An-Najah National University
Faculty of Graduate Studies

Predicting I-V curve for photovoltaic
modules using Random Forests
Technique

By
Areej Ahmad Alia

Supervisor

Dr. Tamer Khatib

This Thesis is Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Clean Energy Conservation Engineering,
Faculty of Graduate Studies, An Najah National University, Nablus-
Palestine.

2020



1

Predicting I-V curve for photovoltaic modules using

Random Forests Technique

By
Areej Ahmad Alia

This Thesis was defended successfully on 28 /7/2020 and approved by:

Defense Committee Members

- Dr. Tamer Khatib /Supervisor

— Dr. Fouad Zaro /External Examiner

— Dr. Emad Al-Natsheh /Internal Examiner




11
Dedication

To those stars that have given me the path to progress and success ... my
beloved father ... my beloved mother...

To my dear son Wesam and my wonderful husband who supported me in
every step | take in my scientific career....

To my dear brothers and sisters ... who always support me...

To those hidden stars that appear to give us the path when we need it.... To
everyone who loved me and wanted me progress and success...

| dedicate this work to you...



v
Acknowledgment

First of all, I thank "God", who has helped me in my scientific career and to

carry out this practical research.

| would like to thank my supervisor, Dr. Tamer Al-Khatib, for the valuable
supervision and continuous support throughout the period of work on this

research.

Also, | would like to thank all my professors in the Department of Energy
Engineering and energy conservation at An-Najah University, and in
particular | thank Dr. Muhammad Al-Sayed for all the information he

provided to me throughout the period of my studies at the university.

Last but not least, | thank my boss, Mr. Bassam Al-Qasem and Mrs. Salwa

Al-Khatib for their support to me throughout my university studies.



Vv
JAY)

10 sind) Jaat i) Al ) daia ¢ olial 428 gall Ui

Predicting I-V curve for photovoltaic modules using
Random Forests Technique

Laia 4] 3 LAY Cni Lo oLl cpalall aga U s L) Al 1l o34 4iled Lo oy 8
L:S‘LSJS:_;A‘;‘—’SJJ\XAJJ@\J:‘JJJBU‘“EWJ%;’JLC—"“P@\}\ cdssuu)]\alhbbcdjj

oAl Ay ol dpaded A e

Declaration

The work provided in this thesis, unless otherwise referenced, is the
researcher’s own work, and has not been submitted elsewhere for any other

degree or qualification.

Student’s Name: Areej Ahmad Alia :4dual) ol
Signature: s sl

Date: 28 /7/2020 Sl



Vi
List of Abbreviations

GHG greenhouse gas

PV photovoltaic

RFs Random Forests

NOCT Nominal operating cell temperature
FF Fill factor

MPPT Maximum power point

LM Levenberg—Marquardt Method
NRM Newton—Raphson method

Al Artificial Intelligence

ANN Artificial Neural Network
MBE Mean bias error

RMSE Root Mean Squared Error
MAPE Mean Absolute Percentage Error
Pmax Rated Maximum Power

Voc Open Circuit voltage

Isc Short Circuit Current

Vmp Maximum Voltage

Imp Maximum Current

k Kelven

W/m? Watt per meter square

C° Degree Celsius




VIl

Table of Contents

D=0 Tor: 14T o USSR Il
ACKNOWIEAGMENT ..ot v
DECIArALION ...t s \Y/
List of ADDIeVIAtIONS .........coviiiiiiicee e Vi
Table Of CONENES.....cccieiiece e ViI
LiSt Of TADIES ... IX
LISE OF FIQUIES ...t X
ADSTIACT ... e XIl
(O F- T 1 (=] G - OSSPSR 1
100 U Tox [ ] o RSO 1
1.1 BaCKGrOUNG........ooiieiieciie sttt 1
1.2 problem statement...........coov i 6
1.3 0DJECHIVES ..ot 8
1.4 Methodology and Scope of WOrK .........ccccovveiieiiciicic e 8
Chapter 11 LIterature FEVIEW .........cccoiveiieiiieeiieestee e te e see s 10
28 R 111 (oo [ od 1 o] PSSP 10
2.2 SOMAr CelIS.....oeviiie e 10
2.3 Photovoltaic MOdUIE...........coveiiiiiciee e 11
2.3.1Types of photovoltaic module:..........ccooveiiiiiiiiiiee, 12

2.4 1-V CharaCteriStiC CUIMNVE.........cccveiiiieie e 13
2.4.1 Solar cell modeling.........cccoveiiiiiiii e, 13
2.4.2 Electrical Characteristics of Solar Cells...........cccccovviniiiiininnnn, 16
2.4.3 The efficiency of solar cell:...........ccooveviiiiiiiii e, 17
2.4.5 The Fill TaCtOr: ......oiveiiiiieii e 18

2.5 PV Module and Array Modeling ........cccocvervnieneniniienieseene e 19
2.6 Methods for 1-V Curve EXTraction .........ccccccevevenieiiveniesieeseseeneenns 20
2.6.1 ONliNg MEthOUS: .....coviiieiieie e 20

2.6.2 OFfHINE METNOAS: ..o 26



VI
Chapter 111 1-V Characteristic Curve Extraction Using Random Forests

TECANIQUE.....cieeee e e 33
3L INErOAUCTION. ...t e 33
3.2 I-V Characteristic Curve Extraction Using Random Forests
TECANIQUE ... e 34

3.2.1 Random Forest TECNNIQUE........cccevveiiieeriieiee e 34
3.2.2 Proposed Model For I-V Curve Extraction Using Random Forest
TECANIQUE ... 42

Chapter 1V Results and DiSCUSSION .........ccccveieeiieiieiie e e seesee e 49
4.1 INEFOAUCTION. ..ottt sreas 49
4.2 Results of proposed model of I-V curve extraction ........................ 50
4.3 Evaluation of the proposed model...........c.cccoveviiiiiiiiiiicicceee, 60
4.4 Chapter SUMMANY .....ccoeiiieiieeiiee et 65

Chapter V Conclusion and future WOrk ..........ccccoevveiii e s 66
5.1 CONCIUSION ..ot 66
5.2 Suggestions for Future WOork...........ccccveveiie e 67

RETEIENCES. ... ittt 68

N 0] 0T 1o | DG A SO SUR 74

APPENTIX B ..o 77

APPENIX C oot 80

APPENAIX Do s 88

OB e e ——————————————— -



IX
List of Tables

Table 2.1 The comparison between the characteristics of the different

methods of extraction the 1-V CUIVe .........cccoccv v cin e, 25
Table 3.1 The Specifications for PV module ..., 34
Table 4.1 the most important point of the experiments was obtained by (I-
V400-solar PV analyzer) ... 50
Table 4.2 the result of metric errors for the proposed modeil. .................... 61

Table 4.3 the result of Mean Bias Error (MBE) for RFs proposed model . 61
Table 4.4 the result of Root Mean Square Error (RMSE) for RFs proposed

Table 4.5 the result of Mean Absolute Percentage Error (MAPE) for RFs
Proposed MOl .........ccoevveiieie e 63
Table 4.6 the Comparison between Different Methods of Extracting the -V
curve of the Solar PV Cell ..o 64



X
List of Figures

Figure 1.1 The global renewable energy consumption (1965 -2017) .......... 3
Figure 1.2 The solar energy consumption by the region..........ccccceevvvrnnnenn 4
Figure 1.3The installed solar photovoltaic (PV) capacity ...........ccccccevevrnnenn 4
Figure 1.4 The outline of research methodology........c.cccccevviviveviieiiciiecen, 9
Figure 2.1 Equivalent model of a photovoltaic cell ... 14
Figure 2.2The I-V curve Characteristic of a photovoltaic cell.................... 18
Figure.2.3 Schematic diagram of a PV module............ccccovveviiieiinecinenne, 19
Figure 3.1 The Random FOrests StruCtUre..........ccoooevieieninic e 39
Figure 3.2 The Random Forests Flowchart For proposed model............... 47
Figure 3.3 The final step in stage three for RFs proposed model .............. 48
Figure 4.1The variable importancCe...........cccoovveieeiiieiie e 51
Figure 4.2 the cluster analysis for training data..............ccccceevvevieiiieerieenne. 52
Figure 4.3 the outliers are detected in the training data ............cccccvevennee. 52
Figure 4.4 The trees grown in the forest...........ccccovviveeiieeiic v 54
Figure 4.5 The |-V curves of the PV module at experiment four .............. 55
Figure 4.6 The I-V curves of the PV module at experiment five............... 55
Figure 4.7 The I-V curves of the PV module at experiment Seven ........... 56

Figure 4.8 The optimum I-V curve of the PV module at experiment seven
compared with actual curve and the curve was extracted in the
teStING PNASE.....oovieec e 57
Figure 4.9 The predicted I-V curve at T=318.32 k with different solar
70 [ F= U1 o] o SRS 58
Figure 4.10 The predicted I-V curve at RS=978 W/m? with different cell
EEMPETALUIE ..o 58
Figure 4.11 The I-V curve of the PV module at experiment four with

(o10] S (=1L A (0] TR - (o1 (0] SO UPPRR 59



Xl
Figure 4.12 The 1-V curve of the PV module at experiment five with

COITECEION TACKON ....viveiiieii e 59
Figure 4.13 The I-V curve of the PV module at experiment seven with
CONTECHION TACKON ... 60
Figure 4.14 the optimum i-v curve of the pv module at experiment seven
compared with actual curve and the curve was extracted in the

testing phase with correction factor............ccccovvvveiceciiennne, 60



Xl
Predicting I-V curve for photovoltaic modules using Random Forests
Technique
By
Areej Ahmad Alia
Supervisor
Dr. Tamer Khatib

Abstract

The study of the special curves of solar PV modules are of great importance
in developing cells and increasing their capacity, hence the idea of this thesis
that was intended to predict the current-voltage curve for solar PV module
by developing a new developed model that relies on random forest technique
In training and testing data using MATLAB program.

The random forest technique is a machine learning method, where this
technique relies on decision trees (classification trees, regression trees). The
regression trees were released in the new proposed model to predict the
output variable (PV module output current), depending on a set of inputs
represented by five parameters (ambient temperature, solar radiation, PV DC
voltage, short circuit current, and open circuit voltage). This data sets were
obtained by conducting several experiments on a (STF - 120P6) poly-
crystalline PV module 14.0% module efficiency. Seven experiments were
done on the (STF - 120P6) PV module in different values of cell
temperatures and solar radiations to measure the current and the voltages by
using the (I-V CURVE TRACER DEVICE).

Through training and testing these data, high accuracy results were obtained
for the proposed model, where the metric error values (RMSE, MAPE, and

MBE), which are equal (0.04251%, 4.315097%, -0.3959%), respectively. A
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value of (MAPE) was used to evaluate this model and compare it with
previous models that adopted different methods to predict the 1-V curve of
the solar PV module. These methods can be classified into offline methods
and online methods. Online methods depend on real devices to extract the I-
V curve as (capacitor, resistor, inductor, and switches), Offline methods
represented in Artificial Intelligence methods, Random Forests technique,
and the numerical methods where are used to obtain numerical solutions of
a mathematical problem such as Levenberg—Marquardt method(LM),

Newton—Raphson method (NRM),



Chapter One
Introduction

1.1 Background

Climate change is the most common phenomenon in these and next days,
and is one of the most controversial environmental phenomena and the most
widely circulated around the world because of its negative effects on human
and organisms. The most negative effects of it is the increasing proportion
of greenhouse gas emissions (GHG) especially carbon gas.

Scientists believe that this increase is the result of the industrial revolution
that began in 1888. The concentration of carbon dioxide in the atmosphere
has been estimated at 380 parts per million since the beginning of the 21st
century. (Karzm.J 2012)

This increase is a serious indication of the constant increase in global
temperatures estimated by scientists (1.4 - 5.8) for the period (1990 - 2100),
which will lead to melting snow at the poles and rising water level in the
oceans and sinking many cities and coastal countries. (Karzm.J, 2012)
Electric power generation is the most productive of greenhouse gases due to
the use of fossil fuels (oil, coal, gas) in power plants. Where primary energy
consumption grew at a rate of 2.9% last year, almost double its 10-year
average of 1.5% per year, and the fastest since 2010.The Carbon emissions
grew by 2.0%, the fastest growth in seven years. By fuel, energy

consumption growth was driven by natural gas, which contributed more than



2
40% of the increase. (BP Statistical Review of World Energy2019 | 68th
edition).
BP Statistical Review of World Energy Report (2019 | 68th edition) shows
that the growth of the renewable power grew by 14.5%, slightly below its
historical average, although its increase in energy terms (71 mtoe) was close
to the record-breaking increase of 2017. Solar generation grew by 30 mtoe,
wind (32 mtoe), and provided more than 40% of renewable growth,
Hydroelectric generation increased by an above-average 3.1%, and Nuclear
energy rose by 2.4%, its fastest growth since 2010.
e Solar Energy
Solar energy is one of the most important sources rich in the huge amount
of energy that is sufficient to meet the world's needs of electric energy
and all the human activities that it needs. Where it can be used anywhere
by receiving solar radiation. But there are many factors that affect the
amount of energy that can Harness it for electrical energy or heating
purposes such as geographical location, time of day, and weather
conditions. Solar energy can be captured for electricity production using
a solar or photovoltaic cell, which is a technology that converts solar
radiation into electricity using the photoelectric effect. Typically,
photovoltaic cells are located on the roofs of residential, commercial, or
industrial buildings to cover the electrical energy needs of these facilities
or a portion of them. In addition, many countries built large photovoltaic
plants (greater than 100 megawatts) that require large areas depending on

the technologies used to be an additional solution to obtain electrical
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energy. Also, part of these stations was dependent on the technology of
concentrating solar energy (CSP), which uses lenses or mirrors to focus
sunlight in a narrow beam that heats the liquid, to produces steam then
drive the turbine that generates electricity. CSP projects are larger than
residential or commercial PV projects and are often owned and operated
by electrical facilities. The figures below show the last update of
information for global renewable energy consumption, the solar energy
consumption by the region, and the installed solar photovoltaic (PV)
capacity, respectively.

(https://ourworldindata.org/renewable-energy).

Global renewable energy consumption, World

Renewable energy consumption measured in terawatt-hours (TWh) per year. Traditional biofuels refer to the
consumption of fuelwood, forestry products, animal and agricultural wastes.

| Other

— renewables
— Solar
Wind

16,000 TWh
14,000 TWh
Hydropower
12,000 TWh
10,000 TWh

8,000 TWh
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4,000 TWh
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0 TWh
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Source: Vaclav Smil (2017) & BP Statistical Review of Global Energy (2019) QOurWorldinData.org/renewable-energy « CC BY

Figure 1.1: The global renewable energy consumption (1965 -2017)


https://ourworldindata.org/renewable-energy

Solar energy generation by region

Solar energy generation is measured in terawatt-hours (TWh) per year.
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Figure 1.2: The solar energy consumption by the region

Installed solar energy capacity, 2018

Cumulative installed solar capacity, measured in gigawatts (GW)

oGw 25GW 7.5GW 20 GW 60 GW >80 GW
No data 1GwW 5GW 10 GW 40 GW 70 GW

Figure 1.3: The installed solar photovoltaic (PV) capacity

« Solar photovoltaic system
Solar photovoltaic systems are one of the most important sources of
renewable energy after increasing interest in renewable energy in general

and solar energy in particular, where Solar photovoltaic systems have
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been able to convert various buildings from energy-consuming buildings
to energy-producing buildings due to their ability to generate electrical
energy and use it directly through a one stage by converting the DC
current from the solar PV modules into AC current through the electrical
inverter and use it directly to supply the various buildings with the
electrical current needed to cover their needs. Also photovoltaic systems
are one of the simplest types of modern technology that do not need many
complex stages to obtain the electrical current .and the most important
features of solar energy systems: this systems have a long operating life
around 30 operating years, low negative impact on the environment, the
maintenance of these systems is simple and low cost compared to
traditional systems for generating electric energy such as (oil, natural
gas,...), and these systems can be used all over the world, whether in the
regions with high levels of solar radiation or in the regions with a few
sunshine hours.
- Photovoltaic system component

Photovoltaic systems are divided into three main types which are: on

grid system, off grid system, and hybrid system. Which the main

components for it are:

- PV modules

- Inverter

-Batteries (for off grid, and hybrid systems)

-Charge controller (for off grid, and hybrid systems)
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For all types of photovoltaic systems, the photovoltaic modules are the main
component of the greatest importance, being the part responsible for
converting the solar radiation into an electric current. And the system
depends on the conversion efficiency for PV modules to supply the buildings
with electrical current. In terms of the importance of PV modules; a study
has started on improving and predicted the I-V curve using many techniques
as (online method and off line method). In online methods, the real devices
as (resistors, capacitors,) were used to measure the current and the voltage
values for PV module or solar cell to extract the I1-V curve by construct a
specific electric circuit. In offline methods, the artificial intelligence (Al) or
empirical mathematical methods were used to extraction of |-V curve depend
on historical experimental data.

For this thesis, The Offline method which represent by Random Forest
technique was used to predicted the I-V curve .A random forest is one of the
method of artificial intelligence to analyze data and extract useful
information . This technique relies on decision trees (classification trees and
regression trees), which are a non-supervised learning method that aims to
create a model for predicting the value of a target variable by learning simple

decision rules extracted from the data features.

1.2 problem statement

As a result of the rapid development in the production of solar cells and the
urgent need to use them to reduce the use of traditional methods such as (oil,

coal ...) in the production of electrical energy, and the ability of PV systems
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to cover the energy demand for many buildings in various sectors , It is
necessary to intensify studies related to the solar cell and its performance,
especially the study and analysis of current-voltage curves for the PV
modules ; to obtain high-precision curves during practical experiments.
During previous studies and experiments, some of which were mentioned in
this work, extracting 1-V curves for the PV modules had some determinants
such as the inability to obtain the value of the short circuit current and open
circuit voltage values when using offline method as using resistors, and the
cost of using off-line line methods are high compared to the online methods.
And also, some online methods require a large amount of data to analyze and
extract I-V curves. Hence the idea of using a new method to extract the
current voltage curve of the PV unit, based on the technique of random
forest; To increase the accuracy of the results and compare them to the
previous methods, Where the random forest technique is characterized by
the following:

- Easy of interpretation and the ability to process data that interacts in a
non-linear or hierarchical manner.

- Itis classified as a modern technology that has gained great importance
in various scientific fields, including solar cells, but has been used in a
few special studies in extracting solar cell curves.

- The ability to deal with a small number of data and analyze it to get the

required results.



1.3 objectives

The main objectives of this thesis are to predict the current voltage curve to
predict the performance of the PV module by using random forest
technology (RFs) which is one of the proposed new technologies to develop
a new model to predict the current output of the PV module to overcome
limitations of previous optimization methods. Therefore, the objectives of
the research work are described as follows:
- -Todevelop a new prediction technique for predicting the output current
of a PV module using Random Forests (RFs) technique.
- To validate the obtained results from the proposed RFs model by
comparing them with the previous research works to show the accuracy

of the proposed model.

1.4 Methodology and Scope of work

The methodology of this research is starts by Define the location in Malaysia
where the experiments were made, then define the type of PV module was
used in the study (STP -120Wp) .after that collected the data for the inputs
parameter, where it represented in (ambient temperature, solar radiation, PV
DC voltage, short circuit current, and open circuit voltage) by using 1-V400
- SOLAR I-V analyzer , in different solar radiation and cell temperatures, to
developed a new RFs model by training and testing the data . Finally, a
validation for the obtained results by comparing them with other previous
research works to show the accuracy of the proposed models. The outline of

research methodology represents in figure 1.4,



Define the location in Malaysia

Define the type of PV module STP-
120Wp

Collect the data for input paramerters

Predicting the PV output current using a
developed RFs technique

Figure 1.4: The outline of research methodology
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Chapter 1l

Literature review

2.1 Introduction

solar energy (called photons) is converted into electrical energy in a process
called the photovoltaic effect, effective devices are used and the main
component of this process are solar cells that have semiconductor properties
encapsulated inside a material to protect them from the environment. It
requires the development of many semiconductor processing technologies to
manufacture them at low cost and high efficiency. Three types of PV systems
are used: Grid-connected PV system, stand-alone PV system, hybrid PV
system. Grid- connected PV system: produced electrical power by converted
the direct solar radiation and injected it to grid without storage. Stand-alone
PV system: A system that is designed to work independently of the grid and
uses a battery to store excess energy and use it when needed.

This chapter will emphasize the characteristics of PV module in order to pave

the way for predicting 1-V curve in the following chapters.

2.2 Solar Cells

The solar photovoltaic system is the energy generator whose production
depends on the solar cells as main component of it, these cells connect with
each other in series and in parallel combination, to form the required power

for a PV module, and then these PV modules are connected as well in series
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to form the PV array then multi PV arrays connected in parallel to achieve
the required capacity of the PV system.
The Solar cells can be classified into three generations; the first generation
of solar cells is characterized by being a high-quality single junction device
because it contains a large area. This generation includes high energy and
labor inputs which prevent any significant progress in reducing production
costs. The second-generation cells are a mixture of silicon with other
materials that increase the production efficiency for it, to be able to achieve
the required energy. Much types of materials have made great progress in
the efficiency of the cells as calcium telluride (CdTe) and silicon copper
indium gallium and amorphous silicon and formed silicon. Where these
materials were used in thin film substrate such as glass or ceramic, which
reduced the mass of materials and thus reduce production costs. The third-
generation cells have been developed to be more productive than previous
generation cells, by using some modern technologies such as multi-junction
photovoltaic cell, modifying incident spectrum (concentration), and Use of
excess thermal generation to enhance voltages or carrier collection. (Tiwari,

M.N, and Dubey, S., 2010)

2.3 Photovoltaic Module

Photovoltaic modules are one of the latest technologies used to generate
electricity in a clean, quiet and reliable way for a long time. Photovoltaic
system consists of a light-cell, and devices convert radiation directly into

electricity, where the sun is usually that energy source. PV cell made of at
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least two layers of semiconductor material, one of them has a negative

charge, and the other positive. When the radiation reaches the surface of the

cell, the semiconductor atoms absorbed some photons to release the electrons

and then passes through the external circuit and reach the positive layer to

produce the electrical current (Tiwari, M.N, and Dubey, S.,2010)

2.3.1Types of photovoltaic module:

1-

Mono crystalline: This type of solar cell made by cells cut from a
single cylindrical crystal of silicon. The efficiency of it is the highest
compare with other types (approximately 18-19.8% conversion of
incident sun light). The manufacturing process of this cell is relatively
complex which makes them slightly more expensive than others in
manufacturing. Mono crystalline silicon is used in the manufacturing
of high-performance solar cells. (Tiwari, M.N, and Dubey, S.,2010).
Poly-crystalline silicon: This type of solar cell made by cutting micro-
fine wafers from ingots of molten and re-crystallized silicon. The
efficiency of this type is less than Mono crystalline and higher than
Thin film (approximately 14-16% conversion of incident sunlight). ,
so polycrystalline cells are cheaper in produce (Tiwari, M.N, and
Dubey, S., 2010).

Thin film: These are made by depositing an ultrathin layer of
photovoltaic material onto a substrate. The most common type of thin-
film PV is made from the material a-Si (amorphous silicon), but

numerous other materials such as CIGS (copper indium/gallium
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selenide) CIS (copper indium selenide), CdTe (Cadmium Teluride).
The efficiency of thin film solar cell is lower than Mono-crystalline
Poly-crystalline approximately (2%- 14%).( Tiwari, M.N ,and Dubey,
S.,2010).

2.4 1-V Characteristic Curve

2.4.1 Solar cell modeling

The PV cells depend on the photovoltaic effect process to generate the
electric current from the sun radiation. The PV cells consist of two different
types of thin layer semiconductors materials (p-type and n-type) to create the
P-N junction. When solar cells are exposed to solar radiation, an electric field
IS generated, the electrons transfer to the positive field (P-type) and the holes
transfer to the negative field (N-type), and when the solar radiation photons
have a suitable wavelength for these cells, the energy inherent in the solar
radiation photon is transferred to an electron for the semiconductor material,
which causes it to transfer to a higher energy state is known as the
(conduction band). The electrons in the conduction band are free to move
through matter and as a result, the electric current is generated. Figure (2.1)

shows the equivalent circuit of the solar cell.



Ideal photovoltaic cell |

> |
I,

Photovoltaic
cell

)
'

Figure 2.1: Equivalent model of a photovoltaic cell

The PV cell output current depends linearly on the light intensity, the

equations (2.1), (2.2) represent the General state for PV cell output current:

| = ||_—|D-|p (2.1)

[=1IL-To [exp (q((‘:rTl:;D) — 1] — (V+RITDSI) (2.2)

Where 1. is the photocurrent, Ip is the Shockley diode equation, I, is the
reverse saturation current of the diode (A), q is the electron charge (1.6*
107°C), k is the Boltzmann constant (1.38 * 10723J/K), T is the temperature
of the p-n junction (K), n is ideality factor of the diode, Rp is the shunt resistor
in(2),Rs is the series resistor in («).( Tiwari, M.N, and Dubey, S.,2010)

The PV cell output current affected by the variation of solar radiation, cell
temperature, series resistor, Shunt resistor, and reverse saturation current of
the diode. The equations in following points represent the effected of solar

PV cell model. These equations are quoted from (Salmi, T. et al, 2012).
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Effects of Solar Radiation Variation
The photocurrent affected by the variation of solar radiation value.
Equation (2.3) represent that the value of the current increases When the
value of solar radiation increases.
=l + Ki (T- 298) -2
(2.3)
Where K; is the cell's short circuit current temperature coefficient (0.0017
A/C®) and B is the solar radiation (W/m?).
The variation of the solar radiation effects on the output result of the solar
PV cell, when the value of the solar radiation increases, the output current
of the PV cell increases and the open circuit voltage increases
logarithmically, while the short-circuit current increases linearly with
solar radiation variation, as well as its value is affected by the area of the
PV cell. And this increasing of solar radiation increases the heat of the PV
cell.
Effect of Varying Cell Temperature
Solar cells are affected by variation of ambient temperature and cell
temperature which known as nominal operating cell temperature
(NOCT). This affected represented as decreased the value of open
circuit voltage and increase the value of short circuit current when the
ambient temperature increases. The Nominal Operating Cell
Temperature (NOCT) is defined as the temperature reached by open

circuited cells in a module under the conditions as solar irradiance on



16
cell surface 800 W/m?, Air Temperature 20°C, and Wind Velocity = 1

m/s. The equation (3.4) represent this effect:

1o(T) = lo (-=)exp [ (1) 7~ (2.4)
Where |, is the diode reverse saturation current, Tnom iS the nominal
temperature, Eq is the band gap energy of the semiconductor and V; is
the thermal voltage.

e Effect of Varying Rs & Rsh
The series resistance for solar PV cell is low, and it can be neglected in
some calculations, the slope angle of the I-V curves affected by changing
the value of this resistance so the maximum power point decreased when

the resistance value increases. While the shunt resistance for PV cell must

be large enough to obtain higher output power and fill factor.
2.4.2 Electrical Characteristics of Solar Cells

I. Open-circuit:

The open-circuit voltage is a maximum voltage available from a solar cell,
and this occurs at zero current. And the equation (2.5) IS represented it. (Jain,

F., 2016)

kT I
Voc = 711’1 i-l— 1] (2.5)

Ii. Short-circuit:

The short circuit current occurs on a point of the curve where the voltage is

zero. At this point, the power output of the solar cell is zero. This case of
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circuits can be achieved by connecting the positive and negative terminals

by copper wire.

1. Maximum power point

Maximum power point (MPPT) is the operating point in which the power
dissipated in the resistive load at maximum value. At this point, the
maximum values of current and voltage is obtained. MPPT affected by the
variation of the series and shunt resistances. The equations (2.6.1, 2.6.2, and

2.6.3) represent the relationship of Maximum power point (MPPT):(Jain, F.,

2016)
Ve kT avn
Vi = Voc = In |1+2% (2.6.1)
qvm
Im=1lo [err —1]—1L (2.6.2)
Pmax:Vm x Im (2.6.3)

2.4.3 The efficiency of solar cell:

The efficiency of a solar PV cell is the ratio between the maximum power
and the input power from incident light. Solar PV cells are relatively low in
efficiency comparing with other methods of generating electrical energy,
these cells reached a maximum during 2019 to 19%, and this value has
increased at a good rate during the past years through improving various
production factors that affect the high efficiency of solar PV cells such as

reflection efficiency, Thermodynamics efficiency, charge separation



18
efficiency, and conductivity values. The equations (2.7) represent the

efficiency of a solar PV cell.

Pmax Imax XVmax

n o Pin o AxGs

2.7)

Where A is the area of the solar PV cell and G; is incidence solar radiation.

(Jain, F., 2016)

2.4.5 The fill factor:

The fill factor is a measure of the quality of the solar cells in terms of the
extent of the junction of PV cells and the reach of the decrease in the series
resistance. The fill factor of a PV cell can be measured as a ratio of the
maximum power of a solar PV cell to a multiple of (V and Isc). For ideal PV
cell the value of FF is unity and for efficient solar cells the value of FF should

be more than (0.7).(Jain, F., 2016)

FF _ Pmax — Im x Vm (28)

— Isc xVoc Isc xVoc
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Figure 2.2: The I-V curve Characteristic of a photovoltaic cell
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2.5 PV Module and Array Modeling

In recent years, the pace of development in the manufacture of solar PV
module has been high, moving from 36 cells consisting of one PV module to
60, and a greater development reaching 72 cells per module, This affected
on the capacity of the PV module (voltage and current) as the solar PV
module in 2019 reached 72 cells, means that the current of the module
increase to 10 amperes approximately, and this value is high comparing with
previous version of PV module. However, one PV module alone is not
sufficient to feed a solar energy system or production plant.

The PV modules are connected in series or in parallel to obtain the required
power for system, provided that the voltage for one string (more one module

connected in series) does not exceed more than 1000 volts

Array
Strings in parallel
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Figure.2.3: Schematic diagram of a PV module
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The equations (2.9, 2.10, and 2.11) represent the relations between the
cell’s voltage (V¢) and current (Ic) and the module’s voltage (V) and

current (Iw):

||v| = Np |c (29)
VM:NS Vc (210)
Rsm=r= RsC (2.11)

Where Ns is the number of PV cells connected in series, Np is the number of
PV cells connected in parallel, and Rsy is the equivalent series resistance of

the PV module. (Khatib, T. and Elmenreich, W., 2016)

2.6 Methods for I-V Curve Extraction

In photovoltaic technology there are many methods to extract the curve,
these methods can be classified into online and offline used to make

measurement or extraction 1-V curve, which the main principle methods.

2.6.1 Online Methods:

There are many methods used to measure the current-voltage curve of the
solar PV cell, Which the controlling of PV module current from zero current
(Voc) to the short circuit current (lsc) a major factor in the extract of 1-V curve
.this methods use the real devices to perform the 1-V curve extraction task
as(capacitor, resistor, inductor, and switches),Where the basic rule for it is

to set a variables ranging from a very large value to a very small value to
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measure current and voltage values, also short-circuit current and open-

circuit voltage.

e Variable Resistor
Using variable resistors is one of the simplest methods to measure the
current-voltage curve of PV module. The variable resistance is connected
to the PV module then value of this resistance is changed from zero to
infinity and the current and voltage are measured in each change step.
However, there are some limitations for this method where it can be used
just for small PV module capacity, because it is difficult to provide
variable resistors for high capacity. By used variable resistors the short-
circuit current and open circuit voltage cannot possible to determine,
Also, the manual change of resistance is slow, thus the solar radiation and
the thermal effect are variable during measurement. (E.E. Van dykn et al.)
are one of researchers used this method to monitoring the 1-V curve
characteristic for seven PV Modules under realistic outdoor conditions for
one year, Where the main objective of this study was to demonstrate the
value of the low-cost |-V sequencer. This research successfully
emphasizes the importance of outdoor performance monitoring as there
was a significant difference between indoor and outdoor measurements.
(Van Dk, E.E et al., 2005)

e Capacitive Load
During this method a large capacitor is used to measure the I-V curve of
the PV cell. The start point of measurement is short -circuit form for the

capacitor, and when the switch between the capacitor and PV module
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closed the loading starts. Through the loading the charge of capacitor
increases so the voltage increases and the current decreases. At the end of
charge, the open circuit phase is achieved that is mean the current of
module will be zero. By this method a reliable 1-V curve can be obtained
through high quality capacitors with few losses. Many researchers used
this method to extract the I-V curve as (Mufoz,J. ,and Lorenzo,E., 2006)
the authors in this research used the capacitor load for PV array from
approximately 80 A as short circuit current and 800V as open circuit
voltage ,based on insulated gate bipolar transistors (IGBTs) |,
(Mahmoud,M.M., 2006) used the PV generator by a capacitor and to
charge it fully from short circuit to open circuit, and to record the
respective voltage and current by X-Y recorder, where these method can
be used for PV generators of peak power up to 10kW.or a computerized
data acquisition system (CDAS).this method can be used for PV
generators of higher power. The |-V curve obtained by this method is
much more accurate and uniform since it is measured in a very short time.
Electronic load

The electronic load method, used to achieve the I-V curve for PV module.
Usually this method used (MOSFETS) as load .for the purpose of extract
IV curve, three modes of operation must be operate (cut-off, active and
ohmic region), where the current supplied from PV module is flow, When
the resistance between ('source and drain ) is set through (the gate-source.
Voltage). In a (An electronic load for testing photovoltaic panels)

research, the authors used several MOSFETS for testing PV module to
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extracted the I-V curve. Where a linear MOSFET serves as an
electronically controlled load that moves the operating point of the PV
panel over the entire 1-V characteristic. In addition to the (I-V) and (P-V)
characteristics, the circuit provides the values of the open circuit voltage,
short-circuit current, peak power, and the corresponding voltage and
current. The advantages of this method are the high testing speed the
ability of measuring high currents (kuai, Y., and Yuvarajan, S., 2006).
Bipolar Power Amplifier
By this method, the Bipolar Power Amplifier device is used and a BJTs
transistors are used as load forward and reverse current respectively, to
achieved the I-V curve for PV module, where bipolar transistors must
operate in three modes of operation (cut-off, active and saturation
region).In a research of (Guvench,M.G. et al., 2004) the authors measured
the 1-V curve characteristics of large area solar cells (up to 8 in diameter)
operated under simulated solar irradiation by automated way ,through
using standard bench top GPIB instruments interfaced to a PC and by
using the function generator as a stepped voltage source. And the high
value of test current needed to this solar cell is obtained from a unity gain
DC power amplifier driven by the function generator.

Four-quadrant power supply

By this method, a four-quadrant power supply is a laboratory power
supply produced the positive and negative voltage, which is used to
extract the I-V curve for PV module in the first quadrant, while the points

in second and fourth quadrant are important to detect the mismatched in
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PV module operation states Such as total or partial shading of the PV cells
in one or more PV module. The I-V curve is detected by connected this
device to the PV cell output, where it is forcing the PV cell to the fixed
voltage and in the same time the current into this device is measured .the
start point represent the short-circuit current where the voltage value is
Ov, then the voltage is increasing in steps with constant value and the
value of current is measured in each step until the current is equal to zero,
where this point represent the open circuit state.(Duran,E. et al.,2008) .In
(de Blas, M.A. et al., 2001) the authors are extracted the experimental I-
V curves for solar module made up of 36 mono-crystalline silicon cells
connected in series under different irradiance and temperature conditions
with natural sunlight on clear days by a bipolar power supply, where at
each point the value of current and voltage of the solar cell is measured.
The temperature and irradiance of the module are recorded at the
beginning and end of each experiment, and the different magnitude curves
are rejected.

DC-DC Converter

A DC-to-DC converter is an electronic circuit or electromechanical
device used to obtain the I-V curve of PV module by applied the property
of it of acting as resistor emulators. This converter has three basic
configurations (Buck converter, Boost converter and Buck-Boost
converter) and similar to a DC transformer in Continuous Conduction
Mode and in Discontinuous Conduction Mode. In (Khatib, T., etal.,2017)
the 1-V curve is extracted using the DC-DC boost converter by adjusting
the operating cycle of the control signal boost converter’s switch. The

advantage of this method is that they are implemented without need
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external devices. And in the (Duran, E., et al,2012) the I-V curve of PV
model was extracted through a prototype system that is controlled using
a microcontroller, where the solutions of electrical circuit depend on DC
-DC converters. The results of this experiment are characterized by simple
structure, scalability, fast response, and low cost compared to previous
methods. However, the researchers found that this method has
disadvantages as the current ripple by the inductor due to the switching
technique that does not exist in the other methods. Table 2.1 represents a
comparison between the characteristics of the previous methods of

extraction the I-V curve.

Table 2.1: The comparison between the characteristics of the different

methods of extraction the I-V curve

Flexibility | Modularity | Fidelity |  Fast Direct |Cost
Response | Display

Variable | Medium | Medium |Medium| Low No |Low
Resistor

Capacitive Low Low Medium| Low No [High
Load

Electronic High High Medium | Medium | Yes |High
Load

Bipolar High High High | Medium | Yes |High
Power
Amplifier

4- Low Low High High No [High
Quadrant
Power
Supply

DC-DC High High High High Yes |Low
Converter
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2.6.2 Offline Methods:

This method aims to extract the I-V curve of the solar PV cell based on
historical experimental information, where it is based on empirical
mathematical methods or artificial intelligence methods, the I-V curve is
constructed by a model of five parameters or more of the PV cell, the PV cell
output current is defined as a function of this parameters and it is necessary
to improve the value of these parameters based on historical empirical
information. However, for this method some disadvantages such as the
ability to identify any error or abnormal condition in the PV system. The
major offline methods are represented in Artificial Intelligence methods,
Random Forests technique, and the numerical methods where are used to
obtain numerical solutions of a mathematical problem such as Levenberg—
Marquardt method (LM), Newton—Raphson method (NRM),
e Levenberg—Marquardt Method (LM)
The Levenberg-Marquardt algorithm (LM) is an iterative method that
determines the minimum of a multivariable function to solve the non-
linear least squares problems in mathematics, and computer programs as
MATLAB program. LM algorithm is a combination of steepest-descent
and the Gauss-Newton method. (D.W. Marquardt, 1963).
This technique has been used by many researchers in researches related
to extraction of the I-V curve for solar cells such as (Dkhichi,F. et al.,
2014) in this research the authors used the LM method to obtain the I-V
curve of 57 mm diameter (R.T.C France)solar cell single diode model

through the real values of five parameters, this method achieved more
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accurate I-V curve, lower values of power error, and a high harmonization
between the experimental and calculated curves of I-V and P-V.( Ma.T et
al., 2014 ;Tossa,A.K. et al., 2014) used this method to estimate the I-V
curve.
Newton—-Raphson method (NRM)
This method is one of the iteration techniques, used to obtain the root of
the equation for a nonlinear least-squares optimization algorithm, this
algorithm is modified with Levenberg parameter. NRM technique is used
to obtain the I-V curve for solar PV cell by five parameters of PV cell
from the experimental data. In (Easwarakhanthan et al., 1986) the authors
are designed and simulated a nonlinear electrical model for (57 mm
diameter (R.T.C France)) solar cell by optimization algorithm, designed
for micro-computers, which uses Newton's method to determine the five
parameters of the single diode model (Voc,lsc,Im,Vmand the slopes at | =0
and V = 0) to obtain the minimum value of errors.
Artificial Intelligence
The emergence of several disadvantages in the previous methods led to
think about the development of other methods based on artificial
intelligence (Al). This Algorithms were proposed to generate the I-V
curve for the solar PV cell, this method is characterized by high efficiency
and accuracy, in addition to its ability to estimate the standards of solar
PV cell models. The method aims to improve the value of each parameter

in the five-parameter model based on empirical information. There are
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many algorithms used to extract the current-voltage curve of the solar cell,

as:
Genetic algorithm (GA) are used to solve constrained and unconstrained
optimization problems. These algorithms have been used in many different
engineering and practical sectors, where they have been used by many
researchers as (Dizgah et al., 2014; Ismail et al., 2013; Jervase et al., 2001),
to extract the current-voltage curve of the solar cell, where these algorithms

are global methods for the purpose of improvement.

Particle swarm optimization (PSO) algorithm Particle swarm
optimization is a computer algorithm. The idea of the algorithm depends on
a number of elements spread in a limited search area and randomly moving
to search optimization in this area. Whereas, if the number of swarm
elements increases and the research area becomes smaller, finding the
optimum solution becomes faster. But if the number of elements is smaller
and the area of research is large, the less chances of finding the best solution.
This algorithm can be used to estimate the parameters of PV cell and
extracted the I-V curve for it. Many researchers were used PSO algorithm
for PV module as (Khanna et al., 2015), in this research, PSO algorithm has
been applied to estimate the solar cell parameters of the two-diode model
and the proposed three-diode model from the illuminated |-V characteristics
measured using a solar simulator. Parameters were estimated using an
iterative PSO approach from the 1-V characteristics. Although PSO is a
random approach, but in this work, the authors have shown that the multiple

PSO runs gave consistent results. PSO was, therefore, found to be a good
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method for accurate estimation of solar cell parameters, with MAPE not

exceeding 0.18% of Isc, for any sample.

Flower pollination algorithm FPA is a nature-inspired algorithm that
simulates the pollination behavior of cultivated plants, and it is one of the
methods for improving the swarm, as many researchers have used this
algorithm to improve results in various fields such as energy, electrical
system, signal and image processing, wireless sensor networking, clustering
and classification, global function optimization ,computer gaming ,structural
and mechanical engineering optimization , This this algorithm is
characterized as flexible, adaptable, scalable, and simple optimization
method(Alyasseri et al.,2018).In (Alam et al., 2015) The author proposed
the FPA algorithm as newly developed optimization technique to extract the
optimal parameters of a single diode and a double diode models various types
of PV modules. . The proposed extraction technique is tested using three
different sources of data, represented by previous literature, the measured
data in the laboratory, and the data of the manufacturer’s data sheets. the
proposed FPA model achieves the least (RMSE) between the estimated and
experimental data and the highest speed of conversion to the optimal

solutions with the shortest convergence time.

Shuffled frog leaping algorithm is a meta-heuristic optimization technique.
The concept of the SFLA is based on observing, imitating, and modeling the
social behavior of a group of frogs when they search for the location of a rich
source of food. Several engineering optimization problems have been solved
by the SFLA. The SFLA has been successfully applied to solve many power

system optimization problems such as transient stability improvement of a
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grid-connected wind farm, unit commitment problem, harmonic distortion
minimization in inverter systems, power system damping, optimal switch
placement in a distribution system, and optimal reactive power dispatch. The
main advantage of the SFLA is its high-speed convergence where it
combines the merits of both GA-based technique and the social behavior of
the PSO approach. (Hasanien, 2015) In this research, the SFLA technology
used to determining the unknown parameters of the single diode PV model.
The SFLA is used to identify the unknown parameters of the PV model such
that the maximum power of the model is equal to the maximum experimental
power extracted from the datasheet of the PV manufacturer. The validity of
the proposed PV model is verified by the simulation results which are
performed under different temperature and irradiation conditions. The
simulation results are compared with the experimental results of different PV
modules such as Kyocera KC200GT and Solarex MSX- 60. The
effectiveness of the proposed PV model was evaluated by comparing
absolute error of the model with that of other PV models.

In (Siddiqui,M.U, and Abido,M.,2013) the authors in this research explain
the performance of different evolutionary algorithms that used to generate
the I-V curve of PV cell .This models using the estimated parameters were
then used to predict the electrical performance of six PV modules. Artificial
neural networks (ANN) are one of (Al) method that used to extract the 1-V
curve of PV cell by predict the value of model parameters based on historical
experimental datasets. These methods are more accurate, where the errors
for predicted I-V curve are less than other methods. For more information

for predicted errors result regarding these methods, (khatib,T. et al.,2018)
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research discussed it. However, this method has some challenges as a result

of the complex data training process.

Artificial Neural Networks (ANN)

are classified as a kind of mathematical algorithms to solve many problems.
These networks are simulating the same principle of functioning for the
neural networks in the human brain. This similarity in work among them
comes from the fact that the human brain contains parallel connections that
achieve a huge amount of tasks in a very short time compared with a
computer, just as the human brain contains a very large number of highly
complex nonlinear computational elements called (neurons) as well as a huge
number of internal connections. The human neurons are distinguished by the
way they process data in parallel, which gains them the super speed and this
what scientists have tried to apply to artificial neural networks in the
computer. Artificial neural networks are used for extracting the I-V curve of
solar cells and PV modules by using historical experimental data that depend
on five or seven parameters (Karatepe et al., 2006; Celik, 2011; Bonanno et
al., 2012, Tamer et al., 2018). These methods are quite accurate. but this
method have some limitation ,where that these methods are only able to
measure |-V curves for the solar cell parameters which ANN have been
trained based on, whereas, the ability of measuring general |-V curve for

different solar cells is very limited.

Random Forests Technique (RFs)
The previous methods have some limitation in extraction I-V curve for PV
cell such as low accurate result for using online methods (Evolutionary

algorithms), Difficulty in finding the model parameters for empirical model
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and Complexity training process for ANN methods. As a result of these
constraints, random forest technique is one of a new method of extracting
the current-voltage curve of the solar PV module with greater accuracy.
Random forest is an ensemble machine learning method. That the decision
trees in these forests were learning to predict the output variable (Goal)
instituted on the input variables. Where decision trees models divided to:
regression trees models and classification trees models. (Breiman, 2001). In
the research of (Ibrahim. I, 2016) a standalone PV system was studied, where
the random forest technique was used to developed a new model for
predicted a current -voltage curve for PV module. This model was depended
on four inputs; solar energy, ambient temperature, day number and daily
hours. The metric errors value was adopted to prove the accuracy of this
model, where the values of root mean square error, mean absolute percentage
error and mean bias error 2.748%, 8.715%, and -2.577%, respectively.

In this work the random forest technique was used to developed a new
proposed model based on other inputs; solar radiation, cell temperature, and
PV experimental voltage. The mean absolute percentage error value was
adopted to verify the accuracy of this model and compare it with the

previously mentioned models.
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Chapter 111

I-V Characteristic Curve Extraction Using Random Forests

Technique

3.1 Introduction

In this chapter, the current - voltage curve of a solar PV module will be
predicted by performing a set of practical experiments and programming
these experiments using the MATLAB.2016 program, where a new code has
been developed using random forest technique for regression to predict the
I-V curve by growing trees depending on a random vector, to obtained
numerical output values. Then the results of this model are compared with
other models that use different methods to predict the PV module output
current, and verify the results from in terms of accuracy and the values of
Mean bias error (MBE), Root mean square error (RMSE), and Mean absolute
error (MAPE).

Seven experiments were done on the solar PV module to measure the current
and the voltages by using the (I-V CURVE TRACER DEVICE), in each
experiment the solar radiation and the temperature changed. The table (3.1)

showed Specifications for PV module used in these experiments.
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Table 3.1: The Specifications for PV module

Rated Maximum Power (Pmax) 120
Open Circuit voltage at STC (Vo) 21.5
Short Circuit Current at STC (Is) 7.63
Conversion Efficiency 14%
Maximum Voltage (Vip) 17.4
Maximum Current (Imp) 6.89

3.2 1-V Characteristic Curve Extraction Using Random Forests

Technique

3.2.1 Random Forest Technique

Random Forests are a group of decision trees (classification or regression
trees). Each tree in this forest depends on the values of a random vectors,
Where the sampled from all trees take independently and in the same
distributing. (Breiman,L., 2001).
e Decision trees
Decision trees (classification trees and regression trees) are machine-
learning methods (supervised learning model) for constructing prediction
models from known responses data. (Shobha, G, and Rangaswamy, S.).
In predicting the response, the decision follows each tree from the root
(beginning) node down to a leaf node. The leaf node contains the response
(MATLAB, 2016).
Classification tree is a predictive model collected of a weighted

combination of varied classification models. Where the performance of
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the predicted model increasing, when multiple classification models
combining with each other. The classification group collected a group of
trained weak learner models and data on which these learners were
trained, it can predict a response for new data by aggregating predictions,
and it can be stored this data and it can be can compute re-replacement
predictions. (MATLAB, 2016).
The output response for classification ensembles give as nominal form
(‘true’ or 'false’). (BREIMAN, 2001). Where these outputs are formed in
the form of separate responses. (Shobha,G. ,and Rangaswamy,S.).
Classification models can be applied in many applications as spam filters,
advertisement recommendation systems, and image and speech
recognition. as example of classification problem is Predicting whether a
patient will have a heart attack within a year, and the possible classes are
true and false. Classification algorithms usually apply to nominal
response values. However, some algorithms can accommodate ordinal
classes. (Matlab, 2016)
Regression tree is a predictive model collected of a weighted combination
of varied regression trees, where the performance of the predicted model
increasing, when multiple regression tree combining with each other.
Regression models represent the relationship between one dependent
output (response variable), where it gives as numeric form, and one or
more independent input variables (predictor variables). In regression trees
models, the goal is to predict a continuous measurement for an

observation. That is, the responses variables are real numbers. (Shobha,G.
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, and Rangaswamy,S.) This model can be used in many applications as

forecasting stock prices, energy consumption, or disease incidence. The

Regression models can be classified into:

— Fit linear regression models, where it represents the linear relation
between the output (response) and the inputs (predictors) .and it can
be used for predict responses or simulated it, assess this model using
hypothesis tests, or use plots to visualize diagnostics, residuals, and
interaction effects.

— Generalized linear regression models are a special case of nonlinear
models but it using linear methods.

— -Nonlinear regression models, where it describes the relation between
a continuous response variable and one or more continuous predictor
variables

— -Nonparametric regression models, where it can be used for more
complex regression curves without determining the relation between
the output (response) and the inputs (predictors) with a predetermined
regression function. The output from this model is often described as
diagram.

- Gaussian process regression models, where it can be used to compute
prediction intervals. (MATLAB, 2016).

e Random Forest Algorithm

Random forest is an ensemble machine learning method. That the

decision trees in these forests were learning to predict the output variable

(Goal) instituted on the input variables. Where decision trees models
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divided to: regression trees models and classification trees models.
Regression trees models predict the target variables based on continuous
set of value, while classification trees models take the separate set of value
to predict the target variables (Shobha,G. ,and Rangaswamy,S.).And
these forests incorporate Bagging; Bagging is a technique to aggregates
the fitted values in various ways, which used to reduce the variance of
prediction values (Beriman, L., 1996).

Many types of algorithm can be used to develop prediction models such
as QUEST, CRUISE, CART, RPART and GUIDE, C4.5. CART is a
classification algorithm that depends on the Gini index (a generalization
of the binomial variance) as node impurity criterion. This algorithm
chooses the binary splits that decrease the impurity maximum. A large
tree growing instead of (employing stopping rule) to produce a sequence
of sub trees, and pruning it until the root node. PART is recursive
partitioning and regression trees. Based on the target data that the
regression trees or classification trees want; the continuous variables or
categorical can be used in this type of algorithms. C4.5 is one of the
classification algorithms that use Entropy for impurity function to
minimize an estimate of the misclassification error. This algorithm
divided the node into two splits of usual form. Dealing with categorical
variables to splits is easy in this algorithm. In GUIDE, CRUISE and
QUEST the variable selection is unbiased. GUIDE algorithm is quantile,
Poisson and proportional hazards regression method. In this algorithm a

simple polynomial tree model is built for least squares. The high accuracy
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of CRUISE and QUEST can be obtained if these algorithms are using the
linear combination splits. (S.Shamy & Dr.J Dheeha).
The Random Forests Structure
The random forest algorithm in the general structural framework for
either classification or regression trees is a combination of training and
testing stages for the data that is collected. The algorithm begins with
entering data into the training phase, where the algorithm draws M.
bootstrap samples from the original training data, and then creates a
number of unpruned classification or regression trees for each bootstrap
sample, where the best split is chosen from the random sample of the
predictors at each node of classification or regression trees. The new data
are predicted by aggregating the predictions of the Myees trees. (Liaw &
Wiener 2002).
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Figure 3.1: The Random Forests Structure

The random forest algorithm involves in two main stages, the Figure 3.1

represent the Random Forests Structure. The RFs methodology for

regression can be described as follows:

- Training stage:
firstly; the bootstrap samples (M) created by the original data obtained by
the experiments in the same size randomly .Secondly; about 30% from
the data were left out of bootstrap sample where it called (out -of bag data
OOB), while the remaining data sets were trained in bootstrap samples
where it called (In-Bag data) and used it to develop the RFs
model.(Beriman,L., 2001).the classification or regression trees grow from
each bootstrap samples, at each node from (n) tree, some variables were
selected randomly and just this variables are searched through for the best

split.
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This process is done through Bootstrapping technique (Re-sampling
technique) .and it can be used to obtain a best idea of the representation
of class labels existing in the dataset. (Shobha,G. ,and Rangaswamy,S.)
In the training stage the bagging is important to use for two reasons; the
first one is to improve accuracy when random features are used. The
second is to give ongoing estimates of the generalization error of the
combined set of trees, estimates the strength and correlation, by aggregate
OOB prediction data at each bootstrap iteration (Beriman,L., 2001).In
addition to that OOB information can be used to estimate the variable
Importance measures, Intrinsic proximities between cases, Scaling
coordinates based on the proximities, and to detect the outliers
.(Beriman,L., 2002).

Based on OOB samples, the variable importance can be obtained
randomly for each tree. this measure depends on the permutation
importance measure (Breiman,2001). the variable importance measure is
calculated as aggregation of the difference between prediction accuracy
before and after permuting variable N, averaged over all the trees. The
following equation describes the variable importance VI for N variables

(Guo,L. et al. 2011):

®
Zriepe® (U=CY)  Zicper(Li= Cim®
VI(t)(N) _ Cxiep ] _ “xiep <|Bc(t)| ) (3.1)

For overall tree the important result can be calculated by:

®
VIO(N) = w (3.2)
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Where B¢® corresponds to OOB samples for a tree, T is the number of
tree (1, 2, 3.... T). Ci® , And Ci,mtn ® are the predicted classes for
sample before and after permuting the variable n respectively, xi is the
sample value, L; is the true label; both are in the training stage, I represents
the importance function that got based on the values of L;, i is the number
of samples per leave in tree and j is the number of samples per tree in the
forest.
In Final step in training stage the outliers in regression models can be
detected by cluster analysis, these analyses depend on the model density.
The Outliers in the response variable represent model failure and called
observations, and with respect to the predictors are called leverage points.
Outliers play important role in regression. Removing these values from
data sets will increase the results accuracy.
Testing Stage:
A new data predicted by aggregating the predictions of the (n) trees.
Where this predicted data represents as: majority votes for classification,
average for regression. (Liaw,A.,and Wiener,M.)
e The Evaluation for Random Forests Technique

In the ensemble machine learning (regression models or classification

models), the output (response) get from the input variables (predictors)

and to estimate these results; three types of error metrics can used as

(MBS, RMSE, MAPE).

MBS is defined as mean bias error, where it can used to indicate the

average deviation for prediction in the model between the forecast



42
value (predictors) and observation value (target value).RMSE is
defined as Root Mean Square Error this type of error can used to
measure the standard deviation of the predictions, by measuring the
difference between the forecast and observation values. MAPE is
defined as Mean absolute percentage error, used to indicate the

predictions accuracy as percentage.

The following equations represent these errors:
n

I
MBE = —Z(Ypi —vi) (3.3)
n i=1
1 n
RMSE = EZ(Ypi _Yi)? .. (3.4)
i=1

n
1~ (Vi — Ypi)
, |y— (3:5)

MAPE = —Z
n

l

Where Yi is an observed value (target value), Ypi is a forecast value

(predicted value), and n is the number of observations.

3.2.2 Proposed Model for I-V Curve Extraction Using Random Forest

Technique

In this study, the output current for PV module predicted by random forests
algorithm which is called (Bagger algorithm) in (MATLAB 2016 program).
Tree Bagger algorithm is a training algorithm for random forests applies the
general technique of bootstrap aggregating, or bagging, Bagging stands for

bootstrap aggregation. Every tree in the ensemble is grown on an
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independently drawn bootstrap replica of input data. Observations not
included in this replica are "out of bag" for this tree. the prediction of an
ensemble of trees for unseen data can be compute, Tree Bagger takes an
average of predictions from individual trees. To estimate the prediction error
of the bagged ensemble, the predictions for each tree on its out-of-bag
observations can be compute, average these predictions over the entire
ensemble for each observation and then compare the predicted out-of-bag
response with the true value at this observation.
The RFs proposed model start by setting the input variables which is
represented by: ambient temperature, solar radiation, PV DV voltage, short
circuit current, and open circuit voltage. For this study the number of trees
setting as 500 trees, and the number of leaves is five for regression as set by
default by the algorithm (MATLAB, 2016).
The number of leaves and trees in prediction process effect on the accuracy,
variance, and the rate of training and error. where if that less than the
optimum numbers; this leads to an increase in training, error rate, and
variance.
Accordingly, the value of metric errors as root mean squared error (RMSE),
mean absolute percentage error (MAPE), and mean bias error (MBE) take to
estimate the performance of the developed RFs model. The minimum value
for these errors means high accuracy for the developed RFs model, less error
rate, and less variance. Figure (3.2) shows the flowchart for predicting PV

module output current.
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The proposed RFs model represent in three stage as follows:

Stage I:

In this stage, the input data for experiments (ambient temperature, solar

radiation, PV DV voltage, short circuit current, and open circuit voltage)

prepared in data file to use in training and testing sets. The following steps

describe the procedure of the proposed model:

The data spilt in predictor array (X) and in response array (Y). The
Tree Bagger algorithm uses for training by set the number of trees

500, and the number of leaves 5 per tree as default (MATLAB, 2016).

. In this step, the variable importance is estimated by permuting the

values of this feature across every observation in the data set for each
tree, then measure mean squared error that becomes after the
permutation. The variable importance measure is used to improve
prediction ability for (RFs algorithm). The MATLAB line code
number (41-62) in Appendix C describe the variable importance
measuring for proposed RFs model.

The outliers are observations whose value is far from the value of the
rest of the data in a same data set, and these values are considered to
have a negative impact on estimation and the accuracy of prediction
process, so after estimating the important variables, the outlier values
are detected and removed from the data set. The MATLAB line code
numbers (64-91) in Appendix C describe the outliers detected process
for proposed RFs model by using cluster analysis and applied it by

computing the proximity matrix (fillProximities) code.
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Stage II:

After training stage which the important variables were estimated, and
the outliers detected and removed, the random forest algorithm train
and test using the values of experiment number four, five and seven

to predicted the output current for PV module.

. The values of RMSE, MBS, and MAPE are compute for all data, and

then the minimum values of metric errors use to evaluate the predicted
result for PV module output current. The MATLAB line code
numbers (92-255) in Appendix C describe the predicting output

current for PV module using developed RFs model.

Stage III:

In this stage the optimum number for tree number and minimum leave
number was found through the for-loop process. The numbers of trees
and leaves are set 500 and 50 respectively. Through this loop the value
of metric errors (MSE, MBE, RMSE, and MAPE) was found and
reliance on the value of the RMSE in finding the optimum number of
leaves. The MATLAB line code number (257-306) in Appendix C
describe the process of finding optimal number for Tree number and

minimum leave number.

ii. The optimum I-V curve of experiment seven is estimated through the

for loop and comparing it with pervious result obtained from stage
two. The MATLAB line code numbers (308-337) in Appendix C

describe the testing result for this stage.
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Finally, The I-V Curve prediction result of developed RFs model at
318.32(K) Temperature value was compared and plot with different solar
irradiation levels. The MATLAB line code number (338-351) in Appendix
C describe the I-V Curve Prediction Result of RF at T=318.32(K) and
different solar irradiation levels. And The I-V Curve prediction result of
developed RFs model at 978 (W/m?) solar radiations was compared and plot
with different temperatures levels. The MATLAB line code numbers (353-
362) in Appendix C describe the I-V Curve Prediction Result of RF

SI1=978(W/m?) and different temperatures levels.
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Figure 3.3: The final step in stage three for RFs proposed model
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Chapter IV

Results and Discussion

4.1 Introduction

In this research, the database collected for 120Wp polycrystalline PV module
by performing seven experiments under different conditions of cell
temperatures and solar radiations to measure the current values and voltages
values of the solar PV cell, where the number of readings of the seven
experiments reached approximately 490 readings recorded by (I-VV400-solar
PV analyzer)), and approximately 5,000 readings were theoretically
calculated.; to extract the I-V curve through a new model based on random
forest technique. Table 4.1 represent the most important point for these
experiments, where the Short circuit current (Isc) cannot be obtain at V equal
zero, so the values in this table represent the maximum values current at

minimum values of voltage.
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Table 4.1: the most important point of the experiments was obtained by

(1-V400-solar PV analyzer)

Temperature Solar Open Max. circuit
(k) Radiation | circuit current (Im)
(W/m?) | voltage
(Voc)
Exp. 1 318.32 118.28 17.5 0.84 Aat0.38V
Exp.2 321.25 148 17 0.88 A at 9.6699 V
Exp.3 327.7 306 17.6 1.98 A at 0.5874 V
Exp.4 324.21 711 18.3 448 A at0.675V
Exp.5 329.1 780 18.5 52Aat0.6V
Exp.6 331.42 840 18.3 545Aat04V
Exp.7 328.56 978 18.5 6.48 Aat 0.48 V

4.2 Results of proposed model of I1-V curve extraction

In the developed RFs model, the data divided into training phase and testing
phase to check the accuracy of the proposed model. Based on the information
in chapter 3, the numbers of trees take 500 and the number of leaves take 5
as default value to estimate the variable importance and discover the outliers
in the datasets. Variable importance VI represents the statistical significance
of each variable in the data with respect to its effect on the resulting model.
VI is the classification of each predictor based on the contribution of
predictors to the model. This technique helps to dispose some of the
predictors who are not contributing anything and that instead add time to
processing. Figure 4.1 represent the variable importance for five parameters;
ambient temperature, solar radiation, PV DC voltage, short circuit current,
and open circuit voltage. The most variable importance is solar radiation with

a rate of 1 from 1.5, for ambient temperature 0.95 from 1.5, and 1.45 from
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1.5 for PV DV voltage. As this result the ambient temperature, solar
radiation, PV DV voltage parameters used as input data for the proposed RFs

model.

Variable Importance

[ 1: Ambient Temp,, 2: Solar Radiation, 3: PV DC Voltage

0.5

Out-of-Bag Variable Importance

Variable Number

Figure 4.1: The variable importance

In next step, the outliers detected by cluster analysis. Cluster analysis is a
type of statistical method that can be applied to data. Clustering analyzes is
the task of grouping a set of data in such a way that data in the same group
(called a cluster) are more similar to each other than to those in other groups
(clusters). It is used in many fields, including pattern recognition, image
analysis, information retrieval, bioinformatics, data compression, computer
graphics and machine learning. Many typical clustering models are used,
namely, subspace model, connectivity model, centroid model, density
model, group model, distribution model, and graph-based model. A normal

distribution model is used to analyze the data set. Figure (4.2) shows the



52
distribution of training data by cluster analysis, Figure 4.3 represent the

percentage of outliers for training data group detected by cluster analysis.

Cluster Analysis
057

0.4 r x
03r
02r

01r
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-0.1F

0
021
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1st Scaled Coordinate

Figure 4.2: The cluster analysis for training data

The Outliers
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Figure 4.3: The outliers are detected in the training data
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Through the RFs algorithm of this proposed model, the number of trees and
leaves were improved through an iterative method for a number of trials up
to 25,000, through the designation of 500 trees and 50 leaves, where the best
number of trees and leaves were searched to obtain the optimized parameters
of proposed model based on the result of RMSE, where the best value for the
tree and the leaf is equal 3, 6 respectively. .At these values Metric error
((Mean Bias Error (MBE), Root Mean Square Error (RMSE),and Mean
Absolute Percentage Error (MAPE) ) were calculated which have the best
error value and which give an indication of the accuracy of this proposed
model for extraction the 1-V curve of the solar PV module. Figure 4.4 show
the trees grown in the forest. Figure4.4 shows how the trees are built in the
forest by using Tree Bagger algorithm for regression, which grows the
decision trees in the ensemble using bootstrap samples of the data. this
algorithm selects a random subset of predictors to use at each decision split

to obtain the PV module
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Figure 4.4: The trees grown in the forest

e Testing Results
In the proposed model, the datasets of experiment number five, and seven
was tested which is considered part of the training data, and the dataset of
experiment number four were used for the testing stage only. The selected
of the experiments are randomly from all experiment to shows the
performance of the MATLAB code. Figure 4.5 represents the 1-V curve

of the PV module was obtain from RFs proposed model and the actual I-
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V curve by the theoretical data for experiment number four. Where this

experiment was performed at solar radiation 711 w/m2, and 324

I-V Curve Prediction Result Vs Actual Result EXP4
4.5 —~— T . T : T . . T
== |-V Curve Predicted
4r = |-\/ Curve Actual T
35T
g9
=
P25
5
[&]
© 27
(s}
>
o 15¢
1+
0.5
0 2 4 6 8 10 12 14 16 18 20
PV DC Voltage (V)

Figure 4.5: The I-V curves of the PV module at experiment four

Figure 4.6 represents the predicted I-V curve and actual 1-V curve for the PV
module at experiment number five, where this experiment was performed at
solar radiation 780 w/m?, and 329.1 k as cell temperature, and the actual 1-V

curve by the theoretical data.

I-V Curve Prediction Result Vs Actual Result EXP5

= |-V Curve Predicted
= |-\/ Curve Actual

5 | S ~——

I

PV DC Current (A)
w

N
T

0 2 4 6 8 10 12 14 16 18 20
PV DC Voltage (V)

Figure 4.6: The I-V curves of the PV module at experiment five
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The last test was done on experiment number seven. Figure 4.7 represents
the predicted I-V curve and actual I-V curve for the PV module at experiment
number seven, where this experiment was performed at solar radiation 978
w/m?, and 328.56 k as cell temperature, and the actual I-V curve by the

theoretical data.

I-V Curve Prediction Result Vs Actual Result EXP7

w—— |-\/ Curve Predicted
=== |-\/ Curve Actual

w B
T T

PV DC Current (A)

N
T

0 2 4 6 8 10 12 14 16 18 20
PV DC Voltage (V)

Figure 4.7: The I-V curves of the PV module at experiment Seven

In the last step of the testing stage as mentioned in Chapter 3, the data of
experiment number seven was entered into the for loop to extract the
optimum current-voltage curve at the optimum number of leaves. Figure 4.7
represents the optimum |-V curve of the PV module at experiment seven and
comparing it with actual curve and the curve was extracted in the testing

phase.
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Whereas, if the number of readings for experiments increases, there is a
greater convergence between the actual curve and the predicted curve of the

proposed model.

1V Cuéve Predection Result for EXP7 << Optimal Vs NonOptimal >> Vs actual result

= |-\/ Curve Predicted optimized
=== |-V Curve Predicted Non-optimized
B = |-\/ Curve Actual

PV DC Current (A)
w e

N
T

0 2 4 6 8 10 12 14 16 18 20
PV DC Voltage (V)

Figure 4.8: The optimum I-V curve of the PV module at experiment seven compared
with actual curve and the curve was extracted in the testing phase.

Through the previous results, we note that the experiments no. (5,7) on
which the training and testing processes were performed on it ; the I-V
curves of the PV Module were near, and the difference between them were
less than the results of Experiment No. 4 ,where it underwent the test
process only. One of the characteristics of the random forest algorithm is
that the differences in the results become very small When the number of
training times for the data set reached a certain limit, this appeared when
the number of training times was increased for experiment # 7.

In the final step in the developed RFs model, I-V curve was predicted at

cell temperature equal to 318.32 k with different values of solar radiation,
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figure 4.9 represented it .And at solar radiation equal to 978 w/m? with

different temperatures levels, the I-V curve of PV module was predicted as

shown in figure 4.10.

Current

1-v Cénéve Prediction Result of RF @ T=318.32(K) and different solar iraddiation levels
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Figure 4.9: The predicted I-V curve at T=318.32 k with different solar radiation
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Figure 4.10: The predicted I-V curve at RS=978 W/m? with different cell temperature

e Testing Result with Correction factor

For each trial, we have some error between the results of predicted I-V

curve and actual 1-V curve for the PV module. In this thesis we have

decrease the error by use correction factor techniques. A correction factor

defined as is any mathematical modification made to a calculation to
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account for deviations in either the sample or the method of measurement.
A correction factor was used as a factor multiplied with the result of an
equation to correct for a known amount of systemic error. The MATLAB
line code in Appendix D describe the RFs proposed model with correction
factors are used to minimize the error between the predicted I-V curve
and actual 1-V curve for PV module. The figures (4.11, 4.12, 4.13, and

4.14) represent the results of RFs proposed model with correction factor.

& 1-V Curve Prediction Result Vs Actual Result EXP4
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Figure 4.11: The I-V curve of the PV module at experiment four with correction factor
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Figure 4.12: The 1-V curve of the PV module at experiment five with correction factor
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Figure 4.13: The I-V curve of the PV module at experiment seven with correction factor
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Figure 4.14: the optimum i-v curve of the pv module at experiment seven compared with
actual curve and the curve was extracted in the testing phase with correction factor

4.3 Evaluation of the proposed model

The proposed model for extracting the current-voltage curve of the solar PV

module was evaluated based on the values of metric errors (MBE, RMSE,

and MAPE) resulting after the training and testing stages of the datasets.

Table 4.2 represent the best results of metric errors for the proposed model,

where these values accrued in best number of trees a best number of leaves.
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Table 4.2: the result of metric errors for the proposed model.

MBE (%) | RMSE (%) | MAPE (%)

RFs proposed

model -0.3959

0.04251 4.31509

Table 4.3, table 4.4, and table 4.5 show the result of metric errors (MBE,
RMSE, and MAPE, respectively to 25,000 trials for 500 trees with 50 leaves

in each tree.

Table 4.3: the result of Mean Bias Error (MBE) for RFs proposed model

Leaf 1 2 .. 5 6 . 10....] 20.... 50
Tree
1 0.18896 |-0.08076(-0.17902|0.48033|-0.05771(-0.10043| 0.05663
3 0.214677 |0.308013| 0.29900 |-0.3959 | 0.04980 |-0.08539 |-0.09927
10 -0.07209 |-0.05179| 0.00771 |0.04949| 0.06128 | 0.13115 | 0.15310
100 0.03941 | 0.10096 | 0.02513 |0.07523| 0.05163 [-0.00876| 0.01481
300 0.04997 | 0.02055 | 0.01544 |0.03386| 0.03934 | 0.01328 | 0.01351
500 0.02929 | 0.04009 | 0.03944 |0.04106| 0.04679 | 0.03048 | 0.01845
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Table 4.4: the result of Root Mean Square Error (RMSE) for RFs

proposed model

Leaf 1 2. 5 6 . 10....] 20.... 50
Tree
1 1.88368 | 1.85450 | 0.81762 | 2.07870 | 1.85131 | 0.50525 | 0.61937
3 1.89406 |0.992791|0.598618| 0.04251 |1.014668|0.285986|0.473203
10 0.51075 |0.530405(0.251615|0.511941|0.534778|0.560651|0.848940
100 0.36303 | 0.42492 | 0.28712 | 0.40440 | 0.36265 |0.358138(0.582668
300 0.33245 | 0.28839 | 0.32164 | 0.41448 | 0.41718 |0.414510(0.616914
500 0.320275 |0.318481/0.371127|0.320936|0.333158|0.409864 0.592151
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Table 4.5: the result of Mean Absolute Percentage Error (MAPE) for

RFs proposed model

Leaf 1 2 ... 5 6 ... 10....] 20.... 50
Tree

1 Inf 31.9164 | 16.6976 | 34.2800 | 31.9230 | 13.6579 | 17.8608
3 Inf 24.0772 | 17.2095 | 4.31509 | 21.9908 | 10.0069 | 14.2238
10 Inf 15.8529 | 10.8672 | 15.2129 | 15.1176 | 16.0436 | 19.9223
100 Inf 14.3310 | 10.7645 | 13.2961 | 12.1858 | 11.5250 | 14.6171
300 Inf 10.9092 | 11.3401 | 13.2350 | 13.3008 | 12.6556 | 15.0241
500 Inf 11.4029 | 12.6062 | 11.5126 | 11.7666 | 12.7097 | 14.7072

After obtaining the results of the proposed model, these results of the model
were compared with some previous models to extract the I-V curve of the
solar PV module using different methods. The MAPE value was used as a
measure of the accuracy of these models. Table 4.6 shows the results of this

comparison. This table take from (Khatib, T et al,2018)
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Table 4.6: The Comparison between Different Methods of Extracting
the 1-V curve of the Solar PV Cell

I-V curve extraction Method Accuracy | Type
variable resistance (Van Dyk et al., 2005) 78% Online
capacitive load (Mahmoud, 2006; Mufioz and Lorenzo, 80% Online
2006)

MOSFETSs (Kuai and Yuvarajan, 2006) 91.6% Online
Boost converter (Khatib et al., 2017) (61-67)% Online

Artificial neural network (Karatepe et al., 2006; Celik, 2011; |(85.3-99.5)% |Offline

Bonanno et al., 2012;khatib,T. et al.,2018)

Numerical methods (Bai et al., 2014; Ma et al., 2014; Tossa |(90.5-99)%  |Offline
et al., 2014; Easwarakhanthan et al., 1986; Navabi et al.,
2015; Hejri et al., 2014;Villalva et al., 2009;Dkhichi,F. et

al., 2014)

Evolutionary algorithms (Sharma et al., 2012; Dizgah et al., | (78-98.6)% |Offline
2014; Moldovan et al., 2009; Ismail et al., 2013; Zagrouba et
al., 2010; AppelbaumandPeled, 2014; Jervase et al., 2001;
Khanna et al., 2015; Ye et al., 2009; Jing Jun and Kay-Soon,
2012; Alam et al., 2015; Hasanien, 2015;Ishaque and Salam,
2011; Ishaque et al., 2011; Ishaque et al., 2012; Jiang et al.,
2013; Gong and Cai, 2013; Siddiqui and Abido, 2013;

Muhsenet al., 2016; Muhsen et al., 2015)

Random Forest Technique (Ibrahim,l.A et al.,2018) 91.28%  |Offline

Proposed Model 95.68%  |Offline
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4.4 Chapter Summary

In this chapter, the results of the proposed model for predicting the current-
voltage curve for PV module were clarified. This Results showed the low
values for errors. The RMSE, MAPE, and MBE values are equal to (0.04251,
4.315097, -0.3959), respectively of proposed RFs model. The value of
MAPE was adopted to compare the proposed RFs model with other models.
As these results clarified the Relatively high accuracy of the proposed model
compared to previous models from online method and good accuracy
compared with other offline method. And because of lack of data, correction
factor was used to reduce the difference between the actual 1-V curve and
predicted I-V curve of proposed model, to obtain better result for the RFs

proposed model.
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Chapter V

Conclusion and future work

5.1 Conclusion

In this thesis, the aim was to predict the current-voltage curve of the
photovoltaic module and to obtain the optimum state through random forests
technique as new technique, then compare this model with other previous
prediction models and verify the accuracy of this proposed model.
MATLAB, 2016 program was used to develop this model and to train and
test the data sets.

The proposed model was presented for prediction through a set of
experiments on a solar PV module (STF - 120P6), and use the parameters
(ambient temperature, solar radiation, PV DV voltage, short circuit current,
and open circuit voltage) as inputs for this model.

The accuracy and success of the proposed model were verified by
comparison with the actual model resulting from the theoretical calculations
and then finding the values of metric errors (RMSE, MAPE, and MBE),
where these values to (0.04251%, 4.315097%, - 0.3959%), respectively. A
value of (MAPE) was relied on to verify the accuracy of the proposed model
which is equal to (4.315097%) By comparison with previous results, it is
clear that the proposed model is more accurate than others RFs model, But
there are still other, more accurate methods of extracting the 1-V curves of a
solar PV module, such as artificial neural network techniques .. After

obtaining the previous results, the correction factor was used to reduce the
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difference between the actual 1-V curve and the predicted |-V curve of the

proposed model.

5.2 Suggestions for Future Work

This research work included presenting a new method for predicting the PV
module output current. the proposed model was achieved high accuracy
compared to the results of other models. However, for further improvement
and development of this research, the following suggestions are presented:

- Developing the proposed model by make a greater number of experiments
at different temperatures and solar radiation to increase the number of data
in the training phase and use other factors such as the inputs of
meteorological variables.

- Apply the proposed model on more than one type of new solar PV module
with different rated power.

- Development of the proposed model and use it in simulating solar energy

systems such as On-grid system and Off-grid system.
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Appendix A

Samples of experimental data used in the developed RFs model

for predicting 1-V curve for photovoltaic modules

SOLAR
EXP# |TEMPERATURE RADIATION VOLTAGE | CURRENT

318.32 118.28 17.5 0
318.32 118.28 17.202 0.04
318.32 118.28 16.917949 0.08
318.32 118.28 16.6 0.12
318.32 118.28 16.863636 0.16
318.32 118.28 16.145455 0.2
318.32 118.28 16.505263 0.24
318.32 118.28 16.386667 0.28
318.32 118.28 16.369014 0.32
318.32 118.28 16.388679 0.36

1 318.32 118.28 16.053968 0.4
318.32 118.28 15.816667 0.44
318.32 118.28 15.549091 0.48
318.32 118.28 15.336 0.52
318.32 118.28 15.184285 0.56
318.32 118.28 15.151665 0.6
318.32 118.28 14.505357 0.64
318.32 118.28 14.041026 0.68
318.32 118.28 13.979268 0.72
318.32 118.28 11.913636 0.81
318.32 118.28 12.033333 0.8
318.32 118.28 0.38 0.84
321.25 148 17 0
321.25 148 17.0688 0.04
321.25 148 16.9625 0.08
321.25 148 16.818 0.12

2 321.25 148 16.6939 0.16
321.25 148 16.5526 0.2
321.25 148 16.5079 0.24
321.25 148 16.4356 0.28
321.25 148 16.3479 0.32
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321.25 148 16.2391 0.36
321.25 148 16.1125 0.4
321.25 148 16.0339 0.44
321.25 148 15.8708 0.48
321.25 148 15.7375 0.52
321.25 148 15.5468 0.56
321.25 148 15.3899 0.6
321.25 148 15.1718 0.64
321.25 148 14.9697 0.68
321.25 148 14.5769 0.72
321.25 148 14.307/8 0.76
321.25 148 13.3289 0.8
321.25 148 12.878 0.84
321.25 148 9.6699 0.88
321.25 148 11.347 0.92
328.56 978 18.5 0

328.56 978 18.6 0.04
328.56 978 18.3 0.32
328.56 978 18.4 0.4
328.56 978 18.1 0.56
328.56 978 18.2 0.64
328.56 978 18.3 0.88
328.56 978 17.9 2.04
328.56 978 17.7 2.12
328.56 978 17.8 2.16
328.56 978 17.7 2.24
328.56 978 17.3 2.88
328.56 978 17.2571 2.92
328.56 978 17.2125 2.96
328.56 978 17.2429 3

328.56 978 17.2269 3.04
328.56 978 17.1438 3.08
328.56 978 17.108 3.12
328.56 978 17.0239 3.16
328.56 978 16.9958 3.2
328.56 978 17.0286 3.24
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328.56 978 16.9169 3.28
328.56 978 16.8667 3.32
328.56 978 16.8617 3.36
328.56 978 16.8586 3.4
328.56 978 16.7228 3.44
328.56 978 16.6462 3.48
328.56 978 16.5982 3.52
328.56 978 16.6909 3.56
328.56 978 16.5854 3.6
328.56 978 14.944 5.04
328.56 978 14.8707 5.08
328.56 978 14.7861 5.12
328.56 978 14,7451 5.16
328.56 978 14.704 5.2
328.56 978 12.8598 5.88
328.56 978 12.7618 5.92
328.56 978 12.5309 5.96
328.56 978 12.34 6

328.56 978 12.0302 6.04
328.56 978 11.8319 6.08
328.56 978 11.3095 6.12
328.56 978 10.8729 6.16
328.56 978 10.0281 6.2
328.56 978 6.7812 6.24
328.56 978 2.3873 6.28
328.56 978 1.2065 6.32
328.56 978 0.6901 6.36
328.56 978 0.5299 6.4
328.56 978 0.475 6.44
328.56 978 0.48 6.48
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Appendix B

Samples of theoretical data used in the developed RFs model

for predicting 1-V curve for photovoltaic modules

MATH SOLAR

5 | TEMPERATURE | o >0 0 | VOLTAGE [CURRENT
318 118.28 17.4102 0
318 118.28 17.4082 | 0.001
318 118.28 17.4062 | 0.002
318 118.28 174042 | 0.003
318 118.28 174021 | 0,004
318 118.28 17.4001 | 0.005
318 118.28 17.3981 | 0.006
318 118.28 17.3961 | 0.007
318 118.28 17.3941 | 0.008
318 118.28 17.3921 | 0.009
318 118.28 17.39 0.01
318 118.28 17.388 | 0.011
318 118.28 17.386 | 0.012
318 118.28 17.3839 | 0.013
318 118.28 17.3819 | 0.014

M1 318 118.28 173799 | 0.015
318 118.28 17.3778 | 0.016
318 118.28 17.3758 | 0.017
318 118.28 173737 | 0018
318 118.28 173717 | 0.019
318 118.28 17.3696 | 0.02
318 118.28 7.6226 0.83
318 118.28 72522 | 0831
318 118.28 6.8006 | 0.832
318 118.28 6.2218 | 0833
318 118.28 54149 | 0.834
318 118.28 40733 | 0835
318 118.28 20.9754 | 0.836

o 321.25 148 18.3005 0
321.25 148 18.2985 | 0.005
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321.25 148 18.2966 0.01
321.25 148 18.2946 0.015
321.25 148 18.2926 0.02
321.25 148 18.2906 0.025
321.25 148 18.2886 0.03
321.25 148 18.2866 0.035
321.25 148 18.2846 0.04
321.25 148 18.2826 0.045
321.25 148 18.2807 0.05
321.25 148 18.2787 0.055
321.25 148 18.2767 0.06
321.25 148 18.2747 0.065
321.25 148 18.2727 0.07
321.25 148 18.2707 0.075
321.25 148 18.2687 0.08
321.25 148 18.2666 0.085
321.25 148 18.2646 0.09
321.25 148 18.2626 0.095
321.25 148 18.2606 0.1
321.25 148 8.5672 5.385
321.25 148 8.3775 5.39
321.25 148 8.1694 5.395
321.25 148 7.9391 54
321.25 148 7.6812 5.405
321.25 148 7.3882 541
321.25 148 7.0489 5.415
321.25 148 6.646 5.42
321.25 148 6.1501 5.425
321.25 148 5.5047 5.43
321.25 148 4.5789 5.435
321.25 148 2.9206 5.44
321.25 148 -1.0368 5.445
328.56 978 18.4009 0
M7 328.56 978 18.3979 0.01
328.56 978 18.395 0.02
328.56 978 18.3921 0.03
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328.56 978 18.3892 0.04
328.56 978 18.3862 0.05
328.56 978 18.3833 0.06
328.56 978 18.3804 0.07
328.56 978 18.3774 0.08
328.56 978 18.3745 0.09
328.56 978 18.3715 0.1
328.56 978 18.3685 0.11
328.56 978 18.3656 0.12
328.56 978 18.3626 0.13
328.56 978 18.3596 0.14
328.56 978 18.3566 0.15
328.56 978 18.3536 0.16
328.56 978 18.3506 0.17
328.56 978 18.3476 0.18
328.56 978 18.3446 0.19
328.56 978 18.3416 0.2
328.56 978 10.5631 6.17
328.56 978 10.4054 6.18
328.56 978 10.2351 6.19
328.56 978 10.0498 6.2
328.56 978 9.8469 6.21
328.56 978 9.6225 6.22
328.56 978 9.3716 6.23
328.56 978 9.0872 6.24
328.56 978 8.7587 6.25
328.56 978 8.3703 6.26
328.56 978 7.8949 6.27
328.56 978 7.2821 6.28
328.56 978 6.4189 6.29
328.56 978 4.9458 6.3
328.56 978 -5.8886 6.31
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Appendix C

MATLAB code used to develop RFs model for predicting I-V

curve for photovoltaic modules

Stages

1 $%Random Forests-Regression --- Prediction - First

2

2 clear; clac;

4 load ("DATA . .mat ") ;load ("NEW DATA.mat'");load('Inpult EXP.mat');leoad ("TESTL.mat') ;
5

6 F((TRAINING STAGE) )3

7

8 CURRENT EXP1 7 = [Output EXPl, Output EXPZ,

Output EXP6,Output EXP7];

9 INPUT EXP1_7 [Input EXP1, Input EXP2,

Output EXP3,0Output EXP4,

Input EXP3, Input EXP4,

Output EXPog

Input EXPOw

array

array

arbitrary cutoff ate

ITnput EXPE, Tnput EXPT];

10

11 S=INPUT_EXP1l 7(2,:); % Solar Radialion

12 T=INPUT_EXP1_7(1,:); % Ambient Temp (°C)

13 V=INPUT_EXPl 7(3,:); % experimantal PV DC Voltage (V)

14 T=CURRENT EXP1 7; % experimantal PV DC Current (A)

15

16 %helete EXP4 From training stage

17 CURRENT EXP1 7 (:,[97:1871)=[1;

18 INPUT _EXP1 7(:, [97:187]1)=[1:

19 DATA EXP([97:1871,:)=[1:

20 Out EXPL_7([97:187],:)=[]:

21

VAR T TR R R R I R R L R R R R R R R R R R R R R L R R R R R R R L L R R I R R R R T R R L R L R R LR
23 %RF Training Cod

24

25 Y=tableZarrayiOut EXP1 7); Split data into response
26 ticID=tic;

27 X=[DATA_ EXP(:,1:2),DATA EXP(:,5:6)1; % Split data into predictor
28 t£=500; % Trees Number

29

30

31 &B=TreeBagger (t,X,¥, 'method', 'regression', 'oocbpred', 'on"');

32 B=TreeBagger(t,X,Y,'method', 'classification', 'oobpred’, 'on') ;

33 view(B.Treesgs{t},"Mode', "Graph');

34

35 %Estimating Variable Importance

36 B=TreeBagger (t,X,Y,"'method', 'regression', "oobvarimp', 'on'") ;

37 figure('name', 'BEstimating Variable TImportance', '"NumberTitle', "off ") ;
38 plot(oobError(B),'LineWidth', 2)

329 xlabel{'Number of Grown Trees';

40 ylabel ('Out-of-Bag Mean Squared Error®;

41

42 %%Most Important Variables

43 figure('name', 'Most Important Variables', "NumberTitle', 'off");

44 bar (B.COOBFermutedvVarDeltakrror)

45 title("Variable Importance') ;

46 xlabel ("Variable Number ;

47 vlabel('Out-of-Bag Variable Importance") ;

48 legend({'l: Ambient Temp,, 2: Solar Radiation, 3: PV DC Voltagel):;
49 nidx = find(B.OOBPermutedVarDeltabrror<0.65); tlmposing an
0.65 - Not Important Variables

50

51 %%Fraction of in-Bag Obgervaticon "Which observations are out of

bag Lor whick
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trees™

52 finkbag = zeros(1l,B.NTrees);

53

54 for t=1:B.NTrees

55 finbag(t)=sum(all (~B.00BIndices(:,1:t),2));

56 end

57

58 finbag finbag/size (X,1);

59 figure('name', '"Which observations are cut of bag for whicle
trees', "NumberTitle', 'off")

60 plot{(finbag,'Linewidth',2)

61 xlabel ("Number of Grown Trees'):

62 vylabel ('Fraction of in-Bag Observations?") ;

63

64 229222252222 22222222222522222222552222222252222222255222222225222222222222222%
] ]

65 $%Finding The Outliers

3

67 BI=fillProximities(B); $Proximity Matrix that used
68

69 figure('name', 'The Outliers', 'NumberTitle', 'off")
70 %$hist(BI.OutlierMeasure)

71 histogram(BI.OutlierMeasure)

72 title("The Outliers'");

73 xlabel ("Outlier Measure');

74 vylabel ("Number of Observations!');

75

76 %%Discovering Clusters in the data

77

78 figure('name', 'Discovering Clusters in the data'’, "NumberTitle', 'off ")
79 [~,e] = mdsProx(BI,'colors', "K");

B0 title('Cluster Analysis');

81 xlakel('lst Scaled Coordinate;

82 vylakel('2nd Scaled Coordinate?)

83

B4 %%Assess the Relative Importance of the scaled axes by plotting the first 2e
eigenvalues

85 figure('name', 'Assess the Relative Importance of the scaled axes by plotting the
first 20 eigenvalues!, "NumberTitle', 'off")

B6 bar(e(1:20));

87 xlakel('Scaled Coordinate Index" ;

88 vylakel ('Eigen Value');

89

90 %$Saving The compact version of the Ensemble

91 compact (B} ;

92

0% 22952508¢92852598¢90850592¢906508926908808520628508¢20628508690698558¢90690

94 %%% ((TESTING STAGE))%%%

95

96 %$Testing data - For EXP4

97

98 Vtest4 = Input EXP4(3,:)";

99 Ttest4d Cutput EXP47';
100 %RF Testing Code
101 Xtest4=Input EXP4';



82

102 [Yfitd,~]= predict(B,Xtestd);

103 figure('name', 'EXP4 IV Curves', 'NumberTitle', 'off")
104 plot (Vtestd,¥Yfitd,'blue','LineWidth',2)

105 hold on

106 plot (Vtestd,Itestd, 'red', 'LinewWidth',2)

107 xlabel ('PV DC Voltage (V) ") :

108 ylakel ("PV DC Current (A) ") ;

109 legend({'I-V Curve Predicted', 'I-V Curve Actual'});
110 title ('I-V Curve Prediction Result Vs Actual Result EXP4 %Y 'LineWidth', ¥
14, 'FontWeight', 'bold', "Color', 'k")

111 hold off

112

113 figure('name', "EXP4-ERROR', 'NumberTitle', 'off"’

114 E = abs(Itestd4-¥Yfit4dy;

115 plot (E,'LineWidth’,2)

116 xlabel('pv dc current');

117 vlabel ("Magnitude (A&)");

118 title('Error');

119 toc(ticID):

120 %RF-Performance

121 %Mean Bias Error (MBE} or Mean Forecasting Error (MFE) in Amp.// Averagw
Deviation Indicator

122 MBE=(sum(Itest4 (:)-Yfit4(:)))./numel (Itestd);

123 if (MBE<O)

124 F='Over forecasted';

125 elseif (MBE>0)

126 F='Under Forecasted';

127 elseif (MBE==0)

128 F='Ideal Forecasted';

129 end

130 %Mean Absolute Percentage Error (MAPE) // Accuracy Indicator

131 MAPE =(abs((sum((Itestd (:)-YE£itd(:))./Itestd(:)))./nunel (Itest4))*100);
132 %Root Mean Square Error (RMSE) in Amp. // Efficiency Indicator

133 RMSE=sum( (Itestd (:)=-Yfitd (:))."2) /numel (Itestd);

134

135 2%2%2%%2%25%%2%%2239%%352%%222%2%%%225%2%35%%2%5%2%%983%2%%222%25%%552%298359%%2%%%2%%

136 30utputs
137 2900 0000020200 %0000 %0020000200%92000020020000%00%200020000%06000%000000500 00 %0000

138

139 nl=['Mean Bias Error(MBE): ", num2str(MBE),' (A} "', '{Average Deviation Indicator};
140 n2='Forecasting Status:F';

141 n3=['Mean Absolute Percentage FError (MAPE): ', numZ2str (MAPE),':s",'{Accuracy¥
Indicator}'];

142 nd=['Root Mean Sguare Error (RMSE): 'ynum2str(RMSE),'(A)',"{Efficiency¥
Indicator}'];

143 disp(nl
144 disp/(
145 disp/(
146 disp(
147 585338805085 580000 5858308000005 8003000525552 25%0%%5%%%5%%%%95%5%%5%%3%%5%%%
148

149 %Testing data - For EXPS

150

151 Vtest5 = Input EXP5(3,:)';
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152 ItestS = Output EXP3';

153 %load('Data EXP1 6.mat');

154 %RF Testing Code

155 XtestS=Input EXP5';

156 [Yf£it5,~]= predict(B,Xtesth);

157 figure('name', 'EXP5 IV Curves', 'NumberTitle', 'off"')
158 plot (VtestS,Yfits,'blue’, 'LineWidth',?2)

15% hold on

160 plot (Vtestb,Itesth, 'red','LineWidth',2)

161 xlabel ('"PV DC Voltage (V) ') ;

162 vlabel ('PV DC Current (A)');

163 legend({{'I-V Curve Predicted', "I-V Curve Actual'});
164 title ('I-V Curve Prediction Result Vs Actual Result EXPS5 % 'LineWidth', e
14, 'FontWeight!', thold', "Color', 'k'")

165 hold of f

166

167 figure('name', '"EXPE-ERROR', "NumberTitle', 'off"')

168 E = abs(Itestb-Yfith);

169 plot(E,'LineWidth',2)

170 xlabel({'pv dc current!);

171 vlabel ('Magnituds (A)");

172 title('Error");

173 toc(ticID) ;

174 SRF-Performance

175 %Mean Bias Frror (MBE) or Mean Forecasting Error (MFE) in Amp.// Averagw
Deviation Indicator

176 MBE=(sum(ItestS(:)-YEit5(:)))./numel (Itesth);

177 if MBE<O

178 F='Over forecasted";

179 elseif MBE>O0

180 F='Under Forecasted';

181 elseif MBE==0

182 F='Ideal Forecasted';

183 end

184 2Mean Rbhsolute Percentage Error (MAPE) // Rccuracy Indicator

185 MAPE =(abs({sum((Itesth(:)-YEit5(:))./Itesto(:)))./numel (Itesth))*100);
186 %Root Mean Square Error (RMSE) in Amp. // Efficiency Indicator

187 RMSE=sum( (Itest5(:)-Yfit5(:))."2) /fnumel (Itests);

188

189 3232552328525 252 2535580355880 552%2%5%282%%253525%%5352085352%%%5%%82%%8%8%%5%¢%

190 %Outputs

191 2920000000 2020020000200000200000002002020000200000003200000002052000000000035053

192

193 nl=['"Mean Blas Errcr(MBE): ',num2str(MBE),'(A) ", '{Average Deviation Indicatcr}':
194 n2='Forecasting Status:i';

195 n3=["'Mean Absclute Percentage Error (MAPE): ' numZ2str (MAPE),'%',"[Accuracye
Indicator}'];

196 nd=['Root Mean Square Error (RMSE): Ynum2str{(RMSE),'(A)',"{Efficiencyw¥
Indicator}'];

197 disp(nl
198 disp(n2
195 disp(n3
200 disp(n4
201

)
)
)
)
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203
204
205
206
207
208
209
210
211
212
213
214
215
216
14,
217
218
219
220
221
220
223
224
225
226
227
228
229
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% ((TESTING STAGE)) %%
$Testing data - For EXP7
Vtest? = Input EXP7(3,:)';
Itest? = Output EXP7':

%RF Testing Code

Xtest7=Input EXP7';

[Yfit7,node]= predict(B,Xtest?);
figure('name', 'EXP7 IV Curves','NumberTitle', "off')
plot (Vtest7,Yfit7,'blue', "LinewWidth',2)

hold on

plot (Vtest7,Itest?, 'red', 'LineWidth',2)

title ('I-V Curve Prediction Result Vs Actual Result EXP7 ' 'LineWidth', ¥
FontWeight!', 'hold', '"Color?®, k') ;

xlabel ('PV DC Voltage (V) ');

vlabel ('"PV DC Current (A)");

legend ({'I-V Curve Predicted’, 'I-V Curve Actual'});
hold off

figure('name', 'EXF7-ERRCR', 'NumberTitle', 'off ')

E = abs(Itest7-Yfit7);

plot(E,'LineWidth',2)

xlabel ("pv dc current');

vlabel ("Magnitude (A)'");

title('Error');

toc(ticID) ;

$RF-Performance

$Mean Bias Error (MBE) or Mean Forecasting Error (MFE) in Amp.// Average

Deviation Indicator

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

MBE={sum (Itest7 (:)-YL£it7(:)))./numel (Itest?);

if MBE<O

F='Cver forecasted';

elseif MBE>0

F='Under Forecasted';

elseif MBE==0

F='Ideal Forecasted';

end

%Mean Absolute Percentage Error (MAPE) // Accuracy Indicator
MAPE =(abs((sum((Itest7(:)-Yfit7(:))./ItestT(:)))./numel (ItestT))*100);
%Root Mean Square Error (EMSE) in Amp. // Efficiency Indicator
RMSE=sum( (Itest? (:)-YL£it7(:))."2) /numel (ItestT);

nl=["'Mean Bias Error(MBE): " num2str(MBE),'(A)"','[Average Deviaticn Indicator}'l:
n2='Forecasting Status:F';
n3=["Mean Absclute Percentage kError (MAPE):' num2str(MAPE),'$",'[Accuracy¥

Indicator}'];

250

nd=['Root Mean Sguare Error (RMSE): “YnumZ2str(RMSE),'(A)',"{Efficiency¥

Indicator}');

251

disp(nl)
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252 disp(n2)

253 disp(n3)

254 disp(n4)

255

256 35ttt Rttt s e Rttt R et s8R0 55550555055%%%8%4%%
257 2020000000000 20002000020000020002020000000000200020200200000020020202000002002000
258

259 MSE2=[
260 MBEZ2=[
261 MAPEZ=
262 RMSEl=
263 RMSE2=
264 v=[];
265

266 for t=1:1:500

267 for 1=1:1:50

268 tic;

269 G=TreeBagger(tL,¥,¥

Y, 'method', 'regressicn', 'oobpred', 'on', 'ocbvarimp!', 'on', 'minleat’, 1) ;

270 G.NumTrees;

271 %%Saving The compact version of the Ensemble

2772 compact (G) ;

273

274 % ((TESTING STAGE)) %%

275 %RF Testing Code

276 [YfitO,nodel= predict(G,Xtest?);

277 %vit,1l)=toc;

278 v(t,l)=toc;

279 Eo = abs(Itest7-¥YfitQ);

280 $RF-Performance

281 %$Mean B ias Error (MBE) or Mean Forecasting Error (MFE) in Rmp. // Everage
Deviation Indicator

282 MBE2(t,1l)=(sum(Itest7(:)-YfitO(:)))./numel (Itest?);

283 if MBE2<0

284 F='Over forecasted';

285 elseif MBEZ2>0

286 F='Under Forecagted';

287 elseif MBEZ==

288 F='Ideal Forecasted';

289 end

290

291 % Mean Square Error

292 MSE1(t,1) = mse(Eo):

293

294 % Root Mean Sqguare Error

295 RMSEL1(t,1) = sgrt(MSE1(t,1));

296

297 $RMSEZ (t, l)y=gum( (Itest7 (:)-YL£itO(:))."2) /numel (Itest?);

298

299 % Mean Rbsolute Percentage Error (MAPE) // Accuracy Indicator

300 MRPE(t,1)= mean({(abs(Eo(2:end)./Itest? (2:end))));

301 SMAPEZ (t,1) = (abs((sum((Itesty (:)=-YLitO(:))./ITtest7(:)))./numel(Itest?))).*100;
302 3MRPEZ (t,1)=(sum(abs(Eo(:))./ (sum(Itest7(:))))).*100;

303
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304

305 end

306 end

307

308 9299999229099 00220092209200200020090200%200029922002002%20092480920020001200992000%0900
[ R =T B J - B I B« R« B~ B~ Tre e Jr+ B Jre e B« Ty B« By B« Jo B e Je B« e B B e G Ao e B« B e e A B e B e B A e A R A B B A e B A - B - e A A B e A A B A B - e R R R - B BRG]

309 ¢ finding optimal number for Tree number and minleave number

310 2002005000200200020000002000200020000000002000000020002000%2002000%005200070000
s st 5350535353585 %%38%%2%%%0%%%0%50005000500050%%5%%3%2%%%8%%588%%48%50484%

311

312 mi=min(RMSE1(t,1));
313 [A,Z2] = find(RMSE1l(t,1})==mi)
314

315 2222%2%2%%22%2222922222%%2%2%222%22%%29222329%%29%%22229292922%233222223%2%22%2

316 % Testing Result

317 999999999999999999995999999999999999999999999999999999999999999999999999999
318

319 Go=TreeBaggerit, X, ¢

Y, 'method', 'regressiont, 'ocbpred!', 'on', 'oobvarimp', ton', 'minleaf’, 1) ;

320 [Yfito7,node]= predict|(Go,Xtest?);

321 %view(Go.Trees{500}, 'Mode!, "Graph') ;

322 figure({'name', 'Optimizing Result IV Curve', 'NumberTitle','off")

323 plot (Vtest7,Yfite7,'blue!, "LineWidth',2)

324 hold on

325 plot (Vtest7,Yfit7,'red', 'LineWidth',2)

326 plot (Vtest7,Itest7,'k','LineWidth',2)

327 title ('I-V Curve Predection Result for EXP7 << Optimal Vs NonOptimal >> V&
actual result ', 'LineWidth', 14, 'FontWeight', 'bold', "Color', 'k'");

328 xlabel('PV DC Voltage (V) ')

329 ylabel ("PV DC Current (A)");

330 legend({'I-V Curve Predicted optimized ', "I-V Curve Predicted Non-optimized', 'I-V¢
Curve Actual'}l):

331 hold off

332

333

334 figure('name', 'EXP7 Optimize Vs Non-Optimze ERRORY, 'NumberTitle', 'offl)

335 E =abs(Itest7-Yfit7);

336 plot(E,'r', 'LineWidth',2)

337 hold on

338 Eoo = abs(Itest? - Yfito7);

339 plot(Eoo,'k', 'LineWidth', 2)

340 xlabel{'pv dc cureent');

341 ylabel("Magnitude (&) '),

342 title('Error");

343 legend({'Exp7 Error ','Exp7 Error Optimize'});

344 hold off

345

346 9992002200000 2920020009200 2000200020020002002200000292002000%92002%0008200020002000
347 %TEST DATA

348 3ttt et YNNIt LRLRLLY
349

350 Yt = predict(B,Testl!');

351 figure('name', 'Testl', "NumberTitle', 'off")

352 vti1=yt';

353 plot(Testl(3,1:201),Yt1(1:201),Testl (3,202:402),Yt1(202:402),Testl(3,403:603), VtE
(403:603),Test1(3,604:804),Yt1(604:804),Testl(3,805:1005),YE1(B05:1005),Testl(3,100¢ck
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1206),Yt1(1006:1206) ,Test1(3,1207:1407),YL1(1207:1407),Testl (2,1408:1608),Yt1{1408k
1608),Test1(3,16058:1809),Yt1(1609:1809}),Test1(3,1810:2010),Yt1(1810:2010),Testik
{3,2011:2211),Y£1(2011:2211),'LineWidth',2)

354 title ('I-V Curve Prediction Result of RF @ T=318.32(K) and different sola®
iraddiation levels ','LineWidth', 14, "FontWeight', 'bold", 'Color?', 'k!'

355 xlabel('Voltage','LineWidth', 14, "FontWeight', 'bold', 'Color"', k!

356 vlabel ('Current', 'LineWidth', 14, "FontWeight', 'hold', 'Color', 'k"'

357 lgd=legend ({'0 W/m"2', ' 100 W/m"2', ' 200 W/m™2*%, ' 300 W/m"2', '400 W/m"2', 'S500w
W/m*2', 600 W/m"2','700 W/m"2', "800 W/m"2','900 W/m"2','1000 W/m"2'},'FontSize!', ¥
10, 'TextColor?', 'black") ;

358 title(lgd,'Solar Irradiation W/m"21)

359

260 2%%%%%%%2%29%%9%%%%25%%2%%%%2%%2%%%%2%2%925%25%2%2%%%9%525%%%%%%%25%%%%%%29%29%%%%%%%
TED o6 Rl

361 Ytt=predict(
362 figure('name
363 Yt3=Ytt';
364 plot(Test3(2,1:201),Vt3(1:201),Test3(3,202:402),Yt3(202:402),Test3(3,403:603),vte
{403:603),Test3(3,604:804),Yt3(604:804),Test3(3,805:1005),Yt3(805:1005),Test3(3,100c%
1206 ,Yt3(1006:1206) ,Test3(3,1207:1407),¥t3(1207:1407),Test3(32,1408:1608),Yt3({1408%
1608Y,Test3(3,1608:1809) ,Yt3(1609:1804), Test3(3,1810:2010),Yt3(1810:2010),Test®
{3,2011:2211),Yt3(2011:2211),Test3(3,2212:2412) ,Y£3(2212:2412) }LineWidth"',2)

365 title ('I-V Curve Prediction Result of RF @ SI=978(W/m"2) and differen¥
femperatures levels ', 'LineWidth',14, 'FontWeight!', "hold", 'Color', 'k")

366 xlabel('Voltage','LineWidth', 14, "FontWeight', 'hold', 'Color', 'k"

367 ylabel ('Current', 'LineWidth', 14, "FontWeight', 'bold", 'Color?', 'k!'

368 lgd=legend ({'320 (K) '," 221 (K) ',' 322 [(K) ', ' 323 (K) ', ‘324 (K) ', '325¢
(K)', '326 (K) ', '327 (K)y ','328 (K) ','329 (K) ','330 (K) ','331 (K) '},'FontSize', ¥
10, '"TextColor?', 'black") ;

369 title(lgd,'Temperatures in Kelven'

370
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Appendix D

MATLAB code used to develop RFs model for predicting I1-V

-~ Oy U1 o= o NP

8
outp
9
Inpu
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
0.65
49
50

curve for photovoltaic modules with correction factor

2%$Random Forests-Regression --- Prediction - First Stage%

clear; clc;

load('DATA .mat ") ; load('NEW DATA.mat'); load('Input EXP.mat'); load('TEST1l.mat"):;

2 ( (TRAINING STAGE)) 3

CURRENT EXP1 7 = [Output EXPl, Output EXPZ, Output EXP3,Output EXP4, Output EXPO¥
ut EXPeo,Output EXP7];

INPUT EXP1 7 = [Input EXP1l, Input EXPZ, Input EXP3,Input EXP4, Input EXPO¥
t EXP6, Input EXP7];

S=INPUT EXP1l 7(2,:):; % Solar Radiation

T=INPUT EXP1 7(1l,:}); % Ambient Temp (°C)

V=INPUT EXP1 7(3,:); % experimantal PV DC Voltage (V)

I=CURRENT_EXP1_7: % experimantal PV DC Current (A)

2Delete EXP4 From training stage

CURRENT EXP1 7(:,[97:1871)=[];

INPUT EXP1 7(:,[87:187])=[]:

DATA EXP([97:187],:)=[1:

Out EXP1 7([97:187],:)=1[1:

$RE Training Codes

Y=tableZarray(Out EXP1l 7);: % Split data intc response array
ticID=tic;

X=[DATA EXP(:,1:3),DATA EXP(:,5:6)]; %2 Split data intoc predictor array
t=500; % Trees Number

$B=TreeBagger (t,¥,Y, 'method', "regression', 'oobpred'’, Ton') ;
B=TreeBagger (t,X,¥Y,'method’, "classification', "oobpred!', 'on');
view(B.Trees{t},Mode', "Graph') ;

2FEstimating Variable Importance
B=TreeBagger(t,X,Y,'method', 'regression', 'ocbvarimp', 'on") ;
figure('name', '"Estimating Variable TImportance’, 'NumberTitle', 'off");
plot{ocobError(B),'LinewWidth?', 2)

xlakel ("Number of Grown Trees') ;

vlakel ("Out-of-Bag Mean Sguared Error®;

$%Most Important Variakles

figure('name', '"Most Important Variables', "NumkberTitle', 'off');

bar (B.OO0BPermutedvVarDeltaError)

title('Variable TImportance?') ;

xlakel ("Variable Number' ;

vlabel ('Out-of-Bag Variable Importance") ;

legend({'1l: Ambient Temp,, 2: Solar Radiation, 3: PV DC Voltagel);

nidx = find(B.OOBPermutedvVarDeltakError<0.65); $Imposing an arbitrary cutoff ate

- Neot Important Variables

$%Fraction of in-Bag Observation "Which observations are cut of bag for whick
trees’
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51 finbkag = zeros(l,B.NTrees);

52

53 for t=1:B.NTrees

54 finbag(t)=sum(all(~B.00BIndices(:,1:t),2));

55 end

56

57 finbag = finbag/size (X,1};

58 figure('name', '"Which observations are out of hag for whiche
Lrees', 'NumberTitle', "off")

5% plot{finbag,'LineWidth',2)

60 xlabel ("Number of Grown Trees'):

61 ylabel('Fraction of in-Bag Observations’) ;

62

63 %533%535%3%35%5%55%3%55%3%3%%5855%5%5%%55%5%%5%555553%35%%55%%3%3%3%%3%355%5%%5%5%%%%5%%%

64 %%Finding The Outliers

65

66 BI=fillProximities(B}; $Proximity Matrix that used

67

68 figure('name', 'The Outliers!', 'NumberTitle', 'off")

69 %hist(BI.OutlierMeasure)

70 histogram(BI.OutlierMeasure)

71 title('"The Outliers');

72 xlabel("Outlier Measure');

73 ylabel ("Number of Observations');

74

75 %%Discovering Clusters in the data

76

77 figure('name', 'Discovering Clusters in the data', 'NumberTitle!', 'off!")

78 [~,e] = mdsProx(BI,'colors’, "K");

79 title('Cluster Rnalysis');

80 xlabel('lst Scaled Coordinate");

81 ylabel('2nd Scaled Coordinate’)

82

83 %$%Assess the Relative Importance of the scaled axes by plotting the first 2¢
eigenvalues

84 figure('name', 'Assess the Relative Importance of the scaled axes by plotting th#
first 20 eigenvalues', "NumberTitle', 'off ")

85 bar(e(1:20));

86 xlabel('Scaled Coordinate Index");

87 ylabel ('Eigen Value');

g8

89 %Saving The compact version of the Ensemble

90 compact (B) ;

91

92 3%5%%%%5%%%%%%5%5%%%5%%%%
93 %%% ((TESTING STAGE))%%%

94

95 %Testing data - For EXP4

96

97 Vtestd = Input EXP4(3,:)';

98 Ttestd = Output EXP4';

99 %RF Testing Code
100 Xtest4=Input EXP4';
101 [YL£itd,~]= predict(B,Xtestd);
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102 YC4 = -4e-05*(Vtest4.”4) - 0.0003*(Vtestd.™3) + 0.0162*(Vtestd.”2) - 0.1142e
(Vtestd) + 1.633;

103 Yfitd =Yfitd+vC4;

104 figure('name', 'EXP4 IV Curves', 'NumberTitle', 'cff")

105 plot (Vtestd, (Yfitd),'blue', "'LineWidth',2)

106 hold on

107 plot (Vtestd,Itestd, 'red', 'LineWidth',2)

108 xlakel('PV DC Voltage (V) ') ;

109 ylakel ("PV DC Current (B)'");

110 legend({'I-V Curve Predicted','I-V Curve Actual'});

111 title ('I-V Curve Prediction Result Vg Actual Result EXP4 % 'LineWidth',«
14, "FontiWeight', 'bold!', '"Color', "'k")

112 hold off

113

114 figure('name', 'EXP4-ERRCOR', "NumberTitle', 'off ")

115 E = abs(Itestd-Yfitd),;

116 plot(k,'LinewWidth',2)

117 xlabel('pv dc current');

118 vlabel ('Magnitude (&) ") ;

119 title('Error");

120 toc(ticID):

121 %RF-Performance

122 %Mean Bias Error (MBE) or Mean Forecasting Error (MFE) in Amp.// Average

Deviation Indicator

123 MBE=(sum(Itestd (:)-Yfit4d(:)))./numel (Itestd);

124 1if (MBE<Q)

125 F='Over forecasted’;

126 elseif (MBE>0)

127 F='Under Forecasted';

128 elseif (MBE==0)

129 F='Ideal Forecasted';

130 end

131 %Mean BAbsolute Percentage Error (MAPE) // Accuracy Indicator

132 MAPE =(abs(({sum({Itestd(:)-Yfitd(:))./Itestd(:)))./numel (Itestd))*100);

133 %Root Mean Square Error (RMSE) in Amp. // Efficiency Indicator

134 RMSE=sum( (Itestd {:)-Yfitd(:))."2) /numel (Itestd):

135

136 3585555585558 580055%%23502525%35%55%5%%%5%5%%%5%5%%%5%5%%%385%%5%5%%%%2%5%%%%%%%%%%
137 %0utputs

130 2503355025305 5 0005332200005 20000255005 3%25%50%%%5522%%5%%2%28%0%%2%%5%%%%%
139

140 nl=['Mean Bilas Error(MBE): 'y num2str (MBE),'(A)','{Average Deviation Indicator!';
141 n2='Forecasting Status:F"';

142 n3=['Mean Absolute Percentage Error (MAPE):'“numZstr(MAPE),'%", "{Accuracy¥

Indicator}'];
143 n4=["Root
Indicator}'];

Mean Square Errcr (RMSE): T,numZ2str(RMSE),'(A)',"{Efficiency¥

144 disp(nl)

145 disp(n2)

146 disp(n3)

147 disp(nd)

148 9022000020000 02300022000002000002000022000030000022000030000000000000000033
E 5355525525535 555 535855559255 %55 2353555525585 %%%55%5%%%%%%5%3%%5%%%%%%%%5%%%%

149

150 %Testing data - For EXPES



151
152
153
154
155
156
157
158
159

(VLesth)

160
16l
162
163
164
165
166
167
168
14,
169
170
171
172
173
174
175
176
177
178
179

91

Vtest> = Input EXP5(3,:)';
Ttest5 = Cutput EXP5S';
$load('Data EXP1 6.mat');
%RF_Testing Code

Xtesto=Input EXP5';
[Yfith,~]= predict(B,Xtesth);
YC5 = -0.0003*% (Vtest5.74)
+ 0.5514;

Yfith = Yfith + YC5
figure('name', "EXP5 IV Curves', 'NumberTitle', 'off")
plot (VtesthH, (YL£it5),'blue', 'LinewWidth',2)

hold on

+ 0.0005% [Vtest5."3) - 0.1066% (Viests. 2)

+ 0.3832w

plot

(Vtesth, Itesth,

'red', 'LineWidth',2)

xlabel ("PV DC Voltage
ylabel ('"PV DC Current

DI
(A1)

legend ({'I-V Curve Predicted!, 'I-V Curve Rctual'}):;

title ('I-V Curve Prediction Result Vs Actual Result EXPS
FontWeight', 'hbold', 'Color', k")

hold off

Y 'LineWidth', ¢

figure('name', 'EXP5-ERROR', "NumberTitle!', 'off")
ES = abs({Itestb-Yfith);

plot (E5,'LineWidth',2)

%xlabel('pv dc current');

vlabel ("Magnitude (A)"');

title('Error");
toc (ticID) ;
$RF-Performance
$Mean Bias Error (MBE) in Amp.// Averag¥

or Mean Forecasting Error (MEE)

Deviation Indicator

180
181
182
183
184
185
186
187
188
185
1590
191
162
1463
194
195
196
197
198
199

MBE=(sumi{Itest5(:)-Y£it5(:)) ). /numel (ItestH);

if MBE<O

F='Over forecasted';

elseif MBE>0

F='Under Forecasted';

elseif MBE==0

F='Ideal Forecasted';

end

$Mean Absolute Percentage Error (MAPE) // Accuracy Indicator
MAPE ={(abs{({sum({ (Itest5(:)-Yfit5(:))./Itest5(:)))./numel (ITtest5))*100);
$Root Mean Square Error (RMSE) in Amp. // Efficiency Indicator
RMSE=sum({ (Itest5(:)-Yfit5(:))."2) /numel (Itests);

nl=['Mean Bias Error (MBE):
n2='rForecasting Status:F";

n3=["Mean Absclute Percentage Error (MAPE):'num2str (MAPE),'s','[Accuracy¥

Indicator}'];

200

nd=['Root Mean Square Error (EMSE}: "ynum2str (RMSE),'(R}',"{Efficiencyw

L num2str(MBE) , ' (B) ', '{Average Deviation Indicator}';



Indicator

201
202
203

92

T

[
disp(nl)
disp(n2)
disp(n3)
disp(nd)

¢ ((TESTING STAGE)) %%
$Testing data - For EXPY
Vtest? = Input EXP7(3,:)";
Ttest? Output EXE7';

$RE Testing Code

Xtest7=Input EXPT7';

[Yfit7,node]= predict(B,Xtest?);
figure('name', "EXPT7 IV Curves', 'NumberTitle', "off")

Yo = -0.0003*(Vtest7.”4) + 0.009*% (Vtest7.73) - 0.0979*%(Vtest7."2) + 0.3513*Vtesti

.9562 %Excel eguation

Yfit7? = YEit7 + Yo

plot (Vtest7,(Yfit7),'blue’, 'Linewidth!',2)

hold on

plot (Vtest7,Itest?, 'red','LineWidth',2)

title ('I-V Curve Prediction Result Vs Actual Result EXP7 % 'LineWidth', ¥
FontWeight', 'bold?', "Calaor', k") ;

xlakel ("PV DC Voltage (V)');

vlabel ("BV DC Current (A)'):

legend ({'I-V Curve Predicted','I-V Curve Actual'});

hold off

figure('name', '"EXPT-ERROR', "NumberTitle!, 'off")

E = abs(Itest7-YLit7);

plot(E, 'LineWidth',2)

xlakel ("pv dc current!');

vlabel ("Magnitude (A&)');

title('Error');

toc (ticID);

tRF-Performance

$Mean Bias Error (MBE) or Mean Forecasting Error (MFE) in Amp.// Averag#¥

Deviation Indicator

237
238
239
240
241
242
243
244
245
246
247
248

MBE=(sum(Itest7(:)-Yfit7(:)))./numel (Itest?);

if MBE<D

F='Over forecasted';

elseif MBE>0

F='Under Forecasted';

elseif MBE==0

F='Tdeal Forecasted';

end

$Mean Absolute Percentage Error (MAPE) // Accuracy Indicator
MAPE =(abs((sum{ (Itest? (:)-Y£it7(:))./Ttest7(:)))./numel (Itest?))*100);
$Root Mean Square Error (RMSE) in Amp. // Efficiency Indicator
RMSE=sum( (Itest7 (:)-Yfit7(:))."2) /numel (Itest?);
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253

,num2str (MBE) ' (A) T, "{Average Deviation Indicator}'l;

['"Mean Bias Error (MBE):

255 n2='Forecasting Status:F";

256 n3

254 nl

%', "[Accuracywe

L numZ2str (MAPE) !

{MAPT)

['Mean Absolute Percentage Error

Indicator}'];

257 nd

L num2str (RMSE) ,' (&) ', "{Efficiencvyvee

['Root Mean Square Error (RMSE):

Indicator}?

258 disp(nl
259 disp(n2
260 disp(n3
261 disp(n4
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Mean Bilas Error

266 MBE Values

265

[1:

Mean Sguare Error

3
]

267

[1:

268 MSE Values

269
270

Root Mean Square Error

9
°

[]:

Mean Absolute Percentage Error

271 RMSE Values

// Bccuracy Indicator

[MAPE)

9
)

272

[]:

273 MARPE Values

2774

275 MSE2
276 MBE2
277 MAPE2
278 RMSEL
279 RMSE2

280 v=[];
281

1:1:500
for 1

282 for t

283

1:1:50

284 tic;

285 G

TreeBagger(t,X, ¥

Y, 'method', 'regression', 'ockhpred', 'on', "oobvarinp', 'on', 'minleaf’', 1) ;

286 G.NumTrees;

287 %%Saving The compact version of the Ensemble

288 compact (G) ;

289
250

((TESTING STAGE))3%%

9
o

291 %REF Testing Code



292
293
294
295
296
297

94

[Y£i1tO, node]= predict(G,XtestT);

v (t,1l)=toc;

v(t,l)=toc;

Eo = Itest7-Yfito;

$RF-Performance

¢Mean B las Error (MBE) or Mean Forecasting Error (MFE) in Emp. // RAverag#

Deviation Indicator

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

MBEZ (t, 1y={sum(Itest?(:)-YLitO(:)))./numel {Itest?);
if MBE2<0

F='Over forecasted’;

elseif MBE2>0

F='Under Forecasted';

elseif MBEZ==

F='Ideal Forecasted';

end

Q

% Mean Bias Error

MBE Values(t,l) = mean(Eo);
% Mean Square Error

MSE Values(t,1) = mse(Eo];
% Root Mean Square Error

RMSE Values(t,1) = sqrt(MSE Values(t,1));

% Mean Bbsolute Percentage Error (MAPE) // Rccuracy Indicator
MAPE Values(t,1l)= mean((abs(Eo(2:end)./Itest7(2:end)))):

SMAPEZ (t,1) = (abs((sum((Itest?(:)-YLfitO(:))./ItestT(:)))./numel(Itest?))).*100;
SMAPEZ (t,1)=(sum(abs(Eo(:) )./ (sum(ItestT(:))))).*100;

SRMSEZ (t,1)=sum( (Itest? (:)-YfitO(:))."2) /numel (Itest?);

end

end

mi=min(RMSE Values(t,1));
[A,Z] = find(RMSE Values(t,1)==mi)

Go=TreeBagger (t, X, ¥

Y, 'method', 'regression’, 'ocbpred', 'on', 'oobvarimp', 'on', 'minleaf’, 1) ;

334
335

[Yfito7,node]= predict (Go,Xtest?);
Y70 = -0.0003*% (Vtest7.”4) + 0.0095*% (Vtest7.”3) - 0.1036%*(Vtest7.72) + 0.3680¢

(Vtest?) + 0.9635;

336
337
338
339
340
341
342

Yfito7? = Yfito7 +Y70

$view(Go.Trees{500}, 'Mode', 'Graph') ;

figure('name', 'Optimizing Result IV Curve', 'NumberTitle',"off")
plot (Vtest7, (Yfito7),'blue’, 'LineWidth',2)

hold on



343
344
345
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plot (Vtest7,(Yfit7),'red', "LineWwidth',2)
plot (Vtest?,Itest?,'k', "LineWidth',2)
title ('I-V Curve Predection Result for EXP7 << Optimal Vs NonOptimal >> Ve

actual result ', 'LineWidth',14,'FontWeight!, 'hold', 'Color?', 'k');

346
347
348

xlabel ("PV DC Voltage (V) ") ;
ylabel ("PV DC Current (A}');
legend ({'I-V Curve Predicted optimized ' 'I-V Curve Predicted Non-optimized', 'I-Ve

Curve Actual'});

349
350
351
352
353
354
355
356
357
358
359
360
36l
362
363
364
365
366
367
368
369
370
371

hold of ©

figure('name', '"EXP7 Optimize Vs Non-Optimze ERROR', 'NumberTitle!, 'off")
E =abs(Itest7-Yfit7);

plot(E,'r", 'LineWidth', 2)

hold on

Foo = abs{Itest7? - Yfito7);

plot(Eoco,'k', "LineWidth', 2)

xlabel ('pv dc cureent');

vlabel ("Magnitude (RA) "),

title('Error');

legend ({'Exp7 Error ', 'Exp7 Error Optimize'}):;
hold of ©

Yt = predict(B,Testl");

figure('name', 'Testl', '"NumberTitle', 'off")

Ytl=Yt';

plot(Testl (3,1:201),Yt1(1:201),Testl(3,202:402),Yt1(202:402),Testl (32,403:603),YLE

{403:603),Test1(3,604:804),¥tl (c04:804},Testl1(3,805:1005),¥Yt1(805:1005),Testl(3,100ck
1206),¥t1(1006:1206) ,Testl(3,1207:1407),Yt1(1207:1407),Test1(3,14068:1608),Yt1(1408¢
1608) ,Test1 (3,1609:1809) ,Yt1(1609:1809), Testl(3,1610:2010),¥Yt1(1810:2010),Testk
(3,2011:2211) ,¥Yt1(2011:2211),'LineWidth’,2)

372

title ('I-V Curve Prediction Result of RF @ T=318.32(K) and different scla®

iraddiation levels ', 'LineWidth',14, 'FontWeight', 'bold", '"Color', k")

373
374
375

xlabel ("Voltage', '"LineWidth', 14, "FontWeight', 'hold', "Color', 'k")
yvlabel ("Current', 'LineWidth', 14, "FontWeight', 'bold', "Color ', 'k")
lgd=legend ({'0 W/m"2", "' 100 W/m*2', ' 200 W/m™2', ' 300 W/m"2', '400 W/m"2', '500¢

W/m*2', '600 W/m"2','700 W/m"2','800 W/m"2', 900 W/m"2','1000 W/m"2'},'FontSize', ¥
10, '"TextColor', 'black') ;

376
377
378
379
380
381
382

title(lgd,'Solar Irradiation W/m"27")

20002400000

900 9
TOBT 0000000000080 0000000000 B000B0C00B 0000000 D000B0C0DBV 000000 BO00V0G0DBC 00000000

B, Test3'");
', "Test3 ", "NumberTitle', 'off")

Ytt=predict(
figure('namne
Yt3=Ytt';

plot(Test3 (3,1:201),Yt3(1:201),Test3(3,202:402),Yt3(202:402),Test3(3,403:603),YLE

1403:603) ,Test3(3,604:804),Yt3(604:804),Test3(3,805:1005),YE3(805:1005),Test3(3,1006¥
1206),¥t3(1006:12006) ,Test3(3,1207:1407),YL3(1207:1407),Test3(3,14086:1608),Yt3(1405
1608),Test3(3,1609:1809) ,Yt311609:1809), Test3(3,1810:2010),¥Yt3(1810:2010),Test®
(3,2011:2211),Yt3(2011:2211),Test3 (3,2212:2412),Yt3(2212:2412) fLineWidth’',2)

383

title ('I-V Curve Prediction Result of RF @ SI=978({W/m"2) and differenw



96

temperatures levels ' 'LineWidth',14, 'FontWeight', 'bold', 'Colar', 'k")

384 xlakel('Woltage','LineWidth', 14, "FontWeight', 'kold"', 'Color', 'k")

385 ylakel('Current', 'LineWidth', 14, "FontWeight', 'kold"', 'Color', 'k")

386 lgd=legend ({'320 (K) ', ' 321 (K) ',' 3222 (K) ', ' 323 (K) ', "224 (K} ', '325¢
(K)y', '326 (K) ','327 (K) ','328 (K) ','329 (K) ','330 (K) ','331 (K) '},'FontSize', ¥
10, '"TextColor', "black") ;

387 title(lgd,'Temperatures in Kelwven')

388
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