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The Magnetization of The (GaAs) Double 

 Quantum Dots in a Magnetic Field 

By 

Eshtiaq "Mohammed Yasir" Hijaz 

Supervisor 

Prof.Dr. Mohammad Elsaid 

Co-supervisor 

 Dr. Musa Elhasan 

Abstract 

The magnetization of two interacting electrons confined in double 

quantum dots under the effect of an applied uniform magnetic field along 

z-direction, in addition to a Gaussian barrier had been calculated. The 

variational and exact diagonalization methods had been used to solve the 

Hamiltonian and compute the magnetization of the double quantum dots. In 

addition, we had investigated the dependence of the magnetization on 

temperature, magnetic field, confining frequency, barrier height and barrier 

width. The singlet-triplet transitions in the ground state of the double 

quantum dots spectra and the corresponding jumps in the magnetization 

curves had also been shown. The comparisons show that our results are in 

very good agreement with reported works. 
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 Chapter One 

Introduction 

1.1 Nanotechnology and nanoscale: 

  A generalized description of nanotechnology was subsequently 

established by the National Nanotechnology Initiative, which defines 

nanotechnology as the manipulation of matter with at least one dimension 

sized from 1 to 100 nanometers. This definition reflects the fact 

that quantum mechanical effects are important at this quantum-realm scale 

[1]. 

Nanotechnology as defined by size is naturally very broad, including 

fields of science such as  surface science, organic chemistry, molecular 

biology, semiconductor physics, microfabrication, etc.  

Scientists currently debate the future implications of nanotechnology. 

Nanotechnology may be able to create many new materials and devices 

with a vast range of applications, such as in medicine, electronics 

and biomaterials energy production.  

The nanoscopic scale (or nanoscale) usually refers to structures with 

a length scale applicable to nanotechnology, usually cited as 1–

100 nanometers. 

For technical purposes, the nanoscopic scale is the size at which 

fluctuations in the averaged properties (due to the motion and behavior of 

https://en.wikipedia.org/wiki/National_Nanotechnology_Initiative
https://en.wikipedia.org/wiki/Nanometers
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Quantum_realm
https://en.wikipedia.org/wiki/Surface_science
https://en.wikipedia.org/wiki/Organic_chemistry
https://en.wikipedia.org/wiki/Molecular_biology
https://en.wikipedia.org/wiki/Molecular_biology
https://en.wikipedia.org/wiki/Semiconductor_physics
https://en.wikipedia.org/wiki/Microfabrication
https://en.wikipedia.org/wiki/Implications_of_nanotechnology
https://en.wikipedia.org/wiki/List_of_nanotechnology_applications
https://en.wikipedia.org/wiki/Nanomedicine
https://en.wikipedia.org/wiki/Nanoelectronics
https://en.wikipedia.org/wiki/Biomaterial
https://en.wikipedia.org/wiki/Length_scale
https://en.wikipedia.org/wiki/Nanotechnology
https://en.wikipedia.org/wiki/Nanometer
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individual particles) begin to have a significant effect on the behavior of a 

system, and must be taken into account in its analysis. 

The nanoscopic scale is sometimes marked as the point where the 

properties of a material change, above this point, the properties of a 

material are caused by bulk or volume effects. Below this point the surface 

area effects (also referred to as quantum effects) become more apparent, 

these effects are due to the geometry of the material, which can have a 

drastic effect on quantized states, and thus the properties of a material. 

1.2 Low dimensional system: 

Low dimensional systems refer to those systems in which at least 

one of the three dimensions is intermediate between those characteristic of 

atoms/molecules and those of the bulk material, generally in the range from 

1 nm to 100 nm, so the motion of charge carriers such as electrons is 

restricted from exploring the full three dimensions. Those systems can have 

very high surface area to volume ratio. Consequently, the surface states 

become important and even dominant. In addition, the dimensional 

constraint on the system gives rise to quantum size effects, which can 

significantly change the energy spectrum of electrons and their behavior. 

As a result, some properties of such systems are very different from those 

of their bulk counterparts. Those systems have shown extraordinary 

electronic, optical, thermal, mechanical and chemical properties, which 

may result in their use in wide range of nanotechnology. 

https://en.wikipedia.org/wiki/Quantum_effects
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Low dimensional systems such as quantum dots, quantum wires and 

quantum wells are semiconductors whose size confine the charge carriers 

in a limited size (few nanometers) in three, two and one dimension 

respectively. The confinement phenomena change significantly the density 

of state of the system and the energy spectra. For quantum dot (zero 

dimensional system) the density of state shows a discrete behavior unlike to 

the other confinements which have a continuous density of state,  so QDs 

have fully quantized energy levels due to its three dimensional 

confinement. The density of state for these confinements are shown in 

Figure (1.1). 

The nanofabrication techniques allow us to control precisely both the 

size and the shape of the low dimensional system.  
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Figure (1.1): Schematic image and the density of state as function of energy for 

various confinement systems: bulk (3D), quantum well (2D), quantum wire (1D), 

and quantum dot (0D). 

:1.3 Quantum dots 

Quantum dots (QDs) are nanostructures that confine the carriers 

(electrons and holes) in three spatial dimensions, thus QD has zero degree 

of freedom. Due to this confinement of the electrons the energy spectra are 

fully quantized. There are two types of QDs as explained in figure (1.2). 
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In early 1980s, the first QD were successfully made in laboratory, this 

forced to investigate the properties of the quantum dot system and to study 

the effect of the size, material, and shape. 

Quantum dot is often called the artificial atoms due to it similarity 

with real atom. Electrons in both real and artificial atoms are attracted to a 

central potential, in natural atom this is a positively charged nucleus, while 

in artificial atom these electrons trapped in a bowl like parabolic potential. 

Moreover,the number of electrons in atoms can be tuned by ionization, 

while in QDs the number of electrons is tuned by changing the confinement 

potential. 

Current nanofabrication methods allow us to control precisely both 

the size and the shape of the QD. The electronic characteristics of a 

quantum dot are closely related to its size and shape. The size of the QDs is 

about 100 nm in diameter.  

The QDs can be fabricated by two different ways, the first one is 

made by using lithography techniques of microchip manufacturing; and the 

second approach can be done by applying chemical processes to get a QD 

from bulk material [1,2]. 

Due to the structural, optical and transport properties of the QD it 

has a wide range of application in different  aspects such as : laser devices, 

memories, single electron transistor (SET) [3], solar cell with high 
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efficiency,  spin-based quantum computer shown in figure (1.4) [4, 5] , 

amplifiers and sensors. 

 

Figure (1.2): Type-I QD and type-II QD, in a Type-I QD both the holes and the 

electrons are confined in the dot, however, for type-II systems only the electrons 

(holes) are localized in the dot and the holes (electrons) remain outside the dot in 

the barrier material. 

In recent years, there has been great interest in the double quantum 

dots (DQD) system. The double quantum dots system consists of  two 

single quantum dots separated by a potential barrier of height V  which can 

be tuned  so the nature of the interaction between the two electrons which 

are confined in each single quantum dot (SQD) can be changed by this 

tuning  potential. Turning off the potential barrier (    ), in this case the 

DQD will be reduced to the SQD. The DQD system is shown in figure 

(1.4). 
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Figure (1.3): A double quantum dot. Each electron spin SL or SR define one 

quantum two-level system, or qubit. A narrow gate between the two dots can 

modulate the coupling, allowing swap operations. 

 

Figure (1.4): a) Atomic force micrograph and b) schematic aerial view of two 

quantum dots which are defined in the two-dimensional electron system 2DES of a 

GaAs/AlGaAs heterostructure. 

  

https://en.wikipedia.org/wiki/Quantum_dot
https://en.wikipedia.org/wiki/Qubit
https://en.wikipedia.org/wiki/Swap_(computer_science)
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1.4 Literature survey:  

The electronic structure of the quantum dots depend strongly on the 

interplay between electron-electron interaction (coulomb energy), 

confining potential, and the applied magnetic field. The existence of both 

coulomb and parabolic potentials make the analytical solution of the 

quantum dot's Hamiltonian is not attainable. Different theoretical 

techniques had been used to solve the two electrons'  quantum dot 

Hamiltonian, to obtain the eigenenergies and eigenstates of the system [6-

18].  

Wagner, Merkt and Chaplik [6] had studied this interesting QD 

system and predicted the oscillations between spin-singlet (S) and spin-

triplet (T) ground states.  

Taut [7] had managed to obtain the exact analytical results for the 

energy spectrum of two interacting electrons through a coulomb potential, 

confined in a QD, just for particular values of the magnetic field strength. 

In references [8, 9] the authors had solved the QD-Hamiltonian by 

variational method and obtained the ground state energies for various 

values of magnetic field    ), and confined frequency    ). In addition, 

they had performed exact numerical diagonalization for the Helium QD-

Hamiltonian and obtained the energy spectra for zero and finite values of 

magnetic field strength. Kandemir [10, 11] had found the closed form 

solution for this QD Hamiltonian and the corresponding eigenstates for 

particular values of the magnetic field strength and confinement 
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frequencies. Elsaid [12, 13, 14, 15, and 16] had used the dimensional 

expansion technique, in different works, to study and solve the QD-

Hamiltonian and obtain the energies of the two interacting electrons for any 

arbitrary ratio of coulomb to confinement energies and gave an explanation 

to the level crossings. 

Maksym and Chakraborty [17] had used the diagonalization method 

to obtain the eigenenergies of interacting electrons in a magnetic field and 

show the transitions in the angular momentum of the ground states. They 

had also calculated the heat capacity curve for both interacting and non-

interacting confined electrons in the QD presented in a magnetic field. The 

interacting model shows very different behavior from non-interacting 

electrons, and the oscillations in these magnetic and thermodynamic 

quantities like magnetization   ) and heat capacity    ) are attributed to 

the spin singlet-triplet transitions in the ground state spectra of the quantum 

dot. De Groote, Hornos and Chaplik [18] had also calculated the 

magnetization  ), susceptibility   ) and heat capacity   ) of helium like 

confined QDs and obtained the additional structure in magnetization. In a 

detailed study, Nguyen and Peeters [19] had considered the QD helium in 

the presence of a single magnetic ion and applied magnetic field taking into 

account the electron-electron correlation in many quantum dots. They had 

shown the dependence of these thermal and magnetic quantities:  

           on the strength of the magnetic field, confinement frequency, 

magnetic ion position and temperature. They had observed that the cusps in 

the energy levels show up as peaks in the heat capacity and magnetization. 



11 
 

 

In reference [20], the authors had used the static fluctuation approximation 

(SFA) to study the thermodynamic properties of two dimensional 

GaAs/AlGaAs parabolic QD in a magnetic field. 

Boyacioglu and Chatterjee [21] had studied the magnetic properties 

of a single quantum dot confined with a Gaussian potential model. They 

observed that the magnetization curve shows peaks structure at low 

temperature. Helle, Harju and Nieminen [22] had computed the 

magnetization of a rectangular QD in a high magnetic field and the results 

show the oscillation and smooth behavior in the magnetization curve for 

both, interacting and non-interacting confined electrons, respectively. 

In an experimental work [23], the magnetization of electrons in 

GaAs/AlGaAs semiconductor QD as function of applied magnetic field at 

low temperature 0.3 K had been measured. They had observed oscillations 

in the magnetization. To reproduce the experimental results of the 

magnetization, they found that the electon-electron interaction should be 

taken into account in the theoretical model of the QD magnetization.  

Furthermore, the density functional theory (DFT) had been used to 

investigate the magnetization of a rectangular QD in the applied external 

magnetic field [24]. 

Climente, Planelles and Movilla had studied the effect of coulomb 

interaction on the magnetization of quantum dot with one and two 

interacting electrons [25]. 
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Very recently, Avetisyan, Chakraborty and Pietilainen [26] had 

studied the magnetization of anisotropic QD in the presence of the Rashba 

spin-orbit interaction for three interacting electrons in the dot. 

1.5   Heterostructure and confinement potential: 

As we mentioned, the nanofabrication methods enable us to fabricate 

electronic structures where the electrons are confined in a small regions of 

the order of nanometers QDs. The QD is a small island on a semiconductor 

heterostructure, where the shape QD and the number of the electrons can be 

controlled by an external voltage. An atomic force microscope image of a 

double quantum dot device is shown in figure (1.5). 

 

Figure (1.5): AFM(atomic force microscope) image of a double quantum dot 

device, defined by metal gate electrodes on top of a GaAs/AlGaAs heterostructure. 

Constrictions on both sides of the quantum dots form quantum point contacts, 

which can be operated as charge detectors. 

  



16 
 

 

 

Figure (1.6):  Scanning electron microscope  SEM micrograph of a sample: 

Surface of an AlGaAs/GaAs heterostructure (dark) with gold gates (light gray), 

that allow to locally deplete the 2DES and thus define two tunnel double quantum 

dots (red) and two quantum point contacts (QPC) on the sides. 

The DQD are fabricated from GaAs/AlGaAs semiconductor 

heterostructure. The heterostructure is growing by the molecular beam 

epitaxy (MBE) method. 

The AlGaAs layer is doped with Si donors to have free electrons in 

the heterostructure (n type AlGaAs). The free electrons translate from 

AlGaAs layer which has high band gap to GaAs layer with lower band gap. 

After that the free electrons are trapped in the quantum well of GaAs layer. 

By this a 2D structure is created, in this structure  the motion of the 

electrons is quantized along growth axis (z direction) while the motion of 

the electron in xy plane (n substrate) is free as shown in figure (1.7). 
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Figure (1.7): Schematic representation for the mechanism of confining electrons in 

semiconductor QD heterostructure showing  a  2DEG at the interface between 

GaAs and AlGaAs heterostructure. The electrons in the 2DEG is due to the 

ionization of silicon donors located in the n-AlGaAs layer.  

Finally a negative voltage is applied on the surface of the 

heterostructure to reduce further the confinement region and create one or 

more small islands from large two dimensional electron gas (2DEG). 

The lateral confinement potential      ) is quite similar to the 

coulomb potential which confines the electrons in the real atoms, therefore 

the QD is called an  artificial atom. The  confinement potential is usually 

taken to be a simple parabolic model, the theoretical-experimental 

comparisons show that the harmonic oscillator model is the best model to 

describe this confinement. 
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1.6  Objectives: 

  This thesis has two objectives which can be summarized as follows: 

1) Variational and exact diagonalization methods will be used to solve 

the DQD Hamiltonian and obtain the desired energy spectra of the 

system.The complete energy spectra of DQD will be calculated as 

function of confinement frequency   ), strength of magnetic field 

(  ), barrier height ( V ) and barrier width (   ). 

2) The computed energy spectra of  the double quantum dots system 

will be used to calculate the magnetization (M).The behavior of the 

magnetization will be displayed as a function of the temperature (T),  

magnetic strength (  ), confining potential (  ), the width of the 

barrier (   ) and  the height of the barrier ( V ). 

1.7 Outlines of thesis: 

In this work, the magnetization of DQD system has been calculated 

as a thermodynamic quantity of the system in which both the magnetic 

field and the electron-electron interaction are fully taken into account. 

Since, the eigenvalues of the electrons in the DQD are the starting point to 

calculate the physical properties of the DQD system, the variational and the 

exact diagnolization methods  have  been used to solve the DQD 

Hamiltonian and obtain the eigenenergies. Second, the eigenenergies 

spectra had been calculated to display theoretically the behavior of the 

magnetization  of the DQD as a function of magnetic field strength, 
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confining frequency, the width of the barrier,  the height of the barrier and 

temperature. 

The rest of this thesis is organized as follows: the Hamiltonian 

theory, the principle of the variation of parameter technique and how to 

calculate the magnetization of the DQD system from the mean energy 

expression are presented in chapter II. In chapter III, the results of energy 

and magnetization of our work had been displayed and discussed, while the 

final chapter devoted for conclusions and future work. 
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Chapter Two 

Theory 

This chapter consists of four main parts : The DQD Hamiltonian, the 

variation theory, the exact diagonalization technique and the magnetization. 

2.1 The double quantum dots Hamiltonian: 

Consider two interacting electrons inside double quantum dots 

confined by a parabolic potential of strength   under the effect of an 

applied uniform magnetic field of strength     taken to be along z-

direction, in addition to a Gaussian barrier of width   and height V . This 

model can be characterized by the Hamiltonian (    ), 

     ∑{
 

   
* (  )  

 

 
 (  )+

 

}

 

   

   
 

 
  


 
  

    
  

 |     |
   

+ V (    
   ⁄      

   ⁄ )                                                                          ) 

Where    and  (  ) are the position and momentum of the electron inside 

the QD. In addition,     and    represent the position of each quantum dot 

along the   direction. 

     can be considered as the sum of the single quantum dot 

Hamiltonian (    )  and the potential barrier term bV  V  (    
   ⁄  

    
   ⁄ ) as follows, 

                bV                                                             )                                                                                                       
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Initially, we have emphasized that the SQD-Hamiltonian had been 

solved variationally in a previous study. The bV -term will be turned off to 

compute the eigenenergies of the single quantum dot case. The 

Hamiltonian  (    )   can be separated to a Center of mass and relative 

motion Hamiltonians.  

The Hamiltonian for two interacting electrons confined in a single 

quantum dot by a parabolic potential in a uniform magnetic field of 

strength   , applied along z direction is given in appendix   . 

The single quantum dot Hamiltonian (    ) can be decoupled into 

center of mass     ) and relative (  ) parts as shown in the appendix   . 

                                                           ) 

The energy of the        can be written as: 

                  ) 

The center of mass part of the SQD Hamiltonian has the well known 

harmonic oscillator form for the wave function and energy, this form  was 

found  Independently by Fock [27] and Darwin [28] as presented in 

appendix    

The relative part of the SQD Hamiltonian does not have an analytical 

solution for all ranges of    and    because of both coulomb and parabolic 

terms in the     , so the relative Hamiltonian part had been solved 
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variationally  in terms of a variational parameter to obtain the energy 

spectra. 

The effective frequency is the sum of a nanostructure confining 

frequency and the magnetic field confining frequency, using a new 

parameter   ) defined as follow  

 
  

 

 
√

  
 

 
   

      ) 

Finally, To find the full energy spectra of the DQD system the 

energy matrix elements of the barrier term will be computed  using  the  

variational method. The combined terms of the single quantum dot 

Hamiltonian energy and barrier energy matrix elements will be 

diagonalized to give the full matrix elements of the DQD Hamiltonian. 

2.2 SQD variation of parameter method: 

The variational method will be used as an approximation method to 

calculate the desired energy eigenvalues of the relative part Hamiltonian of 

the single quantum dot Hamiltonian. 

The  adopted one parameter variational wave function is : 

    )   √ 
     )    

√   √ 
     ) 

Where,   √        ) 

We have normalized our wave function  
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     )        ⁄  | |     ) 
 (

  

 
)
     ) 

The above normalization constant can be expressed in terms of new 

constants  as given in the appendix    

The energies of the relative part of the single quantum dot 

Hamiltonian can be obtained by calculating the energy matrix elements 

   ⟨ |  | ⟩ as expressed in appendix   . 

The energy eigenvalues of    can be computed by minimizing the 

energy formula with respect to the variational parameter  , which is given 

in appendix   . 

2.3 energy calculations spectra: 

Now, to compute the full energy spectra of the DQD system we have 

set V    in the Hamiltonian model equation (2.1), so the potential of the 

barrier is  

        bV  V  (    
   ⁄      

   ⁄ )                                                      ) 

Coupling the center of mass and the relative motion, so the 

variational wave function has been chosen as products  

         )    ⃗  )                                                            ) 

      )       
  )

    

√  
                                                                ) 

The center of mass wave function is the Fock Darwin ground state 
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                                         ( ⃗  )    √
 

 
       

                                     ) 

 The matrix elements      ⟨  | |  ⟩ have been found, and to 

this goal the effective potential is          )  ⟨  |  |  ⟩. 

                                         )  
    

√    
           )      )⁄                  ) 

Where      √ . 

 Evaluating the matrix elements of the effective potential 

⟨  |      |  ⟩ where, 

           )       
  )

    

√  
                                                      )                                   

            )       
   ⁄  | |       ) 

 (
  

 
)     

√  
                    ) 

Then, 

⟨  |      |  ⟩  ∫ ∫       ) 
 

 

  

 

               )                  ) 

⟨  |      |  ⟩   

∫ ∫        
  ⁄  | |       )  

 (
  

 
)      

√  
   

 

 

  

 

 

    

√    
   (       ) (    )⁄         

  ⁄  | |  

     )   
 (
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 Using the definition of  Gamma function  
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Where 

        )            ⁄ ) ∫ ,[          ⁄ )      ⁄ ]
 
-

  

 
            ) 

        

     , 

                  .  
   

    
 /   

 The integral        ) has been evaluated numerically. 

2.4 Exact diagonalization technique: 

The combined terms of the single quantum dot Hamiltonian energy 

     [(     ))       and barrier energy matrix elements 

⟨  | bV |  ⟩ will be diagonalized to give the full matrix elements of the 

DQD Hamiltonian as follows : 

           )            ⟨  | bV |  ⟩                                            ) 

Where, 

          |   |   )         
   

 
,                                      ) 

      is the radial quantum number, 

     is the angular quantum number, 

      √ 2

   
  

 
)         

  

  
. 



65 
 

 

Having obtained the eigenenergies for the  DQD system, now we are 

able to calculate the exchange energy   ) define as: 

                           ) 

For any range magnetic field, confining potential and barrier 

potential. 

2.5 Magnetization: 

The Magnetization is a description of how magnetic materials react 

to a magnetic field. 

 We have computed energies of the DQD system as essential data to 

calculate the magnetization (M) of the DQD. 

The magnetization of the DQD system is evaluated as the magnetic 

field derivative of the mean energy of the DQD. 

                                (      V   )  
  〈 (      V   )〉

  
                    ) 

where the statistical average energy is calculated as: 

〈 (      V   )〉  
∑          ⁄ 

   

∑        ⁄ 
   

        ) 

The aim of this work is to investigate the dependence of the 

magnetization of the double quantum dots on very rich and tunable 

parameters: the temperature (T), magnetic field strength (  ), confining 

potential    ), barrier height ( V ) and barrier width (   ). 
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Chapter Three 

Result and Discussion 

In this chapter we will present our computed results for two 

interacting electrons in double quantum dots made from GaAs material 

(                                                         ) 

confined by a parabolic potential of strength   under the effect of an 

applied uniform magnetic field of strength     taken to be along z-

direction, in addition to a Gaussian barrier of width   and height V .  

3.1 DQD energy spectra: 

As first essential step we have computed the eigenenergy spectra of 

DQD as function of magnetic field for specific values of confining 

frequency,  barrier height and barrier width. Furthermore the exchange 

energy J is plotted as function of magnetic field strength, confining 

frequency, barrier height and barrier width. We compared the calculated 

energy spectra in Figure (3.1) and the exchange energy in Figure (3.4) with 

previous reported work [30]. The comparison obviously shows excellent 

agreement between both works. 

We had plotted the computed energy results of this work against the 

strength of the magnetic field for    
 

 
   ,            V =      for 

small  range of             Figure (3.1) and large  range of     

         Figure (3.2), both figures shows the energy states with   

      and    .The numerical values of energy shown in Figure (3.1) 
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are also listed in Table 3.1. Figure (3.1) shows obviously the transition in 

the angular momentum of the ground state of the DQD system as the 

magnetic field strength increases. The origin of these transitions is due to 

the effect of coulomb interaction energy in the DQD Hamiltonian. The 

transitions in the angular momentum of the DQD system correspond to the 

(singlet-triplet) transitions are expected to manifest themselves as cusps in 

the magnetization curve of the DQD. The obtained results of the energy 

spectra and the exchange energy show very good agreement compared with 

Dyblaski's result [30]. Where the authors had used the variational method 

to solve the DQD Hamiltonian. In addition we had plotted the statistical 

energy against the strength of magnetic field in Figure (3.10) and Figure 

(3.11) to show the cusp in the energy- curve that causes the cusps in the 

magnetization-curve of the DQD. 

Moreover, we have calculated the exchange energy J of SQD and 

DQD.In Figure (3.4) we have displayed the exchange energy J of DQD as a 

function of field strength for    
 

 
             V           

In Figure (3.5) we have sketched our computed results for the 

exchange energy J against the magnetic field strength for SQD. In addition 

we have sketched our computed results for the exchange energy J against 

the magnetic field strength for SQD and DQD jointly in Figure (3.6) for 

comparison purpose. We noticed that the J-curve for SQD shows a large 

and sharp minimum value while the corresponding J-curve for DQD shows 

a small and smooth minimum behavior. 
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In Figure (3.7) we have investigated the effect of barrier height on 

the exchange energy, it is obvious from the figure that as V  increases the 

minimum of the exchange energy curve shifts to lower magnetic field 

strength. 

The effect of confining frequency    is also very important on the 

exchange energy quantity. As shown in Figure (3.8), as    increases the 

minimum of the exchange energy curve shifts to higher magnetic field 

strength. 

We have also examined the phase diagrams of the exchange energy 

curve for DQD system. In Figure 3.9 (a) we have shown the phase 

diagrams of    against     for DQD for V = 1 when J = 0, the plot shows a 

linear relationship between    and   . In Figure 3.9 (b) we have shown the 

phase diagrams of    against V   for DQD for    
 

 
  when J = 0, the plot 

shows a linear relationship between    and V . 

 

Figure (3.1): a) The computed energy spectra of two interacting electrons in double 

quantum dots against the strength of the magnetic field.   
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Figure (3.1): b) The computed energy spectra of two interacting electrons in 

double quantum dots against the strength of the magnetic field 

                               , and angular momentum        . 

 

 

Figure (3.2): The computed energy spectra of two interacting electrons in double 

quantum dots against the strength of the magnetic field.  
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Table (3.1): Our computed energy spectra of the DQD states against 

the magnetic field for two interacting electrons for    
 

 
       

       V      . 

  (  ) Energies in    for DQD 
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 Continued Table (3.1) 

 

   (  ) Energies in    for DQD 
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a) 

 

 

b) 

Figure (3.3): The energy of DQD for fixed values of    
 

 
             V  

     against the number of basis and various confining cyclotron frequencies, a) at 

          and b) at       . 
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Figure (3.4): a) Our computed exchange energy of the two interacting electrons in 

DQD against the magnetic field strength for    
 

 
              V       . 

 

 

Figure (3.4): b) The computed exchange energy of the two interacting electrons in 

DQD against the magnetic field strength in Ref [30]. 
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Figure (3.5): The exchange energy of the two interacting electrons in SQD against 

the magnetic field strength for    
 

 
    results by turning off the bV - term in the 

DQD Hamiltonian. 

 

Figure (3.6): Comparison between the exchange energy of the two interacting 

electrons in SQD for    
 

 
    results by turning off the bV - term in the DQD 

Hamiltonian (solid curve), and the exchange energy of the two interacting 

electrons in DQD for    
 

 
              V        against the magnetic field 

strength (dashed curve). 
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Figure (3.7): The exchange energy of the two interacting electrons in  DQD against 

the magnetic field strength for    
 

 
              and different values of  V , 

the (dotted curve)  at V =       , the (solid curve) at V =      and (the dashed 

curve) at V =       . 

 

Figure (3.8): The exchange energy of the two interacting electrons in  DQD against 

the magnetic field strength for V                  and different values of    , 

the (dashed curve)  at   =       , the (solid curve) at   = 
 

 
    and the (dotted 

curve) at   = 0.6    . 
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a) 

 

b) 

Figure (3.9): Phase diagrams for the exchange energy, a) The relation between    

   ) and       ) at V =         

b) The relation between      
 )     V     )          
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Figure (3.10): The statistical energy of two interacting electrons in double 

quantum dots against the strength of the magnetic field for    
 

 
      

       V       . 

 

Figure (3.11): The statistical energy of two interacting electrons in double 

quantum dots against the strength of the magnetic field for    
 

 
      

       V       . The curve shows a cusp at              
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3.2 Magnetization: 

The second step in our work is the calculation of the magnetization 

of DQD as a function of various QD parameters      V           

In Figure (3.12), we have computed magnetization curve for DQD 

against the magnetic field strength. The curve clearly shows the cusps 

which  are ibuted to the effect of  electron-electron interaction in the DQD 

Hamiltonian. Moreover we have presented the same magnetization plot for 

SQD in Figure (3.13). We have compared both magnetization behaviors for 

SQD and DQD systems in Figure (3.14).This figure shows that the 

magnetization curve of SQD has negative and positive values, while the 

magnetization curve of DQD has only negative values. 

We have also plotted in Figure (3.15) the magnetization of DQD 

system as function of the magnetic field strength at three different 

temperatures Figure 3.15 (a, b and c) and show the curves in the same plot 

Figure 3.15 (d) to compare between them. We noticed from the figure that 

there are differences at the cusps of the magnetization curves. Moreover we 

have investigated the differences by focusing on the cusps of the three 

curves in Figure (3.16) and Figure (3.17). We have noticed from the figures 

that the heights of the peaks due to transition jumps are reduced, broadened 

and shifted to higher magnetic value as the temperature increased. 

In addition we have investigated the effect of the barrier height on 

the magnetization curve. For this purpose we have plotted the 
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magnetization curve at different barrier heights independently in Figure 

3.18 (a, b and c)   and compare between them at the same graph in Figure 

3.18 (d). The Figure 3.18 (d) clearly shows the gradual shift of the 

magnetization jumps to higher magnetic field as the barrier height 

decreases. 

 

Figure (3.12): The magnetization (in unit of    
   

               ⁄          )      

      , of the two interacting electrons in  DQD against the magnetic field strength for 

   
 

 
              V         
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Figure (3.13): The magnetization (in unit of    
   

               ⁄          )  

            , of the two interacting electrons in SQD against the magnetic field 

strength for    
 

 
    results by turning off the bV - term in the DQD 

Hamiltonian. 

 

 

Figure (3.14): Comparison between the magnetization (in unit of   )      

       of the two interacting electrons in SQD (dashed curve) for    
 

 
    

results by turning off the bV - term in the DQD Hamiltonian, and the 

magnetization (in unit of   )              of the two interacting electrons in 

DQD (solid curve) for    
 

 
              V        against the magnetic 

field strength. 
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Figure (3.15): a) The magnetization (in unit of    
   

               ⁄          ) 

of the two interacting electrons in DQD against the magnetic field strength for 

   
 

 
              V        at T = 0.01 K. 

 

 

Figure (3.15): b) Same as Figure 3.15 (a) but at at T = 0.1 K. 
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Figure (3.15): c) Same as Figure 3.15 (a) but at at T = 1 K. 

 

 

Figure (3.15): d) The magnetization (in unit of    
   

               ⁄          ) 

of the two interacting electrons in  DQD against the magnetic field strength for 

   
 

 
              V        at different temperatures. a) The (solid curve) 

at 0.01 K, b)the (dashed curve) at 0.1 K and c) the (dotted curve) at 1 K. 
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Figure (3.16): a) The magnetization (in unit of    
   

               ⁄          ) 

of the two interacting electrons in DQD against the magnetic field strength 

showing the first cusp, for    
 

 
              V         at T = 0.01 K.   

 

 

Figure (3.16): b) Same as Figure 3.16 (a) but at T =  0.1 K. 
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 Figure (3.16): c) Same as Figure 3.16 (a) but at T = 1 K.  

 

 

Figure (3.16): d) The magnetization (in unit of    
   

               ⁄          ) 

of the two interacting electrons in  DQD against the magnetic field strength 

showing the first cusp for    
 

 
              V       at different 

temperatures. a) The (solid curve) at 0.01 K, b)the (dashed curve) at 0.1 K and c) 

the (dotted curve) at 1K. 
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Figure (3.17): a) The magnetization (in unit of    
   

               ⁄          ) 

of the two interacting electrons in DQD against the magnetic field strength 

showing the second cusp, for    
 

 
              V         at T = 0.01 K.  

 

 

Figure (3.17): b) Same as Figure 3.17 (a) but at T = 0.1K. 
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 Figure (3.17): c) Same as Figure 3.17 (a) but at T = 1K. 

 

 

Figure (3.17): d) The magnetization (in unit of    
   

               ⁄          ) 

of the two interacting electrons in  DQD against the magnetic field strength 

showing the second cusp for    
 

 
              V        at different 

temperatures. a) The (solid curve) at 0.01 K, b)the (dashed curve) at 0.1 K and c) 

the (dotted curve) at 1 K. 
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Figure (3.18):a) The magnetization (in unit of   
   

              ⁄          )     

      , of the two interacting electrons in  DQD against the magnetic field strength 

for    
 

 
                 V            

 

 

Figure (3.18): b) Same as Figure 3.18 (a) but at V  = 1     
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Figure (3.18): c) Same as Figure 3.18 (a) but at V  = 1.5      

 

 
Figure (3.18): d) The magnetization (in unit of    

   

               ⁄         )     

     , of the two interacting electrons in  DQD against the magnetic field strength for 

   
 

 
              at different values of the barrier heigh V . a) The (dotted-dashed) 

carve at V          b) the (solid) curve at V      and c) at V        . 
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Chapter Four 

Conclusion and future work 

In conclusion, we had solved the Hamiltonian for two interacting 

electrons confined in double quantum dots under the influence of a uniform 

magnetic field in addition to a Gaussian barrier. The variational and the 

exact diagonalization techniques had been used to solve the desired 

Hamiltonian. Moreover, we had computed the energy spectra of the DQD 

system and manifested the angular momentum transitions in the ground 

state of double quantum dots energies which relate to (singlet-triplet) 

transitions. These transitions had been expressed by computing the 

exchange energy (J) of the DQD system. These level transitions are caused 

by the coulomb interaction term in the DQD Hamiltonian. We had also 

deduced from our results that these transitions are the cause of the cusps in 

the magnetization curve of the double quantum dots system. The 

comparison of our results of the energy spectra and the exchange energy 

with other works shows a very good agreement. Furthermore, we had 

illustrated the dependence of the magnetization of the DQD on the 

parameters  V ,   ,   ,   and T.  

In this work the magnetization had been studied as a thermodynamic 

property of the DQD system, however another thermodynamic and 

magnetic quantities can be taken into consideration in the future. We 

expect that the magnetic properties of the DQD system will be influenced 

appreciably by the angular momentum transitions of the ground state of the 

DQD energy spectra. Furthermore, the electronic and magnetic properties 

of few electrons DQD are serious issues to be considered in the future. 
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Appendix    : Decoupling of the single quantum dot Hamiltonian 

The Hamiltonian of two interacting electron confined in single quantum dot 

under the effect of uniform magnetic field along z-direction is 

      ∑ {
 

   
* (  )  

 

 
 (  )+

 
 

 

 
    

   
 } 

    
  

 |     |
                                                                              

(  .1)        

Where    is the confining frequency and   is the dielectric constant, 

          describe the positions of the first and second electron in the xy 

plane and the vector potential was taken to be 

    )  
 

 
         )   (  .2) 

           (  .3) 

 

    )  
 

 
      (  .4) 

Decoupling of  SQD Hamiltonian equation (2.3). 

   
     

  
 (  .5) 

          (  .6) 

          (  .7) 

    
      

 
 (  .8) 

So the Hamiltonian can be expressed as  
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Confining potential terms can be expressed as 
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By using the linear property of the vector potential, the kinetic energy 

terms can be separated into center of mass and relative part 
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The full single quantum dot Hamiltonian(    )   in     coordinates has the 

following form 
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  (  .12) 

The complete single quantum dot Hamiltonian       is separated 

into center of mass Hamiltonian     and relative Hamiltonian Part    as 

shown below 

             (  .13) 
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Where     is the total mass      is the total charge     μ is reduce 

mass  
 

 
  and    is the reduced charge  

 

 
  

The center of mass part of the Hamiltonian has the well known 

harmonic oscillator form for the wave function and energy, this form  was 

found  Independently by Fock [27] and Darwin [28]. 
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Where          are the radial and azimuthal quantum numbers, 

respectively. And    
  is the associate laguerre polynomial. 

The relative Hamiltonian part  does not have analytic solution so it 

had been solved variationally. 

By the help of a symmetric gauge, the relative Hamiltonian part can 

be written as : 
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(  .18) 
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Where the magnetic field is  uniform with strength     
  

   
   and 

taken to be along z direction. 

  ⃗   ⃗      (  .19) 

 
  

 

 
 

 

  
      

 

 
     

 

 
    

    
  

 | |
  

  
  

 

 
 

 

 
   .

  
 

 
   

 /  
 

 
     

  

 | |
 (  .20) 

 

 

  



57 
 

 

Appendix   : Variation of parameter method of the SQD Hamiltonian 

The main idea for variational method that choosing the variational wave 

function with parameters     

                  ) (  .1) 

and obtain the energy by solving Schrödinger equation  

         (  .2) 

To get the energy in terms of the variational parameter, we have to 

minimize the energy formula  (            ) with respect to each 

variational parameter    to get a stable system 

 
  ((            ))

   
   (  .3) 

 
   ((            ))

   
    (  .4) 

For           

The  adopted one parameter variational wave function is : 

    )   √ 
     )    

√   √ 
 

(  .5) 

Where, 

     )     ⁄  | |     ) 
 (

  

 
)
 (  .6) 



58 
 

 

   √    (  .7) 

In our calculations, we have used the  following Atomic Rydberg units 

                  (  .8) 

 

The normalization constant  of the variational wave function (equation 2.8) 

is defined as follows  

   
   

√ 

         
 

(    ) 

Where,  

   
 

      | | 
 (  .10) 

    [
 

 
 | |]    .11) 

   
 

     | | 
 (  .12) 

The energies of the relative part of      is given in terms of the 

variational parameter as follows : 

     )    
 

 
      

        

         
 (  .13) 

Where a, b and c are constants in terms of quantum numbers m and  , 

given explicitly as  follows : 
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(  .16) 

d, e, f  which is  previously defined in Equation (  .10 -   .12) 

respectively. 

The value of the parameter    which satisfies the minimum energy 

requirement is  

        
        √        )         )      )

        )
 (  .17) 

So, the energy expression of the SQD Hamiltonian in terms of the 

variational parameter value which satisfies the minimization condition is : 

                       )    
 

 
      

             
 

              
                      (  .18)                            
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Appendix     The exact diagonalization technique 

Consider the eigenvalue formula: 

 ̂ |  ⟩    |  ⟩                                                                                          )                                                                                  

   |  ⟩  ∑ |   ⟩
 

                                                                                     )   

 ̂  ∑ |   ⟩
 

    ∑ |   ⟩
 

                                                                   )  

Multiply Eqn      )   by ⟨  | from  both sides  

∑ ⟨  | |   ⟩     ∑ ⟨  |   ⟩                                                  (  .4) 

But       ∑ ⟨  | |   ⟩    ∑                                                              ) 

Then Eqn (  .4) becomes 

      ∑         ∑ ⟨  |   ⟩                                                                                                                         

∑ ⟨  |   ⟩                                                                                     ) 

∑                                                                                        )  

Then the  secular characteristic equation is 

 Det                                                                                   )        
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 جامعة النجاح الوطنية 
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 التمغنط لزوج من النقاط الكمية
 (GaAsفي مجال مغناطيسي ) 

 
 
 

 إعداد 
 اشتياق "محمد ياسر" حجاز

 
 
 

 إشراف
 د. محمد السعيد أ.

 د. موسى الحسن
 
 
 

الفيزياء قدمت هذه الأطروحة استكمالا لمتطمبات الحصول عمى درجة الماجستير في 
 نابمس. –في كمية الدراسات العميا في جامعة النجاح الوطنية 
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 التمغنط لزوج من النقاط الكمية
 (GaAsفي مجال مغناطيسي ) 

 إعداد 
 اشتياق "محمد ياسر" حجاز

 إشراف
 أ.د. محمد السعيد
 د. موسى الحسن

 المخمص 

في زوج من النقاط الكمية والمحصورة  لزوج من الإلكترونات المتشادة التمغنط تم حساب 
وذلك عن طريق   بالإضافة إلى حاجز غاوسي في الاتجاه الزيني  مجال مغناطيسي تحت تأثير 

بدراسة  اعتماد  أيضا ولقد قمنا .القطر الدقيقةوطريقة  حل دالة ىاممتون باستخدام طريقة المتغيرات
بالإضافة إلى ارتفاع  تردد الحصرو عمى كل من درجة الحرارة والمجال المغناطيسي  التمغنط
 الثلاثي لمزخم الزاوي لممستوى الأرضي-. كما وضحت الدراسة الانتقال الأحاديعرضوو  الحاجز

الناتجة عنو. وأظيرت المقارنات توافق كبير  والقفزات في منحنى التمغنط لزوج من النقاط الكمية
 .جنا مع نتائج أعمال أخرى منشورةبين نتائ

 

 

 

 




