing property and approximation property hold then 

there exists a number v   independent of h  such that: 

2Q ( ) vvvCC As ≥∀<≤ 11  ,  1η                         4.3.7 

      

Proof: 

211
2

v
hh

H
hH

h
Hh SAIAIAQ −− −≤  

     

  Based on the previous results, we will study the convergence of 

multigrid method. 

4.4 Multigrid convergence  

         Convergence analysis of the two-grid method, can be generalized to a 

multigrid method. In this section, we assume that lll fuA =  is the linear 

system obtained from  discetization of a PDE on lΩ  

Definition 4.4.1[1] smoothing property 

        The smoothing iteration matrix kS has the smoothing property if there 

exist a constant sC  and a function ( )1vη  independent of kh such that: 

( ) ( ) ∞→→≤ −
111

2 for  0   ,1 vvvhCSA ks
v
kk ηη  
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Definition 4.4.2[1] approximation property  

        The approximation property holds if there exists a constant AC  

independent of kh  such that: 

211
11

1
kA

k
kk

k
kk hCIAIA ≤− −−

−−
−  

Lemma 4.4.1[1] 

         Let the smoothing property hold, and assume that there exists a 

constant pC  independent of k such that: 

 11
1

11   , −−
−

−− ∀≥ kkpk
k
k CI uuu                          4.4.1 

then: 

( ))0,(1 1
11

1
2 vQCSAIA kp

v
kk

k
kk +≤−−

−  

Proof: 

       It has been shown that if kS  has smoothing property, then the 

smoothing method is convergent. Hence we can choose 2v  such that 

11 <v
kS  

From equation 4.4.1 we get: 

 
( )

( ))0,(1                            

)0,(                           

                           

1

1

11
11

1

11
11

11
1

1

11

11

vQC

vQSC

SAIAIASC

SAIAICSAIA

kp

k
v
kp

v
kk

k
kk

k
kk

v
kp

v
kk

k
kk

k
kp

v
kk

k
kk

+<

−=

−−=

≤
−−

−−
−

−−
−−

−−
−

  

         The following inequality is necessary for the next theorem 
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 2   ,  , 1k1 ≥+≤≤ − kC k
γζζζζζ                          4.4.2 

Lemma 4.4.2[1]  

Assume .1>Cγ  if ( ) 1
11-~  ,2 −

−

=≤≥ γγ
γ
γζζγ C  then the solution 

 of inequality  4.4.2  is bounded by 1<≤ zkζ   where z is related to ζ   

by: 

γζ Czz −=          (*) 

and z satisfies: 

ζ
γ
γ

1−
≤z  

Proof: 

We have kk z≤ζ  , with kz  defined by: 

γζζ 11    and   −+== kk Czzz  

Since { }kz   is monotonically increasing, we have zzk < , with z the 

smallest solution of      consider ( ) γCzzzf −=   .  The maximum of 

)(zf  is reached in ( ) ζζζγ γ
~    .  ~)(  and  1 For1

1
≤=<== ∗

−
−

∗ zfCzz   

equation (*) has a solution 1<≤ ∗zz . 

 We have: 

zzzCzz
γ

γ
γ

ζ γ 11 −
=−≥−=  
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Then: 

ζ
γ
γ

1−
≤z  . 

           Theorem 4.4.1[1] rate of convergence of multigrid method 

    Let the smoothing property and approximation property hold 

assume 2≥γ   

let  

11
1

11   , −−
−

−− ∀≥ kkpk
k
k CI uuu  

and 

1111   , −−−− ∀≥ kkpk
k
k cI uuu  

 pp cC   and 1− independent of k. let ( )1,0~
∈ζ  be given. Then there is a number v~  

independent of k such that the iteration matrix )0,( 1vQ k    satisfies: 

vvvQk
~  if    1~)0,( 11 ≥<≤ ζ  

Proof:  

     In chapter three,  the iteration matrix of multigrid method was found as: 

( ) ( ) ( ) ( ) 12 11
11111 )0,(~)0,( v

kk
k
kkk

k
k

vk
kk SAIAQISvQvQ −−

−−−+= γ  

              With         

( ) ( ){ }( ) 12 11
111 )0,(~ v

kk
k
kk

k
k

v
kk SAIAIISvQ −−

−−−=   

Then we have 

( )11 )0,(~ vCCvQ ASk η≤    . 
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choosing a number ( )ζζ ~,0∈  with ( ) 1
11~
−
−−

= γγ
γ

γζ C   and a number v~  such that 

( ) vvvCC AS
~  , 11 ≥< ζη  and that: 

 γγ ζζζζζζ 11 )1( −− +≤++≤ kpkpk CCc  , with ppcCC 2=  and 

)0,( 1vQ k
k =ζ , then it follows that 

KkvQ k
k ,.....3,2           1

1
)0,( 1 =<

−
≤= ζ
γ
γζ  

If necessary 1v  is increased such that: ζ
γ

γζ ~1−
≤   

4.5 Computational results 

         In this section, we introduce some numerical results obtained by 

several researchers. Table 4.3 shows number of iterations and times for 

the defect reduction of factor 10-12 for different cycles and different 

restriction operator. It is obvious that )1 , 2(V with HW is the most 

efficient.  

Table 4.3[2]: V and W cycles 

HWFWCycle 
Time (msec) iterations Time (msec) iterations 

7310 167 1290 26 )1 , 0(V  
740 13 759 12 )1 , 1(V  
629 9 759 10 )1 , 2(V  
669 8 799 9 )2 , 2(V  

3780 34 2269 20 )1 , 0(W  
1379 10137910 )1 , 1(W  
1479 9 1450 9 )1 , 2(W  
1460 8 1469 8 )2 , 2(W  

Table 4.4 shows the infinite norm 
∞

− huu of the error for the FMG and 

V-cycles using different grids. It is clear that the FMG produces the least 

error. 
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Table 4.4[2]: Infinite error norm  
)1 , 1(V  )1 , 0(V     FMG Grid 

0.47E-50.26E-40.31E-5 32×32 
0.12E-5 0.83E-5 0.77E-6 64×64 
0.31E-6 0.27E-5 0.19E-6 128×128 
0.78E-7 0.87E-6 0.48E-7 256×256 

 
Table 4.5 shows the convergence factor obtained with damped Jacobi 
and FW for Poisson problem for different sweeps of presmoothing. The  
convergence factor when 

5
4

=ω   better than the convergence factor when  

2
1

=ω  . 

Table 4.5[2]: Convergence factor 

4=v 3=v2=v1=v   
0.137 0.216 0.36 0.6  

5
4

=ω 

0.316 0.422 0.563 0.75 
2
1

=ω 

 

Table 4.6 shows that the computer time is proportional to N where N is 

the number of grid points in each dimension. In other words, the 

computer time is of order N. this means that FMG is of order N.  

 Table 4.6[22]: FMG with GS as smoother 
  

Ratio  CPU time error grid 
 36s 0.00767841645 512×512 

4.1388889149s0.00381202826 1024×1024 
4.1342282 598s 0.00190166438 2048×2048 

        
 

4.6 Conclusion  

     Basic iterative methods such as the Jacobi, Gauss-Seidel ,  and the SOR 

methods are used to solve the linear system obtained from the discretization 
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of the PDE problem. For small linear systems, these methods are efficient 

but not for large systems. Jacobi and Gauss-Seidel methods (not the SOR) 

are efficient as smoothers. This means they are efficient in smoothing the 

error but not efficient in reducing it. Multigrid methods accelerate  basic 

iterative methods by making use of different grids and the smoothing 

property of some classical methods. Computational results from different 

sources, shows that multigrid methods are efficient in reducing smooth 

errors by using coarser grids. The rate of convergence of these methods is 

independent of the mesh size, a property that makes multigrid methods 

superior to classical iterative methods. 

The following table shows the order of different classical method, as well 

as, the order of multigrid methods which is linear in N, where N is the 

number of unknowns and ε  is a given stopping criterion (tolerance). 

Table 4.7[2]: Number of operations for different solvers for Poisson   

          problem in 2D  

Number  of operations Method 
O(N2) Gaussian elimination 

O(N2logε  ) Jacobi iteration 
O(N2 logε )Gauss-Seidel iteration 

O( 2
3

N logε )SOR 

O(N logε )Multigrid (iterative) 
O(N) Multigrid (FMG) 
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Appendix 

Matlab Code for multigrid methods: 

%MGLab V0.00beta   Interactive Multigrid Package 
 
% James Bordner and Faisal Saied 
% Department of Computer Science 
% University of Illinois at Urbana-Champaign 
% 10 April 1995 
 
   include_flags 
   include_globals 
   include_figs 
   demo_globals  
 
% Initialize parameter defaults 
 
   set_defaults; 
 
% == MAIN MENU ===================================== 
 
bgc = [0.9 0.9 1.0]; 
 
main_fig = figure('Position', main_position,... 
   'Name', 'MGLab',... 
   'NumberTitle', 'off', ... 
   'Color','black'); 
 
% == MGLab Menu Item ================================= 
 
f_mglab=menu_header(main_fig,'MGLab','on','on','w'); 
    menu_item(f_mglab,'Run', 'off','on',bgc,'[sol1,resids1,its1]=run;'); 
    menu_item(f_mglab,'Show Params','off','on',bgc,'show_params;'); 
    menu_item(f_mglab,'Version Info','off','on',bgc,'version_info;'); 
    menu_item(f_mglab,'Reset','off','on',bgc,'set_defaults;'); 
    menu_item(f_mglab,'Restart','off','on',bgc,'close(main_fig); close; 
MGLab'); 
    menu_item(f_mglab,'Quit','off','on',bgc,'close(main_fig); close'); 
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% == Problem Menu Item ================================= 
 
f_problem=menu_header(main_fig,'Problem','on','on','w'); 
 
   menu_item(f_problem,'Poisson','on','on',bgc,... 
      'problem_flag = POISSON;generate_matrix=1;'); 
   f_problem_1 = menu_item(f_problem,'Helmholtz', 'off','on',bgc,... 
      'problem_flag = HELMHOLTZ;generate_matrix=1;prob_args(1) = -
10;'); 
      f_problem_11=menu_header(f_problem_1,'k = ','on','on','w'); 
         menu_item(f_problem_11,'-10','off','on',bgc,... 
             'prob_args(1)=-10;'); 
         menu_item(f_problem_11,'-5','off','on',bgc,... 
             'prob_args(1)=-5;'); 
         menu_item(f_problem_11,'-1','off','on',bgc,... 
             'prob_args(1)=-1;'); 
         menu_item(f_problem_11,'0','off','on',bgc,... 
             'prob_args(1)=0;'); 
         menu_item(f_problem_11,'1','off','on',bgc,... 
             'prob_args(1)=1;'); 
         menu_item(f_problem_11,'5','off','on',bgc,... 
             'prob_args(1)=5;'); 
         menu_item(f_problem_11,'10','off','on',bgc,... 
             'prob_args(1)=10;'); 
         menu_item(f_problem_11,'10+ i','off','on',bgc,... 
             'prob_args(1)=10+sqrt(-1);'); 
   f_problem_2 = menu_item(f_problem,'Convection-Diffusion', 
'off','on',bgc,... 
      'problem_flag=CONVECT_DIFFUSE;generate_matrix=1;'); 
      f_problem_21=menu_header(f_problem_2,'Lambda = ','on','on','w'); 
         menu_item(f_problem_21,'0','off','on',bgc,... 
             'prob_args(1)=0;'); 
         menu_item(f_problem_21,'10','off','on',bgc,... 
             'prob_args(1)=10;'); 
         menu_item(f_problem_21,'100','off','on',bgc,... 
             'prob_args(1)=100;'); 
         menu_item(f_problem_21,'1000','off','on',bgc,... 
             'prob_args(1)=1000;'); 
      f_problem_22=menu_header(f_problem_2,'Sigma = ','on','on','w'); 
         menu_item(f_problem_22,'0','on','on',bgc,... 
             'prob_args(2)=0;'); 
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         menu_item(f_problem_22,'5','off','on',bgc,... 
             'prob_args(2)=5;'); 
         menu_item(f_problem_22,'10','off','on',bgc,... 
             'prob_args(2)=10;'); 
         menu_item(f_problem_22,'20','off','on',bgc,... 
             'prob_args(2)=20;'); 
         menu_item(f_problem_22,'50','off','on',bgc,... 
             'prob_args(2)=50;'); 
         menu_item(f_problem_22,'100','off','on',bgc,... 
             'prob_args(2)=100;'); 
         menu_item(f_problem_22,'-50','off','on',bgc,... 
             'prob_args(2)=-50;'); 
         menu_item(f_problem_22,'-100','off','on',bgc,... 
             'prob_args(2)=-100;'); 
   f_problem_3=menu_item(f_problem,'Cut Square', 'off','on',bgc,... 
      'problem_flag = CUT_SQUARE;generate_matrix=1;prob_args(1) = 
10;'); 
      f_problem_31=menu_header(f_problem_3,'Alpha = ','on','on','w'); 
         menu_item(f_problem_31,'0.001','off','on',bgc,... 
             'prob_args(1)=0.001;'); 
         menu_item(f_problem_31,'0.01','off','on',bgc,... 
             'prob_args(1)=0.01;'); 
         menu_item(f_problem_31,'0.1','off','on',bgc,... 
             'prob_args(1)=0.1;'); 
         menu_item(f_problem_31,'1','off','on',bgc,... 
             'prob_args(1)=1;'); 
         menu_item(f_problem_31,'10','off','on',bgc,... 
             'prob_args(1)=10;'); 
         menu_item(f_problem_31,'100','off','on',bgc,... 
             'prob_args(1)=100;'); 
         menu_item(f_problem_31,'1000','off','on',bgc,... 
             'prob_args(1)=1000;'); 
   menu_item(f_problem,'Poisson-Boltzmann', 'off','off',bgc,... 
      'problem_flag=POISSON_BOLTZMAN;generate_matrix=1;'); 
   f_problem_4=menu_header(f_problem,'Problem Size','off','on','w'); 
       menu_item(f_problem_4,'  7   ','off','on',bgc,... 
              [['nx1=7;ny1=7;generate_matrix=1;generate_rhs=1;']';... 
               ['coarse_level=min([coarse_level max_level(nx1)]);']']'); 
       menu_item(f_problem_4,' 15   ','off','on',bgc,... 
              [['nx1=15;ny1=15;generate_matrix=1;generate_rhs=1;']';... 
               ['coarse_level=min([coarse_level max_level(nx1)]);']']'); 



 
 

85

       menu_item(f_problem_4,' 31   ','off','on',bgc,... 
              [['nx1=31;ny1=31;generate_matrix=1;generate_rhs=1;']';... 
               ['coarse_level=min([coarse_level max_level(nx1)]);']']'); 
       menu_item(f_problem_4,' 63   ','off','on',bgc,... 
              [['nx1=63;ny1=63;generate_matrix=1;generate_rhs=1;']';... 
               ['coarse_level=min([coarse_level max_level(nx1)]);']']'); 
       menu_item(f_problem_4,'127   ','off','on',bgc,... 
              [['nx1=127;ny1=127;generate_matrix=1;generate_rhs=1;']';... 
               ['coarse_level=min([coarse_level max_level(nx1)]);']']'); 
       menu_item(f_problem_4,'255   ','off','on',bgc,... 
              [['nx1=255;ny1=255;generate_matrix=1;generate_rhs=1;']';... 
               ['coarse_level=min([coarse_level max_level(nx1)]);']']'); 
 
% == Solver Menu Item ================================== 
 
f_solver=menu_header(main_fig,'Solver','on','on','w'); 
 
   menu_item(f_solver,'V-Cycle','off','on',bgc,... 
       'solver_flag = VMG;'); 
   menu_item(f_solver,'PCG','off','on',bgc,... 
       'solver_flag = PCG;'); 
   menu_item(f_solver,'BiCG-STAB','off','on',bgc,... 
       'solver_flag = BICG_STAB;'); 
   menu_item(f_solver,'CGS','off','on',bgc,... 
       'solver_flag = CGS;'); 
   menu_item(f_solver,'TFQMR','off','off',bgc,... 
       'solver_flag = TFQMR;'); 
 
   f_solver_1=menu_item(f_solver,'GMRES(k)','off','on',bgc,... 
       'solver_flag = GMRES;'); 
      f_solver_11=menu_header(f_solver_1,'k = ','on','on','w'); 
         menu_item(f_solver_11,'1','off','on',bgc,'restart=1;'); 
         menu_item(f_solver_11,'5','off','on',bgc,'restart=5;'); 
         menu_item(f_solver_11,'10','off','on',bgc,'restart=10;'); 
         menu_item(f_solver_11,'15','off','on',bgc,'restart=15;'); 
         menu_item(f_solver_11,'20','off','on',bgc,'restart=20;'); 
 
   f_solver_2 = menu_item(f_solver,'SOR','off','on',bgc,... 
       'solver_flag = SOR;'); 
      f_solver_21=menu_header(f_solver_2,'omega = ','on','on','w'); 
         menu_item(f_solver_21,'1','off','on',bgc,'SOR_omega=1;'); 
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         menu_item(f_solver_21,'1.1','off','on',bgc,'SOR_omega=1.1;'); 
         menu_item(f_solver_21,'1.2','off','on',bgc,'SOR_omega=1.2;'); 
         menu_item(f_solver_21,'1.3','off','on',bgc,'SOR_omega=1.3;'); 
         menu_item(f_solver_21,'1.4','off','on',bgc,'SOR_omega=1.4;'); 
         menu_item(f_solver_21,'1.5','off','on',bgc,'SOR_omega=1.5;'); 
         menu_item(f_solver_21,'1.6','off','on',bgc,'SOR_omega=1.6;'); 
         menu_item(f_solver_21,'1.7','off','on',bgc,'SOR_omega=1.7;'); 
         menu_item(f_solver_21,'1.8','off','on',bgc,'SOR_omega=1.8;'); 
         menu_item(f_solver_21,'1.9','off','on',bgc,'SOR_omega=1.9;'); 
 
   menu_item(f_solver,'Full-Multigrid','on','on',bgc,... 
       'solver_flag = FMG;'); 
 
   f_solver_precon=menu_header(f_solver,'Preconditioner','on','on','w'); 
         menu_item(f_solver_precon,'V-Cycle','off','on',bgc,... 
             'precon_flag = MG_CYCLE;'); 
         menu_item(f_solver_precon,'Jacobi','off','on',bgc,... 
             'precon_flag = JACOBI;'); 
         menu_item(f_solver_precon,'Block-Jacobi','off','off',bgc,... 
             'precon_flag = BLOCK_JACOBI;'); 
         menu_item(f_solver_precon,'Gauss-Seidel','off','on',bgc,... 
             'precon_flag = GAUSS_SEIDEL;'); 
         menu_item(f_solver_precon,'ILU','off','off',bgc,... 
             'precon_flag = ILU'); 
         menu_item(f_solver_precon,'SSOR','off','off',bgc,... 
             'precon_flag = SSOR'); 
         menu_item(f_solver_precon,'None','off','on',bgc,... 
             'precon_flag = NONE;'); 
 
   f_solver_stop=menu_header(f_solver,'Stopping Criteria','off','on','w'); 
      f_stop_1=menu_header(f_solver_stop,'Residual 
Tolerance','on','off','w'); 
         menu_item(f_stop_1,'None','off','on',bgc,'rtol=0;'); 
         menu_item(f_stop_1,'1e-1','off','on',bgc,'rtol=1e-1;'); 
         menu_item(f_stop_1,'1e-2','off','on',bgc,'rtol=1e-2;'); 
         menu_item(f_stop_1,'1e-3','off','on',bgc,'rtol=1e-3;'); 
         menu_item(f_stop_1,'1e-4','off','on',bgc,'rtol=1e-4;'); 
         menu_item(f_stop_1,'1e-5','off','on',bgc,'rtol=1e-5;'); 
         menu_item(f_stop_1,'1e-6','off','on',bgc,'rtol=1e-6;'); 
         menu_item(f_stop_1,'1e-7','off','on',bgc,'rtol=1e-7;'); 
         menu_item(f_stop_1,'1e-8','off','on',bgc,'rtol=1e-8;'); 
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         menu_item(f_stop_1,'1e-9','off','on',bgc,'rtol=1e-9;'); 
         menu_item(f_stop_1,'1e-10','off','on',bgc,'rtol=1e-10;'); 
         menu_item(f_stop_1,'1e-12','off','on',bgc,'rtol=1e-12;'); 
         menu_item(f_stop_1,'1e-14','off','on',bgc,'rtol=1e-14;'); 
         menu_item(f_stop_1,'1e-16','off','on',bgc,'rtol=1e-16;'); 
      f_stop_2=menu_header(f_solver_stop,'(Precon)Residual Tolerance',... 
           'off','on','w'); 
         menu_item(f_stop_2,'None','off','on',bgc,'prtol=0;'); 
         menu_item(f_stop_2,'1e-1','off','on',bgc,'prtol=1e-1;'); 
         menu_item(f_stop_2,'1e-2','off','on',bgc,'prtol=1e-2;'); 
         menu_item(f_stop_2,'1e-3','off','on',bgc,'prtol=1e-3;'); 
         menu_item(f_stop_2,'1e-4','off','on',bgc,'prtol=1e-4;'); 
         menu_item(f_stop_2,'1e-5','off','on',bgc,'prtol=1e-5;'); 
         menu_item(f_stop_2,'1e-6','off','on',bgc,'prtol=1e-6;'); 
         menu_item(f_stop_2,'1e-7','off','on',bgc,'prtol=1e-7;'); 
         menu_item(f_stop_2,'1e-8','off','on',bgc,'prtol=1e-8;'); 
         menu_item(f_stop_2,'1e-9','off','on',bgc,'prtol=1e-9;'); 
         menu_item(f_stop_2,'1e-10','off','on',bgc,'prtol=1e-10;'); 
         menu_item(f_stop_2,'1e-12','off','on',bgc,'prtol=1e-12;'); 
         menu_item(f_stop_2,'1e-14','off','on',bgc,'prtol=1e-14;'); 
         menu_item(f_stop_2,'1e-16','off','on',bgc,'prtol=1e-16;'); 
 
      f_stop_3=menu_header(f_solver_stop,'Iteration Limit','off','on','w'); 
         menu_item(f_stop_3,' None','off','on',bgc,'max_it=0;'); 
         menu_item(f_stop_3,'    1','off','on',bgc,'max_it=1;'); 
         menu_item(f_stop_3,'    2','off','on',bgc,'max_it=2;'); 
         menu_item(f_stop_3,'    3','off','on',bgc,'max_it=3;'); 
         menu_item(f_stop_3,'    5','off','on',bgc,'max_it=5;'); 
         menu_item(f_stop_3,'   10','off','on',bgc,'max_it=10;'); 
         menu_item(f_stop_3,'   20','off','on',bgc,'max_it=20;'); 
         menu_item(f_stop_3,'   30','off','on',bgc,'max_it=30;'); 
         menu_item(f_stop_3,'   50','off','on',bgc,'max_it=50;'); 
         menu_item(f_stop_3,'  100','off','on',bgc,'max_it=100;'); 
         menu_item(f_stop_3,'  200','off','on',bgc,'max_it=200;'); 
         menu_item(f_stop_3,'  300','off','on',bgc,'max_it=300;'); 
         menu_item(f_stop_3,'  500','off','on',bgc,'max_it=500;'); 
         menu_item(f_stop_3,' 1000','off','on',bgc,'max_it=1000;'); 
      f_stop_4=menu_header(f_solver_stop,'Time Limit','off','off','w'); 
         menu_item(f_stop_4,'None','off','on',bgc,'max_time=0;'); 
         menu_item(f_stop_4,'1 sec','off','on',bgc,'max_time=1;'); 
         menu_item(f_stop_4,'5 sec','off','on',bgc,'max_time=5;'); 
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         menu_item(f_stop_4,'10 sec','off','on',bgc,'max_time=10;'); 
         menu_item(f_stop_4,'30 sec','off','on',bgc,'max_time=30;'); 
         menu_item(f_stop_4,'1 min','off','on',bgc,'max_time=1*60;'); 
         menu_item(f_stop_4,'5 min','off','on',bgc,'max_time=5*60;'); 
         menu_item(f_stop_4,'10 min','off','on',bgc,'max_time=10*60;'); 
         menu_item(f_stop_4,'30 min','off','on',bgc,'max_time=30*60;'); 
         menu_item(f_stop_4,'1 hour','off','on',bgc,'max_time=60*60;'); 
      f_stop_5=menu_header(f_solver_stop,'MFlop Limit','off','off','w'); 
         menu_item(f_stop_5,'None','off','on',bgc,'max_mflop=0;'); 
         menu_item(f_stop_5,'   1','off','on',bgc,'max_mflop=1;'); 
         menu_item(f_stop_5,'   5','off','on',bgc,'max_mflop=5;'); 
         menu_item(f_stop_5,'  10','off','on',bgc,'max_mflop=10;'); 
         menu_item(f_stop_5,'  20','off','on',bgc,'max_mflop=20;'); 
         menu_item(f_stop_5,'  50','off','on',bgc,'max_mflop=50;'); 
         menu_item(f_stop_5,' 100','off','on',bgc,'max_mflop=100;'); 
 
% == MG Parameters ================================== 
 
   f_solver_mg=menu_header(main_fig,'MG-Parameters','on','on','w'); 
      f_mg_1 = menu_header(f_solver_mg,'Number of Levels','on','on','w'); 
         menu_item(f_mg_1,'1','off','on',bgc,... 
            'coarse_level=min([1,max_level(nx1)]); generate_matrix=1;'); 
         menu_item(f_mg_1,'2','off','on',bgc,... 
            'coarse_level=min([2,max_level(nx1)]); generate_matrix=1;'); 
         menu_item(f_mg_1,'3','off','on',bgc,... 
            'coarse_level=min([3,max_level(nx1)]); generate_matrix=1;'); 
         menu_item(f_mg_1,'4','off','on',bgc,... 
            'coarse_level=min([4,max_level(nx1)]); generate_matrix=1;'); 
         menu_item(f_mg_1,'5','off','on',bgc,... 
            'coarse_level=min([5,max_level(nx1)]); generate_matrix=1;'); 
      f_mg_2=menu_header(f_solver_mg,'Smoother','off','on','w'); 
         f_mg_21=menu_item(f_mg_2,'Weighted Jacobi','on','on',bgc,... 
              'smooth_flag=WEIGHTED_JACOBI;'); 
           f_mg_211=menu_header(f_mg_21,'Weight = ','on','on','w'); 
              menu_item(f_mg_211,'1.00','off','on',bgc,'wt=1.0;'); 
              menu_item(f_mg_211,'0.95','off','on',bgc,'wt=0.95;'); 
              menu_item(f_mg_211,'0.90','off','on',bgc,'wt=0.90;'); 
              menu_item(f_mg_211,'0.85','off','on',bgc,'wt=0.85;'); 
              menu_item(f_mg_211,'0.80','off','on',bgc,'wt=0.80;'); 
         menu_item(f_mg_2, 'Gauss-Seidel','off','on',bgc,... 
              'smooth_flag=GAUSS_SEIDEL;'); 
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         menu_item(f_mg_2, 'Red/Black Gauss-Seidel','off','off',bgc,... 
              'smooth_flag=RB_GAUSS_SEIDEL;'); 
         f_mg_22=menu_header(f_mg_2,'Pre-smoothings','on','on','w'); 
            menu_item(f_mg_22,'0','off','on','w','nu1=0;'); 
            menu_item(f_mg_22,'1','off','on','w','nu1=1;'); 
            menu_item(f_mg_22,'2','off','on','w','nu1=2;'); 
            menu_item(f_mg_22,'3','off','on','w','nu1=3;'); 
            menu_item(f_mg_22,'4','off','on','w','nu1=4;'); 
            menu_item(f_mg_22,'5','off','on','w','nu1=5;'); 
         f_mg_23=menu_header(f_mg_2,'Post-smoothings','off','on','w'); 
            menu_item(f_mg_23,'0','off','on','w','nu2=0;'); 
            menu_item(f_mg_23,'1','off','on','w','nu2=1;'); 
            menu_item(f_mg_23,'2','off','on','w','nu2=2;'); 
            menu_item(f_mg_23,'3','off','on','w','nu2=3;'); 
            menu_item(f_mg_23,'4','off','on','w','nu2=4;'); 
            menu_item(f_mg_23,'5','off','on','w','nu2=5;'); 
 
      f_mg_3=menu_header(f_solver_mg,'Restriction','off','on','w'); 
         menu_item(f_mg_3, 'Injection','off','on',bgc,... 
            'restrict_flag=INJECTION;'); 
         menu_item(f_mg_3, 'Half Weighting','off','on',bgc,... 
            'restrict_flag=HALF_WEIGHTING;'); 
         menu_item(f_mg_3, 'Full Weighting','off','on',bgc,... 
            'restrict_flag=FULL_WEIGHTING;'); 
         menu_item(f_mg_3, 'Bilinear Adjoint','off','off',bgc,... 
            'restrict_flag=BILINEAR_ADJOINT;'); 
 
      f_mg_4=menu_header(f_solver_mg,'Prolongation','off','on','w'); 
         menu_item(f_mg_4, 'Linear','off','on',bgc,... 
            'interp_flag=LINEAR;'); 
         menu_item(f_mg_4, 'Cubic','off','on',bgc,... 
            'interp_flag=CUBIC;'); 
         menu_item(f_mg_4, 'Operator-based','off','off',bgc,... 
            'interp_flag=OPERATOR_BASED;'); 
         menu_item(f_mg_4, 'Explicit/Bilinear','off','off',bgc,... 
            'interp_flag=EXPLICIT_BILINEAR;'); 
 
      f_mg_5=menu_header(f_solver_mg,'Coarse-grid Solver','off','on','w'); 
         menu_item(f_mg_5,'Sparse GE','off','on',bgc,... 
            'coarse_solver_flag=DIRECT;'); 
         menu_item(f_mg_5,'Smoother','off','on',bgc,... 
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            'coarse_solver_flag=SMOOTHER;'); 
         menu_item(f_mg_5,'PCG','off','off',bgc,... 
            'coarse_solver_flag = PCG;'); 
         menu_item(f_mg_5,'BiCG-STAB','off','off',bgc,... 
            'coarse_solver_flag = BICG_STAB;'); 
         f_mg_51=menu_item(f_mg_5,'GMRES(k)','off','off',bgc,... 
             'coarse_solver_flag = GMRES;'); 
            f_mg_511=menu_header(f_mg_51,'k = ','on','on','w'); 
               menu_item(f_mg_511,'1','off','on',bgc,'restart=1;'); 
               menu_item(f_mg_511,'5','off','on',bgc,'restart=5;'); 
               menu_item(f_mg_511,'10','off','on',bgc,'restart=10;'); 
               menu_item(f_mg_511,'15','off','on',bgc,'restart=15;'); 
               menu_item(f_mg_511,'20','off','on',bgc,'restart=20;'); 
 
      f_mg_6=menu_header(f_solver_mg,'Coarse-grid 
Operator','off','on','w'); 
         menu_item(f_mg_6,'Standard 5pt','off','on',bgc,... 
            'coarsening_flag=STANDARD;'); 
         menu_item(f_mg_6,'Galerkin coarsening','off','off',bgc,... 
            'coarsening_flag=GALERKIN;'); 
         menu_item(f_mg_6,'Coeff. Averaging','off','off',bgc,... 
            'coarsening_flag = AVERAGING;'); 
 
      f_mg_7=menu_header(f_solver_mg,'MG Cycle','off','on','w'); 
         menu_item(f_mg_7,'V-Cycle','off','on',bgc,... 
            'cycle_flag=V_CYCLE;'); 
         menu_item(f_mg_7,'W-Cycle','off','on',bgc,... 
            'cycle_flag=W_CYCLE;'); 
         menu_item(f_mg_7,'Half V-Cycle','off','off',bgc,... 
            'cycle_flag=HALF_V_CYCLE;'); 
 
% == Results Menu Item ================================== 
 
f_results=menu_header(main_fig,'Visualize','on','on','w'); 
 
   menu_item(f_results,'Convergence History','off','on',bgc,... 
      ' subplot(1,1,1);semilogy(its1,resids1,''r-'',its1,resids1,''wo'')'); 
   menu_item(f_results,'Computed Solution (surf)','off','on',bgc,... 
      ' subplot(1,1,1);surf(reshape(sol1,nx1,ny1));shading interp;'); 
   menu_item(f_results,'Computed Solution (pcolor)','off','on',bgc,... 
      ' subplot(1,1,1);pcolor(reshape(sol1,nx1,ny1));shading interp;'); 
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   f_results_1=menu_header(f_results,'X-Axis','off','on','w'); 
       menu_item(f_results_1,'Iterations','off','on',bgc,... 
          'x_axis_flag=ITERATIONS;'); 
       menu_item(f_results_1,'Time','off','off',bgc,... 
          'x_axis_flag=TIME;'); 
       menu_item(f_results_1,'MFlops','off','off',bgc,... 
          'x_axis_flag=MFLOPS;'); 
   f_results_2=menu_header(f_results,'Y-Axis','off','on','w'); 
       menu_item(f_results_2,'Residual','off','on',bgc,... 
          'y_axis_flag=ITERATIONS;'); 
       menu_item(f_results_2,'Precon. Residual','off','off',bgc,... 
          'y_axis_flag=RESIDUAL;'); 
       menu_item(f_results_2,'MFlops','off','off',bgc,... 
          'y_axis_flag=PRECON_RESIDUAL;'); 
       
f_demos=menu_header(main_fig,'Demos','on','on','w'); 
   menu_item(f_demos,'Smoothers','off','on',bgc,'demo1;'); 
   menu_item(f_demos,'Fourier analysis','off','on',bgc,'demo2;'); 
   menu_item(f_demos,'Truncation error','off','on',bgc,'demo3;'); 
%MG_CYCLE Multigrid cycle algorithm 
% 
%       U_OUT = MG_CYCLE(LEVEL, B, U_IN) uses the multigrid cycle 
defined 
%       by the global variable "cycle_flag" to recursively solve the linear  
%       system AX=B at the given level.  If the optional starting value U_IN  
%       is not passed then U_IN is set to 0's. 
% 
%       Accesses global variables in "include_flags" 
 
% James Bordner and Faisal Saied 
% Department of Computer Science 
% University of Illinois at Urbana-Champaign 
% 10 April 1995 
 
function u_out = mg_cycle(level, b, u_in) 
 
include_flags 
 
% Use the zero vector for u_in as the default 
 
if nargin == 2,    
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   u_in = zeros(size(b)); 
end 
 
if (cycle_flag == V_CYCLE) 
    u_out = vmg_cycle(level, b, u_in); 
elseif (cycle_flag == W_CYCLE) 
    u_out = wmg_cycle(level, b, u_in); 
elseif (cycle_flag == HALF_V_CYCLE) 
    u_out = halfvmg_cycle(level, b, u_in); 
end 
%RESIDUAL Compute the residual at the given level. 
% 
%       R = RESIDUAL(LEVEL, B, U) returns the residual R of the system 
%       AU=B at the given grid level. 
% 
%       Accesses global variables in "include_globals" 
 
% James Bordner and Faisal Saied 
% Department of Computer Science 
% University of Illinois at Urbana-Champaign 
% 10 April 1995 
 
function   r = residual(level, b, u) 
 
include_globals  
 
eval(['r = b - A', num2str(level), ' * u;']); 
%RESTRICT Transfer residual from the current grid to the next coarser 
grid. 
% 
%       RHS_C = RESTRICT(LEVEL,R) uses the restriction scheme 
defined by  
%       "restrict_flag" to transfer the vector R on the current level LEVEL  
%       to the vector RHS_C on the next coarser level LEVEL+1. 
% 
%       Accesses global variables in "include_flags" 
%       Accesses global variables in "include_globals" 
 
% James Bordner and Faisal Saied 
% Department of Computer Science 
% University of Illinois at Urbana-Champaign 
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% 10 April 1995 
 
function rhs_c = restrict(level,r) 
include_globals  
extract_globals 
include_flags  
 
%  2-D RESTRICTIONS 
 
   nx0_f = nx_f+2; 
   ny0_f = ny_f+2; 
   N0_f = nx0_f*ny0_f; 
   dx=1; 
   dy=nx0_f; 
 
%  Generate r0 by padding r with boundary elements (0's) 
 
   r0 = zeros(N0_f,1); 
   for iy=1:ny_f 
   for ix=1:nx_f 
       r0(nx0_f+1 + ix + nx0_f*(iy-1)) = r(ix+nx_f*(iy-1)); 
   end 
   end 
 
%  Generate indicies of corresponding coarse vector elements in fine vector 
 
   I = zeros(N_c,1); 
   for iy=1:ny_c 
   for ix=1:nx_c 
       I(ix + nx_c*(iy-1)) = 2*ix + 2*iy*nx0_f + 1; 
   end 
   end 
 
if restrict_flag == INJECTION 
 
   rhs_c = r0(I); 
 
elseif restrict_flag == HALF_WEIGHTING 
 
   rhs_c = .5*r0(I) + ... 
          .125*(r0(I+dx) + r0(I-dx) + r0(I+dy) + r0(I-dy)); 
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elseif restrict_flag == FULL_WEIGHTING 
   rhs_c = .25*r0(I) + ... 
          .125*(r0(I+dx) + r0(I-dx) + r0(I+dy) + r0(I-dy)) + ... 
          .0625*(r0(I+dx+dy) + r0(I-dx+dy) + r0(I+dx-dy) + r0(I-dx-dy)); 
 
elseif restrict_flag == BILINEAR_ADJOINT 
 
   eval(['PROLONG = ARRAY',num2str(level), ';']); 
   rhs_c = PROLONG' * r; 
 
end 
 
rhs_c = 4*rhs_c; 
 
%SMOOTH Smooth a vector. 
% 
%       U_OUT = SMOOTH(LEVEL, B, U, FLAG) applies a smoother 
defined by the 
%       global flag "smooth_flag" and the system AU=B to the vector U on 
the  
%       given grid level.  FLAG is set to 'pre', 'post', or 'coarse' and 
%       defines the number of smoothings applied.  
% 
%       Accesses global variables in "include_globals" 
%       Accesses global variables in "include_flags" 
 
% James Bordner and Faisal Saied 
% Department of Computer Science 
% University of Illinois at Urbana-Champaign 
% 10 April 1995 
 
function   u_out = smooth(level, b, u, flag) 
 
include_globals  
include_flags  
 
if strcmp(flag, 'pre') == 1 
   nu = nu1; 
elseif  strcmp(flag, 'post') == 1 
   nu = nu2; 
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elseif strcmp(flag, 'coarse') == 1 
   nu = 30; 
end 
 
eval(['A = A',num2str(level),';']); 
 
if smooth_flag == WEIGHTED_JACOBI 
 
   D = wt * (1./spdiags(A,[0])); 
   for i = 1:nu 
       u = u + D.*(b - A*u); 
   end 
 
elseif smooth_flag == GAUSS_SEIDEL 
 
   L = tril(A); 
   for i = 1:nu 
       u = u + L\(b - A*u); 
   end 
 
elseif smooth_flag == RB_GAUSS_SEIDEL 
 
   eval(['N = N',num2str(level),';']);    
   red = [1:2:N]; black = [2:2:N]; 
   D = 1./spdiags(A,[0]); 
 
   for i = 1:nu 
      u(red)   = (b(red) - A(red,black) * u(black)) .* D(red); 
      u(black) = (b(black) - A(black,red) * u(red)) .* D(black); 
   end 
 
end 
 
u_out = u; 
 
%SOLVE  Solve a linear system. 
% 
%[X,RESIDS,ITS]= 
SOLVE(A,B,X0,RTOL,PRTOL,MAX_IT,MAX_TIME,MAX_MFLOP,... 
%       RESTART) applies a solver defined by "solver_flag", with the given 
%       tolerances and limits, to a linear system AX=B.  The solution X,  
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%       residual history RESIDS, and iterations ITS are returned. 
%       Accesses global variables in "include_flags" 
 
% James Bordner and Faisal Saied 
% Department of Computer Science 
% University of Illinois at Urbana-Champaign 
% 10 April 1995 
 
function [x,resids,its] = solve(A,b,x0,... 
    rtol,prtol,max_it,max_time,max_mflop,restart) 
 
include_flags  
 
disp (sprintf('Running...\n')); 
if solver_flag == VMG 
    [x,resids,its] = vmg (A,b,x0,rtol,prtol,max_it,max_time,max_mflop); 
elseif solver_flag == FMG 
    [x,resids,its] = fmg (A,b); 
elseif solver_flag == PCG 
    [x,resids,its] = pcg (A,b,x0,rtol,prtol,max_it,max_time,max_mflop); 
elseif solver_flag == BICG_STAB 
    [x,resids,its] = pbicgstab 
(A,b,x0,rtol,prtol,max_it,max_time,max_mflop); 
elseif solver_flag == CGS 
    [x,resids,its] = pcgs (A,b,x0,rtol,prtol,max_it,max_time,max_mflop); 
elseif solver_flag == GMRES 
    [x,resids,its] = pgmres 
(A,b,x0,rtol,prtol,max_it,max_time,max_mflop,restart); 
elseif solver_flag == SOR 
    [x,resids,its] = sor (A,b,x0,rtol,prtol,max_it,max_time,max_mflop); 
end 
 
fprintf('Relative residual = %g \n', norm(b-A*x)) 
disp (sprintf('Done.\n')); 
%VMG_CYCLE V-Cycle algorithm. 
% B,  
%       U_OUT = VMG_CYCLE(LEVEL,U_IN) uses the V-cycle to 
recursively  
%       solve the linear system AX=B at the given level.  If the optional  
%       starting value U_IN is not passed then U_IN is set to 0's. 
% 
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% James Bordner and Faisal Saied 
% Department of Computer Science 
% University of Illinois at Urbana-Champaign 
% 10 April 1995 
 
function u_out = vmg_cycle(level, b, u_in) 
 
% Use the zero vector for u_in as the default 
 
if nargin == 2,    
   u_in = zeros(size(b)); 
end 
 
if level == coarsest(level) 
   u_out   = coarse_grid_solve(level, b); 
else  
   u       = smooth(level, b, u_in, 'pre'); 
   r       = residual(level, b, u); 
   b_c     = restrict(level, r); 
   u_c     = vmg_cycle(level+1, b_c); 
   correct = interpolate(level, u_c); 
   u       = u + correct; 
   u_out   = smooth(level, b, u, 'post'); 
end 
%WMG_CYCLE W-Cycle algorithm. 
% 
%       U_OUT = WMG_CYCLE(LEVEL, B, U_IN) uses the W-cycle to 
recursively  
%       solve the linear system AX=B at the given level.  If the optional  
%       starting value U_IN is not passed then U_IN is set to 0's. 
% 
 
% James Bordner and Faisal Saied 
% Department of Computer Science 
% University of Illinois at Urbana-Champaign 
% 10 April 1995 
 
function u_out = wmg_cycle(level, b, u_in) 
% Use the zero vector for u_in as the default 
 
if nargin == 2,    
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   u_in = zeros(size(b)); 
end 
 
if level == coarsest(level) 
   u_out   = coarse_grid_solve(level, b); 
else  
   u       = smooth(level, b, u_in, 'pre'); 
   r       = residual(level, b, u); 
   b_c     = restrict(level, r); 
   u_c     = wmg_cycle(level+1, b_c); 
   if (level < coarsest(level)), 
       u_c     = wmg_cycle(level+1, b_c, u_c); 
   end 
   correct = interpolate(level, u_c); 
   u       = u + correct; 
   u_out   = smooth(level, b, u, 'post'); 
end
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  الملخص

  

.  زئية تظهر في الأنظمة الرياضية التي تصف الظواهر الطبيعيةالمعادلات التفاضلية الج      

في هذه الاطروحة ستتم مراجعة عامة . طرق مختلفة يمكن استعمالها لحل مثل هذه المعادلات

الطرق التقليدية المستخدمة هي . للطرق التقليدية وكذلك الطرق المتعددة الشبكات الأحدث 

- طريقة جاكوبي وطريقة جاوس.  SORطريقة سايدل و -طريقة جاكوبي وطريقة جاوس

سايدل تعتبر جيدة في تنعيم الخطأ ولكن ليس في تصغيره، صفة التنعيم حفزت العمل على 

  .الطرق متعددة الشبكات

هذه الدراسة بينت ان . معادلة بواسون في البعدين الاول والثاني استخدمت كنموذج لهذه الدراسة

هذه الخاصية جعلت الطرق متعددة . مد على البعد بين النقاطسرعة التقارب لهذه الطرق لا تعت

  .الشبكات مسَرع جيد للطرق التقليدية

 
 




