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List of Abbreviations 

Symbol Abbreviation 

IBP Ibuprofen 

Ce The equilibrium concentration of the adsorbate (mg/L). 

Co The initial concentration of the adsorbate (mg/L). 

qe The amount of adsorbate per unit mass of adsorbent 

(mg/g). 

KL Langmuir isotherm constant (L/mg). 

Qo maximum monolayer coverage capacity at equilibrium 

(mg/g). 

V The volume of the solution (L). 

M The mass of the adsorbent (g). 

RL Dimensionless constant separation factor  

KF The Freundlich constant related to adsorption capacity 

(mg/g). 

N The heterogeneity coefficient that gives an indication of 

how favorable the adsorption process (g/L).  

qt The mass of adsorbate per unit mass of adsorbent at time 

t (mg/g). 

K1 The rate constant of pseudo first-order adsorption model 

(mg.g-1.min-1). 

K2 The equilibrium rate constant of pseudo second-order 

adsorption model (g.mg-1.min-1). 

Kid The  Intra-Particle diffusion rate constant (mg/g.min1/2). 

Z Constant that gives an information about the thickness of 

the boundary layer (mg/g). 

∆G°   Standard Gibbs free energy change (J). 

∆H°  Standard Enthalpy change (J). 

∆S° Standard Entropy change (J/K). 

T The absolute temperature (K). 

R The universal gas constant (8.314 J.mol-1.K-1). 

Kd The thermodynamic equilibrium constant (L/g). 

Cs Cellulose 

NCS Nanocellulose 

MNCs Magnetic Nanocellulose 

AgNCs Silver Nanocellulose 

CNF Cellulose nanofibrils 

CNC  Cellulose nanocrystals 

CNFs Cellulose nanofibers 

CRG Carrageenan  
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Κ-CRG Kappa Carrageenan 

CRG/NCs Carrageenan composites with Nanocellulose 

CD Cyclodextrin 

β-CD Betacyclodextrin 

Ac β-

CD/NCs 

Acetyl betacyclodextrin composites with nanocellulose 

Bz β-

CD/NCs 

Benzoyl betacyclodextrin composites with nanocellulose 

MB methylene blue dye  

SEM Scanning Electron Microscopy 

NSAID Non Steroidal Anti-Inflammatory drugs 

LC-

MS/MS 

Liquid Chromatography tandem mass  

NMR Nuclear Magnetic Resonance  

XRD X-Ray Diffraction 

FTIR Fourier Transform Infrared 

HPLC High Performance Liquid Chromatography 

PAD Photodiode Array Detector 

APMP Alkaline peroxide mechanical pump 

AgNPs Silver Nanoparticles 

CNCs Cellulose nanocrystals 

MFC Microfibrillated cellulose  

FeNP Iron nanoparticles 

AC Activated Carbon  

SPE Solid Phase Extraction 

ppm Part per million 

AAS  Atomic Absorption Spectroscopy 

TGA Thermal Gravimetric Analysis 

UV Ultra-Violet 
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Abstract 

Large number of emergent pollutants from pharmaceutical industries leach 

every day to soil and ground waters without treatment. This will lead to 

different health problems to both human beings and living organisms. The 

major problem is try to remove this pollutant like Ibuprofen (IBP) using 

adsorption. 

Many treatment options were inspected for extract or remove the 

pharmaceuticals, include both conventional (e.g., biodegradation, 

adsorption, activated sludge) and advanced (e.g., membrane, microfiltration, 

ozonation) processes [1] . 

In our study we prepared three types of adsorbents to extract the emergent 

drug (Ibuprofen) from aqueous solution, the first type is cellulose derivatives 

(Cellulose Nanocrystalline (CNC), Magnetic Cellulose Nanocrystalline 

(MNCs), and Silver Cellulose Nanocrystalline(AgNCs)). The cellulose was 

converted to CNC, and then it was converted to MNCs and AgNCs. The 

second adsorbents are Carrageenan (CRG) material compared with CRG 

composites with CNC. Final adsorbents were prepared using beta-

cyclodextrin (β-CD), it was converted to Acetyl β-CD and Benzoyl β-CD. 

These two prepared adsorbents were then composites with CNC. The 
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Cellulose Nanocrystalline, Acetyl β-CD and Benzoyl β-CD were analyzed 

by using IR. That was the first objective of my work. 

A second one was adsorption of the Ibuprofen from aqueous solution, using 

these prepared materials as an adsorbent.  However, the NCs, AgNCs, 

CRG/NCs Benzoyl β-CD/NCs showed excellent extraction efficiency 

toward IBP relative to MNCs and CRG, but the Acetyl β-CD/NCs showed 

good efficiency. Five variables were monitored and evaluated during the 

extraction process: time, pH, temperature, dosage, and IBP concentrations. 

The adsorption thermodynamics of the adsorbents were evaluated, all of 

them followed Langmuir isotherm model and pseudo second order. The 

negative ∆G° values indicate that the adsorption is favorable and 

spontaneous at different temperatures. The positive values of ∆H° reflect an 

endothermic adsorption and that the adsorption is favored at high 

temperature. While ΔS0 values were positive indicating the disorder at the 

solid/solution interface increased during adsorption process.
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Chapter One 

1.1 Introduction and Background 

Water pollution considered as one of the global environmental challenges in 

the 21st century due to discharges of toxic substances from anthropogenic 

activities. Many new chemicals and their byproduct were detected in waste 

water all over the world [2]. 

Toxic water pollution affects more than 200 million people worldwide, 

according to Pure Earth organization (a non-profit environmental 

organization). In some of the world’s worst polluted places, babies are born 

with birth defects, children have lost 30 to 40 IQ points, and life expectancy 

may be as low as 45 years because of cancers and other diseases [3].  

In the last three decades the influence of the chemical pollution has almost 

exclusively on the conventional pollutants. However, the grow of uses of 

pharmaceuticals worldwide, called emerging contaminants, has become a 

huge environmental problem [4]. 

Pharmaceuticals emerging contaminants have high presence in environment, 

and they are known to give side effects on the human and other living 

organisms [5]. 

The exposure to pharmaceutical residues is inevitable, they are present in all 

ecosystems, particularly Non Steroidal Anti-Inflammatory Drugs (NSAID) 

and their mixtures. In fact, the impact studies of these compounds on 

microorganisms are infrequent such as IBP [6]  
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The IBP used for relief of symptoms of arthritis, primary dysmenorrheal, and 

fever and as an analgesic. Ibuprofen is known to have blood-thinning effect [7]. 

The removing of IBP from water is an important issue to process in all 

analysis research and the development of effective technologies for removal.  

The biological treatment such as activated sludge and biological filters are 

unable to remove this emerging contaminants completely,  so most of these 

contaminants remains soluble like IBP [8-10]. 

Adsorption has become a popular and widely used technique for the removal 

of different pollutants. 

Of the more common adsorbents, activated carbon continues to be the most 

widely used adsorbent for the purification of water with low pollutant 

concentration [11]. 

19 drugs were Investigated using LC-MS in Almadinah Almunawarah, 

Saudi Arabia in municipal wastewater before and after treatment [12]. 

Highly sensitive and selective analysis technique used for quantified 

different pharmaceutical ( such as Ibuprofen, paracetamol, etc.) compounds 

in sewage effluents and surface waters using LC-MS/MS technique, after 

simultaneous extraction and pre-concentration has developed [13]. 

1.2 Adsorption and Adsorbent 

To the best of our knowledge, that the use of the natural cellulose from cotton 

for adsorption based on many derivatives such as (Nanocellulose, Magnetic 

nanocellulose, Silver nanocellulose) and other different materials such as 

(Carrageenan, Acetyl beta-cyclodextrin, Benzoyl beta-cyclodextrin) 
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composites with NCs as an adsorbent toward removal of Ibuprofen (IBP) 

have not been investigated yet. 

Adsorption is a potential method for the removal of pharmaceuticals and 

personal care products, considering the mild operation conditions [14], in 

contrast to the other methods which have the disadvantages of high energy 

consumption and the formation of residual byproducts such as Ozonation 

[15-16].  

The surface accumulation of adsorbate on adsorbent is called adsorption. 

Adsorbate may be liquid, gas, or dissolved solids. While adsorbent may be a 

solid or a liquid material [17]. 

Various modification methods have been used and discussed to prepare 

modified cellulose-based adsorbents for their subsequent application in 

water treatment [18]. 

Pill Won Seo studied the adsorption of typical pharmaceuticals and personal 

care products such as naproxen, ibuprofen and oxybenzone from aqueous 

solutions, by using the highly porous metal organic framework with and 

without functionalization [14]. 

1.3 Cellulose as natural adsorbents (Cs), cellulose Nanocrystalline 

(CNC), magnetic nanocellulose(MNCs) and silver nanocellulose 

(AgNCs): 

In this study, cotton as natural cellulose (Cs) was used for making 

nanocellulose (NCs) and magnetic nanocellulose (MNCs) and silver 

nanocellulose (AgNCs), and composite of nanocellulose with other 
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materials. These materials were used  for the removal of Ibuprofen (IBP) 

from wastewater treatment plants.  

When discuss about the cellulose-based adsorption materials you always talk 

about the “Lowest cost and environmentally friendly”  materials. 

Cellulose is the most abundant biopolymer resource in the world. It is widely 

recognized as a renewable and biodegradable raw material with applicable 

advantages and properties. Cellulose consisted of β-1,4-linked anhydro-D-

glucose units with the formula  (C6H10O5)n, in which the glucoses are 6-

carbon rings linked by single oxygen between C1 and C4 . Each glucose is 

corkscrewed 180° to its neighbors thus two glucoses are usually taken as one 

unit (Figure 1 ). The polymerization degree on each chain more than 20,000 

(dependent on the source) [19-22]. 

 

Figure 1:  (a) Structure of single cellulose chain repeat unit, the direction of 1-4 linkage 

and intra chain hydrogen bonding are shown; (b) Schematic of cellulose microfibers with 

crystalline and amorphous regions; (c) Schematic of cellulose nanocrystals after 

amorphous regions are dissolved by acid hydrolysis [21]. 
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The hydrogen bonds between the cellulose chains and van der Waals forces 

between the glucose units lead to the formation of crystalline regions in 

cellulose [23]. 

Cotton represents an excellent model system to investigate the structure of 

cellulose in plant. The structure of cellulose microfibrils in mature cotton 

fibres have been studied by multitechnique, present a Iβ-rich crystalline 

structure with limited surface disorder [24]. 

Only a small amount of cellulose used is used to produce textile fibers, films 

and a larger number of cellulose derivatives, such as cellulose ethers and 

esters [25-28].  

Large specific surface area, high specific strength and modulus, low 

density, reactive hydroxyl groups that can facilitate grafting chemical 

species to tailor the surface properties, non-toxic character, 

biocompatibility and biodegradable properties are some useful features of 

the CNCs [29-32,25].  

1.3.1 Nanotechnology 

Nanotechnology and applications may play an important role in resolving 

issues relating to water quality, due to the large surface areas and their size- 

and shape-dependent catalytic properties [33]. 

Nanotechnology is the understanding and controlling matter at dimensions 

about 1-100 nm may used in many novel applications.  

Nanomaterials from cellulose and lignocelluloses are very important in the 

nanotechnology field [34]. Nanomaterials and its derivatives with various 
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different chemical groups increase their affinity  toward a given compound, 

also have a high capacity and selectivity for organic, inorganic solutes, toxic 

metal ions and inorganic anions in aqueous solutions [33]. 

1.3.1.1 Cellulose Nanocrystalline (CNC) 

Cellulose nanocrystals are derived from acid hydrolysis of wood fiber, plant 

fiber, microfibrillated cellulose, microcrystalline cellulose or nanofibrillated 

cellulose [35-37]. 

The main sources of CNC are wood, cotton, tunicate, bacterial, ramie and 

sisal cellulose. CNC are mostly produced from wood and cotton due to their 

abundant supply, high cellulose content and uniformity [38]. 

Nanocellulose, can also referred as crystallites, nanocrystals, whiskers, 

nanofibrils, and nanofibers, has been the subject of extensive research 

covering the isolation, characterization, and applications of various forms of 

cellulose, so it’s classified as in table 1.1. 
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Table 1.1: Classification of Nanocellulose [39] 

Type of 

Cellulose 

Microfibrillated 

cellulose (MFC) 

Cellulose 

nanocrystals 

(CNC) 

Cellulose 

nanofibrils 

(CNF) 

Bacterial 

nanocellulose 

(BNC) 

Synonyms 

Microfibrillated 

cellulose 

nanofibrils and 

microfibrils 

nanofibrillated 

cellulose 

Nanocrystalline 

cellulose, 

whiskers,rod like 

cellulose 

microcrystals 

Nanofibrillated 

cellulose 

Bacterial 

cellulose, 

microbial 

cellulose, 

biocellulose 

Sources 

Wood, sugar 

beet, potato 

tuber, hemp, flax 

delamination of 

wood pulp 

Wood, cotton, 

hemp, flax, wheat 

straw,mulberry 

bark, ramie, 

Avicel, tunicin 

Wood, cotton, 

hemp, flax, wheat 

straw, ramie, 

sugar beet, potato 

tuber, tunicin, 

algae, certain 

bacteria 

Low-

molecular-

weight sugars 

and alcohols 

Formation 

and size 

Mechanical 

pressure before 

and/or after 

chemical or 

enzymatic 

treatment, 

diameter: 5-60 

nm 

Cellulose from 

algae and bacteria 

acid hydrolysis of 

cellulose from 

many sources 

diameter: 5-70 

nm length: 100-

250 nm (from 

plant celluloses); 

100 nm to several 

micrometers 

Isolated either 

through 

homogenization of 

cellulose 

feedstocks or 

directly produced 

by bacteria 

diameter: 5-100 

nm length: several 

microns 

Synthesis 

using bacterial 

diameter: 20-

100 nm; 

different types 

of nanofiber 

networks 

Cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) (see figure 2) 

are rod-like nanoparticles, with lengths varying between 100 and 2000 nm, 

and diameters ranging between 2 and 20 nm. Preparation processes usually 

involve acid hydrolysis using hydrochloric or sulfuric acid [40].  



8 

 

Figure 2: Schematic illustration for cellulose Nanofibrils (CNF) and Cellulose 

Nanocrystals (CNC) which produced from fiber cell walls by mechanical and chemical 

treatments [40-41]. 

Cellulose Nanocrystals (CNCs) and Cellulose Nanofibers (CNFs) were 

synthesized from absorbent cotton, characterized using FTIR, XRD, SEM, 

BET, and zeta potential. Surface charges of the celluloses were highly 

negative and the CNCs had higher negativity than CNFs [42]. 

CNCs have been successfully added to a wide variety of natural and synthetic 

polymers [43] and have been shown to modify composite properties. CNCs 

are a particularly attractive nanoparticle because they have low 

environmental, health, and safety risks, are inherently renewable, 

sustainable, and carbon-neutral like the sources from which they are 

extracted, and have the potential to be processed in industrial-scale quantities 

at low costs [44]. 



9 

NCFs constructed as a kind of longer and entangled network with diameter 

of 20–90 nm from poplar Alkaline peroxide mechanical pump (APMP) by 

using high intensity ultrasonication [45]. 

Nanocellulose was extracted from cotton (Gossypiumhirsutum) linters and 

characterized and subjected to electronic microscopy, thermal analysis, X-

ray diffractometry, light scattering, and contact angle [46].  

Jindrayani studied the use of nanocellulose and its modified forms for the 

wastewater treatment [47]. 

1.3.2 Magnetic nanocomposites 

A composite is a combination of two or more materials with diverse 

physical and chemical properties. Nanocomposite materials are 

composed of two phases: the continuous phase known as matrix and the 

dispersed phase known as reinforced materials [48,49]. 

A few studies have been carried out on nanocomposites applied to 

wastewater treatment. Mahdavian et al. investigated the ability 

of magnetite nanoparticles functionalized with APTES ((3-aminopropyl) 

triethoxysilane) and acryloyl chloride (AC) to adsorb heavy metal cations 

such as Cd2+, Pb2+; Ni2+ and Cu2+ [50].  

Ozmen et al. studied the capacity of magnetite nanoparticles functionalized 

with APTES and glutaraldehyde (GA) to remove Cu (II) from water [51]. 
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1.3.2.1Magnetic nanocellulose 

Nanocellulose, Fe3O4, (magnetic- nanocellulose) were synthesized, and 

characterized by XRD, TEM, PSD, SEM, EDX, VSM and FTIR. The Hg (II) 

uptake on Fe3O4-nanocellulose and investigated by 14 isotherm models, 12 

kinetic models, adsorption activation energy and thermodynamic of 

adsorption [52]. 

Precipitation of nano-sized ferrite (Fe3O4 and CoFe2O4) particles with the 

presence of cellulose fibers has also been used to produce films with good 

magnetic properties [53].  

Arsenate (As(V)) removal from aqueous solutions by novel adsorbent, 

magnetic iron nanoparticles modified microfibrillated cellulose(MFC) , Iron 

nanoparticle modified MFC have a magnetic properties so it was considered 

as an excellent adsorbent material due to high surface area and good 

adsorption capacity [54].  

Magnetic Nanocellulose (MNCs) have been used for adsorption of inorganic 

[55] and organic analytes, because they have a wide range of applications 

[56,57]. 

The determination of Sudan dyes (Sudan I, Sudan II, Sudan III and Sudan IV) 

in food samples by using two methods, both methods use nano adsorbent for 

the adsorption which is Nanocellulose (NCs) extracted from bleached argan 

press cake (APC), one of the methods involves NCs was modified by magnetic 

nanoparticles before the adsorption of Sudan dyes [56]. 

It should be noted that some of emerging pollutants such as Paracetamol (PAR), 

Ibuprofen (IBU), Naproxen (NAP) and Diclofenac (DIC) have been adsorbed 
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from natural waters by using the Magnetic Nanocellulose (MNCs) coated with 

1-butyl-3-methylimidazolium hexafluoro phosphate ionic liquid [58]. 

1.3.3 Silver - Cellulose nanocomposites  

1.3.3.1 Silver Nanoparticles 

Silver nanoparticles has attracted scientific 59 interest due to bacterial 

resistance to antibiotics, and many applications of Ag-NPs in water-, air- and 

surface- disinfection were described [59].  

Silver considered as antimicrobial agent in which could be biologically 

transferred into silver nanoparticles and used as antimicrobial agent against 

multidrug resistant microbes [60-63]. 

The research on silver composites is still focused on medical applications [64]. 

Silver nanomaterials exhibit a broad spectrum biocides activity toward 

bacteria, fungi, viruses, and algae [65]. 

The silver nanoparticles damaging the bacterial membranes when it forms a 

free radical [66,67].  

1.3.3.2 Silver Nanocellulose 

Nanocomposites of surfactant modified cellulose nanocrystals (s-CNCs) 

with silver nanoparticles (AgNPs) in the polylactic acid (PLA) matrix has 

been investigated in terms of morphological, mechanical, thermal and 

antibacterial response [68]. This combination of (s-CNC) with (AgNPs) 

produced an efficient barrier effect due to the well dispersion of the fillers 
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[69]. So it would be an efficient compound for food packaging applications 

which requires an antibacterial effect constant. 

H. Liu Studied the AgNPs composite with carboxylated CNC for employed 

as the labeled DNA probe for the identification of the complementary target 

DNA sequence by a selective and sensitive method [70]. 

Arcot R. Lokanathan studied the CNC composite with silver nanoparticle 

synthesis and elucidate the effect of CNC surface chemistry in nanoparticle 

formation and nucleation in the presence of borohydride reduction [71]. 

Cellulose nanofibers (CNFs) coated with silver nanoparticles (AgNPs) were 

developed. The flexible CNF-AgNPs films are effective substrates for SERS 

analysis. The CNF-AgNP films can be used to rapidly detect pesticides in 

fruits [72]. 

The production of silver nanoparticles composite with bacterial cellulose 

(BC) synthesized and the properties were studied, and reported as very 

effective for antibacterial activity specially Gram-positive and Gram-

negative bacteria [73]. 

Moreover, the influence of the combination of the CNC structures with silver 

nanoparticles for the drugs adsorption represents the novelty of this research. 

1.4 Carrageenan 

The main source of Carrageenan is the “alga Chondrus crispus”. This alga is 

also known as carrageenin, “Irish moss” or “carragheen moss” from 

Carragheen (Waterford, Ireland) where it grows abundantly which prepared 

by alkaline extraction (and modification) from red seaweed [74,75].  
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The structures of Carrageenan are generally based on linear chains of 

alternating 3-linked b-D-galactopyranosyl and 4-linked a-galactopyranosyl 

residues [76]. There are three forms of Carrageenan, Iota (ι)-, Kappa (κ)-, 

Lambda (λ)-, Mu (μ)-, Nu (ν)- and Theta (θ)- carrageenan Carrageenan 

which identified based on the modification of the disaccharide repeating unit 

depending on the occurrence of ester sulphate, or anhydride formation in the 

4-linked residue [77].  

All of these forms of carrageenan have anti-human immunodeficiency virus 

(HIV) activity [78], inflammation and inflammatory pain [79].It should be 

known that carrageenan biopolymers have such properties of non-toxicity, 

biodegradability, and biocompatibility which give research an efforts to 

provide new carrageenan-based materials [80]. ι- and κ- carrageenan 

microparticles were synthesized by using glutaraldehyde as cross-linking 

agent and successfully applied as biosorbents for removal of the beta blocker 

metoprolol from aqueous solutions [81]. 

Carrageenans are versatile, and used in a variety of commercial food and 

industrials applications such as pharmaceutical, cosmetics and other 

applications [82-84]. 

The total market of carrageenans estimated as US $300 million/year [85]. 

1.4.1 κ-Carrageenan properties 

κ-Carrageenan is 3-linked b-D-galactopyranosyl 4-sulfate alternating 4-

linked 3,6-anhydro-a-Dgalactopyranosyl (see figure 3) [86,87]. κ-CRG are 

well known as their gel-forming ability in the food technology.  
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Figure 3: Schematic represent different structures of the repeating dimeric units of the 

commercial carrageenans. 

Carrageenans have been widely used by food industry and consider as a 

valuable and low cost source of new drugs. 

The gelation process of κ-CRG involves two separate and successive steps; 

coil-to-helix transition upon cooling and subsequent cation-dependent 

aggregation between helices [87]. 

Tari and Pekcan [88] have studied the association of κ-CRG with CaCl2 

which can change the swelling properties of carrageenan gels, make 

emphasizing the commercial relevance of carrageenans chemical 

modifications. 
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High-performance liquid chromatography (HPLC) analysis of carrageenans 

has been performed after various depolymerization methods, either directly 

on commercial products or for their detection in a food matrix [89,90]. 

Carrageenans almost may contain additional substituents. O-methyl groups 

considered as the most common substituent in the position 6 of D unity, as 

occurs with κ-CRG and several others polysaccharides [91]. 

1.4.2 Application of Carrageenan with different composites 

Cellulose nanoparticles composites with carrageenan have effective 

applications in tissue engineering and regenerative medicine [92,93], also it 

is widely used as drug delivery, for increase drug loading, releasing and drug 

solubility [94,95], as it can composite with CNC for making plant based hard 

capsules [96]. 

A novel isocyanate-modified carrageenan polymers used as sorbent 

materials for pre-concentration and removal of drugs (diclofenac and 

carbamazepine) in different aqueous matrices (surface waters and 

wastewaters) [97]. 

Removal of wastewater nutrients N and P have been achieved by using CRG 

and Alginate immobilized with Chlorella Vulgaris [98]. 

Many studies and characterization of κ-CRG composites with CNC as it 

forms biodegradable film and soft material structure [99], in which the 

properties of κ-CRG influenced by the presence of CNC [100], and the 

mechanical strength also studied [101]. 
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κ-CRG nanosilica biocomposite film were prepared and characterized for 

mechanical, thermal, barrier, contact angle and crystallinity properties [102]. 

Magnetic κ-CRG-g-poly(methacrylic acid) have been used for adsorb crystal 

violet dye [103], where the malachite green dye were adsorbed by novel 

nanocomposite of κ-CRG -g-polyacrylic acid/TiO2–NH2 hydrogel [104], 

also the Magnetic κ-CRG and κ-CRG Biopolymer-Based Nanocomposite 

used for the removal of Methylene Blue Dye (MB) [105,106,107]. 

Furthermore the preparation of O-maleoyl low molecular weight κ-

carrageenan has been achieved [86]. 

1.5 Cyclodextrin and its modifications composites with CNC 

1.5.1 Cyclodextrin 

Cyclodextrins are cyclic oligosaccharides composed of six, seven or eight α-

D-glucose units linked by α-(1,4) bonds, which are called α, β and γ-

cyclodextrin respectively (figure 4,5) [108,109]. 

 

Figure 4: Chemical structure of α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin 

respectively. 
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Interesting to know that the first cyclodextrins were discovered and reported 

in 1891 [110]. In 1903, the Austrian microbiologist Franz Schardinger, who 

considered to be founder of cyclodextrin chemistry, identified two 

crystalline compounds (A, B) similar to cellulosine from bacterial digest of 

potato starch and then he named these two cellulosine “α-dextrin and β-

dextrin” [111]. 

 

Figure 5: Schematic structure of A: α-cyclodextrin, B: β-cyclodextrin and C: γ-

cyclodextrin 

The properties of the three major kinds of cyclodextrins are α, β and γ 

cyclodextrins are summarized in Table 1.2 [112].  

Table 1.2: properties of α, β and γ cyclodextrins 

Property 

α-

cyclodextrin  

β-

cyclodextrin  

γ-

cyclodextrin 
Number of glucose units 6 7 8 

Molecular weight (g/mol) 972 1135 1297 

Solubility in water at 25°C (%, 

w/v) 
14.5 1.85 23.2 

Outer diameter (Å) 14.6 15.4 17.5 

Cavity diameter (Å) 4.7-5.3 6.0-6.5   7.5-8.3 

Height of torus (Å) 7.9 7.9 7.9 

Hydrate water molecules 2 6 8.8 
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β-cyclodextrin is the most widely abundant, lowest priced, most widely 

studied and also considered to be the most useful. β-cyclodextrin is found to 

be less irritating than α-cyclodextrin after injection. 

 

Figure 6: Schematic represent the chemical structure of β-cyclodextrin. 

CDs are widely used in many applications such as enhancement of solubility 

of materials with low solubility in water [113], controlled release of drugs 

[114], protection of materials against oxidation and UV-degradation during 

storage or processing, catalytic action in chemical reaction, conversion of 

liquid materials to dry form, stabilization of flavors and spices and masking 

of bitterness and unpleasant odor of foods and drugs [115]. 

Cyclodextrins are extensively used in drug delivery, specially with different 

nanoparticles (NPs), also E.V. López used the blend of ethyl cellulose and 

pectin as film-coating material for cyclodextrin pellets for controlled drug 

release. 

Furthermore L.A. Hergert, [116] prepared the inclusion complexes of β-

cyclodextrin with ibuprofen and determined the presence of ibuprofen in 

pharmaceutical preparations and serum by using of spectrofluorimetry at 

both acid and alkaline pH. 

Ibuprofen adsorbed by using modified cyclodextrin containing nanofilters 

from municipal wastewater [117], it’s also used for adsorb toluene from 
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aqueous solution by functionalized it with cellulose nanofiber composites 

[118], while D. Shi, [119] prepared and studied the adsorption of Laponite-

cyclodextrin complex which considered great for wastewater treatment. 

Cyclodextrins and its modifications were used to adsorb different types of 

dyes [120]. 

Acetylated β-cyclodextrin (Ac βCD) and γ-cyclodextrin (Ac γCD) were 

prepared and studied the interaction with naproxen in the solid and liquid 

state [121], meanwhile synthesized of substituted Benzoyl modified β-

cyclodextrin and their inclusion properties were studied by using 

fluorescence spectroscopy [122]. 

1.6 Water pollutants, 

1.6.1 Water pollutants from pharmaceutical 

In fact, every day, industries, agriculture and the general population used to 

use water and releasing many compounds into wastewater. Agriculture 

practices, industrial discharges and the human being play an important role 

of causing pollutants in wastewater. All of these have generated various 

pollutants which impact on wild life human health and all living organisms. 

The removal of pharmaceuticals and personal care products residues from 

water is one of the major environmental concerns nowadays. It is estimated 

that 10–20 million people die every year due to waterborne and nonfatal 

infection which causes death of more than 200 million people every year 

[123]. Furthermore, thousands of children die every day due to the water 
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pollution problems of diarrhea. For knowledge, 4000km3 from 

15000km3/year considered as the total freshwater which may used for 

industrial and domestic purposes [124], and may it increases to nearly 

5000km3 per year in 2025 [125]. 

An activated carbon, oxidation, activated sludge, nanofiltration (NF), and 

reverse osmosis (RO) membranes which considered as traditional materials 

and treatment technologies which are not effective to treat complex and 

complicated polluted waters including pharmaceuticals, personal care 

products, surfactants, various industrial additives [126]. 

The pharmaceuticals are grouped into different types: hormones, anti 

inflammatory, anti epileptic, statins, antidepressants, beta blockers, 

antibiotics, products of contrasts, etc. [127]. And there are numerous studies 

have demonstrated the presence of human drugs in the urban wastewater, 

sewage from hospitals and surface waters, groundwater and drinking water, 

also may reach the soil due to irrigation [128]. 

Pharmaceuticals and Personal Care Products (PPCPs) contamination levels 

have been detected up to the μg/L-level in municipal sewage and surface 

waters, and may presence in sludge, sediments, and soil in the range of ng 

g−1 to μg g−1 [129]. In fact, a very little is known about the long-term effect 

and behavior of pharmaceutical residues in the aquatic environment, and 

particularly in groundwater [130]. 

To the best of our knowledge, a large number of analytical methodologies, 

mainly using liquid chromatography tandem mass spectrometry (LC–

MS/MS) which allowed the detection of extremely low concentrations 
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(ng/L), without using solid phase extraction (SPE) for purification; are 

already available for pharmaceutical detection in environment and 

wastewaters [131], but nowadays, there is increasing efforts for going to 

use more fast and cost-effective method for purification and extraction the 

samples by using on-line SPE followed by LC-MS/MS for analyze trace 

emerging contaminants in wastewaters, such as drugs, pesticides, and 

hormones [132,133]. For example [134], a simultaneous determination of 

74 pharmaceuticals in environmental waters (groundwater and superficial 

water) and wastewater treatment plants (effluent and influent) has been 

developed, validated and applied to the samples. 

1.6.2. Emerging pollutants 

Large number of emergent pollutants from different sources leach every day 

to soil and ground waters without treatment. An emergent pollutant is a 

material or chemical product which can be considered a potential hazard for 

the mammals or the environment. A pollutant is classified as emergent when 

associated to a new way of interaction with mammals and required a new 

method of detection or a recently developed technology [134]. 

There is a lack of knowledge of the impact of emerging pollutants in the 

middle or long-term effect on human health, the environment and aquatic 

environments [135]. They are considered as emerging pollutants in water 

bodies because they still remain unregulated or are currently undergoing a 

regularization process, although the directives and legal frameworks are not 

set-up yet [136]. 
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There are 47 different pharmaceutical emergent organics considered as 

pollutants in waste water, summarized in Table 1.3. 

 

 

Table 1.3: Selected emerging pollutants for analysis [137]. 

N# Name N# Name 
1 Chloramphenicol 2 Ketoprofen 

3 Chlortetracycline 4 Naproxen 

5 Doxycycline 6 Gemfibrozil 

7 Oxytetracycline 8 Ibuprofen 

9 Tetracycline 10 Indometacin 

11 Clarithromycin 12 Carbamazepine 

13 Erythromycin 14 Diazepam 

15 Roxithromycin 16 Ethofibrate 

17 Sulfadiazine 18 Fenofibrate 

19 Sulfadimidine 20 Pentoxifylline 

21 Sulfamethoxazol 22 Phenacetin 

23 Trimetazidine 24 Phenazone 

25 DL-Atenolol 26 β-Sitosterol 

27 Betaxolol 28 β-Estradiol 

29 Bisoprolol 30 Estriol 

31 Metoprolol 32 Estrone 

33 Pindolol 34 Mestranol 

35 Propanolol 36 Ethinylestradiol 

37 Sotalol 38 Diatrizoicacid 

39 Aspirin 40 Iohexol 

41 Bezafibrato 42 Iopamidol 

43 Clofibricacid 44 Iopromide 

45 Diclofenac 46 EDTA 

47 Fenoprofen   

The residues of an emerging pharmaceuticals pollutant causes huge 

problems, such as a decline of vulture population in Pakistan from 

diclofenac, also have adverse effects on wildlife population decline [138]. 
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Figure 7: Pharmaceuticals Entering Water [139] 

1.6.2.1. Ibuprofen 

Ibuprofen is one of the most popular consumed pharmaceuticals, because it 

is widely used all over the world. It is a nonsteroidal anti-inflammatory 

(NSAID) analgesic and antipyretic compound, which has become worldwide 

used for the treatment of rheumatic disorders, pain, fever and inflammation 

[140]. It is slightly soluble in water, readily soluble in organic solvents, and 

so it has high mobility in the aquatic environment, that’s the reason to be 

selected. Figure 8 shows the chemical structure of ibuprofen. 
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Figure 8: Chemical Structure of Ibuprofen [141] 

1.6.2.2  Ibuprofen in the Environment 

Over the past several decades, the implementation of environmental laws, 

which control the chemicals released into the environment by industries, 

companies and households, have been continually reformed in an attempt to 

keep any dangerous chemicals out of water supplies, where it can easily 

reach animals and humans. 

There are many studies shows the occurrence of  Ibuprofen in different areas, 

for example, In the U.S., a study was done and found 0.90 – 2.11 μg/L of 

ibuprofen in raw and reclaimed water sources and nearly 1.35 μg/L in 

drinking water [142]. 

1.6.2.2.1 Resistance and Risk of Ibuprofen 

Nowadays, as concentrations of ibuprofen are being found in the 

environment, the thought of how the chemicals might affect organisms in 

aquatic ecosystems is becoming a concern. 

Several studies have been conducted on aquatic life looking for how 

concentrations of ibuprofen might affect these species. A cyanobacterium, 
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Synechocystis sp. PCC6803, was specifically looked at along with a species 

of water plant called duckweed, Lemna minor [143]. Looking for unnatural 

growth in the two organisms, they tested the ability to grow at different 

concentrations. The Synechocystis exhibited a strong and rapid growth at all 

concentrations of ibuprofen. Lemna on the other hand showed a declined 

ability to grow in an exponential decreasing manner. The effects on Lemna 

have been the most severe recorded to date.  

The impact on the ecosystem of losing one species like Lemna minor could 

be detrimental. In a small ecosystem the loss of one organism could mean 

disaster for most all other organisms in the ecosystem. In the case of humans 

there is a growing concern with prolonged use of ibuprofen [144]. Many 

health specialists are concerned that ibuprofen can cause gastrointestinal, 

cardiovascular, kidney, and brain conditions. 

Despite current research in ibuprofen removal, little has been done to look at 

the effectiveness of adsorption methods. There have been successes in 

removal with biological processes but there is a need for research in different 

types of adsorption. Biological treatments are secondary treatments common 

in wastewater treatment facilities, but not in drinking water facilities. 

Adsorption methods may be more effective for removing ibuprofen as this 

processes show promise on a smaller scale in applications. 
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1.7 Adsorption Types and Definition  

1.7.1 Equilibrium Isotherm Models 

Adsorption phenomenon is generally described by an invaluable non-linear 

curve known as adsorption isotherm. Which represents the amount of the 

Adsorbate on the adsorbent as a function of its concentration (if liquid) or 

pressure (if gas) at constant temperature and pH. The mathematical 

correlation that drawn by the adsorption modeling analysis is important for 

applicable practice and operational design of large scale adsorption systems 

[145]. 

Adsorption equilibrium is confirmed when an adsorbate become in contact 

with the adsorbent for certain period of time, and in the presence of adsorbate 

concentration in the bulk solution that allows a dynamic equilibrium with the 

interface concentration [146]. 

Analysis of the isotherm data is important to develop an equation that exactly 

explain the observed results.  The most known isotherms which are applied 

in liquid /solid systems are the theoretical equilibrium isotherm models, 

including Langmuir and Freundlich isotherms [147]. 

1.7.1.1 Langmuir Adsorption Isotherm 

After the formation of a monolayer adsorbate on the outer surface of the 

adsorbent, no more adsorption occurs [148],so it is called the ideal localized 

monolayer model; it was developed to represent chemisorption. Adsorption 

is limited to monolayer coverage, and so the adsorbed molecule cannot 
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migrate across the surface or interact with neighboring molecules. 

Furthermore, the surface of the adsorbent is uniform, and so all the 

adsorption sites are energy equivalent [149]. 

The Langmuir equation relates the coverage of molecules on a solid surface 

to the concentration of a medium above the solid surface at a fixed 

temperature. This equation can be written as:   

                 
1

𝑞𝑒
 =

1

𝑞0
 + 

1

𝑞𝑒𝐾𝐿𝐶𝑒
 
                                                (2.1) 

Where: 

Ce = the equilibrium concentration of adsorbate (mg/L)    

qo = maximum monolayer coverage capacity (mg/g) 

KL = Langmuir isotherm constant (L/mg). 

qe is the amount of adsorbate per unit mass of adsorbent (mg/g) [150], 

and it can be calculated using the following relation: 

qe = ( Co– Ce ) 
𝑉

𝑚
(2.2) 

Where:   

Co is the initial concentration of the adsorbate (mg/L).  

V is the volume of the solution (L).  

m is the mass of the adsorbent (g).  

(Co – Ce) represents the adsorbed amount (ppm). A graph of (Ce/qe) 

values versus Ce is used to find the Langmuir parameters. That are, 

(1/KLQo) as y-intercept and (1/qo) as slope [151]. 
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The essential features of the Langmuir isotherm can be expressed in 

terms ofa dimensionless constant separation factor RLwhich is given by 

the following equation : 

RL=
1

1+ 𝐾𝐿𝐶0

                                                     (2.3) 

Where: 

C0 = initial concentration. 

KL = the constant related to the energy of adsorption (Langmuir 

Constant). RL value indicates the isotherm shape to be unfavorable if 

(RL >1)   Linear if ( RL = 1), favorable if (0 <RL <1), or irreversible if 

(RL = 0) [152]. 

1.7.1.2 Freundlich Adsorption Isotherm 

This adsorption to surfaces supporting sites depends on different affinities or 

to heterogeneous surfaces. Freundlich isotherm supposes that stronger 

binding sites are occupied first, so; the binding strength reduces with 

increasing degree of site occupation. Related to this articulation, the 

adsorbed mass per mass of adsorbent can be represents this equation [153]. 

ln 𝑞𝑒 =  ln 𝐾𝐹 + 
1

𝑛
ln 𝐶𝑒                                        (2.4) 

Where: 

KF is the Freundlich constant which indicates the adsorption capacity of the 

sorbent (mg/g).  

n is the heterogeneity coefficient that gives an indication of the Favorable 

way 
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 of the adsorption process (g/L)m if the value of 1/n is less than one then the 

adsorption is normal ,and if n is between one and 10, the sorption process is 

favorable [154].  

A plot of lnqe values versus lnCe is used to find Freundlich parameters. That 

are, lnKF as y-intercept and (1/n) as a slope. 

1.7.2 Adsorption Kinetic Models 

The kinetic of adsorption is the process which represents the transportation 

of the adsorbate molecules from bulk solution to a boundary layer of the 

water surrounding of the adsorbent particle by molecular diffusion through 

the stationary layer of water. So, the adsorbate particles are transported into 

an available site. And formation of an adsorption bond will occur between 

the adsorbateand the adsorbent [155]. 

There are many adsorption kinetic models that describe adsorption kinetics 

and rate-limiting step. These models give information about the adsorption 

system behavior and determine whether the adsorption process is a chemical 

or a physical one, and also which is the rate determining step. These 

adsorption kinetic models include, external mass transfer model, pseudo 

first-order and pseudo second-order rate models, Adam–Bohart–Thomas 

relation, Weber and Morris sorption kinetics, first-order reversible reaction  

model, first-order equation of Bhattacharya and Venkobachar and Elovich’s 

model [156].  
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1.7.2.1 Pseudo First–Order Kinetics 

This kinetic model is the first model developed to describe adsorption 

kinetics. 

The rate equation for pseudo first-order kinetic model can be written as: 

ln( 𝑞𝑒- 𝑞𝑡) = ln 𝑞𝑒 − K1 t                                       (2.5) 

Where: 

qe and qt are the amounts of adsorbate adsorbed per unit mass of adsorbent 

at equilibrium, and at time t respectively (mg/g).  

k1 is the pseudo first-order rate constant for adsorption (min-1).  

A plot of Ln(qe−qt) versus t should give a linear relationship that allows the 

computation of a first-order rate constants, k2 and qe [157]. 

1.7.2.2 Pseudo Second–Order Kinetics 

This kinetic model assumes that the rate-determining step may be chemical 

adsorption which involve valence forces through sharing or exchange of 

electrons between the adsorbate and the adsorbent.   

The final integrated equation for this kinetic model is: 

t

qt
 = 

1

K
2qe

2
 = 

t

qe
                                                  (2.6) 

Where; 

k2 is the pseudo second-order rate constant for adsorption (g.mg-1.min1).   

The plot of t/qt versus t will give a straight line for the pseudo second order 

adsorption with (1/ K2 qe
2)as y-intercept and (1 /qe) as the slope of the graph 

[158]. 
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1.7.2.3 Intra-Particle Diffusion Kinetic Model 

This model is established on the theory suggested by Weber and Morris. The 

final equation of this adsorption kinetic model can be written as: 

qt = K id t
1/2 + Z                                           (2.7) 

Where;   

Kid is the Intra-Particle diffusion rate constant (mg/g.min1/2).  

Z is a constant that gives an information about the thickness of the boundary 

layer (mg/g) [159]. 

A plot of qt versus t1/2 will give a linear relationship for intra-particle 

diffusion kinetic model with constant Z as a y-intercept and Kid as a slope. 

1.7.3 Adsorption Thermodynamics 

Adsorption thermodynamics of a process are necessary to determine whether 

the process is favorable or not.   The adsorption characteristics of a material 

can be expressed in terms of thermodynamic parameters such as the change 

in Gibbs free energy (∆G), enthalpy change (∆H) and the change in entropy 

(∆S). Where; ∆G and ∆H are in (J) and the unit of ∆S is (J/K). 

The general equation which connects between the adsorption parameters can 

be written as: [160] 

∆G = ∆H –T ∆S                                        (2.8) 

Where: 

T is the absolute temperature (K). 
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The change in Gibbs free energy can be also calculated by the following 

equation: 

∆G = -R T ln 𝐾𝑑                                                                (2.9) 

Where:    

R is the universal gas constant that equals 8.314 J.mol-1.K-1.  

Kd is the thermodynamic equilibrium constant that equals (qe/Ce) with a unit 

of mol or (L/g). 

The combination of the previous two equations will give the following 

equation: 

ln 𝐾𝑑 =  
∆𝑆

𝑅
 - 

∆𝐻

𝑅𝑇
                                            (2.10) 

The plot of LnKd versus (1/T) will give a straight line with (-∆H/R) as slope 

and (∆S/R) as y-intercept. The resulting graph is known as Van’t Hoff plot. 

1.7.4 Adsorption as an effective method for removing IBP from 

wastewater 

Emerging pollutants can be removed from wastewater using several 

treatment methods, Which can be classified as chemical, physical, and 

biological methods. According to the different methods, adsorption is an 

effective separation process for many applications. Economically it is 

suitable for removal of both organic and inorganic pollutents from 

wastewater [17]. 

Adsorption is a common technique used to remove dyes from aqueous 

solution, this is because of many advantages of this method such as low in 

cost, simple, and environmentally friendly [161].  
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1.8 Research Objectives 

1.8.1 General Objectives 

1. Convert the cellulose to Nano Crystalline Cellulose (NCs) 

2. Prepare Magnetic Nanocellulose (MNCs) and Silver Nanocellulose 

(AgNCs) from NCs. 

3. Prepare Acetyl β-CD and Benzoyl β-CD 

4. Prepare a composite of Carrageenan, Acetyl and Benzoyl β-CD with 

NCs. 

5. Develop a method for removal of IBP from wastewater using these 

adsorbents 

1.8.2 Specific Objectives 

1. Make a comparison of the efficiencies between the all adsorbents toward 

adsorption of Ibuprofen from an aqueous solution.  

2. Study the effect of pH, temperature, amount of adsorbent, concentration 

and contact time on the adsorption of Ibuprofen. 
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Chapter Two 

Experimental Part 

2.1 Chemicals and Materials 

In this study, all reagents were purchased from Aldrich Company, and 

confidentially used without any further cleaning unless otherwise specified. 

All chemicals like H3PO4, NH4OH, NaOH, FeCl3.6H2O, FeSO4.7H2O, 

AgNO3, NaBH4, Benzoyl chloride, Triethyl amine, Acetyl chloride, H3PO4 

were of analytical grade. HPLC grade Water for HPLC solvent, Methanol 

and Acetonitrile. β-Cyclodextrin (β-CD; purity ≥ 99.3) was purchased from 

Sigma-Aldrich, κ-Carrageenan were kindly supplied by KEVIN, China. 

Ibuprofen standard was of high purity grade (IBP; purity ≥ 99.5%) was 

purchased from IOL (IOL Chemicals and pharmaceuticals L.T.D, India). 

Ibuprofen was used as Adsorbate. Distilled water was used for all solutions. 

2.2 Instrumentation 

For this work, the required instrumentations includes the following: shaking 

water bath (DaihanLabtech, reach to 250 rpm Digital Speed Control), 

thermometer, pH meter (model: 3510, JENWAY), Centrifuge (5000 rpm, 

Universal 320R, Hettich, Canada), FTIR Spectrometer (Nicolet iS5, iD3 

ATR, from Thermo Scientific), HPLC (Waters 1525 Binary HPLC Pump, 

Waters, Singapore) with Photodiode Array Detector (PAD) Waters 2998. 
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2.3 Preparation of adsorbents 

2.3.1 Preparation of (NCs, MNCs and AgNCs) 

- Cellulose Nanocrystalline(CNC) 

The extracted cellulose powder from OISW using a process developed 

previously at our laboratory were used in this work [161]. Extracted cellulose 

was then well-converted to CNC as following procedure: cellulose (5.0 

gram) was added to a beaker containing distilled water (180 mL) and stirred 

magnetically for 30 min. To the beaker content was added 20g of 

concentrated H2SO4 to produce a solution with 10 wt% of sulphuric acid. 

Then stirring the mixture for 20 min at 60 ºC. Then dilute the hot mixture 

with ice cold DW. Make centrifuge for the colloidal suspension carefully at 

5,000 rpm and decanted. To the residue was added water, mixed then 

centrifuged and decanted. This process was repeated for five times to remove 

any suspension from hydrolysis product and sulphuric acid completely. The 

NCs residue was left to dry for 2 days at room temperature. 

- Magnetic cellulose Nanocomposite 

Cellulose nanocrystalline was then converted to magnetic cellulose. 1.5 g of 

NCs were added to 500 mL beaker containing 200 mL distilled water and stirred 

for 20 min. Then add the FeSO4.7H2O (0.75 g) and FeCl3.6H2O (1.49 g) to CNC 

in the beaker and heated with stirring to 60ºC for another 20 min. MNCs was 

precipitated by adding 8M ammonium hydroxide drop wise with stirring until 

reached 10 of  pH value. At this pH the color of the precipitate observed to be 

black. The mixture was centrifuged and left to dry overnight [162]. 
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- Silver Nanocellulose 

A 300 ppm of AgNO3 solution was prepared in 500 mL beaker. 50 mL 

water solution containing 1.5 g of CNC was mixed with 25 mL of AgNO3 

solution. 0.3 g of NaBH4 were carefully added to 7 g of ice water, then 

mixed with the mixture by stirring for an hour. The mixture was 

centrifuged and left to dry for 24 hours. 

2.3.2. Preparation of (Acetyl β-Cyclodextrin, Benzoyl β-Cyclodextrin) 

- Acetyl β-Cyclodextrin 

1.0 g of β-Cyclodextrin was weighed accurately. 10 mL triethyl amine 

was added on it and stirring for 20 minutes. then 1.5 mL drop wise of 

acetyl chloride was added carefully while stirring for half an hour. Wash 

the precipitate with water to get rid of access acetyl for 3 times, and let it 

to dry overnight. 

- Benzoyl β-Cyclodextrin 

β-Cyclodextrin was converted to Benzoyl β-CD by dissolve 0.5 g of β-

CD in 2-3mL of triethyl amine. 0.28 mL benzoyl chloride was added and 

mixed for 30 minutes. Wash it with water and let it to dry overnight. 

2.3.3 Preparation of CRG/NCs, Acetyl β-CD/NCs and Benzoyl β-

CD/NCs 

5 g of each one was putted with 5 g of NCs into  beaker with 3 mL of distilled 

water and shaking for 30 min, then let it to dry before use. 
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2.4. Characterization of adsorbents 

Some desired matrix of NCs, Acetyl β-CD and Benzoyl β-CD was examined 

by FT-IR spectroscopy. 

2.5.  Statistical Analysis 

In this work, the experiments were done in duplicate. At first, for each 

duplicate the mean was calculated. The coefficient of variance often less than 

1%. Determination of the error range by using a certainty interval of 96% 

which were used for the data analysis using Excel Microsoft software. The 

collected data were analyzed using t-test. Also, all the variations were 

statistically as the value of p ˂ 0.05. 

2.6 Preparation of Ibuprofen solutions 

Ibuprofen stock solution with a concentration of 1000 ppm IBP was prepared 

by 0.1 g of IBP dissolved into 100 mL of Acetonitrile in a volumetric flask. 

A set of solutions of IBP with various concentrations: 0.1 to 100 mg/L were 

prepared by dilution in methanol. 

2.7 Chromatographic Conditions: 

Here, in this work a High Performance Liquid Chromatography system 

(HPLC) (Waters, Waters 1525 Binary HPLC Pump) with PA Detector 

(Waters 2998), were used for the analysis of this experiment, where the data 

was saved by using Breeze software. The determination was performed by 

using a column of 250 mm cartridge long, 4.6 mm internal diameter (X 
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TERRA C18, 5μm , 250 mm x 4.6 mm), with the mobile phase included (A) 

methanol: water (80: 20 v v-1) which adjusted to pH 3 by drop wise addition 

of H3PO4 and (B) 100% methanol in gradient ratio (50:50) at normal 

temperature. The elution was monitored at 254 nm while the flow rate was 

recorded at 1ml/min. All the samples were filtered using 0.45μm filter before 

inject to the HPLC. 

2.8 Calibration Curve 

The absorbance of the prepared solutions in section 2.6 were measured by 

HPLC method. The absorbance was plotted versus concentration, a linear 

calibration curve between peak areas and concentrations was obtained with 

IBP concentrations in the range 0.1-50 mg/L (R2 = 0.991) as shown in Figure 

9 (a) and in the range 2-100 mg/L (R2 = 0.999) as shown in Figure 9 (b). 

 

 

Figure 9 (a): Linear calibration curve between peak area and IBP concentration in the 

range 0.1- 50  mg/L 
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Figure 9 (b): Linear calibration curve between peak area and IBP concentration in the 

range 2-100 mg/L 

2.9 Adsorption Experiments 

The experimental parts were performed using different concentrations of 

Ibuprofen in 50 mL solutions using different weight of adsorbent samples 

depending on the experiment. The pH of solutions was adjusted using 0.1 M 

NaOH and diluted H3PO4 solutions. All the measurement of adsorption were 

performed HPLC-PAD method as showed in section 2.7 at different 

temperatures depending on the experiment like effect of contact time of IBP, 

the pH value, adsorbent dosage, adsorption isotherm, kinetic and 
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dilute it into Acetonitrile (ACN), and then dilute it in methanol for the diluted 

IBP to make calibration curve solutions. 

Here, removal ratio percentage (E %) is well-defined as the ratio of 

Ibuprofen concentration differences before and after adsorption (C0-Cf) to 

the initial concentration of IBP in the aqueous solution (C0) and was studied 

by using the following Eq. (3.1): 

E (%) = 
𝐶0−𝐶𝑓

𝐶0
 * 100%                        (3.1) 

Where C0 was defined by the initial concentration of IBP and Cf was the final 

IBP concentration. All of the experiments were done twice and the means 

were taken unless there are presence of difference more than 6%, and for 

enhance the experiments, then a third measurement was taken. 

For the experiment of effect of contact time which was carried at 298 K and 

different concentrations (5, 10,15, 20, 50 mg/L) and time range from 5 to 

360 min the adsorption capacity was calculated using Eq. (3.2): 

qt = 
𝐶0 −𝐶𝑡

𝑚
x V         (3.2) 

Where qt (mg/g) the adsorbed amount of the Ibuprofen at time t. Meanwhile, 

m is the mass of adsorbent (g), the Ct was Ibuprofen concentration at time t, 

and the volume of solution was expressed by V (L). 

In working on this study a replicate experiments were conducted on the 

whole experimental part. The mean was taken for each duplicate. In our 

study the coefficient of variance was mostly less than 1%. We determined 

the margin of error using a confidence interval of 95% for the data of 
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experiment using Excel Microsoft software and the data were analyzed using 

t – test. All the differences was considered statistically at p ˂ 0.05 for the 

results of t- test. 

2.9.1. Optimization of time and the initial Ibuprofen concentration  

The Ibuprofen adsorption on the adsorbent was studied as a function of 

shaking time at 25oC. A sample of 50 mL of different IBP concentrations (5 

ppm, 10 ppm, 15 ppm,  20 ppm and 50 ppm) solution at normal pH added to 

50 mL a beaker with 0.05 g of adsorbent. At different time intervals the 

supernatant was carefully removed by a thin plastic dropper and the 

adsorption was measured by using HPLC- PAD. 

2.9.2 Effect of pH 

Effect of initial pH on adsorption was investigated in the pH range 2-10. The 

pH was adjusted using roughly concentrations of 0.1 M HCl and 0.1 M 

NaOH. 0.05 g adsorbent samples were added to 50 mL of IBP solutions with 

concentration 20 ppm. The solutions were putted in Shaking Water Bath 

instrument at normal temperature (25°C) at optimized time for each 

adsorbent depending on the results of experiment in section 2.9.1. At the end 

of intervals of time, the solution was filtered and supernatant was analyzed 

for the residual IBP particles. 

 

 



42 

2.9.3 The effect of adsorbent dosage 

To discuss the effect of dose of these adsorbents (NCs, MNCs, AgNCs, κ-

CRG, Acetyl β-CD and Benzoyl β-CD) on the removal of IBP on these 

surfaces, different experiment were done using different dose of adsorbent 

substrates ranging between 5–75 mg. This experiment was studied using 

20ppm solution of IBP and pH 10 at 25 ºC. The samples were putted in 

Shaking Water Bath at normal temperature (25°C) at optimized time for each 

adsorbent depending on the results of experiment in section 2.9.1. The 

absorbance of supernatant was measured by HPLC-PAD for the residual 

concentration of IBP. 

2.9.4 Effect of temperature 

The effect of temperature on adsorption is also an important issue to be 

evaluated, constant amount of adsorbent samples (depending on the previous 

experiment) were added to 50 mL of Ibuprofen solutions with a 

concentration of 20 ppm at pH 10. Each mixture was shaken in a water bath 

at desired temperature (the range was 10.7-50°C) at optimized time for each 

adsorbent depending on the results of experiment in section 2.9.1. At the end 

of intervals of time, the solution was filtered and supernatant was analyzed 

for the residual IBP by HPLC-PAD for the residual concentration of IBP. 

2.10 Thermodynamics and Kinetics of Adsorption 

The removal of emergent pollutant such as Ibuprofen were studied by 

adsorption methods using the prepared adsorbents (NCs, MNCs, AgNCs, κ-
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CRG, Acetyl β-CD and Benzoyl β-CD). The batch technique was adopted 

under the optimize condition of adsorbent dosage, initial concentration of 

IBP, contact time, pH and temperature. By using HPLC-PAD (Waters 1525 

Binary HPLC Pump, Waters), concentrations of Ibuprofen were measured 

before and after operating the adsorption. Langmuir and Freundlich 

adsorption isotherm equations were studied. The values of their uniform 

parameters were calculated and discussed. The thermodynamic parameters 

such as the standard free energy (G°), entropy (S°) and enthalpy (H°) of 

the systems were determined by using Van’t Hoff’s plot. The percent of 

removal efficiency values and Kd for IBP were determined at various 

temperatures ranging (10.7 – 50oC). 

Adsorbent (0.05 g) was added to 50 mL of (5,10,15, 20 and 50 mg/L) of IBP 

solution at normal pH. The mixture was putted in Shaking Water Bath at 

constant temperature (25°C). We adjust the adsorption rate by studying the 

contact time for about 6h and contrast to theoretical models. The two known 

models, pseudo first and pseudo second orders kinetic models have been 

examined and the experimental data obtained were used different time. The 

pseudo first order and pseudo second order kinetic model parameters (K, Qe 

and R2) for Ibuprofen adsorption on NCs, MNCs, AgNCs, κ-CRG, Acetyl β-

CD and Benzoyl β-CD were determined. The values of the calculated and 

experimental Qe were compared. 
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Chapter Three 

Results and Discussion 

3.1 Characterization of Adsorbents  

3.1.1 NCs FT-IR Characterization 

FT-IR of cellulose is shown in Fig.4.3. The spectrum shows a broad band at 

3293.09 cm-1 which corresponds to the OH-stretching vibration. The band 

at 1427.05 cm-1 corresponds to the CH2 bending vibration, The peak at 

2895.17 cm-1 corresponds to the C–H stretching vibration, meanwhile the 

band at 1314.38 cm-1 corresponds to the C-O,C-H stretching. 1159.62 cm-1 

band corresponds to the O-C-O,C-O stretching. 

 

 

Figure10: Schematic of FT-IR for the nanocellulose used for Adsorption 
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Acetyl β-CD FT-IR Characterization 

Acetyl cyclodextrin cm-1 (neat): 3391 (O-H, stretching), 1746.35 (C=O, 

stretching of ester, external), 1651 (C=O, ester, internal), 1028 (C-O, ether 

stretching) 

 

 

Figure 11: Schematic of FT-IR for the Ac β-CD used for Adsorption 

 .5.1.2 Benzoyl β-CD FT-IR Characterization 

Benzoyl cyclodextrin cm-1 (neat): 3331 (O-H, stretching broad), 3050 (=C-

H, aromatic), 2095 (-C-H, aliphatic), 1748.6 (C=O. ester external), 1723 

(C=O, ester, internal), 1599 (C=C, aromatic), 1212 (C-O, ester) 1050 (C-O 

ether), 700 (monosubstituted benzene ring) 
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Figure 12: Schematic of FT-IR for the Benzoyl β-CD used for Adsorption 

3.2 Investigation of adsorption parameters 

3.2.1 Effect of contact time with IBP 

The amount of Ibuprofen adsorbed (qt) at different times (5 -360 minutes), 

the concentration (20 mg/L) were studied at pH 7 and 25°C as follows: 

- NCs, MNCs and AgNCs 

Results of cellulose adsorption of IBP are shown in Fig.13(a), the 

adsorption capacity (qt) of IBP on the cellulose samples were very fast in 

the interval time between 40 min to 180 min and it was faster specially in 

both the nanocellulose and magnetic nanocellulose and reached more 

than 75 , 27%, respectively, and reach more than 57% in AgNCs. 

The slow subsequent step (5 -40 min) was due to the rearrangement of 

IBP to find available adsorption sites on the cellulose.  

In our study we used 180 min as a contact time of NCs, MNCs and 

AgNCs when we studied IBP concentrations, pH and dose effect, etc. 
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- Carrageenan and Carrageenan composites with NCs 

As shown bellow in Fig.13 (b), the absorbance of Ibuprofen by using 

Carrageenan and Carrageenan composites with NCs was completely 

effective in the first 5 min of the adsorption which reached about 98%, 

98.1% respectively, and it became decreasing after 5 min. 

For these adsorbents, 5 min is the time we used in the other adsorption 

experiments (IBP concentrations, pH, etc). 

- Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

For these adsorbents, the Benzoyl β-CD/NCs showed the higher amount 

of adsorption capacity (qt) from the first 5 min which reached more than 

87%, see Fig.13 (c), then it became decreasing slowly at the other 

intervals time. Meanwhile, the Acetyl β-CD/NCs give a good adsorption 

after 40 min from contact with IBP, It give 35% of removal efficiency 

which is not as high as Benzoyl β-CD/NCs did. 

For Acetyl β-CD/NCs 40 min is the time we used in the other adsorption 

experiments (IBP concentrations, pH, etc), and for Benzoyl β-CD/NCs 

we chose 5 min as best contact time. 

The decreasing of the adsorption capacity (qt) may happened due to after 

filling of some or all surface sites of adsorbents by IBP which named by 

fill-pores mechanism, the other molecules of IBP may compete with these 

IBP molecules in the adsorbent sites and cause a random movement of 

molecules with the passage of time which lead to decreasing of the 

amount of adsorption capacity with increasing of contact time. 
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Figure 13(a): Effect of contact time to determine the time of maximum adsorption of 

Ibuprofen by using NCs, MNCs and AgNCs. (Temperature= 25oC, pH= 7, Concentration 

of IBP= 20 mg/L, Volume= 50 mL, adsorbent dose= 50 mg). 

 

 

Figure 13(b): Effect of contact time to determine the time of maximum adsorption of 

Ibuprofen by Carrageenan and Carrageenan composite with NCs. (Temperature= 25oC, 

pH= 7, IBP Concentration= 20 mg/L, Volume= 50 mL, adsorbent dose= 50 mg CRG, 

50mg CRG-NCs). 
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Figure13(c): Effect of contact time to determine the time of maximum adsorption of 

Ibuprofen by using Acetyl β-Cyclodextrin/NCs and Benzoyl β-Cyclodextrin/NCs. 

(Temperature= 25°C, pH= 7, Concentration of IBP= 20 mg/L, Volume= 50 mL, 

adsorbent dose= 50 mg Acetyl β-CD/NCs, 50 mg Benzoyl β-CD/NCs). 

3.2.2 Effect of Ibuprofen Concentration 

The amount of adsorption (qt) at different Ibuprofen concentrations range 

between (5-50mg/L) at constant time for each adsorbent as discussed in 

section 3.2.1, were studied at pH 7 and 25°C as follows: 

- NCs, MNCs and AgNCs 

The amount of IBP adsorbed are shown in Fig.14(a), the adsorption 

capacity (qt) of IBP on the cellulose samples were increased as the IBP 

concentrations increased till reach 20 ppm and then it become steady. So, 

when we increased the initial concentration, the mass transfer driving 

force will then speed up the Ibuprofen ions diffusion from the bulk 

solution to cellulose surfaces, so this will increase the amount of 
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nanocellulose and silver nanocellulose and reached more than 75, 57%, 

respectively, and reach more than 27% in magnetic NCs.  

So, here we have chose to use 20 ppm as a IBP concentration when we 

studied pH, dose and temperature effect. 

- Carrageenan and Carrageenan composites with NCs 

These adsorbents give high response of the adsorption capacity of 

Ibuprofen as shown bellow in Fig.14(b), the absorbance of Ibuprofen by 

using both of adsorbents increased very fast at concentration 20 mg/l as it 

reach about 98%  and 98.1% removal efficiency of the IBP and it became 

steady. 

For these adsorbents, 20 ppm is the concentration we used in the other 

adsorption experiments (pH, dose, temperature effect). 

- Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

For these adsorbents, the Benzoyl β-CD/NCs gave us higher amount of 

the equilibrium adsorption capacity (qt) than Acetyl β-CD/NCs for all 

Ibuprofen concentrations as it reached more than 17 mg/g of adsorption 

capacity, meanwhile the Acetyl β-CD/NCs reached not more than 7mg/g, 

see Fig.14(c). 

So, for Acetyl β-CD/NCs and Benzoyl β-CD/NCs the concentration of 

Ibuprofen used is 20 mg/L in the other adsorption experiments (pH, dose, 

temperature effects). 
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Figure 14(a): Effect of Ibuprofen concentrations to determine better concentration give 

high adsorption by using NCs, MNCs and AgNCs. (Temperature= 25oC, pH= 7, Contact 

time= 180min, Volume= 50 mL, adsorbent dose= 50 mg for each one). 

 

 

Figure 14(b): Effect of Ibuprofen concentrations to determine better concentration give 

high adsorption by Carrageenan and Carrageenan composite with NCs. (Temperature= 

25oC, pH= 7, Contact time= 5 min, Volume= 50 mL, adsorbent dose= 50 mg for both). 
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Figure 14(c): Effect of Ibuprofen concentrations to determine better concentration give 

high adsorption by Acetyl β-Cyclodextrin/NCs and Benzoyl β-Cyclodextrin/NCs. 

(Temperature= 25°C, pH= 7, Contact time= 40 min, 5 min respectively, Volume= 50 mL, 

adsorbent dose= 50 mg for both). 

3.2.3 Effect of pH on Ibuprofen  

The adsorption experiment of the pH effect on the IBP adsorption on the 

adsorbents surface showed dramatic effect. That effect was studied over a 
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The results are shown in Fig.15(a). The cellulose substrates showed best 
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To evaluate the pH effect on the adsorption capacity of the nanocellulose, 

MNCs and AgNCs, the experiments were carried out in the solutions 

having different pH values . The results show that as pH increased, an 

increase of Ibuprofen uptake is increased. The uptake reached the 

maximum value when pH =10. And at lower pH values show low uptake 

capacity, this is mainly caused by protonation of alcohol oxygen atoms 

on Cs. 

For these adsorbents, pH 10 is the pH we used in the other adsorption 

experiments (Adsorbents dose and temperature effect). 

- Carrageenan and Carrageenan composites with NCs 

These adsorbents show very high adsorption capacity of Ibuprofen as 

shown in Fig.15(b), the absorbance of Ibuprofen by using CRG and CRG 

composites with NCs increased very fast from 5.3, 6.1 mg/g to 19.4, 19.5 

mg/g respectively as increasing of pH from pH 4 to pH 7 which consider 

best removal efficiency of the IBP and then it return to decrease at high 

pH. 

The binding of IBP onto CRG and CRG/NCs is properly controlled by 

H-bond interaction between hydrogen bonding donor group and O-donor 

group, here H-bonding between phenolic OH in CRG and carbonyl group 

(-C=O) in IBP may be likely dominated. The results demonstrated that 

the IBP adsorption decreased as pH increased from pH= 7 to 10, 

suggesting that the negative surface of CRG and the anionic IBP may 

generate an electrostatic repulsion (pKa of IBP is 4.91) [164, 165]. 
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For these adsorbents, pH 7 is the pH we used in the next adsorption 

studies (dose, temperature effect). 

- Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

The adsorption for these adsorbents Acetyl β-CD/NCs and Benzoyl β-

CD/NCs showed in Figure 15(c), that the effect of the pH value on the 

uptake of Ibuprofen from its water by using Acetyl β-CD/NCs and 

Benzoyl β-CD/NCs increasing to be the optimum pH at pH 7 for both 

adsorbents and then become almost steady for higher pH values. 

So that, the pH value we used in the next adsorption studies (adsorbent 

dosage, temperature) is pH 7 for these to adsorbents. 

 

 

Figure 15(a): Effect of pH on Ibuprofen adsorption by using NCs, MNCs and AgNCs. 

(Co= 20 ppm, Temperature= 25°C, adsorbent dosage= 0.05 g, solution Volume= 50 mL, 

Contact time= 180 min.). 
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Figure 15(b): Effect of pH on Ibuprofen adsorption by using Carrageenan and 

Carrageenan composite with NCs. (Co= 20 ppm, Temperature= 25°C, Contact time= 5 

min, adsorbent dosage= 50 mg for both, Volume= 50 mL). 

 

 

Figure 15(c): The effect of pH on Ibuprofen adsorption by using Acetyl β-

Cyclodextrin/NCs and Benzoyl β-Cyclodextrin/NCs. (Co= 20 ppm, Temperature= 25°C, 

Contact time= 40min, 5 min respectively, adsorbent dosage= 50 mg for both, Volume= 

50 mL). 
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3.2.4 Effect of temperature on Ibuprofen adsorption 

- NCs, MNCs and AgNCs 

The effect of temperature on the uptake of IBP by using (NCs, MNCs and 

AgNCs) was studied at (10.7 -50oC) as shown in Figure 16(a). This figure 

shows that in general the % removal of IBP increases with increasing the 

temperature to some extent, at pH 10 by using 20ppm IBP concentration 

at constant time as determined in section 3.2.1. Increasing the temperature 

above the room temperature has slight influence on increasing the 

adsorption capacity of the new modified surface. The increasing of the 

amount of IBP adsorbed with increasing the temperature may caused 

by the increasing in the rate of IBP molecules diffusion of 

neighboring the interfaces and internal pores of the adsorbent [166]. 

The most responsible for the increase in porosity is increasing in 

temperature and how much the adsorbent have pore volume. 

The maximum adsorption was achieved at about 35oC. This indicates that 

the adsorption of IBP on (NCs, MNCs and AgNCs) follows endothermic 

process. 

In this experiment, we have choose to used 35oC in the other adsorption 

study by using NCs, MNCs, AgNCs. 

- Carrageenan, Carrageenan/NCs, Acetyl β-CD/NCs and Benzoyl β-

CD/NCs 

For using these adsorbents, we can observe in Figures 16(b) and (c), the 

amount of adsorption capacity of Ibuprofen from its water has the highest 
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values at normal temperature (25oC), at pH 7 using 20ppm Ibuprofen at 

constant time for each adsorbents as determined in section 3.2.1, which 

indicate efficient results for use these adsorbents in wastewater treatment 

plant for removal of emerging pollutants, that the heating doesn’t needed, 

so it’s a cost-effective adsorbents. 

We used the normal temperature in the next adsorption experiment 

(adsorbent dosage effect) by using CRG, CRG/NCs, Acetyl β-CD/NCs 

and Benzoyl β-CD/NCs 

 

 

Figure 16(a): Effect of temperature on Ibuprofen adsorption by using NCs, MNCs, 

AgNCs adsorbents. ( Co= 20 ppm, time= 180 min, pH= 10, adsorbent dose= 0.05 g, 

solution Volume= 50 mL). 
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Figure 16(b): Show the effect of different temperature on Ibuprofen adsorption by using 

Carrageenan and Carrageenan composite with NCs. ( Co= 20 ppm, time= 5 min, pH= 7, 

adsorbent dose= 0.05 g for both, solution Volume= 50 mL). 

 

 

 

 

 

 

 

 

 

Figure 16(c): Effect of different temperature on Ibuprofen adsorption by using Acetyl β-

Cyclodextrin/NCs and Benzoyl β-Cyclodextrin/NCs. (Co= 20 ppm, Contact time= 40min, 

5 min respectively, pH= 7, adsorbent dosage= 50 mg for both, Volume= 50 mL). 
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3.2.5 Effect of amount of adsorbent 

In this experiment study the effect of dose of adsorbent on Ibuprofen removal 

on the adsorbents surfaces, different experiments were done using different 

dose of adsorbent substrates ranging between 5–75 mg as shown in 

Fig.17(a), (b) and (c). 

- NCs, MNCs and AgNCs 

This experiment was studied using 20 mg/L solution of IBP and pH of 10 

at 35 ºC for 180min of contact time. From the figure 17(a) we can see the 

adsorption efficiency increases as the dose increased specially till it 

reached 50mg for NCs and AgNCs, and for Magnetic Nanocellulose have 

a very high results of the amount of adsorption at 5mg dosage, reach about 

98.5% removal efficiency, which considered better adsorption efficiency 

than other modified cellulose in case of comparing the adsorption cost. 

This can be explained by the vacant sites available. 

So that, we chose 50 mg for each NCs and AgNCs, and 5 mg for MNCs 

adsorbents. 

- Carrageenan, Carrageenan/NCs 

This experiment was studied using 20 mg/L solution of IBP and pH of 7 

and normal temperature 25°C for 5 min of contact time with adsorbents. 

From the figure 17(b) we can observe the adsorption efficiency reached 

the top efficient values when 25 mg used for both adsorbents, in which 

reached 98%, 98.2% respectively of removal efficiency. Also, at 50 both 

samples (CRG, CRG/NCs) showed the same percentage of removal 
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which means the vacant sites are almost saturated with IBP. For this 

reason, we chose 25 mg of adsorbent dosage. 

-  Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

Adsorption experiment for these adsorbents Acetyl β-CD/NCs and 

Benzoyl β-CD/NCs was studied using 20 mg/L solution of Ibuprofen and 

pH 7 at normal temperature (25°C) for about 40 and 5 min. respectively 

of adsorption contact time. We can see the adsorption efficiency from the 

Fig. 17(c), the IBP have very effective results with each adsorbent at 5 

mg adsorbents dosage, reach about 79.8%, 98.2% of removal efficiency 

respectively, and we can consider it as very efficient adsorption method, 

specially the using of Benzoyl β-CD/NCs adsorbent. 

The removal efficiency (% Removal) was calculated using the equation: 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(%) = [
(𝐶𝑜−𝐶𝑓)

𝐶𝑜
] × 100            (3.1) 

Where, Co is the concentration of Ibuprofen in the sample solution before 

treatment and Ce is the concentration of Ibuprofen in the sample solution 

after treatment. Removal efficiency also can be calculated using absorbance 

of Ibuprofen in the sample solution before treatment Co and absorbance of 

Ibuprofen in the sample solution after treatment Cf. 



61 

 

Figure 17(a): Effect of amount of adsorbent on the removal of Ibuprofen by NCs, MNCs 

and AgNCs. (Temperature= 35oC, time= 180 min., pH= 10, IBP concentration= 20 mg/L, 

solution Volume= 50 mL). 

 

 

Figure 17(b): Effect of amount of adsorbent on the removal of Ibuprofen by using CRG 

and CRG composites with NCs. (Temperature= 25oC, time= 5 min., pH= 7, IBP 

concentration= 20 mg/L, solution Volume= 50 mL). 
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Figure 17(c): Effect of amount of adsorbent on the removal of Ibuprofen by using Acetyl 

β-Cyclodextrin/NCs and Benzoyl β-Cyclodextrin/NCs. (Temperature= 25oC, time= 40, 5 

min. respectively, pH= 7, IBP concentration= 20 mg/L, solution Volume= 50 mL). 

The results of all the optimized parameters seems that the discussed 

adsorption method was environmentally friendly as most of water have pH 

7 (except cellulose derivatives) and the temperature in the range of 273–283 

K, also considered somehow as economically efficient that it need from 5min 

to 3hrs of contact time for IBP with adsorbents and very little amount of 

adsorbents (50mg) for adsorption process for IBP solution volume 50mL. 

3.3 Adsorption isotherm of Ibuprofen 

The adsorption isotherm was identified by determined constant values, 

which represent the surface features and affinity of the adsorbent and can 

also be used to find the equilibrium adsorption capacities [168].To have an 

idea about the adsorption equilibrium between the the adsorbents surfaces 

which is (Cs, NCs, MNCs, CRG, CRG/NCs, Acetyl β-CD/NCs and Benzoyl 

β-CD/NCs) and concentration of IBP in liquid phase; the two adsorption 
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isotherm models were used in our study, the Langmuir and Freundlich 

models. These two isotherm models are the most common adsorption 

models. 

3.3.1 Langmuir Adsorption Isotherm 

Langmuir adsorption isotherm is a type of kinetic principle which describes 

the monolayer adsorption of adsorbate on the solid without interaction 

between the IBP molecules adsorbed [169].It consider that the adsorbate 

molecules can accumulate on one localized pore without lateral interaction 

between the adsorbed molecules, even on the nearby sites. Furthermore, it 

indicates that after equilibrium there is no further adsorption could be 

occurs. So, based on this assumptions, the Langmuir expressed by the 

following equation: 

𝐶𝑒

𝑄𝑒
=

1

𝑞𝑚𝑎𝑥
𝐶𝑒 +

1

𝑞𝑚𝑎𝑥𝐾𝐿
                                        (3.2) 

Where: 

Ce: the equilibrium concentration of adsorbate ( IBP) (mg/L) 

qe: the amount of IBP adsorbed per unit mass of adsorbent ( Cs, NCs, MNCs, 

CRG, CRG/NCs, Acetyl β-CD/NCs and Benzoyl β-CD/NCs) at equilibrium 

(mg/g) 

qmax: it is defined by the theoretical maximum monolayer adsorption capacity 

of each adsorbents (mg /g), KL: the Langmuir isotherm constant (L /mg). 

The values of qm and KL were find from the slope and intercept of the 

Langmuir plot of Ce/qe versus Ce. From Langmuir plots shown in Figures 18 



64 

(1, 2 and 3) amount adsorbed for monolayer formation (qmax), Langmuir 

adsorption-desorption equilibrium constant (KL) and regression constant 

(R2) were determined and values are shown in table 3.1(a, b and c), table 

3.2(a and b) and table 3.3 (a and b). 

From Langmuir isotherm we can also predict if the adsorption is favourable 

or unfavourable by using this equation (3.3) the dimensionless constant 

separation factor in  

       RL=
1

1+ 𝐾𝐿𝐶0
                          (3.3) 

Where Co is the initial concentration of adsorbate and KL is the Langmuir 

constant. If the value of RL is greater than 1 that means the adsorption is 

unfavourable. And when 0 ˂ RL ˂ 1 it would be favourable and if RL =1 

describes linear adsorption. 
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- NCs, MNCs and AgNCs adsorbents: 

 

Figure 18.1: Langmuir plot for Ibuprofen adsorption on (NCs and MNCs, AgNCs). 

Temperature= (a)10oC, (b) 25oC,(c) 35oC, (d) 50oC , pH= 2, time= 180 min., Volume= 

50 mL, adsorbent dosage= 0.05 g. 

Table 3.1 (a): Langmuir isotherm model parameters and correlation 

coefficient for adsorption of Ibuprofen on NCs at 10, 25, 35 and 50° C. 

Model Parameter Temperature(°C) 

10 25 35 50 

Langmuir 

isotherm 

(NCs) 

qmax(mg/g) 503 416.3 450.1 312.2 

KL (L/mg) 0.35 0.249 0.293 0.260 

RL 0.125 0.167 0.146 0.161 

R2 0.998 0.993 0.994 0.998 
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Table 3.1 (b): Langmuir isotherm model parameters and correlation 

coefficient for adsorption of IBP on MNCs at 10, 25, 35 and 50 C°. 

Model Parameter Temperature(C°) 

10 25 35 50 

Langmuir 

isotherm     

(MNCs) 

qmax(mg/g) 455.5 401.5 421.9 328.2 

KL (L/mg) 0.280 0.221 0.265 0.203 

RL 0.151 0.184 0.158 0.197 

R2 0.996 0.995 0.992 0.997 

Table 3.1 (c): Langmuir isotherm model parameters and correlation 

coefficient for adsorption of IBP on AgNCs at 10, 25, 35 and 50 C°. 

Model Parameter Temperature(C°) 

10 25 35 50 

Langmuir 

isotherm 

        

(AgNCs) 

qmax(mg/g) 643.9 601.3 543.11 196.2 

KL (L/mg) 0.576 0.530 0.470 0.370 

RL 0.079 0.086 0.096 0.119 

R2 0.995 0.989 0.989 0.995 
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- Carrageenan and Carrageenan/NCs 

 

Figure 18.2: Langmuir plot for Ibuprofen adsorption on (Carrageenan and 

Carrageenan/NCs). Temperature= (a)10oC, (b) 25oC,(c) 35oC, (d) 50oC , pH= 2, time= 5 

min., Volume= 50 mL, adsorbent dosage= 0.05 g. 

Table 3.2 (a): Langmuir isotherm model parameters and correlation 

coefficient for adsorption of Ibuprofen on Carrageenan at 10, 25, 35 and 

50° C. 

Model Parameter Temperature(°C) 

10 25 35 50 

Langmuir 

isotherm 

        

(CRG) 

qmax(mg/g) 160 536.9 150 130.2 

KL (L/mg) 0.153 0.31 0.15 0.138 

RL 0.246 0.138 0.25 0.265 

R2 0.982 0.970 0.994 0.995 
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Table 3.2 (b): Langmuir isotherm model parameters and correlation 

coefficient for adsorption of IBP on CRG/NCs at 10, 25, 35 and 50 C°. 

Model Parameter Temperature(C°) 

10 25 35 50 

Langmuir 

isotherm 

           

(CRG/NCs) 

qmax(mg/g) 405.5 672.4 221.9 122.2 

KL (L/mg) 0.298 0.549 0.205 0.177 

RL 0.143 0.083 0.196 0.22 

R2 0.994 0.97 0.997 0.997 

 Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

 

Figure 18.3: Langmuir plot for Ibuprofen adsorption on (Acetyl βCD/NCs and Benzoyl 

βCD/NCs). Temperature= (a)10oC, (b) 25oC,(c) 35oC, (d) 50oC , pH= 2, time= 40 

min.,5min respectively, Volume= 50 mL, adsorbent dosage= 0.05 g. 
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Table 3.3 (a): Langmuir isotherm model parameters and correlation 

coefficient for adsorption of Ibuprofen on Acetyl βCD/NCs at 10, 25, 35 

and 50° C. 

Model Parameter Temperature(°C) 

10 25 35 50 

Langmuir 

isotherm 

(Acetyl 

βCD/NCs) 

qmax(mg/g) 446.7 411.9 431.2 303.1 

KL (L/mg) 0.287 0.253 0.281 0.220 

RL 0.148 0.165 0.151 0.185 

R2 0.996 0.995 0.992 0.997 

Table 3.3 (b): Langmuir isotherm model parameters and correlation 

coefficient for adsorption of IBP on Benzoyl βCD/NCs at 10, 25, 35 and 

50 C°. 

Model Parameter Temperature(C°) 

10 25 35 50 

Langmuir 

isotherm 

(Benzoyl 

βCD/NCs) 

qmax(mg/g) 417.5 602.9 241.1 172.2 

KL (L/mg) 0.348 0.491 0.237 0.199 

RL 0.125 0.092 0.174 0.200 

R2 0.994 0.979 0.997 0.997 

3.3.2.   Freundlich model Isotherm 

Freundlich model includes interaction between the Ibuprofen molecules 

adsorbed in which includes heterogeneous surface energies system and given 

by Eq.3.4 : 

𝑞𝑒 = 𝐾𝐹𝐶𝑒
1/𝑛

                                                        (3.4) 

The linear form of this equation can be written as: 

ln 𝑞𝑒 =  ln 𝐾𝐹 + 
1

𝑛
ln 𝐶𝑒                                          (3.5) 
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Where KF (L /mg) is the Freundlich isotherm constant, n is constant relating 

to adsorption intensity, If values of 1/n is below one it indicates a normal 

adsorption and If n value is between 1-10, this suggested a favorable sorption 

process [170]. 

     To determine the constants n and KF, the linear form of the equation may 

be used to plot a scheme of ln(qe) vs. ln(Ce) as shown in the following Figures 

19 (1, 2, 3) 

 NCs, MNCs and AgNCs 

 

Figure 19.1: Freundlich plot for IBP adsorption on (NCs, MNCs and AgNCs). 

Temperature= (a)10oC, (b) 25oC,(c) 35oC, (d) 50oC , pH= 2, time= 180 min., Solution 

Volume= 50 mL, adsorbent dose= 0.05 g. 

Freundlich constants KF , 1/n and regression constant (R2) were determined 

and values for all adsorbents are shown in table 3.4 (a, b and c), table 3.5 

(a, b) and table 3.6 (a, b) 
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Table 3.4 (a): Freundlich isotherm model parameters and correlation 

coefficient for adsorption of IBP on NCs at 10, 25, 35 and 50 C°. 

Model Parameter Temperature(C°) 

10 25 35 50 

Freundlich 

isotherm 

            (NCs) 

1/n 0.391 0.294 0.398 0.318 

KF (L/mg) 30.33 14.01 34.12 9.77 

R2 0.896 0.918 0.887 0.986 

Table 3.4 (b): Freundlich isotherm model parameters and correlation 

coefficient for adsorption of IBP on MNCs at 10, 25, 35 and 50 C°. 

Freundlich 

isotherm 

           

(MNCs) 

1/n 0.233 0.295 0.372 0.172 

KF (L/mg) 28.21 61.5 33.11 16.28 

R2 0.898 0.895 0.899 0.874 

Table 3.4 (c):Freundlich isotherm model parameters and correlation 

coefficient for for adsorption of IBP on AgNCs at 10, 25, 35 and 50 C°. 

Freundlich 

isotherm 

         

(AgNCs) 

1/n 0.188 0.175 0.45 0.172 

KF (L/mg) 6.68 6.05 7.92 16.28 

R2 0.97 0.844 0.833 0.794 
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- Carrageenan and Carrageenan/NCs 

 

Figure 19.2: Freundlich plot for IBP adsorption on (Carrageenan and Carrageenan/NCs). 

Temperature= (a)10oC, (b) 25oC,(c) 35oC, (d) 50oC , pH= 2, time= 5 min., Volume= 50 

mL, adsorbent dosage= 0.05 g. 

Table 3.5 (a): Freundlich isotherm model parameters and correlation 

coefficient for adsorption of IBP on CRG at 10, 25, 35 and 50 C°. 

Model Parameter Temperature(C°) 

10 25 35 50 

Freundlich 

isotherm 

            

(CRG) 

1/n 0.132 0.348 0.219 0.305 

KF (L/mg) 18.3 7.7 43.8 21.11 

R2 0.924 0.915 0.875 0.926 
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Table 3.5 (b): Freundlich isotherm model parameters and correlation 

coefficient for adsorption of IBP on CRG/NCs at 10, 25, 35 and 50 C°. 

Freundlich 

isotherm   

(CRG/NCs) 

1/n 0.194 0.481 0.211 0.28 

KF (L/mg) 12.42 29.96 19.8 38.71 

R2 0.962 0.881 0.868 0.91 

 Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

 

Figure 19.3: Freundlich plot for IBP adsorption on (Acetyl βCD/NCs and Benzoyl 

βCD/NCs). Temperature= (a)10oC, (b) 25oC,(c) 35oC, (d) 50oC , pH= 2, time= 40 

min., 5min respectively, Volume= 50 mL, adsorbent dosage= 0.05 g. 

Table 3.6 (a): Freundlich isotherm model parameters and correlation 

coefficient for adsorption of Ibuprofen on Acetyl βCD/NCs at 10, 25, 35 

and 50° C. 

Model Parameter Temperature(C°) 

10 25 35 50 

Freundlich 

isotherm 

(Acetyl βCD/NCs) 

1/n 0.205 0.176 0.268 0.188 

KF (L/mg) 14.46 17.4 61.4 28.5 

R2 0.833 0.971 0.92 0.971 
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Table 3.6 (b): Freundlich isotherm model parameters and correlation 

coefficient for adsorption of IBP on Benzoyl βCD/NCs at 10, 25, 35 and 

50 C°. 

Freundlich isotherm 

(Benzoyl βCD/NCs) 

1/n 0.14 0.198 0.291 0.237 

KF (L/mg) 9.33 20.28 60.3 22.9 

R2 0.889 0.904 0.993 0.974 

 All parameters and correlation coefficient of Langmuir, Freundlich 

shown bellow in table 3.7 (a, b and c), table 3.8 (a, b) and table 3.9 

(a, b) 

 NCs, MNCs and AgNCs 

Table 3.7 (a): Parameters and correlation coefficient of Langmuir, 

Freundlich for adsorption of IBP on NCs at 10, 25, 35 and 50 C°. 

Model Parameter Temperature(°C) 

10 25 35 50 

Langmuir 

isotherm 

        (NCs) 

qmax(mg/g) 503 416.3 450.1 312.2 

KL (L/mg) 0.35 0.249 0.293 0.260 

RL 0.125 0.167 0.146 0.161 

R2 0.998 0.993 0.994 0.998 

Freundlich 

isotherm 

       (NCs) 

1/n 0.44 0.37 0.35 0.35 

KF (L/mg) 14. 51 22.62 25.7 30.32 

R2 0.986 0.986 0.990 0.982 
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Table 3.7 (b): Parameters and correlation coefficient of Langmuir, 

Freundlich and for adsorption of IBP on MNCs at 10, 25, 35 and 50°C. 

Model Parameter Temperature(°C) 

15 30 35 50 

Langmuir isotherm 

   (Magnetic NCs) 

qmax(mg/g) 455.5 401.5 421.9 328.2 

KL (L/mg) 0.280 0.221 0.265 0.203 

RL 0.151 0.184 0.158 0.197 

R2 0.996 0.995 0.992 0.997 

Freundlich isotherm 

   (Magnetic NCs) 

1/n 0.233 0.295 0.372 0.172 

KF (L/mg) 28.21 61.5 33.11 16.28 

R2 0.898 0.895 0.899 0.874 

Table 3.7 (c): Parameters and correlation coefficient of Langmuir, 

Freundlich and for adsorption of IBP on AgNCs at 10, 25, 35 and 50°C. 

Model Parameter Temperature(°C) 

10 25 35 50 

Langmuir isotherm 

    (AgNCs) 

qmax(mg/g) 643.9 601.3 543.11 196.2 

KL (L/mg) 0.576 0.530 0.470 0.370 

RL 0.079 0.086 0.096 0.119 

R2 0.995 0.989 0.989 0.995 

Freundlich 

isotherm 

(AgNCs) 

1/n 0.188 0.175 0.45 0.172 

KF (L/mg) 6.68 6.05 7.92 16.28 

R2 0.97 0.844 0.833 0.794 
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 CRG and CRG/NCs 

Table 3.8 (a): Parameters and correlation coefficient of Langmuir, 

Freundlich for adsorption of IBP on CRG at 10, 25, 35 and 50 C°. 

Model Parameter Temperature(°C) 

10 25 35 50 

Langmuir 

isotherm 

        (CRG) 

qmax(mg/g) 160 536.9 150 130.2 

KL (L/mg) 0.153 0.31 0.15 0.138 

RL 0.246 0.138 0.25 0.265 

R2 0.982 0.970 0.994 0.995 

Freundlich 

isotherm 

       (CRG) 

1/n 0.132 0.348 0.219 0.305 

KF (L/mg) 19.3 7.7 43.8 21.11 

R2 0.924 0.915 0.875 0.926 

Table 3.8 (b): Parameters and correlation coefficient of Langmuir, 

Freundlich and for adsorption of IBP on CRG/NCs at 10, 25, 35 and 

50°C. 

Model Parameter Temperature(°C) 

10 25 35 50 

Langmuir 

isotherm     

(CRG/NCs) 

qmax(mg/g) 405.5 672.4 221.9 122.2 

KL (L/mg) 0.298 0.549 0.205 0.177 

RL 0.143 0.083 0.196 0.22 

R2 0.994 0.97 0.997 0.997 

Freundlich 

isotherm     

(CRG/NCs) 

1/n 0.194 0.481 0.211 0.28 

KF (L/mg) 12.42 29.96 19.8 38.71 

R2 0.962 0.881 0.868 0.91 
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 Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

Table 3.9 (a): Parameters and correlation coefficient of Langmuir, 

Freundlich for adsorption of IBP on Acetyl β-CD/NCs at 10, 25, 35 and 

50 C°. 

Model Parameter Temperature(°C) 

10 25 35 50 

Langmuir isotherm 

(Acetyl β-CD/NCs) 

qmax(mg/g) 446.7 411.9 431.2 303.1 

KL (L/mg) 0.287 0.253 0.281 0.220 

RL 0.148 0.165 0.151 0.185 

R2 0.996 0.995 0.992 0.997 

Freundlich isotherm 

(Acetyl β-CD/NCs) 

1/n 0.205 0.176 0.268 0.188 

KF (L/mg) 14.46 17.4 61.4 28.5 

R2 0.833 0.971 0.92 0.971 

Table 3.9 (b): Parameters and correlation coefficient of Langmuir, 

Freundlich and for adsorption of IBP on Benzoyl β-CD/NCs at 10, 25, 

35 and 50°C. 

Model Parameter Temperature(°C) 

10 25 35 50 

Langmuir isotherm 

(Benzoyl β-

CD/NCs) 

qmax(mg/g) 417.5 602.9 241.1 172.2 

KL (L/mg) 0.348 0.491 0.237 0.199 

RL 0.125 0.092 0.174 0.200 

R2 0.994 0.979 0.997 0.997 

Freundlich isotherm 

(Benzoyl β-

CD/NCs) 

1/n 0.14 0.198 0.291 0.237 

KF (L/mg) 9.33 20.28 60.3 22.9 

R2 0.889 0.904 0.993 0.974 

The Langmuir and Freundlich isotherms for the adsorption of 

Ibuprofen on each adsorbent, at pH =2 and different temperatures, were fitted 

to the experimental data as summarized in tables 3.7, 3.8 and 3.9 
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Based on the value of R2, Langmuir isotherm was selected. To adjust the data 

into the Langmuir adsorption isotherm, the value R2 should be 0.87–1, 

indicating that the experimental data fits strongly into the individual 

regression. 

In the current study, all the R2 values satisfied this condition and greater 

values of R2 were found in Langmuir adsorption isotherm, that all fitting 

parameters in all the cases, the experimental results were fitted better to the 

Langmuir model as the correlation coefficient of the Langmuir graph (R2 ≥ 

0.97) were show much higher values than the values obtained for the fitting 

of the Freundlich model. while the values of 1/n (0.13 – 0.481) which 

indicates high adsorption intensity, this suggesting that all the functional 

groups of Ibuprofen are homogeneously spread over the outer porous 

surfaces of adsorbents. And we can have confirmed that by similar results 

for Ibuprofen removal using Activated Carbon [171]. 

3.4 Adsorption kinetics of Ibuprofen 

    The adsorption of IBP on the adsorbent surfaces were kinetically studied 

for each adsorbent at four different concentrations of 50 ppm, 100 ppm, 

150 ppm and 200 ppm. The experimental data were dynamically fitted to 

the pseudo-first and pseudo-second orders and the model of intra particle 

diffusion of adsorbate as equations (3.6 -3.8): 

For pseudo-first order equation: 

   ln( 𝑞𝑒 – 𝑞𝑡) = ln 𝑞𝑒 − ( 
𝐾1

2.303
) t                               (3.6)  
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 For pseudo second-order equation:  

 
𝑡

𝑞𝑡
=

1

𝑞𝑒
𝑡 +

1

𝐾2𝑞𝑒
2                                   (3.7) 

The intraparticle diffusion model equation is 

qt = Kid t
1/2 + Z                      (3.8) 

where qe and qt are uptake capacity (mg/g) at equilibrium and time t (min), 

respectively, K1 is the rate constant of pseudo-first-order (1/min), K2 is the 

equilibrium rate constant of pseudo-second-order (g /mg.min). The Kid is the 

intra-particle diffusion rate constant (mg/ g.min1/2) while Z defined as the 

boundary layer thickness (mg/ g)  [172]. The values of all these parameters 

are presented in tables 3.10 (a, b, c), table 11(a, b), table 12 (a, b) and Figs 

20(1, 2, 3) and 21(1, 2, 3). The value of K1 was obtained by plotting ln(qe – 

qt) vs. time; meanwhile K2 and qe where established from the slope and the 

intercept of plotting t/qt vs. t. While Kid and Z obtained from plotting qt vs. 

t1/2, and the values of R2 were compared. 

It was obviously shown that the adsorption of Ibuprofen onto the adsorbents 

surfaces follow the pseudo-second order as the values of the correlation 

coefficients reach R2 ≥ 0.997. The coefficients of determination (R2) of the 

pseudo-first order fitted showed a very unfavourable results, suggesting that 

this model did not adapt to the experimental data. 

Other indication also came from the values of qecal, in which ibuprofen 

sorption at equilibrium determined using pseudo-first and pseudo-second 

order rate equations, was confronted with the experimental values, qeexp. 

Suggesting that the adsorption system of IBP on the adsorbent samples were 
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followed and described by the pseudo-second-order because the qecal is very 

closer to qeexp in pseudo-second order in contrast of the calculated first-order 

qe that give too low values compared with experimental one see Tables 3. 

(10, 11, 12) and Fig. 21(1, 2, 3). 

This meaning that the second -order kinetics is higher compared to other 

models for Ibuprofen adsorption on these adsorbents. 

The pseudo-second-order constant k2 values which determined at 

concentration 200 was higher than that at concentration 50 meaning that the 

Ibuprofen adsorption at concentration 200 need more dose of adsorbents than 

at concentration 50. As a consequence, the adsorbents has higher affinity for 

IBP at lower concentrations. 

Decreasing of the pseudo second order rate constant values (k2 ) as following 

order: Acetyl β-CD/NCs ˃CRG/NCs ˃CRG ˃NCs ˃AgNCs ˃MNCs 

˃Benzoyl β-CD/NCs, it may related to the mesoporosity of the adsorbents 

structure, as the slowest IBP adsorption kinetic have higher micropore 

volume [173, 174]. 
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- Pseudo first order 

 NCs, MNCs, AgNCs 

 

Figure 20.1: Pseudo first order sorption kinetics of IBP on (a) NCs, (b) MNCs and 

(c) AgNCs. (Temperature= 25oC, pH= 10, Solution volume= 50 mL, adsorbent 

dosage= 0.1 g). 
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 CRG, CRG/NCs 

 

Figure 20.2: Pseudo first order sorption kinetics of IBP on (a) CRG, (b) CRG/NCs. 

(Temperature= 25oC, pH= 7, Solution volume= 50 mL, adsorbent dosage= 0.1 g) 
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 Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

 

Figure 20.3: Pseudo first order sorption kinetics of IBP on (a) Acetyl βCD/NCs, (b) 

Benzoyl βCD/NCs. (Temperature= 25oC, pH= 7, Solution volume= 50 mL, adsorbent 

dosage= 0.1 g) 
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- Pseudo second order 

 NCs, MNCs and AgNCs 

 

Figure 21.1: Pseudo second order adsorption kinetics of IBP on (a)NCs, (b) MNCs 

and (c) AgNCs). (Temperature= 25oC, pH= 10, solution Volume= 50 mL, adsorbent 

dose= 0.1 g) 
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 CRG and CRG/NCs 

 

Figure 21.2: Pseudo second order adsorption kinetics of IBP on (a) CRG, (b) 

CRG/NCs. (Temperature= 25oC, pH= 7, Solution volume= 50 mL, adsorbent 

dosage= 0.1 g) 
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 Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

 

 

Figure 21.3: Pseudo second order adsorption kinetics of IBP on (a) Acetyl β-CD/NCs 

and (b) Benzoyl β-CD/NCs. (Temperature= 25oC, pH= 7, Solution volume= 50 mL, 

adsorbent dosage= 0.1 g) 
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 NCs, MNCs and AgNCs 

Table 3.10 (a) Pseudo first and second orders kinetic model parameters 

for IBP adsorption on NCs at 25oC. 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-first -order model 

K1 (min-1) qcal(mg/g) R2 

50 36.67 0.0389 20.13 0.977 

100 49.24 0.0411 12.49 0.976 

150 61.94 0.0691 33.40 0.972 

200 82.22 0.053 22.1 0.965 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-second -order model 

K2 

(g/mg.min) 

qcal(mg/g) R2 

50 36.67 0.0071 35.79 0.998 

100 49.24 0.0627 48.82 1 

150 61.94 0.0211 62.7 0.998 

200 82.22 0.0758 83.29 0.999 

 

Table 3.10 (b) Pseudo first and second orders kinetic model parameters for 

IBP adsorption MNCs at 25oC. 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-first -order model 

K1 (min-1) qcal(mg/g) R2 

50 33.15 0.0399 14.51 0.971 

100 66.3 0.0332 17.3 0.975 

150 73.23 0.0252 26.79 0.968 

200 87.89 0.0464 32.25 0.961 

 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-second -order model 

K2 

(g/mg.min) 

qcal(mg/g) R2 

50 33.15 0.00701 33.92 0.999 

100 66.3 0.00992 65.73 0.998 

150 73.23 0.0204 72.19 0.999 

200 87.89 0.0399 88.55 0.999 
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Table 3.10 (c) Pseudo first and second orders kinetic model parameters 

for IBP adsorption AgNCs at 25oC. 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-first -order model 

K1 (min-1) qcal(mg/g) R2 

50 39.12 0.050 14.92 0.943 

100 79.15 0.035 15.34 0.979 

150 88.45 0.027 10.7 0.938 

200 97.55 0.0520 23.2 0.930 

 CRG and CRG/NCs 

Table 3.11 (a) Pseudo first and second orders kinetic model parameters 

for IBP adsorption on CRG at 25oC. 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-first -order model 

K1 (min-1) qcal(mg/g) R2 

50 25.5 0.0299 39.51 0.941 

100 37.59 0.0397 22.4 0.921 

150 52.9 0.0685 40.87 0.926 

200 90.81 0.0490 39.71 0.953 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-second -order model 

K2 

(g/mg.min) 

qcal(mg/g) R2 

50 25.5 0.00563 25.01 0.998 

100 37.59 0.00389 36.6 0.999 

150 52.9 0.021 53.87 0.999 

200 90.81 0.0786 91.92 0.997 

 

 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-second -order model 

K2 

(g/mg.min) 

qcal(mg/g) R2 

50 39.12 8.8 * 10-3 37.99 0.997 

100 79.15 9.6 * 10-3 78.8 0.999 

150 88.45 1.71 * 10-2 88.01 0.998 

200 97.55 5.7 * 10-2 96.98 0.999 
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Table 3.11 (b) Pseudo first and second orders kinetic model parameters 

for IBP adsorption CRG/NCs at 25oC. 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-first -order model 

K1 (min-1) qcal(mg/g) R2 

50 40.9 0.0434 15.11 0.951 

100 70.98 0.0384 27.3 0.946 

150 88.56 0.0274 19.19 0.942 

200 90.71 0.0420 28.05 0.967 

 Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

 

Table 3.12 (a) Pseudo first and second orders kinetic model parameters 

for IBP adsorption on Acetyl β-CD/NCs at 25oC. 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-first -order model 

K1 (min-1) qcal(mg/g) R2 

50 26.92 0.043 10.1 0.943 

100 37.81 0.0499 14.7 0.975 

150 49.99 0.0705 20.14 0.968 

200 69.15 0.061 31.79 0.956 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-second -order model 

K2 

(g/mg.min) 

qcal(mg/g) R2 

50 26.92 0.00701 23.99 0.999 

100 37.81 0.00992 39.03 0.998 

150 49.99 0.0404 50.79 0.998 

200 69.15 0.0989 71.24 0.999 

 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-second -order model 

K2 

(g/mg.min) 

qcal(mg/g) R2 

50 40.9 0.00684 42.02 0.997 

100 70.98 0.00951 71.13 0.997 

150 88.56 0.017 86.09 0.999 

200 90.71 0.0917 93.17 0.999 
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Table 3.12 (b) Pseudo first and second orders kinetic model parameters 

for IBP adsorption Benzoyl β-CD/NCs at 25oC. 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-first -order model 

K1 (min-1) qcal(mg/g) R2 

50 33.15 0.0399 14.51 0.971 

100 66.3 0.0332 17.3 0.975 

150 73.23 0.0252 16.79 0.968 

200 87.89 0.0464 32.25 0.961 

As shown in Figures 22(1,2,3) and Tables in the following pages, the 

intraparticle diffusion plot of the adsorption of ibuprofen on adsorbent 

samples at different concentrations (50 ppm, 100 ppm, 150 ppm and 200 

ppm) were studied using some calculations which was studied by Weber and 

Morris and the model they proposed using eq.(3.8). 

From plotting qt vs. t1/2 see Figs.22(1, 2, 3) we can indicate at first the 

instantaneous adsorption, in which the linear portion passes through the 

origin indicated that the rate of adsorption is controlled by the intraparticle 

diffusion. The next stage we suggest that the regression is nearly linear and 

a plateau but does not passing through the origin, which controlled by some 

external diffusion, intraparticle diffusion and interaction, the process of the 

rate limiting was not the only rate limiting mechanism in the adsorption (i.e., 

the diffusion from the bulk phase to the external surface of the adsorbent is 

the fastest [175]) [176]. Generally, If the linear portion passes through the 

C0 (mg/L) qe (exp) 

(mg/g) 

Pseudo-second -order model 

K2 

(g/mg.min) 

qcal(mg/g) R2 

50 33.15 0.00713 34.08 0.997 

100 66.3 0.00997 67.01 1 

150 73.23 0.0165 74.91 0.998 

200 87.89 0.0223 88.5 1 
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origin, the adsorption process is controlled by intraparticle diffusion, if not, 

the sorption controlled by both intraparticle diffusion and exterior surface 

adsorption [177-178]. 

Also we can obtain the values of Kid and Z from the Figures. The values are 

presented in Tables 13(a, b, c), 14(a, b) and 15(a, b). The final stage also 

linear and they were describing the gradual adsorption. 

We can observe from the tables that by increase of concentration the values 

Z were increased and also increasing of the potential of internal mass 

transfer. 
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- NCs, MNCs and AgNCs 

 

Figure 22.1: The intraparticle diffusion of IBP on (a) NCs, (b) MNCs and (c) AgNCs). 

(Temperature= 25oC, pH= 10, solution Volume= 50 mL, adsorbent dose= 0.1 g). 

Table 3.13(a)Intraparticle diffusion for various initial concentrations of 

Ibuprofen by NCs 

C0 (mg /L) Intraparticle diffusion model 

Kid Z 

50 0.829 1.628 

100 0.954 2.904 

150 1.192 4.211 

200 1.123 5.802 
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Table 3.13(b) Intraparticle diffusion for various initial concentrations of 

Ibuprofen by MNCs 

C0 (mg /L) Intraparticle diffusion model 

Kid Z 

50 0.72 3.046 

100 0.694 5.26 

150 0.534 10.06 

200 0.504 11.81 

Table 3.13(c) Intraparticle diffusion for various initial concentrations of 

Ibuprofen by AgNCs 

C0 (mg 

/L) 

Intraparticle diffusion model 

Kid Z 

50 0.845 10.18 

100 0.751 15.37 

150 1.136 17.9 

200 1.326 19.27 
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- CRG and CRG/NCs 

 

Figure 22.2: The intraparticle diffusion of IBP on (a) CRG, (b) CRG/NCs. 

(Temperature= 25oC, pH= 7, Solution volume= 50 mL, adsorbent dosage= 0.1 g). 

Table 3.14(a)Intraparticle diffusion for various initial concentrations of 

Ibuprofen by CRG 

C0 (mg /L) Intraparticle diffusion model 

Kid Z 

50 1.124 29.53 

100 1.2 34.3 

150 1.567 36.34 

200 1.928 40.03 
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Table 3.14(b) Intraparticle diffusion for various initial concentrations of 

Ibuprofen by CRG/NCs 

C0 (mg /L) Intraparticle diffusion model 

Kid Z 

50 1.674 39.92 

100 1.487 46.18 

150 1.761 57.41 

200 2.05 62.52 

- Acetyl β-CD/NCs and Benzoyl β-CD/NCs 

 

Figure 22.3: The intraparticle diffusion of IBP on (a) Acetyl β-CD/NCs and (b) 

Benzoyl β-CD/NCs. (Temperature= 25oC, pH= 7, Solution volume= 50 mL, 

adsorbent dosage= 0.1 g). 
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Table 3.15(a)Intraparticle diffusion for various initial concentrations of 

Ibuprofen by Acetyl β-CD/NCs. 

C0 (mg /L) Intraparticle diffusion model 

Kid Z 

50 0.699 3.3 

100 0.943 4.7 

150 1.147 6.478 

200 1.109 12.38 

Table 3.15(b) Intraparticle diffusion for various initial concentrations of 

Ibuprofen by Benzoyl β-CD/NCs 

C0 (mg /L) Intraparticle diffusion model 

Kid Z 

50 1.687 40.79 

100 1.809 49.52 

150 1.857 59.24 

200 2.16 67.64 

3.5 Adsorption Thermodynamics parameters at equilibrium 

The parameters of thermodynamic were appropriately determined to obtain 

knowledge about changing of the Gibbs free energy, entropy and enthalpy 

for the adsorption of IBP using different adsorbents, we obtain the 

thermodynamics parameters like (K) the equilibrium rate constant (L/g), 

(ΔG0) the Gibbs free energy (J/mol), (ΔH0) the standard enthalpy (J/mol), 

(ΔS0) the standard entropy (J/mol.K) using different ranges of temperatures 

T(K) and perfect gas constant R (J/K.mol). All of these parameters were 

studied using Van’t Hoffs equations (eq.3.10 and 3.11) [179]. 

        ln 𝐾𝑑 =  
∆𝑆

𝑅
 - 

∆ 𝐻

𝑅𝑇
                                   (3.10) 
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      ΔG0 = -RT LnKd                          (3.11) 

The values of LnKd were plotted against 1/T (see figs. 23, 24, 25), The plots 

showed good correlation coefficient values for IBP (R2 ≥ 0.97). The slopes and 

intercept will give us the values of ΔG, ΔS0 and ΔH0. The values are shown in 

Tables (3.16, 3.17, 3.18). The negative ΔG values, implying the spontaneous 

nature and feasibility of the adsorption process of IBP on the different 

adsorbents [180] and the free energy increased as the temperature increased 

indicate that better adsorption when temperature is increased [181]. 

From the following tables, the ΔS0 shows positive values which denote that the 

randomness was increased at the interface of the solid/solution in the adsorption 

process of IBP on adsorbents, probably due to the competitive adsorption 

between IBP and solvent molecules (water and methanol) [182], as it 

considered an important factor that the chemical affinity of IBP adsorption 

towards adsorbents and water molecules, as the hydrophobicity of this 

emerging pollutant increased, the affinity toward adsorbents surfaces also 

increased. So, the chemistry of adsorbents surface have an important role 

[173].The positive value of ΔH suggested that the uptake of IBP was 

endothermic in nature [176]. As there is two types of adsorption, 

chemisorptions and physical adsorption, the ΔG values are in the range -1 to -

13 kJ/mol, which suggesting that the sorption are mainly physical [176, 183]. 
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- NCs, MNCs and AgNCs 

 

Figure 23: Plot of lnKd versus 1/T for thermodynamic parameters of IBP adsorption 

on (NCs, MNCs and AgNCs). (pH= 10, time= 60 min., Solution volume= 20 mL, 

adsorbent dose= 0.075 g). 

Table 3.16(a) Thermodynamic factors for the adsorption of IBP onto 

NCs (C° = 30 ppm, pH = 10 , t = 60 min, adsorbent dose = 75 mg. 

Temperature (K) ∆G° 

(KJ/mol) 

∆H° 

(KJ/mol) 

∆S° (J/K.mol) 

283 -7.76 16.1 83.6 

298 -8.91 

308 -9.73 

323 -11.01 

 Table 3.16(b) Thermodynamic factors for the adsorption of IBP onto 

MNCs (C° = 30 ppm, pH = 10, t = 60 min ,adsorbent dose = 75 mg. 

Temperature 

(K) 

∆G° 

(KJ/mol) 

∆H° 

(KJ/mol) 

∆S° 

(J/K.mol) 

283 -8.94 14.48 82.15 

298 -10.15 

308 -11.01 

323 -12.08 
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Table 3.16(c) Thermodynamic factors for the adsorption of IBP onto 

AgNCs (C° = 30 ppm, pH = 10, t = 60 min ,adsorbent dose = 75 mg. 

Temperature 

(K) 

∆G° 

(KJ/mol) 

∆H° 

(KJ/mol) 

∆S° 

(J/K.mol) 

283 -9.64 18.29 97.9 

298 -11.14 

308 --12.03 

323 -13.42 

 

- CRG and CRG/NCs 

 

Figure 24: Plot of lnKd versus 1/T for thermodynamic parameters of IBP adsorption 

on (CRG and CRG/NCs). (pH= 7, time= 30 min., Solution volume= 20 mL, 

adsorbent dose= 0.075 g) 

Table 3.17(a) Thermodynamic factors for the adsorption of IBP onto 

CRG (C° = 30 ppm, pH = 7, t = 30 min ,adsorbent dose = 75 mg. 

 

  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036

ln
K

d

1/T

CRG

CRG/NCs



100 

 Table 3.17(b) Thermodynamic factors for the adsorption of IBP onto 

CRG/NCs (C° = 30 ppm, pH = 7, t = 30 min ,adsorbent dose = 75 mg. 

Temperature 

(K) 

∆G° 

(KJ/mol) 

∆H° 

(KJ/mol) 

∆S° 

(J/K.mol) 

283 -8.82 13.41 77.93 

298 -9.91 

308 -10.75 

323 -11.81 

- Acetyl β-CD/NCs and Benzoyl β-CD /NCs 

 

Figure 25: Plot of lnKd versus 1/T for thermodynamic parameters of IBP adsorption 

on (Acetyl β-CD/NCs and Benzoyl β-CD /NCs). (pH= 7, time= 30 min., Solution 

volume= 20 mL, adsorbent dose= 0.075 g) 

Table 3.18(a) Thermodynamic factors for the adsorption of IBP onto 

Acetyl β-CD/NCs (C° = 30 ppm, pH = 7, t = 30 min, adsorbent dose = 75 

mg. 

Temperature (K) ∆G° 

(KJ/mol) 

∆H° 

(KJ/mol) 

∆S° (J/K.mol) 

283 -7.99 12.82 73.17 

298 -9.16 

308 -9.98 

323 -10.74 
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 Table 3.18 (b) Thermodynamic factors for the adsorption of IBP onto 

Benzoyl β-CD /NCs (C° = 30 ppm, pH = 7, t = 30 min, adsorbent dose = 

75 mg. 

Temperature 

(K) 

∆G° 

(KJ/mol) 

∆H° 

(KJ/mol) 

∆S° 

(J/K.mol) 

283 -8.82 9.37 64.08 

298 -9.91 

308 -10.49 

323 -11.27 

3.6 Recovery of IBP and reusability of the adsorbents 

This part of experiment was done to see how many times we can use the 

adsorbents and see their efficiencies. In this study, we repeat the experiment 

for 4 times using the same adsorbents. Figure 26, plots the percent removal 

efficiency of Ibuprofen adsorbed through four sequential cycles, in which 

the results presented in the following table 3.19. From the whole cycles there 

is no noticeable decreasing in the amount of adsorption. Furthermore, this 

will enhance the industrial application to avoid another pollution during the 

wastewater treatment. 
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Table 3.19: Percentage of IBP removal by the regenerated adsorbent 

compared with a fresh one at (Temperature= 35oC and pH= 10 for NCs, 

MNCs and AgNCs, Temperature=25oC and pH= 7 for other adsorbents, 

Solution volume= 50 mL, adsorbent dose= 0.1 g) 

Recycle time                  1  2      3    4 

NCs (IBP removal efficiencies, %)        97.9         97.5    94.3            

93.2 

MNCS (IBP removal efficiencies, %)     98         96     95               

90.8 

AgNCs (IBP removal efficiencies, %)  98.2          96.8         96.6   95.5  

CRG (IBP removal efficiencies, %)       98.1          94.4    90            81 

CRG/NCs (IBP removal efficiencies, %) 98.2        94.9      91.6   90.9  

Acetyl β-CD/NCS (IBP removal efficiencies, %)   79.1  76.8   73.1     70 

Benzoyl β-CD/NCs (IBP removal efficiencies, %) 98.2     95.1   91.8       

91.6 
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Figure 26: plots the percent removal efficiency of Ibuprofen adsorbed by (a) NCs, 

MNCs and AgNCs (b) CRG and CRG/NCs, (c) Acetyl β-CD/NCs and Benzoyl β-

CD/NCs through four repeated cycles. 

The results and the studies show that, the tendency of these polymers, NCs, 

the prepared MNCs, AgNCs, Carrageenan (CRG), CRG composite with 

NCs, Acetyl β-CD/NCs and Benzoyl β-CD/NCs, for extracting Ibuprofen 

(IBP) from water were evaluated. The polymers NCs, AgNCs, 

Carrageenan/NCs Benzoyl β-CD/NCs showed excellent extraction 

efficiency toward IBP. At the same time the MNCs, CRG showed very good 
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extraction efficiency for adsorbate, meanwhile the Acetyl β-CD/NCs give an 

acceptable tendency for IBP. The thermodynamic studies revealed a 

spontaneous adsorption of IBP at different temperatures. 

Possible interaction between Ibuprofen and absorbent (CNC) is shown in the 

following figure (27). The figure shows possible H-bonding between 

cellulose and ibuprofen.  As shown in the figure, Ibuprofen has a carboxyl 

group and each repeat unit of cellulose has three hydroxyl groups. Ibuprofen 

shall be held into the cellulose matrix.  

 

 

 Figure 27: A representative structure showing the interaction between CNC and 

IBP 
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Conclusions 

In this study, the potentialities of three mainly types of adsorbents were 

studied as adsorbents for Ibuprofen removal from aqueous solution. The first 

is cellulose derivatives; cellulose nanocrystalline (CNC), magnetic cellulose 

nanocrystalline (MNCs) and silver cellulose nanocrystalline (AgNCs). The 

cellulosic part of the olive Industry Solid Waste (OISW) was extracted and 

purified then converted to cellulose nanocrystalline. Cellulose nanocrystalline 

was then converted to magnetic cellulose nanocrystalline by reacting it with 

solution of FeCl3.6H2O and FeSO4.7H2O. Also, the cellulose nanocrystalline 

converted to silver cellulose nanocrystalline by reacting with solution of 

AgNO3 and NaBH4. The second adsorbents is Carrageenan (CRG) materials 

compared with CRG composites with cellulose nanocrystalline. Final 

adsorbents were prepared using beta cyclodextrin (β-CD), it was converted 

to Acetyl β-CD by reacting with solution of triethyl amine and acetyl 

chloride, also the β-CD converted to Benzoyl β-CD by reacting with triethyl 

amine and benzoyl chloride solution, then these two prepared adsorbents 

were composites with CNC. The cellulose nanocrystalline, Acetyl β-CD and 

Benzoyl β-CD were analyzed by using IR. 

The ability of the adsorbent samples to extract IBP as an emerging pollutant 

from wastewater was evaluated. Results showed that NCs, AgNCs, 

Carrageenan/NCs Benzoyl β-CD/NCs has a better efficiency toward IBP 

relative MNCs and CRG, but the Acetyl β-CD/NCs showed good efficiency. 

The studied of time contact of adsorbents with adsorbate shows high efficient 

removal at 180 min for the first type of adsorbent, and 5min for CRG, 
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CRG/NCs and Benzoyl β-CD/NCs which is very fast adsorption efficiency, 

and 40min of time contact for Acetyl β-CD/NCs. The other results show that, 

the adsorption efficiency increases as the dosage increased for each NCs and 

AgNCs till reached 50mg, and 25mg adsorbent dose from MNCs, CRG and 

CRG/NCs, for the Acetyl and Benzoyl β-CD/NCs 5mg is better dosage. 

which can be explained by the availability of vacant sites and the 

unsaturation of adsorption sites. The highest efficiency of the three cellulosic 

materials toward IBP was at pH 10, and 35°C. Meanwhile, the other 

adsorbents (CRG, CRG/NCs, Acetyl and Benzoyl β-CD/NCs) showed best 

adsorption at normal pH and normal temperature (pH 7, 25°C). Here, the 

Langmuir isotherm model shown better indicating results, so that the 

adsorption mechanism followed this model. Both pseudo-first-order and the 

second-pseudo-order kinetics were plotted and studied and founded the 

correlation coefficients (R2) was higher for the pseudo second order than that 

for the pseudo-first-order which reached more than 0.997 for all adsorbent 

samples used in this work. Moreover, we found that the experimental qe 

values for the pseudo-second-order were closer to the calculated one than 

that for pseudo-first-order, indicating that the adsorption process of IBP on 

the surfaces of adsorbent samples were followed and described by the pseudo 

second order model. 

The ΔS0 value for the adsorption process found to be positive in all cases, 

indicating that the randomness at the solid/solution interface increased 

during adsorption process, Meanwhile, the ΔH0 values were also positive for 

all adsorbent samples due to their endothermic nature. For study of the free 
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energies for the adsorbents it was show a negative values indicating the 

spontaneously nature of the sorption process by using various temperatures. 

- Novelty of Work: 

In fact, the strong novelty of this research is this is the first research in which 

the Acetyl β-Cyclodextrins, Benzoyl β-Cyclodextrins and Carrageenan 

polymers have been used as adsorbents to extract pharmaceuticals from 

wastewater. The composites of the polymers synthesis as extraction 

adsorbents, specially that we use a very important and hazard class of 

environmental pollutants as emerging drugs, provides an extra novelty to this 

work. 
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 الملخص

 ،المحاليل المائيةمن   (IBP)في استخراج الايبوبروفين اتثلاث أنواع مختلفة من المبلمر استخدم 
تحويله إلى  نانوسليلوز  تمالمصنع CNC (.وCNCلوز )نانو سلي إلىتحويله السليلوز حيث تم 

فهي مادتي الكارجينان  الأخرى المبلمرات  أما .والى نانو سليلوز الفضة( MCNCالمغناطيسي )
و  Acetyl β-CD إلى  β-CDحيث تم تحويل ال ،  CRG and β-CDسايكلودكسترين -وبيتا
 ةالمصنع β-CDو وقد تم تشخيص النانو سيليولوزوتم المقارنة بينهما.  Benzoyl β-CD أيضا

 ( من الماءIBP)الايبوبروفين استخراج  على ةالمصنع مبلمراتتم حساب قدرة ال. FTIR عن طريق
 Acetylفيما اظهر ال IBPممتازة نحو كفاءة استخلاص  ت المبلمرات. أظهر مع بعضها ومقارنته
β-CD متغيرات وتقييمها أثناء عملية الاستخراج: الوقت خمسة. تم رصد ميل مقبول لاستخلاصه ،

، عهاالمواد جميوالجرعة، والتركيز. تم دراسة الديناميكا الحرارية لادمصاص  ، ودرجة الحرارة،pHوال
كشفت الدراسات الحرارية و . pseudo –second- orderوLangmuir isothermكل منهم يتبع
 .حرارة مختلفة اتي للادمصاص في درجئالطابع التلقا

 

 


