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Abstract

This research will contribute to the field of power system protection. As
traditional protection has failed to overcome its limitations to classify and
discriminate different statuses of transformer, a need has risen to find new
techniques to solve the problem. In this thesis, ensemble techniques are used
to solve this issue. Hence, the differential protection constructed by using
ensemble techniques to provide protection element via a trip and no trip
actions. And further, conditional monitoring functions are used to distinguish
five different statuses of transformer including normal, inrush, over-
excitation, current transformer-saturation and internal fault.

By capturing practical transformer rating models for 20 different
transformers with 5 different operating cases, 100 examples were provided
as a data set to train and test models with 1600 observations. The 100 original
and raw data were used to train random forest, then it has been validated with
internal measures including out-of-bag error, margin, confusion matrix, and
outliers. Afterward, an updated and weighted data set was generated to be
used in training and testing random forest. OOB error and margin were
captured for weighted examples to be compared with raw examples.
Different train to test, which are 80-to-20 and 60-to-40, have been used to

validate system strength and reliability. Moreover, a faster version of random
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forest models constructed with different sizes of data window included %,
Y, and Y4 cycles, resulted in an accurate protection and high accurate
conditional monitor. Besides, two different versions of random forest in
terms of individual trees depth have been tested concerning the greedy and
limited size.
Boosting technique was also applied to both, original data set and weighted
data set with different train to test ratio including 80-to-20 and 60-to-40 to
validate the model. And yet, the model has been tested conditioned with
optimum number of trees by using out-of-bag error and cross validation
folds. Due to that, the variable importance was achieved by using the
optimum number of trees.
It is worth noting that the variable importance was captured by using
ensemble techniques, and therefore conclusion for signal importance at
different instances investigated.
In conclusion, random forest and boosting have shown promising results and
showed the ability to classify the suggested problem. Thus, it provides

accurate, fast, and reliable results.



Chapter One
Introduction

1.1 Background

The increasing demands of electrical energy by different consumers lead to
increase the dependability on these sources, which reveals the great
importance of protection systems. The protection systems are subjected to
the toughest conditions along with introducing new loads and generation.
Moreover, they are required to provide rapid, simple, selective, sensitive and
reliable “meaning dependable and secure” response to assure continuity
requirements. Also, the modern vast electrical system with a variety of
equipment interacting with one another has subjected traditional protection
to a bad compromise as a lot of data containing mixed pieces of information
need to be handled, the traditional protection has failed to extract and analyse
these pieces of information efficiently.

The electrical system infrastructure contains multiple elements which are:
generator, transmission line, reactor, capacitor bank, circuit breaker, etc.
However, the transformer has extreme importance amongst the electrical
system elements since it links the whole system. And as each element has
some degree of singularity to deal with, different protection regimes were
suggested overtime to follow equipment singularity and development. Yet to
add that the transformer exhibits different oscillatory power flow features

including fault, likewise fault and normal features. The features differences
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are assigned mainly due to the nonlinearity of the magnetic core, which
attains difficulties to diagnose and discriminate these different features.
Therefore, mal-operation occurs.

Different combinations of protection are being used, depending on the
transformer size. For instance, low size transformer may be used only with
over-current fusing elements and arcing horns, rather than larger size
transformers, which have more complicated protection elements with surge
arrestor. However, the transformer has many protections with differential
and over current as electrical protection. Hence, the mechanical protection
includes Buchholz, pressure relief, oil, and winding thermometer.

The electrical transformer protection, specifically differential protection, has
been under study for a long time, accordingly, different topologies were
suggested for differential current discrimination including artificial
intelligence, transitory feature detection, hybrid systems, and many others.
Whereas traditional differential protection considers current transformer
(CT) transformation errors, CT mismatch and taps variation. Where it
follows an increasing curve with a positive specific slope for the relation
between differential and restrain current. And whenever point of operation
above this curve fault is presumed and tripping is imposed on the circuit
breaker. While over-current used as another back-up electrical protection, it
operates whenever current value increases above some threshold following
a specific curve, which may be time delayed or instantaneous. The Buchholz
protection is being used as a main mechanical protection, and its operation

Is considered very crucial and dangerous to the transformer. In cases of fault,
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gases will be formed inside the transformer. Due to Buchholz's design and
position upside transformer, the Buchholz trap gases inside which
accumulates leads to decrease oil inside and float contacts to drop in two
states, these gases can be tested too. Moreover, Buchholz protection has
another aspect that provides protection against the oil flow rate through using
a flat piece of metal across the oil path located between the main tank and
reservoir at at 0" to 5° slope. The importance of Buchholz protection is also
revealed in its use as a protection for tap-changer. Same as the transformer,
the Buchholz protection is located between the tap-charger tank and its
perspective reservoir.

The Pressure relief valve is another mechanical protection that uses oil
pressure inside the transformer instead of gases or oil flow. This protection
behaves like a valve that opens when the pressure inside the transformer
increased; creating a path for oil, from the main tank to reach the under-
ground reservoir, and by that, it prevents destructive action and reliefs

transformer.

1.2 Problem Statement

Today, transformer traditional protection, namely percentage differential
protection, is a common practice for differential protection (Oliveira, Bretas
& Ferreira 2014; Gethanjali, Raja Slochanal & Bhavani 2008). The
discrimination between transformer statuses: Internal fault, normal,
magnetizing inrush current, over-excitation, and CT saturation is not an easy

job due to their similarity (Yazadani-Asrami et al. 2015). For a long time,



4
harmonic restrain was used to prevent mal-operation by using a ratio of
second and fifth harmonic with fundamental protection (Oliveira, Bretas &
Ferreira 2014; Gethanjali, Raja Slochanal & Bhavani 2008). However,
internal faults generate a high level of second harmonics (Yazadani-Asrami
et al. 2015). So, tripping operation is dependable on the level of this
harmonic which may result in mal-tripping (Oliveira, Bretas & Ferreira
2014; Yazadani-Asrami et al. 2015).

Many research works have been done in the scope of differential protection.
Hence, the adaptive differential protection based on transient signal analysis
using wavelet transform showed limited capabilities (Oliveira, Bretas &
Ferreira 2014). Furthermore, Zarkovic and Stojkovic (2017) used a multi-
input fuzzy based algorithm to predict the probability of fault and urgency
of intervention. As well as the optimized ANN scheme using a swarm-based
algorithm shows promising results (Gethanjali, Raja Slochanal & Bhavani
2008; Yazadani-Asrami et al. 2015). However, an artificial technique,
namely random forest, provides more accurate and fast responses (lbrahim
& Khatib 2017). The random forest technique will be employed to
discriminate these different features. Thus, several trees and leaves (nodes)
will be specified as well as input data with classes. Random forest classifier
is an ensemble of decision trees (CART, ID3). These trees start with root
node having random data subset and by splitting this node and grow the trees
down for full depth (Breiman 2001). The best split is done by measuring
impurity, which has multiple measures and no pruning. Therefore, the

Random forest has three parameters which are the number of decision trees
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located within the forest, the number of leaves within this tree generated
from split action and depth. Moreover, some data classification is done based

on the majority vote of decision (CART) trees.

1.3 Objectives

1. To construct ensemble techniques (random forest and boosting) of
differential protection to classify different transformer statuses, which
are no trip (normal), inrush, over-excitation, current transformer (CT)
saturation, and trip (internal fault) based on differential current
samples as input.

2. To construct condition monitoring technique of transformer, which
are: normal, inrush, over excitation, (CT) saturation, and internal

fault.



1.4 Methodology

WP.1 Data Collection 1. T1. To collect 20 different transformer
model

2. T2. Each transformer model will
generate 5 different cases of
differential current: normal, inrush,
over excitation, CT-saturation and
internal fault.

3. T3. To have 100 set with 16 samples

WAP.2 Literature Review | 1. T1. Traditional differential protection
review: percentage differential
protection

2. T2. Artificial neural network review:
feed forward, back propagation,
probabilistic neural network

3. T3. Random forest algorithm review

WP.3 Development of| 1. T1. Data arrangement to form dataset

Model that produce minimum error

2. T2. Model training using random forest
and boosting with different train to test
ratios

3. T3. Model validation using out-of-bag
error and different train to test ratios

WP.4 Analysis of | 1. Using Out-of-bag  error, cross

Suggested Model validation,  Variable  importance,

outlier, margin and confusion matrix.

WP.5 Thesis Writing

1.5 Significance of the Work

Random Forest technique is important as it solves the modern systems
protection dilemma. It will provide new scope differential protection with

conditional monitoring. Furthermore, it does not need extensive
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mathematical analysis nor requires high computation burden to operate,
rather simple processing. Thus, it will be able to discriminate and classify
transformer status: normal, inrush, over-excitation, CT-saturation and
internal fault.

This study will contribute to the improvement of differential protection not
only to the power system manufacturer but also to all parties in the electrical
field. Including working personnel that will highly benefit from this solution.
They will capture the cause of disturbance faster, thus helping them to fast

and accurate decision making.

1.6 Thesis Organization

The thesis consists of five chapters, as follows:

Chapter 1. This chapter includes the introduction, background, problem
statement, objectives, methodology and significance of the
work.

Chapter 2. This chapter is a review of literatures used in this study
including: journals, articles for transformer principle and
statuses, state of art. It also includes research gap.

Chapter 3. This chapter is composed of research approach — transformer
model, data extraction, and sampling. Also, methods models
utilized in this study. It also mentions the sources of data.

Chapter 4. This chapter explains this research analysis methodology,

progressing steps to reach results, the final model testing and



8
different features have been studied. It also includes
comparison of proposed technique with other techniques.
Chapter 5. This chapter summarize the research conclusion as well as future

work.
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Chapter Two

Literature Review
2.1 Transformers

2.1.1 Introduction

Transformers are equipment used to move energy from one side to another
by changing voltage and current. In addition, it forms a basic element in our
modern power system, as well as, primary equipment in some bulk power
systems like substations. Transformers are used to linkage power generation
with the transmission, distribution, protection, and control systems.
Therefore, transformers have multiple sizes and types to match with the
system it is used in, and are classified under the following categories:

e Power transformer.

e Distribution transformer.

e Auto transformer to connect close voltage levels.

¢ Instrument transformer, i. e: voltage transformer, current transformer.

e Grounding transformer zigzag.
The transformer has a different core of topologies, which are: single-core,
triplex core, five-legged wound core, three-legged stacked core, five-legged
stacked core, and shell core. Also, the winding has different topologies, which

are: concentric, interleaved, and pancake design (Martinez et al. 2005).
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2.1.2 Transformer Operation Principle

Transformer main components are: primary coil, secondary coil made from
conducting isolated cupper turns, and ferromagnetic core consist of isolated

ferromagnetic material lamination as indicated in figure 2.1:

¢

Primary coil ( ) Secondary coil

D
D

C

Iron Core

Figure 2.1: Transformer construction

The variable current flows through a primary coil to produce varying flux by
the magnetic induction principle. The flux flows through the iron core to
reach secondary winding, and then the electromotive force is produced by
the act of the varying field. To investigate these phenomena’s, starting with
low amperes of a magnetic field, to calculate the magnetic field produced by
current flowing through the coil. By means of partitioning the coil into
several wires, each element will contribute with two magnetic fields: self-
flux linkage for each element and mutual flux linkage that links all elements.
In contrast, field produced propagate through secondary winding and
produce electromotive force following Faraday and Lenz laws:

E=-N&
dt

2.1)
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Faraday describes the magnitude and shape, whereas Lenz describes
direction of generated electromotive force giving by minus sign in the

equation.

2.1.3 Working Principle

Transformer parameters described in Figure 2.2, as follows:

Np Ns

Vp Ep C\

S T

Iron Core

Figure 2.2: Transformer parameters

Where:

p: primary side notation

s: secondary side notation

V: applied voltage

E: electromotive force

N: number of turns.
Let us take the transformer working under no load to find Transformer basic
modelling equation. Through feeding transformer by sinusoidal signal at the
primary side, high current limited by wire resistance will generate high flux

value. Then, the limiting value of electromotive force will start to generate
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limiting current and hence flux. Meanwhile, secondary electromotive force
generated where its value following the changes applied to flux. For now, let
us neglect resistance and assume ideal transformer then this assumption can

hold:

Vp =Ep (2.2)

Vs =Es (2.3)
Following Faraday’s law and removing negative sign since it indicates those

induced voltages oppose the varying field that produce it:

Ep = Np% (2.4)
Es = Ns< (2.5)
¢p = ¢s=¢ (2.6)

The following conclusion can be reached by dividing both equations:

oMy, (2.7)
Es Vs Ns

where:
a: Turns ratio and is constant for the same tap

Another formula can be written for ideal transformer:

Sp =Ss (2.8)

Sp, Ss indicate apparent power for primary and secondary sides.
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2.1.4 Transformer Steady-State Model

Steady-state equivalent circuit of transformer, constructed by taking into

account heating and magnetic effect as in figure 2.3:

Xp Rp Xs Rs
—) W\ L —WWW\—
Vp Xc % Rc Vs

Figure 2.3: Transformer equivalent circuit
Same as before, p indicate primary notation and s is a secondary notation,
the series branches indicate conductor losses and magnetic effect, while
parallel branch refers to core losses and magnetic effect. The previous circuit

needs to refer one side to another as in the following formulas where:

75 =a (29)
Is
=4 (2.10)
Zs
= a’ (2.11)

To estimate equivalent circuit parameters two tests can be performed

clarified in figure 2.4 and figure 2.5, namely:
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e Open circuit test: This test achieved by feeding nominal voltage and
open-circuited the other side. The excitation of current flow includes
core loss and magnetizing component. Core losses include eddy and
hysteresis effects, which are not dependable on load.

e Short circuit test: This test achieved by short circuit one side and
applies a low voltage to the other and increasing the voltage until the
nominal current flow through the short circuit. The short circuit losses
are cupper losses which are linearly changed with the load. The skin
and proximity effect can be ignored in a steady-state analysis as skin,
proximity, eddy, and hysteresis effect are non-linear and frequency-

dependent effects.

Rc
Xc

Figure 2.4: Open circuit test
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Xp+Xs Rp+Rs
VWA,
Vsc
Isc = In vy

Figure 2.5: Short circuit test
To further investigate hysteresis losses, start with the virgin core, where
magnetic current density and magnetic flux density are zeros. Increasing
magnetic current density hence magnetic field density increases in an
approximately linear manner until reaching the point of saturation, where a
large step increase in current result small increase in field density. On the
other hand, decreasing the current will decrease the field density until the
current is zero. On the controversy, the core will still have remnant flux.
When the current has some negative value, the field density reaches zero.
This relation follows curve can be determined where the loss is the area
entrapped. To calculate the energy and power of the hysteresis loop this

equation can be used:

B
JdE = [HdB = f;dB = ,per unit of volume
% < B X H (2.12)

P=—XB XH XVgre Xf (2.13)
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The above equation coincides with the previous discussion that hysteresis
losses are non-linear and frequency-dependent. As permeability increases,
less value of current is needed to produce the same field; smaller area
entrapped, and power losses.

Eddy current losses have reduced by the use of lamination to cut the current
paths and have high core material resistance as possible.

Impedance achieved from short circuit test voltage. The short circuit test
voltage is an important element of the transformer and used for different
calculations. i.e.: short circuit analysis and parallel operation. Voltage

impedance can be given as follows:

_ Yse _ n _ Zk ,in per unit
kpu Vn Vn Zn (214)

where V,. indicates voltage measured by short circuit test, 1}, and I,, are the
nominal voltage and current respectively and Z refers to impedance.The
above equation shows division by base value on the transformer rating,
which proves that it is per unit value. To find the real impedance voltage

multiplies it by the nominal voltage:

kau X Vn

Z, = (2.15)

100

2.1.5 Three-Phase Power Transformer

Three-phase power transformers handled in similar manner to the previous

discussion taking into account the combination of the three-phases. Primary
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and secondary connections can be star or delta, were these connections alter
phase-line current and voltage transformation by inserting v/3 depending on
the connection, and 3 for power calculation. Another important aspect is the
vector group which arises from three parts:
e Two of the three parts indicate Type of coils connection can be D, d:
delta, Y, y: star, z: zigzag.
e The number indicates the phase difference between phase voltages in
the primary and the secondary winding.

The three-phase power transformer can have these specifications:

e Manufacturer e Tape information

o Power e Frequency

e Serial number o \Weights

e Date of manufacturing e Transformer connection including taps
e \oltage nominal levels o BIL

e Cooling type e \ector group

e Impedance voltage e No-load losses

2.2 Types of Current in Transformer

The transformer nonlinearity nature gives many difficulties to the system
since it is in up normal status, and the parameter has no more steady-state
nature. The transformer normal operation mode can easily handle in most
common steady-state methods were linear system available, hence
superposition and multiplication are applicable. Therefore, the relation is
well known and predictable. However, there are other behaviours where
nonlinearity and frequency dependability introduced, including internal

fault, inrush magnetizing, over-excitation, and CT saturation.
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2.2.1 Internal and External Faults

The main internal faults are due to insulation deterioration and breakdown.
Faults in the winding, core, tap changer, cooling, bushing, and casing are a
form of internal faults. While external fault current cause high current pass
through transformer sides, a through fault of 10 times the rated current (with
a tap changer at end position) can cause a differential current of 1-2 times
the power transformer rated current (ABB BA THS / BU Transmission
Systems and Substations, pp. 163-174). Moreover, high through current may

cause internal faults due to overheating of insulation.

2.2.2 Over-Excitation Current

Over-excitation means the increase of flux flowing through core above some
design limit, transformer sides have two currents differ by the value of
magnetizing current. Magnetizing current characteristics follow core
characteristics distorting the current signal. The current from source to load

has two components since:

Itotar = IMagnetizing + l10aa (2.16)

where Iyjagnetizing 1S the core magnetizing current and Iy,,,4 represents load
current.

Transformer Over-excitation in transmission and distribution networks is
caused by over-voltages in the network (ABB BA THS / BU Transmission

Systems and Substations, pp. 163-174). To demonstrate this principle in
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figure 2.6 transformer feeding load from a big system normally has a
constant voltage at the transformer source side, while current needed by the
load and core magnetizing current drawn from the system. Whenever
overvoltage appears across the transformer due to some source, i. e: surge,
switching. The driving system will apply increased voltage to the
transformer, hence increasing magnetizing current; this will increase the flux

overexciting core. This current has a high percentage of fifth harmonic.

Big

Figure 2.6: Transformer feeding load via big system

2.2.3 Inrush Current

Inrush current has an over-excited core with a special case of saturation
during the initial excitation. Steady-state open-circuited power transformer
energized with the sinusoidal signal at the primary side will generate flux

through the core which lags the voltage approximately by 90° :
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NS

Figure 2.7: Voltage, current and flux waveform

Where:

E: induced voltage and

¢: magnetic flux

I: current

Every switch on operation has different inrush current values. The most
severe situation when voltage begins at zero, where flux will be maximal. To
explore the effect of inrush current, at time of switching the electromotive

force will equal the applied voltage:

E = Vpsinwt =N (:f (2.17)
¢ pr sin wt (2.18)
(I) pr sinu d_v\l,,l (2.19)

v .
¢ = ﬁ [ sinu du (2.20)



21
Following this formula, the value of flux at point of interest is the area under-
voltage curve from the point of switching to the point of interest scaled by
the value of (ﬁ). Common sense suggests two integral limits that can be
put into integration that will give a maximum depth of sine function, which

is 2 that double the value of maximum flux (by,.x)- AS in next:

¢ = 1\X<_pw f;sinu du (2.21)
= Ppyax (cos0 — cosm) = (2.22)
2 (I)max
Where:
Prmax = ;Z(—pw: maximum flux (2.23)

By flux density versus current density, the curve can be noticed that flux may
pass a saturation point, which results in an un-uniform current signal with
high value. This high amplitude distorted signal has high a percentage of the
second harmonic with a bad impact on the overall system include integrity

and power continuity.

2.2.4 Deep Saturation

It is similar to external fault removal near the transformer, and to energizing
transformer with the load. The transformer is driven more into a saturation
dead angle disappear, and the differential current becomes more and more
sinusoidal, so the ratio of second harmonic decrease as well as mal-operation

may occur.
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2.3 Classification Importance

Power transformer protection is a crucial element in the power system since
it assures the goal of power system operators: the safety of personnel,
integrity of equipment, and continued power supply. These criteria could be
achieved by speed of protection, simplicity, selectivity, sensitivity,
dependability and security. Meanwhile, different transformer current
statuses with different characteristics which are dependable on many factors
I.e. system components, transformer characteristics, etc. provide a
challenging task.

The different states of the transformer include normal operation, faulty
operation, external fault, magnetizing inrush, and over-excitation. Most
conditions can supply differential current, only internal fault required to be
cleared amongst other conditions.

Traditional protection uses a harmonic restrain method to suppress unwanted
protection operation, the second harmonic used to discriminate inrush from
other statuses. Although the improvement of core material introduces a
decreased level of second harmonic, this may be seen by a protection as a
faulty condition. On the other hand, CT saturation and shunt capacitor or
distributive capacitance is in a long extra high voltage line increases second

the harmonic level in a faulty condition.
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2.4 State of Art

Since traditional harmonic restrain have a limitation with new cores and
insertion of capacitance that motivate many pieces of research to
discriminate transformer current status. They used a mixture of three steps
to reduce the number of processed data rather than processing a larger
number of differential current samples with unnecessary information.
Subsequently, the system is less complicated. A wide variety of researches
are based on:

e Optimization techniques such as genetic and swarm-based techniques
such as Ant colony optimization, Gravitation search optimization,
and particle Swarm optimization which has some focus.

e Signal analysis using time-frequency analysis such as wavelet
transform, s-transform, and Huang Hilbert transform.

e Classification algorithm such as artificial intelligence, and tree based
algorithm.

Oliveira, Bretas and Ferreira (2014) use Discrete Wavelet Transform to
extract features, where it uses spectrum energy criteria to compare with the
adaptive threshold, as well as, different mother wavelet and fault resistance.
It showed that during the initial fault, the second harmonic increased to 70%
of fundamental before returning to pre-fault value in about 2 cycles. In this
algorithm, two blocks are used: detection and classification or disturbance
identification. However, as fault resistance increased similar energy

variation to energization, which weakening the system. It was used to detect
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internal, external, and inrush current, while CT saturation has been
mentioned in one case.

In (Gethanjali, Raja Slochanal & Bhavani 2008) two ANN architectures have
used, one for internal fault detection which gives states of: internal fault or
other disturbances, and the other for monitoring which in turn gives normal,
inrush, over-excitation and CT saturation. They used Multi-Layered Feed
Forward Neural Network (MLFFNN) trained with Back Propagation Neural
Network (BPNN), since this technique suffer from stuck in local optima,
other technique used Particle Swarm Optimization (PSO). The training
algorithms require bounded-differentiable activation function, which applies
to sigmoid. Moreover, PSO performs better than BPN. Yazadani-Asrami et
al. (2015) Classify internal fault, inrush, CT saturation, over-excitation and
normal condition using Bayesian classifier (BC) with normal distribution by
means and variance for single dimension and means, variance and co-
variance for multi-dimension. Each class will have normal distribution, and
following this distribution most probable class is considered. The BC gives
two states: internal and others. Other disturbances are classified using
Improved GSA and PSO optimized FFNN. Similar to BPN, GSA may be
stuck in local optima hence the use of IGSA, as the IGSA perform better than
PSO.

Weng et al. (2019) Treat internal fault, external fault, CT saturation with
fault, deep saturation, and data sampling by means of algorithm similarity,
where phase information difference extracted using Discrete Frechet

distance rather than continuous FD because difficulty to extract similarity
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information using CFD. External fault will have low similarity while fault
with CT saturation will have higher similarity, with internal fault have
highest similarity.
In (Samantary & Dash 2011) differential current samples (16 samples/cycle)
fed to decision tree and output give rise to two states: inrush and internal
fault. For verification, CT saturation and external fault have been included
in addition to inrush in one class, and internal in other classes, which rise the
best classification rate (92.5%). The authors found this technique suitable for
power transformer protection.
Barhate, Thakre, and Deshmukh (2016) Generates three membership
functions which are: differential, restrain currents, and inrush detector.
Inrush detector is dedicated using primary dead angle detection to set inrush
current flag. These three inputs fed to fuzzy inference engine rule base code.
If detector activated, then the algorithm act as inrush detector. While if not
activated, the detector relay issues trip/ no trip based on restrain and
differential membership function.
Peres and Silva (2019) have taken high and low side voltage currents and
normalized it. Then phasor is extracted, where fundamental, harmonic, and
negative sequence phasors extracted (where fundamental phasor used to
extract negative sequence). Then harmonic and negative sequence
instantaneous signal in discrete-time extracted. The instantaneous harmonic
signal used to generate harmonic restrain, which is used to reinforce and
support restrain current. Disturbance detection is available using energy,

where flag change status, whether disturbance happens, then integration
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ratio- operation and pick up- calculated, and after (Ims). Either internal or
external disturbance is detected. As a drawback, this technique requires to
be blocked during energization since it will issue a false trip.

(Angrisani et al. 2018) Applied to over-current protection of high voltage
side that considers two states: inrush and fault current. Huang Hilbert
Transform used to extract Intrinsic Mode Functions (IMF) by means of
Empirical Mode Decomposition (EMD) and sifting process, Form Factor
Deviation of instantaneous frequency evaluated as a decision criterion.
Instantaneous frequency trajectory is examined using Hilbert Transform of
real-valued signal. Over-current due to inrush will have an oscillating
frequency trajectory, while fault will give approximately constant frequency
trajectory.

In (Behvadni, Seifossadat & Saffarian 2019), differential current of any of
three phases checked to exceeds the limit using percentage differential
restrain. One cycle of fundamental frequency samples used to find zero,
negative and positive sequence by means of Clarks Transformation. Then
Modified Hyperbolic S-Transform (MHST) matrix calculated using zero and
positive sequence, wherein this matrix rows and columns correspond to
frequency and time respectively, important information can be achieved:
magnitude, phase, and frequency. The previously mentioned information
used to extract decision features which are: the energy of first level, variance
index, mixed energy-amplitude index, phase standard deviation of second
harmonic frequency. One of the most important features is the energy of the

first level.
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Saravanan and Rathinam (2017) use pseudo-characteristic to extract core
operating regions and thus linearity check by using orthogonal polynomial
representation to model inrush/ fault detector. This algorithm consists of
three sequential steps: amplitude check, harmonic check, pseudo-
characteristic check.
Tripathy, Maheshwari, and Verma (2010) suggested digital differential
protection using Optimal Probabilistic Neural Network (PNN) optimized by
PSO technique. Spread or smoothing parameter defined using PSO as trial
and error used in homoscedastic PNN, while PSO used in heteroscedastic
PNN. In this algorithm, external and normal discriminated by comparing two
consecutive peaks. Whereas, over-excitation discriminated by comparing
voltage to frequency ratio with rated voltage to frequency ratio. If these
conditions are not available, the algorithm will run optimized PNN to
discriminate between inrush and internal fault. The PNN performs better
than FFBPNN.
Shah and Bhalja (2013) use Wavelet Analysis to extract features include the
standard deviation of detail 1coefficient, the Support Vector Machine
(SVM), and the Radial Basis Function (RBF) kernel to classify standard
deviation of detail 1 coefficient. Daubichies (db4) mother wavelet used due
to its characteristic closeness to fault signal of study it has been reported in
the literature to be best suitable.
In (Hasheminejad & Esmaeili 2013) S-Transform Amplitude Matrix (STA)
which a is result of S-Transform Complex Matrix used to extract Maximum

Amplitude Curve (MAC), which is a maximum amplitude versus frequency,
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as well as Standard Deviation Curve (SDC), which is standard deviation of
time values evaluated versus frequency. The two independent routes MAC
and SDC will have a separate Hidden Markov Model (HMM) blocks include
two for internal fault, two for external fault, two for inrush current, and six
blocks for six different curves. Each block will have a transition matrix and
an emission matrix. The total Likelihood Probability (LP) calculated by
adding LP for the MAC route and SDC route, and the most probable will be
the result. The MAC and SDC compensate accuracy of each other especially
in noisy conditions, SDC has low accuracy, meanwhile, MAC improves
accuracy.

In (Fernandes, Costa & Medeiros 2016) Maximal Overlap Discrete Wavelet
Transform (MODWT) which does not use down sampling. The Spectral
energy of sliding window calculated, which decomposed to scaling and
wavelet coefficient energy, where this energy compared to some threshold
as a disturbance detector. If disturbance detected, ANN will be initiated with
a sliding window of some interval that will generate pairs -differential and
restrain- energy vectors of 15 samples, and the first sample will be taken
before event occurrence with 12 quantities each. For external and
transformer energization warning will be issued, while internal fault will
issue trip and another ANN classify the fault in 10 cases same as previous
ANN technique. Rasoulpoor and Banejad (2013) used DWT also to extract
features. The total energy of sliding window and detail coefficient at five
levels are also calculated as used to calculate the energy percentage vector

of 5 values. Then the correlation coefficients (Cf) between sliding windows
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calculated, as well as the detection criteria achieved by counting the number
of dips in correlation coefficients (Cf) values versus time for three phases of
differential current. The internal fault percentage energy vectors are
correlated and one dip at disturbance occurrence and no dip after, while
inrush current change in correlation coefficient (Cf) appears in all three
phases with oscillation.
In (Sheng & Rovnyak 2002) decision Tree (DT) used to classify different
data composition and compare between them; differential current, restrain
current and percentage differential current. In addition, second and fifth
harmonics added to previous data that perform better. While, wavelet detail
coefficients d; added to the first case which perform better than both cases.
Above all, the combination of all currents, harmonics and wavelet
coefficients has superior performance than all, which perform better 3% than
currents and harmonic case.
In (Shi et al. 2011) Mathematical Morphology (MM) is used to extract shape
features and fed to FFNN trained by Levenberg-Marquardt backpropagation
for pattern recognition; inrush or internal fault current. The vertical distances
between structuring elements (SEs) are the shape feature corresponding to
d2, d5, d8, d11, d13 which are distances between each structuring element
and SE15 corresponds to 2, 5, 8, 11, 13, 15 samples for base of 32 samples
per period. Theses distances are normalized to d13 to eliminate amplitude
information.
Ali et al. (2018) proposes the current ratio and voltage ratio differential

protection. In this technique, traditional differential protection is checked,
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which if satisfied other three criteria also checked before declare the
transformer and phase’s status: current ratio, voltage ratio and current
direction. The current ratio and voltage ratio are the percentage of absolute
difference of absolute RMS fundamental currents/voltages to sum of
absolute RMS fundamental currents/voltages. Specified current ratio range
in conjunction with instantaneous current direction is used to distinguish
internal, external, and loaded energization (sympathetic inrush current).
While another current ratio in conjunction with voltage ratio ranges used to
distinguish no-load energization and the internal fault with no-load
energization. Ali et al. (2019) provide a more specific explanation and
practical evaluation of the proposed method as it studied sympathetic inrush
current, and trip signal delayed for 1ms for security reasons.

Ozgonenel & Karagol (2014) perform differential protection as a wavelet-
neuro system. Rather running a random number of features, minimum
description length (MDL) used to optimally choose mother wavelet and
Shannon entropy to optimally choose the resolution (number of detail
coefficients). Thus feature vector dimension; the standard deviation of detail
coefficient will be optimal, which will be fed to FFNN for two status
decisions: internal and inrush current. The authors find that the optimal
combination is bi-orthogonal3.3 (bior3.3) mother wavelet with three detail
coefficients. However, they declare that the feature selection algorithm is

highly sensitive to signal employed.
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2.5 Research Gap

Traditional protection adaptability is limited, it does not have conditional
monitoring features and its protection is compromised. Yet, many pieces of
research have been done in this field, most of them did not distinguish
between all statuses of the transformer, and only some of them have
processed this issue, rather more complex and less interpretable systems
suggested.

However, new methods of ensemble techniques tested for the field of
differential protection. The random forest and boosting provide more
accurate, less complex, and interpretable results. Its internal measures

provide a powerful tool for model validating and features evaluation.
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Chapter Three

Approach

3.1 Introduction

Different trees based technique has been developed over the years including
single tree, Bagging, random forest, and boosting. The random forest and
boosting perform good results that are competitive with each other, while
single trees and bagging are retarded versions. Trees are good candidate
classifier for random forest technique, as it reduces variance since trees are
weak classifier that performs better than chance. Even a random forest is an
ensemble technique that uses a tree-based algorithm, which is an extension
to the bagging algorithm that is considered as a predecessor technique. This
technique has internal measures can be used to judge the algorithm including

error, strength, correlation, variable importance.

3.2 Forward: General Information about Current Classification

Modern power transformers put to several dissimilar conditions due to
transformers nature. These dissimilar conditions have become a challenging
task to address. These transformer current statuses may introduce differential
current that may trigger the protection. A Single signal used to classify all
these statuses, which can take different values depending on: transformer
ratings, and type of disturbance. Hence, we need to classify these statuses:

normal, inrush, over-excitation, ct-saturation and internal fault.
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Traditional protection takes raw samples of differential current and pick-up
above some threshold, leaving the classification task to power system
personnel to define their threshold, which may be compromised and set to
danger. Traditional protection uses figure 3.1 to define increasing
characteristics that divide the space into two regions: operating region, and
restrain region (Ali et al. 2019). The operating region handles internal faults,
while the restrain region handles external through current. Rather over-

excitation and inrush are handled using harmonics to fundamental ratios.

Operation region

Differential current

Restrain region

Pick—up operating current

v

Restraining current

Figure 3.1: Traditional differential protection characteristic (Ali et al. 2018)

3.3 Transformer Model

The transformer model has two parts: winding and core. Since the
transformer model needs to include transients unlike steady-state analysis as

it has two main aspects, which are nonlinearity and frequency dependency,
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these feature present difficulties. The nonlinearity arises from magnetic core
saturation region, whereas frequency effects on winding and core sections.
The steady-state transformer model based on matrix representation can be

given in Ohm’s law as:

V=17I (3.17)
where V is voltage, Z is impedance and I is current.

For modelling transient phenomena including the inductance effect:

5] = (LI [v] + (LI [RIL] (3.18)

Where:

[%]: current rate of change vector.

[L]~1: inductance inverse matrix.
[R]: resistance matrix.

[i]: current vector.

This representation is valid for frequencies to coincide with the name plate
for frequencies up to 1 KHz. For further discussion, the transformer core and
winding topology affect the transformer model, i. e: Three-legged
transformer zero-sequence flux passes through the air, while five-legged
transformer provides bath through the core.

The transformer model three-phase, three-legged, and two winding can be
represented, (Tokic et al. 2015) where a simplified model is available. In this

model, which is based on self and mutual inductances, this technique has the
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problem of close values for self and mutual inductances (de Leon & Semlyen
1994). However, the transformer model has been solved by state-space

matrices as follows:

[A]IX(®O] + [B][U(D] (3.19)

[dX _
dtl

Where:
X(t): state variables = [i; irz io Gy Bz b3)]

[U(Y)]: input vector=[€1 €2 €3 Shy Shy Shyl
A: coefficient matrix

B: coefficient matrix

And: iy, i, andiyy: are inductors currents

c|)1]., ¢, and ¢3,: hysteric inductors model flux

e;, e, and ez: are system voltages.

Shy Shy, and Sp,;: current sources from nonlinear hysteric inductors

model

One of the main concerns in the transient analysis is stiffness, since the
problem may swing from non-stiff to extremely stiff situation which may
affect the algorithm used and the number of steps (Tokic et al. 2015; de Leon

& Semlyen 1994). Since some numerical methods require a small step size
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to ensure stability, the explicate numerical method needs to be avoided stiff
system (Tokic et al. 2015).
Further development of the model can be achieved by taking into account
winding and core topology, frequency dependency, and capacitor effect.

Winding resistance can be approximated using (Martinez et al. 2005):

f m
R= Ry + AR, (g) (3.20)

Where:
Rg4c: DC resistance.

AR .. slope of the curve at specified value of m.

fi: ratio of required frequency AC resistance to fundamental frequency.
0

m=1.2- 2.

Some more accurate representation can be adopted using the Foster series
circuit (Martinez et al. 2005; de Leon & Semlyen 1994). Also, to have
accurate results regarding iron core losses and nonlinearity can be achieved
using the Cauer circuit (de Leon & Semlyen 1994).

The general model needs nameplate data and tests to estimate values,
simulations are performed for the practical power transformer ratings
obtained from Tamilnadu Electricity Board (TNEB), India, so data have been
used from (Gethanjali, Raja Slochanal & Bhavani 2008). SIMULINK was
used for modelling 20 different transformers, each transformer take one of

the following power ratings: 16MVA, 25MVA, 5SMVA, 3MVA, 2MVA, and
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one of the following voltage ratings: 110/33KV, 110/11KV, 66/33KV and
66/22KV. The transformer model is considered as a functional
approximation which exhibits terminal behaviour. The output samples of this

model were extracted using Fast Fourier Transform:

Input Differential Current Discrete Signal
Power Transformer Fast Fourier
Model Transform

Figure 3.2: Protection system model

3.4 Current Signal Sampling

Regular protection systems use instrument transformer to supply analogue
signals, which in turn supplied to relays. Protections have been evolved over
the years from mechanical to electronic to digital. While old relay handled
analogue signal, digital protection as the name implies deals with discrete
signals rather continuous. Thus sampling is necessary for modern protection
systems.

In sampled signal limited numbers of samples (4 — 20) are used rather than
infinite like an analogue signal, so less information treated and a faster
operating system. However, in traditional differential protection samples are
used to calculate RMS fundamental differential, and restrain current as

follows:
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I4(n) = Fundamintal of (i, —

. (3.15)
ig])
I;(n) =

Fundamintal of ([i, + is|)/ (3.16)
2

The use of n indicates the use of samples. Equations 3.15 and 3.16 need the
fundamental component of the signal to be calculated to use in operating and
restraining action of protection. So, Discrete Fourier Transform is used to

extract fundamental, second, and fifth harmonics.

3.5 Data Set Utilized

Differential current samples extracted in (Gethanjali, Raja Slochanal & Bhavani
2008). Hence, the discrete signal was sampled with 16 samples/cycle, each
sample in the resulting data will be denoted by (P1, P2, P3 ...P16) where the
symbol (P) denotes to Point. And the output will be denoted as (Type), which
will take values (1, 2, 3, 4, 5). Full data can be found in appendix A, while the

sample data shown in the following table 3.1:



Table 3.1: sample data used
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Type 1 2 3 4 5
P16 | 606.682 0 -1.5673 -153 6590.6
P15 | -0.4749 | -4133.9 | -3.1534 144 | -9634.2
P14 | 330.63 0 10.3537 44.9 5628.4
P13 | 329.63 | 47718 | -6.7013 58.2 2704
P12 | 0.2936 0 -1.2971 14.4 -8834.5
P11 | 63556 0 0.7868 1507 | 8575.1
P10 | -1.0443 0 -10.207 144 | -2103.4
PO | 11148 | 34339 | -05718 47.2 -5827.8
P8 | 788.35 | 2999.6 6.372 60.6 9379
P7 | -1.0845 | -2675.4 | -11.2082 14.4 -6417.2
P6 | 17889 | -37352 | 6.2082 -1482 | -1361.4
P5 755.2 1699.9 | 1.2331 144 7994.6
P4 | -0.727 608.6 -6.7359 49.8 -9125.2
P3 | 207.3747 0 24.3207 63.5 3441.7
P2 | -0.1481 | -670.6 | -0.0004 14.3 4716.7
P1 0 0 0 2524.8 | -9626.9

Five Numbers (1, 2, 3, 4, and 5) assign to the five different cases of the

transformer, as shown in the following figure 3.3:

A 4

Normal Operating Condition

A 4

Inrush Magnetizing Current

Over Excitation

CT Saturation

Internal Fault
G /

00009

Figure 3.3: Current status sequence
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3.6 Development of Ensemble Techniques for Current Classification

3.6.1 Tree Based Algorithm

These techniques partition the problem space into a separate domain, each
domain or region is a rectangle, and each space divided using a recursive
binary partition. Two elements are needed to perform this operation:

. Variable (feature) to split.

« Point to split on.
Different measures are used to guide tree-building algorithms based on trees
building goals which are regression, classification, and purpose of using
including growing or pruning trees. Regard regression, the sum of squares is
a good impurity measure. While in classification, other measures of
impurities are used as Gini index, cross-entropy, and misclassification errors.
However, the Gini index and cross-entropy are more sensitive than
misclassification errors. Consequently, they are more suitable for growing
trees.
The tree is interpretable since the whole space is described by some

inequalities. On the other hand, trees are weak learners:

Py(h(x,0) = Y) > 0.5 (3.1)

And errorrate < 50% (3.2)
Where:
Py: probability for this specific random vector.

h: classifier.
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6: random vector and x: input vector.
That means there is a better chance as the error rate is less than 50%. It also
has a high variance, which is common since the change in input data can
change the whole split process. Different tree algorithm is available,
including CART, ID3, C4.5, and C5.0 (Hastie, Friedman and Tibshirani
2017).

3.6.2 Bagging

The Bagging technique uses bootstrap samples to build trees that are
averaged over the ensemble to reduce variance, leaving bias unchanged. For
classification, every tree cast a vote and the majority of trees vote to present

a result, as shown in figure 3.4 while, figure 3.5 shows regression:
1
forea = ﬁzlf fy (3.3)

Where:

f,,: prediction of nth predictor.

fpreq: OVerall prediction for all predictors.

N: number of bootstrap samples (trees).

The main idea of bagging is to have an independent identical distribution,
which implies zero correlation between pairs of trees in the ensemble and the
same Dbias. Thereby it is suitable for high variance low bias examples.
Unfortunately, bagged sampled vectors are not independent (Hastie,

Friedman and Tibshirani 2017) and (Alfaro, Gamez and Garcia 2013).
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3.6.3 Random Forest

Random forest construction is similar to bagging, but it differs as it
introduces more randomness to the model using different methods, such
as:

« Random feature selection

« Random linear combination of input

« Random noise in the output
This technigue commonly uses random feature selection where the number
of features selected is less or equal to the total number of features, where
these features used to split on by selecting the best split. More randomness
implies less correlation, and more strength.
With the increasing number of trees generalization error will have an upper
limit:

Generalization error = p(1s_—252) (3.4)

Where:
p: average correlation between trees vector conditioned to training data
s: strength of classifiers given by the margin function
It is evident that error is combination of two trade-off values; increased
correlation will increase error hence low classifier performance and vice
versa. While increased strength will reduce error hence better classifier
performance. As an example lower number of randomly selected input will

reduce the correlation (Breiman 2001).
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Another way to understand the principle in terms of variance; since
independent identical distributed random variable with variance o2 will have

variance for the average given by:

2

Variance = % (3.5)

Where N is the number of trees in the ensemble.
Nevertheless, the variables are not independent rather identical distributed,

and the variance of the average is given by:
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Training Data

A 4 A 4 A 4

Bootstrap sample Bootstrap sample 2 Bootstrap sample N
1
Y A 4 Y
hy h, hy
v v v
Class vote Class vote Class vote
Max vote
Result

Figure 3.4: Classification bagging
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Training Data

A 4 A 4 A 4

Bootstrap sample 1 Bootstrap sample 2 Bootstrap sample N

A

Result

Figure 3.5: Regression bagging
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N2
Variance = po? + % (3.6)

, Where:
p: sampling correlation between pair of trees rather average

o: sampling variance of single tree

The above equation clearly states that the second term vanishes with an
increasing number of trees, limited to the value given by the first term. As
stated earlier, random forest reduces variance by keeping bias unchanged
hence variance is limited to the multiplication of correlation and tree
variance. So, it reduces correlation without affecting variance too much by
inserting more randomness like random selection (Hastie, Friedman and
Tibshirani 2017).

The different number of input selected can be taken, but the default number

of input selected is mentioned in the following table:

Table 3.2: Default values for number of feature to split and minimum

node size

Classification Regression

Number of feature J/number of inputs number of inputs
selected 3

Minimum node size 1 5
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3.6.4 Out of Bag

3.6.5 Random Forest Model

Random Forest Model is based on the R language, which uses the
randomForest package. The data were separated into two groups, namely:
training and testing with 80% and 20%, respectively. To validate the model,
internal estimates and testing are used.

Now 16 features are discrete samples of differential current with typically 4
variables to split, and the response of 5 classes available. Therefore, the
setting these data into the randomForest algorithm and bootstrap datasets
generated from training.

The default values in the algorithm as follows:

ntree: number of trees to be grown =500

mtry: number of variables to be selected randomly as candidate for splitting
which differ for classification = \/E and for regression p/3, p : number of
variables

nodesize: minimum size of terminal node for classification (1) for regression (5)
maxnodes: maximum number of terminal nodes subject to limits by
nodesize.

The model was run and OOB error investigated for the best number of trees
(ntree) and variables to split (mtry). Furthermore, changing the number of
nodes by tuning (nodesize) and (maxnodes) , the result confirmed by

extracting trees and observe its parameters.
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Figure 3.6 shows the random forest model with input and output data. The

output data clarified to be five cases.

4 N

- /

Figure 3.6: Random forest model
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3.6.6 Boosting

Boosting is another ensemble technique. Nevertheless, it has a superficial
similarity with bagging and random forest. Since the previous techniques
build classifiers in a parallel way, the Boosting technique builds them in
serial granting weights in two different steps.

Boosting represents the family of the algorithm: AdaBoost, AdaBoost.M1,
SAMME, and others. Adaboost is a bi-class boosting technique. Moving to
multiclass using forward stage-wise additive model, and fitting additive

model (Hastie, Friedman and Tibshirani 2017):
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predection = ), B b(x;Y) (3.8)

Where:
B: expansion coefficient.
b(x;y): function of multivariate argument characterized by a set of
parameters vy.
By using a loss function that uses exponential loss for Adaboost.M1 and
SAMME:

L(y, f(x)) = eVi® (3.9)
Where:
y: function true value.
f(x): predicted value of function at each step.
Adaboost.M1 algorithm in figure 3.7 start by initializes the weight to (Alfaro,
Gamez and Garcia 2013):

1

Wi g (3.10)
Where i indicates the weight for each respective observation, and N is the
number of observations. The following is the weighted error calculated by:

error = Zobservations Wi I(h(X) *
(3.11)

y)
Where I() is the indicator function which outputs 1 if the argument is true

and O otherwise. The training rate is calculated based on the error. It
represents the contribution of each classifier in the final result since it is
inserted in the final summation also, but in this stage, it represents learning

rate a as follows:
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1—error

a= In=—"= (3.12)

The previous equation is based on Freund and Schapire, while the other
boosting multiply of the previous equation by half is suggested by Breiman.
Hereafter, weights are adjusted by updating then normalizing them, and
wrongly classified examples have more attention, hence more weight.
Whereas correctly classified examples have fewer weights using equation
(3.13):

w = W;

Iold

- aa I(h(x)#y) (3.13)
The new training set used to train the new classifier, the steps are repeated
where each classifier gives weighted vote using a.

The SAMME only differ from adaboost.M1 as it takes into account the
number of classes by the meaning of training rate modifying it to:

l—error

o= In p— 4+ Ink—1 (3.14)

Where:

k: number of classes.
Which further subject random guess to be % rather than %

3.6.7 Boosting Model

The R function gbm used to get insight into this algorithm. The main features
of gbm will Dbe: distribution= multinomial because of multi-class
classification problem, ntree= 701, bag.fraction= 0.5 to perform OOB
estimation, shrinkage =0.1, cv. folds= 5 to perform cross-validation.
Different ratios of training and testing will be done. The training to testing

ratios will be 80/20, 60/40 respectively.
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Figure 3.7: Boosting algorithm
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Chapter Four

Analysis & Results

4.1 Classification Methodology

The random forest model is applied to differential current samples, where 16
features data columns are needed to be investigated, and one class output
column is the Type (1, 2, 3, 4,

and 5). Random forest runs with a single candidate to be split and 2001 trees
with 100% of data used in training, and minimum error produced by 33%.
The following graph captures OOB error development with respect to

number of trees:
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Figure 4.1: OOB error vs. number of trees for original data
These errors indicate poor performance with around one-third data
misclassified. It has a normal operating condition, inrush current, over-

excitation, CT-saturation, and an internal fault error rate of 40%, 55%, 30%,
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25%, and 15% respectively. To have a deep insight into these errors, have an

overview at confusion matrix:

Table 4.1: Confusion matrix for original data

Prediction
1 2 3 4 g | Class
error
1 12 6 0 1 1 0.4
y 2 5 9 6 0 0 | 055
= 3 0 5 14 1 0 | 03
4 0 0 5 15 | 0 | 025
5 3 0 0 0 17 | 015

The matrix confusion clarifies that 3 internal fault examples classified as a
normal status, which will have huge destruction to the apparatus and
continuity of supply if that happens and fail to trip occur. Other misclassified
examples as 6, 1, and 1 normal are cases classified as inrush condition, CT-
saturation and internal fault respectively imply false tripping case. While 5,
and 1 over-excitation cases classified as inrush, and CT-saturation. The 5
CT-saturation examples are classified as over-excitation.

Further investigation is needed to explore places of model weaknesses. One
to start is outliers, as indicated in graph 4.2 the y-axes correspond to the
discrete differential current point, and the x-axis indicates the value of that
current. Despite some outliers have been removed, there was not a
generalized and powerful model. However, many pieces of literature

reported random forest insensitivity to outliers.
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Figure 4.2: Outlier box-plot
To get an overall perspective for the data, the margin used for
searching predictor confidence and reliability. As noticed in figure
4.3 margin vs. examples, around one-third of the data below zero,
which indicates wrongly classified values, and around half of truly

classified are below 0.5 with less reliability.
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Figure 4.3: Margin vs. examples plot for original data
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The above data have been treated all the same while they have different
transformer ratings- apparent power, primary, and a secondary voltage-, with
a different limit for each case. To overcome this issue, reweight current

samples with different structures and relation i.e.: S ;S ,
P 3y, N3y,

S and different functions of them which still not good enough
V3Vaverage

with OOB error of around 42%, 24%, and 27% respectively. Also, mixed
data sets performed as a combination of those data sets and original data set,
which also report poor performance with OOB error similar to the above
limits. Also still suffering from failing to trip and false trip.

Finally, the apparent power of five power transformers has been replicated
with the same distribution over five cases overall data set with different
structures. The exponential relation of S / \/§Vaverage gives powerful random
forest performance that reaches 0%. As a result, the random forest run with
a single candidate to be split and 701 trees with 100% of data used in training,
and minimum error produced by 0%. %. The following graphs in figure 4.4

capture OOB error development concerning the number of trees:
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Meanwhile, the confusion matrix gives a perfect situation as all numbers are

diagonal, and the off-diagonal are zeros. The error rate of all cases (normal,

inrush, over-excitation, CT-saturation, and internal fault) is 0%. The

following table explains this principle:

Table 4.2: Confusion matrix for modified data set

Prediction
1 2 3 4 5 | Class
error
1 20 0 0 0 0 | 00
y 2 0 20 0 0 0 | 00
= 3 0 0 20 0 0 | 00
4 0 0 0 20 | 0 | 00
5 0 0 0 0 | 20| 00

To review how performance has been improved, the margin is investigated.

In figure 4.5, some examples have a low margin with a minimum of

0.003703704. However, all data have a positive margin, which implies truly

classified examples. Most examples are above 0.5 with a lot of the examples
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near 1 or 1, which means perfect prediction; this implies predictor confidence
and reliability. In contrast to the previous case, half of the examples are

below 0.5 with negative values.
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Figure 4.5: Margin vs. examples plot for weighted samples and identically distributed
apparent power

The variable importance, which is one of the random forest strong features,
gives insight over the significance and contribution of each feature to system
accuracy. Moreover, it reflects the error decrease contribution of each
variable to the overall accuracy. Thus, two measures of variable importance
shown, which are the mean decrease accuracy (MDA), as well as the mean

decrease Gini (MDG). Those factors are captured in the following figure:
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Figure 4.6: Variable importance

The MDA measured using OOB samples by permuting these samples for
each tree. Based on OOB prediction error recorded, and OOB error recorded
after permuting the variable, a sum of differences between them averaged
over all trees in the ensemble. As the larger MDA, the more important is the
variable. While MDG measures the sum decrease of node impurity by
splitting on that variable, and the larger MDG, the purer is the variable.

Surprisingly, the importance of the samples is approximately the same for
all samples. However, some early moments of the signal have higher
importance than some late moments of signal i.e.: P, has higher importance
than P,¢. This observation indicates that early moments contain important
information regarding signal behaviour, thus it is good points to be judge
upon. Accordingly, different data windows will be investigated in the next

section.
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4.2 Data Window

Until now, a highly accurate system that requires one cycle to operate has
been achieved. As stated previously, different moments of signal hold a
different amount of information, thus different importance. This fact could
be used to reduce the data window and ensure faster performance.
Consequently, different data windows will be investigated with 3/4, 1/2,
and 1/4. Therefore, random forest run with a single candidate to be split and
701 trees with 100% of data used in training, and minimum error produced
0%. The following graphs in figure 4.7 capture OOB error development

concerning several trees for % data window:
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Figure 4.7: OOB error vs. number of trees for modified data set with % data window
Running random forest with a single candidate to split and 701 trees, with
100% of data used in training, the minimum error produced is 1%.

Nevertheless, reducing the number of trees to 101 minimum drops the error
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to 0%. The following graphs in figure 4.8 capture the OOB error

development concerning several trees for %2 data window:
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Figure 4.8: OOB error vs. number of trees for modified data set with %2 data window
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Figure 4.9: Variable importance for % data set
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Figure 4.10: Variable importance for %2 data set
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The previous figures, from 4.9 to 4.11, reflect the variable
importance of different data windows. While running random
forest with a single candidate to be split and 701 trees with 100%
of data used in training, the minimum error produced is 2%.
However, by changing candidates to split to 4, minimum error
drops to 1%. The following graph in figure 4.12 capture OOB error

development concerning several trees for ¥ data window:
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Figure 4.12: OOB error vs. number of trees for modified data set with % data window

4.3 Model Testing

The previous analysis was based on OOB error which is good enough to
make a comparison between different models. In order to increase test model
credibility, different ratios of training and testing will be done, and training

to testing ratios will be 80/20, 60/40 respectively.
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First, random forest runs with a single candidate to be split and 701 trees
with 80% of data used in training and 20% in testing. Furthermore, a

minimum error produced 1.25% as indicated in the next confusion matrix:

Table 4.3: Confusion matrix for train to test ratio 80/20

Prediction
1 2 3 4 5 Class error
1 16 0 0 0 0 0.0
4 2 0 16 0 0 0 0.0
= 3 1 0 11 0 0 0.08333333
® 4 0 0 0 18 0 0.0
5 0 0 0 0 18 0.0

The following graph capture OOB error development with respect to a

number of trees:
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Figure 4.13: OOB error vs. number of trees for modified data set with 80/20 ratio
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The following table shows comparison between true class value and
prediction value. As can be seen, all examples are identical except example
number 73 which predicts over-excitation as a normal condition. By
reviewing the confusion matrix, it can be also seen that it predict over-
excitation as normal condition. Even those were wrongly classified, it is not
critical since both cases: normal and over-excitation are both no trip cases,
hence no trip issued. Meaning, if there are two classes; no trip include:
normal, inrush, over-excitation, and CT-saturation and trip includes: internal
fault then there will be 100% accurate protection system. Moreover, in this
case model works perfectly as protection system, rather less accurate
condition monitoring.

Table 4.4: Testing versus prediction for 20% testing

Testing Prediction

7 2 2
18 3 3
20 5 5
21 1 1
23 3 3
31 1 1
32 2 2
33 3 3
34 4 4
58 3 3
62 2 2
64 4 4
68 3 3
73 3 1
78 3 3
87 2 2
88 3 3
91 1 1
96 1 1
100 5 5
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Secondly, random forest runs with single candidate to be split and 701 trees

with 60% of data used in training and 40% in testing. Furthermore, minimum

error produced 5% as indicated in the next confusion matrix:

Table 4.5: Confusion matrix for train to test ratio 60/40

Prediction
1 2 3 4 5 Class error
1 12 0 0 0 0 0.0
. 2 0 12 1 0 0 0.07692308
g 3 1 0 10 0 0 0.09090909
4 0 1 0 10 0 0.09090909
5 0 0 0 0 13 0.0

The following graph capture OOB error development with respect to number

of trees:
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Figure 4.14: OOB error vs. number of trees for modified data set with 60/40 ratio
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As previously, next table shows comparison between true class value and
prediction value. As can be seen, all examples are identical. Taking another
look on confusion matrix reveals that no internal fault has been confused
with another class. Even other classes are wrongly classified among them;
inrush detected as over excitation, over-excitation detected as normal, and
CT-saturation detected as inrush. Again this is not critical; neither fails to
trip nor false tripping. Same argument applied here, as if there are two
classes: trip, and no-trip. There will be 100% accurate protection element.
Hence, in this case, the model works perfectly as a protection system, rather

less accurate condition monitoring.

Table 4.6: Testing versus prediction for 40% testing

Testing | Prediction Testing Prediction

1 1 1 49 4 4
3 3 3 52 2 2
7 2 2 53 3 3
8 3 3 56 1 1
10 5 5 58 3 3
13 3 3 59 4 4
14 4 4 60 5 5
18 3 3 65 5 5
19 4 4 66 1 1
20 5 5 68 3 3
21 1 1 74 4 4
24 4 4 76 1 1
26 1 1 80 5 5
28 3 3 84 4 4
33 3 3 86 1 1
35 5 5 87 2 2
37 2 2 89 4 4
39 4 4 92 2 2
42 2 2 95 5 5
47 2 2 96 1 1
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4.4 Greedy vs. Limited Size

By default, random forest grows individual trees to maximum size such that
each terminal node will have single feature. To investigate effect of limited
size trees in the ensemble, trees maximum terminal node will be conditioned
to suitable value. To start, investigate in single tree for single candidate to be
split and 701 trees, with 100% of data used in training, which produce
minimum error 0%. Next table give single tree for that case, where first
column indicate node number while next two columns represent daughter
node from that parent node which if zero it is terminal node. Fourth column
gives feature to split which if NA then it is terminal, next fifth column
indicate value of split for the feature. Sixth column labelled with -1 for
terminal node and 1 if not. Final column indicate prediction class which if

NA then it is not terminal.
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Table 4.7: Single tree from the ensemble for 100% data subject to train

and greedy case

left daughter | right daughter | split var | split point | status | prediction
1 2 3 P3 | 553E-30| 1 #N/A
2 4 5 P5 |579E-89| 1 #N/A
3 6 7 P6 -3.6E-23 | 1 #N/A
4 0 0 #N/A 0 -1 1
5 8 9 P8 |533E-19| 1 #N/A
6 10 11 P10 | -5.8E-06 | 1 #N/A
7 12 13 P13 | -45E-18 | 1 #N/A
8 14 15 P4 -3.7E-84 | 1 #N/A
9 0 0 #N/A 0 -1 2
10 0 0 #N/A 0 -1 5
11 16 17 P14 | -25E-18 | 1 #N/A
12 18 19 P10 | -2.7E-09 | 1 #N/A
13 0 0 #N/A 0 -1 2
14 0 0 #N/A 0 -1 3
15 20 21 P7 4.1E-90 1 #N/A
16 0 0 #N/A 0 -1 5
17 0 0 #N/A 0 -1 4
18 0 0 #N/A 0 -1 5
19 0 0 #N/A 0 -1 4
20 22 23 P2 -4E-06 1 #N/A
21 0 0 #N/A 0 -1 3
22 0 0 #N/A 0 -1 5
23 0 0 #N/A 0 -1 1

Terminal nodes in this tree, which differ from one tree to the other easily
captured to be 12, i.e.: the second tree has 15 terminal nodes, and the third
tree has 13 terminal nodes. This work investigates the effect of limiting it to

half i.e.: six terminal nodes.
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Table 4.8: Single tree from extracted for 100% data subject to train

and 6 nodes case

left daughter|right daughter|split var|split point|status|prediction
1 2 3 P4 |-57E-19| 1 #N/A
2 0 0 #N/A 0 -1 5
3 4 5 P6 |458E-30| 1 #N/A
4 6 7 P4 -1E-22 1 #N/A
5 8 9 PO |-25E-19| 1 #N/A
6 0 0 #N/A 0 -1 4
7 10 11 P15 |-2.2E-83| 1 #N/A
8 0 0 #N/A 0 -1 4
9 0 0 #N/A 0 -1 2
10 0 0 #N/A 0 -1 3
11 0 0 #N/A 0 -1 1

By forcing this restrain, it is obvious that there will be 6 terminal nodes with

minimum error raised to 9% as can be seen in the next confusion matrix:

Table 4.9: Confusion matrix for 100% data subject to train and 6

nodes case
Prediction
1 2 3 4 5 Class error
1 20 0 0 0 0 0.0
4 2 0 19 1 0 0 0.07692308
c 3 5 0 15 0 0 0.09090909
® 4 0 0 0 20 0 0.09090909
5 0 1 0 2 17 0.0
4.5 Boosting

Boosting is another powerful ensemble technique, this techniques
performance is highly comparable to random forest that surpass in some
cases. Furthermore it is used to rise the performance of the investigate

system.
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Different boosting models run using different percentage ratios of train to
test. Thus, different optimal number of trees yields. Next graph captures
reduction in learning error (black line) and testing error (green line), while

the blue line indicates the optimal number of trees.
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Figure 4.15: Optimal number of trees using; OOB to left, and cross validation to right
for modified data set with 100% train data

The importance of optimal number is to achieve faster model, and not to
over-fit data. Different optimal number of trees issued by two different

techniques, data set ratios and different runs can be seen in the next table:

Table 4.10: Optimum number of trees for different data sets and

datasets
100% 100% 80/20 % 60/40 %
original modified modified modified
dataset dataset dataset dataset
C.V. 58 87 89 70
0o0oB 15 63 42 40
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Even so, optimal number changes from single run to another, using optimal
number of trees each case at a time. System will be trained same as previous
parameters with original data set used. At the same time prediction is
achieved by optimal number of trees with train to testing ratio 60/40. Next

table shows comparison between prediction and testing for this case:

Table 4.11: Testing versus prediction for 40% testing with original

dataset
Testing | Prediction Testing Prediction
1 1 1 21 5 5
2 2 2 22 3 3
3 3 3 23 4 5
4 4 4 24 3 3
5 3 3 25 1 1
6 1 1 26 3 3
7 3 3 27 4 4
8 4 4 28 2 2
9 1 1 29 4 4
10 4 4 30 3 3
11 1 1 31 4 3
12 4 5 32 4 3
13 5 5 33 1 1
14 1 1 34 2 1
15 2 2 35 4 3
16 4 5 36 5 5
17 1 1 37 3 2
18 2 2 38 3 2
19 3 3 39 4 3
20 4 5 40 5 5

It is obvious from this table that examples 12, 16, 20, and 23 are all false
tripping cases. Other miss-classified examples are 31, 32, 34, 35, 37, 38, and
39 which do not contain false tripping nor fail to trip cases. As a result, 11

out of 40 examples are wrongly classified which yield error rate of 27.5%.
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Even so, other boosting models were conducted with same previous
parameters with 80/20 and 60/40 train to testing ratio, which yield correct
classification for all examples.
As in random forest, feature importance can be investigated. Thus, boosting
model was run with all data used to train model with same previous
parameters. Next graph gives indication to variable importance captured by

boosting:
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Figure 4.16: Variable impotence with optimal number of trees for 100% train data

4.6 Comparison between Proposed Algorithm and ANN

Traditional ANN does not provide reliable and accurate classification, i.e.:
Feed Forward Neural Network Back Propagation (FFNN), Cascade Forward
Back Propagation (CFBPNN) and Radial Basis Function Neural Network
(RBFNN) (YYazadani-Asrami et al. 2015). Hence, other algorithms or
combination of algorithms need to be applied. As a result, combinations of

optimisation and ANN have been tested. PSO optimized ANN and IGSA
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optimized ANN was applied in (Gethanjali, Raja Slochanal & Bhavani 2008)
and (‘Yazadani-Asrami et al. 2015) respectively.
Gethanjali, Raja Slochanal & Bhavani (2008) use train to test ratio of 80-to-
20. Yazadani-Asrami et al. (2015) have used cross validation for testing
Bayesian classifier and one transformer shown to test conditional
monitoring. Both have reported accurate result as high as 100%.
Proposed technique has used strict validating regimes; validated using
internal measures: out-of-bag error, variable importance, and margin. In
addition, different train to test ratio of: 80-to-20 and 60-t0-40 are used to
validate the model.
Table 4.12 shows comparison between different techniques. Proposed
technique will take into account confusion matrix and testing data set in

random forest and testing data set in boosting.

Table 4.12: Comparison between different techniques

PSO- |IGSA- 1505/ 8(?— tFo- 6(?— tFo- Boosting | Boosting
ANN | ANN | —3°7° 80-t0-20 | 60-t0-40
training| 20 40
Protection 100% | 100%| 100% | 100%
element
Conditional| 100% | 100% | 100%
monitoring 98% | 97% | 100% 100%
element

Previous results were captured for complete cycle of 16 samples/ cycles.
Also different data windows considered of: %4, ¥ and ¥4 cycles corresponding

to 12, 8 and 4 samples/ cycles have been summarized in table 4.13. All cases



in table 4.13 are for random forest with 100% data used in training, only

internal measures used to validate the model.
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Table 4.13: Different data window

element

% Cycle Y% Cycle Y4 Cycle
Protection element 100% 100% 95%
Conditional monitoring 100% 100% 100%

Table 4.12 and Table 4.13 indicate competitive accuracy and faster response.
So, ensemble techniques provide fast response hence more compact system;
less processing and memory needed. Besides, these techniques provide
measures that could be used to understand some features more deeply. In

addition, these models are compatible to existing hardware, hence only

changing the algorithm rather than outside equipment or provisions.
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Chapter Five

Conclusion and Future Work

5.1 Conclusion

This thesis is mainly intended to provide differential protection and
conditional monitoring through subjecting sampled differential signal to
ensemble techniques; random forest and boosting were used. Both
techniques were applied using R language; random Forest and gbm
packages. At first, practical transformer rating model was adopted and
sampled differential current of this model was extracted. Then, these samples
are fed to ensemble techniques to provide classification function. This
technique is intended to issue tripping status for internal fault and no trip
status otherwise. Meanwhile, all cases are classified including: normal,
inrush, over-excitation, ct-saturation and internal fault to form conditional
monitoring system.

This was achieved by subjecting random forest to different data sets
weighting regimes and mixture of them. Even low performance was
achieved with original data set with one third examples misclassified with
negative margin values, different data set weighting scenarios were tested
which also reported low performance. Two step data modifying procedure

has given powerful performance, these two steps are:

e Weighted samples of Exponential relation of S/\/§

Vaverage

e Identically distributed apparent power.
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New modified data has shown high accuracy with zero percent out-of-bag
error for 100% of data used in training. Rather, different train to testing ratios
for validating the model 80-to-20% and 60-to-40% used, which result perfect
100% accurate protection element rather less accurate conditional
monitoring element. Data window has been changed to test model under
faster performance. Different windows of: 3/4, 1/2, 1/4 of original data have
shown high accuracy under faster responses.
Effectiveness of random forest growth deepness have been captured by
condition tress terminal node to about half that of the greedy case. Hence
error has reached 9%in compare to 0%.
Boosting also has been subjected to original and modified data set
conditioned to optimum number of trees. And so, error has been monitored
using testing data set for 80-t0-20% and 60-to-40%. As a result, error has
been decreased from 27.5% in original data set with 60-t0-40% to 0% with
modified data set in both 80-t0-20% and 60-to-40%.
This new technique is used for the first time; it will contribute to provide a
new scope of understanding differential signal different cases. Two measures
of variable importance used: Mean Decrease Accuracy (MDA), and Mean
Decrease Gini (MDG). Thus, it will provide how signal moments differ in
importance’s from each other, giving surprisingly result that approximately
all moment have similar importance’s even so some early moments have
higher importance’s than late ones, which is contradiction to common sense
of the more late instances the more the importance. In addition, variables
importance’s have been captured for different data window size. Whereas,
variable importance using boosting have showed similar result, rather higher

variance between higher and lower variables importance’s.
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New technique has showed accurate, fast differential element. In addition,
external measures have proven that it is important to study model and signal

used.

5.2 Future Work

Random forest and boosting are group of families that can be explored
amongst to further find best version of random forest and boosting that are
most adaptable to differential current signal statues i.e.: different random
forest injected randomness forms, and different boosting methods. On the
other side, different data representation and mixture of those representations
may be tested in conjunction with different model version to find best pair
of data representation and model.

Different data sets with power transformer rating variance to study effect of
transformer rating. Furthermore, identical apparent power vector feature
effectiveness under different data set and transformer ratings could be
testing.

Also, Different data sets could be used to validate the model to further extent
and proves its ability to real world application. This conducive to further
apply this model to real transformer, even low size transformer can be used

to validate technique ability in real world application.
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Appendices

Appendix A: R Coding for Random Forest and Boosting

This code was built based on R which is a statistical and data analysis special
program and language. Please be aware that other graphs and features which
are introduced in this report need different coding lines. The following code
represents the lines used to apply and run Random Forest and Boosting:
install.packages("randomForest™)

install.packages("'gbm")

library(gbm)

library(randomForest)

install.packages("xIsx™)

library(xIsx)

path <- "C:\\Users\\user\\Desktop\\AI\\Book4NEW .xIsx"

data <- read.xlIsx(path, sheetindex = "Sheet1")

head(data)

str(data)

data$Type = as.factor(data$Type)

data_set size= floor(nrow(data)*0.80)

index <- sample(1:nrow(data),size = data_set_size)

training <- data[index,]

testing <- data[-index,]

set.seed(1)
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rf <- randomForest(Type ~ .,data = training , mtry = 1,maxnodes = 5, ntree
= 5001, replace= TRUE , importance = TRUE)

result <- data.frame(testing$Type, predict(rf, testing[,1:16], type =
"response"))

boost.rf=gbm(Type ~ . , data=training , distribution = "multinomial"
,shrinkage = 0.1,bag.fraction =0.5keep.data = FALSE,cv.folds = 5,
n.trees=701)

result <- data.frame(testing$Type, apply(predict(boost.rf, testing[,1:16],
type = "response”,ntree=gbm.perf(boost.rf, method = "cv")), 1, which.max))

summary(boost.rf, n.trees = gbm.perf(boost.rf, method = "cv"))
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: Data set Used

Appendix B

Type 1 2 3 4 5 1 2 3 4 5
P16 | 606.682 0| -15673 153 | 65906 | 9825 0| -2456 -238 | 2903.8
P15 -0.4749 | -4133.9 | -3.1534 -14.4 | -9634.2 0.7 | -6419.2 | -5.0487 23| -3862.7
P14 330.63 0| 10.3537 449 | 56284|  552.2 0| 16.157 70| 1989.9
P13 329.63 | 4771.8| -6.7013 58.2 2704 |  550.8| 7.4973 | -10.476 91| 1413.8
P12 0.2936 0| -1.2071 14.4 | -8834.5 05 0| -2.0131 23| -3703.1
P11 635.56 0| 97868| -150.7| 8575.1| 1029.8 0| 15.2832 235 | 32955
P10 -1.0443 0| -10.207 144 | -2103.4 1.2 0| -15.95 23|  -539.7
P9 1.1148 | 34339 | -0.5718 472 | -5827.8 18| 53654 | -0.8912 74| -2621.7
P8 788.35 | 2999.6 |  6.372 60.6 9379 | 1269.7 | 4686.7 | 9.9493 95| 3.7907
P7 -1.0845 | -2675.4 | -11.2082 14.4 | -6417.2 17| -4180.4 | -17.515 23| -2353.8
P6 1.7889 | -3735.2| 6.2082 | -1482| -1361.4 28| -5836.3| 9.7149 231 | -887.9
P5 7552 | 1699.9 | 1.2331 144 | 79946 | 12192 | 2656.1| 1.9187 23| 33963
P4 -0.727 608.6 | -6.7359 49.8 | -9125.2 1.1 950.9 | -11.0349 78 | -3583.3
P3 | 207.3747 0| 243207 635 | 34417| 3643 0| 3814 99 | 1064.6
P2 -0.1481 | -670.6 | -0.0004 143 | 47167 0.2 | -1047.7| -0.0004 23| 22009
P1 0 0 0| 25248| -9626.9 0 0 0| 13806| -3933
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1 2 3 4 5 1 2 3 4 5 1 2
358.96 0| -0.8067 -95.4 1489.6 159.79 0| -0.403| -47.7 901.5 | 86.9021 | -13.8125
-0.3132 | -2609.7 -1.526 -9 | -19285| -0.1725 - | -0.7476 -45| -1156.6 | -0.1108 -
185.92 0| 5.3885 28.1 944.9 72.791 0| 26855 14 553.9 | 34.4909 0
185.2025 | 2955.5 | -3.4809 36.5 755.9 | 72.3585 | 1444.3 | -1.7399 18.2 464.4 | 34.2047 | 841.409
0.1666 0 -0.66 9| -1876.6 0.0669 0| -0.3224 45| -1132.2 0.0326 0
375.87 0| 5.0964 -94.1 1615.5 | 167.1961 0 2545 | -471 960.2 | 90.8906 0
-0.669 0| -5.3086 -9 -219.4 | -0.3515 0| -2.6538 -4.5 -120.1 | -0.2185 0
0.6793 | 2146.2 | -0.2827 29.4 | -1358.6 0.3227 | 1073.1 | -0.1374 14.7 -826.9 0.1859 | 643.847
470.7 | 18748 | 3.3241 37.8 1.8917 214.02 | 937.4 | 1.6613 18.9 | 11329 | 118.7332 | 562.444
-0.6957 | -1672.1 | -5.8315 9| -1138.7| -0.3652 -836 | -2.8582 4.5 -674.2 | -0.2269 -501.6
11| -23345| 3.0759 -92.6 -503.3 0.5325 -| 23317 | -46.3 -316.5 0.3116 | -700.35
499.3 | 10624 | 1.0634 -9 1723.3 | 202.702 | 531.2 | 10.4725 -4.5 | 1039.2 | 111.6787 | 318.7327
-0.4727 380.4 | -0.0742 31.1| -17755| -0.2541| 190.2 | -0.0367 15.6 | -1061.1 | -0.1605| 114.116
106.31 0| 12.067 39.8 476.5 | 30.6566 0| 5.9292 19.8 272.2 8.2131 0
-0.134 -419.1 | -0.0004 9 1149.7 -0.105 | -209.5 | -0.0004 4.5 701.3 -0.079 -125.7
0 0 0| 5523.3| -1974.3 0 0 0| 2761.8 | -1185.9 0 0
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3 4 5 1 2 3 4 5 1 2 3
-0.2418 | 2.86E+01 | 32.6272 | -0.0483 | -13.8125 | -0.2418 -28.6 | -38.1322 | 18.5161 | 11012 -8.8744
-0.4341 | -2.70E+00 102.94 -0.175 -827 -0.434 -27 | -17.1254 | -0.3044 8843 -28.055

1.6036 | 8.40E+00 | 30.4002 | 36.8288 0| 1.6036 8.4 | 60.0064 1.6408 | 12175 60.3019
-1.0438 | 1.09E+01 | -84.3393 | 38.5323 | 841.4094 | -1.0438 10.9 | -59.3677 -0.415 | 10675 -37.8619
-0.1867 | 2.70E+00 -82.1 0.1893 0 0.187 2.7 | 15.6546 0.2616 9844 -11.4064

1.524 | -2.83E+01 | 32.6273 | -0.0429 0 1.524 -28.3 | 39.3768 | 21.7399 | 13002 54.3972
-1.5886 | -2.70E+00 102.94 -0.17 0| -1.5886 -2.7 | -65.8865 | -0.7421 | 10415 -57.4566
-0.0634 | 8.80E+00 30.399 | 43.9968 | 643.848 | -0.0634 8.8 | 44.5885 0.8667 | 11173 -2.4515

6.2623 | 1.13E+01 | -84.3393 46.006 | 562.444 | 6.2623 11.3 9.0061 | 126.2338 | 13422 35.3118

0.3273 | 2.70E+00 | -82.045 0.1955 | -501.61 | 0.3273 2.7 | -56.0994 | -0.7817 | 10436 -62.976

1.3247 | -2.78E+01 | 32.6272 | -0.0365 | -700.352 | 1.3247 -27.8 | 62.5081 1.3615 | 12643 34.9377

6.2078 | -2.70E+00 | 102.9351 | -0.1633 | 318.7327 | 6.2078 -270 | -23.5514 | 91.4455 | 13476 6.4733
-0.0217 | 9.30E+00 | 30.4001 52.719 | 114.1165 | -0.0217 9.3 | -32.4327 | -0.5238 | 10879 -42.0836

3.4775 | 1.19E+01 | -84.3393 55.127 0| 34775 119 | 64.9404 1.6238 | 14040 122.8565
-0.0004 | 3.00E+00 | -82.045 0.2031 | -125.73 | -0.0004 273.3 | -50.3396 | -0.0754 | 13283 -0.0002

0| 1.67E+03 33.755 0 0 0| 1657.1| -0.7446 0 -946 0
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4 5 1 2 3 4 5 1 2 3 4
6.80E-08 | -12.8394 0.0083 2365.1 | -1.7479 | -6.80E-08 | -12.7923 0.0011 1425.7 | -1.0434 -6.80E-08
-3.66E-08 | -5.5604 | -0.0764 14953 | -4.3436 | -3.66E-08 -5.6151 | -0.0497 874.8 | -2.5009 -3.66E-08
-3.59E-07 | 19.9424 0.3126 2396.9 | 11.7741 | -3.59E-07 19.9647 0.1837 1406.3 7.0827 -3.59E-07
2.55E-07 | -19.8605 | -0.0986 2226.4 -7.508 2.55E-07 | -19.8345 -0.063 13429 | -4.5003 2.55E-06
-1.50E-07 5.3685 0.0366 1653.1 | -1.5313 | -1.50E-07 5.3136 0.0181 56.4 | -0.9726 -1.50E-07
4.53E-08 | 13.0042 0.2754 2667.2 | 11.0248 4.53E-08 13.0489 0.1614 | 1577.69 6.6229 4.53E-08
-1.91E-07 | -21.9585 | -0.1642 2062.2 | -11.4404 | -1.91E-07 | -21.9598 | -0.1024 1238 | -6.8608 -1.91E-07
8.63E-08 | 14.9795 0.1575 1935.7 | -0.7011 8.63E-08 14,9371 0.0906 1116 | -0.4259 8.63E-08
1.83E-08 2.8495 5.4066 2820.1 7.1622 1.83E-08 2.9056 0.1083 1676.9 4.3031 1.83E-08
1.27E-07 | -18.6222 | -0.1723 1938.6 | -12.5631 1.27E-07 | -18.6507 | -0.1073 1147.4 | -7.5356 1.27E-07
-2.27E-08 | 20.8892 0.2563 2297.6 7.3462 | -2.27E-08 20.8698 0.1499 1319.1 44175 -2.27E-08
4.31E-08 -7.996 0.0693 2837 1.3907 4.31E-08 -7.9425 0.0377 1673.1 0.8408 4.31E-08
-6.36E-08 | -10.6785 | -0.1209 1887.4 | -8.4724 | -6.36E-08 | -10.7272 | -0.0764 1061.4 | -4.1425 -6.36E-08
2.16E-08 | 21.6238 0.3086 2587.2 28.382 2.16E-08 21.6327 0.1812 1427.5 | 16.9908 2.16E-08
-1.08E-08 | -16.8828 | -0.0502 2435 | -0.0002 | -1.08E-08 | -16.8453 | -0.0378 1357.6 | -0.0002 -1.08E-08
0 -0.094 0 -478.2 0 0| -1.51E-01 0 -300.2 0 0
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5 1 2 3 4 5 1 2 3 4 5
-12.7333 | -0.0007 9458 | -0.6938 | -6.80E-08 | -63.5206 | 678.8184 | 1.43E+04 | -0.6283 | -3.40E-07 | -63.8843
-5.6833 | -0.0346 570.2 -1.639 | -3.66E-08 | -28.4991 -0.567 | 5.81E+03 | -0.7358 | -1.83E-07 | -28.0837
19.9921 0.121 918.5 47264 | -3.59E-07 | 100.014 | 309.1715 | 1.34E+04 3.7431 | -1.80E-06 99.847
-19.8017 | -0.0435 890.2 | -2.9987 2.55E-07 | -98.9486 | 307.3426 | 1.27E+04 | -2.6646 | 1.27E-06 | -99.149
5.244 0.0106 618.4 | -0.6539 | -1.50E-07 | 26.0906 0.4511 | 6.53E+03 | -0.3105 | -7.49E-07 | 26.5169
13.1045 0.1061 1033.6 44174 4.53E-08 | 65.5917 | 710.7748 | 1.56E+04 3.7581 | 2.27E-07 | 65.2528
-21.9615 | -0.0697 816 | -4.5726 | -1.91E-07 -| -13268 | 1.08E+04 | -4.0589 | -9.54E-07 -
14.8826 0.0589 716.9 | -0.2846 8.63E-08 | 74.2798 1.5387 | 8.37E+03 | -0.1277| 4.31E-07 | 74.6051
2.9759 0.0708 1096.9 2.8704 1.83E-08 | 14.9824 | 910.103 | 1.68E+04 24933 | 9.20E-08 | 14.5581
-18.6859 -0.073 7426 | -5.0229 1.27E-07 | -93.4955 | -1.3855 | 8.82E+03 | -3.5265 | 6.36E-07 | -93.2792
20.8451 0.0984 836.2 29427 | -2.27E-08 | 104.1811 2.4309 | 1.08E+04 1.0649 | -1.13E-07 | 104.3319
-7.8765 0.0236 1076.8 1.5193 4.31E-08 | -39.2501 | 862.2454 | 1.62E+04 | 13.6891 | 2.16E-07 | -39.656
-10.7879 | -0.0524 653.5 | -0.0682 | -6.36E-08 | -54.0007 | -0.9142 | 6.91E+03 | -0.0455 | -3.18E-07 | -53.6302
21.6428 0.1194 879.4 | 11.2935 2.16E-08 108.24 | 131.0846 | 1.22E+04 6.6611 | 1.08E-07 | 108.1736
-16.7977 -0.028 8545 | -0.0002 | -1.08E-08 | -83.886| -0.0793 | 1.26E+04 | -0.0002 | -5.40E-08 | -84.1757
-0.2216 0 -203.3 0 0 -1.241 0| -4.53E+03 0 0| -0.8103
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1 2 3 4 5 1 2 3 4 5
1.08E+0 | 2.24E+04 | -9.84E-01 | -3.40E-07 | -6.13E+01 | 1.91E+02 | 1.99E+02 | -1.95E-01 | -3.40E-07 | -5.91E+01
-9.00E- | 9.42E+03 | -1.15E+00 | -1.83E-07 | -3.10E+01 | -1.94E-01 | 1.48E+03 | -2.24E-01 | -1.83E-07 | -3.34E+01
5.02E+0 | 2.15E+04 | 5.84E+00 | -1.80E-06 1.01E+02 | 7.51E+01 | 3.76E+03 | 1.18E+00 | -1.80E-06 1.02E+02
5.00E+0 | 2.00E+04 | -4.17E+00 | 1.27E-06 | -9.77E+01 | 7.45E+01 | 3.66E+03 | 6.65E-01 | 1.27E-06 | -9.63E+01
7.00E+0 | 1.07E+04 | -4.84E-01 | -7.49E-07 2.35E+01 | 1.23E-01 | 1.59E+03 | -6.13E-02 | -7.49E-07 2.10E+01
1.13E+0 | 2.50E+04 | 5.87E+00 | 2.27E-07 6.76E+01 | 2.00E+02 | 4.40E+03 | 3.61E+00 | 2.27E-07 6.95E+01
- | 1.70E+04 | -6.34E+00 | -9.54E-07 | -1.10E+02 | -4.32E-01 | 2.94E+03 | 9.02E-01 | -9.54E-07 | -1.10E+02
2.40E+0 | 1.39E+04 | -2.00E-01 | 4.31E-07 7.22E+01 | 4.63E-01 | 2.02E+03 | -3.81E-02 | 4.31E-07 7.02E+01
1.44E+0 | 2.67E+04 | 3.89E+00 | 9.20E-08 1.76E+01 | 2.62E+02 | 4.66E+03 | 4.29E+00 | 9.20E-08 2.00E+01
- | 1.43E+04 | -5.53E+00 | 6.36E-07 | -9.47E+01 | -4.51E-01 | 2.81E+03 | -3.69E-02 | 6.36E-07 | -9.58E+01
3.80E+0 | 1.80E+04 | 1.62E+00 | -1.13E-07 1.03E+02 | 7.41E-01 | 2.63E+03 | 3.32E-01 | -1.13E-07 1.02E+02
1.37E+0 | 2.62E+04 | 2.23E+00 | -2.16E-07 | -3.67E+01 | 2.46E+02 | 4.41E+03 | 4.22E+00 | 2.16E-07 | -3.43E+01
- | 1.21E+04 | -7.12E-02 | -3.18E-07 | -5.62E+01 | -3.05E-01 | 1.50E+03 | -1.40E-02 | -3.18E-07 | -5.83E+01
2.27E+0 | 2.09E+04 | 1.05E+01 | 1.08E-07 1.09E+02 | 1.69E+01 | 3.15E+03 | 2.01E+00 | 1.08E-07 1.09E+02
- | 2.06E+04 | -2.00E-04 | -5.40E-08 | -8.21E+01 | -6.90E-02 | 3.58E+03 | -2.00E-04 | -5.40E-08 | -8.02E+01

0 | -6.98E+03 0 0 -3.8658 0 - 0 0 -6.3924
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1 2 3 4 5 1 2 3 4 5
1.05E+02 | 2.40E+03 | 2.01E+00 | -3.40E-07 | -5.62E+01 | 6.36E+01 | 1.54E+03 | 1.32E+04 | -3.40E-07 | -4.27E+01
-1.24E-01 | 7.59E+02 | -4.89E-02 | -1.83E-07 | -3.62E+01 | -8.81E-02 | 4.43E+02 | -3.18E-02 | -1.83E-07 | -1.86E+01
3.50E+01 | 2.12E+03 | 1.35E+00 | -1.80E-06 1.03E+02 | 1.69E+01 | 1.34E+03 | 8.76E-01 | -1.80E-06 | 6.65E+01
3.46E+01 | 2.07E+03 | 1.35E+00 | 1.27E-06 | -9.45E+01 | 1.66E+01 | 1.31E+03 | 8.78E-01 | 1.27E-06 | -6.62E+01
6.59E-02 | 8.06E+02 | -3.60E-02 | -7.49E-07 1.78E+01 | 3.86E-02 | 4.70E+02 | -2.34E-02 | -7.49E-07 | 1.78E+01
1.10E+02 | 2.49E+03 | 2.13E+00 | 2.27E-07 7.17E+01 | 6.65E+01 | 1.59E+03 | 1.40E+00 | 2.27E-07 | 4.34E+01
-2.68E-01 | 1.62E+03 | 5.08E-01 | -9.54E-07 | -1.09E+02 | -1.84E-01 | 1.02E+03 | 3.13E-01 | -9.54E-07 | -7.32E+01
2.69E-01 | 1.05E+03 | -2.23E-02 | 4.31E-07 6.75E+01 | 1.74E-01 | 6.35E+02 | -1.45E-02 | 4.31E-07 | 4.99E+01
1.46E+02 | 2.64E+03 | 2.54E+00 | 9.20E-08 2.30E+01 | 9.08E+01 | 1.70E+03 | 1.67E+00 | 9.20E-08 | 9.55E+00
-2.79E-01 | 1.17E+03 | -2.18E-02 | 6.36E-07 | -9.71E+01 | -1.91E-01 | 7.20E+02 | -1.42E-02 | 6.36E-07 | -6.21E+01
4.36E-01 | 1.43E+03 | 1.63E-01 | -1.13E-07 1.01E+02 | 2.85E-01 | 8.91E+02 | 8.00E-02 | -1.13E-07 | 6.96E+01
1.37E+02 | 2.52E+03 | 2.49E+00 | 2.16E-O7 | -3.12E+01 | 8.42E+01 | 1.63E+03 | 1.63E+00 | 2.16E-07 | -2.66E+01
-1.92E-01 | 7.89E+02 | -8.30E-03 | -3.18E-07 | -6.08E+01 | -1.33E-01 | 4.84E+02 | -5.40E-03 | -3.18E-07 | -3.56E+01
5.25E-01 | 1.79E+03 | 1.17E+00 | 1.08E-07 1.09E+02 | 3.44E-01 | 1.16E+03 | 7.49E-01 | 1.08E-07 | 7.21E+01
-6.09E-02 | 2.10E+03 | -2.00E-04 | -5.40E-08 | -7.78E+01 | -5.26E-02 | 1.38E+03 | -2.00E-04 | -5.40E-08 | -5.62E+01

0 | -8.59E+02 0 0 -9.5131 0 | -5.73E+02 0 0 -0.3842
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1 2 3 4 5 1 2 3 4 5
-4.27E+01 | 6.79E+02 1.43E+04 - | -2.27E-07 | -4.28E+01 1.08E+03 | 2.19E+04 | -2.21E+00 | -2.27E-07
-1.86E+01 | -5.67E-01 6.19E+03 - | -1.22E-07 | -1.85E+01 -9.00E-01 | 1.01E+04 | -3.34E+00 | -1.22E-07
6.65E+01 | 3.09E+02 1.40E+04 | 8.99E+00 | -1.20E-06 | 6.65E+01 5.02E+02 | 2.25E+04 | 1.40E+01 | -1.20E-06
-6.62E+01 | 3.07E+02 1.27E+04 - | 8.48E-07 | -6.62E+01 5.00E+02 | 1.94E+04 | -9.39E+00 8.48E-07
1.78E+01 | 4.51E-01 7.16E+03 | -9.47E-01 | -5.00E-07 | 1.80E+01 7.00E-01 | 1.19E+04 | -1.45E+00 | -5.00E-07
4.34E+01 | 7.11E+02 1.62E+04 | 8.67E+00 | 1.51E-07 | 4.33E+01 1.13E+03 | 2.55E+04 | 1.35E+01 1.51E-07
-71.32E+01 | -1.33E+00 1.08E+04 - | -6.36E-07 | -7.32E+01 | -2.10E+00 | 1.67E+04 | -1.43E+01 | -6.36E-07
4.99E+01 | 1.54E+00 9.25E+03 | -4.03E-01 | 2.88E-07 | 5.00E+01 2.40E+00 | 1.53E+04 | -6.22E-01 2.88E-07
9.55E+00 | 9.10E+02 1.72E+04 | 5.68E+00 | 6.10E-08 | 9.43E+00 1.44E+03 | 2.69E+04 | 8.87E+00 6.10E-08
-6.21E+01 | -1.39E+00 9.27E+03 - | 4.24E-07 | -6.20E+01 | -2.10E+00 | 1.45E+04 | -1.57E+01 4.24E-07
6.96E+01 | 2.43E+00 1.21E+04 | 4.46E+00 | -7.60E-08 | 6.97E+01 3.80E+00 | 1.98E+04 | 6.93E+00 | -7.60E-08
-2.66E+01 | 8.62E+02 1.70E+04 | 1.11E+00 | 1.44E-07 | -2.67E+01 1.37E+03 | 2.65E+04 | 1.71E+00 1.44E-07
-3.56E+01 | -9.14E-01 8.28E+03 - | -2.12E-07 | -3.55E+01 | -1.40E+00 | 1.36E+04 | -7.36E+00 | -2.12E-07
7.21E+01 | 1.31E+02 1.43E+04 | 1.89E+01 | 7.20E-08 | 7.21E+01 2.27E+02 | 2.39E+04 | 2.96E+01 7.20E-08
-5.62E+01 | -7.93E-02 1.38E+04 | -2.00E-04 | -3.60E-08 | -5.63E+01 -1.00E-01 | 2.26E+04 | -2.00E-04 | -3.60E-08

-0.3842 0| -4.36E+03 0 0 -0.2564 0 | -6.40E+03 0 0
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1 2 3 4 5 1 2 3 4
-4.21E+01 1.91E+02 4.42E+03 -4.36E-01 | -2.27E-07 | -4.14E+01 1.05E+02 | 2.58E+03 -2.61E-01
-1.93E+01 -1.94E-01 1.74E+03 -6.96E-01 | -1.22E-07 | -2.00E+01 -1.25E-01 | 9.55E+02 -4.13E-01
6.68E+01 7.51E+01 4.09E+03 2.82E+00 | -1.20E-06 6.71E+01 3.50E+01 | 2.34E+03 1.69E+00
-6.58E+01 7.45E+01 3.93E+03 | -1.87E+00 8.48E-07 | -6.54E+01 3.46E+01 | 2.27E+03 | -1.12E+00
1.71E+01 1.23E-01 1.93E+03 -2.98E-01 | -5.00E-07 1.63E+01 6.59E-02 | 1.04E+03 -1.77E-01
4.40E+01 2.00E+02 4.78E+03 2.71E+00 1.51E-07 4.46E+01 1.10E+02 | 2.73E+03 1.63E+00
-1.32E+01 -4.32E-01 3.28E+03 | -2.86E+00 | -6.36E-07 | -7.32E+01 -2.68E-01 | 1.85E+03 | -1.71E+00
4.93E+01 4.63E-01 2.46E+03 -1.26E-01 2.88E-07 4.87E+01 2.69E-01 | 1.31E+03 -6.33E-02
1.03E+01 2.62E+02 5.09E+03 1.78E+00 6.10E-08 1.11E+01 1.46E+02 | 2.89E+03 6.48E+00
-6.25E+01 -4 51E-01 2.61E+03 | -3.07E+00 | 4.24E-07 | -6.29E+01 -2.79E-01 | 1.41E+03 8.81E-02
6.93E+01 7.41E-01 3.14E+03 1.99E+00 | -7.60E-08 6.91E+01 4.36E-01 | 1.68E+03 1.16E+00
-2.58E+01 2.46E+02 4.86E+03 1.07E+01 1.44E-07 | -2.51E+01 1.37E+02 | 2.74E+03 6.41E+00
-3.63E+01 -3.05E-01 1.94E+03 -3.69E-02 | -2.12E-07 | -3.69E+01 -1.92E-01 | 9.87E+02 -2.20E-02
7.22E+01 1.69E+01 3.57E+03 5.84E+00 7.20E-08 7.23E+01 5.25E-01 | 1.97E+03 3.46E+00
-5.57E+01 -6.90E-02 3.79E+03 -2.00E-04 | -3.60E-08 | -5.52E+01 -6.09E-02 | 2.18E+03 -2.00E-04

-1.1639 0 -1.42E+03 0 0 -1.9185 0| -8.57E+02 0
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5 1 2 3 4 5
-2.27E-07 | -4.06E+01 6.36E+01 | 1.66E+03 -1.74E-01 -2.27E-07
-1.22E-07 | -2.09E+01 | -8.81E-02 | 5.74E+02 -2.71E-01 -1.22E-07
-1.20E-06 | 6.74E+01 1.69E+01 | 1.49E+03 1.13E+00 -1.20E-06
8.48E-07 | -6.50E+01 1.66E+01 | 1.45E+03 -6.27E-01 8.48E-07
-5.00E-07 | 1.54E+01 3.86E-02 | 6.14E+02 -6.59E-02 -5.00E-07
1.51E-07 | 4.53E+01 6.65E+01 | 1.74E+03 3.66E+00 1.51E-07
-6.36E-07 | -7.32E+01 | -1.84E-01 | 1.16E+03 1.22E+00 -6.36E-07
2.88E-07 | 4.79E+01 1.74E-01 | 7.85E+02 -4.17E-02 2.88E-07
6.10E-08 | 1.20E+01 9.08E+01 | 1.84E+03 4.29E+00 6.10E-08
4.24E-07 | -6.33E+01 | -1.92E-01 | 8.52E+02 2.99E-02 4.24E-07
-7.60E-08 | 6.87E+01 2.85E-01 | 1.03E+03 7.41E-01 -7.60E-08
1.44E-07 | -2.42E+01 8.42E+01 | 1.75E+03 4.24E+00 1.44E-07
-2.12E-07 | -3.77E+01 | -1.33E-01 | 5.83E+02 -1.46E-02 -2.12E-07
7.20E-08 | 7.24E+01 3.44E-01 | 1.24E+03 2.27E+00 7.20E-08
-3.60E-08 | -5.45E+01 | -5.26E-02 | 1.42E+03 -2.00E-04 -3.60E-08
0 -2.8589 0| -5.72E+02 0.00E+00 0
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