
An-Najah National University
Faculty of Graduate Studies

Multigrid Methods for Elliptic Partial Differential
Equations

By
Rania Taleb Mohammad Wannan

Supervisor
Dr. Anwar Saleh

Submitted in Partial Fulfillment of the Requirements for the Degree
of Master in Science in Mathematics, Faculty of Graduate Studies, at
An- Najah National University, Nablus, Palestine.

2010

III

Dedication

I dedicate this thesis to my parents and my husband Khalid, without
their patience, understanding, support and most of all love, this work

would not have been possible.

IV

Acknowledgement

 I am heartily thankful to my supervisor, Dr. Anwar Saleh, whose

encouragement, guidance and support from the initial to the final level

enabled me to develop and understanding the subject.

 My thanks and appreciation goes to my thesis committee members Dr.

Saed Mallak and Dr. Samir Matar for their encouragement, support,

interest and valuable hints.

I acknowledge An-Najah National University for supporting this work,

and I wish to pay my great appreciation to all respected teachers and

staff in department of mathematics.

Lastly, I offer my regards and blessings to all of those who supported

me in any respect during the completion of this thesis.

V

 قـرارإ

 :مقدم الرسالة التي تحمل العنوان أدناهالموقع أنا
Multigrid Methods for Elliptic Partial Differential

Equations

 الإشـارة هي نتاج جهدي الخاص، باستثناء ما تمـت إنمااقر بأن ما اشتملت عليه هذه الرسالة

 أودرجة علمية أيةجزء منها لم يقدم من قبل لنيل أي أوحيثما ورد، وأن هذه الرسالة ككل، إليه

 .أخرىبحثية أوية مؤسسة تعليم أيةبحثي لدى أوبحث علمي

Declaration

The work provided in this thesis, unless otherwise referenced, is the

researcher’s own work, and has not been submitted elsewhere for any other

degree or qualification.

Student's name: :اسم الطالب

Signature: :التوقيع

Date: :التاريخ

VI

Table of Contents

Contents page

Dedication III

Acknowledgement IV

Declaration V

Table of Contents VI

List of Tables IX

Abstract X

Chapter one: 1

Introduction 2

1.1 Discretization 3

1.2 A Brief history of multigrid 7

1.3 Grid structure 8

1.4 Stencil notation 10

Chapter two: 13

Classical iterative methods 14

2.1 Introduction 14

VII

Contents page

2.2 Basic iterative methods 17

2.3 Convergence of basic iterative methods 21

Chapter three: 29

Multigrid methods 30

3.1 Introduction 30

3.2 Two-grid methods 31

3.3 Moving between grids: restriction and prolongation 35

3.3.1 Restriction 36

3.3.2 Prolongation 40

3.4 The multigrid cycle 43

3.5 The full multigrid methods 46

3.6 Multigrid iteration operator 48

Chapter four: 52

Convergence analysis 53

4.1 Introduction 53

4.2 Smoothing analysis 53

VIII

4.2.1 Smoothing property 57

Contents page

4.2.2 Local Fourier analysis 62

4.3 Convergence analysis of two-grid method 71

4.4 Multigrid convergence 73

4.5 Computational results 77

4.6 Conclusion 78

References 80

 ب ملخص باللغة العربية

IX

List of Tables

Table Title Page

4.1 Approximate computer time. 56

4.2 Smoothing factor. 71

4.3 V and W cycles. 78

4.4 Infinite error norm. 79

4.5 Convergence factor. 79

4.6 FMG with GS as smoother. 79

4.7 Number of operations for different solvers for Poisson
problem in 2D.

80

X

Multigrid methods for Elliptic Partial Differential Equations
By

Rania Taleb Mohammad Wannan
Supervisor

Dr. Anwar Saleh

Abstract

Partial differential equations appear in mathematical models that

describe natural phenomena. Various methods can be used for solving such

equations. In this thesis, an overview of classical iterative methods, as well

as, the most recent multigrid methods is given. The classical iterative

methods used are; the Jacobi, the Gauss-Seidel, and the SOR methods.

Jacobi and Gauss-Seidel methods are efficient in smoothing the error but

not in reducing it. The smoothing property of some classical methods

motivated the work done on multigrid methods. Poisson's problem in one

and two dimensions has been used as model problem in the study of

multigrid methods. The study shows that the rate of convergence of

multigrid methods does not depend on the mesh size, a feature that makes

multigrid methods good accelerator of classical methods like Gauss-Seidel.

1

Chapter one

Introduction

1.1 Discretization

1.2 A Brief history of multigrid

1.3 Grid structure

1.4 Stencil notation

2

Chapter 1

Introduction

 Many physical problems, such as fluid flow problems, are

represented by mathematical models that consist of Partial Differential

Equation (PDE) or system of PDE's together with a set of boundary

conditions. In most cases, such PDE's are of order two. Linear second-order

PDE's are classified in three categories: parabolic, hyperbolic, and elliptic.

The general second-order linear PDE in two independent variables x and y

can be written as:

GFuEuDuCuBuAu yxyyxyxx =+++++

 where ,,,,,, FEDCBA and G are given functions of x and y . This

equation is said to be parabolic if 042 =− ACB , hyperbolic if 042 >− ACB

and elliptic if 042 <− ACB . For example, in one dimension, the diffusion

equation; 0=− xxt kuu is parabolic. The wave equation; 02 =− xxtt ucu is

hyperbolic, while Laplace's equation in two dimensions; 0=+ yyxx uu is

elliptic. The PDE is incomplete without boundary and initial conditions.

There are three types of boundary conditions:

• Dirichlet boundary conditions where the solution is specified at the

boundaries.

3

• Neumann boundary conditions where the normal derivative at the

boundaries is given.

• Robin boundary conditions where the solution and its normal

derivative is given in a mixed way.

In this thesis, only the Dirichlet boundary conditions are considered.

Exact (continuous) solutions of such models are not always available. In

fact, for some models, it is not known whether an analytic solution exists or

not. For this reason, approximate solutions are needed. Elliptic boundary

value problems are the type of the problems to which multigrid methods

can be applied very efficiently. Other examples of successful applications

are parabolic problems, hyperbolic problems, optimization problems.

In this thesis, multigrid methods based on finite difference discritization is

considered. First, the problem is discretized leading to a system of linear

equations if the PDE is linear and a system of nonlinear equations if the

PDE is nonlinear. Then the algebraic system is solved using the most

efficient techniques. The result is the discrete solution of the boundary

value problem.

1.1 Discretization

 There are several methods to discretize a PDE some of these

methods are the finite difference methods and the finite element methods.

The finite difference is simple and is the most popular when the boundaries

4

are rectangular such as in numerical wheather prediction. Finite element

methods, are most popular when the boundaries are irregular or moving

like in simulation of the forces acting on an airplane or in a car accident.

 Suppose that u is the exact solution of the elliptic PDE with

independent variables x and y , where dyc , ≤≤≤≤ bxa , and we need to

find the approximate solution. First, we discretize the PDE. Choosing

integers n and m , and define step sizes 1 n
abh −

= and
m

cdh −
=2 .

Partitioning the interval []ba, into n equal subintervals each of width 1h and

the interval []dc, into m equal subintervals of width 2h as in Figure1.1. The

result is a grid on the rectangle [] []dcba ,, × obtained by drawing vertical and

horizontal lines through the points with coordinates ()ji yx , where:

 niihaxi ,...,1,0,1 =+= .

and mjjhcy j ,...,1,0,2 =+= .

 The lines ixx = and jyy = are called grid lines, and their intersections

are called grid points (mesh points). Numerical differentiation formulas are

used to replace the derivatives in the elliptic PDE, converting the elliptic

Linear
Continuous

Problem

Discretization
(finite difference)

Linear
System

5

PDE into an algebraic equation for each grid point. For simplicity, we use

the following second-order centered-difference formulas:

 h
uu

x
u jiji

2
11 −+ −

≈
∂
∂

2

2

x
u

∂
∂

≈ 2
11 2

h
uuu jiijji −+ +−

 Similarly, for other derivatives.

 y

Figure1.1

Example 1.1

 Consider the Poisson equation:

1=+ yyxx uu

 In the square region [] []1,11,1 −×−=Ω with boundary condition,

Ω∂∈∀=),(,0),(yxyxu . Using second–order formulas for the derivatives

with 5.021 == hh , give the difference equation:

25.011141 =−+++−+−+ ijuijujiuijujiu , 1≤ i , j ≤ 3

x
0xa = nxb =1x

0yc =

myd =

1y

...

. . . .

.

.

.

6

 The linear system associated with this problem has the form

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

33

32

31

23

22

21

13

12

11

u
u
u
u
u
u
u
u
u

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0

.

 Several solution methods can be used to solve the linear system resulted

from the discretization process. Direct methods such as Gaussian

elimination can be used, other more efficient direct methods also can be

used. In real problems, The systems are very large systems , and the direct

methods become inefficient, since they lead to the formation of

intermediate matrices, making the number of arithmetic operations

necessary for the solution too large. For this reason, iterative methods are

used for solving such systems. Several classical iterative methods exist.

Some of such methods are:

• Jacobi method.

• Gauss-Seidel method.

• Successive over relaxation (SOR) method.

Iterative methods begin with an initial approximation of the solution,

and generate a sequence of approximations assumed to converge to the

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

−
−

−

410100000
141010000
014001000
100410100
010141010
001014001
000100410
000010141
000001014

7

exact solution. The error in such approximations is the result of machine

(rounding) error and the number of iterations used. Classical iterative

methods are easy to implement and may be successfully applied to more

general systems than most direct methods. However, iterative methods

suffer some limitations. They are characterized by slow error reduction, but

they provide rapid damping, leaving smooth error. For this reason, these

methods are called smoothers. Multigrid methods have been developed

through attempts to overcome these limitations. They use these classical

methods as smoothers.

1.2 A Brief History of Multigrid Methods

 First studies investigating multigrid methods are given by Fedorenko

from 1962 to 1964, who developed the first multigrid scheme of the

Poisson equation in a unit square. His work was generalized to the general

linear elliptic PDE with variable smooth coefficients by Bachvalov in 1966.

The actual efficiency of multigrid methods was reported in a paper by

Brandt in 1973, who presented another paper in 1977, clearly outlining the

main principles and practical utility of multigrid methods. Brandt's work

drew attention and marked the beginning of rapid development. During

1975 and 1976, Hackbusch developed the fundamental elements of

multigrid methods, Hackbusch's first systematic report in 1976 contained

many theoretical and practical investigations, which were taken up and

8

developed further by several authors. Since the early 1980s, the field of

multigrid extended and many researchers have contributed to this field.

Two series of conferences dedicated to multigrid methods were set up: the

European Multigrid Conference (EMG) held at Cologne in 1981 and 1985,

Bonn in 1991, Amsterdam in 1993, Stuttgart in 1996 and Ghent in 1999. In

the US, the Copper Mountain Conferences on Multigrid is held every two

year since 1983. An essential contribution to development of the multigrid

community is the MGNET website maintained by Craig C. Douglas:

http://www.mgnet.org , this is a large communication platform and a

resource on everything related to multigrid methods.

 1.3 Grid structure

While, classical iterative methods use a single grid, multigrid

methods use more than one grid. In one dimension, let []ba,=Ω be a

domain. A grid hΩ is defined by:

 []
⎭
⎬
⎫

⎩
⎨
⎧ −

==+=∈=Ω
n

abhniihaxbaxh ,,...1,0,:, 1.3.1

Figure 1.2

Domains in two dimensions may be rectangular, circular, or

irregular. And the grid may be Cartesian grid, boundary-fitted curvilinear

grid. However, only Cartesian grids will be considered.

………… x=b

9

In this thesis, only rectangular domains with Cartesian grid are

considered.

 (a) (b) (c)

 Figure1.3 (a) Cartesian grid on rectangular domain
 (b) Cartesian grid on irregular domain

(c) boundary-fitted curvilinear grid

 If [] []dcba ,, ×=Ω is rectangular domain then the grid is:

(){
⎭
⎬
⎫−

=
−

=+=+=Ω∈=Ω
m

cdh
n

abhjhcyihaxyxkh 2121, ,.,:, 1.3.2

Consider hΩ as in equation 1.3.1. A coarser grid can be obtained by

deleting all grid points with odd index i , then we obtain:

[]
⎭
⎬
⎫

⎩
⎨
⎧ ==+=∈=Ω

2
,....1,0,2,:, nihHiHaxbaxH .

The number of subintervals n need to be divisible by 2 . HΩ is called

coarse grid, and hΩ is called fine grid and the process is called coarsening.

Coarsening can be done in a different way, by deleting every other grid

point or reducing subintervals by 0.5. However, dividing by two is the most

popular. Coarser grids
lhΩ , kl ,...,0= , can be obtained by repeating the

process taking into account that the member of subintervals n must be in

10

the form k2 . The coarsest grid is 0hΩ , and the finest grid
khΩ . For simplicity

we replace lh by l .

 2Ω

 1Ω

 0Ω

Figure 1.4 coarsening with n=8 at finest grid

 In two dimensions the coarse grid is:

()
⎭
⎬
⎫

⎩
⎨
⎧ ==+=+=Ω∈=Ω

2
,...1,0,

2
,...1,0,2H,1:,,

mjnijcyiHaxyxKH

n, m are in power of two, 222,121 hHhH ==

Figure 1.5 coarsening with n=m=4 in the finer grid

1.4 Stencil notation

 Using stencil notation is important in describing the moving

between grids operators which will be studied later.

11

Let ℜ→Ωhhu : , be a grid function. We can define an operator on the

set of grid function by:

[] () ()∑ +=
k

hkhhk khxusxuS , where [] [].... 101 sssS hk −=

 is the stencil.

In two dimension, the stencil is:

 []

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−

−

−

.......

.......

....

....

....

.......

.......

1,11,01,1

0,10,00,1

1,11,01,1

,,
2121

sss
sss
sss

S
hhkk

 And the operator on the set of grid function is defined by :

[] () ()
()
∑ ++=

21

21212121
,

2211,,,, ,,
kk

kkhhhhkk hkyhkxusyxuS

Assume that the only finite number of coefficients
21 ,kks are nonzero.

Many of the stencils considered are five-point or compact nine-point

stencils.

h
s

sss
s

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

1,0

0,10,00,1

1,0

h
sss
sss
sss

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−

−

−

1,11,01,1

0,10,00,1

1,11,01,1

 Five-point stencil. Compact nine-point stencil

Near the boundary points the stencils may have to be modified on the

domain. In Figure (1.6 a) the point is at the west boundary, so it is known.

12

The modified five point stencil is []
h

hkk

s
ss

s
S

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−1,0

0,10,0

1,0

, 0
21

. In Figure (1.6 b),

the five point stencil for the northwest corner can be modified as

[]
h

hkk

s
ssS

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−1,0

0,10,0, 0
0

21
.

 (a) (b)

Figure 1.6

13

Chapter two

Classical Iterative Methods

2.1 Introduction

2.2 Classical iterative methods

2.3 Convergence of classical iterative methods

14

Chapter 2

Classical Iterative Methods

2.1 Introduction

Direct methods for the linear system proceed through a finite number

of steps and produce the exact solution to the level of rounding error. An

iterative method starts with an initial approximation and produces a

sequence of approximations (vectors) of the solution that is supposed to

converge to the exact solution. The error in the approximate solution is due

to the machine (rounding error) and to the number of terms in the sequence

(iterations) used.

For large linear systems iterative methods often have advantages

over direct methods in terms of speed and demands on computer memory.

Accuracy is proportional to the number of iterations. When the sequence is

convergent, iterations will suffice to produce an acceptable solution. This

means higher accuracy needs more iterations. The number of iterations

needed for a specific accuracy depends on the speed of convergence of the

method. Another advantage of the classical iterative methods is that they

are usually stable, and they will damp errors as process continues.

15

Classical iterative methods have the disadvantage, of smoothing errors.

After few iterations, the error become smooth. and the result is slower

convergence.

 Consider the linear system:

fu =A 2.1.1

We will use),.......,,(21 nuuu=u to denote to the exact solution of this system,

and),.......,,(21 nvvv=v to denote the approximation of the exact solution.

Definition 2.1.2:

 Let v be the approximation of the exact solution u of the linear system

fu =A .The error in v is:

 e = u – v 2.1.2

The residual is:

r = f – Av 2.1.3

As a result:

 r = Ae .

These two measures can be computed by any standard vector norm.

16

Definition 2.1.2[11] vector norm:

 Let nℜ be a real vector space. A function ℜ→ℜn:. with the

properties:

0. 0≥u

1. 0=u if and only if 0u =

2. uu αα = for any real scalar α

3. vuvu +≤+

For all nℜ∈vu, , is called a vector norm. The most common norms are

pn

i

p
ip u

1

1
|||| ⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

u , ∞<≤ p1 called the p-norm. If ∞=p then

ini
u

≤≤∞
=

1
maxu is called infinite norm. For 2=p , the norm is called the

Euclidean norm.

 An iterative method generate a sequence of approximations

∞
=0}{ m

mu using the iteration:

Cuu +=+ mm T1 2.1.4

where mu is the approximation solution after m iterations and T is

called the iteration matrix of the iterative method. Different iterative

methods have different iteration matrices. Convergence of an iterative

method depends on the iteration matrix T for the method.

17

2.2 Basic iterative methods

 We will consider the following three most popular classical

iterative methods:

 - Jacobi method

 - Gauss-Seidel method

 - SOR method

 Consider the linear system fu =A . If we can split A as NMA −=

with M nonsingular, then the linear system is:

fu =−)(NM

fuu += NM

and the iterative method is:

fuu +=+ mm NM 1 ,..1,0=m

so

 Cuu +=+ mm T1 ,..1,0=m 2.2.1

where NMT 1−= and fC 1−= M .

 Now, consider the splitting ULDA −−= where D denotes the

diagonal part of the matrix A . The matrices UL and −− are strictly lower

and upper parts of A , respectively. Based on this splitting, many choices for

M and N are possible leading to different iterative methods.

 Jacobi iterative method uses the splitting ULNDM +== and , . The

iteration is given by:

18

 () fuu 111 −+⎥⎦
⎤

⎢⎣
⎡ +−=+ DmULDm ..2,1,0=m 2.2.2

 j
m

jT Cu +=

 This is the matrix form of the Jacobi method, where the iteration matrix

of Jacobi method is:

)(1 ULDTj += −

and

fC 1−= Dj

This formula is important in the study of the convergence of the Jacobi

method. However, computationally, the iteration is carried out simply by

solving equation i for the unknown iu :

 ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑+ m

jiji
ii

m
i uaf

a
u 11 ni ,...,1= 2.2.3

Jacobi method starts with initial approximation 0u to compute a new

approximation 1u using equation 2.2.3, then 1u is used to compute 2u , and

the process is repeated until a maximum number of iterations, or a given

tolerance (maximum error norm allowed) is reached.

The actual error muu− in the thm approximation mu is not computable since

the exact solution u is unknown. However, the estimated error mm uu −+1 can

be easily computed.

The error norm |||| 1 mm uu −+ , for any norm, is compared with a given

19

tolerance to stop the iteration process.

 A variation of Jacobi iterative method is the damped (weighted) Jacobi

iterative method. The iteration of the damped Jacobi iterative method is

given by:

fuu 11 −+ += DT m
dj

m ω , 10 << ω

 where:

()[]jdj TIT ωω +−= 1

Gauss-Seidel method is similar to Jacobi method but it uses the most

recent values to update the unknowns. The iteration is:

 1+m
iu =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑
+=

−∑
−

=
+− m

ju
n

ij ija
i

j
m
juijaif

iia 1

1

1
11 , ni ,...,1= 2.2.4

 Splitting M=D-L and N=U gives:

 () fuu +=+− mUmLD 1

 () () fuu 111 −−+⎥⎦
⎤

⎢⎣
⎡ −−=+ LDmULDm

 2.2.5

 g
m

gT Iu +=
where the iteration matrix for Gauss-Siedel method is:

() ULDTg
1−−=

and

() fI 1−−= LDg

This is the matrix form of the Gauss-Seidel method.

20

 The idea of Jacobi and Gauss-Seidel methods is to generate a sequence

of approximations that converges to the solution of the system. A

corresponding sequence of residuals converges to the zero vector.

 Let ()Tm
num

ium
iumum

i ,....,,1
1,....,1

1
1 +

−
+=+u be the approximate solution

vector after m+1 iterations. With residual ()Tm
ni

m
i

m
i rr 11

1
1 ,...... +++ =r . Gauss-

Seidel method can be characterized by choosing 1+m
iu that satisfy

ii

m
iim

i
m
i a

r
uu

1
1

+
+ += 2.2.6

 Gauss-Seidel method can be modified by taking the form of a

weighted average of the last two iterations as:

ii

m
iim

i
m
i a

r
uu

1
1

+
+ += ω 2.2.7

Choices of positive ω will leads to faster convergence. If 10 <<ω ,the

method is called under relaxation method, and if 1>ω the method is called

over relaxation method. These methods are used to accelerate the

convergence for the systems that are convergent by Gauss-Seidel

technique. This method is called successive over relaxation (SOR), and is

given by:

 () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
+=

−+∑
−

=
−+−=+ n

ij
m
juijam

ju
i

j ijaif
iia

m
ium

iu
1

11

1
11 ωω 2.2.8

The matrix form of the SOR method which is important in theoretical

analysis is given by:

21

 () ()[] () fuu ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ −−+−−−−=+ ωωωωω 1111 LDmUDLDm 2.2.9

 SOR
m

SORT Iu +=

Where

 () ()[][]UDLDTSOR ωωω −−−= − 11

is the iteration matrix for SOR method and

 () fI ωω 1−−= LDSOR

Note that if 1=ω the SOR method simplifies to the Gauss-Seidel

method.

2.3 Convergence of classical iterative methods

 Starting with an initial vector, an iterative method generates a sequence

of vectors that approximates of the solution of the given linear system. The

sequence may converge or diverge. Convergence and divergence of the

method depends on the nature of the coefficient matrix.

 In this section we will perform convergence analysis for the three

iterative methods discussed in the previous section. To study the

convergence of these methods we need some theorems and definitions.

Definition 2.3[11] matrix norm:

. is a matrix norm on n×n matrices if:

1. 0≥A

2. 0=A if and only if 0=A

22

3. AA αα = for any real scalar α

4. BABA +≤+

For nn× matrix A , some of known matrix norms are:

• The operator norm
u
Au

A
nu

u
ℜ∈
≠

=
0

max

• The infinite norm ∑
=≤≤

∞

∞

≠∞
==

n

j
ijniu

a
u
Au

A
110

maxmax

• The Euclidean norm ∑∑
= =

=
n

i

n

j
ijaA

1 1

2

Definition 2.4[16] spectral radius:

 The spectral radius of a square matrix T is () λρ max=T where the

maximum is taken over all eigenvalues λ of T .

Theorem 2.1 [11]:

For each norm and each matrix we have that () TT ≤ρ , conversely, for

 each matrix T and each 0>ε , there exists a norm such that:

() ερ +≤ TT .

 Proof:

 Let ()Tρλ = and u be the eigenvector for λ then:

λ
λ

==≥=
≠ u

u
u

Tu
v

Tv
T

v 0
max .

 To construct . such that () ερ +≤ TT , let

23

JTSS =−1 be Jordan form and =εD diagonal (1 , 12 ,........,, −nεεε) then

() () == −−
εεεε JDDSDTSD 11

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

m

m

m

k

λ
ε

λ
ελ

ε
λ
ε

λ
ε

λ
ελ

0........0
..........

0.0.......
.........
..........
..........
..........
.......0..
..........
.........0
0.......0

1

1

1

which mean a Jordan form withε 's above the diagonal. If we use the vector

norm

()
∞

−= uSDu 1
ε ……. (*)

to generate the operator norm, then

()
()

() ()

() ()
() ερ

εε

εε

ε

ε

+≤

=

=

==

∞

−

∞

∞

−

≠

∞

−
∞

−

≠≠

T

SDTSD

v

vSDTSD

uSD

TuSD

u
Tu

T

v

uu

max

maxmax

1

1

0

1

1

00

Theorem 2.2[11]:

 The successive approximation Cuu +=+ mm T1 , 2,1,0=m

converges if and only if () 1<Tρ .

24

Proof:

 Suppose the method converges and () 1≥Tρ then there exist an

eigenvalue λ of T with 1≥λ . Let uu −0 be an associated eigenvector

then:

() () ()uuuuuuuu −=−==−=− +++ 01011 mmmm TT λ

which is not approach to zero, and this contradicts the assumption.

Conversely, suppose that () 1<Tρ , then 1<T from previous theorem and

()uuuu −=−+ mm T1 we have:

uuuuuu −≤−≤− ++ 011 mmm TT

which converges to zero.

25

Definition 2.5[16]:

The matrix A of dimension nn× is strictly diagonally dominant if

∑
≠
=

>
n

ij
j

ijii aa
1

 for each ni ,...1=

Theorem 2.3 [11]:

 Consider the linear system fu =A . If A is strictly diagonally dominant,

then the Jacobi method converges.

Proof:

 The iteration matrix of the Jacobi method is:

 () =+= − ULDTj
1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

0...
......
......
......

...0

...0

21

22

2

22

21

11

1

11

12

nn

n

nn

n

n

n

a
a

a
a

a
a

a
a

a
a

a
a

Since () 1max
11

1 <=+ ∑
≠
=≤≤∞

−
n

k jj

jk

jn
jk

a
a

ULD , () 1<jTρ so the Jacobi method

converges.

 Theorem 2.4[6]:

 If A is strictly diagonally dominant then the Gauss-Seidel method

converges.

26

 Proof:

 Let λ be any eigenvalue of the iteration matrix of the Gauss-Seidel

method () ULDTg
1−−= and let u be the corresponding eigenvector. Without

loss of generality, assume 1=
∞

u

we have:

()() uu λ=− − ULD 1 ,

uuu λλ LDU −=

which mean:

j

i

j
ijiii

n

ij
jij uauaua ∑∑

−

=+=

−=−
1

11
λλ , 1 ni ≤≤ .

So

∑∑
+=

−

=

−−=
n

ij
jij

i

j
jijiii uauaua

1

1

1
λλ , 1 ni ≤≤ ,

Now select an index i such that ji uu ≥= 1 for all j then:

∑∑

+=

−

=

+≤
n

ij
ij

i

j
ijii aaa

1

1

1
λλ ,

solving for λ and using the diagonally dominance of A, we get:

1

1
1

11
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≤

−
−

=+=
∑∑
i

j
ijii

n

ij
ij aaaλ

then () 1<gTρ so Gauss-Seidel converges .

 The following theorem gives conditions on the convergence of the SOR

27

 method.

 Theorem 2.5[11] kahan:

 For arbitrary n×n matrix A, () 1−≥ ωρ SORT therefore () 1<SORTρ only if

20 <<ω where SORT is the iteration matrix for the SOR method

Proof:

 Write the characteristic polynomial of SORT as:

()()()SORSOR TILDITI −−=−= − λωλλϕ 1det)det()(.

 Because LDI 1−−ω is lower triangular matrix with 1 on the diagonal ,

 () 1det 1 =− − LDI ω

 then

() () () ()[][]()UDLDILDIDD ωωωλωλϕ +−−−−= −−− 1det 111

 ()()UDLDI 111det −− −−−+= ωωλωλ

Since nλλ ,.....,1 are the eigenvalues of SORT , the constant coefficient of

the characteristic polynomial:

() ()() ()n
i

n

i
I 11det0

1
−±=−±=Π±=

=
ωωλϕ ,

 Now:

1max
1

−≥
≤≤

ωλini

which implies:

() 1−≥ ωρ SORT

28

for convergences we need:

() 1<SORTρ

 then:

 11 <−ω

which leads to:

20 <<ω .

29

Chapter three

Multigrid Methods

3.1 Introduction

3.2 Two-grid methods

3.3 Moving between grids: restriction and

prolongation

3.4 The multigrid cycle

3.5 The full multigrid

3.6 Multigrid iteration operator

30

Chapter 3

Multigrid methods

3.1 Introduction

Jacobi and Gauss-Seidel methods are characterized by their slow rate

of convergence [1]. They are efficient in smoothing the error but not in

reducing it. By smoothing, we mean damping the error components with

short wave length, which is done after very few iterations (relaxation

sweeps). To reduce smooth error, it takes many relaxation sweeps, which

means slow rate of convergence. If we analyze this error into components

of wavelengths, the error will have components of many different

wavelengths, there will be short wavelength error components and long

wavelength error components. For short wavelength error components,

Jacobi and Gauss-Seidel methods provide rapid damping leaving behind

longer wavelength error components (smooth). Long wavelength error

components (smooth) are responsible for the slow convergence. The basic

idea behind multigrid methods is to reduce long wavelength error

components.

The rate of convergence of classical iterative methods can be

improved with multigrid methods. A multigrid method begins with Jacobi

or Gauss-Seidel iterations, for the one job that they do well, removing short

31

wavelength error components to leave a smooth error. The central idea is

to move to a coarse grid where transferred error is not smooth.

We illustrate this method using the simplest case a two grid method.

3.2 Two-grid method

We can introduce the two-grid method by starting from the general

iteration based on approximate solution of the defect (residual) equation. If

we discretize the PDE on uniform grid with mesh size h , we can write the

resulting set of linear equations as:

 hhhA fu = 3.2.1

Let hu be the exact solution of equation 3.2.1. let m
hu be the

approximate solution after m relaxation sweeps with error:

m
hh

m
h uue −=

and residual:

m
hhh

m
h A ufr −=

This leads to the following defect equation:

 m
hh

m
h A er = 3.2.2

 If we approximate hA by any simpler operator hÂ where 1ˆ −
hA exists, for

example hÂ is the diagonal part of hA in Jacobi iteration, and the lower

triangular part of hA for Gauss-Seidel iteration. Then the solution m
hê of the

defect equation

32

m
h

m
hhA re =ˆˆ

 is added to the old approximation m
hu giving a new approximation 1+m

hu .

This means:

m
h

m
h

m
h euu ˆ1 +=+

We can describe the previous steps by the following flowchart:

 The iteration operator of this method is given by:

hhh AAIM 1ˆ −−=

Then we have:

hh
m
hh

m
h AM fuu 11 ˆ −+ +=

Approximate solution
 m

hu

Residual
m
hhh

m
h A ufr −=

Residual equation
m

h
m
hhA re =ˆˆ

Residual correction
m
hê

New approximate solution
meuu ˆ1 +=+ m

h
m
h

33

Another type of approximation for hA is to coarsify rather than

simplify. i.e. we form a suitable approximation HA of hA on coarse grid

with mesh size hH 2= , and then the defect equation 3.2.2 is replaced

by:

 m
H

m
HHA re = 3.2.3

Because HA has smaller order, equation 3.2.3 is easier to solve than

equation 3.2.2. The residual m
Hr and the error m

He are grid functions on

the coarser grid HΩ , therefore two linear transfer operators to move

between grids are needed. The first operator is a restriction from the

fine grid to the coarse grid:

() ()HghgH
hI Ω→Ω:

 This operator is used to transfer the residual m
hr from hΩ to HΩ (i.e.

m
h

H
h

m
H I rr =).

The second operator is a prolongation from the coarse grid to the fine

grid:

() ()hH
h
H ggI Ω→Ω:

This operator is used to transfer the error m
He from HΩ to hΩ (i.e.

h
H

h
H

m
h I ee =).

Finally, the new approximation 1+m
hu is computed by adding a coarse

grid correction h
H

h
H

m
h I ee = to m

hu replacing a new relaxation sweep on the

fine grid by a new and cheaper one on the coarse grid. This process is

called coarse grid correction, and it can be described as follows:

34

• Compute the residual:
m
hhh

m
h A ufr −= .

• Transfer the residual to the coarse grid:
m
h

H
h

m
H I rr = .

• Solve the residual equation:
m
H

m
HHA re = .

• Transfer the error m
He to the fine grid:

h
H

h
H

m
h I ee = .

• Compute a new approximation: m
h

m
h

m
h euu +=+1 .

 The high frequency components can be reduced by smoothing on

the fine grid using iterative methods like Jacobi and Gauss-Seidel. The

low frequency components of the error are effectively reduced by

coarse grid correction procedure. But the high frequency components of

the error are not even representable on the coarse grid see Figure [3.1]

and so cannot be reduced to zero. This leads us to combine the two

processes of smoothing and the coarse grid correction to get the two

grid method.

 Figure [3.1]: high frequency components errors are not representable (not visible)

 on the coarse grid.

Each iteration step of a two-grid method consists of presmoothing, coarse

grid correction and postsmoothing part as follows:

• Pre-smoothing: compute m
hu by applying 01 ≥v steps of a given

35

 smoothing procedure to m
hu .

• Coarse grid correction: use m
hu to get)(newm

hu .

• Post-smoothing: compute 1+m
hu by applying 02 ≥v steps of the given

smoothing procedure to
)(newm

hu .

Two-grid procedure can be presented by:

m
hu ⎯⎯⎯ →⎯smoothing m

hu → m
hhh

m
h A ufr −= 1+⎯⎯⎯ →⎯+→ m

h
smoothingm

h
m
h

m
h ueue

 ↓H
hI h

HI↑

 m
H

m
HH

m
H A rer =→

 But two-grid methods are of little practical significance due to the

still large complexity of the coarse grid problem. However, they serve as

the basis for the multigrid methods. Instead of solving the coarse grid

residual equation exactly, we can get an approximate solution of it by

introducing an even coarser grid, and using the two-grid iteration method.

This idea can be applied using coarser and coarser grids, down to some

coarsest grid where any solution method can be used.

3.3 Moving between grids: restriction and prolongation.

 In multigrid methods, it is necessary to move approximations, residual

and errors between grids. There are two types of grid transfer: restriction

and prolongation. Restriction transfer values from fine grid to the next

36

coarse grid. Prolongation transfer values from the coarse grid to the next

fine grid.

 The choice of restriction and prolongation operators H
hI and h

HI for

intergrid transfer of grid values depends on the choice of the coarse

grid. In this thesis, only standard coarsening will be considered.

3.3.1 Restriction

 The simplest restriction operator is the injection operator:

 () ()
()p

pIp

h

h
H
hH

r
rr

=
=

, hHp Ω⊂Ω∈

This identifies grid function at coarse grid points by the corresponding
grid values at fine grid points as in the following figure:

(a) (b)

Figure [3.2]: (a) Restriction by injection operator in one dimension.

 (b) Restriction by injection operator in two dimensions.

Another restriction operator is the Full Weighting (FW) operator. This

operator can be illustrated by the following Figure:

37

Figure [3.3]: restriction by full weighting operator in one dimension

This restriction operator is represented by stencil notation as:

h

h

2

4
1

4
2

4
1

⎥⎦
⎤

⎢⎣
⎡

i.e. () () () () ()() hhhhh
h

hh xhxrxrhxrxIx 2
2 ,2

4
1

Ω∈+++−== rr .

But if x is the left boundary point then the stencil is modified by:

h

h

2

4
1

4
20 ⎥⎦

⎤
⎢⎣
⎡

If x is the right boundary point then the stencil is:

h

h

2

0
4
2

4
1

⎥⎦
⎤

⎢⎣
⎡

In two dimensions, the full weighting operator is given by:

h

h

2

16
1

16
2

16
1

16
2

16
4

16
2

16
1

16
2

16
1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

which means:

38

() ()
() () () () ()
() () () ()⎥⎦

⎤
⎢
⎣

⎡
−−++−+−+++++
−+++−+++

=

=

hyhxrhyhxrhyhxrhyhxr
hyxrhyxryhxryhxryxr

yxrIyxr

hhhh

hhhhh

h
h

hh

,,,,
,2,2,2,2,4

16
1

,, 2
2

where () hyx 2, Ω∈ .

Figure [3.4]: restriction by full weighting operator in two dimensions.

 If x is a boundary point, full weighting operator is modified as follows:

 For a north-west corner, the FW stencil is:

h

h

2

16
1

16
20

16
2

16
40

000

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

39

Figure [3.5] : restriction by full weighting operator for corner point

 If x is a west boundary point, then the FW stencil is:

h

h

2

16
1

16
20

16
2

16
40

16
1

16
20

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 Figure [3.6]: restriction by full weighting operator for boundary point.

 Another operator is the Half Weighting (HW) operator. It is a five-

weighted average. In stencil notation, the HW reads:

40

h

h

2

0
8
10

8
1

8
4

8
1

0
8
10

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

This means:

() () () () () ()[]hyxrhyxryhxryhxryxryxr hhhhhh −+++−+++= ,,,,,4
8
1,2

Figure [3.7]: restriction by half weighting operator for an interior point

3.3.2 Prolongation

 The prolongation operator maps coarse grid values onto fine grid

values. In one dimension, the values at points on the coarse grid are copied

to the corresponding fine grid points. The remaining values at the fine grid

points are computed by taking the averages of the values of the left and the

right coarse grid points.

The linear prolongation is defined as:

41

() ()
()

() ()

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥⎦
⎤

⎢⎣
⎡ ++−=

=

points. grid coarse two

between locates pointsfor , 2ˆ2ˆ
2
1

 points grid coarsefor , 2ˆ

2ˆ2ˆ

hxhehxhe

xhe

xheh
hIxhe

Figure [3.8]: linear prolongation in one dimension.

 In two dimensions, the most used prolongation is bilinear, which

is given by:

() ()

()

() ()[]

() ()[]

() ()
() ()

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−++−

+−++++

−++

−++

=

=

points. grid coarse areex vert
 whosesquare ofcenter

in the located pointsfor
,2ˆ,2ˆ

,2ˆ,2ˆ

4
1

lyhorizental points grid coarse

obetween tw located pointsfor ,2ˆ,2ˆ2
1

y verticallpoints grid coarse

obetween tw located pointsfor ,2ˆ,2ˆ2
1

points grid coarsefor , ,2ˆ

,2ˆ2,ˆ

hyhxhehyhxhe

hyhxhehyhxhe

yhxheyhxhe

hyxhehyxhe

yxhe

yxheh
hIyxhe

42

This can be illustrated by the following figure:

Figure [3.9]: bilinear prolongation operator: () coarse grid point, () fine grid point

In stencil notation we write the bilinear interpolation operator h
hI 2 as:

h

h

h
hI

2121
242
121

4
1

2
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤
=

The brackets are reversed, since the stencil entries correspond to weights

in a distribution process as:

Another prolongation operator is a linear operator which takes place in

triangles as illustrated in the following figure:

43

 or

Figure [3.10]: linear prolongation operator, () coarse grid points and () fine grid

points

This linear prolongation is given by:

() ()

()

() ()[]

() ()[]

() ()[]
() ()[]

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

+−+−+

−−+++

−++

−++

=

=

points. grid coarse
are vertex whosesquare of

center in the locate pointsfor ,2ˆ,2ˆ2
1

or ,2ˆ,2ˆ2
1

ly.horizental points grid coarse two

between located pointsfor ,2ˆ,2ˆ2
1

y. verticallpoints grid coarse two

between located pointsfor ,2ˆ,2ˆ2
1

points grid coarsefor , ,2ˆ

,2ˆ2,ˆ

hyhxhehyhxhe

hyhxhehyhxhe

yhxheyhxhe

hyxhehyxhe

yxhe

yxheh
hIyxhe

3.4 The Multigrid cycles.

A two grid cycle consists of three steps: presmoothing, coarse grid

correction and postsmoothing. A Multigrid cycle can be obtained by

performing a number of two grid cycles, say γ , at each intermediate stage

to obtain a better approximation:

44

m

H
m
HH reA =

 Two grid method

 γ = 1 γ =2 γ = 3

Three-grid method

 γ = 1 γ = 2

Four-grid method

Figure [3.11]: structure of one multigrid cycle for different grids and different values of

γ, where for smoothing, for exact solution, for fine to coarse, for coarse to

fine transfer.

The two cases 2 and ,1 == γγ are particularly interesting. In the case

1=γ , the cycle is called V-cycle, and if 2=γ , then the cycle is called W-

cycle , and the number γ is called the cycle index.

S S

E

S

E

SS

S

EE

S SS

SS S

S

E

S

E

S

E

S

S

S

E

S

S

S

S

S

S

S

E

S

S

S

SS

S

E

S

S S

EE

S E

45

 We now describe a multigrid V-cycle with 21 and vv as the numbers of the

presmoothing and postsmoothing iterations respectively. The calculation of
a new iterates 1+m

hu from a given approximation is given in the following

algorithm [2]:

Let
3
1

+m

hu be the solution after the presmoothing stage,
3
2

+m

hu be the
solution after the coarse grid correction, and

1+m
hu be the solution

after the postsmoothing stage.

Step 1: Presmoothing.

 Compute 3
1

+m

hu by applying 1v iterations of the smoother

 (Gauss-Siedel, Jacobi) on hΩ : m
h

v
h

m

h S uu 13
1

=
+

 Where S iteration matrix of the smoother.

Step 2: Coarse grid correction

 Compute the residual on hΩ :

3
1

+
−=

m

hhhh A ufr

 Restrict the residual from hΩ to HΩ and initialize the coarse

 grid approximation :
0 , == Hh

H
hH I urf

 If HΩ is the coarsest grid then solve the coarse grid

 equation exactly:

HHHHA Ω= on ,fu .

 Else, solve the coarse grid equation:

HHHHA Ω= on ,fu

46

 approximately by applying a multigrid V-cycle starting
 on HΩ

 End if
 Interpolate the coarse grid approximation (error) from

 hΩΩ toH :

H
h
Hh I ue =

 Correct the fine grid approximation on hΩ :

h

m

h

m

h euu +=
++

3
1

3
2

Step 3: Postsmoothing.

 Compute 3
1

+m

hu by applying 2v iterations of the smoother on

 hΩ : 3
2

3
1

2
++

=
m

h
v
h

m

h S uu .

Following is the flowchart of a three grid V-cycle:

 13
2

3
1

21 +++
⎯→⎯⎯→⎯ m

h
Sm

h

m

h
Sm

h

v
h

v
h uuuu

 h
h

h
h II 2
2 ↑↓

 1
2

3
2

2
3
1

22
1

2
1

2 +++
⎯→⎯⎯→⎯ m

h
Sm

h

m

h
Sm

h

v
h

v
h uuuu

 h
h

h
h II 2

4
4
2 ↑↓

 m
hh

m
h

m

h
h
h

m
h AI 4

1
4

1
4

3
1

2
4
24 furf −++

=→=

Figure [3.12]: three grids V-cycle

 3.5 The Full Multigrid Methods

 The choice of initial approximation is important in iterative methods.

The closer the initial approximation to the exact solution, the better. But

47

iterative methods are needed when exact solution is unknown. To get a

good initial approximation, a procedure called nested iteration can be used

as follows:

• Approximate the solution on the coarsest grid

• Transfer the solution to the next fine grid, for example using

interpolation.

• Use the transferred solution as an initial approximation on the

fine grid.

The process is repeated from coarse to fine grids. Combining the

nested iteration method with multigrid method gives the so called Full

Multigrid Method (FMG). The FMG starts at the coarsest grid where the

equation can be solved exactly. It then proceeds to the next finer grid,

performing one or more cycles at each level along the way as shown in

Figure [3.13]

Figure [3.13]: means transfer of the approximation solution to a finer grid.

48

Remark: [2]

 In general it is not sufficient to start the solution process on a very

coarse grid, interpolate the approximation of the coarse grid solution to the

next finer grid, smooth the visible error components and so on until the

finest grid is reached. Actually the interpolation of the approximation leads

to nonnegligible high and low frequency error components on the fine grid

that can be reduced efficiently only by a subsequent smoothing of the error

on all grid levels. i.e. by revisiting the coarse levels in multigrid cycles.

3.6 Multigrid iteration operator

Discritization of a linear differential equation reduces the equation to a

linear system:

hhhA fu =

Given approximation m
hu , we find 1+m

hu by coarse grid correction method

which is given by:

h
m
h

H
h

m
h NK fuu +=+1 3.6.1

where

h
H
hH

h
H

H
h AIAIIK 1−−= is the coarse grid correction matrix

 and H
hH

h
H IAIN 1−= .

We can prove equation 3.6.1 using the relation between m
hu and 1+m

hu :

m
H

h
H

m
h

m
h

m
h

I eu

euu

+=

+=+

m
h

1

49

But

m
HH

m
h A re 11 −+ =

 and

)(m
hh

h
H

m
H AI ufr −=

 by substitution we get:

)(11 m
hh

h
HH

h
H

m
h

m
h AIAI ufuu −+= −+

which completes the proof.

For the error:

m
h

H
h

m
h K ee =+1 3.6.2

Recall that:

11 ++ −= m
hh

m
h uue .

If we multiply both sides of equation 3.6.2 by hA , we get the residual after

coarse grid correction:

m
hh

H
hh

m
h AKA rr 11 −+ =

The error after 1v presmoothing iterations is given by:

03
1

1
h

v
h S ee =

where 0
he is the initial error. After coarse grid correction, the error is:

3
1

3
2

h
H
hh K ee = .

Then the error after two-grid method is given by:

50

0
2

1
hh Q ee =

 where

12
2

vH
h

v SKSQ = 3.6.3

 is the two-grid iteration matrix.

Theorem 3.7.1[1]:

 The iteration matrix),(21 vvQk of the multigrid method satisfies:

),(~),(212212 vvQvvQ = 3.6.4

and

() 12 11
1112121),(~),(v

kk
k
kkk

k
k

v
kkk SAIAQISvvQvvQ −−

−−−+= γ 3.6.5

where:

{ } 12 11
1121),(~ v

kk
k
kk

k
k

v
kk SAIAIISvvQ −−

−−−=

is the iteration matrix of multigrid method.

Proof:

 Equation 3.6.4 follows from equation 3.6.3. Equation 3.6.5 is proved

by induction, let the equation be true for n=k. we want to prove that it is

true at n=k+1.

 Let 0
1+ke be the error on 1+Ω k before multigrid, 3

1

1+ke is the error after

pre-smoothing, 3
2

1+ke is the error after coarse grid correction, and 1
1+ke is the

error after post-smoothing then we have:

51

0
11

3
1

1
1

+++ = k
v
kk S ee 3.6.6

The coarse grid problem to be solved is:

3
1

111 +++−= kk
k
kkk AIA eu

with initial guess 00 =ku . Hence the initial error 0
ke is the negative of the

exact solution on kΩ which means

 3
1

111
10

+++
−= kk

k
kkk AIA ee .

 After coarse grid correction the error on kΩ is

() 0
kkQ eγ

hence the coarse grid correction is given by:

()() 0
kkQI eγ+−

 therefore:

()() 013
1

1
3
2

1 kk
k
kkk QIIe ee γ+−+= +

++

(){ } 3
1

111
11

11
113

2

1 +++
−+

++
−+

+ +−= kk
k
kkk

k
kk

k
kk

k
kk eAIAQIAIAII γe 3.6.7

Then:

3
2

11
1

1
2

+++ = k
v
kk eSe 3.6.8

Combining equations 3.6.6, 3.6.7,and 3.6.8 ends the proof.

52

Chapter four

Convergence Analysis

4.1 Introduction

4.2 Smoothing analysis

 4.2.1 Smoothing property

 4.2.2 Local Fourier analysis

4.3 Convergence analysis of two-grid method

4.4 Multigrid convergence

53

Chapter 4
Convergence Analysis

4.1 Introduction

 Studying convergence of multigrid methods is not an easy task, and is

still an open area of computational mathematics. The smoothing error

modes, which remain after relaxation on one grid, become oscillatory on

the coarse grids. Therefore, moving to coarser and coarser grid, all error

components on the finest grid become oscillatory and are reduced by

relaxation. For good multigrid method, the convergence factor of the

multigrid method, ()21 ,vvQk need to be small and independent of h, i.e.

() 1constant, 21 <≤vvQk

 Where ()21,vvQk is the iteration matrix of the multigrid method. For

this purpose we need the smoothing factor ρ , and two-grid convergence

factor norm 2Q .

4.2 Smoothing Analysis

Classical iterative methods are still important but less favored, because

after few iteration steps, the error of the approximations become smooth.

These methods remove high frequency components (rapidly oscillating

parts) leaving a smooth error, but low frequency components are reduced

slowly. So that these methods are called smoothers. However, these basic

54

methods are known as efficient smoothers but not as efficient solvers.

I mean, they are efficient in smoothing the error but not in reducing it.

Figure 4.1 illustrates the error smoothing effect.

 Initial errors Error after 5 iterations Error after 10 iterations

Figure 4.1[2]: Error in the Gauss-Seidel approximation of the solution of Poisson

 problem.

The smoothness of the error slows down the convergence of the basic

iterative method.

Example 4.1

Consider:

() ,10 ,10 22 <<<<+=+ yxeyxuu xy
yyxx

xy exuxueyuyu ====)1,(,1)0,(,),1(,1),0(

 Table 4.1 shows the number of iterations and the approximate computer

time needed by the Gauss-Siedel method with initial approximation 0u =0

and Tol = 10-5 . these results are obtained using the mathematical software

maple 12 and an intel Core 2 Duo processor. Figures 4.2, 4.3, and 4.4

shows the maximum error norm versus the number of iterations needed for

various mesh sizes.

55

Table 4.1: Approximate computer time

size Number of iterations Approximate
computer time

8× 8 67 0.2sec
16×16 234 3.2sec
32×32 791 60.8sec
64×64 2587 1235.8sec

128×128 8044 21860.4sec
256×256 20431 Four days

Figure 4.2: relation between maximum error norm and the number of iterations n,

 when size 16×16

56

Figure 4.3: relation between maximum error norm and the number of iterations n,

 when size 32×32

57

Figure 4.4: relation between maximum error norm and the number of iterations n,

 when size 128x128

 The efficiency of smoothing method can be studied by the

smoothing property and by the Local Fourier Analysis (LFA).

4.2.1 Smoothing property

 Discritization of the linear PDE leads to the linear system:

fu =A .

 Using the splitting NMA −= , we can define the iteration method:

 Luu +=+ mm T1 4.2.1

58

with 0u as initial approximation, m=0,1,2,3…., NMT 1−= is the iteration

matrix, and fL 1−= M . Convergence of the iteration 4.2.1 depends on the

iteration matrix T. After v iterations we obtain:

fuu
Luu

Lu
uu

Lu
LLu

Luu
Luu

ST
ITTTT

ITTT
LT

ITT
TT

T
T

vv

vvvv

+=

++⋅⋅+++=

+++=

+=

++=

++=

+=

+=

−−

0

210

20

23

02

0

12

01

)(
.
.
.

)(

)(
)(

where
() 121 −−− +++= MITTS vv

Let

Luu += −1vv T

and let
u = Tu + L

then we have

)(1 uuuu −=− −vv T
1−= vv Tee

2−= vTTe
22 −= vT e

.
0evT=

 The error e satisfies:

 0ee vv T= 4.2.2

59

This equation gives the relation between the error before and after v -

smoothing iterations, but we need to measure the smoothing behavior. For

this purpose, the smoothing property will be defined. will denote the

Euclidean matrix norm.

Definition 4.2.1[1] Smoothing property

 Let v be the number of iterations and h is the grid size used in

iteration 4.2.1 If there exist a constant TC and a function ()vη such that:

 () () ∞→→≤ − vvvhCAT T
v for 0 , 2 ηη for all h

Then we say that the iteration matrix T in iteration 4.2.1 has the

smoothing property

Theorem4.2.1[1]

 If the iteration matrix T in iteration 4.2.1 has the smoothing property,

then iteration (4.2.1) is convergent.

Proof:

()

0lim so and 0lim hence

 , 211

==

≤≤

∞→∞→

−−−

v

v

v

v

T
vv

T

vhCAATAT

e

η

 We can see it is difficult to prove the smoothing property for basic

iterative methods. In [3] the smoothing property is shown for the damped

Jacobi iterative method. The original Jacobi iteration is:

()fuuu −−= −+ jjj AD 11

60

 whereas, the damped Jacobi iteration is:

()fuuu −−= −+ jjj AD 11 ω

In many cases the diagonal is ℜ∈= − dIdhD ,2 . Replacing

ℜ∈−− dIhD ,by 21 ω (is suitable) we obtain:

()fuuu −−=+ jjj Ah21 ω

then the iteration matrix:

AhIT 2ω−=

A possible choice of T
T

C where
C
1 is =ωω is a good bound for Ah2 :

TCAh ≤2

where is the spectral norm for matrices.

Two definitions are needed before discussing the smoothing property for

damping Jacobi.

Definition 4.2.2 [13]:(positive semi-definite)

 An n×n real symmetric matrix A is positive semi-definite if:

0≥AxxT for all nx ℜ∈

Theorem 4.2.2: [3]

 Assume that A is symmetric and positive semi-definite, then the damped

Jacobi iteration satisfies the smoothing property with:

61

 ()
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=

2
1

1
8
3

v
vη

Proof:

 The matrix ()vv AhIAAT 2ω−= is symmetric, its eigenvalues μ are

()vh λωλ 21− , with λ eigenvalues of A.

we have:

(){ }AhAT vv of seigenvalue :1sup 2 λλωλ −=

λ is nonnegative since A is positive semi-definite, and λω 21 h− is

nonnegative by definition of ω . As all eigenvalues of A are in []2,0 −hCT ,

the estimate:

(){ }AhAT vv of seigenvalue :1sup 2 λλωλ −=

follows.

consider λω 2hx = , x varies in [0,1] Hence we have:

(){ }10 :1sup 2 ≤≤−= − xxxhCAT v
T

v

The maximum of ()vxx −1 in [0,1] occurs when
1

1
+

=
v

x . A very close

upper bound for the maximum is ()
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=

2
1

1
8
3

v
vη . Hence smoothing

property holds.

62

 Note that SOR should not be used as a smoothing operator.

Hackbusch shows that SOR reduce the low frequencies components. But

the reduction of high frequencies components usually becomes even worse.

4.2.2 Local Fourier Analysis

 Local Fourier Analysis (LFA) is the most powerful tool for studying

the smoothing efficiency, which was introduced by Brandt. Contributions

have been made by Stüben, Trottenberg and Wesseling. Brandt have used

the term local mode analysis instead of LFA, both terms denote the same

approach. So LFA is used in studying the smoothing efficiency of basic

iterative methods. The aim of LFA is to compute another measure of the

smoothing behavior of an iterative method. This measure is called Fourier

smoothing factor. The Fourier smoothing factor is very important measure

for designing efficient multigrid methods. In our study we concentrate on

the Fourier smoothing factor for two smoothing methods: Jacobi method

and the Gauss-Seidel method. Before using this measure, we need to know

more about elements of Fourier analysis.

 Definition 4.2.3:

 The inner product of two continuous functions f and g over a set S is

 defined as:

∫=
S

dxxgxfgf)()(,

63

 where)(xg is the complex conjugate of g(x).

 For discrete functions f and g the inner product is defined as:

∑=
S

xgxfgf)()(,

 Definition 4.2.4:

 Two functions are orthogonal on a set S if :

0, =gf

 a set of functions { }n
iif 1= is orthogonal set if :

0, =ji ff when ji ≠

Lemma 4.2.1 [1] Orthogonality in one dimension.

 Let { }1,....2,1,0 −= nI . and () 1,,2 where, −=∈== iIj
n
ke k

ij
kj

k
πθθψ θ .

Then: () () kl

n

j
ljkj nδθθ =−ΨΨ∑

−

=

1

0

, with klδ the Kronecker delta.

Proof:

 If () () neelk
n

j

ijij
kjk

kk ==−= ∑∑
−

=

−

=

1

0

1-n

0j
j then , θθθψθψ .

But if lk ≠ , then () () ()∑∑
−

=

−

=

=−
1

0

1-n

0j
j

n

j

ij
ljk

lke θθθψθψ

 which is a geometric series, so it is equal to:

()

()

()

()
.0

1

1
1
1

2

2

=
−

−
=

−
−

−

−

−

−

lk
n

i

lki

i

in

e

e
e
e

lk

lk

π

π

θθ

θθ

64

Theorem 4.2.3 [1] Discrete Fourier Transform in one dimension.

 Every discrete function ℜ→Iu : , can be written as:

() .∑

+

−=

=
pm

mk
kjkj cu θψ

 4.2.3

{ } () .,2 and , ,1,...,2,1 where Ij
n
kenI k

ij
kj

k ∈==−=
πθθψ θ

.

()∑
=

−=

==
−

==

1-n

0j

 1

and 1,-
2

 and 1 even, for and .
2

1 and 0 odd, For

kjjk u
n

c

nmpnnmpn

θψ
 4.2.4

The functions ()θψ j are called Fourier modes or Fourier components.

65

 Proof:

 If we choose kc as in equation 4.2.4, then:

() () ()
()()

()
() ()

j

n

k
lkjk

n

l

n
jlmi

l

n

l

n

k

n
ljmki

l

pm

mk

n

l
kjkll

pm

mk
kjk

u

eu
n

eu
n

u
n

c

=

−=

=

−=

∑∑

∑ ∑

∑ ∑∑

−

=

−

=

−

−

=

−

=

−−

+

−=

−

=

+

−=

1

 1

1

1

0

1

0

2

1

0

1

0

2

1

0

θψθψ

θψθψθψ

π

π

Conversely, assume that equation 4.2.3 holds. We want to show (4.2.4)

as follows:

() () ()

() ()

.

1

0

1

0

1

0

1

11

k

pm

ml
kll

pm

ml

n

j
ljkjl

pm

ml

n

l
ljkjl

n

j
kjj

cc

c
n

c
n

u
n

==

−=

−=−

∑

∑ ∑

∑∑∑

+

−=

+

−=

−

=

+

−=

−

=

−

=

δ

θψθψ

θψθψθψ

.

In two dimensions:

(){ }

()

()

() 0even.p for 1
2

1, and oddfor
2

1

,0 and even. for 1
2

,1 and odd for
2

1
,..., and
,...,k where

2,2:,let and

 1,...,1,0,1,...,1,0,,:Let

22
2

222
2

2

11
1

111
1

1

2222

1111

2

2
2

1

1
121

221121

=−==
−

=

=−==
−

=

+−=
+−=

⎭
⎬
⎫

⎩
⎨
⎧

====Θ

−=−===

nnmpnnm

pnnmpnnm

pmmk
pmm

n
k

n
k

njnjjjjjI

πθπθθθθ

The following lemma shows that the set:

(){ }Θ∈∈= θθψψ and : Ijj

66

 is orthogonal.

Lemma 4.2.2[1] Orthogonality in two dimension.

() , , with , define weIf Θ∈∈= θθψ θ Ije ij
j

() ()
⎩
⎨
⎧

≠
=

=−∑
= θυ

θυ
υψθψ

 if , 0
 if ,

 then 21
1-n

1j

nn
jj ,

 where Θ∈υθ, .

Proof:

From the previous lemma,

() ()

⎩
⎨
⎧

≠
=

=

=

=−

∑∑

∑∑
−

=

−
−

=

−

−

=

−

=

θυ
θυ

υψθψ

θθ

θ

 if , 0
 if ,

 21

1

1

)(
1

1

)(

1

1

)(
1-n

1j

2

2

222
1

1

111

nn

ee

e

n

j

vij
n

j

vij

n

j

vij
jj

Theorem 4.2.4[1] Discrete Fourier transform in two dimension.

 Let (){ }1,...,2,1 and 1,...,2,1 where, , 221121 −=−=== njnjjjjI , then every

ℜ→Iu : can be written as:

()∑
Θ∈

=
θ

θ θψ jj cu ,

with

()θψθ −= ∑
∈

j
Ij

ju
nn

c
21

1 .

 where Θ is defined as in lemma 4.2.2.

67

Proof: generalization of theorem 4.2.1.

 Let:

 fu =A

Using a classical iterative method gives:

 MS and , where, -111 NNMAMS mm =−=+= −+ fuu 4.2.5

After few v -iterations, the error become smooth, so that these iterative

methods are called smoothing methods. The relation between the error

before and after v -iterations is given by:

0ee vv S=

Definition 4.2.4[17]:

 A set { }jψ of functions is complete if and only if any function in

Euclidean space can be written as a linear combination of functions

from the set { }jψ .

 Assume that the operator S has a complete set of eigenfunctions or

local modes ()θψ , Θ∈θ , where Θ is some discrete index set.

 Hence,

() () ()θψθλθψ vvS = 4.2.5

 where () Θ∈θθλ , , are the eigenvalues of the operator S , and ()θψ is an

eigenfunction of the operator S . In this case ()θψ is called local mode.

 We can write the error before v -smoothing steps as:

68

 ()∑
−

=

=
1

1

00
n

k
c θψθe , where 1,...,2,1,2

−== nk
n
kπθ 4.2.6

and the error after v -smoothing steps as:

()∑
−

=

=
1

1

n

k

vv c θψθe , where 1,...,2,1,2
−== nk

n
kπθ 4.2.7

 The relation between vcc θθ and 0 is important. It gives the effect of v -

smoothing steps on the error. From equations 4.2.5, 4.2.6, and 4.2.7 we

get:

 () 0
θθ θλ cc vv = 4.2.8

 The eigenvalue ()θλ is called the amplification factor of the local

mode ()θψ .

For the smoothing factor we need to distinguish between high and low

frequency components.

Definition 4.2.5: High and low frequencies [1]

 Consider the set
⎭
⎬
⎫

⎩
⎨
⎧ −===Θ 1......,,2,1,: nk

n
kπθθ . We say that ()θψ is

a high frequency component (rough) if and only if

⎥⎦
⎤

⎢⎣
⎡Θ=Θ∈ ππθ ,

2
Ihigh ,

and is a low frequency (smooth) if and only if

highlow ΘΘ=Θ∈ /θ .

69

So that the error grid function can be presented as:

() () ()∑∑∑
Θ∈Θ∈Θ∈

+==
lowhigh

ccc
θ

θ
θ

θ
θ

θ θψθψθψ 0000e

Definition 4.2.6 [1]: Fourier smoothing factor

 The Fourier smoothing factor ρ of the smoothing method in

equation 4.2.5 is defined by:

(){ }.:sup highΘ∈= θθλρ .

Hence, after v -smoothing iterations the amplitude of the high frequency

components of the error in equation 4.2.8 are multiplied by a factor vρ or

smaller.

Examining the quality of smoothing method, we need to determine

the Fourier smoothing factor ρ . To do this, we have to solve the eigenvalue

problem:

() () () NMSS 1 where, −== θψθλθψ

which means

() () ()θψθλθψ MN = .

This relation can be written by stencil notation as:

() () ()∑
Ζ∈ +=∑

Ζ∈ + j jhxjm
j jhxjn θψθλθψ 4.2.9

Local Fourier analysis can be simplified by assuming that the

coefficients in the partial differential equation to be solved are constant.

70

If () ∑∑
Ν∈Ζ∈

+ =
j

ij
j

ix

j

ijx
j eneen θθθ

then () θθψ ix

x e= satisfies 4.2.9 with:

()
∑
∑

Ζ∈

Ζ∈=

j

ij
j

j

ij
j

em

en

θ

θ

θλ

Example 4.1:

 For Laplace's equation:
0=−− yyxx uu

The correspondence splitting gives:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

1
041

0
M

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
100

1
N

 and

()
21

21

4 θθ

θθ

θλ ii

ii

ee
ee

−− −+−
+

=

 the Fourier smoothing factor
2
1

=ρ

 Finally, Table 4.2 shows the smoothing factors of Jacobi, damped

Jacobi, and Gauss-Seidel methods. It shows that Gauss-Siedel method

as the best smoother for the multigrid method.

Table 4.2[2]: Smoothing factors
Smoothing Smoothing

Factor
Iterative
Method

No 1 Jacobi
unsatisfactory 0.75 Damped

Jacobi
(w=0.5)

acceptable 0.6 Damped
Jacobi

(w=0.8)
good 0.5 GS

71

4.3 Convergence analysis of two-grid method.

 The purpose of two-grid analysis is to show that the rate of

convergence of two-grid method is independent of the grid size h. In the

first part of this section, we will show how local mode analysis can be

used to derive bounds for 2Q quantitatively, which means that we are

interested in h-independent real bounds for 2Q . In the second part, we

are interested in qualitative consideration that will help to make the

requirements to be satisfied by the smoother and transfer operators.

 To simplify the analysis of the convergence of the two grid

method, we omit the boundary conditions and study all operators on an

infinite grid i.e. Instead of
⎭
⎬
⎫

⎩
⎨
⎧ ∈=Ω

n
jjhh

1,....,1,0: . And the iteration

matrix for two grid methods become:

[] 12 1
2

v
hh

H
hH

h
H

v
h SAIAIISQ −−= 4.3.1

on infinite grid

Where:

.
.

grid coarse on theoperator discrete exteneded :
grid fine on theoperator discrete exteneded:

operator.n restrictio extend :

operator.on prolongati extended :
 matrix.unit extended :

method. smoothing theofmatrix iteration theis :2

H

h

H
h

h
H

v
h

A
A
I

I
I
S

 In one dimension multigrid methods can be analyzed easier.

72

 Studying convergence of two-grid method with qualitative

consideration depends on 2Q , where the norm used is the Euclidean

norm. For simplicity, we assume that 02 =v i.e.

[] 11
2

v
hh

H
hH

h
H SAIAIIQ −−= 4.3.2

So we can write

()()111
2

v
hh

H
hH

h
Hh SAIAIAQ −− −= 4.3.3

So that

 2Q 111 v
hh

H
hH

h
Hh SAIAIA −− −≤ 4.3.4

 We see that 2Q depends on H
hH

h
Hh IAIA 11 −− − and 1v

hhSA . For these two

factors, we need the following definitions.

Definition 4.3.1[1] smoothing property

 S has the smoothing property if there exist a constant sC and a

function ()1vη independent of h such that:

 () () ∞→→−≤ 1for 01 where1
21 vvvhsC

v
hShA ηη 4.3.5

Definition 4.3.2[1] Approximation property

 The approximation property holds if there exists a constant AC

independent of h such that:

 211 hACH
hIHAh

HIhA ≤−−− 4.3.6

73

 If these two properties hold, then it is easy to talk about the

h -independent convergence of two-grid method.

Theorem 4.3.1: h -independent two-grid rate of convergence

 Let the smoothing property and approximation property hold then

there exists a number v independent of h such that:

2Q () vvvCC As ≥∀<≤ 11 , 1η 4.3.7

Proof:

211
2

v
hh

H
hH

h
Hh SAIAIAQ −− −≤

 Based on the previous results, we will study the convergence of

multigrid method.

4.4 Multigrid convergence

 Convergence analysis of the two-grid method, can be generalized to a

multigrid method. In this section, we assume that lll fuA = is the linear

system obtained from discetization of a PDE on lΩ

Definition 4.4.1[1] smoothing property

 The smoothing iteration matrix kS has the smoothing property if there

exist a constant sC and a function ()1vη independent of kh such that:

() () ∞→→≤ −
111

2 for 0 ,1 vvvhCSA ks
v
kk ηη

74

Definition 4.4.2[1] approximation property

 The approximation property holds if there exists a constant AC

independent of kh such that:

211
11

1
kA

k
kk

k
kk hCIAIA ≤− −−

−−
−

Lemma 4.4.1[1]

 Let the smoothing property hold, and assume that there exists a

constant pC independent of k such that:

 11
1

11 , −−
−

−− ∀≥ kkpk
k
k CI uuu 4.4.1

then:

())0,(1 1
11

1
2 vQCSAIA kp

v
kk

k
kk +≤−−

−

Proof:

 It has been shown that if kS has smoothing property, then the

smoothing method is convergent. Hence we can choose 2v such that

11 <v
kS

From equation 4.4.1 we get:

()

())0,(1

)0,(

1

1

11
11

1

11
11

11
1

1

11

11

vQC

vQSC

SAIAIASC

SAIAICSAIA

kp

k
v
kp

v
kk

k
kk

k
kk

v
kp

v
kk

k
kk

k
kp

v
kk

k
kk

+<

−=

−−=

≤
−−

−−
−

−−
−−

−−
−

 The following inequality is necessary for the next theorem

75

 2 , , 1k1 ≥+≤≤ − kC k
γζζζζζ 4.4.2

Lemma 4.4.2[1]

Assume .1>Cγ if () 1
11-~ ,2 −

−

=≤≥ γγ
γ
γζζγ C then the solution

 of inequality 4.4.2 is bounded by 1<≤ zkζ where z is related to ζ

by:

γζ Czz −= (*)

and z satisfies:

ζ
γ
γ

1−
≤z

Proof:

We have kk z≤ζ , with kz defined by:

γζζ 11 and −+== kk Czzz

Since { }kz is monotonically increasing, we have zzk < , with z the

smallest solution of consider () γCzzzf −= . The maximum of

)(zf is reached in () ζζζγ γ
~ . ~)(and 1 For1

1
≤=<== ∗

−
−

∗ zfCzz

equation (*) has a solution 1<≤ ∗zz .

 We have:

zzzCzz
γ

γ
γ

ζ γ 11 −
=−≥−=

76

Then:

ζ
γ
γ

1−
≤z .

 Theorem 4.4.1[1] rate of convergence of multigrid method

 Let the smoothing property and approximation property hold

assume 2≥γ

let

11
1

11 , −−
−

−− ∀≥ kkpk
k
k CI uuu

and

1111 , −−−− ∀≥ kkpk
k
k cI uuu

 pp cC and 1− independent of k. let ()1,0~
∈ζ be given. Then there is a number v~

independent of k such that the iteration matrix)0,(1vQ k satisfies:

vvvQk
~ if 1~)0,(11 ≥<≤ ζ

Proof:

 In chapter three, the iteration matrix of multigrid method was found as:

() () () () 12 11
11111)0,(~)0,(v

kk
k
kkk

k
k

vk
kk SAIAQISvQvQ −−

−−−+= γ

 With

() (){ }() 12 11
111)0,(~ v

kk
k
kk

k
k

v
kk SAIAIISvQ −−

−−−=

Then we have

()11)0,(~ vCCvQ ASk η≤ .

77

choosing a number ()ζζ ~,0∈ with () 1
11~
−
−−

= γγ
γ

γζ C and a number v~ such that

() vvvCC AS
~ , 11 ≥< ζη and that:

 γγ ζζζζζζ 11)1(−− +≤++≤ kpkpk CCc , with ppcCC 2= and

)0,(1vQ k
k =ζ , then it follows that

KkvQ k
k ,.....3,2 1

1
)0,(1 =<

−
≤= ζ
γ
γζ

If necessary 1v is increased such that: ζ
γ

γζ ~1−
≤

4.5 Computational results

 In this section, we introduce some numerical results obtained by

several researchers. Table 4.3 shows number of iterations and times for

the defect reduction of factor 10-12 for different cycles and different

restriction operator. It is obvious that)1 , 2(V with HW is the most

efficient.

Table 4.3[2]: V and W cycles

HWFWCycle
Time (msec) iterations Time (msec) iterations

7310 167 1290 26)1 , 0(V
740 13 759 12)1 , 1(V
629 9 759 10)1 , 2(V
669 8 799 9)2 , 2(V

3780 34 2269 20)1 , 0(W
1379 10137910)1 , 1(W
1479 9 1450 9)1 , 2(W
1460 8 1469 8)2 , 2(W

Table 4.4 shows the infinite norm
∞

− huu of the error for the FMG and

V-cycles using different grids. It is clear that the FMG produces the least

error.

78

Table 4.4[2]: Infinite error norm
)1 , 1(V)1 , 0(V FMG Grid

0.47E-50.26E-40.31E-5 32×32
0.12E-5 0.83E-5 0.77E-6 64×64
0.31E-6 0.27E-5 0.19E-6 128×128
0.78E-7 0.87E-6 0.48E-7 256×256

Table 4.5 shows the convergence factor obtained with damped Jacobi
and FW for Poisson problem for different sweeps of presmoothing. The
convergence factor when

5
4

=ω better than the convergence factor when

2
1

=ω .

Table 4.5[2]: Convergence factor

4=v 3=v2=v1=v
0.137 0.216 0.36 0.6

5
4

=ω

0.316 0.422 0.563 0.75
2
1

=ω

Table 4.6 shows that the computer time is proportional to N where N is

the number of grid points in each dimension. In other words, the

computer time is of order N. this means that FMG is of order N.

 Table 4.6[22]: FMG with GS as smoother

Ratio CPU time error grid
 36s 0.00767841645 512×512

4.1388889149s0.00381202826 1024×1024
4.1342282 598s 0.00190166438 2048×2048

4.6 Conclusion

 Basic iterative methods such as the Jacobi, Gauss-Seidel , and the SOR

methods are used to solve the linear system obtained from the discretization

79

of the PDE problem. For small linear systems, these methods are efficient

but not for large systems. Jacobi and Gauss-Seidel methods (not the SOR)

are efficient as smoothers. This means they are efficient in smoothing the

error but not efficient in reducing it. Multigrid methods accelerate basic

iterative methods by making use of different grids and the smoothing

property of some classical methods. Computational results from different

sources, shows that multigrid methods are efficient in reducing smooth

errors by using coarser grids. The rate of convergence of these methods is

independent of the mesh size, a property that makes multigrid methods

superior to classical iterative methods.

The following table shows the order of different classical method, as well

as, the order of multigrid methods which is linear in N, where N is the

number of unknowns and ε is a given stopping criterion (tolerance).

Table 4.7[2]: Number of operations for different solvers for Poisson

 problem in 2D

Number of operations Method
O(N2) Gaussian elimination

O(N2logε) Jacobi iteration
O(N2 logε)Gauss-Seidel iteration

O(2
3

N logε)SOR

O(N logε)Multigrid (iterative)
O(N) Multigrid (FMG)

80

 References

1. Wesseling P. An introduction to Multigrid Methods. New York:

John Wiley & sons, 1992. 284pp.

2. Trottenberg U., Oosterlee C.W. and Schuller A., Multigrid.

Academic Press, 2001. 631pp

3. Hackbusch W. and Trottenberg U., Multigrid Methods. Springer-

Verlag, Berlin, 1982. 630pp

4. Briggs W.L., Henson V.E and McCormick S.F., A Multigrid

Tutorial. 2nd edition. SIAM (Society for Industrial and Applied

Mathematics), 2000. 193pp.

5. Walter A. Strauss, Partial Differential Equations. John Wiley &

sons, 1992. 425pp.

6. Kincaid D., Cheney W., Numerical Analysis. Mathematics of

Scientific Computing, American Mathematical Society, 1991. 690pp.

7. Wienands R., Joppich W., Practical Fourier Analysis for Multigrid

Methods. Chapman & Hall / CRC press. 2005. 212pp.

8. Saad Y. Iterative methods for Sparse Linear Systems. SIAM

(Society for Industrial and Applied Mathematics). 2000. 447pp.

9. Hackbusch W. and Trottenberg U., Multigrid Methods II. Springer-

Verlag, Berlin, 1986. 335pp.

10. Phillips G.M.M., Taylor P.J., Theory and Applications of

Numerical Analysis. 2nd edition, Elsevier. 1996. 447pp.

11. Demmel J. Applied Numerical Linear Algebra, SIAM (Society for

Industrial and Applied Mathematics). 1997. 411pp.

12. Stoer J., Bulisch R., Introduction to Numerical Analysis. 2nd

edition, VI. New York, 1993. 660pp.

81

13. Kress R., Numerical Analysis. Springer-Verlag. New York, 1998.

326pp.

14. McCormick F.S., Multigrid Methods. Marcel Dekker Inc., New

York. 1988. 282pp.

15. Rude U., Fully Adaptive Multigrid Methods. SIAM (Society for

Industrial and Applied Mathematics). 1993. 115pp.

16. Burden R.L., Faires J.D., Numerical Analysis. 5th edition. PWS,

Boston. 1993. 767pp.

17. Schatzman M., Numerical Analysis: a Mathematical Introduction.

Oxford University press 2002. 469pp.

18. Stuben K., Multigrid Tutorial. SCAI. 28pp.

19. Erkoc S. Fundamentals of Quantum Mechanics. CRC press

2006.40pp.

20. Bramble J. H. Multigrid Methods. John Wiley & sons, 1993. 178pp.

21. Dick E., Riemslaagh K., Vierendeels J. Multigrid Methods VI.

Springer-Verlag, Berlin, 2000.292pp.

22. Shi Z., Xue-jun X.U., Huang Y. Economical cascadic multigrid

method. China press springer. 2007. 16pp.

82

Appendix

Matlab Code for multigrid methods:

%MGLab V0.00beta Interactive Multigrid Package

% James Bordner and Faisal Saied
% Department of Computer Science
% University of Illinois at Urbana-Champaign
% 10 April 1995

 include_flags
 include_globals
 include_figs
 demo_globals

% Initialize parameter defaults

 set_defaults;

% == MAIN MENU =====================================

bgc = [0.9 0.9 1.0];

main_fig = figure('Position', main_position,...
 'Name', 'MGLab',...
 'NumberTitle', 'off', ...
 'Color','black');

% == MGLab Menu Item =================================

f_mglab=menu_header(main_fig,'MGLab','on','on','w');
 menu_item(f_mglab,'Run', 'off','on',bgc,'[sol1,resids1,its1]=run;');
 menu_item(f_mglab,'Show Params','off','on',bgc,'show_params;');
 menu_item(f_mglab,'Version Info','off','on',bgc,'version_info;');
 menu_item(f_mglab,'Reset','off','on',bgc,'set_defaults;');
 menu_item(f_mglab,'Restart','off','on',bgc,'close(main_fig); close;
MGLab');
 menu_item(f_mglab,'Quit','off','on',bgc,'close(main_fig); close');

83

% == Problem Menu Item =================================

f_problem=menu_header(main_fig,'Problem','on','on','w');

 menu_item(f_problem,'Poisson','on','on',bgc,...
 'problem_flag = POISSON;generate_matrix=1;');
 f_problem_1 = menu_item(f_problem,'Helmholtz', 'off','on',bgc,...
 'problem_flag = HELMHOLTZ;generate_matrix=1;prob_args(1) = -
10;');
 f_problem_11=menu_header(f_problem_1,'k = ','on','on','w');
 menu_item(f_problem_11,'-10','off','on',bgc,...
 'prob_args(1)=-10;');
 menu_item(f_problem_11,'-5','off','on',bgc,...
 'prob_args(1)=-5;');
 menu_item(f_problem_11,'-1','off','on',bgc,...
 'prob_args(1)=-1;');
 menu_item(f_problem_11,'0','off','on',bgc,...
 'prob_args(1)=0;');
 menu_item(f_problem_11,'1','off','on',bgc,...
 'prob_args(1)=1;');
 menu_item(f_problem_11,'5','off','on',bgc,...
 'prob_args(1)=5;');
 menu_item(f_problem_11,'10','off','on',bgc,...
 'prob_args(1)=10;');
 menu_item(f_problem_11,'10+ i','off','on',bgc,...
 'prob_args(1)=10+sqrt(-1);');
 f_problem_2 = menu_item(f_problem,'Convection-Diffusion',
'off','on',bgc,...
 'problem_flag=CONVECT_DIFFUSE;generate_matrix=1;');
 f_problem_21=menu_header(f_problem_2,'Lambda = ','on','on','w');
 menu_item(f_problem_21,'0','off','on',bgc,...
 'prob_args(1)=0;');
 menu_item(f_problem_21,'10','off','on',bgc,...
 'prob_args(1)=10;');
 menu_item(f_problem_21,'100','off','on',bgc,...
 'prob_args(1)=100;');
 menu_item(f_problem_21,'1000','off','on',bgc,...
 'prob_args(1)=1000;');
 f_problem_22=menu_header(f_problem_2,'Sigma = ','on','on','w');
 menu_item(f_problem_22,'0','on','on',bgc,...
 'prob_args(2)=0;');

84

 menu_item(f_problem_22,'5','off','on',bgc,...
 'prob_args(2)=5;');
 menu_item(f_problem_22,'10','off','on',bgc,...
 'prob_args(2)=10;');
 menu_item(f_problem_22,'20','off','on',bgc,...
 'prob_args(2)=20;');
 menu_item(f_problem_22,'50','off','on',bgc,...
 'prob_args(2)=50;');
 menu_item(f_problem_22,'100','off','on',bgc,...
 'prob_args(2)=100;');
 menu_item(f_problem_22,'-50','off','on',bgc,...
 'prob_args(2)=-50;');
 menu_item(f_problem_22,'-100','off','on',bgc,...
 'prob_args(2)=-100;');
 f_problem_3=menu_item(f_problem,'Cut Square', 'off','on',bgc,...
 'problem_flag = CUT_SQUARE;generate_matrix=1;prob_args(1) =
10;');
 f_problem_31=menu_header(f_problem_3,'Alpha = ','on','on','w');
 menu_item(f_problem_31,'0.001','off','on',bgc,...
 'prob_args(1)=0.001;');
 menu_item(f_problem_31,'0.01','off','on',bgc,...
 'prob_args(1)=0.01;');
 menu_item(f_problem_31,'0.1','off','on',bgc,...
 'prob_args(1)=0.1;');
 menu_item(f_problem_31,'1','off','on',bgc,...
 'prob_args(1)=1;');
 menu_item(f_problem_31,'10','off','on',bgc,...
 'prob_args(1)=10;');
 menu_item(f_problem_31,'100','off','on',bgc,...
 'prob_args(1)=100;');
 menu_item(f_problem_31,'1000','off','on',bgc,...
 'prob_args(1)=1000;');
 menu_item(f_problem,'Poisson-Boltzmann', 'off','off',bgc,...
 'problem_flag=POISSON_BOLTZMAN;generate_matrix=1;');
 f_problem_4=menu_header(f_problem,'Problem Size','off','on','w');
 menu_item(f_problem_4,' 7 ','off','on',bgc,...
 [['nx1=7;ny1=7;generate_matrix=1;generate_rhs=1;']';...
 ['coarse_level=min([coarse_level max_level(nx1)]);']']');
 menu_item(f_problem_4,' 15 ','off','on',bgc,...
 [['nx1=15;ny1=15;generate_matrix=1;generate_rhs=1;']';...
 ['coarse_level=min([coarse_level max_level(nx1)]);']']');

85

 menu_item(f_problem_4,' 31 ','off','on',bgc,...
 [['nx1=31;ny1=31;generate_matrix=1;generate_rhs=1;']';...
 ['coarse_level=min([coarse_level max_level(nx1)]);']']');
 menu_item(f_problem_4,' 63 ','off','on',bgc,...
 [['nx1=63;ny1=63;generate_matrix=1;generate_rhs=1;']';...
 ['coarse_level=min([coarse_level max_level(nx1)]);']']');
 menu_item(f_problem_4,'127 ','off','on',bgc,...
 [['nx1=127;ny1=127;generate_matrix=1;generate_rhs=1;']';...
 ['coarse_level=min([coarse_level max_level(nx1)]);']']');
 menu_item(f_problem_4,'255 ','off','on',bgc,...
 [['nx1=255;ny1=255;generate_matrix=1;generate_rhs=1;']';...
 ['coarse_level=min([coarse_level max_level(nx1)]);']']');

% == Solver Menu Item ==================================

f_solver=menu_header(main_fig,'Solver','on','on','w');

 menu_item(f_solver,'V-Cycle','off','on',bgc,...
 'solver_flag = VMG;');
 menu_item(f_solver,'PCG','off','on',bgc,...
 'solver_flag = PCG;');
 menu_item(f_solver,'BiCG-STAB','off','on',bgc,...
 'solver_flag = BICG_STAB;');
 menu_item(f_solver,'CGS','off','on',bgc,...
 'solver_flag = CGS;');
 menu_item(f_solver,'TFQMR','off','off',bgc,...
 'solver_flag = TFQMR;');

 f_solver_1=menu_item(f_solver,'GMRES(k)','off','on',bgc,...
 'solver_flag = GMRES;');
 f_solver_11=menu_header(f_solver_1,'k = ','on','on','w');
 menu_item(f_solver_11,'1','off','on',bgc,'restart=1;');
 menu_item(f_solver_11,'5','off','on',bgc,'restart=5;');
 menu_item(f_solver_11,'10','off','on',bgc,'restart=10;');
 menu_item(f_solver_11,'15','off','on',bgc,'restart=15;');
 menu_item(f_solver_11,'20','off','on',bgc,'restart=20;');

 f_solver_2 = menu_item(f_solver,'SOR','off','on',bgc,...
 'solver_flag = SOR;');
 f_solver_21=menu_header(f_solver_2,'omega = ','on','on','w');
 menu_item(f_solver_21,'1','off','on',bgc,'SOR_omega=1;');

86

 menu_item(f_solver_21,'1.1','off','on',bgc,'SOR_omega=1.1;');
 menu_item(f_solver_21,'1.2','off','on',bgc,'SOR_omega=1.2;');
 menu_item(f_solver_21,'1.3','off','on',bgc,'SOR_omega=1.3;');
 menu_item(f_solver_21,'1.4','off','on',bgc,'SOR_omega=1.4;');
 menu_item(f_solver_21,'1.5','off','on',bgc,'SOR_omega=1.5;');
 menu_item(f_solver_21,'1.6','off','on',bgc,'SOR_omega=1.6;');
 menu_item(f_solver_21,'1.7','off','on',bgc,'SOR_omega=1.7;');
 menu_item(f_solver_21,'1.8','off','on',bgc,'SOR_omega=1.8;');
 menu_item(f_solver_21,'1.9','off','on',bgc,'SOR_omega=1.9;');

 menu_item(f_solver,'Full-Multigrid','on','on',bgc,...
 'solver_flag = FMG;');

 f_solver_precon=menu_header(f_solver,'Preconditioner','on','on','w');
 menu_item(f_solver_precon,'V-Cycle','off','on',bgc,...
 'precon_flag = MG_CYCLE;');
 menu_item(f_solver_precon,'Jacobi','off','on',bgc,...
 'precon_flag = JACOBI;');
 menu_item(f_solver_precon,'Block-Jacobi','off','off',bgc,...
 'precon_flag = BLOCK_JACOBI;');
 menu_item(f_solver_precon,'Gauss-Seidel','off','on',bgc,...
 'precon_flag = GAUSS_SEIDEL;');
 menu_item(f_solver_precon,'ILU','off','off',bgc,...
 'precon_flag = ILU');
 menu_item(f_solver_precon,'SSOR','off','off',bgc,...
 'precon_flag = SSOR');
 menu_item(f_solver_precon,'None','off','on',bgc,...
 'precon_flag = NONE;');

 f_solver_stop=menu_header(f_solver,'Stopping Criteria','off','on','w');
 f_stop_1=menu_header(f_solver_stop,'Residual
Tolerance','on','off','w');
 menu_item(f_stop_1,'None','off','on',bgc,'rtol=0;');
 menu_item(f_stop_1,'1e-1','off','on',bgc,'rtol=1e-1;');
 menu_item(f_stop_1,'1e-2','off','on',bgc,'rtol=1e-2;');
 menu_item(f_stop_1,'1e-3','off','on',bgc,'rtol=1e-3;');
 menu_item(f_stop_1,'1e-4','off','on',bgc,'rtol=1e-4;');
 menu_item(f_stop_1,'1e-5','off','on',bgc,'rtol=1e-5;');
 menu_item(f_stop_1,'1e-6','off','on',bgc,'rtol=1e-6;');
 menu_item(f_stop_1,'1e-7','off','on',bgc,'rtol=1e-7;');
 menu_item(f_stop_1,'1e-8','off','on',bgc,'rtol=1e-8;');

87

 menu_item(f_stop_1,'1e-9','off','on',bgc,'rtol=1e-9;');
 menu_item(f_stop_1,'1e-10','off','on',bgc,'rtol=1e-10;');
 menu_item(f_stop_1,'1e-12','off','on',bgc,'rtol=1e-12;');
 menu_item(f_stop_1,'1e-14','off','on',bgc,'rtol=1e-14;');
 menu_item(f_stop_1,'1e-16','off','on',bgc,'rtol=1e-16;');
 f_stop_2=menu_header(f_solver_stop,'(Precon)Residual Tolerance',...
 'off','on','w');
 menu_item(f_stop_2,'None','off','on',bgc,'prtol=0;');
 menu_item(f_stop_2,'1e-1','off','on',bgc,'prtol=1e-1;');
 menu_item(f_stop_2,'1e-2','off','on',bgc,'prtol=1e-2;');
 menu_item(f_stop_2,'1e-3','off','on',bgc,'prtol=1e-3;');
 menu_item(f_stop_2,'1e-4','off','on',bgc,'prtol=1e-4;');
 menu_item(f_stop_2,'1e-5','off','on',bgc,'prtol=1e-5;');
 menu_item(f_stop_2,'1e-6','off','on',bgc,'prtol=1e-6;');
 menu_item(f_stop_2,'1e-7','off','on',bgc,'prtol=1e-7;');
 menu_item(f_stop_2,'1e-8','off','on',bgc,'prtol=1e-8;');
 menu_item(f_stop_2,'1e-9','off','on',bgc,'prtol=1e-9;');
 menu_item(f_stop_2,'1e-10','off','on',bgc,'prtol=1e-10;');
 menu_item(f_stop_2,'1e-12','off','on',bgc,'prtol=1e-12;');
 menu_item(f_stop_2,'1e-14','off','on',bgc,'prtol=1e-14;');
 menu_item(f_stop_2,'1e-16','off','on',bgc,'prtol=1e-16;');

 f_stop_3=menu_header(f_solver_stop,'Iteration Limit','off','on','w');
 menu_item(f_stop_3,' None','off','on',bgc,'max_it=0;');
 menu_item(f_stop_3,' 1','off','on',bgc,'max_it=1;');
 menu_item(f_stop_3,' 2','off','on',bgc,'max_it=2;');
 menu_item(f_stop_3,' 3','off','on',bgc,'max_it=3;');
 menu_item(f_stop_3,' 5','off','on',bgc,'max_it=5;');
 menu_item(f_stop_3,' 10','off','on',bgc,'max_it=10;');
 menu_item(f_stop_3,' 20','off','on',bgc,'max_it=20;');
 menu_item(f_stop_3,' 30','off','on',bgc,'max_it=30;');
 menu_item(f_stop_3,' 50','off','on',bgc,'max_it=50;');
 menu_item(f_stop_3,' 100','off','on',bgc,'max_it=100;');
 menu_item(f_stop_3,' 200','off','on',bgc,'max_it=200;');
 menu_item(f_stop_3,' 300','off','on',bgc,'max_it=300;');
 menu_item(f_stop_3,' 500','off','on',bgc,'max_it=500;');
 menu_item(f_stop_3,' 1000','off','on',bgc,'max_it=1000;');
 f_stop_4=menu_header(f_solver_stop,'Time Limit','off','off','w');
 menu_item(f_stop_4,'None','off','on',bgc,'max_time=0;');
 menu_item(f_stop_4,'1 sec','off','on',bgc,'max_time=1;');
 menu_item(f_stop_4,'5 sec','off','on',bgc,'max_time=5;');

88

 menu_item(f_stop_4,'10 sec','off','on',bgc,'max_time=10;');
 menu_item(f_stop_4,'30 sec','off','on',bgc,'max_time=30;');
 menu_item(f_stop_4,'1 min','off','on',bgc,'max_time=1*60;');
 menu_item(f_stop_4,'5 min','off','on',bgc,'max_time=5*60;');
 menu_item(f_stop_4,'10 min','off','on',bgc,'max_time=10*60;');
 menu_item(f_stop_4,'30 min','off','on',bgc,'max_time=30*60;');
 menu_item(f_stop_4,'1 hour','off','on',bgc,'max_time=60*60;');
 f_stop_5=menu_header(f_solver_stop,'MFlop Limit','off','off','w');
 menu_item(f_stop_5,'None','off','on',bgc,'max_mflop=0;');
 menu_item(f_stop_5,' 1','off','on',bgc,'max_mflop=1;');
 menu_item(f_stop_5,' 5','off','on',bgc,'max_mflop=5;');
 menu_item(f_stop_5,' 10','off','on',bgc,'max_mflop=10;');
 menu_item(f_stop_5,' 20','off','on',bgc,'max_mflop=20;');
 menu_item(f_stop_5,' 50','off','on',bgc,'max_mflop=50;');
 menu_item(f_stop_5,' 100','off','on',bgc,'max_mflop=100;');

% == MG Parameters ==================================

 f_solver_mg=menu_header(main_fig,'MG-Parameters','on','on','w');
 f_mg_1 = menu_header(f_solver_mg,'Number of Levels','on','on','w');
 menu_item(f_mg_1,'1','off','on',bgc,...
 'coarse_level=min([1,max_level(nx1)]); generate_matrix=1;');
 menu_item(f_mg_1,'2','off','on',bgc,...
 'coarse_level=min([2,max_level(nx1)]); generate_matrix=1;');
 menu_item(f_mg_1,'3','off','on',bgc,...
 'coarse_level=min([3,max_level(nx1)]); generate_matrix=1;');
 menu_item(f_mg_1,'4','off','on',bgc,...
 'coarse_level=min([4,max_level(nx1)]); generate_matrix=1;');
 menu_item(f_mg_1,'5','off','on',bgc,...
 'coarse_level=min([5,max_level(nx1)]); generate_matrix=1;');
 f_mg_2=menu_header(f_solver_mg,'Smoother','off','on','w');
 f_mg_21=menu_item(f_mg_2,'Weighted Jacobi','on','on',bgc,...
 'smooth_flag=WEIGHTED_JACOBI;');
 f_mg_211=menu_header(f_mg_21,'Weight = ','on','on','w');
 menu_item(f_mg_211,'1.00','off','on',bgc,'wt=1.0;');
 menu_item(f_mg_211,'0.95','off','on',bgc,'wt=0.95;');
 menu_item(f_mg_211,'0.90','off','on',bgc,'wt=0.90;');
 menu_item(f_mg_211,'0.85','off','on',bgc,'wt=0.85;');
 menu_item(f_mg_211,'0.80','off','on',bgc,'wt=0.80;');
 menu_item(f_mg_2, 'Gauss-Seidel','off','on',bgc,...
 'smooth_flag=GAUSS_SEIDEL;');

89

 menu_item(f_mg_2, 'Red/Black Gauss-Seidel','off','off',bgc,...
 'smooth_flag=RB_GAUSS_SEIDEL;');
 f_mg_22=menu_header(f_mg_2,'Pre-smoothings','on','on','w');
 menu_item(f_mg_22,'0','off','on','w','nu1=0;');
 menu_item(f_mg_22,'1','off','on','w','nu1=1;');
 menu_item(f_mg_22,'2','off','on','w','nu1=2;');
 menu_item(f_mg_22,'3','off','on','w','nu1=3;');
 menu_item(f_mg_22,'4','off','on','w','nu1=4;');
 menu_item(f_mg_22,'5','off','on','w','nu1=5;');
 f_mg_23=menu_header(f_mg_2,'Post-smoothings','off','on','w');
 menu_item(f_mg_23,'0','off','on','w','nu2=0;');
 menu_item(f_mg_23,'1','off','on','w','nu2=1;');
 menu_item(f_mg_23,'2','off','on','w','nu2=2;');
 menu_item(f_mg_23,'3','off','on','w','nu2=3;');
 menu_item(f_mg_23,'4','off','on','w','nu2=4;');
 menu_item(f_mg_23,'5','off','on','w','nu2=5;');

 f_mg_3=menu_header(f_solver_mg,'Restriction','off','on','w');
 menu_item(f_mg_3, 'Injection','off','on',bgc,...
 'restrict_flag=INJECTION;');
 menu_item(f_mg_3, 'Half Weighting','off','on',bgc,...
 'restrict_flag=HALF_WEIGHTING;');
 menu_item(f_mg_3, 'Full Weighting','off','on',bgc,...
 'restrict_flag=FULL_WEIGHTING;');
 menu_item(f_mg_3, 'Bilinear Adjoint','off','off',bgc,...
 'restrict_flag=BILINEAR_ADJOINT;');

 f_mg_4=menu_header(f_solver_mg,'Prolongation','off','on','w');
 menu_item(f_mg_4, 'Linear','off','on',bgc,...
 'interp_flag=LINEAR;');
 menu_item(f_mg_4, 'Cubic','off','on',bgc,...
 'interp_flag=CUBIC;');
 menu_item(f_mg_4, 'Operator-based','off','off',bgc,...
 'interp_flag=OPERATOR_BASED;');
 menu_item(f_mg_4, 'Explicit/Bilinear','off','off',bgc,...
 'interp_flag=EXPLICIT_BILINEAR;');

 f_mg_5=menu_header(f_solver_mg,'Coarse-grid Solver','off','on','w');
 menu_item(f_mg_5,'Sparse GE','off','on',bgc,...
 'coarse_solver_flag=DIRECT;');
 menu_item(f_mg_5,'Smoother','off','on',bgc,...

90

 'coarse_solver_flag=SMOOTHER;');
 menu_item(f_mg_5,'PCG','off','off',bgc,...
 'coarse_solver_flag = PCG;');
 menu_item(f_mg_5,'BiCG-STAB','off','off',bgc,...
 'coarse_solver_flag = BICG_STAB;');
 f_mg_51=menu_item(f_mg_5,'GMRES(k)','off','off',bgc,...
 'coarse_solver_flag = GMRES;');
 f_mg_511=menu_header(f_mg_51,'k = ','on','on','w');
 menu_item(f_mg_511,'1','off','on',bgc,'restart=1;');
 menu_item(f_mg_511,'5','off','on',bgc,'restart=5;');
 menu_item(f_mg_511,'10','off','on',bgc,'restart=10;');
 menu_item(f_mg_511,'15','off','on',bgc,'restart=15;');
 menu_item(f_mg_511,'20','off','on',bgc,'restart=20;');

 f_mg_6=menu_header(f_solver_mg,'Coarse-grid
Operator','off','on','w');
 menu_item(f_mg_6,'Standard 5pt','off','on',bgc,...
 'coarsening_flag=STANDARD;');
 menu_item(f_mg_6,'Galerkin coarsening','off','off',bgc,...
 'coarsening_flag=GALERKIN;');
 menu_item(f_mg_6,'Coeff. Averaging','off','off',bgc,...
 'coarsening_flag = AVERAGING;');

 f_mg_7=menu_header(f_solver_mg,'MG Cycle','off','on','w');
 menu_item(f_mg_7,'V-Cycle','off','on',bgc,...
 'cycle_flag=V_CYCLE;');
 menu_item(f_mg_7,'W-Cycle','off','on',bgc,...
 'cycle_flag=W_CYCLE;');
 menu_item(f_mg_7,'Half V-Cycle','off','off',bgc,...
 'cycle_flag=HALF_V_CYCLE;');

% == Results Menu Item ==================================

f_results=menu_header(main_fig,'Visualize','on','on','w');

 menu_item(f_results,'Convergence History','off','on',bgc,...
 ' subplot(1,1,1);semilogy(its1,resids1,''r-'',its1,resids1,''wo'')');
 menu_item(f_results,'Computed Solution (surf)','off','on',bgc,...
 ' subplot(1,1,1);surf(reshape(sol1,nx1,ny1));shading interp;');
 menu_item(f_results,'Computed Solution (pcolor)','off','on',bgc,...
 ' subplot(1,1,1);pcolor(reshape(sol1,nx1,ny1));shading interp;');

91

 f_results_1=menu_header(f_results,'X-Axis','off','on','w');
 menu_item(f_results_1,'Iterations','off','on',bgc,...
 'x_axis_flag=ITERATIONS;');
 menu_item(f_results_1,'Time','off','off',bgc,...
 'x_axis_flag=TIME;');
 menu_item(f_results_1,'MFlops','off','off',bgc,...
 'x_axis_flag=MFLOPS;');
 f_results_2=menu_header(f_results,'Y-Axis','off','on','w');
 menu_item(f_results_2,'Residual','off','on',bgc,...
 'y_axis_flag=ITERATIONS;');
 menu_item(f_results_2,'Precon. Residual','off','off',bgc,...
 'y_axis_flag=RESIDUAL;');
 menu_item(f_results_2,'MFlops','off','off',bgc,...
 'y_axis_flag=PRECON_RESIDUAL;');

f_demos=menu_header(main_fig,'Demos','on','on','w');
 menu_item(f_demos,'Smoothers','off','on',bgc,'demo1;');
 menu_item(f_demos,'Fourier analysis','off','on',bgc,'demo2;');
 menu_item(f_demos,'Truncation error','off','on',bgc,'demo3;');
%MG_CYCLE Multigrid cycle algorithm
%
% U_OUT = MG_CYCLE(LEVEL, B, U_IN) uses the multigrid cycle
defined
% by the global variable "cycle_flag" to recursively solve the linear
% system AX=B at the given level. If the optional starting value U_IN
% is not passed then U_IN is set to 0's.
%
% Accesses global variables in "include_flags"

% James Bordner and Faisal Saied
% Department of Computer Science
% University of Illinois at Urbana-Champaign
% 10 April 1995

function u_out = mg_cycle(level, b, u_in)

include_flags

% Use the zero vector for u_in as the default

if nargin == 2,

92

 u_in = zeros(size(b));
end

if (cycle_flag == V_CYCLE)
 u_out = vmg_cycle(level, b, u_in);
elseif (cycle_flag == W_CYCLE)
 u_out = wmg_cycle(level, b, u_in);
elseif (cycle_flag == HALF_V_CYCLE)
 u_out = halfvmg_cycle(level, b, u_in);
end
%RESIDUAL Compute the residual at the given level.
%
% R = RESIDUAL(LEVEL, B, U) returns the residual R of the system
% AU=B at the given grid level.
%
% Accesses global variables in "include_globals"

% James Bordner and Faisal Saied
% Department of Computer Science
% University of Illinois at Urbana-Champaign
% 10 April 1995

function r = residual(level, b, u)

include_globals

eval(['r = b - A', num2str(level), ' * u;']);
%RESTRICT Transfer residual from the current grid to the next coarser
grid.
%
% RHS_C = RESTRICT(LEVEL,R) uses the restriction scheme
defined by
% "restrict_flag" to transfer the vector R on the current level LEVEL
% to the vector RHS_C on the next coarser level LEVEL+1.
%
% Accesses global variables in "include_flags"
% Accesses global variables in "include_globals"

% James Bordner and Faisal Saied
% Department of Computer Science
% University of Illinois at Urbana-Champaign

93

% 10 April 1995

function rhs_c = restrict(level,r)
include_globals
extract_globals
include_flags

% 2-D RESTRICTIONS

 nx0_f = nx_f+2;
 ny0_f = ny_f+2;
 N0_f = nx0_f*ny0_f;
 dx=1;
 dy=nx0_f;

% Generate r0 by padding r with boundary elements (0's)

 r0 = zeros(N0_f,1);
 for iy=1:ny_f
 for ix=1:nx_f
 r0(nx0_f+1 + ix + nx0_f*(iy-1)) = r(ix+nx_f*(iy-1));
 end
 end

% Generate indicies of corresponding coarse vector elements in fine vector

 I = zeros(N_c,1);
 for iy=1:ny_c
 for ix=1:nx_c
 I(ix + nx_c*(iy-1)) = 2*ix + 2*iy*nx0_f + 1;
 end
 end

if restrict_flag == INJECTION

 rhs_c = r0(I);

elseif restrict_flag == HALF_WEIGHTING

 rhs_c = .5*r0(I) + ...
 .125*(r0(I+dx) + r0(I-dx) + r0(I+dy) + r0(I-dy));

94

elseif restrict_flag == FULL_WEIGHTING
 rhs_c = .25*r0(I) + ...
 .125*(r0(I+dx) + r0(I-dx) + r0(I+dy) + r0(I-dy)) + ...
 .0625*(r0(I+dx+dy) + r0(I-dx+dy) + r0(I+dx-dy) + r0(I-dx-dy));

elseif restrict_flag == BILINEAR_ADJOINT

 eval(['PROLONG = ARRAY',num2str(level), ';']);
 rhs_c = PROLONG' * r;

end

rhs_c = 4*rhs_c;

%SMOOTH Smooth a vector.
%
% U_OUT = SMOOTH(LEVEL, B, U, FLAG) applies a smoother
defined by the
% global flag "smooth_flag" and the system AU=B to the vector U on
the
% given grid level. FLAG is set to 'pre', 'post', or 'coarse' and
% defines the number of smoothings applied.
%
% Accesses global variables in "include_globals"
% Accesses global variables in "include_flags"

% James Bordner and Faisal Saied
% Department of Computer Science
% University of Illinois at Urbana-Champaign
% 10 April 1995

function u_out = smooth(level, b, u, flag)

include_globals
include_flags

if strcmp(flag, 'pre') == 1
 nu = nu1;
elseif strcmp(flag, 'post') == 1
 nu = nu2;

95

elseif strcmp(flag, 'coarse') == 1
 nu = 30;
end

eval(['A = A',num2str(level),';']);

if smooth_flag == WEIGHTED_JACOBI

 D = wt * (1./spdiags(A,[0]));
 for i = 1:nu
 u = u + D.*(b - A*u);
 end

elseif smooth_flag == GAUSS_SEIDEL

 L = tril(A);
 for i = 1:nu
 u = u + L\(b - A*u);
 end

elseif smooth_flag == RB_GAUSS_SEIDEL

 eval(['N = N',num2str(level),';']);
 red = [1:2:N]; black = [2:2:N];
 D = 1./spdiags(A,[0]);

 for i = 1:nu
 u(red) = (b(red) - A(red,black) * u(black)) .* D(red);
 u(black) = (b(black) - A(black,red) * u(red)) .* D(black);
 end

end

u_out = u;

%SOLVE Solve a linear system.
%
%[X,RESIDS,ITS]=
SOLVE(A,B,X0,RTOL,PRTOL,MAX_IT,MAX_TIME,MAX_MFLOP,...
% RESTART) applies a solver defined by "solver_flag", with the given
% tolerances and limits, to a linear system AX=B. The solution X,

96

% residual history RESIDS, and iterations ITS are returned.
% Accesses global variables in "include_flags"

% James Bordner and Faisal Saied
% Department of Computer Science
% University of Illinois at Urbana-Champaign
% 10 April 1995

function [x,resids,its] = solve(A,b,x0,...
 rtol,prtol,max_it,max_time,max_mflop,restart)

include_flags

disp (sprintf('Running...\n'));
if solver_flag == VMG
 [x,resids,its] = vmg (A,b,x0,rtol,prtol,max_it,max_time,max_mflop);
elseif solver_flag == FMG
 [x,resids,its] = fmg (A,b);
elseif solver_flag == PCG
 [x,resids,its] = pcg (A,b,x0,rtol,prtol,max_it,max_time,max_mflop);
elseif solver_flag == BICG_STAB
 [x,resids,its] = pbicgstab
(A,b,x0,rtol,prtol,max_it,max_time,max_mflop);
elseif solver_flag == CGS
 [x,resids,its] = pcgs (A,b,x0,rtol,prtol,max_it,max_time,max_mflop);
elseif solver_flag == GMRES
 [x,resids,its] = pgmres
(A,b,x0,rtol,prtol,max_it,max_time,max_mflop,restart);
elseif solver_flag == SOR
 [x,resids,its] = sor (A,b,x0,rtol,prtol,max_it,max_time,max_mflop);
end

fprintf('Relative residual = %g \n', norm(b-A*x))
disp (sprintf('Done.\n'));
%VMG_CYCLE V-Cycle algorithm.
% B,
% U_OUT = VMG_CYCLE(LEVEL,U_IN) uses the V-cycle to
recursively
% solve the linear system AX=B at the given level. If the optional
% starting value U_IN is not passed then U_IN is set to 0's.
%

97

% James Bordner and Faisal Saied
% Department of Computer Science
% University of Illinois at Urbana-Champaign
% 10 April 1995

function u_out = vmg_cycle(level, b, u_in)

% Use the zero vector for u_in as the default

if nargin == 2,
 u_in = zeros(size(b));
end

if level == coarsest(level)
 u_out = coarse_grid_solve(level, b);
else
 u = smooth(level, b, u_in, 'pre');
 r = residual(level, b, u);
 b_c = restrict(level, r);
 u_c = vmg_cycle(level+1, b_c);
 correct = interpolate(level, u_c);
 u = u + correct;
 u_out = smooth(level, b, u, 'post');
end
%WMG_CYCLE W-Cycle algorithm.
%
% U_OUT = WMG_CYCLE(LEVEL, B, U_IN) uses the W-cycle to
recursively
% solve the linear system AX=B at the given level. If the optional
% starting value U_IN is not passed then U_IN is set to 0's.
%

% James Bordner and Faisal Saied
% Department of Computer Science
% University of Illinois at Urbana-Champaign
% 10 April 1995

function u_out = wmg_cycle(level, b, u_in)
% Use the zero vector for u_in as the default

if nargin == 2,

98

 u_in = zeros(size(b));
end

if level == coarsest(level)
 u_out = coarse_grid_solve(level, b);
else
 u = smooth(level, b, u_in, 'pre');
 r = residual(level, b, u);
 b_c = restrict(level, r);
 u_c = wmg_cycle(level+1, b_c);
 if (level < coarsest(level)),
 u_c = wmg_cycle(level+1, b_c, u_c);
 end
 correct = interpolate(level, u_c);
 u = u + correct;
 u_out = smooth(level, b, u, 'post');
end

 جامعة النجاح الوطنية

 كلية الدراسات العليا

 طرق متعددة الشبكات للمعادلات التفاضلية الجزئية الناقصة

 إعداد

 رانية طالب محمد ونان

 إشراف

 أنور صالح. د

كمالا لمتطلبات درجة الماجستير في الرياضيات بكليـة الدراسـات قدمتْ هذه الأطروحة است

 .فلسطين. العليا في جامعة النجاح الوطنية في نابلس

2010

ب

 طرق متعددة الشبكات للمعادلات التفاضلية الجزئية الناقصة

 إعداد

 رانية طالب محمد ونان

 إشراف

 أنور صالح. د

 الملخص

. زئية تظهر في الأنظمة الرياضية التي تصف الظواهر الطبيعيةالمعادلات التفاضلية الج

في هذه الاطروحة ستتم مراجعة عامة . طرق مختلفة يمكن استعمالها لحل مثل هذه المعادلات

الطرق التقليدية المستخدمة هي . للطرق التقليدية وكذلك الطرق المتعددة الشبكات الأحدث

- طريقة جاكوبي وطريقة جاوس. SORطريقة سايدل و -طريقة جاكوبي وطريقة جاوس

سايدل تعتبر جيدة في تنعيم الخطأ ولكن ليس في تصغيره، صفة التنعيم حفزت العمل على

 .الطرق متعددة الشبكات

هذه الدراسة بينت ان . معادلة بواسون في البعدين الاول والثاني استخدمت كنموذج لهذه الدراسة

هذه الخاصية جعلت الطرق متعددة . مد على البعد بين النقاطسرعة التقارب لهذه الطرق لا تعت

 .الشبكات مسَرع جيد للطرق التقليدية

