

An-Najah National University Faculty of Engineering Civil Engineering Department

Graduation Project II

Structural Design of The Faculty of Optical and Nursing in An-Najah National University-Nablus

Supervisor Name :

Dr. Imad Al.Qasem

By:

Ra'fat Sabbah

Ra'fat Rajab Malek Kittaneh

Content :

▶ Introduction Preliminary design Seismic design Three Dimensional Structural Analysis and Design Column Design Foundation Design Shear wall Design Discussion & Conclusion

Introduction

The Faculty of Optical and Nursing is located in An-Najah National University – Nablus, which is established before 11 years.

This structure consists of a three basement floors, ground floor and two upper floors. The area of each floor is around $1242 m^2$.

Uses of each floor

Floor	Area (m ²)	Height (m)	Use of floor
3 rd Basement	1242	4	Instruments rooms and
			laboratory
2 nd Basement	1242	4	Laboratory and stores
1 st Basement	1242	4	Class room and laboratory
Ground	1242	4	Class room
1 st Floor	1242	4	Gests, class room and offices
2 nd Floor	1242	4	Offices

Codes and Standards

ACI 318-08: American concrete institute provisions for reinforced concrete structure design.

► UBC 97: Uniform Building Code.

Structural Materials : * Concrete properties

Property	Value	Value
Compressive	28 Mpa	35 Mpa
strength (f'c)		
Modulus of	24.87 * 10 ³ Mpa	27.87* 10 ³ Mpa
elasticity (Ec)		
Unit weight of	25 KN/m ³	25 KN/m ³
reinforced		
concrete		
Uses	For all elements in structure except	For columns , shear wall, and footing
	columns , shear wall, and footing	

* Reinforcement steel

Property	Value
Yielding strength (fy)	420 Mpa
Modulus of elasticity (Es)	2.04 * 10 ⁵ Mpa

Non-Structural Materials

Material	γ in KN/m³
Masonry	27
Mortar	23
Block	12
Plaster	23
Tile	26
Filling material	18
Plain Concrete	23
Reinforcement Concrete	25

Soil properties :

this structure is constructed on a hard rock
Bearing capacity of this soil is 350 KN/m2.

Section in Slab

Superimposed Dead Load & Live Load

Floor	Dead Load (KN/m ²)	Live load (KN/m ²)
3 rd Basement	4	5
2 nd Basement	4	5
1 ^{s⊤} Basement	4	5
Ground	4	5
1 st Floor	4	2.5
2 nd Floor	1	10

Preliminary Design

Slab

The slab will be designed as 1-way and 2-way solid slab

The figure shows a plan for one slab (second floor slab)

Slab Preliminary dimensions

► The figure below shows a 1-D model for second floor slab

- According to ACI table:
- ▶ h1 (min) = Ln/24 (for one end continuous) = 3.3/24 = 137.5 mm.
- ▶ h2 (min) = Ln/28 (for two end continuous) = 4.95/28 = 176.7 mm.
- ▶ So, h min = 176.7 mm
- ▶ We take h=200 mm

The table shows the selected thickness for each slab

Slab	Thickness
Slab 1 (second floor)	200 mm
Slab 2 (first floor)	200 mm
Slab 3 (Ground floor)	200 mm
Slab 4 (first basement floor)	250 mm
Slab 5 (second basement floor)	250 mm
Slab 6 (third basement floor)	250 mm

14

Beam Preliminary dimensions

The figure bellow shows a 1-D model for second floor slab

- According to ACI table:
- $H_{\min 1} = \frac{6.55}{18.5} = 0.354 \text{ m}$
- $H_{\min 2} = \frac{12.650}{21} = 0.602$
- ▶ We will take H= 800 mm

Check for serviceability:

The maximum deflection on the beam:

 $\Delta allowable = \frac{L}{\frac{240}{240}}$ ACI 318-08 Table 9.5 (b) maximum deflections $\Delta allowable = \frac{12.625}{240} = 52.6 \text{ mm}$ Total long-term deflection: $\Delta = 1.5 \Delta live + 2 \Delta dead = 13.875 \text{ mm}$

The preliminary dimension for beams

Beam	Thickness
Beam 1 (for second floor)	800 mm
Beam 2 (for first floor)	400 mm
Beam 3 (for Ground floor)	400 mm
Beam 4 (for first basement floor)	850 mm
Beam 5 (for second basement floor)	850 mm
Beam 6 (for third basement floor)	850 mm

Seismic Load

- Seismic load will be calculated depending on UBC-97.
- the location of the structure is (Nablus).
- Soil type (rock), with bearing capacity = 350 KN/m²
- According to Palestinian seismic map,
- seismic zone is **2B** thus the value of zone factor is **(Z=0.2)**. From UBC-97 table 16-I
- Soil classification is SB, From UBC-97 table 16-J

structure period:

► $T = Ct * (hn)^3/4$ → UBC-97 Eq(30-8)

where: hn = height of the building = 24 m Ct = 0.048

▶ T= 0.52 sec

Base shear

► We use static lateral force method

where $V = \frac{C\nu * I}{R * T} W \rightarrow UBC 97 - Eq (30-4)$

- ► W = the total seismic dead load
- ▶ R = the response modifier = $5.5 \rightarrow UBC 97 table 16 N$
- ▶ I = the importance factor = $1 \rightarrow \text{UBC } 97 \text{table } 16 \text{-K}$
- ► CV = seismic coefficient = $0.2 \rightarrow UBC 97$ table 16-R
- ► \rightarrow base shear : V = 0.0687 * W
- ► According to UBC \rightarrow Vmax = (2.5*Ca*I/R)W = 0.09 WVmin = 0.11*Ca*W = 0.022 W

Where: Ca = Seismic coefficient = $0.2 \rightarrow UBC-97$ table 16-Q \bigvee Min < (V = 0.0687 W) < V max \rightarrow OK.

3D Model

- The structure was built using sap 18 program
- We define all section for columns, beam, shear wall, slab
- We put pin supports under the structure

Compatibility Check

Period and modal participation ratio

	OutputCase	StepType Text	StepNum Unitless	Period Sec	UX Unitless	UY Unitless	UZ Unitless	SumUX Unitless	SumUY Unitless
	MODAL	Mode	1	0.306983	7.329E-09	1.074E-06	0.01711	7.329E-09	1.074E-06
	MODAL	Mode	2	0.271783	1.082E-05	9.089E-06	0.01447	1.083E-05	1.016E-05
	MODAL	Mode	3	0.264159	1.907E-06	3.749E-06	0.00222	1.274E-05	1.391E-05
	MODAL	Mode	4	0.245102	0.62186	0.00086	4.188E-06	0.62187	0.00087
	MODAL	Mode	5	0.230083	9.033E-07	4.288E-05	5.369E-05	0.62187	0.00092
	MODAL	Mode	6	0.217519	8.802E-05	8.821E-06	0.00264	0.62196	0.00093
	MODAL	Mode	7	0.2042	0.00014	6.991E-05	0.00113	0.6221	0.001
	MODAL	Mode	8	0.192311	7.522E-06	0.00119	4.036E-05	0.62211	0.00219
	MODAL	Mode	9	0.176576	0.00095	0.73964	0.00027	0.62306	0.74183
	MODAL	Mode	10	0.162044	0.00111	5.687E-05	2.909E-05	0.62417	0.74188
	MODAL	Mode	11	0.152251	0.00031	0.00858	0.02113	0.62447	0.75046
	MODAL	Mode	12	0.133029	0.00213	0.0001	0.00028	0.62661	0.75056
	MODAL	Mode	13	0.09624	0.00076	0.01828	0.00622	0.62736	0.76885
	MODAL	Mode	14	0.091042	0.22346	6.535E-05	0.00017	0.85082	0.76891
	MODAL	Mode	15	0.072289	0.00059	0.13211	0.00073	0.85141	0.90103
•	MODAL	Mode	16	0.061426	0.06335	0.00091	0.00054	0.91476	0.90193

25

Equilibrium Check

×	Base Reactions								- 🗆	×			
File	View Forma	at-Filter-Sort	Select Opti	ons									
Units: A Filter:	Units: As Noted Base Reactions							~					
	OutputCase	CaseType Text	GlobalFX KN	GlobalFY KN	GlobalFZ KN	GlobalMX KN-m	GlobalMY KN-m	GlobalMZ KN-m	GlobalX m	GlobalY m	GlobalZ m	X	Ce
•	DEAD	LinStatic	5.767E-11	2.307E-11	71019.514	1313442.289	-1116771.01	-3.603E-10	0	0		0	
	Suoerimpoo	LinStatic	1.155E-11	5.915E-12	18314.317	329251.648	-284930.48	3.536E-11	0	0		0	
	Live	LinStatic	2.806E-11	1.389E-11	33856.13	613424.38	-527559.45	3.86E-11	0	0		0	

Load type	Hand results KN	SAP results KN	Difference %
Dead	68571	71019	3.4
Live	33753	33856	0.3
Superimposed	18207	18314	0.6

Stress Strain relationship slab moment

Difference between 1-D and 3-D model

▶ % error =
$$\frac{17.32 - 17.72}{17.72} * 100\% = 2.3\% < 10\%$$
, OK

28

Beam moments

% error = $\left(\frac{942 - 954.93}{942}\right)$ *100% = 1.4% which is less than 10%, OK

3.3.5 Check slab for deflection (Serviceably check):

30

- *Actual beams deflection = total beam deflection average axial deformation of columns that support the beam.
- * Actual floor deflection = total deflection the average axial deformation of the four surrounding columns.
- * Actual slab deflection = Actual floor deflection the average actual beams deflection

- Δ (Total dead) = 5 mm.
- ► Δ (Live) = 1.9525 mm.
- ► The long-term deflection = 13.928 mm.
- ► The allowable deflection = L/240 = 4.35/240 = 0.018125 m=18.125 mm
- ▶ 12.928 < 18.125, OK

Columns Design

In this project, columns will be classified as group according to the range of axial load. All columns of the building are assumed as squares (40 *40) cm

Group	Column number	Axial force	Critical columns
number		range	
		KN	
1	C31,C32,C33	400-1000	C33=659 KN
2	C1,C3,C4,C5,C6,C7, C9,C10,C11 C22,C24,C25,C26,C 27,C28,C29,C30	1000-2000	C22=1752 KN
3	C2,C8,C12,C13,C14, C15,C16,C17 C18,C19,C20,C21,C 23	2000-3000	C18=2939 KN

Columns are classified into short and long columns according to the effect of buckling on each type

All columns are short columns, and we used the below equation according to ACI 318 to check the columns for buckling

•
$$\frac{K L u}{r} \le 34 - 12 (M1/M2)$$

For design the columns we take a critical column for each group and design it

- ► For computing gross area of the columns, we assume Pu= Ø Pn
- $\blacktriangleright \text{ } \emptyset \text{ Pn} = \emptyset \lambda (0.85 \text{*} \text{f'c(Ag-As)} + \text{As (Fy)})$
- ▶ Ø Pn: Capacity of column in compression axial force.
- ▶ Ø: 0.65 for tied columns and 0.75 for spiral columns.
- > λ : 0.8 for tied columns and 0.85 for spiral columns.
- ► *Ag*: Gross sectional-area of the column.
- ► As: Area of longitudinal steel \rightarrow As = ρ Ag \rightarrow assuming ρ =0.01 then As=0.01Ag
- ► *fc*': Concrete compression capacity in MPa.
- ► *fy*: Steel yielding strength in MPa

columns design values

Group #	Critical Column #	Pu KN	Ag mm²	Dimension mm	As mm²	Reinforcement	Ties mm
1	C33	659	40285	300*300	900	8 Ø 14	2Ø10/250
2	C22	1752	107600	400*400	1600	8 Ø 16	2Ø10/250
3	C18	2939	167942	450*450	2500	8 Ø 18	2Ø10/250

Foundation design

Bearing capacity of the soil is 350 KN/m2.

we design all footing as single, combined and wall footing.

We have three group of single footing according to the axial load on columns, the group of foundation are the same of columns groups.

footing are designed as single footing, and if the areas of two footing interact to each other or the stress under two footing is more than 350 KN/m² they are designed as combined footing.

Single footing design

Footing dimension \rightarrow A = Pservice / q all **Footing thickness:** # wide beam shear $Vu = qu \left(\frac{l-c}{2} - d\right)$ **# punching shear:** Vu punching = $Pu - qu (c+d)^2$ \emptyset Vcp = $\emptyset^* 0.33^* \sqrt{f'c} * bo * d$

Footing Length *width Depth Top steel Columns Bottom steel number number (m) (in each (in each (m) direction) direction) F1 C31,C32,C33 1Ø14 /200 mm 1Ø14 /200 mm 1.5*1.5 0.4 C1,C3,C4,C5,C6,C7,C9,C10, 1Ø16 /200 mm C11,C22,C24,C25,C26,C27, F2 0.5 1Ø14 /160 mm 2*2 C28,C29,C30 F3 C2,C8, C23 0.7 1Ø22 /140 mm 1Ø12/150 mm 2.6*2.6

F2 design

42

Combined Footing Design

► We design 2 footing as combined footing

Footing number	Columns number	Length (m)	Width (m)	Depth (m)
F4	C12-C13	4	3.3	0.8
F5	C14-C15	4.3	3	0.7

F4 Design

Shear wall and wall footing

Thank You For Listening

