

إهداء و شکر و تقدیر

أهدي بحثي هذا بعد شكر الله عز وجل الذي اعانني على إنجازه

إلى من تتوه الكلمات في حضرتها،و تخجل الحروف من عظمتها من علمتني و عانت الصعاب لاصل الى هنا، أمى الحبيبه

إلى من كلله الله بالهيبه و الوقار ، إلى من علمني العطاء بدون انتظار ، إلى من أحمل إسمه بكل افتخار ، والدي الحبيب

إلى من وقف بجانبي في مجثي هذا و لم يتوانى لحظه عن تقديم المساعده و النصح استاذي الفاضل· د . مهند الحج حسين

إلى الشموع اللتي تحترق من اجل إناره الطريق لنا ، أساتذتي الافاضل

إلى من شاركوني كل لحظه من لحظات دراستي ، وكانو بمثابه عائلتي الاوسع نطاقه ، زملائي وأصدقائي إلى كل من علمني حرفاً ، و ساندني بأي وسيلةٍ كانت

إلى من أستقي من عشقها طهر الكلمات ، إليك يا فردوس الجنان ،إليك يا قدس العروبه ، إليك وطني الغالي فلسطين أهدي بحثي هذا

راجيا من الله عز و جل أن ينال القبول و النجاح

Table of Contents

CHAPTER 1 Introduction
1.1 Introduction14
1.2 Objective
1.3 Methodology15
CHAPTER 2 Literature reviwe16
2.1 Architectural Design17
2.1.1 Introduction
2.1.2 Forms
2.1.3 Architectural Consideration for Mosque20
2.2 Environmental Consideration
2.2.1 Day light and fenestration
2.2.2 Recommendation for Acoustics
2.2.3 Recommendation for Thermal Comfort23
2.3 Structural Design
2.3.1 Introduction
2.3.2 Structural Design Involve the Determination Of:24
2.3.3 Long - spans Structural Systems
2.3.4 Seismic Design
2.4 Electrical Design
2.4.1 Introduction
2.4.2 Acoustics in the pray hall
2.4.3 Sound insulation
2.4.4 Limitation for acoustical performance in the mosque

2.4.5 Artificial Lighting
2.5 Mechanical Design
2.5.1 Introduction
2.5.2 Sanitation design in mosque
2.5.3 Heating, Ventilation and air conditioning
2.6 Case Study
2.6.1 Global Case study (Shah Faisal mosque)44
2.6.2 Local case study
CHAPTER 3 Archetictural design
3.1 Introduction
3.2 Nablus city weather analysis:
3.3 Project Program
3.4 Design concept
3.5 Modification
CHAPTER 4 ENVIRONMENTAL DESIGN65
4.1 Environmental Design
4.2 Thermal analyses67
4.3 Ecotect results for the heating and cooling loads74
4.4 Natural Day light analysis76
4.5 Acoustical Analysis77
4.6 Solar system
CHAPTER 5 structural design
5.1 Introduction
5.2 Methodology
5.3 Analysis and design:

5.3.1 Preliminary design:
5.3.2 Model checks
5.3.3 Design for slab102
5.3.4 Beam design:
5.3.5 Column design:
5.3.6 Seismic design:
5.3.7 Design of shear wall
5.3.8 Design of Stairs:
5.3.9 Design of Dome
5.3.10 Footing design
5.3.11 Design of Tie Beams130
5.3.12 Design of Minaret:
CHAPTER 6 Electrical lighting143
6.1 Electric lighting design
6.2 Electrical load calculation154
CHAPTER 7 Mechanical design158
7.1 Water supply system:159
7.2 Water system design:
7.3 HVAC system
7.4 Raised Floor
7.5 Fire protection system
CHAPTER 8 Quantitities survaying172
References

List of Table

Table 2-2: the values of STC for material used in slabs or partition [8].
Table 2-4: Manhol sizs [11]
Table 2-5: Size of gutter slopes draining roofs [12]
Table 2-6: Air supplay rates [15]42Table 3-1: Estimated areas for mosque58Table 4-1: U-value used in Ecotect model.72Table 4-2: heating and cooling consumption for all pray hall.75Table 4-3: Reverberation time in the pray hall.78Table 4-4: STC for envelope walls.79Table 4-5: (% AL _{cons}) calculation.79Table 4-6: Mosque energy consumptions83Table 4-7: Mosque energy gains.84Table 5-1: Material used and their density.89Table 5-2: Loads used for design90Table 5-3: Modifier for sections used in Sap model.94Table 6-1: Lighting requirments for mosque. [10.144Table 6-2: Number circuit breaker in the mosque.156Table 6-3: Mosque Lighting Loads.157Table 6-5: Circuit breaker ampere and wire sections.157Table 7-1: Pipes used in desgin159Table 7-2: Consumed water in our project.160Table 7-3: Gray water tank calculation161Table 7-4: Water tank calculation161
Table 3-1: Estimated areas for mosque58Table 4-1: U-value used in Ecotect model.72Table 4-2: heating and cooling consumption for all pray hall.75Table 4-3: Reverberation time in the pray hall.78Table 4-4: STC for envelope walls.79Table 4-5: (%AL _{cons}) calculation.79Table 4-6: Mosque energy consumptions83Table 5-1: Material used and their density.89Table 5-2: Loads used for design.90Table 5-3: Modifier for sections used in Sap model.94Table 6-1: Lighting requirments for mosque. [10.144Table 6-2: Number circuit breaker in the mosque.156Table 6-3: Mosque Lighting Loads.157Table 6-5: Circuit breaker ampere and wire sections.157Table 6-5: Consumed water in our project.160Table 7-3: Gray water tank calculation161Table 7-4: Water tank calculation161
Table 4-1:U-value used in Ecotect model72Table 4-2: heating and cooling consumption for all pray hall75Table 4-3: Reverberation time in the pray hall78Table 4-4: STC for envelope walls79Table 4-5: (%AL _{cons}) calculation79Table 4-5: (%AL _{cons}) calculation79Table 4-7: Mosque energy consumptions.83Table 4-7: Mosque energy gains84Table 5-1: Material used and their density89Table 5-2: Loads used for design90Table 5-3: Modifier for sections used in Sap model94Table 6-1: Lighting requirments for mosque. [10144Table 6-2: Number circuit breaker in the mosque156Table 6-3: Mosque Lighting Loads157Table 6-4: Mosque Lighting Loads157Table 6-5: Circuit breaker ampere and wire sections157Table 7-1: Pipes used in desgin.159Table 7-2: Consumed water in our project160Table 7-4: Water tank calculation.161
Table 4-2: heating and cooling consumption for all pray hall75Table 4-3: Reverberation time in the pray hall78Table 4-4: STC for envelope walls79Table 4-5: (% AL _{cons}) calculation79Table 4-6: Mosque energy consumptions.83Table 4-7: Mosque energy gains84Table 5-1: Material used and their density89Table 5-2: Loads used for design.90Table 5-3: Modifier for sections used in Sap model94Table 6-1: Lighting requirments for mosque10Table 6-2: Number circuit breaker in the mosque156Table 6-3: Mosque Lighting Loads157Table 6-4: Mosque Lighting Loads157Table 6-5: Circuit breaker ampere and wire sections157Table 7-1: Pipes used in desgin.159Table 6-7: Consumed water in our project160Table 7-4: Water tank calculation.161
Table 4-3: Reverberation time in the pray hall78Table 4-4: STC for envelope walls79Table 4-5: (%AL _{cons}) calculation79Table 4-6: Mosque energy consumptions.83Table 4-7: Mosque energy gains84Table 5-1: Material used and their density89Table 5-2: Loads used for design90Table 5-3 : Modifier for sections used in Sap model94Table 5-4: Hand calculation for dead load98Table 6-1: Lighting requirments for mosque. [10144Table 6-2: Number circuit breaker in the mosque156Table 6-3: Mosque Lighting Loads156Table 6-4: Mosque Lighting Loads157Table 6-5: Circuit breaker ampere and wire sections157Table 7-1: Pipes used in desgin.159Table 7-2: Consumed water in our project160Table 7-4: Water tank calculation.161
Table 4-4: STC for envelope walls79Table 4-5: (%ALcons) calculation79Table 4-5: Mosque energy consumptions.83Table 4-6: Mosque energy gains84Table 5-1: Material used and their density89Table 5-2: Loads used for design.90Table 5-3: Modifier for sections used in Sap model94Table 5-4: Hand calculation for dead load98Table 6-1: Lighting requirments for mosque. [10144Table 6-2: Number circuit breaker in the mosque156Table 6-3: Mosque Lighting Loads156Table 6-4: Mosque Lighting Loads157Table 6-5: Circuit breaker ampere and wire sections157Table 7-1: Pipes used in desgin.159Table 7-2: Consumed water in our project160Table 7-4: Water tank calculation.161
Table 4-5:(%ALcons) calculation79Table 4-6: Mosque energy consumptions.83Table 4-7: Mosque energy gains84Table 5-1: Material used and their density89Table 5-2: Loads used for design.90Table 5-3: Modifier for sections used in Sap model94Table 5-4: Hand calculation for dead load98Table 6-1: Lighting requirments for mosque10Table 6-2: Number circuit breaker in the mosque156Table 6-3: Mosque Lighting Loads156Table 6-4: Mosque Lighting Loads157Table 6-5: Circuit breaker ampere and wire sections157Table 7-1: Pipes used in desgin.159Table 7-2: Consumed water in our project160Table 7-4: Water tank calculation.161
Table 4-6: Mosque energy consumptions83Table 4-7: Mosque energy gains84Table 5-1: Material used and their density89Table 5-2: Loads used for design90Table 5-3: Modifier for sections used in Sap model.94Table 5-4: Hand calculation for dead load.98Table 6-1: Lighting requirments for mosque. [10.144Table 6-2: Number circuit breaker in the mosque.156Table 6-3: Mosque Lighting Loads.156Table 6-4: Mosque Lighting Loads.157Table 6-5: Circuit breaker ampere and wire sections.157Table 7-1: Pipes used in desgin159Table 7-2: Consumed water in our project.160Table 7-4: Water tank calculation161
Table 4-7: Mosque enerdy gains.84Table 5-1: Material used and their density89Table 5-2: Loads used for design.90Table 5-3: Modifier for sections used in Sap model94Table 5-4: Hand calculation for dead load98Table 6-1: Lighting requirments for mosque. [10144Table 6-2: Number circuit breaker in the mosque156Table 6-3: Mosque Lighting Loads156Table 6-4: Mosque Lighting Loads157Table 6-5: Circuit breaker ampere and wire sections.157Table 7-1: Pipes used in desgin.159Table 7-2: Consumed water in our project160Table 7-4: Water tank calculation.161
Table 5-1: Material used and their density89Table 5-2: Loads used for design.90Table 5-3: Modifier for sections used in Sap model94Table 5-3: Hand calculation for dead load98Table 6-1: Lighting requirments for mosque. [10144Table 6-2: Number circuit breaker in the mosque156Table 6-3: Mosque Lighting Loads156Table 6-4: Mosque Lighting Loads157Table 6-5: Circuit breaker ampere and wire sections157Table 7-1: Pipes used in desgin.159Table 7-2: Consumed water in our project160Table 7-4: Water tank calculation.161
Table 5-2: Loads used for design.90Table 5-3: Modifier for sections used in Sap model94Table 5-4: Hand calculation for dead load98Table 6-1: Lighting requirments for mosque. [10144Table 6-2: Number circuit breaker in the mosque156Table 6-3: Mosque Lighting Loads156Table 6-4: Mosque Lighting Loads157Table 6-5: Circuit breaker ampere and wire sections157Table 7-1: Pipes used in desgin.159Table 7-2: Consumed water in our project160Table 7-4: Water tank calculation.161
Table 5-3 : Modifier for sections used in Sap model94Table 5-4: Hand calculation for dead load98Table 6-1: Lighting requirments for mosque. [10144Table 6-2: Number circuit breaker in the mosque156Table 6-3: Mosque Lighting Loads156Table 6-4: Mosque Lighting Loads157Table 6-5: Circuit breaker ampere and wire sections157Table 7-1: Pipes used in desgin.159Table 7-2: Consumed water in our project160Table 7-3: Gray water tank calculation.161Table 7-4: Water tank calculation.161
Table 5-4: Hand calculation for dead load.98Table 6-1: Lighting requirments for mosque. [10
Table 6-1: Lighting requirments for mosque. [10
Table 6-2: Number circuit breaker in the mosque.156Table 6-3: Mosque Lighting Loads.156Table 6-4: Mosque Lighting Loads.157Table 6-5: Circuit breaker ampere and wire sections.157Table 7-1: Pipes used in desgin159Table 7-2: Consumed water in our project.160Table 7-3: Gray water tank calculation161Table 7-4: Water tank calculation161
Table 6-3: Mosque Lighting Loads.156Table 6-4: Mosque Lighting Loads.157Table 6-5: Circuit breaker ampere and wire sections.157Table 7-1: Pipes used in desgin159Table 7-2: Consumed water in our project.160Table 7-3: Gray water tank calculation161Table 7-4: Water tank calculation161
Table 6-4: Mosque Lighting Loads.157Table 6-5: Circuit breaker ampere and wire sections.157Table 7-1: Pipes used in desgin159Table 7-2: Consumed water in our project.160Table 7-3: Gray water tank calculation161Table 7-4: Water tank calculation161
Table 6-5: Circuit breaker ampere and wire sections.157Table 7-1: Pipes used in desgin159Table 7-2: Consumed water in our project.160Table 7-3: Gray water tank calculation161Table 7-4: Water tank calculation161
Table 7-1: Pipes used in desgin159Table 7-2: Consumed water in our project.160Table 7-3: Gray water tank calculation161Table 7-4: Water tank calculation161
Table 7-2: Consumed water in our project.160Table 7-3: Gray water tank calculation161Table 7-4: Water tank calculation161
Table 7-3: Gray water tank calculation161Table 7-4: Water tank calculation161
Table 7-4: Water tank calculation
Table 7-5: Rainwater tank calculation 162
Table 7-5. Kaniwater tank calculation
Table 7-6: Rain water and water tank calculation

Table 7-7: The recommended velocities for the duct system.	165
Table 7-8: The volumetric flow rates and diamete for all duct	166
Table 7-9: Load class for raised floor system	168

Table of Figures

Figure 2-1 : Spaces and function in mosque	20
Figure 2-2:The relationship between the place of prayer and ablution	21
Figure 2-3: Truss system	
Figure 2-4: Cable system	27
Figure 2-5: Folded plate	27
Figure 2-6: Cylindrical shell roof.	
Figure 2-7: Seismic activity in the Dead Sea Transform region; the map shows location	ons of
historical earthquakes. Also shown is the most recent earthquake of 11 February 2004	, ML 5.2.
Figure 2-8: Hazard Map and Seismic Zone Factor (Source ESSEU).	
Figure 2-9: Location of loudspeakers in mosque	
Figure 2-10: Air borne transmission.	
Figure 2-11:Location of loudspeakers in mosque	
Figure 2-12: water system	40
Figure 2-13: Cross and Stack Ventilation	42
Figure 2-14: Shah Faisal mosque	44
Figure 2-15: site plan Faisal mosque	45
Figure 2-16: general form for faisal mosque.	45
Figure 2-17 : main pray hall for Faisal mosque	46
Figure 2-18: fenestration and openings.	47
Figure 2-19: structural elements and system in faisal mosque	47
Figure 2-20: Form of the Mosque	48
Figure 2-21: Ground floor level.	49
Figure 2-22: First basement level	50
Figure 2-23: second basement level	50
Figure 2-24: fenestration and openings	51
Figure 2-25: Wind direction	51
Figure 2-26: Noise source	
Figure 3-1: Site	54

Figure 3-2: Mean wind speed in Nablus by month	55
Figure 3-3: Mean relative humidity in Nablus by month	55
Figure 3-4:Qibla direction.	56
Figure 3-5: Noise source.	56
Figure 3-6:wind direction	57
Figure 3-7: Pray hal befor and after.	59
Figure 3-8: Alcubond cladding	60
Figure 3-9: Section for alcubond cladding	60
Figure 3-10: Entances befor and after	61
Figure 3-11: Shelves of the prayers shoes befor and after extended.	61
Figure 3-12: Emergency exist	62
Figure 3-13: Minaret befor and after separetion.	62
Figure 3-14: Minaret befor and after redesign	63
Figure 3-15: site befor and after redesign	63
Figure 3-16: location of the Multi-purpose and ablution before and after exchanged	64
Figure 3-17: room for water tanks	64
Figure 4-1: Ecotect model for the current design	66
Figure 4-2: layer of external wall with detail	67
Figure 4-3: layer of external wall with detail	67
Figure 4-4: layer of ground slab with detail	68
Figure 4-5: U-value for ground slab	68
Figure 4-6: layer of roof with detail	69
Figure 4-7: U-Value for roof	69
Figure 4-8: layer of window with detail	70
Figure 4-9: U-Value of window	70
Figure 4-10: layer of partitons with detail.	71
Figure 4-11: U-Value for partitions.	71
Figure 4-12: General sitting of the pray hall zone in summer	72
Figure 4-13: General sitting of the pray hall zone in winter	73
Figure 4-14: monthly heating / cooling loads for the pray hall.	74
Figure 4-15: daylight factor of the pray hall	76

Figure 4-16: reverberation time in the pray hall77
Figure 4-17: Elevation for trombe wall from inside
Figure 4-18: Elevation for trombe wall from inside
Figure 4-19: section in thrombi wall
Figure 4-20: distribution photovoltaic cells
Figure 4-21: directing photovoltaic cells
Figure 4-22: Energy consumed in for the mosque
Figure 5-1: 3D SAP model for the Mosque building
Figure 5-2: 3D SAP model for the Minaret
Figure 5-3: Cross section in one way ribbed slab
Figure 5-4 : Cross section in U beam
Figure 5-5: Model compatibility and period96
Figure 5-6 : Deflected shape
Figure 5-7 : Frame
Figure 5-8: Frame (right, left and middle) stresses
Figure 5-9 : Tension and compression stress in column
Figure 5-10: Maximum negative moment in slab102
Figure 5-11: maximum positive moment in slab
Figure 5-12 : Maximum shear fore in slab
Figure 5-13 : Longitudinal reinforcement for beam(4)106
Figure 5-14 : Shear reinforcement for beam(4)107
Figure 5-15 : Beam 2
Figure 5-16 : Cross section in beam 2108
Figure 5-17 : Moment diagram for beam 2
Figure 5-18 : Equivalent T section for beam 2110
Figure 5-19 : Rebar percentage for column (2)
Figure 5-20 : Stirrup details for column
Figure 5-21 : Mass participation ratio and period116
Figure 5-22 : Base shear reactions
Figure 5-23: Boundary reinforcement
Figure 5-24 : Web reinfrocement

Figure 5-25 : Stairs 3D model.	120
Figure 5-26 : 3D Sap model for Dome	121
Figure 5-27 : Tension force in the meridian direction (f 22)	122
Figure 5-28 : Compression force in the meridian direction (f 22)	123
Figure 5-29 : Tension force in the Hoop direction (f11)	124
Figure 5-30 : Compression force in the Hoop direction (f11)	125
Figure 5-31: Dome details.	126
Figure 5-32: Wall footing plan.	126
Figure 5-33: Wall footing section	127
Figure 5-34: Wall footing details.	130
Figure 5-35 : Minaret 3D model.	131
Figure 5-36 : Minaret 3D model period.	133
Figure 5-37 : Minaret base shear reactions	134
Figure 5-38 : Maximum compression stress for Minaret	135
Figure 5-39 : Maximum tension stress for Minaret.	136
Figure 5-40 : Reinforcement details for minaret.	138
Figure 5-41 : Maximum elastic lateral deflection.	139
Figure 5-42 : Reinforcement details for minaret footing.	142
Figure 6-1: The luminaries and the lamps are used for the pray hall	145
Figure 6-2: The type lamps are used for the pray hall	146
Figure 6-3: Uniformity-value in the pray hall.	146
Figure 6-4: Isolines.	147
Figure 6-5: Interior view for the mosque.	148
Figure 6-6: Pray hall lighting unit's distribution by DIALUX program	149
Figure 6-7: False color displayfor the pray hall	149
Figure 6-8: The grayscale and value glare for the pray hall by DIALUX program	150
Figure 6-9: The grayscale and value glare for the pray hall by DIALUX program	151
Figure 6-10: luminaries are used for the library and woman pray hall	152
Figure 6-11: Distribution lighting for library by DIALUX program	152
Figure 6-12: False color display for library	153
Figure 6-13: The lamps are used for the pray hall.	153

Page | 10

Figure 6-14: mosque lighting unit's distribution	154
Figure 6-15: Socket distribution	155
Figure 7-1: Chamber	160
Figure 7-2: drainage of black water	163
Figure 7-3: duct system distribution	167
Figure 7-4 : installing HVAV under raised floor	168
Figure 7-5: Section in raised flloor	169
Figure 7-6: Componant of raised floor system.	170
Figure 7-7: Fire hose cabinate.	171

Abstract

Among all countries of the world, Palestine is a historical country which is famous for its religions: and it is considered to be the birth of the three monotheistic religions, Islam, Christianity and Judaism, Thus Mosques, Churches and temples are significant for people, therefore our graduation project is to design an Environmental Friendly Mosque in Nablus to be the first Environmental Friendly Mosque in Palestine. The project presents an integrative design approach that involves structural, architectural, mechanical, electrical, environmental aspects.

In the structural design, the structures in the project will be analyzed and designed using computer software (SAP). An important attention will be given for this structural aspect to get the free column Mosque (zero column in the pray hall). This will play an important role for both architectural and environmental site in our project. The architectural design will focus on selecting the shape, and the form of the structures depending on the functionality and the environmental requirements. In mechanical and environmental design, HVAC, water, and sanitary systems in the project will be analyzed and designed. The electrical design will include designing power and lighting systems in the project.

All design and analysis details of the project will be documented in a report. In addition, the project will deliver shop drawings, which contain all design details and can be implemented in practice. At the end, this project will provide a unique, safe, and cost effective design of a mosque in Palestine.

CHAPTER 1

INTRODUCTION

1.1 Introduction

After the migration of prophet Mohammed (PBUH), the first thing he ordered to do was establishing a mosque. That mosque was the start point for the establishment of Al-Madina Al-Monawwara which was the capital of the Islamic nation.

The mosque is considered to be the core of the architectural planning in the Islamic city and in every Islamic society because it is the basis of all Muslims activities. It is also the basis of Muslims architectural heritage through ages since no Islamic architectural building was before it.

The mosque is strongly connected with its surroundings which confirms the unity of the mosque with the architectural structure in its environment. This affected the planning and the design of the Islamic cities.

From the mosque a call is raised to invite people to pray five times a day where souls and hearts are gathered in one place towards Makkah as it is written in AL-Quran:

بسم الله الرحمن الرحيم

((في بيوت اذن الله ان ترفع و يذكر فيها اسمه يسبح له فيها بالغدو والاصال ، رجال لا تلهيهم تجارة ولا بيع عن ذكر الله واقام))

صدق الله العظيم

النور,(38)

1.2 Objective

- 1. Prepare and finalize the architectural design considering all other aspects of design.
- 2. Conduct an environmentally friendly structure as much as possible.
- 3. The design will include all aspects of design (structural, electrical, mechanical and environmental).
- 4. Solve most common problems in the existing mosques.
- 5. Design the mosque with zero column interior.

1.3 Methodology

The methodology adopted for this research is based principally on literature review, which focus on architectural, structural, lighting, and mechanical. The methodology also take into consideration some case studies like Al-Najah national university mosque, Mossab Ebnu Omair mosque. In addition the case studies environmental field measurements by visiting the site and collecting data.

CHAPTER 2

LITERATURE REVIWE

2.1 Architectural Design

2.1.1 Introduction

A mosque is a place of worship for followers of the Islamic faith. Muslims often refer to the mosque by its Arabic name, masjid. The Arabic word masjid means temple or place of worship and comes from the Arabic root sajada (root "s-j-d," meaning to bow or kneel) which means he worshipped in reference to the prostrations performed during Islamic prayers.

The primary purpose of the mosque is to serve as a place where Muslims can come together for prayer. Nevertheless, mosques are known around the world nowadays for their general importance to the Muslim community as well as their demonstration of Islamic architecture.

To achieve these purposes we designed a mosque with no internal columns. Unfortunately, the West Bank does not have many special mosques like that, so there will be a trend to design comprehensive mosques with suitable architectural, environmental and structural standards for this type of facilities.

2.1.2 Forms

There are many different styles depending on the era in which it was built, also depends on the civilization that existed. Show the table (2-1). [1]

1-Hypostyle The most character of mosque this style is the large number of internal columns shown in figure.	Style	Description	Photo
		this style is the large number of internal columns shown in	

Table 2-1: Formes

Page | 17

2-The Umayyad	The Umayyad style is	
style	considered to be the	IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIII
	first Islamic style.	R B B B B B B B B B B B B B B B B B B B
	Umayyad's are the	
	reason why Islamic	
	architectural	
	flourished. A good	A REAL PROPERTY AND A REAL
	example is Masjid Al-	
	Aqsa which is located	
	in Palestine.	
3-Al-Abbasi	Is the style that came	
Style	after the fall of the	(D)
	Umayyad's. This style	
	in Islamic architecture	
	prefer shoulders or	
	beams over the	the second se
	columns in holding the	
	arches, the most	
	important legacy that	
	this style has left us is	
	the jamia mosque at	
	Samarra.	
4-Fatimid Style	The most important	11. The second se
	highlight of mosques	1
	in this era is the care in	
	their elevations, the	
	most important	
	element that they used	
	is the two helmet	The season of th
	minaret, and the dish	
	under the dome.	
	Examples of mosque	
	in this era is Al-Azhar	
	mosque.	

5- Iranian style	The advantage of this			
(Mughal)	model is that it is			
	saturated with Chinese			
	techniques that			
	flooded Iran itself and			
	its surrounding			
	countries that were			
	affected by these arts,			
	Islamic architecture in			
	the mosques has			
	increased in its beauty			
	and balance.			
6-Moroccan	Moroccan-style			
Style	architecture with its			
	horseshoe-shaped that			
	sets on rounded			
	column with			
	decorative crown and			
	simple ground base.			
7- Indian style	This style is famous			
	for its lack of unity	a		
	and cohesion because			
	they used big areas			
	and they didn't care			
	much about the			
	continuity of their			
	building. The most			
	famous mosque is Al-			
	Jamee Al-Kabeer in			
	India.			

8- Ottoman style	The idea of mosques in this period were the halls with shoulders and small domes, light enters the mosque through windows beneath every dome. Examples of mosques in this period the Hagia Sophia mosque.	
------------------	--	--

2.1.3 Architectural Consideration for Mosque

Space and Function [2]

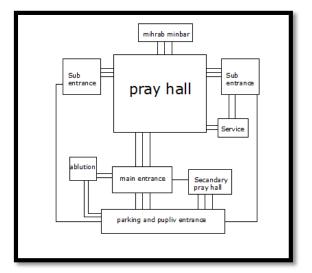
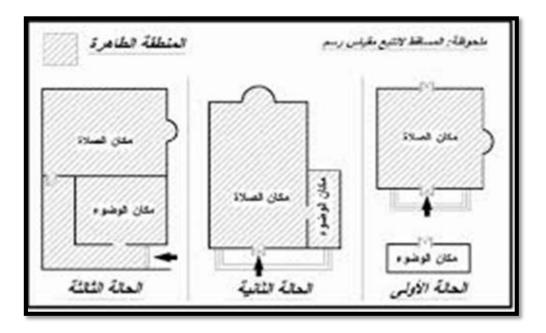


Figure 2-1 : Spaces and function in mosque

In Mosques, functionality is an important issue, because it provides comfort ability for prayers and gives psychological comfort see for more illustration in distribution pray hall.

Pray halls:


The pray hall must be wide enough and comfortable in order to respect its Functionality. The praying area should be directed towards the QEBLA direction, but other elements can be directed in a way taking in consideration that it doesn't destroy the image or the form of a mosque

Spaces:

- The first row in the pray hall is very important because of the great emolument; hence it should be large enough to hold as many prayers as we can.
- In the prayer area each person needs an area of 1.2m². 1.2*0.8 for each person.

Service area:

We have to consider that the entrance should be separated from the ablution area to avoid congestion and odors, mean while we must separate the men's entrance from the woman's.

Figure 2-2: The relationship between the place of prayer and ablution.

We should consider that we should keep the mosque clean, so we must be careful when we design the bathrooms and the ablutions, we must consider that each 40 persons need one bath and 2 sinks.

Elements: [3]

The Islamic architecture has many elements that made many styles over the years which has distinguishes form it any other style. The Muslims used these styles in their buildings (Mosques, Schools, Markets, and Bathrooms). The Mosque contain the following elements:

- 1. Mosalla (place for prayer).
- 2. Member and Al- Mihrab (apse and platform).
- 3. The Mihrab (apse).
- 4. Ablutions.
- 5. The minaret.
- 6. Dome.
- 7. Windows and openings.
- 8. Shoe Rocks.

2.2 Environmental Consideration

2.2.1 Day light and fenestration

Light levels in mosques, are mostly related to the creation of an environment where the worshipper can fulfill his religious needs also is used to accentuate the building.

* Consideration and strategies for design:-

- 1- Optimize urban design and building orientation.
- 2-the perfect size form a glazing treatment.
- 3- Shading system.

2.2.2 Recommendation for Acoustics

- 1- Avoid columns inside prey hall will result in a better coverage of the direct sound throughout the audience area leads to improve clarity and intelligibility.
- 2- Avoid Parallel walls which cause the phenomena of Flutter Echoes. Flutter Echoes play a major rule in reducing the speech intelligibility inside a mosque.
- 3- Use interior surface of the dome from rough materials to avoid creep effect.

2.2.3 Recommendation for Thermal Comfort

- 1- Zoning is important for comfort control and energy saving specially in mosques with Friday.
- 2- Use Middle range of design temperature with small variation for summer and winter season because people when come to mosque are well dressed in addition to their presence is for short time there for 24C^O is good for summer and winter.
- 3- Relative humidity inside mosque (40-60) %.
- 4- Glazing area and distribution over mosque walls is an important issue, to balance the heat gain and loss in summer and winter ,U value of glazing should be kept to minimum Shading system also is necessary for summer to avoid excessive heat gain without affecting the daylight level.

2.3 Structural Design

2.3.1 Introduction

Structural design is an important issue in mosque design, since mosques are located in public and residential places; in addition to that mosques could be used as a shelter for people in case of disaster and during emergency response operations, so the mosque should remain functional and safe.

2.3.2 Structural Design Involve the Determination Of:

a) Design requirements and goals:- [4]

- Stability.
- Strength
- Serviceability
- Economy
- Atheistic

b) Construction Materials: - [5]

Wood, concrete, steel are common materials used but concrete is the most used material in construction of mosques because it endures very high temperatures from fire for a long time without loss of structural integrity also concrete requires no additional fireproofing treatments to meet stringent fire codes ,in addition to the availability of materials and skilled labor made concrete more economical, also concrete structures is energy efficient due to the mass of concrete structure which makes it a significant thermal reservoir with the ability to store large amounts of energy (example, it could work as a thermal mass) ,also R-value for exterior walls are greater so the energy losses due winter and summer season are smaller when comparing with steel structures.

c) Structural elements

- 1- Slabs.
- 2- Beams.
- 3- Columns.
- 4- Walls.
- 5- Footing.

d) Loads: -

The building structure will be subjected to loads that have been categorized as follows:

- 1. Dead Loads
- 2. Live Loads
- 3. Earthquake loads

Seismic load depends, primarily, on:

Anticipated earthquakes parameters at the site.

Geotechnical parameters of the site (Seismic site effect).

Structure's parameters.

e) Load combination:

Load combinations specified by ACI-02 are listed below:

- 1.4 D
- 1.2 D + 1.6 L
- 1.2 D + L
- 1.2 D + 0.8 W
- 1.2 D + 1.6 W + 1.0 L
- 1.2 D + 1.0 E + 1.0 L
- 0.9 D + 1.6 W
- 0.9 D + 1.0 E

- Where,
- D is the dead load.
- L is the live load.
- E is the earthquake load and
- W is the wind load.

f) Analysis and design

In this stage internal forces are calculated to determine section dimension and reinforcement using software programs according to codes, specification, and design methods.

2.3.3 Long - spans Structural Systems

Long-span buildings create unobstructed, column with large free spans and spaces for a variety of functions. These include activities where visibility is important for large number of audiences, generally the systems are:-

• Truss systems

Its consist of slender and long elements that are arranged in triangular fashion are used for roof support and bridges, loads on structure converts to compression and tension, Its used when the span of the structure is required to be large and its depth is not an important criterion for design, this system is economically feasible to cover spans ranging from 9 to 120 m. As shown in figure (2-3). [6]

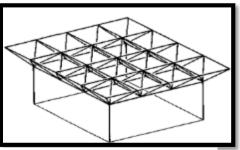


Figure 2-3: Truss system

• Cable system

Cables are usually flexible and carry their loads in tension, cables are commonly used to support bridges and building roofs, and has an advantage for span more than 45 m. As shown in figure (2-4). [6]

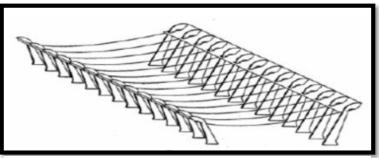


Figure 2-4: Cable system

• Shells system

Shells are curved surfaces in which the thickness is small when compared to the radius and other dimensions, the shell roofs are commonly used to cover clean spans with minimum intermediate supports, also permit to use extremely thin surfaces, and there are many forms of shells, shells system covers spans in general from 15m up to 200m depending on the form used and buckling failure, some types of shells are shown below.

✓ Folded plates

The folded plate roof is simple to form because it composed of flat surface, this roof is often employed for spans above 60m. As shown in figure (2-5). [5]

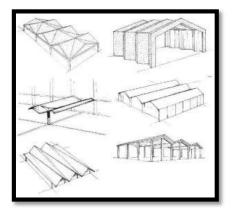


Figure 2-5: Folded plate

✓ Cylindrical shell

Shells which are obtained when one curve moves parallel to itself along another curve. As shown in figure (2-6).

Figure 2-6: Cylindrical shell roof.

✓ Domed roofs

Domed roofs are obtained when as plan cure is rotated about the axis of symmetry (shells of revolutions) tow common types are used.

- 1. Spherical
- 2. Conical dome

2.3.4 Seismic Design

Background / Problem Statement - Seismicity of Palestine [7]

The largest destructive recorded earthquake (Nablus Earthquake) occurred on 11 July 1927 north Jericho at the boundary between the Arabian and the Sinai plates and had a magnitude of about 6.3 (Richter scale).

Earthquake-resistant design of new structures and evaluating the seismic vulnerability of existing buildings take into account their response to site ground motions. Geophysical studies of seismic activity in Palestine, deep seismic sounding, pale seismic excavation, and instrumental earthquake studies of half a century demonstrate that damaging earthquakes occurred along the Dead Sea Rift/Transform fault. As shown in figure (2-7).

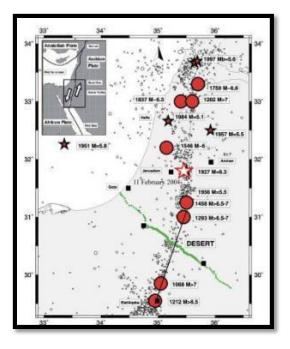


Figure 2-7: Seismic activity in the Dead Sea Transform region; the map shows locations of historical earthquakes. Also shown is the most recent earthquake of 11 February 2004, ML 5.2.

Referring to the seismic hazard maps of various levels of excellence probabilities and based on the PGA (Peak Ground Acceleration) values in Palestine (see figure 32). Nablus city is located within the seismic moderate zone, 2B seismic zones. The seismic zone factor (Z) on the rock for the zone 2B is equal to 0.20. According to the Uniform Building Code (UBC97), International Building Code (IBC), Jordanian Building Code 2005 and Arab Uniform Code 2006, it can be considered as moderate (or relative strong) seismic area. Show the figure (2-8).

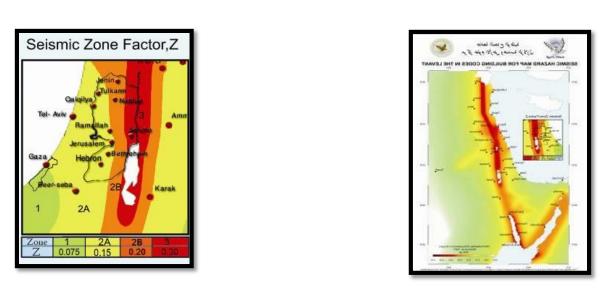


Figure 2-8: Hazard Map and Seismic Zone Factor (Source ESSEU).

General Considerations:

Economical earthquake-resistant design should aim at providing appropriate dynamic characteristics in structures so that acceptable response levels would result under the design earthquake. The structural properties which can be modified to achieve the desired results are the magnitude and distribution of stiffness and mass and the relative strengths of the structural members.

In some structures, such as cylinder free-standing towers (i.e. : minarets in mosques) or smoke stacks which depend for their stability on the stiffness of the single element making up the structure, or in nuclear containment buildings where a more-than usual conservatism in design is required, yielding of the principal elements in the structure cannot be tolerated. In such cases, the design needs to be based on an essentially elastic response to moderate-to-strong earthquakes, with the critical stresses limited to the range below yield.

In most buildings, particularly those consisting of frames and other multiply-redundant systems, however, economy is achieved by allowing yielding to take place in some members under moderate-to-strong earthquake motion.

The performance criteria implicit in most earthquake code provisions require that a structure be able to:-

- 1. Resist earthquakes of minor intensity without damage
- 2. Resist moderate earthquakes with negligible structural damage and some non-structural damage
- 3. Resist major catastrophic earthquakes without collapse; some structural and nonstructural damage is expected.

The principal steps involved in the earthquake-resistant design of a typical concrete structure according to building code provisions are as follows:-

- 1- Determination of design earthquake forces
 - a. Calculation of base shear corresponding to computed or estimated fundamental period of vibration of the structure (a preliminary design of the structure is assumed here)
 - b. Distribution of the base shear over the height of the building.
- 2- Analysis of the structure under the (static) lateral earthquake forces calculated in step 1, as well as under gravity and wind loads, to obtain member design forces.
- 3- Designing members and joints for the critical combinations of gravity and lateral (wind or seismic) loads, and detailing them for ductile behaviour.

Depending on the building and the seismic zone or seismic performance or design category, the seismic forces may need to be applied in the direction that produces the most critical load effect. The requirement that orthogonal effects be considered in the proportioning of a structural element may be satisfied by designing the element for 100 percent of the prescribed seismic forces in one direction plus 30 percent of the prescribed forces in the perpendicular direction.

The combination requiring the greater component strength must be used for design.

The vertical component of the earthquake ground motion is included in the load combinations involving earthquake forces that are prescribed in the IBC. Special provisions are also required for structural elements that are susceptible to vertical earthquake forces (cantilever beams and slabs; pre-stressed members).

The capacity of a structure to deform in a ductile manner (i.e., to deform beyond the yield limit without significant loss of strength), allows such a structure to dissipate a major portion of the

energy from an earthquake without collapse. Laboratory tests have demonstrated that cast-inplace and precast concrete members and their connections, designed and detailed by the present codes, do possess the necessary ductility to allow a structure to respond in elastically to earthquakes of major intensity without significant loss of strength.

2.4 Electrical Design

2.4.1 Introduction

Architectural acoustics may be defined as the design of spaces, structures, and mechanical/electrical systems to meet hearing needs. With proper design efforts, wanted sounds can be heard properly and unwanted sounds (noise) can be attenuated or masked to the point where they do not cause annoyance .

All acoustical situations have three common elements- a sound source, a sound transmission path or paths, and a receiver of the sound. Through design, a source can be made louder or quieter and a path can be made to transmit more or less sound .

2.4.2 Acoustics in the pray hall

The sound is very important in the mosque because people come to the mosque in order to her a clear sound, and it the main factor in the provision of any form speech (khtutba) / call the prayer so we must that provide the following

1) Loudness.

2) Quality.

3)Directivity.

4) Intelligibility.

Speech should be audible and with a high degree of sound quality within all areas of the mosque where the platform helps to access the audio for the top and half circular apse its shape gives voice back.

Sound is very important thing in mosque, but at the same time, Imam Voice may effect on the sound by enhancing interior echo, so cause noise to the prayers in the mosque Therefore, we must use filters to cancel sound from speakers that could provide feedback.

We must analyze the vocal system in the to avoid noise in the mosque and the voice of imam should reach for everybody in the mosque.

The location of loudspeakers shall be designed to provide optimum sound quality with consideration of the architecture.

2.4.3 Sound insulation

Sound insulation is a set of standards and procedures designed to provide adequate insulation to somewhere in order to reduce the annoying sounds resulting from different acoustic source. Figure (2-9).

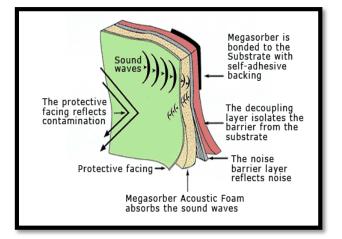


Figure 2-9: Location of loudspeakers in mosque.

2.4.4 Limitation for acoustical performance in the mosque

Sound transmission ways :

1- Air-borne transmission.

Where sound travels directly through the air vents like doors and windows, or through the vibration of the separation wall between the two places, where this vibration transferred the sound to direct air vacuum. Its initial energy is very small and it attenuates rapidly at boundaries. As shown in figure (2-10)

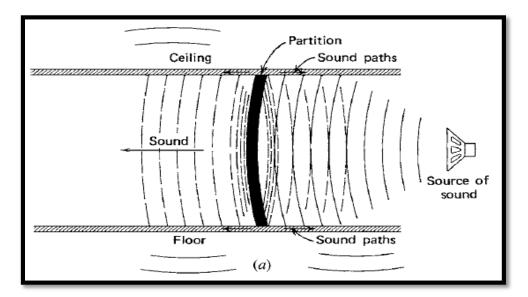


Figure 2-10: Air borne transmission.

Partition or Slab	Total Thickness	STC Value (approximate)
Hollow concrete Block	15 cm	43-45
Double Brick wall with plaster	30 cm	49-54
Brick wall with Plaster	13.5 cm	42
Concrete and Stone wall	62 cm	56
Concrete wall with Plaster Both	17.5 cm	53
sides		
Solid Concrete Block with	40 cm	63
plaster both sides		
Gypsum wallboard with	12.5 cm	37-39
wooden studs		
Fiber board, Plaster with	15 cm	42
wooden studs		
Concrete Slab, with floor	16 cm	STC= 48-50
finishing		IIC= 47-49
Reinforced concrete (12 cm)	25 cm	STC= 48
with suspending ceiling		IIC= 47
Reinforced concrete (12 cm)	22 cm	STC= 51
with floating floor		IIC= 53
Reinforced concrete with floor	30 cm	STC= 56-58
finishing		IIC= 52

2- Structure-borne transmission.

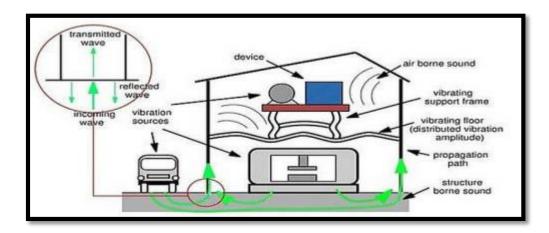


Figure 2-11:Location of loudspeakers in mosque.

We can reduce the sounds caused from vibration of machines by using one of the following methods:

- 1. Using suitable rubber by place it under machines.
- 2. Lifting machines over Jacks.
- 3. Put the machines or engines above rubber wheels surface.
- 4. Put machines or engines on surface and put springs under the surface.

2.4.5 Artificial Lighting

Lighting design as it applied to the built environment, also known as 'architectural lighting design', is both a science and an art. Lighting of structures must consider aesthetic elements as well as practical considerations of quantity of light required, occupants of the structure, energy efficiency and cost. For simple installations, hand-calculations based on tabular data can be used to provide an acceptable lighting design. More critical or optimized designs now routinely use mathematical modeling on a computer using software such as Ecotect which can allow an Architect to quickly undertake complex calculations to review the benefit of a particular design. [9].

Lighting concept

The light design for any building must be attention in type of the lamp, how much light is present (IL luminance), the quality of that light, daylight, and natural and artificial light. Show table (2-3).

Annex	Minimum illumination (lux)	Maximum illumination (lux)
Ceiling	220	300
Top part of walls	350	440
Columns	250	340
Tribune	450	550
Mehrab	350	420
Classrooms	460	540
Dish	65	100
Entrance to minaret	125	200
Exit door	85	180
Passages	125	200

Table 2-3: Illumination values for mosque [10]

Artificial light it is because an important issue in mosque especially that it could use more after sun set (at night).

2.5 Mechanical Design

2.5.1 Introduction

Generally, this chapter will talk about mechanical services in the mosque, which include air conditioning systems and ventilation, drainage system and water supply that used in the mosque. In addition, Climate control and comfort in mosque is a major design issue. Heating, ventilation and air conditioning (HVAC) system help to control the climate, and keep prayers comfortable by regulating the temperature and air flow. HVAC systems are also important to prayers health because a well regulated and maintained system will keep the mosque free from mold and other harmful organisms.

2.5.2 Sanitation design in mosque

Drainage system

The design of the sanitation fittings must be compatible with the structural element such as beams, columns and slabs.

Water drainage systems should be located at a suitable areas that don't effect on the structural side such that beams and columns.

Surface water drainage collects the rainwater run-off from the roofs and paved areas and takes it away from the mosque for disposal to a sewer. The actual disposal method is dependent upon the policy of the responsible water authority.

Access

The actual method of providing access to drains is the construction of manholes, the size of manhole is dependent on the number of branches that are connected to it, and the depth from ground level to invert. As shown in table (2-4)

D	225	300	375	450	450 525 60		600 675		900
1	A 700 × 900	A 700 × 900	A 700 × 900	A 700 × 900	B 1000 x 1050	B 1000 × 1050	B 1000 x 1050	750 B 1000 × 1050	B 1000 × 105
3	C 900	C 1050	C 1050	C 1050	C 1200	C 1200	C 1350	C 1350	C 1500
) 5		D 1050	D 1050	D 1050	D 1200	D 1200	D 1350	D 1500	D 1500
ō ► 6		E 1050	E 1050	E 1050	E 1200	E 1200	E 1350	E 1500	E 1500
5		F 1500	F 1500	F 1500	F 1500	F 1500	F 1500	F 1500	F 1500
A BLOCK / IN: 700 × 900		SK / INSITU X 1050	C PRECAST		ECAST E	PRECAST	E PREC/	ST manho defined from th D cover t the pip differen specifi method	rements of

Gutters

Pitched roofs and dome are drained to eaves gutters or valley gutters depending on the type of roof that is to be drained.

Recommended size of gutter slopes draining roofs can be found in table (2-5).

Roof area										
Guttering	diameter		Slope of							
mm	Inches	0.5	0.5% 1% 2%							
		m ²	ft ²	m ²	ft ²	m ²	ft ²			
80	3	16	170	22	240	32	350			
100	4	33	360	47	510	67	720			
125	5	58	625	82	880	116	1250			
150	6	89	960	126	1360	178	1920			

Table 2-5:	Size of	gutter slop	es draining	roofs [12]
		Barrer prop		

Vents

Vents are used in the drainage system to admit air and discharge gases, soil and waste stacks are extended through roofs, and a system of air vents, largely paralleling the drainage system, is provided. As in the case of drainage stacks, the ventilating stacks extend through the roof or vent through the drainage stack. The functions of venting are often misunderstood. It is true that one important purpose is to ventilate the system by allowing air from the fresh-air inlet (or from the sewer, if there is no house trap or fresh-air inlet) to rise through the system and carry away offensive gases.

This provides some purification for the piping. However, several other purposes are served by the vent piping. The introduction of air near a fixture (and, in the case of circuit vents, at the branch soil line) breaks the possible siphonage of water out of a trap. [13]

Sanitation of gray water and black water

In the buildings there must be separation between the gray and black water, and this indicate the loads of drainage system of the stacks, fittings, and traps used. Show figure (2-12) [13]

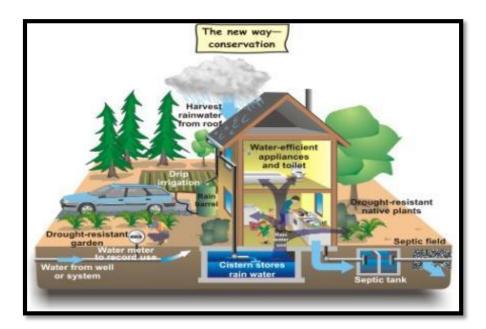


Figure 2-12: water system

Water supply

Water supply in mosques is very important since water in mosques is used for , ablution ,cleaning ,personal hygiene ,landscaping and for protective reason in case of firefighting ,so a good water supply system should be used .

The first concern in the design of water supply system is to match the quality of the water to the task it performs, a good water supply system must have the following:

- 1- Good pressure.
- 2- Good water flow.
- 3- Good water quantity.
- 4- Good water quality.

Water fixtures and conservation strategies [14]

Building design and fixture choice can affect water and energy consumption over the life of the building.

- 1- Toilets and Urinals
 - Waterless urinal.
 - Dual-mode flush system.
 - Urinal with on-demand sensors.

2- Use of grey water in flushing

Alternative sources of water can be used to flush toilets and urinals. In particular, water consumed in showers, wash basins, laundry operations, and storm water, after recycling is called grey water.

2.5.3 Heating, Ventilation and air conditioning.

Heat transferred by three ways, first conduction and it is primarily dependent upon surface temperature, second convection which is primarily dependent upon air temperature, air motion, humidity, thirdly radiation [15].

The term HVAC system refers to the three specialties of heating, ventilating, and Airconditioning. Controls determine how HVAC systems run to achieve the design goals, comfort, and cost-effective operation.

Ventilation

Ventilation is the process of changing air in any space to provide high indoor air quality. It is used to remove unpleasant odors and excessive moisture, introduce outside air, to keep interior the mosque air circulating.

Ventilation is divided into two types: Natural Ventilation and Forced Ventilation.

Natural ventilation.

Natural ventilation cooling has two variation: Cross ventilation Stack ventilation. Show figure (2-13)

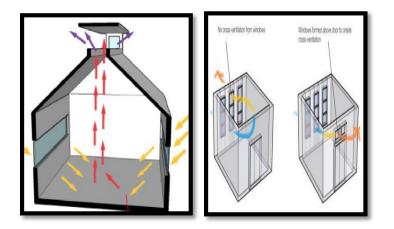


Figure 2-13: Cross and Stack Ventilation

Forced ventilation (Fans).

Mechanical fan machine for producing air flow often for cooling.

Some basic design principles application to ventilation and air conditioning system:-

1-The air must be free from dust, odors and other impurities.

2- The air must be at temperature and relative humidity which will satisfy the design conditions for the space.

3-The air must contain sufficient fresh air.

Table 2-6: A	ir supplay	rates [15]
--------------	------------	------------

Air change rates/hour	Type of space
6	Bathrooms
8-15	Pray hall
4	Libraries

Heating

Heating can be accomplished by heating the air within a space or by heating the occupants directly by radiation. There are many different types of heating systems, like radiant heat, under floor heat.

Central heating system

A central heating system provides warmth to the whole interior of a mosque from one point to all parts of the mosque.

In most systems, water is heated in a boiler and then circulated around the mosque to radiators ,Central heating provides consistent heat to a whole mosque, unlike other forms of heating which create hot and cold zones, because it takes moisture out of the air.

Radiator is not effective in the mosque because it requires many hours to gives heat to the mosque whole.

Air- Condition

The most used devices air conditioning system in mosques is air to air system (heat pump), because high efficiency, best air quantity and can be used for heating and cooling.

The function of an air conditioning system is to provide and maintain an artificial environment within the mosque enclosure.

2.6 Case Study

2.6.1 Global Case study (Shah Faisal mosque)

Mosque definition

The mosque is located in Pakistan, in the national capital city of Islamabad, the mosque covers an area of 5000 m², also Faisal Mosque has the third largest capacity of accommodating worshipers in its adjoining grounds after the Masjid al-Haram (Grand Mosque) of Mecca and the Al-Masjid al-Nabawi (Prophet's Mosque) in Medina. Show figures (2-14), (2-15). [16]

Figure 2-14: Shah Faisal mosque

Figure 2-15: site plan Faisal mosque

Architectural aspects

Form

The shape of the Faisal Mosque is an eight-sided concrete shell inspired by a desert Bedouin's tent and The Holy Kabbah in Mecca, four minarets are inspired by Turkish architecture. As shown in figure (2-16)

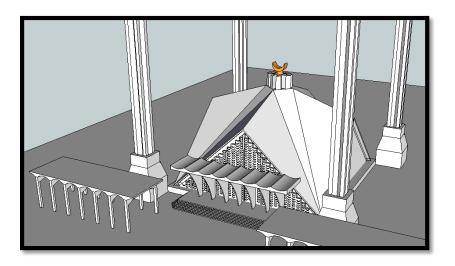


Figure 2-16: general form for faisal mosque.

Architectural spaces of the mosque

1. Pray hall for men.

Accommodate 10,000 worshipers in its main prayer hall 24,000 in its porticoes, 40,000 in its courtyard, and another 200,000 in its adjoining grounds. As shown in figure (2-17).

Figure 2-17 : main pray hall for Faisal mosque.

- 2. Pray hall for women.
- 3. Other spaces and facilities.

Mosque houses, Library Lecture hall, Museum, Ablution, sanitary units for men and women and cafe.

Environmental analysis

Daylight is provided through the side walls, also from the opening in the ceiling, The north and south walls are designed with twenty raised vertical louvers in addition to horizontal louvers are extended from the roof, which gives good shading in summer season also provides visual comfort inside. Show the figure (2-18)

Figure 2-18: fenestration and openings.

Structural system

The structural system used in the mosque is folded plates made of reinforced concrete, the roof has a height 132 feet above ground level, the roof shape is similar to the Gothic rib vaults in French method of the years 1140-1194, and the mosque is free column from inside, the minarets reaches up to 80 m. As shown in figure (2-19)

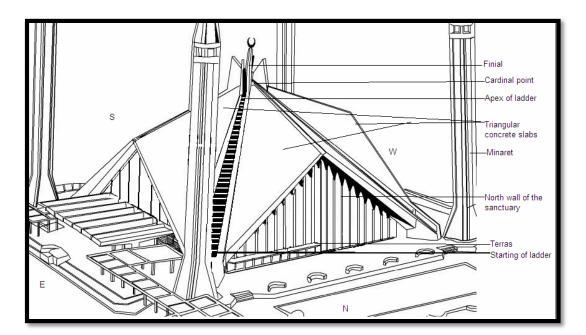


Figure 2-19: structural elements and system in faisal mosque

2.6.2 Local case study

Our second case study is Al Najah National University Mosque.

Mosque Location

The mosque is located in the west of Nablus city in Al- Najah National University campus.

Mosque Description

The mosque is in the north eastern of the university ,consist of three levels , first basement which has a prey hall for women ,second basement has a multipurpose hall with a library and cafeteria and the Ground Floor has a praying hall for men.

Architecture Aspects

Form

The mosque has a rectangular projection with three levels and is similar to hypostyle form. As shown in figure (2-20)

Figure 2-20: Form of the Mosque.

Architectural spaces of the mosque

- 1. Pray hall for men of area equal $600m^2$.
- 2. Pray hall for women.
- 3. Ablution and sanitary units for men and women.
- 4. Library and multi purpose hall.
- 5. Parking for 30 cars.

Architectural Elements of the mosque

1. Entrances

There are tow entrances for man and one Entrance for women, there is no relationship between the men and women entrances.

- 2. Dome
- 3. Mihrab
- 4. Minbar
- 5. Minaret

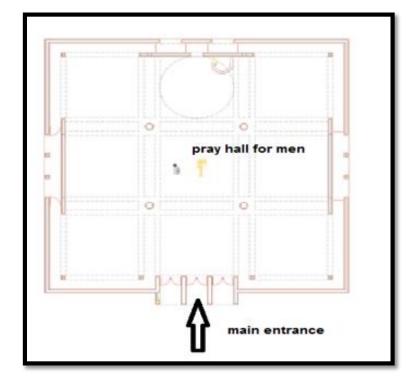


Figure 2-21: Ground floor level.

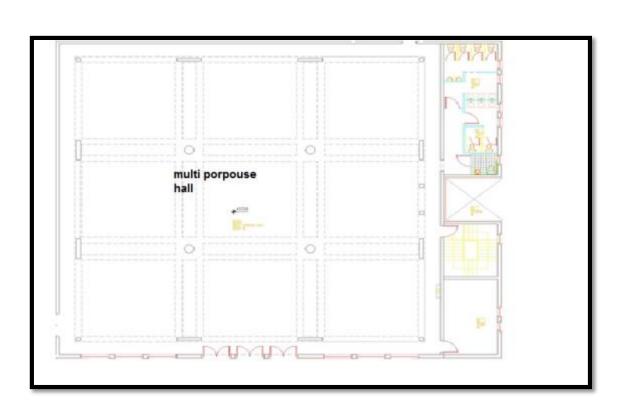


Figure 2-22: First basement level

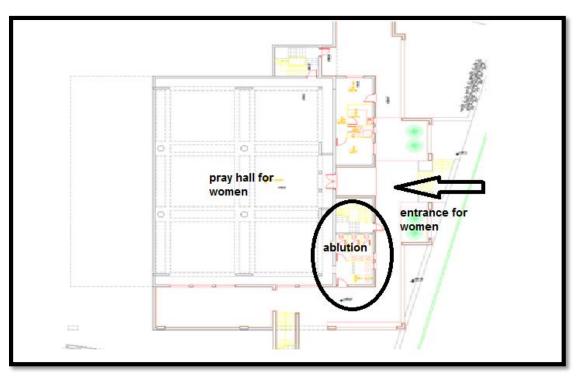


Figure 2-23: second basement level

Environmental Analysis

Daylight and sun movement

Daylight is provided through the side hidden windows in the eastern and western walls, also from the opening in the ceiling, limited view connection with the outdoor. Show figure (2-24)

Figure 2-24: fenestration and openings

Wind direction

The prevailing wind direction in the most days of the year is south west and north west. We noticed that ventilation inside the pray hall is poor because there is not enough openings in the walls and the ceilings. Show the figure (2-25)

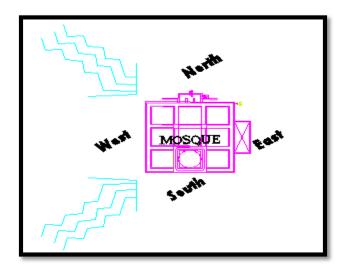


Figure 2-25: Wind direction

Acoustics

The main noise source in the mosque is from stadium in the west and the main street in the north we noticed that reverberation time inside the pray hall was medium. As shown in figure (2-26)

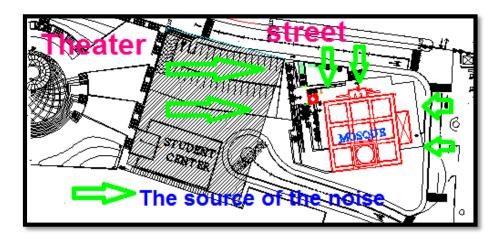


Figure 2-26: Noise source

Thermal comfort

There is no side windows in the south elevation which can be used to heat the mosque in winter, also large thermal mass due to ceiling and walls can affect the inside thermal comfort by absorbing the heat in addition to, there is no thermal insulation.

Structural Aspects

- The mosque has symmetrical shape and the minaret is isolated from the mosque this will improve the seismic resistance.
- Circular columns as used inside the pray hall, the distance between the columns equal 8m
- Shear wall system is used in construction of the minaret.

CHAPTER 3

ARCHETICTURAL DESIGN

3.1 Introduction

Architectural work is the first step in any construction project. The architectural design aims to provide creative and unique design. However, the best architectural design is the one that satisfies the client needs and requirements and at the same time does not conflict with other requirements.

The first step is selecting and analyzing the location of the project. The land proposed as a site for our project (Mosque) is situated on the cross roads of Tulkarm street and Tunis street. Three roads from three sides two main and secondary street surround it. The total area of the project site is 3580 m². As shown in figure (3-1) [17]

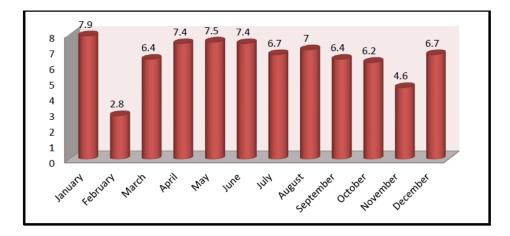
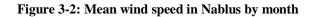
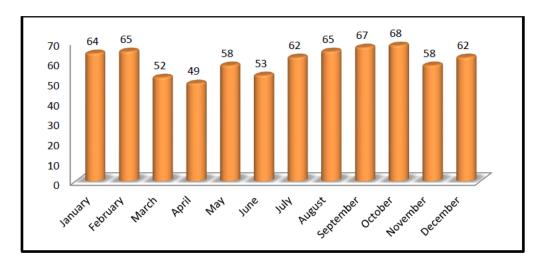


Figure 3-1: Site


3.2 Nablus city weather analysis:

Nablus (35.263° latitude and 32.214° longitude) is situated in the fourth region according to climate data of Palestine; this region has a warm partially hydrated summer and a cold winter. The hottest months in Nablus are July and August with the average high 28.9 °C. The coldest month is January with temperature 3.9°C. Humidity rate of 60%, average rain fall about 75mm


yearly. The prevailing winds is the west winds which is affected by the northern and the southern west winds.

Wind average speed: [17]

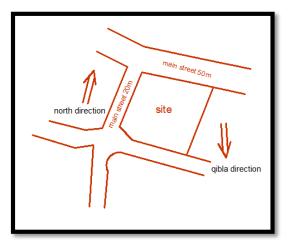

Relative humidity: [17]

Figure 3-3: Mean relative humidity in Nablus by month

Qibla direction:

The qibla direction in Nablus city is about 202.5° from the north. As shown in figure (3-4).

Noise source:

The noise mainly comes from quarries nearby from the west side, also the noise that comes from the street that surrounds the land. Therefore, the trees will be spread all round the circumference of the masjed lands with large leafs to help in reduction of the outdoor noise. , also insulation of masjed walls will be used in order to minimize it to the minimum limit without affecting the peaceful state of mind of worshipper when is performing his religious duties as shown in figure (3-5).

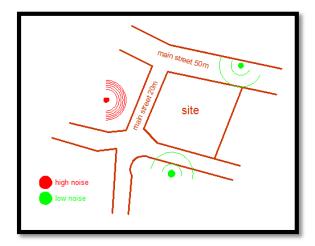


Figure 3-5: Noise source.

Wind direction:

The west and the southwest winds are the prevailing winds in this area with an annual average wind speed 100 Km/hr. With the help of wind and placing the ablution area in the correct place no bad smells will reach the masjed. Also, wind help in the natural ventilation by using large windows in the western side although there are stone crushers from this side. This problem is solved by planting trees between the mosque and the crushers. Another opposite windows on the eastern side as shown in figure (3-6).

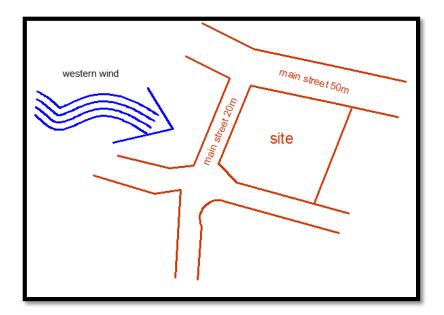


Figure 3-6:wind direction

Overshadowing:

High buildings do not surround the project site. So, the site is subjected to sunlight all day. This is an advantage point in the design. The sun revolves around the masjed land from south, this will consume in the process of heating and cooling the building by using Trombe wall in the southern wall of the masjed. Also placing windows will help in the natural lighting process.

3.3 Project Program

The project is to be a mosque as we discussed before, thus the program of execution the design of this project will depend on the areas and function used in the building. The previous collected data will help us to determine the required areas for the different functions that composing our building project.

The mosque will be designed for 400 worshippers; the area required for each space is shown in the table (3-1).

Space	Area (m ²)
Pray hall for men	400
Pray for women	75
parking	213
Imam room	9
Service room	9
ablution	60
toilet cubicle	30
washbasin	2
library	15-20
storage	20
Net area	938

Table 3-1: Estimated areas for mosque

In addition of the areas mentioned above there is 10% to 20% added areas for circulation and entrance.

The total estimated area for the building is about $1032m^2$.

3.4 Design concept

The concept of this project was to redesign a student project in 2nd years of Architectural department that helps to realize our main idea: zero interior columns and energy efficiency mosque.

3.5 Modification

In order to achieve the objective of our project, the following modification were done to the original design:

Pray hall:

1- The pray hall was expanded to accommodate 400 prayers. As shown in figure (3-7).



Figure 3-7: Pray hal befor and after.

2- The mosque structure is covered with Alcubond cladding as a lightweight material in addition to it gives good appearance and a modern style. The figure (3-9) shows.

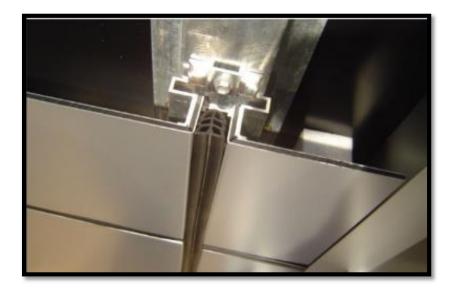
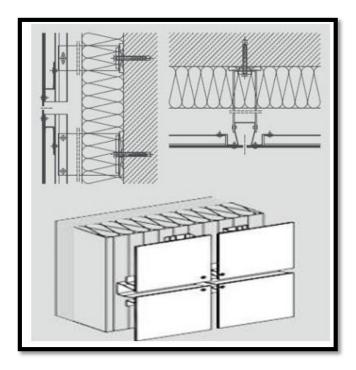
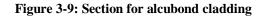




Figure 3-8: Alcubond cladding.

3- The male prayers entrance was separated from the female one, as shown in the figure (3-11).

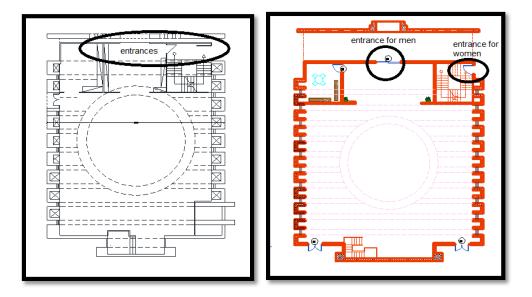


Figure 3-10: Entances befor and after.

4- The shelves of the prayers shoes where extended and their location was modified to be outside the mosque. This reduces the bad smell. Show the figure (3-12).

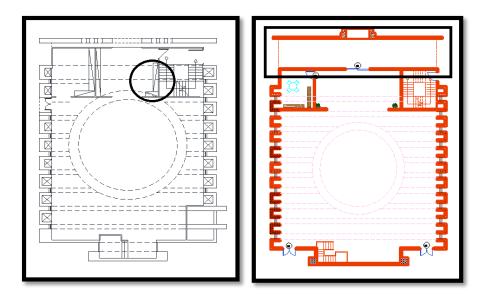


Figure 3-11: Shelves of the prayers shoes befor and after extended.

5- We have opened two emergency exist. As shown in figure (3-13).

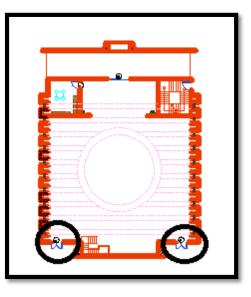


Figure 3-12: Emergency exist

For the Minaret:

1- The Minaret was separated from the rest of the mosque due to seismic issues. Show the figure (3-14).

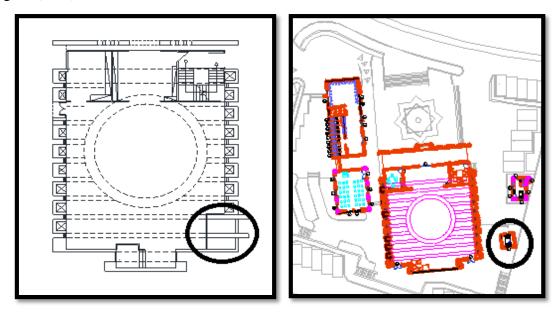


Figure 3-13: Minaret befor and after separetion.

2- The architectural design of the minaret is changed. Show the figure (3-15).

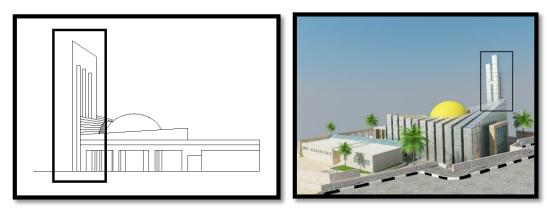


Figure 3-14: Minaret befor and after redesign.

For the site

- 1- The site was modified so that the total number of available parking lots is 35 vehicles.
- 2- The distribution of green areas and the location of the entrances were changed.
- 3- A ramp was added to service people with special needs. As shown in figure (4-16).

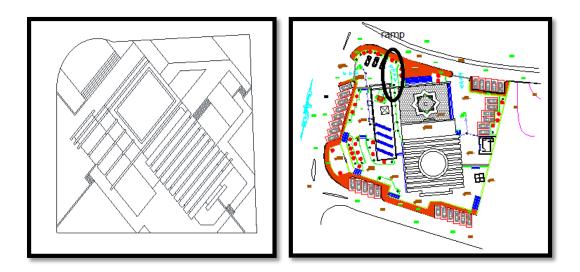


Figure 3-15: site befor and after redesign

General modifications

1- The location of the Multi-purpose hall was exchanged with ablution location. The Multipurpose hall is now located in the south. The new location for the Multi-purpose hall gives an advantage of facing the south direction without any shading this will improve daylight levels and solar gains; the ablution is moved away from the mosque to keep good indoor air quality without bad smells (3-17).

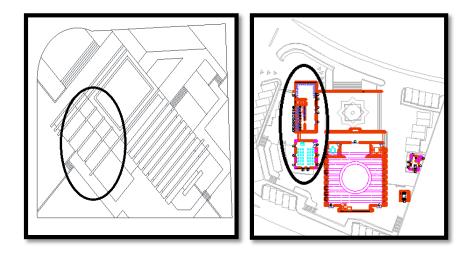


Figure 3-16: location of the Multi-purpose and ablution before and after exchanged

2- A special room for water tanks is constructed under the ablution. Show the figure (3-18).

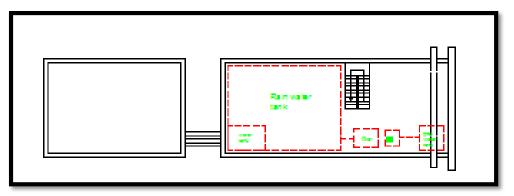
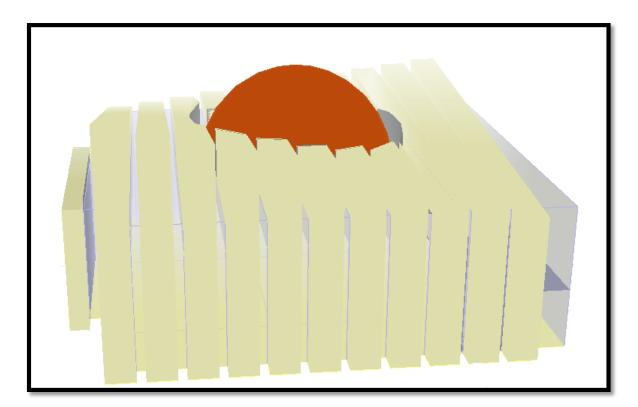


Figure 3-17: room for water tanks

CHAPTER 4

ENVIRONMENTAL


DESIGN

4.1 Environmental Design

To check the environmental efficiency for the original design and the current design, two ECOTECT models were made to determine the optimum design and solutions for luminous of thermal comfort.

This part will illustrate the solar design by using ECOTECT program to give an indication of how much this mosque will be energy efficient in terms of daylight factor, heating and cooling demands.

ECOTECT is an industry leading building analysis program that allows designers to work easily in 3D and apply all the tools necessary for an energy efficient and sustainable future, as shown in the figure (4-1) below:

Figure 4-1: Ecotect model for the current design

4.2 Thermal analyses

Using thermal insulation is an important part of any construction project because it has a huge effect on power conservation, using effective material in thermal insulation in envelop as figures below. Materials will reduce amount of heat gained in summer and reduce the amount of heat lost in winter.

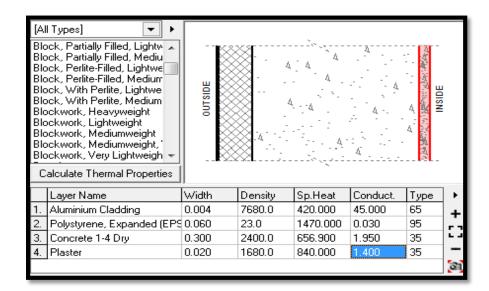


Figure 4-2: layer of external wall with detail

ConcBlockPlaster_External_wall		U-Value (W/m2.K):	0.430		
110mm concrete block with 10mm p		Admittance (W/mi	2.K):	5.690		
either side.			Solar Absorption (0-1):	0.506	
			Visible Transmittar	nce (0-1):	0	
			Thermal Decreme	nt (0-1):	0.14	
Building Element: WALL	-	Thermal Lag (hrs):		5		
			[SBEM] CM 1:		0	
🖡 🛛 Values given per: Unit Area (mŷ) 🛛 🔻			[SBEM] CM 2:		0	
Cost per Unit:	0		Thickness (m):		0.384	
Greenhouse Gas Emmision (kg):	0		Weight (kg):		785.700	
Initial Embodied Energy (Wh):	0			Internal	External	
Annual Maintenance Energy (Wh):	0		Colour (Reflect.):	(R:0.549)	(R:0.549)	
Annual Maintenance Costs:	0		Emissivity:	0.9	0.9	
Expected Life (yrs):	Expected Life (yrs): 0		Specularity:	0.0	0.0	
External Reference 1:	External Reference 1: 0		Roughness: 0		0	
External Reference 2:	0			-	-	
LCAid Reference:	0		<u>S</u> et as Default	Und	o Changes	

Figure 4-3: layer of external wall with detail

Properties Layers Acoustics Advanced Export No Highlight >											
	II Types] od Oregon Pine (Across od Particle Panels od Pine (With Grain) od Spruce (Across Grain od Spruce (Across Grain) od Teak (Across Grain) od Virginia Pine (Across od White Fir (Across Grain od White Pine (Across Grain od White Pine (Across Grain) od White Pine (Across	and the second s		INSIDE		And					
	Layer Name	Width	Density	Sp.Heat	Conduct.	Туре	•				
1.	Water proof	0.002	0.6	1966.000	5.560	0	+				
2.	Concrete 1-4 Dry	0.120	2300.0	656.900	1.950	35					
3.	Air Gap	0.450	1.3	1004.000	5.560	0	6.3				
4.	Wood Particle Panels	0.050	700.0	1890.000	0.140	115	-				
5.	Carpet	0.015	240.0	732.200	0.055	79	a 1				

Figure 4-4: layer of ground slab with detail

Properties Layers Acoustics Advanced Export No Highlight >								
ConcSlab_Carpeted_OnGround			U-Value (W/m2.	K):	0.510			
100mm thick concrete slab on grou	nd plus		Admittance (W/	m2.K):	2.040			
carpet and underlay.		Solar Absorption	(0-1):	0.324483				
		Visible Transmitt	ance (0-1):	0				
		$\overline{\nabla}$	Thermal Decrem	ient (0-1):	0.2			
Building Element: FLOOR		-	Thermal Lag (hr:	s):	4.2			
			[SBEM] CM 1:	0				
Values given per: Unit Area	-	[SBEM] CM 2:		0				
Cost per Unit:	0		Thickness (m):		0.817			
Greenhouse Gas Emmision (kg):	0		Weight (kg):		614.300			
Initial Embodied Energy (Wh):	0			Internal	External			
Annual Maintenance Energy (Wh):	0		Colour (Reflect.)		(R:0.752)			
Annual Maintenance Costs:	0		Emissivity:	0.9	0.9			
Expected Life (yrs): 0			Specularity:	0	0			
External Reference 1: 0			Roughness:	0	0			
External Reference 2:	0			1				
LCAid Reference:	0		<u>S</u> et as Defaul	t <u>U</u> no	lo Changes			
		_						

Figure 4-5: U-value for ground slab.

Pr	operties	<u>L</u> ayers	Acous	tics į	<u>A</u> dva	nced Export		No Hjg	hlight 🕨	
[All Types] • Wood Virginia Pine (Across Grewood White Fir (Across Grewood White Pine (Across Grewood Woodwool Board, Cement E Woodwool Board, Cement E Woodwool Soring Slabs Woodwool, Xylolite Cement Wool Wool Felt Underlay • Wool, Fibrous • • Wool, Resin Bonded • • Calculate Thermal Properties • •										
	Layer Nar	ne		Width		Density	Sp.Heat	Conduct.	Туре	▶
1.	Concrete	1-4 Dry		0.050		2300.0	656.900	0.753	35	+
2.	Polystyrer	ne, Expand	ed (EPS	0.070		23.0	1470.000	0.035	95	
3.	3. Concrete 1-4 Dry 0.300 2300.0 656.900 0.753 35								6.3	
4.	Plaster			0.020		1200.0	840.000	0.520	35	-
										ଶ୍

Figure 4-6: layer of roof with detail

Properties Layers Acoustics	<u>A</u> dvar	nced	Export	No Hj	ghlight 🕨
concret roof			U-Value (W/m2.	K):	0.370
[No Description]			Admittance (W/r	n2.K):	4.320
			Solar Absorption	(0-1):	1
			Visible Transmitt	ance (0-1):	0
		Ŧ	Thermal Decrem	ent (0-1):	0.07
Building Element: ROOF		-	Thermal Lag (hrs	:):	0
			[SBEM] CM 1:		0
Values given per: Unit Area	∋ (mŹ)	-	[SBEM] CM 2:		0
Cost per Unit:	64.3		Thickness (m):		0.440
Greenhouse Gas Emmision (kg):	0		Weight (kg):		830.610
Initial Embodied Energy (Wh):	0			Internal	External
Annual Maintenance Energy (Wh):	0		Colour (Reflect.):		(R:0.624)
Annual Maintenance Costs:	0		Emissivity:	0.84	0.89
Expected Life (yrs):	0		Specularity:	0.04	0
External Reference 1:	0		Roughness:	0	0
External Reference 2:	0		riougniness.	- 4	
LCAid Reference:	0		<u>S</u> et as Defaul	: <u>U</u> nd	lo Changes

Figure 4-7: U-Value for roof

Cor De Dia Dia Dia Dia Do Du Ear	I Types] rk Ground Regranulated nse nse, Reinforced abasic Glass (Artificial) atomaceous Earth (Accr S atomaceous Earth (High E atomaceous, Kieselguhr C lomite (Avg. Prop) raluminium rth, Common rth, Gravel-Based	OUTSIDE		`~		INSIDE	
C	alculate Thermal Properties			-			_
	Layer Name	Width	Density	Sp.Heat	Conduct.	Туре	≁
1.	Glass Standard	0.006	2300.0	836.800	1.046	75	+
2.	Argon Gas	0.012	1.8	518.800	1.500	0	-
3.	Glass Standard	0.006	2300.0	836.800	1.046	75	5.4

Figure 4-8: layer of window with detail

Properties Layers Acoustics Advanced Export No H					ghlight 🕨	
DoubleGlazed_LowE_AlumFrame			U-Value (W/m2.K):		1.670	
Double glazed with aluminium fram	e íno		Admittance (W/m2.K):		0.880	
thermal break), emissivity of 0.10.			Solar Heat Gain (Coeff. (0-1):	0.75	
			Visible Transmittance (0-1):		0.611	
		Ŧ	Refractive Index	of Glass:	0.23	
Building Element: WINDOW		-	Alt Solar Gain (He	Solar Gain (Heavywt):		
			Alt Solar Gain (Li	ghtwt):	0.29	
Values given per: Unit Are	ea (m½)	-				
Cost per Unit:	0		Thickness (m):		0.024	
Greenhouse Gas Emmision (kg):	0		Weight (kg):		27.622	
Initial Embodied Energy (Wh):	0			Internal	External	
Annual Maintenance Energy (Wh):	0		Colour (Reflect.):	(T:0.611)	(T:0.611)	
Annual Maintenance Costs:	0	_	Emissivity:	0.78	0.78	
Expected Life (yrs):	0		Specularity:	0	0	
External Reference 1:	0	_	Roughness:	0	0	
External Reference 2:	0	_		-		
LCAid Reference: 0 Set as Default Undo Changes					o Changes	

Figure 4-9: U-Value of window

Properties Layers Acoustics Advanced Export No Highlight >								
[All Types] • Clay Tile, Hollow, 32.5 Mm, Clay Tile, Pavior Clay Tiles • Coconut Pith Insulation Boa Coir Board • Composite, Flooring • Concrete 1-4 Dry • Concrete Cinder • Concrete Stone (1-2-4 Mix) •								
Calculate Thermal Properties						_		
Layer Name	Width	Density	Sp.Heat	Conduct.	Туре			
1. Plaster	0.020	2000.0	840.000	1.400	35	+		
2. Polystyrene Foam (High Der	0.030	30.0	1130.000	0.030	45	F N		
3. Concrete 1-4 Dry	0.250	2300.0	656.900	1.950	35	6.3		
4. Polystyrene Foam (High Der	0.020	30.0	1130.000	0.030	45	-		
5. Plaster 0.020 2000.0 840.000 1.400 35 33								

Figure 4-10: layer of partitons with detail.

Properties Layers Acoustics	: <u>A</u> dva	nced	Export	No H <u>i</u> g	ghlight 🕨 🔤	
partition			U-Value (W/m2.K):		0.500	
110mm concrete block with 10mm plaster			Admittance (W/m2.K):		2.130	
either side.			Solar Absorption (0-1):		0.506	
			Visible Transmittance (0-1		0	
		Ŧ	Thermal Decrement (0-1): 0.0		0.07	
Building Element: WALL		-	Thermal Lag (hrs):		5	
			[SBEM] CM 1:		0	
Values given per: Unit Area	a (mŹ)	-	[SBEM] CM 2:		0	
Cost per Unit:	0		Thickness (m):		0.340	
Greenhouse Gas Emmision (kg):	0		Weight (kg):		644.500	
Initial Embodied Energy (Wh):	0			Internal	External	
Annual Maintenance Energy (Wh):	0	_	Colour (Reflect.):	(R:0.880)	(R:0.549)	
Annual Maintenance Costs:	0		Emissivity:	0.9	0.9	
Expected Life (yrs):	0		Specularity:	0	0	
External Reference 1:	0	_	Roughness:	0	0	
External Reference 2:	0	_		1		
LCAid Reference:	0		<u>S</u> et as Default	<u>U</u> nd	o Changes	

Figure 4-11: U-Value for partitions.

Elements	U-value (w/m2.k)
External wall	0.43
Ground slab	0.37
Roof	0.37
Partition	0.50
Window	1.17

As show in the following figures (4-12 & 4-13) general sittings of the pray hall zone in summer and winter.

Pray hall				
<u>G</u> eneral Settings <u>T</u> hermal	General Settings Ihermal Properties Information			
SHADO₩ AND REFLE	CTION SETTINGS			
✓ Display <u>Shadows</u> Highlighting the shadows of individual zones.	Shadow Color Reflection Color Image: Highlight shadows/reflections from this zone Image: Highlight shadows/reflections from this zone			
➢ INTERNAL DESIGN C	ONDITIONS			
These values are used to define zone conditions in thermal comfort and lighting calculations.	Clothing (clo): Humidity (%): Air Speed: 2.00 ▶ 60.0 0.50 m/s Lighting Level: 400 lux ▶			
♦ OCCUPANCY AND OP	ERATION			
Occupancy Values for number of people and their average biological	No. of People and Activity: 150 ▶ Resting - 45 W			
heat output.	[No Schedule]			
Internal Gains Values for both lighting and small power loads per unit	Sensible Gain: Latent Gain: 5 2 W/m2			
floor area.	[No Schedule]			
Infiltration Rate Values for the exchange of air between zone and outside environment.	Air Change Rate: Wind Sensitivity: 2.00 ▶ 0.25 ▶ Air changes / hr [No Schedule]			

Figure 4-12: General sitting of the pray hall zone in summer.

General Settings Ihermal Properties Information			
SHADO₩ AND REFLE	CTION SETTINGS		
✓ Display <u>S</u>hadows Highlighting the shadows of individual zones.	Shadow Color Reflection Color Image: Highlight shadows/reflections from this zone Image: Highlight shadows/reflections from this zone		
➢ INTERNAL DESIGN CO	DNDITIONS		
These values are used to define zone conditions in thermal comfort and lighting calculations.	Clothing (clo): Humidity (%): Air Speed: 2.00 ▶ 60.0 0.50 m/s ▶ Lighting Level: 400 lux ▶		
♦ OCCUPANCY AND OP	ERATION		
Occupancy Values for number of people and their average biological	No. of People and Activity: 150 ▶ Resting - 45 ₩ ▼		
heat output.	[No Schedule]		
Internal Gains Values for both lighting and small power loads per unit	Sensible Gain: Latent Gain: 5 2 W/m2		
floor area.	[No Schedule]		
Infiltration Rate Values for the exchange of air between zone and outside environment.	Air Change Rate: Wind Sensitivity: 0.50 ▶ 0.25 ▶ Air changes / hr [No Schedule]		

Figure 4-13: General sitting of the pray hall zone in winter

4.3 Ecotect results for the heating and cooling loads.

We use the heating and cooling load settings to obtain the cooling and heating values just to compare it with the energy efficient buildings according to ASHRAE code and the results are as shown in the figure(4-14) below.

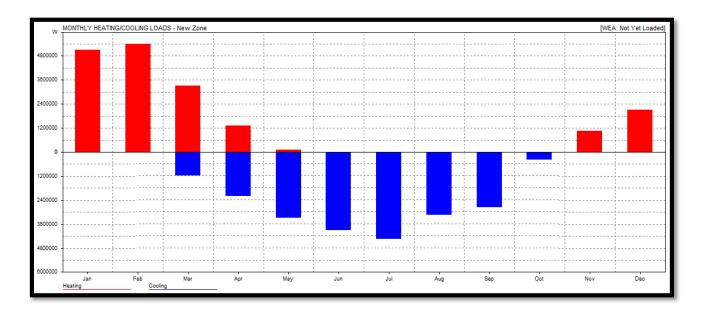


Figure 4-14: monthly heating / cooling loads for the pray hall.

Operation: Weekdays 12:00-21:00, Weekends in summer

Operation: Weekdays 5:00-21:00, Weekends in winter

Thermostat Settings: 18.0 - 24.0 C in summer

Thermostat Settings: 19.0 - 24.0 C in winter

	HEATING	COOLING	TOTAL
MONTH	(Wh)	(Wh)	(Wh)
Jan	5103702	0	5103702
Feb	5395804	0	5395804
Mar	3313187	0	3313187
Apr	1313465	794635	2108100
May	114929	2200991	2315920
Jun	0	1639865	1639865
Jul	0	3829481	3829481
Aug	0	5236511	5236511
Sep	0	1962702	1962702
Oct	0	1524377	1524377
Nov	1062857	0	1062857
Dec	2099710	0	2099710
TOTAL	18403654	17188562	35592216
Total cost/year			
PER M ²	34742	32449	67191
Floor Area:	530 m2		

Table 4-2: heating and cooling consumption for all pray hall.

- An environmental comparison between the original design and the current design is made.
- The current design was found to be more environmentally efficient or energy efficient.
- As mentioned in the previous section, the total of heating and cooling load in the original design in the pray hall area was about 105 Kw/m² annually and for our design was about 67 Kw/ m² annually.

The current design is more energy efficient because the values of heating and cooling loads have been reduced for the mosque almost to 64 % of the old design, this will reduce the energy consumption for the mosque.

4.4 Natural Day light analysis.

The following figures illustrate the natural lighting distribution in the presence of overhangs on southeast and northwest windows in each space of the mosque. It is expressed as daylight factor, figure (4-15) below shows the natural day light.

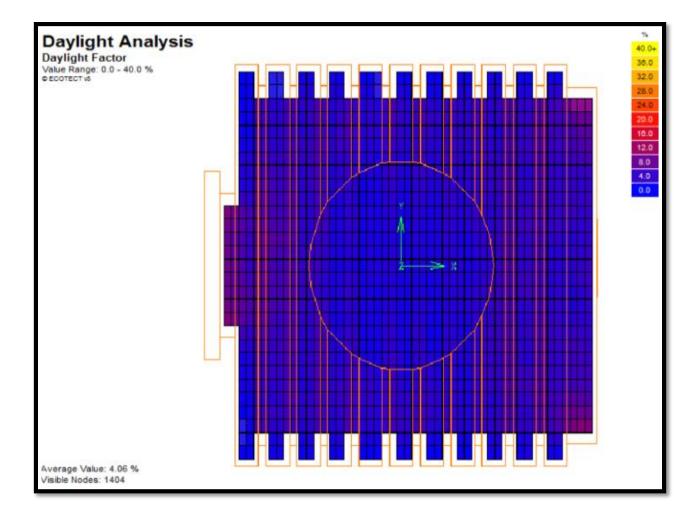


Figure 4-15: daylight factor of the pray hall.

From previous day lighting results, note that the day lighting levels for the pray hall are within the range (3%-5%) for day light factor. Also, the daylight distribution is approximately uniform.

4.5 Acoustical Analysis

The reverberation time RT_{60} is define as the time required, in second, for the average second in a room to decrease by 60 dB after a source stops generating sound, as shown in figure (4-20) the statistical reverberation time for the pray hall.

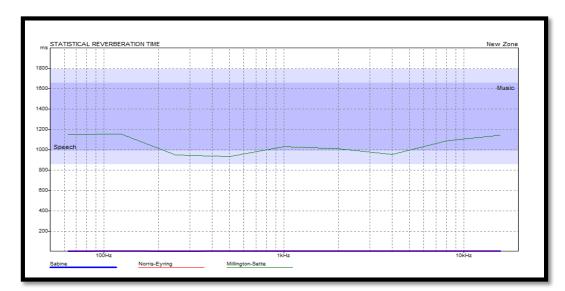


Figure 4-16: reverberation time in the pray hall

Surface Area: 2267 m²

Occupancy: 120 (400 x 30%).

Optimum RT (500Hz - Speech): 0.99 s.

Optimum RT (500Hz - Music): 1.66 s.

Volume per Seat: 10.351 m³.

Minimum (Speech): 5.001 m^3 .

Minimum (Music): 8.908 m³.

Most Suitable: Norris-Eyeing (Highly absorbent).

Selected: Sabine (Uniformly distributed).

Knowing that the optimum reverberation time for the mosque is 0.9- 1.2 second. We are interested in certain frequencies at which the speech occurs. These frequencies are 125 and 4000 Hz.

These values of RT_{60} are achieved after adding ornamented glass in some of the internal frames, also adding ornamented glass well increase the reflectivity of the sound.

FREQ.	Total ABSPT.	MIL-SERT(60)
63Hz	757663.7	1.05
125Hz	757668.8	1.05
250Hz	757458.8	1.12
500Hz	757479.7	1.1
1kHz	757536	1.03
2kHz	757494.3	1.01
4kHz	757561.2	1.03
8kHz	757560.6	1.09
16kHz	757656.2	0.97

Table 4-3:	Reverberation	time in	the p	oray hall.
------------	---------------	---------	-------	------------

 $As = 0.16V / RT60 = (0.16 * 3714) / 1.03 = 592 m^2.$

 $\alpha = As/Atotal = 592 / 2267 = 0.25$

R = Atotal * $\alpha / (1 - \alpha) = 2267 * 0.26 / (1 - 0.26) = 801 \text{ m}^2$

L_W= 85 dB.

SPL at 4 m from the Member = $L_W+10 \log [(Q/(4\pi r^2))+(4/R)]$

SPL at 4 m from the Member = $85+10 \log \left[(2/(4\pi (4)^2)) + (4/801) \right]$

$$= 85+10 \log \left[(2/(4*3.14*4^2)) + (4/801) \right]$$

= 67 dB.

Noise level calculation:

Area wall = 127.8 m^2

Area window = 42 m^2

Table 4-4: STC for envelope walls.

Layer	STC
Solid concert with thickness $= 30$ cm	56
Add one side plaster	2
Polystyrene	3
Total	61

STC for window = 32. [25]

Based on the filed measurement the obtained noise level on average equal 65 dB.

TLc = 10 Log $(127.8/42*10^{-4.2} + 85.8*10^{-6.1}) = 37 \text{ dB}.$

Thus, noise level inside the mosque equal 65 - 37 = 28 dB.

S / N (at 4 m) = 62.8 - 28 = 34.8 dB

% AL_{cons} (at 4m) = 9.2%

Table 4-5:(%ALcon	ns) calculation.
-------------------	-------------------

Distance (m)	SPL(dB)	S/N (dB)	AL%
4	67	39	9.2%
12	62.8	34.8	9.2%
20	62.2	34.2	9.2%

The AL_{cons} value calculated equal 9.2% ,so it is acceptable since the value is within the range

(15-7)% . [25]

4.6 Solar system

1. Trombe wall

Trombe walls are used for heating, the trombe wall is located in the qibla direction of the mosque as shown in figure (1-16),(1-17) below.

It's designed in 21- January,

heat gain = insulation *(1-cc)*eff.*AGlass.

Insulation = 920 + 560 = 1480 BTU

Heat gain = $\frac{1480*0.24}{317} = 1.12 \frac{kwh}{m2 \cdot day}$.

Heat gain =1.12 * 40 = 45 kwh/day

Heat gain = $\frac{45*120}{530} = 10.2 \text{ kw/m2}.$

Figure 4-17: Elevation for trombe wall from inside.

Figure 4-18: Elevation for trombe wall from inside.

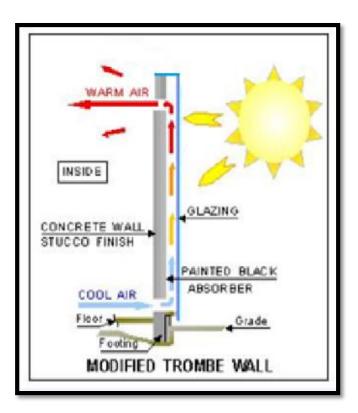


Figure 4-19: section in thrombi wall

2. Photovoltaic cells

Photovoltaic cells are used to convert solar energy to electrical energy, Photovoltaic cells are located roof the cultural center shown figures (1-19), (1-20) below we used in our project to reduce the electricity consumption in the mosque.

We use 28.8 m² of photovoltaic cells, every 100 cm2 give us 1.8 watt.

100 cm2 _____ 1.8 watt

7200 cm2 _____ 130 watt

Each module give us 130 watt, and the number of cells used equal 40, when each 40 cells gives 5.2 Kwp.

1 kwp _____5.4 KW.H/day

5.2 kwp _____ 28 KW.H/ day

So we have convert to KW.H/ M2: (28*365)/530 = 20 KW/M2.

The price of photovoltaic cells in the market 5750 \$ / 5KwP.

Shown below figure (4-19) the photovoltaic cells distribution on the ceiling of the cultural center.

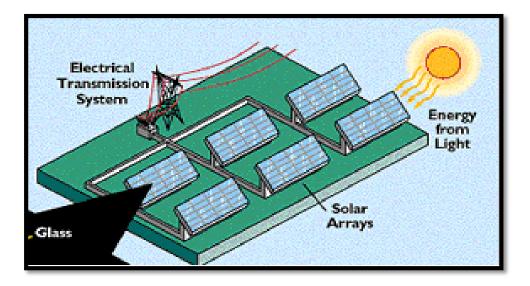


Figure 4-20: distribution photovoltaic cells.

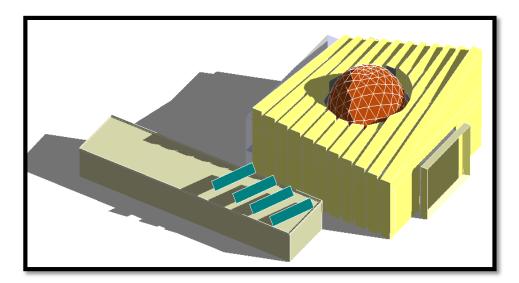


Figure 4-21: directing photovoltaic cells.

Mosque energy consumption

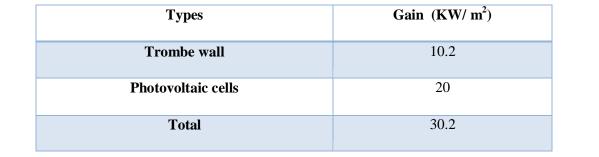

After the work that we have done via Ecotect and considering the green building code, we came up with those results shown in the table below for the mosque.

Table 4-6: Mosq	ue energy consumption	ons

Devices	Consumption (KW/ m ²)
Cooling	34.7
Heating	32.5
Lamps	10
Pump	0.5
Total	77.7

Mosque energy gains

After installing the thrombi wall and photovoltaic cells we gained so much heat energy, and that reduced the heating load required.

Table 4-7: Mosque enerdy gains

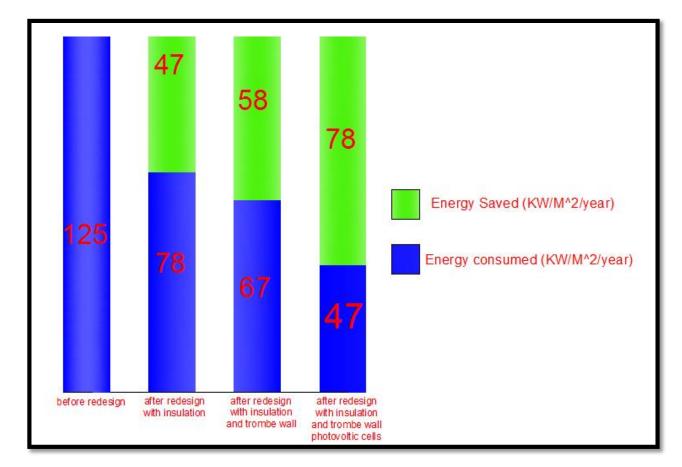


Figure 4-22: Energy consumed in for the mosque

CHAPTER 5

STRUCTURAL DESIGN

5.1 Introduction

Site and Geology:

The structure of the mosque will be built on sedimentary clay soil with 1 m rock fill and 0.5 m of compacted base course as a result the bearing capacity of soil will be 200 KN/m^2 .

Design codes:

The structure will be designed for static and dynamic cases, the design will be done according to codes and standards such as:

- ACI -318-2011 for reinforced concrete structural design.
- UBC -97 for earthquake and wind load computations.
- Jordanian code for loads 2006.
- ASCE for load computations.

Project description:

The project has many spaces functions and elements, the structural part will include full design for the Mosque and the Minaret.

The figures (5-1), (5-2) bellow shows the SAP model for mosque and minaret

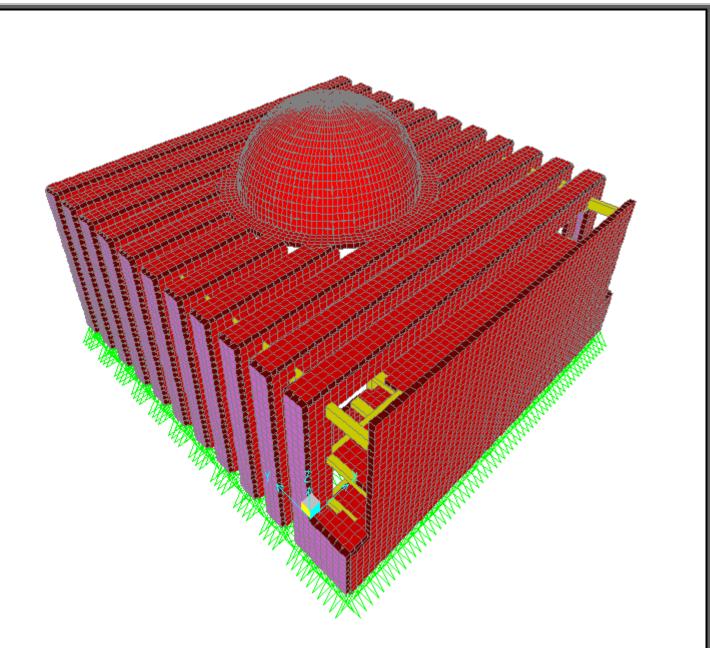


Figure 5-1: 3D SAP model for the Mosque building.

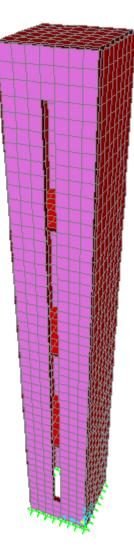


Figure 5-2: 3D SAP model for the Minaret.

Materials:

The materials used in construction will have the following characteristics:

1. Compressive strength of Concrete (fc) = 24 MPa

The compressive strength is for standard cylinder crushed at 28 days.

2. Yielding strength of steel fy = 420 MPa

Material	Density (KN/m ³)
Reinforced Concrete	25
Polystyrene	0.3
Hollow Concrete block	12
Alcubond (Aluminum sheets)	16
Sand	18
Mortar	23
Course aggregate	18
Tiles (30 mm thick)	26

Table 5-1: Material used and their density.

Concrete cover for reinforcement will be:

- 5 cm for foundation with blinding.
- 4 cm for concrete columns.
- 3 cm for concrete slabs.
- 4 cm for concrete beams.

Load and forces:

1. Dead load

Dead loads shall comprise of the own weights of structural elements while the superimposed dead loads are composed of weights of partition walls, fill, mortar, tiles and plastering. The weight of the (exterior) non-structural elements, Alcubond cladding and curtain walls are considered as superimposed dead loads.

2. Live loads

According to ASCE 7-2005 based on type and use of space

3. Snow loads

According to Jordanian code the snow load depends on the elevation above sea level

For height ,500 > h > 250m, $q_s = \frac{h - 250}{800}$

4. Wind load

Wind load is computed according UBC 97. it will be computed in design of minaret section

5. Seismic load

Seismic load is computed according UBC 97. it will be computed in seismic design section

6. Soil load

Will be computed in basement wall design section

Type of load	Load (KN/m ²)	
	4 for pray hall	
Super imposed	Stairs (6 for flight and 4 for landing)	
	2 for the roof	
	5 for the pray hall	
live	5 for the stairs	
	1 for the roof	
Snow	0.5	

Table 5-2: Loads used for design

Load combinations

According to ACI 318-2011 the main design combinations for ultimate strength design are summarized as follows:

The load combination according to ACI 318-2011:

- 1) Wu= 1.4D.L
- 2) Wu= 1.2D.L+ 1.6L.L + 0.5(Lr or S or R)
- 3) Wu= 1.2D.L +1.6(Lr or S or R) + (1.0L or 0.8W)
- 4) Wu= 1.2D.L+ 1.6W + 1.0L + 0.5(Lr or S or R)
- 5) Wu= 1.2D.L \pm 1.0E + 1.0L + 0.2S
- 6) Wu= 0.9D.L \pm (1.6W or 1.0E)

Where:

- D.L: Dead load
- L.L: live load
- E: Earthquake load
- S: Snow load
- W: Wind load
- Lr: Roof live load
- R: Rain load

Program in use:-

- 1. SAP2000: for structural analysis & design.
- 2. AutoCAD 2007: for all drawings.

5.2 Methodology

Based on building architectural, functional and environmental requirements, the following methodology was adopted:-

- Choosing the suitable structural configuration
- Choosing the structural system, the structural system used is the long span reinforced concrete frames.
- Computing the loads and forces on the structure: dead, super imposed, live, snow, wind and seismic loads.
- Preliminary design of structural elements, such as columns, beams, slabs, etc.
- Building sap model to analyze and design the structural system

5.3 Analysis and design:

In this section, sample of calculation for preliminary design and design of frame, dome, minaret, beam, slab, shear wall, footing, and stairs model and the SAP checks and results after putting the seismic shear force.

5.3.1 Preliminary design:

For slab

To determine the minimum thickness of slab, the deflection limit according to ACI 318-08 code for simply supported one way ribbed slab was used:

$$h = \frac{l_n}{16}$$

Where:

h = minimum thickness

 $L_n = clear span length$

 $h=4.9 \setminus 16=0.3 \ m$

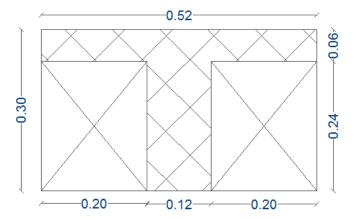


Figure 5-3: Cross section in one way ribbed slab

For beams:

To determine the minimum thickness, the deflection limit according to ACI 318-08 code was used

1. Rectangular

For two end continuous span.

$$h = \frac{l_n}{21}$$

Where:

h = minimum thickness

 $L_n = clear span length$

h= 7.65 \ 18.5 = 0.41m.

Use beam 30X60 cm to increase strength and safety.

2. U- section

Section dimension where established according to architectural and safety aspects since the beams is attached to glass

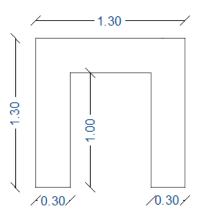


Figure 5-4 : Cross section in U beam

For U- section columns

Based on architectural and structural aspects the column dimensions will be used as U section.

The building is modeled as three dimensional structure using SAP 2000 program, beams and columns are modeled by frame elements (lines), whereas, shear walls ,dome, minaret and slabs are modeled by area (shells) elements.

Note: - U section beams and columns are modeled by area (shells) to increase their accuracy.

Section type	Modifier		
Rectangular Beams	Torsional constant	0.35	
	Moment of inertia about "2" axis	0.35	
	Moment of inertia about "3"		
	axis	0.35	
U section Beams	f11	0.35	
Rectangular Column	Torsional constant	0.35	
	Moment of inertia about "2" axis	0.35	
	Moment of inertia about "3"		
	axis	0.35	
U section Columns	f22	0.35	
Slab (30cm)	m11	0.004	
One way ribbed	m22	0.25	
	m33	0.004	
Shear wall	m11	0.7	
	m22	0.7	
	m33	0.7	

Table 5-3 : Modifier for sections used in Sap model.

Where:

Bending m11 is: moment about the x-direction of section.
Bending m22 is: moment about the y-direction of section.
Bending m12 is: moment about the z-direction of section.
Torsional constant is: the moment of inertia about z axis.
Moment of inertia about "2" axis is: the moment of inertia about y axis.
Moment of inertia about "3" axis is: the moment of inertia about x axis.
To account for cracking, stiffness modifiers are used the model.

5.3.2 Model checks

To be confident that SAP model works properly and gives correct results, three checks on the model and the obtained results should be made. The checks are:

- Compatibility of structural elements in the model.
- ≻ Equilibrium.
- ➤ Internal stresses.

1. Compatibility and deflection check:

To make sure that all the structural elements are compatible with each other. This can be achieved and approved by noticing and analyzing the deformed shape animation of the model from SAP.

If compatibility is satisfied between structural elements, then the compatibility cracks will be avoided in reality.

The compatibility of the model was checked and it was found to be OK.

Figures (5-5) and (5-6) show the deformed shape of the model.

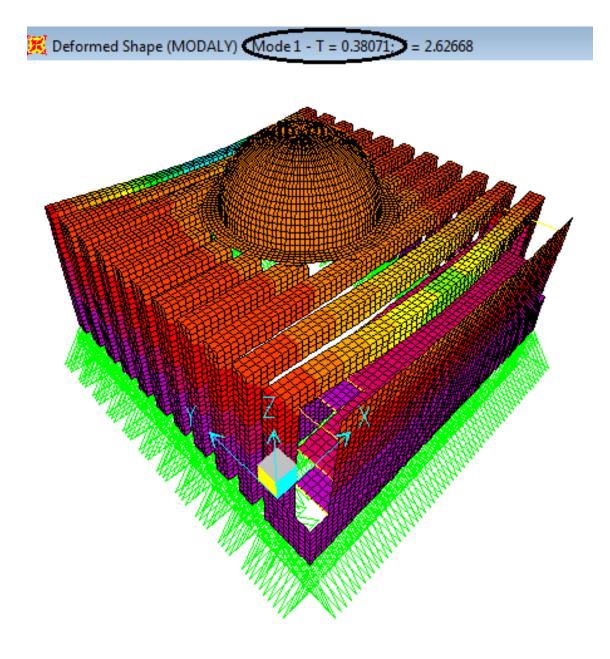


Figure 5-5: Model compatibility and period.

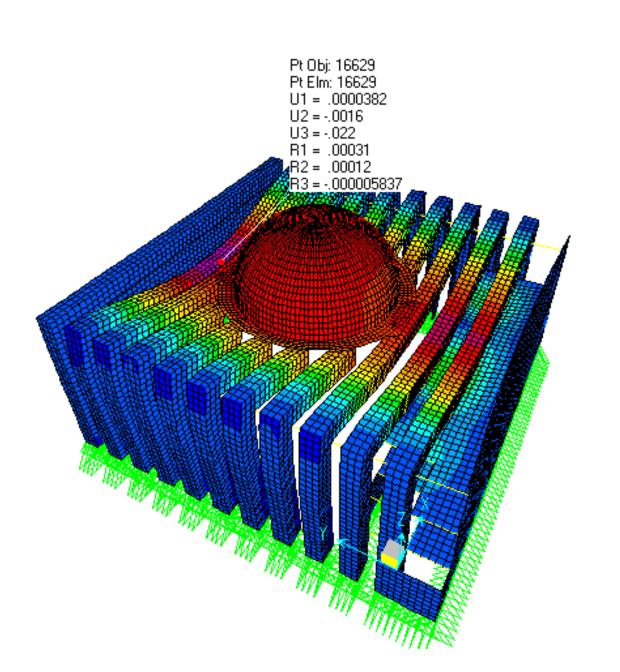


Figure 5-6 : Deflected shape.

2. Equilibrium check:

For the static bodies, the summation of forces in any direction must be zero. Thus, for the model, the total reactions in columns must equal the total loads applied. However, because of the difference resulting from area modeling and weight computation, the allowable difference is less than 5%.

• Dead load , the table (5-4) below summarizes the hand calculations

Element	Name	Section (m)	Weight (KN)
Beams	B1	1.3X1.3	4974.7
	B2	0.4X0.7	483
	B3	0.3X0.6	320.4
	B5	0.3X0.5	117.7
	B6	0.3X0.3	46.8
Columns	C1	1.3X1.3	4851
	C2	0.4X0.7	36
Dome		R =5 d=0.15	588.75
Shear wall		Thickness =0.25	3714.7
Slab	slab	Thickness =0.3	1442
Ring beam	Ring	Thickness =0.3	295
	16933.8		

Table 5-4: Hand calculation for dead load.

Thus, the total weight from manual calculation = 16933.8 KN However, the total weight from SAP = 16871 KN.

The percentage of difference = $\frac{\text{sap load} - \text{manual load}}{\text{sap load}} *100\% = 0.37\% < 5\%$ the check is OK.

• Live load

Manual total live load = 1117.46 KN.

SAP total live load = 1116 KN.

The percentage of difference = $\frac{\text{sap load} - \text{manual load}}{\text{sap load}} *100\% = 0.13\% < 5\%$ the check is OK.

• Super imposed load

Manual total super imposed load = 753 KN.

SAP total super imposed load = 750 KN.

The percentage of difference = $\frac{\text{sap load}-\text{manual load}}{\text{sap load}} *100\% = 0.4\% < 5\%$ the check is OK.

3. Internal force

The stresses will be checked for one frame as the rest of frames is similar to each other, in the calculation the second load combination will be used.

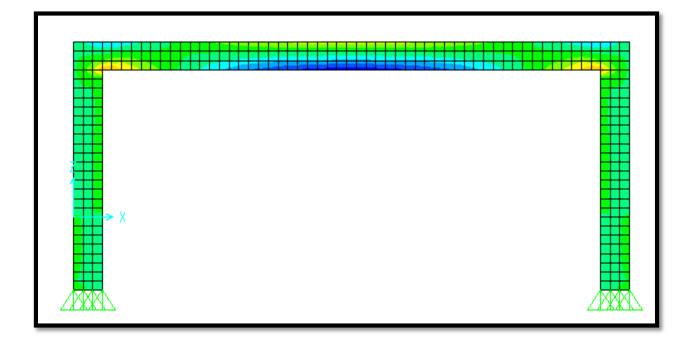


Figure 5-7 : Frame.

For beam

The beams were represented as area to increase the accuracy of the results, so SAP program gives internal stresses which should be close to stress calculated by hand.

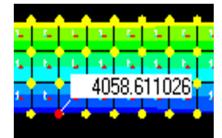


Figure 5-8: Frame (right, left and middle) stresses.

Stress from SAP:

$$\sigma_{sap} = (middle) \sigma + \frac{(left \sigma + right \sigma)}{2}$$

 $\sigma_{sap} = 8025 \ KN/m^2.$

Stress by hand calculation:

 $W_u = 31.41 \text{ KN/m}.$

Moment = $\frac{Wu*L^2}{8} = \frac{31.41*(20.4)^2}{8} = 1633.9$ KN. m

 $\sigma_{hand} = \frac{M*C}{I} = \frac{1633.9*0.756}{0.1528I} = 8083 \ KN/m^2.$

Difference (%) = $\frac{\text{sap stress} - \text{manual stress}}{\text{sap stress}} *100 \% = \frac{8025 - 8083}{8025} = 0.71\%$

Page | 100

For column

Stress from SAP:

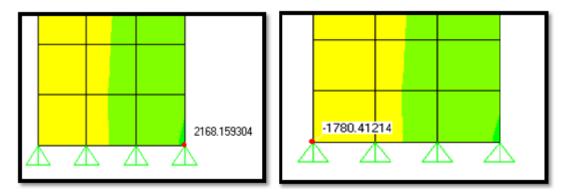


Figure 5-9 : Tension and compression stress in column.

Stress by hand calculation:

Pu from tributary area = 628.77 KN

 σ (axial) = $\frac{Pu}{Area} = \frac{628.77}{0.99} = 6351.1 \text{ KN/m}^2$

by making 2d frame analysis the moment = 511.1 KN.m

 $\sigma_{(max)} = \frac{Pu}{Area} + \frac{M*C}{I} = 6351.1 + \frac{511.1*0.394}{0.1528} = 1952.1 \text{ KN/m}^2 \text{ compression }.$

 $\sigma_{(max)} = \frac{Pu}{Area} - \frac{M*C}{I} = 6351.1 + \frac{511.1*0.756}{0.1528} = 1900 \text{ KN/m}^2 \text{ tension} .$

Compression side difference (%) = $\frac{\text{sap stress} - \text{manual stress}}{\text{sap stress}} *100 \% = \frac{1780 - 1952.1}{1780} = 8.8\%$

Tension side difference (%) =
$$\frac{\text{sap stress} - \text{manual stress}}{\text{sap stress}} *100 \% = \frac{2168 - 1900}{2168} = 12.3\%$$

From the above mentioned calculation there is an error of 12.3 % between hand calculation and sap result, this can be explained as the hand calculation is not accurate, moreover some of the stresses is transferred in other directions

5.3.3 Design for slab

The figures $(5-10)$ and $(5-1)$	1) shows the maximum	negative and positiv	e moment in the slab.
	-/	<i>0</i> r	

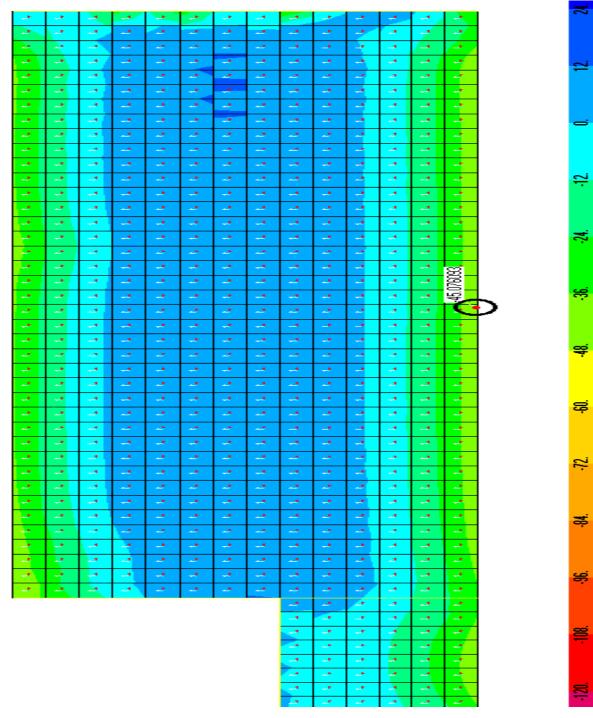


Figure 5-10: Maximum negative moment in slab.

Page | 102

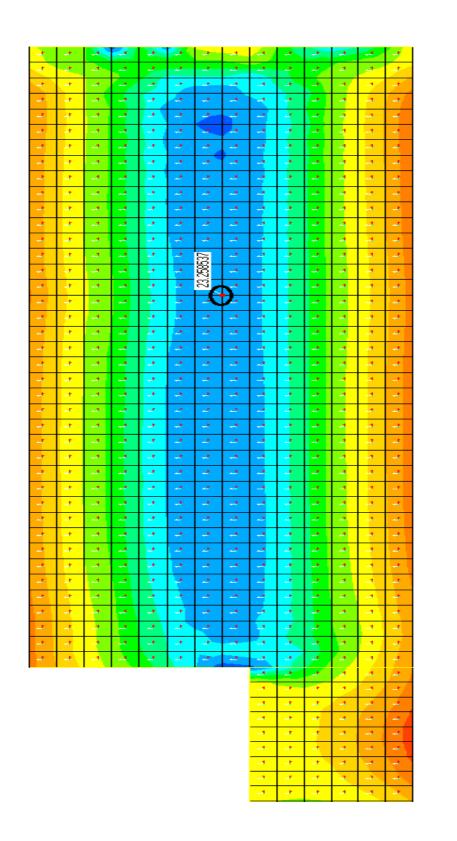


Figure 5-11: maximum positive moment in slab.

20

For negative moment:

Since the rib width = 0.52 m, the moment on each rib = 45 * 0.52 = 23.4 KN.m / rib.

$$\rho = \frac{0.85 * f'c}{Fy} * \sqrt{1 - \frac{1 - 2.61 \, Mu}{b * d^2 * f'c}}$$

Where:

$$M_{u} = 23.4 \text{ KN.m} \qquad b_{w} = 120 \text{mm} \qquad d = 270 \text{mm} \qquad f'c = 24 \text{ Mpa} \qquad F_{y} = 420 \text{ MPa}$$

$$\rho = \frac{0.85 \times 28}{420} \times 1 - \sqrt{1 - \frac{2.61 \times 23.4 \times 10^{6}}{120 \times 270 \times 270 \times 24}} = 0.0072$$

 ρ_{\min} in the slabs $=\frac{1.4}{Fy}=0.0033$.

The steel ratio calculated is larger than the minimum ratio in the slabs, so the area of steel are calculated as follow:

$$A_s = \rho^* b^* d$$

Where:

 $\rho = 0.0072 \qquad b = b_w = 120 \ mm \qquad d = 270 \ mm.$

 $A_s = 0.0072 * 120 * 270 = 235 \ mm^2.$

Use 12 mm diameter bars ----> area for one bar = 113 mm^2 .

Area of steel needed for the rib $=\frac{237}{113}$ = about 2 bars.

Use 2Ø12 mm top bars.

For positive moment:

By taking the maximum positive moment acting on the span which equals to about 23.3 KN.m/m since the rib width = 0.52 m, the moment on each rib = $23.3 \times 0.52 = 12.06 \text{ KN.m} / \text{ rib}$.

$$\rho = \frac{0.85 * f'c}{Fy} * \sqrt{1 - \frac{1 - 2.61 Mu}{b * d^2 * f'c}} ,$$

Where:

$$\begin{split} M_{u} &= 12.06 \text{ KN.m} \qquad b_{w} = 120 \text{mm} \qquad d = 270 \text{mm} \qquad f'c = 24 \text{ Mpa} \qquad F_{y} = 420 \text{ MPa} \\ \rho &= \frac{0.85 \times 28}{420} \times 1 - \sqrt{1 - \frac{2.61 \times 8.5 \times 10^{6}}{120 \times 270 \times 270 \times 24}} = 0.0015 \\ \rho_{\text{min}} \text{ in the slabs} &= \frac{1.4}{Fy} = 0.0033 \text{ .} \end{split}$$

The steel ratio calculated is less than the minimum ratio in the slabs, (Use the minimum) so the area of steel are calculated as follow:

$$A_s = \rho^* b^* d$$

Where:

 $\rho = 0.0033 \qquad b = b_w = 120 \ mm \qquad d = 270 \ mm.$

 $A_s = 0.0033*120*270 = 120 \text{ mm}^2$.

Use 10 mm diameter bars ----> area for one bar = 78.5 mm^2 .

Area of steel needed for the rib $=\frac{120}{78.5}$ = about 2 bars.

Use 2Ø10 mm bottom bars.

Check the lab for shear:

The maximum shear force acting on slab is shown in the figure (5-12) below:

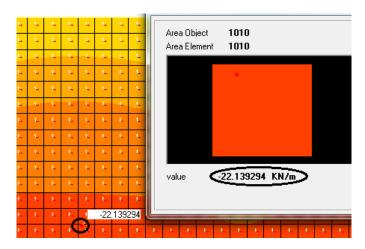


Figure 5-12 : Maximum shear fore in slab.

The ultimate shear force on one rib = 22.13*0.52 = 11.5 KN/rib.

$$V_u = 2.13 \text{ KN}, V_c = 0.167 * \sqrt{f'c} * b * d = 0.167 * \sqrt{24} * 120 * 270 = 26.45 \text{ KN}.$$

 $V_u / \emptyset = 11.5 / 0.75 = 15.34 \text{ KN} < 26.45 \text{ KN}$

The slab thickness is suitable for resisting shear.

5.3.4 Beam design:

1. Rectangular section

The longitudinal reinforcement and shear reinforcement where obtained from sap as shown in the figures (5-13) and (5-14).

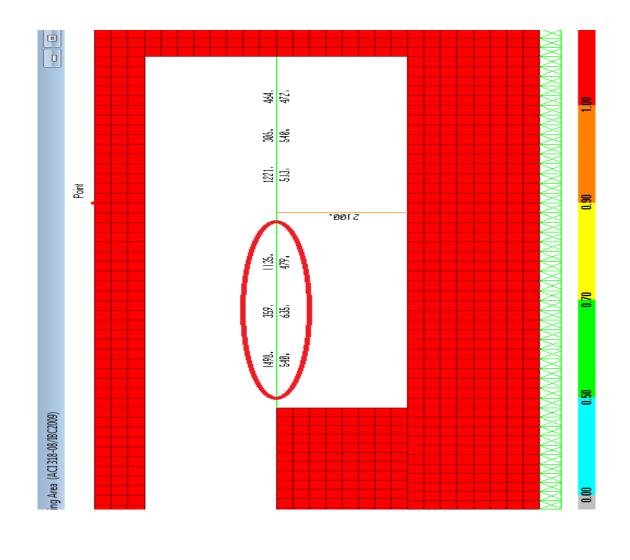


Figure 5-13 : Longitudinal reinforcement for beam(4).

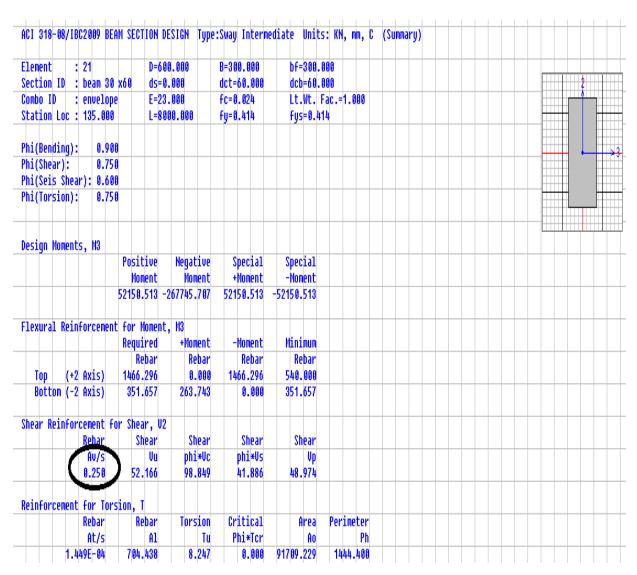


Figure 5-14 : Shear reinforcement for beam(4).

Longitudinal reinforcement:

The bars where computed based on the given area of steel from sap as show above after compering the result with the minimum area of steel for the beam section

1498 mm² \rightarrow 4Ø25, 635 mm² \rightarrow 3Ø18, 1135mm2 \rightarrow 3Ø25

As minimum = 600mm²

Shear reinforcement:

Use 1Ø10 stirrup /10 cm c/c

2. U section beam

all the beams shown in fig (5-15) are modeled in SAP program as an area element to increase results accuracy, all U beams section have the same cross section dimension and they are classified in to two categories (single span, cantilever).

Taking the beam (2) shown in figure (5-15):

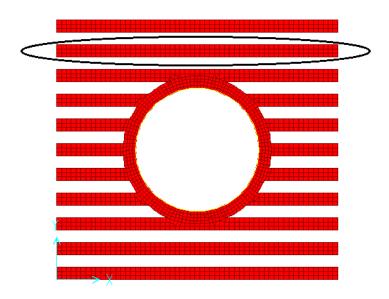


Figure 5-15 : Beam 2.

The figure (5-16) below shows cross section in beam:

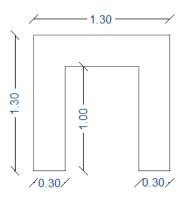
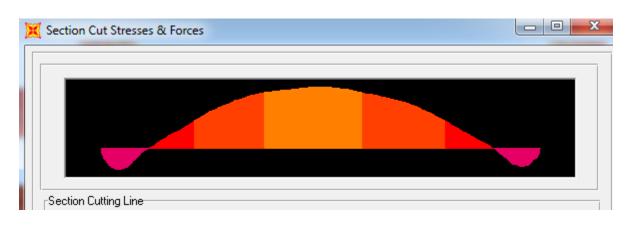



Figure 5-16 : Cross section in beam 2.

The final moment diagram from SAP software was as shown in figure (5-17) below:

Figure 5-17 : Moment diagram for beam 2.

Note: The moment diagram shown above is not to scale since the section is done for the flange only and the rest of moment is distributed on web, to obtain the true value we should take the stress at a specific point and convert the stress to moment.

Take the maximum ultimate <u>negative</u> stress as shown in fig (5-17)) acting on the beam (5700 KN/m²) and design the beam according to this value of the stress by calculate the corresponding bending moment

$$M_u$$
 max on the beam = $\frac{\sigma u (max) * I}{C}$

Where:

 $\sigma u = maximum$ ultimate stress

I = Moment of inertia

C = Distance between centroid and a specific point on section

 M_u max on the beam = $\frac{5700*0.1528}{0.544} = 1601$ KN.m

Check neutral axis:

The U section was transformed to T equivalent section as shown in the figure (5-18) bellow:

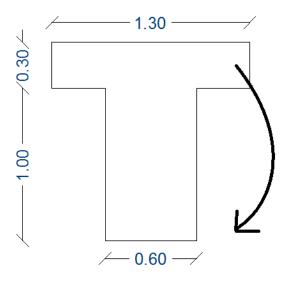


Figure 5-18 : Equivalent T section for beam 2.

Let the neutral axis (a) = tf = 1000 mm

Ø $M_n^* = 0.9 * f'c * 0.85 * b_f * t_f^* (d - t_f/2)$

Where:

 $Ø M_n^* = moment capacity.$

fc' = compressive strength of concrete.

d = effective depth.

Ø M_n*= 8151.8 KN.m

 $Mu < \emptyset M_n^*$, design same as rectangular

Note: take (h-d) = $60 \text{mm} \rightarrow d = 1240 \text{ mm}$.

The steel ratio according to ACI code $\rho = \frac{0.85*f'c}{Fy} * 1 - \sqrt{1 - \frac{2.61 Mu}{b*d^2*f'c}}$.

 M_u = 1601 KN.m, f'c = 24 MPa, Fy = 420 MPa, b = 600 mm, d = 1240 mm.

As =
$$\frac{0.85*24}{420} * 1 - \sqrt{1 - \frac{2.61*1601}{600*1240*1240*24}}$$
 * bw *d = 3585 mm²

★ A_{s min} for T section = min of { max ((1.4/F_y) bw d) or (0.25 bw d fc'^0.5)/fy)) } or {0.25* $\sqrt{f'c}$ /F_y) }.

 $A_{s\,min}\!=\!2480\ mm^2$

 $A_s > A_{s \min}$, use $A_s = 3585 \text{ mm}^2$.

 \diamond take the maximum ultimate <u>positive</u> stress acting on the beam (6061 KN/m²)

 M_u max on the beam = 1225 KN.m

 $As = 2380 \text{ mm}^2$

Calculating shear reinforcement in the beam:

Shear analysis was done by SAP

Taking V_u @ critical section (distance <u>d</u> from the face of support):

 V_u at critical section = 326 KN.

 $V_u / Ø = 326 / 0.75 = 434.9$ KN.

$$V_c = 0.167 * \sqrt{f'c} * b * d = 0.167 * \sqrt{24} * 600 * 1240 = 607.4 \text{ KN}.$$

As we see $\frac{Vu}{\emptyset} > V_c/2$, we need shear reinforcement.

 $V_s = 260 \text{ KN}.$

Av / s =
$$\frac{Vs}{Fy*d} = \frac{260*10^{3}}{420*1240} = 0.5 \text{ mm}^{2}/\text{mm}$$

Use three stirrup \emptyset 10 because of execution and geometry reasons

s1 = 15 cm, s2 = 25 cm

$$s_{1} = Min \begin{cases} d/4 \\ 8d_{b} \\ 24d_{s} \\ 300 \text{ mm} \end{cases}$$

 $s_2 = d/2$

Detailing:

• for <u>negative</u> moment

 $As = 3585 \text{ mm}^2$

If we try to use steel bars ($\emptyset = 18 \text{ mm}$), the bar area = 254 mm².

Number of bars needed = $3585 / 254.3 = 15\emptyset18$ mm

• for <u>positive</u> moment

 $As = 2512 \text{ mm}^2$

If we try to use steel bars ($\emptyset = 20 \text{ mm}$), the bar area = 314 mm².

Number of bars needed = $2512 / 314 = 8\emptyset 20 \text{ mm}$

5.3.5 Column design:

The longitudinal rebar percentage for column (2) is shown in the figure (5-19)

 $A = \rho * b * d$

Where:

A = area of steel.

- ρ = rebar percentage.
- b = width of the section

d = depth of section.

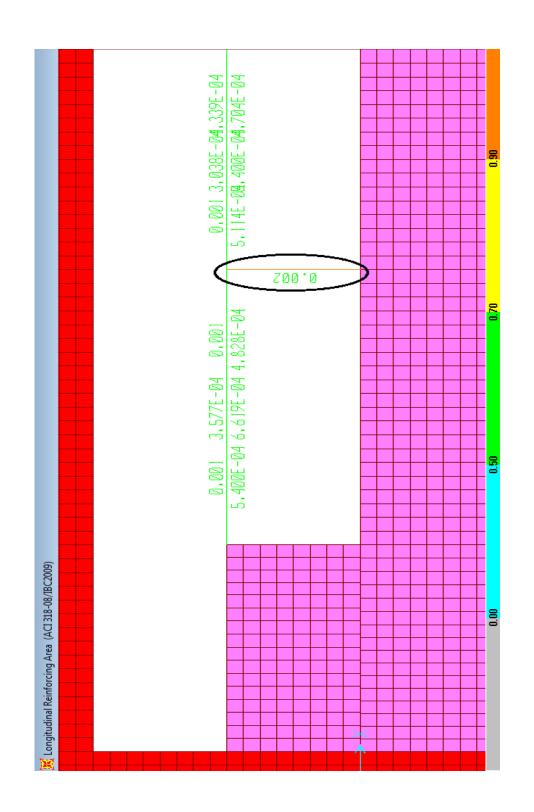


Figure 5-19 : Rebar percentage for column (2).

 $As = 0.02*300*700 = 4200 \ mm^2$

Note: ACI318-08 requires the spacing between longitudinal bars in column should not exceed 150 mm.

Assume we want to use (Ø 20) mm bars.

Area for each $Bar = 314 \text{mm}^2$.

4200/314 = 14 bars,

Use 14Ø 20 mm.

Spacing between stirrups in the column as ACI-318 requires:

$$s_0 = Min \begin{cases} \text{least column dimension/2} \\ 8d_b \\ 24d_s \\ 300 \text{ mm} \end{cases}$$

 $s_1 = Min \begin{cases} \text{least column dimension} \\ 16d_b \\ 48d_s \end{cases}$

 l_d = development length of the steel reinforcement in tension

 $l_0 = Max \begin{cases} \text{clear height of column/6} \\ \text{maximum column dimension} \\ 450 \text{ mm} \end{cases} \end{cases}$

As shown in the figure (5-20) below:

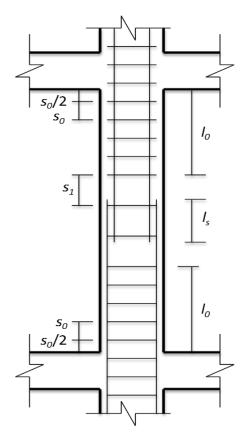


Figure 5-20 : Stirrup details for column.

5.3.6 Seismic design:

In order to perform the analysis and the design the following parameters will be used based on UBC-97 design code.

- Peak ground acceleration (PGA): since the building is located in Nablus city, from PGA map $\mathrm{Z}=0.2$

- Soil profile: the expected soil profile for the site is (S_D) .
- Importance factor (I) : I = 1.25
- Seismic coefficient (C_v) : $C_v = 0.4$
- Seismic coefficient (C_a) : $C_a = 0.28$
- Structural system coefficient (R):

The system will be designed as sway intermediate, so Structural system coefficient (R) = 5.5 in the x-direction, but in the y- direction the value is reduced to (R) = 4.5 because there are shear walls in this direction.

Period:

The interval of time between successive occurrences of the same state in an oscillatory.

The period from sap program should be close enough to the period calculated by hand.

Period calculations:

Period by hand:

$$T_{\text{(building)}} = C_{T}^{*} (hn)^{\left(\frac{3}{4}\right)}$$

Where:

 $C_T = 0.0488.$

 $h_{n=}$ height of the building in meters.

So, T_(building) = $0.0488*(15.3)^{(\frac{3}{4})} = 0.377$ sec

Period from sap:

The period was selected for the highest modal participation ratio as shown in figure (5-21).

Units: A	As Noted	Mo				
	OutputCase Text	StepType Text	StepNum Unitless	Period Sec	UX Unitless	UY Initlace
•	MODALY	Mode	1	.385522	.00003242	.63593 🜔
	MODALY	Mode	2	.306642	.00125	.02756
	MODALY	Mode	3	.298245	.4416	.00069
	MODALY	Mode	4	.277324	.00293	.00466
	MODALY	Mode	5	.266576	.00022	.00298
	MODALY	Mode	6	.259167	.00008809	.00145
	MODALY	Mode	8	.245479	.00001385	.00967 🚽

As a result, the manual calculation is close to SAP results.

Seismic force

The structure will be subjected to earthquake force so, in this part we will calculate this forces in different ways and compare them.

Manually by equivalent static method:

- $V = C_s * W$
- V = Base shear.

 C_s = seismic coefficient.

W = weight of the building

Base shear in x-direction:

$$V_x = \frac{Cv*I}{Rx*T} * W = \frac{0.4*1.25}{4.5*0.377} * 18178 = 5357.5 \text{ KN}.$$

$$V_{\max} = \frac{2.5 * Ca * I}{Rx} * w = \frac{2.5 * 0.28 * 1.25}{4.5} * 18178 = 3534.6 \text{ KN}.$$

 $V_x = V_{max} = 3534.6$ KN.

Base shear in y-direction:

$$V_y = \frac{Cv*I}{Ry*T} * W = \frac{0.4*1.25}{5.5*0.377} * 18178 = 4383.4 \text{ KN}.$$

$$V_{\text{max}} = \frac{2.5 * Ca * I}{Ry} * W = \frac{2.5 * 0.28 * 1.25}{5.5} * 18178 = 2891.9 \text{ KN}.$$

 $V_y = V_{max} = 2891.9$ KN.

By sap program:

The figure (5-22) below shows the base shear force obtained from SAP.

File	se Reactions ile View Format-Filter-Sort Select Options Inits: As Noted Base Reactions							
	OutputCase Text	CaseType Text	StepType Text	GlobalFX KN	GlobalFY			
	EQY	LinRespSpec	Max	653.736	2888.678			
	EQX	LinRespSpec	Max	3531.186	1654.837			
Record: Add Tables Done								

Figure 5-22 : Base shear reactions.

The results obtained from hand calculation and sap program are very close to each other.

5.3.7 Design of shear wall

From sap2000 program

 $V_u = 906 \; \text{KN}, \quad M_u = 6130 \; \text{KN.m}, \quad N_u = 4576 \; \text{KN}, \; H = 10.15 \; \text{m}, \quad B = 22.7 \; \text{m}.$

b (thickness) = 0.25 m, fc' = 24 MPa.

Check:

The dominant force in the shear wall is shear force since H/B<2, (10.15/22.7 = 0.47) < 2

 $\emptyset V_c = 0.167 * 0.75 * 0.8 * \sqrt{24} * 250 * 22700 = 2780 \text{ KN}, \ \emptyset V_c > V_u \rightarrow Safe$

For boundary:

Boundary zone = 4*b = 4*0.25 = 1 m.

$$\rho = 1 \%$$
, As = $\rho * b * h = 0.01 * 250 * 1000 = 2500 \text{ mm}^2$

Use 14Ø16.

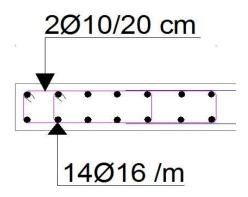


Figure 5-23: Boundary reinforcement.

For vertical:

 $\rho = 0.3 \%$

 $As = \rho^* b^* h = 0.003^* 250^* 1000 = 750 \ mm^2$

Use $4\emptyset 12 / m$ for each layer

For horizontal:

 $\rho = 0.25 \%$

 $As = \rho^* b^* h = 0.0025^* 250^* 1000 = 625 \ mm^2$

Use $4\emptyset 12$ / m for each layer

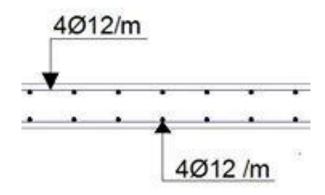


Figure 5-24 : Web reinfrocement

5.3.8 Design of Stairs:

Staircases provide means of movement from one floor to another in a structure. Staircases consist of a number of steps with landings at suitable intervals to provide comfort and safety for the users.

The stair case is simply supported by beams and shear wall as shown sap model figure (5-23):

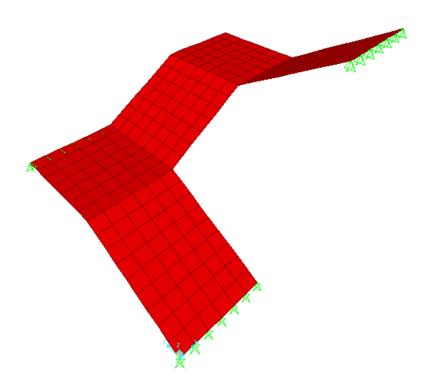


Figure 5-25 : Stairs 3D model.

5.3.9 Design of Dome

The Dome is modeled on Sap program as figure (5-24) shows:

Dimensions:

- The diameter of the dome = 10m.

- The maximum height of the dome = 5 m.
- Thickness of dome = 0.12 m

Loads:

- Super imposed load = $0.5 \text{ KN} / \text{m}^2$.
- Live load = 1 KN/m^2 .
- Snow load = 0.5 KN/m^2 .

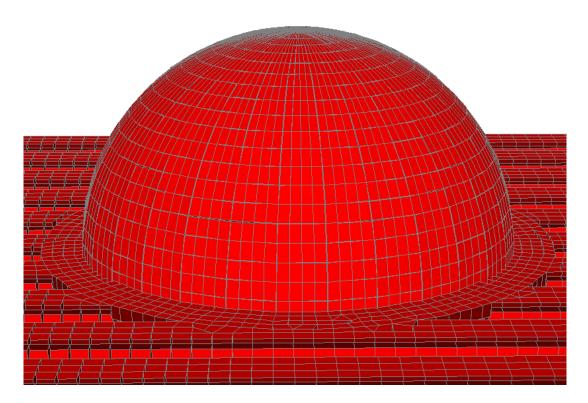


Figure 5-26 : 3D Sap model for Dome.

Dead load and seismic force are computed by SAP program based on geometry concrete density and response spectrum analysis.

Design:

The dome is designed based on the internal forces obtained from Sap program.

- Vertical reinforcement calculation

The dome is subjected to compression and tension forces in the direction of meridian, thus the design will be as follow

For tension force:

The figure (5-25) bellow shows tension force in the meridian direction (f 22):

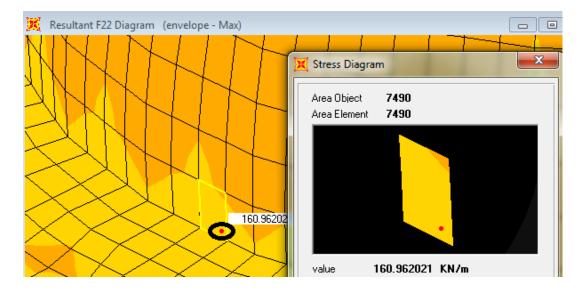


Figure 5-27 : Tension force in the meridian direction (f 22).

As
$$=\frac{f22}{0.9*fy} = \frac{161*10^{3}}{0.9*420} = 425.9 \text{ mm}^2$$

Where:

As = area of steel.

F22 = force in the meridian direction.

fy = yielding of steel bars.

For compression force:

The figure (1-26) bellow shows compression force in the meridian direction (f 22):

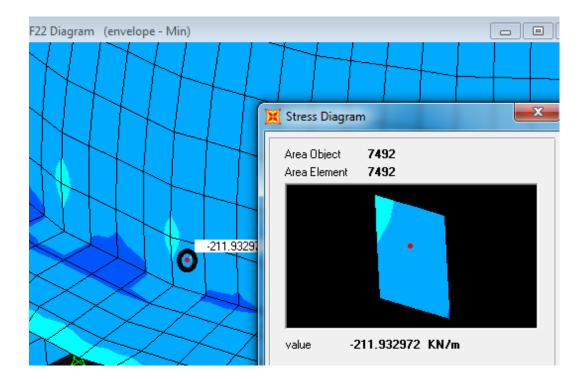


Figure 5-28 : Compression force in the meridian direction (f 22).

$$\sigma = \frac{f^{22}}{h} = \frac{213}{0.12} = 1775 \text{ KN/m}^2 = 1.77 \text{ MPa} < 0.3 \text{ fc}' = 7.2 \text{ MPa}.$$

Where:

 σ = axial stress.

F22 = force in the meridian direction.

h= section thickness.

As min = 0.002 * b * h = 0.002 * 1000 * 120 = 240 mm².

As min < As for tension, As = As for tension.

Use 6Ø10/m.

-Horizontal reinforcement calculation.

The dome is subjected to compression and tension forces in the direction of Hoop, thus the design will be as follow:

For tension force:

The figure (5-27) bellow shows tension force in the meridian direction (f 11):

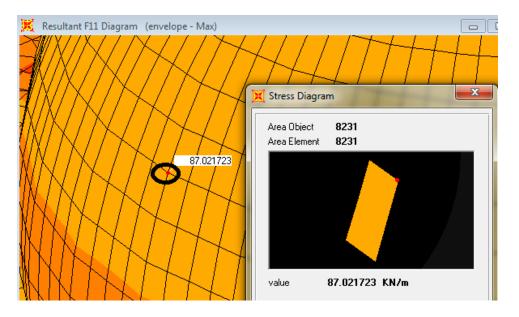


Figure 5-29 : Tension force in the Hoop direction (f11).

As
$$=\frac{f11}{0.9*fy} = \frac{87*10^3}{0.9*420} = 230 \text{ mm}^2$$

Where:

 σ = axial stress.

F11 = force in the Hoop direction.

h= section thickness.

For compression force:

The figure (5-28) below shows compression force in the meridian direction (f11):

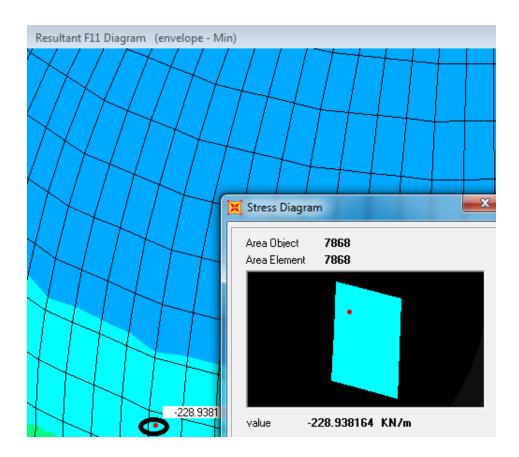


Figure 5-30 : Compression force in the Hoop direction (f11).

$$\sigma = \frac{f11}{h} = \frac{228}{0.12} = 1900 \text{ KN/m}^2 = 1.9 \text{ MPa} < 0.3 \text{ fc}' = 7.2 \text{ MPa}.$$

As $min = 0.002*b*h = 0.0025*1000*120 = 300 \text{ mm}^2$.

As $\min > As$ for tension, $As = As \min$.

Use 4Ø10/m.

Dome reinforcement details:

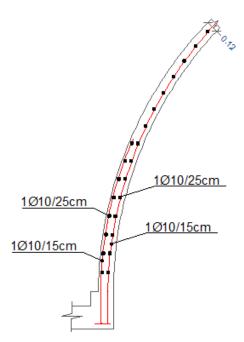


Figure 5-31: Dome details.

5.3.10 Footing design

Wall footing:

Base reaction from Sap model was determined due to service loads in order to calculate preliminary dimensions for the footings and analyze the footings to determine the final dimensions (length, width, thickness) and required area of steel in both directions, the figures (5-30), (5-31) shows wall footing plan and section.

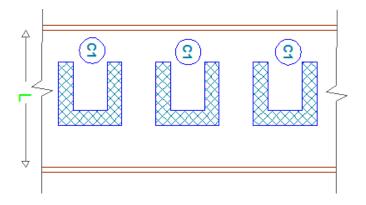


Figure 5-32: Wall footing plan.

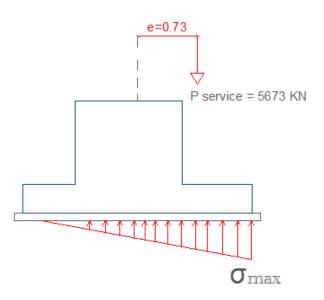


Figure 5-33: Wall footing section

Footing area:

Assume L = 2.8 m

 $Q_{(allowable)} = 200 \text{ KN/m}^2$

 $P_{(service)} = 5733.3 \text{ KN}$

 $M_{(service)} = 4185 \text{ KN}$

Note: service loads is multiplied by 1.1 to account for footing and backfill weights.

 $e = \frac{M (service)}{P (service)} = \frac{5733.3}{4185} = 0.73, L/6 = 0.46$

For one column P $_{(service)} = 5733.3/11 = 512$ KN

e > L/6, so σ (max) = $\frac{2*p \ service}{1.5*l(l-e*2)} = \frac{2*512}{1.5*2.8(2.8-0.73*2)} = 182 < q \ allowable = 200 \ KN/m^2$

Section dimension is ok.

Thickness:

The footing should be thick enough to resist the loads without any type of failure which include wide beam shear failure and punching shear failure.

Wide beam shear check:

Pu = (1.4 *P (service)) = 1.4*512 = 717 KN

 σ (max) = 254 KN/M2

$$V_u = \sigma \max(x-d)$$

Where:

 $V_u = Ultimate$ shear force.

 σ (max) = maximum ultimate stress under the footing .

x = clear length for footing cantilever.

D = effective depth.

Ø V_c = Concrete shear capacity

 $V_u = 254 * (0.86 - 0.d)$

Ø V_c = 0.75*0.167 * $\sqrt{f'c}$ * b * d = 0.167 * $\sqrt{24}$ * 1000 * d

 \emptyset V_c = Vu, solve for unknown d

d = 250 mm, use h = 350 mm

Reinforcement:

For short direction:

$$\sigma_u = 254 \text{ KN/m}^2$$

$$M_u = \frac{\sigma u * X^2}{2} = 93.9 \text{ KN.m/m.}$$

Where:

 $M_u = Ultimate moment.$

 σ_u = Ultimate stress .

x = clear length for footing cantilever.

 $\rho = \frac{0.85*24}{420} * 1 - \sqrt{1 - \frac{2.61*93.9*10^{6}}{1000*290*290*24}} = 0.00317$

As per meter = $\rho * b* d = 0.00317*1000*290 = 920 \text{ mm}^2$.

As $(minimum) = 0.0018 * b* h = 0.0018*1000*350 = 630 mm^2$, $A_{s min} < A_s$, use A_s

Use 6Ø14 mm / m.

For long direction:

As = As (shrinkage)

As (shrinkage) = 0.0018*b*h

As (shrinkage) = 0.0018 *1000*2800 = 1764 mm²

Use 6Ø12 mm / m.

Where:

As (shrinkage) = area of steel for shrinkage

b = footing width

h = footing height

Page | 129

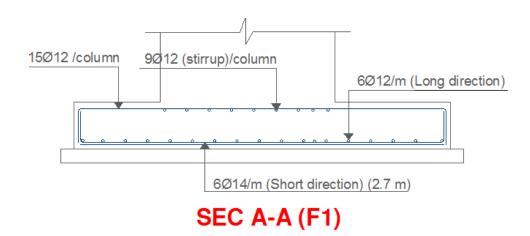


Figure 5-34: Wall footing details.

5.3.11 Design of Tie Beams

Tie beams can be used to transfer the column loads to foundations in some structural systems. Here, tie beams are used to support the slab on grade since large spans are used without interior column in addition to the bearing capacity of soil is relatively small, as a result tie beams will be used to prevent ground slab from settlement.

Tie beam dimension will be 500mm deep with 300 mm width.

After analysis and design by SAP2000, all beams have $\rho < \rho_{min}$

Thus, all ground beams were reinforced with minimum steel.

 $\rho_{min} = 1.4 / Fy = 0.0033$

b = 300 mm, h = 500 mm

As = 0.0033 * 300 * 440 = 435.6 mm

Use 4 Ø14 for positive moment

Use 4Ø14 for negative moment

Shear reinforcement:

For Av/s = 0.025

Page | 130

$$S = Av/(Av/S) = 1.57/0.025 = 62 \text{ cm}$$

Use 1 Ø 10mm/25 cm.

5.3.12 Design of Minaret:

Analysis and design

The strategy of the design is to calculate wind and earthquake load respectively and decide about the load combination which will be used in analysis and design procedure by using sap program, the figure (5-33) below shows 3D model for minaret:

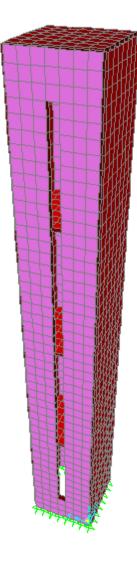


Figure 5-35 : Minaret 3D model.

Calculation of the base from lateral forces:

1. Base shear from the wind load according to UBC-97 code

$$\mathbf{P} = \mathbf{C}_{\mathrm{e}} \ast \mathbf{C}_{\mathrm{q}} \ast \mathbf{q}_{\mathrm{s}} \ast \mathbf{I}_{\mathrm{w}}$$

Where:

P = wind pressure.

 C_e = taken from table depending on zone exposure and height of building.

 $C_q = pressure coefficient.$

 Q_s = wind stagnation pressure.

 I_w = importance factor.

Note that the height of minaret is 24 m and the exposure is C

 $P = 1.3 * 0.8 * 1 * 1.25 = 1, 3 \text{ KN/m}^2$

Base shear = pressure * area exposed to wind

Base shear = 109.2 KN

2. Base shear from earthquake load according to UBC97

- Peak ground acceleration (PGA): since the project is located Nablus city (PGA) = 0.2
 According to (PGA) map for Palestine.
- Soil profile: the expected soil profile for the site is (S_D).
- Importance factor (I): I = 1.25
- Seismic coefficient (C_v): $C_v = 0.4$
- Seismic coefficient (C_a): $C_a = 0.28$
- Structural system coefficient (R): R= 3.5

Period calculations:

Period by hand:

 $T_{(\text{building})} = C_T^*(hn)^{(\frac{3}{4})}$

So, T _(building) = $0.0488*(24)^{(\frac{3}{4})} = 0.53$ sec.

Period from sap as shown in figure (5-34) below:

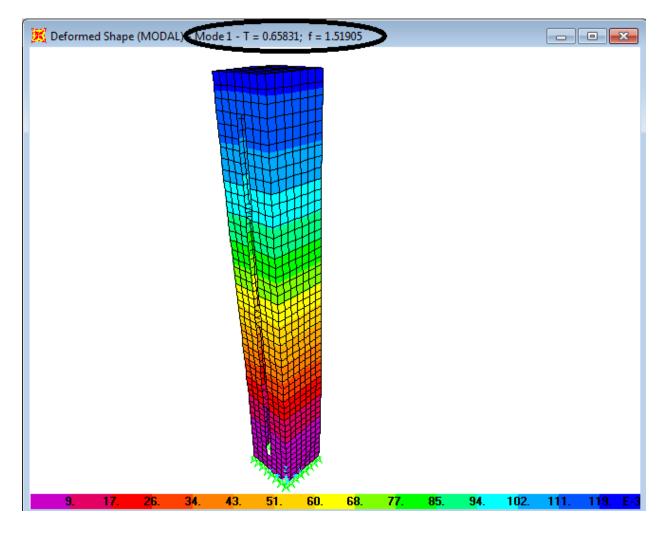


Figure 5-36 : Minaret 3D model period.

Seismic force

The structure will be subjected to earthquake force so, in this part we will calculate this forces in different ways and compare them.

Manually by equivalent static method:

$$V = Cs * W$$

V = Base shear.

Cs = seismic coefficient.

W = weight of the building

Base shear:

$$V = \frac{Cv*I}{Rx*T} * w = \frac{0.4*1.25}{3.6*0.529} * 2128 = 446.9 \text{ KN}.$$

$$V_{\text{max}} = \frac{2.5 * Ca * I}{Rx} * w = \frac{2.5 * 0.28 * 1.25}{3.6} * 2128 = 413.7 \text{ KN}.$$

 $V = V_{max} = 413.7$ KN.

By sap program:

The figure (5-35) below shows the base shear force obtained from sap.

OutputCase Text	CaseType Text	StepType Text	GlobalFX KN	GlobalFY KN
ex dynamic	LinRespSpec	Max	413.093	.00007206
ey dynamic	LinRespSpec	Max	.00007046	413.182
]				
	1)) of	2	Add Tables	Done

Figure 5-37 : Minaret base shear reactions

The results obtained from hand calculation and sap program are very close to each other.

By comparing the results (wind base shear = 109.2 KN and quake base shear = 413KN) the quake force will be used in analysis and design procedure.

Section design:

Note:

Ultimate compression strength for concrete = 0.3 fc' = 7.2 MPa

Ultimate compression strength for concrete $=\frac{1}{3} * \sqrt{fc'} = 1.63$ MPa

Vertical reinforcement calculation:

The ultimate maximum compression stress where calculated by sap program as shown in fig

(5-36),

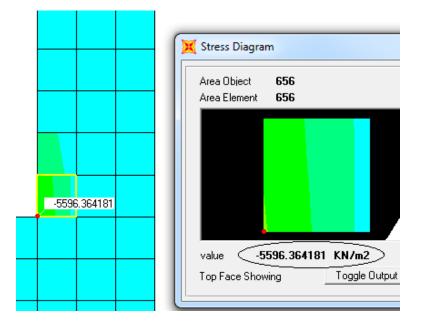
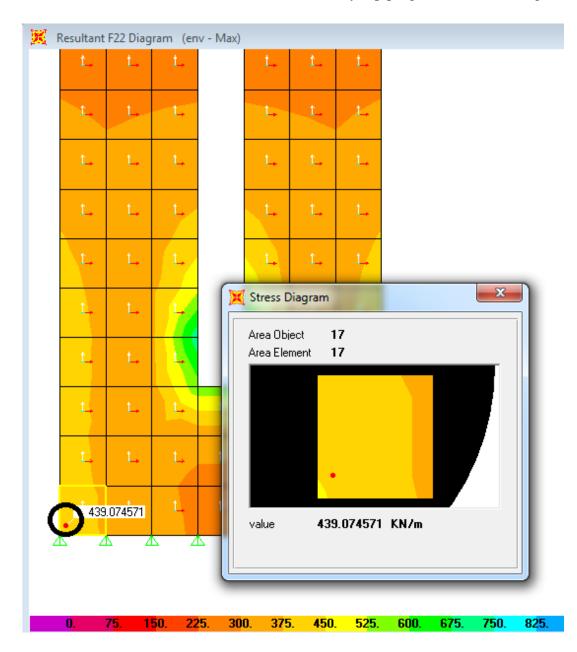



Figure 5-38 : Maximum compression stress for Minaret.

Check compression stress:

5.596 MPa < 7.2 MPa \rightarrow section dimension OK.

The maximum ultimate Tension stress where calculated by sap program as shown in fig (5-28).

Figure 5-39 : Maximum tension stress for Minaret.

Check tension stress:

1.92 MPa > 1.63 MPa

Tension stress is greater than the allowable

$$A_{s} = \frac{\sigma}{fy * 0.9}$$

Where:

As = area of steel.

 $\sigma = stress$

fy = yielding stress for steel.

$$As = \frac{440*10^{3}}{420*0.9} = 1164 \text{ mm}^{2}$$

Assume we want to use $(\emptyset 14)$ mm bars.

Area for each $Bar = 153 \text{ mm}^2$.

1164/153 = 8 bars

Section thickness is 25 cm so bars should be distributed on two layers

Use 4 Ø14 mm/ layer.

Horizontal reinforcement:

Taking Vu @ critical section (distance d from the face of support):

 V_u at critical section = 413 KN.

$$V_u / Ø = 413 / 0.75 = 266.6$$
 KN.

 $V_c = 0.167 * \sqrt{f'c} * b * d = 0.167 * \sqrt{24} * 3500 * 1750 = 5000 \text{ KN}.$

A_s we see $\frac{Vu}{\emptyset} < V_c$. So minimum horizontal steel will be provided

 $A_s = 0.0025 * b * h = 0.0025 * 250 * 1000 = 625 \ mm^2$

 A_s for one layer = $AS/2 = 312.5 \text{ mm}^2$

Use $4 \text{ } \emptyset 12 \text{ /m}$ for each layer.

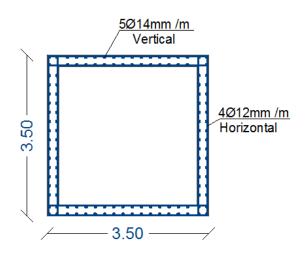


Figure 5-40 : Reinforcement details for minaret.

Check over turning:

The footing should be design to resist over turning due to lateral forces, for minaret case the lateral forces are due to earthquake so the factor of safety against overturning is 1.5

The over turning moment:

Over turning moment= (earthquake base shear) *((2/3)) height of minaret)

Over turning moment = 413*(2/3)*24 = 6619.2 KN

Resisting moment:

Assume footing dimension equals (6.5x 6.5 x1) m, γ soil = 18 KN/m³, soil height over footing=3.5 m

Resisting moment = soil load + dead load

Resisting moment = 14214 KN

Factor of safety against overturning = $\frac{\text{Resisting moment}}{\text{Over tuning moment}} = \frac{14214}{6619.2} = 2.14$

2.14 > 1.5 OK.

Check allowable deflection:

The maximum elastic deflection from sap is shown in fig (5-30)

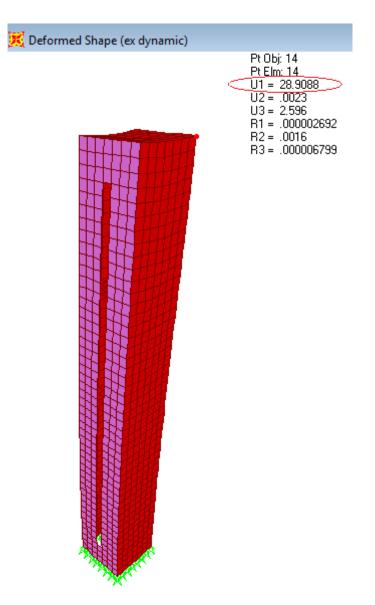


Figure 5-41 : Maximum elastic lateral deflection.

To obtain the maximum plastic deflection the elastic deflection should be multiplied by amplification factor (Cd), the factor depends on structural system coefficient (R)

From UBC-97, R table.

Cd = 2, for R = 3.6

Maximum deflection = Cd * elastic deflection = 2*28.9 = 57.8 mm

Maximum allowable deflection = $0.0025 * H \rightarrow$ for buildings with period less the 0.7 sec

Maximum allowable deflection = 0.0025*24 = 57.6 mm < 57.8

It could be consider acceptable since values are relatively close

Minaret Footing design:

Base reaction from Sap model was determined due to service loads in order to calculate preliminary dimensions for the footings and analyze the footings to determine the final dimensions (length, width, thickness) and required area of steel in both directions.

Footing area:

Assume footing area 6.5 x 6.5 x 0.8 m

P Dead (service) = 4738 KN

M (service) = 6619.2 KN

 $e = \frac{M (service)}{P Dead (service)} = \frac{6619.2}{4738} = 1.39, L/6 = 1.08$

e > L/6, so $\sigma_{(max)} = \frac{2*p \ service}{1.5*l(l-e*2)} = \frac{2*4738}{1.5*6.5(6.5-1.39*2)} = 260 < 4/3 \ q \ allowable = 266$

Section dimension is ok.

Thickness:

The footing should be thick enough to resist the loads without any type of failure which include wide beam shear failure and punching shear failure.

1. Wide beam shear check

 $M_u = 6619 \text{ KN}.$

 $P_u = (1.4 * Dead load) = 1.4 * 4738 = 6725.6 \text{ KN}$

 $\sigma_{(max)} = 304.4 \text{ KN/M2}$

 $V_u = \sigma_{max} (L-d)$

Where:

 V_u = Ultimate shear force.

 $\sigma_{(max)}$ = maximum ultimate stress under the footing .

L = footing clear cantilever length.

d = effective depth.

 \emptyset V_c = Concrete shear capacity

Vu = 304.4*(1.5-0.72) = 237.4 KN

Ø V_c = 0.75 * 0.167 * $\sqrt{f'c}$ * b * d = 0.167 * $\sqrt{24}$ * 1000 * 920 = 563.3 KN.

 \emptyset V_c > Vu, The footing thickness is suitable for resisting wide beam shear.

2. Punshing shear check

Ø V_{c (punshing)} = 14885 KN

 $Vu^{*}_{(punshing)} = 5977$ KN.

 \emptyset V_{c (punshing)} > Vu*_(punshing), The footing is suitable for wide beam shear resisting shear

Reinforcement:

The reinforcement in both direction are the same since L=B

 $\sigma_u = 304.4$ KN.

$$M_u = \frac{\sigma u * X2}{2} = 342.45 \text{ KN.m/m.}$$

$$\rho = \frac{0.85*24}{420} * 1 - \sqrt{1 - \frac{2.61*342.45}{1000*720*720*24}} = 0.0017$$

A_s per meter = $\rho * b* d = 0.0017*1000*720 = 1270 \text{ mm}^2$.

 $A_{s \text{ min}} = 0.0018 * b* h = 0.0018*1000*800 = 1440 \text{ mm}^2$, As min > As, use As min

Use $8\emptyset 16 \text{ mm} / \text{m}$ for each direction

The detailing as shown in the figure (5-40) below:

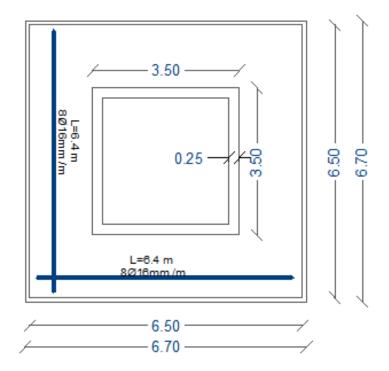


Figure 5-42 : Reinforcement details for minaret footing.

CHAPTER 6

ELECTRICAL LIGHTING

6.1 Electric lighting design.

The main aims of artificial lighting (as for day lighting) are:

Functional – so tasks can be carried out:

- Accurately.
- Comfortably.
- Safely.

Annex	Minimum	Maximum	
	illumination(Lux)	illumination(Lux)	
Pray hall	350	400	
Minber	450	550	
Mihrab	350	420	
Exit door	85	180	
Passages	125	200	

Table 6-1: Lighting requirments for mosque. [10

Uniformity

In order to avoid problems of fatigue and to generate a feeling of wellbeing in an interior it is important to create a uniform distribution of luminance. This involves maintaining a certain uniformity of illuminance at the work plane, expressed as the ratio of minimum to mean illuminance. For the ambient lighting in the pray hall interiors, it should be minimum (0.6).

The Recommended reflectance in mosque is:

Using surfaces with a high reflectance will help with even light distribution. Suitable levels are:

- Walls not less than 0.6.
- Ceilings not less than 0.7.
- Floor coverings with as high a reflectance as possible.

After calculating the daylight factor in the pray hall, the daylight is almost the same as the desired lux inside the pray hall (400 lux).

Therefore, we are choosing the suitable lamps and luminaries for the pray hall and for the library area.

Pray hall.

Height of Room: 6 m. Total Luminous Flux: 240000 lm. Total Load: 4800W. Maintenance factor: 0.80. Suspended height: 0.300 m. u0=0.68. Average [lx]: 400

Efficacy = 72.

The figures (6.1), (6-2) show the luminaries and the lamps are used for the pray hall.

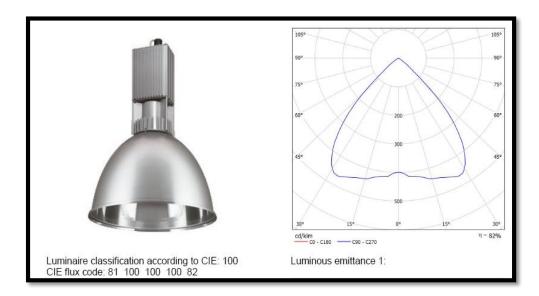


Figure 6-1: The luminaries and the lamps are used for the pray hall.

PHILIPS 4ME550 P-WB 1xQL165W HF +9ME100 R D550 Article No.: Luminous flux (Luminaire): 9840 Im Luminous flux (Lamps): 12000 Im Luminaire Wattage: 165.0 W Luminaire classification according to CIE: 100 CIE flux code: 81 100 100 100 82 Fitting: 1 x QL165W/840 (Correction Factor 1.000).

Figure 6-2: The type lamps are used for the pray hall

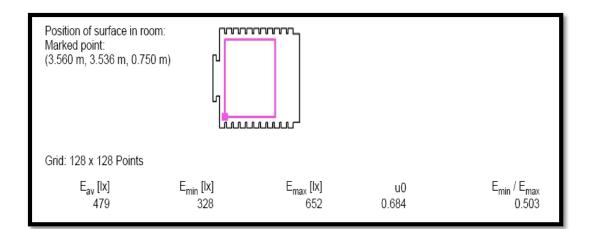
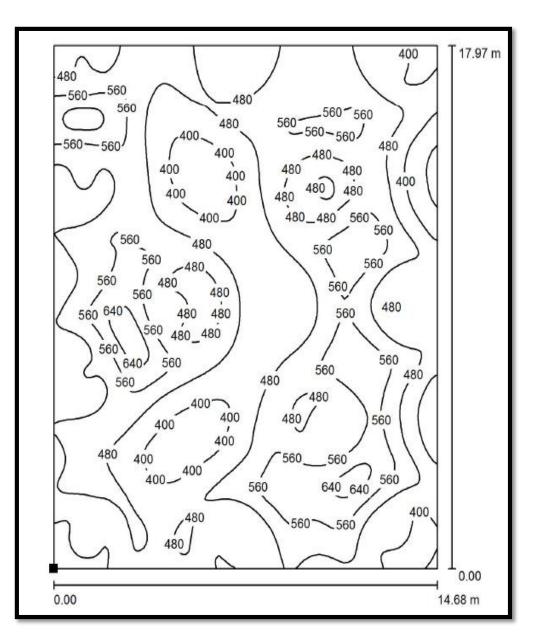
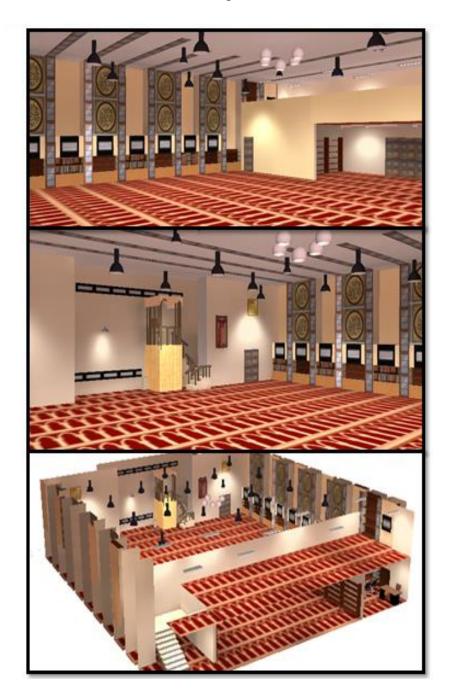




Figure 6-3: Uniformity-value in the pray hall.

The figure (6-4) show Isolines for pray hall.

Figure 6-4: Isolines.

The figure (6-5) Show interior views for the mosque.

Figure 6-5: Interior view for the mosque.

The figure (6-6) Show pray hall lighting unit's distribution by DIALUX program.

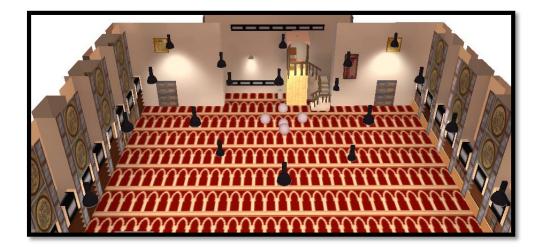


Figure 6-6: Pray hall lighting unit's distribution by DIALUX program

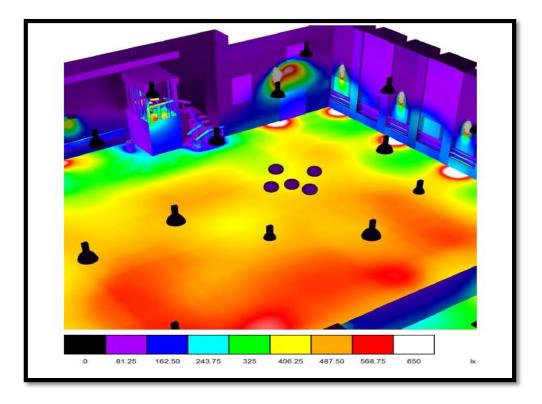
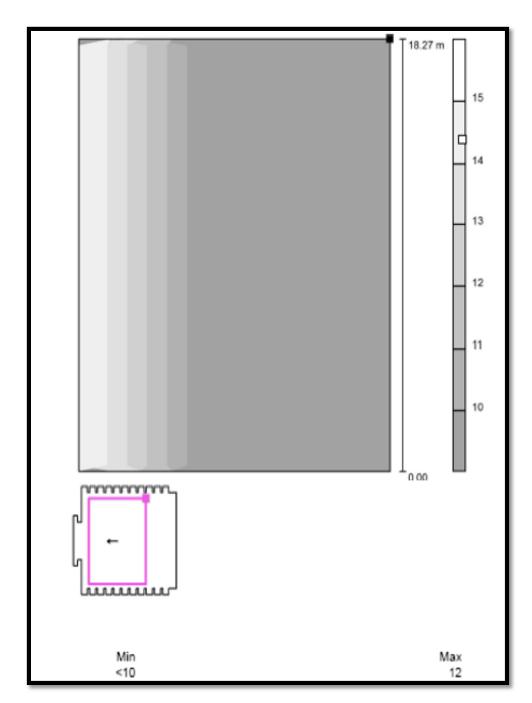



Figure 6-7: False color displayfor the pray hall.

The figure (6-8) show the grayscale and value glare for the pray hall by DIALUX program.

Figure 6-8: The grayscale and value glare for the pray hall by DIALUX program.

Library

Height of Room: 3.000 m.

Total Luminous Flux: 18000 lm.

Maintenance factor: 0.80.

Suspended height: 0.00 m.

u0=0.72.

Average [lx]: 400.

Efficacy = 80.

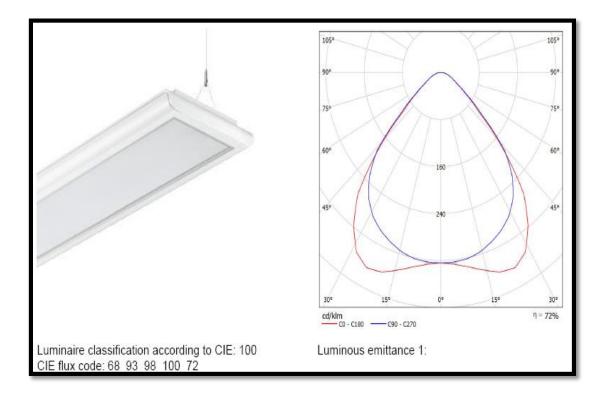
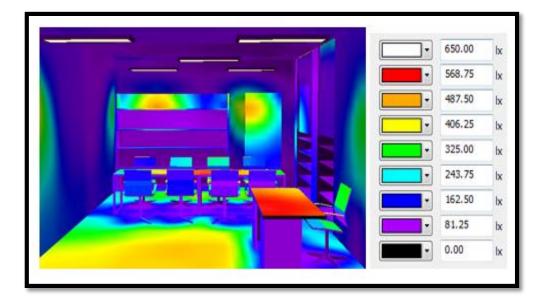


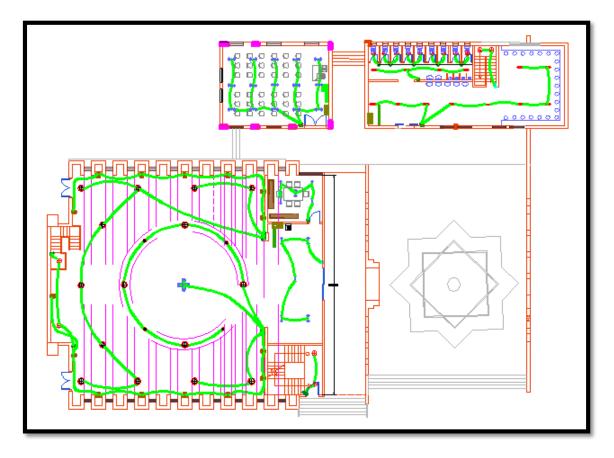
Figure 6-9: The grayscale and value glare for the pray hall by DIALUX program.

PHILIPS BPS460 W33L124 1xLED48/840 AC-MLO Article No.: Luminous flux (Luminaire): 3600 lm Luminous flux (Lamps): 3600 lm Luminaire Wattage: 42.0 W Luminaire classification according to CIE: 100 CIE flux code: 71 94 99 100 100 Fitting: 1 x LED48/840/- (Correction Factor 1.000).



Figure 6-11: Distribution lighting for library by DIALUX program.




Figure 6-12: False color display for library

Zumtobel 60510021 SCON-S 500 1/23W TCG-SE CR [STD] Article No.: 60510021 Luminous flux (Luminaire): 658 Im Luminous flux (Lamps): 1060 Im Luminaire Wattage: 21.0 W Luminaire classification according to CIE: 92 CIE flux code: 54 92 98 92 62 Fitting: 1 x TCG-SE 18W (Correction Factor 1.000). PHILIPS ST640T 1xLED16S/830 MB ACT Article No .: Luminous flux (Luminaire): 1750 lm Luminous flux (Lamps): 1750 Im Luminaire Wattage: 21.5 W Luminaire classification according to CIE: 100 CIE flux code: 98 100 100 100 100 Fitting: 1 x LED16S/830/- (Correction Factor 1.000).

Figure 6-13: The lamps are used for the pray hall.

6.2 Electrical load calculation.

Circuit breaker lighting.

Figure 6-14: mosque lighting unit's distribution.

N=number of circuit breaker.

D.F=diversity factor= 0.8.

S.F=safety factor= 1.2.

Current value of the lighting circuit value =10AMP.

Electrical voltage =220.

Every 50m2 needs 1 Circuit breaker.

Circuit breaker socket.

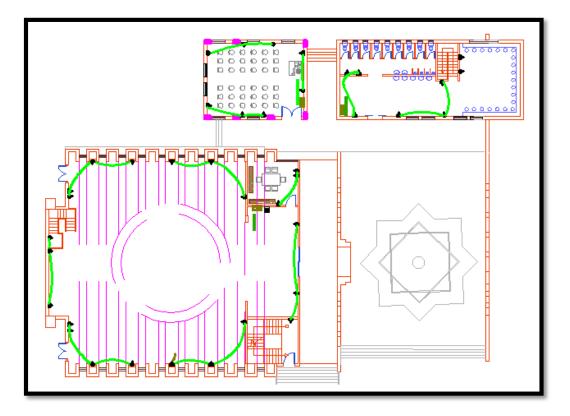


Figure 6-15: Socket distribution.

Diversity factor= 0.3.

Safety factor=1.5.

16AMP=current value of the lighting circuit value.

For 3-5 sockets we need one circuit breaker.

 Table 6-2: Number circuit breaker in the mosque.

Space Name	Number of for Circuit breaker lighting	Number of for Circuit breaker lighting
Pray hall	9	6
Library	2	1
Woman pray hall	2	2
Cultural center	2	2
ablution	2	4
basement	2	2

Table 6-3: Mosque Lighting Loads.

Space Name	Number of	Luminaire	Total Load(W)
	Luminaries	load(W)	
Pray hall	165	19	3135
	5	42	210
Library	5	42	210
Woman pray hall	10	42	450
Cultural center	15	42	630
ablution	13	42	224
	9	24	216
basement	11	24	264
	11	24	264
Total			5603

 $P_{actual \ for \ Lighting} = (P_{lighting} \ *D.F_{\ Lighting}) \ / \ P.F$

=(5603*0.80)/1=4482.4 watt

Space Name	Number of normal loads	Number of special loads	Total Load(Amp)
Pray hall	3	3	18
Library	2	1	4
Woman pray hall	2	1	4
Cultural center	2	1	4
ablution	2	5	4
basement	2	1	4
Total		12	38

Table 6-4: Mosque Lighting Loads.

Number of normal loads= 38..... They give 76 A

Number of special loads= 38..... They give 120 A

 $I_{circuit \ breaker} = \{Plight \ *D_{Flight} + P_{socket} *DF_{socke}t + P_{special} \ *DF_{special} \} * \{SF/3\}$

 $= \{((5603/220)*0.8) + (76*0.15) + (120*0.5)\}*\{1.2/3\}=31 \text{ A}$

= 31A

 $I_{cable} = SF^* I_{circuit breaker} = 1.2^*30.7 = 36.85 A..... use 37 A$

Table 6-5: Circuit breaker ampere and wire sections

uses	Current(Amp)	uses	Area(mm2)
Lighting breaker	10	Lighting	1.5
Power breaker	16	Power	2.5
Main breaker	37	Main	6

CHAPTER 7

MECHANICAL DESIGN

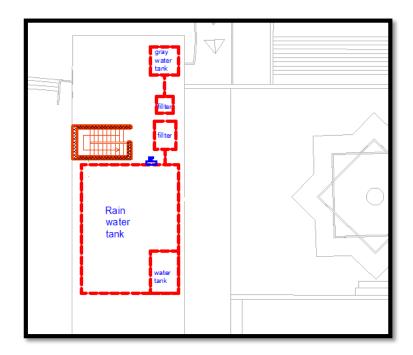
7.1 Water supply system:

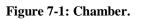
In our project, large amount of water is needed when people come to the mosque to pray. The supply system for water was taken from Nablus Municipality to the mosque, gray water tank and rain water tank.

7.2 Water system design:

The sizes for the pipes used in the design:

Pipe size	Function
2(inch)	For the sinks
	Black and gray water drainage
4(inch)	Stacks
	Branch for toilet
6(inch)	For the manholes


Table 7-1: Pipes used in desgin


The mosque will be designed for 400 worshippers and each one of them consumes 10 liters on average each time.

Pray time	No. of prayers	Consumed in ablution	Total consumed water in ablution	No. of prayers	Consumed in W.C	Total consumed water in W.C.
Fajr	10	10	100	5	15	75
Douhr	50	10	500	25	15	375
Asr	50	10	500	25	15	375
Maghreb	30	10	300	15	15	225
Isha	30	10	300	15	15	225
total consumed water in ablution 1700 /day					1275	
	Total consumed water in the mosque equals to 2975 lt par day					

 Table 7-2: Consumed water in our project.

For water storage, we constructed a chamber under the ground and put all water tanks in it. Show figure (7-2).

a) Gray water tank

In the chamber, there is a tank for grey water that collects water from men ablution.

Average	Storage	Total	Factor of	Required	Grey water	Designed
grey water from men	period (day)	stored water in	safety	grey water tank volume	tank dimensions	water tank
ablution/		the storage		(LITER)	(m)	volume
day (LITER)		period				(LITER)
1700	3	5100	1.5	7650	1.6X1.6X3	7680

 Table 7-3: Gray water tank calculation

The grey water will be used for W.C., irrigation and cleaning.

b) Water tank

Table 7-4:	Water	tank	calculation
------------	-------	------	-------------

Total consumed	Storage period	Total stored	Factor of safety	Total volume
water per day	(DAY)	water in the		of required
(LITER)		storage period (water tank
		LITER)		(LITER)
3000	3	9000	1.5	13500

c) Rain water tank

The rainwater could be collected from all the structures and the ground of the site but the volume of the rainwater tank would be extremely large. Therefore, the rainwater tank is designed to collect the rainwater from part of the surface of the mosque, the ablution and the multipurpose room. The remained surface discharge water into direct manholes.

average rain	Total area that	Total required
precipitation in	discharge in the	volume to store
Nablus	rain water tank	rain water
(mm)	(m ²)	(Liter)
540	400	216000

Table 7-5:Rainwater tank calculation

The water tank that was calculated previously will be a part of the rainwater tank.

Required volume of the rain water tank (LITER)	Required volume of the water tank (LITER)	Total required volume (LITER)	Water tank dimensions (M)	Volume of the designed water tank (LITER)
216000	13500	229500	9.2X8.4X3	2318400

Table 7-6: Rain water and water tank calculation

Black water:

Black water direct to the manholes. As shown in figure (7-4).

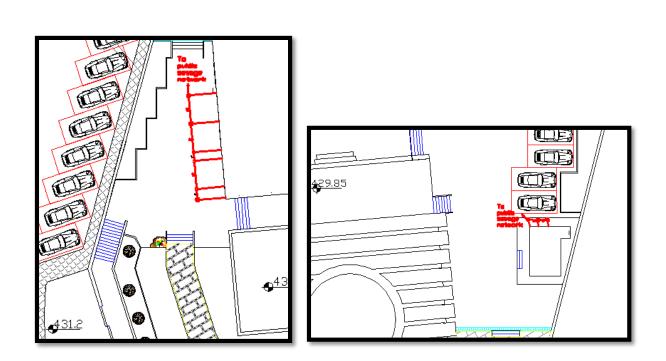


Figure 7-2: drainage of black water

7.3 HVAC system

The HVAC system has been designed for the pray hall area. The heating and cooling were taken from the ECOTECT model and the duct system was designed based on these values.

An AutoCAD model was made for the duct system to illustrate the relation between the supplies duct and the return duct and their relation with the air handling unit and the chiller.

As mentioned in the environmental section, the total heating and cooling loads was found to be 67 Kw/m2 annually. The maximum load that the duct system shall be designed for, as following.

In summer

Operation: week days (12-21), weekends 12-21.

Maximum Cooling: 123800 w at 13:00 on 15th august.

Thermostat setting: 18.0-24.0 °C.

In winter

Operation: week days (5-21), weekends 12-21.

Thermostat setting: 19.0 -24.0 °C

Maximum Heating: 39455 w at 12:00 on 21th January.

The duct system design was based on the heating load in the 15th of August at 13:00.

From this value (124 Kw), the mass flow rate will be

 $Q = m \rho \Delta T$

Where:

Q = total heating or cooling load in Kw.

M = mass flow rate.

P = air density = 1.25

 ΔT = temperature difference between the inside of the mosque and outside the mosque 15 °C.

By substituting these values in the equation above, these results will be obtained.

The mass flow rate is = 6614 L/s.

In the current design, the pray hall area is divided into two parts and use one chiller for each part. Therefore, the value for one chiller is 3307 L/s.

The method used in calculating pipe diameter is balanced pressure drop method, the longest run is ABCDEFGHI, the duct length and distribution is dependent on diffuser throw and pray hall dimension.

To get value of throw at least 10m for each diffuser take dimension (30*61) cm and number of diffuser = 8.

description	Public buildings
Outside air	2.5
Heating coils	2.5
Cooling coils	2.5
Fan suction	4
Fan outlet	6.5-10
Main duct	5-6.5
Branch duct	3-4.5
Branch riser	3-3.5

 Table 7-7: The recommended velocities for the duct system.

The dimensions for the main duct in the pray hall area can be computed using the values obtained from the table and the equation above.

From table (7-7) the recommended velocity for the main duct in the warehouse is (V) = 6m/s.

For each chiller:

M = 3307 L/s.

Using table (10-5) (HEATING AND AIR CONDITIONING).[15]

 $\Delta p/L = 0.45 \text{ Pa/m}.$

The diameter for the main duct is =840mm.

The equivalent dimensions for the main duct is = 1400 X 350 mm.

The size of the diffusers used in the pray hall area is $= 300 \times 100$ mm.

The flow rate for each diffuser is = 410 L/s.

The dimensions for the whole duct system are shown in the AUTOCAD drawings with details.

Show below table the volumetric flow rates and diamete for all duct.

Duct section	V M3/s	d m	Δp/EL PA /m	V m/s
A1	3.3	0.84	0.45	6
A2	2.89	0.8	0.45	5.8
A3	2.48	0.75	0.45	5.7
A4	2.07	0.68	0.45	5.5
A5	1.66	0.63	0.45	5.1
A6	1.25	0.57	0.45	4.7
A7	0.84	0.48	0.45	4.5
A8	0.41	0.38	0.45	4.3
B1	0.41	0.32	1.05	5.2
B2	0.41	0.34	0.75	4.5
B3	0.41	0.37	0.55	3.8
B4	0.41	0.41	0.3	3.2
B5	0.41	0.45	0.26	2.8
B6	0.41	0.46	0.24	2.7
B7	0.41	0.48	0.22	2.3

 Table 7-8: The volumetric flow rates and diamete for all duct

The figure (7-3) below duct system distribution in the pray hall.

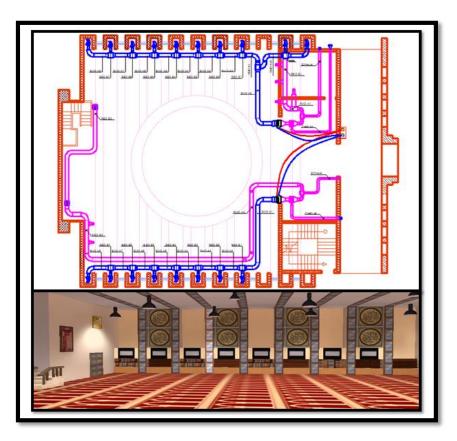


Figure 7-3: duct system distribution

7.4 Raised Floor

The most challenging problem we faced was installing the HVAC ducts and electrical installation, so after thinking we thought that raised floor system is the best solution.

We used the raised floor system in the pray hall only because it is the most efficient solution for installing the HVAC ducts in terms of money and maintenance.

The working load of this system is at least 2kN. Table (7-9) shows different type of raised floor system.

Table 7-9: Load	l class for	raised	floor system	
-----------------	-------------	--------	--------------	--

LOAD CLASS	1	2	3	4	5	6
Ultimate load	> 4 kN	> 6 kN	> 8 kN	> 9 kN	> 10 kN	> 12 kN
Working load	> 2 kN	> 3 kN	> 4 kN	> 4.5 kN	> 5 kN	> 6 kN

The free space between the concrete and the raised floor can vary according to need from 10 to 100 centimeters, and even more.

Figure 7-4 : installing HVAV under raised floor

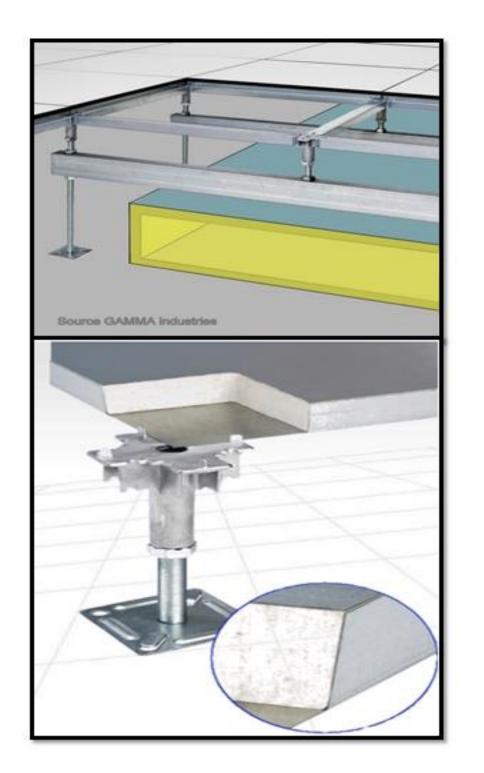


Figure 7-5: Section in raised flloor

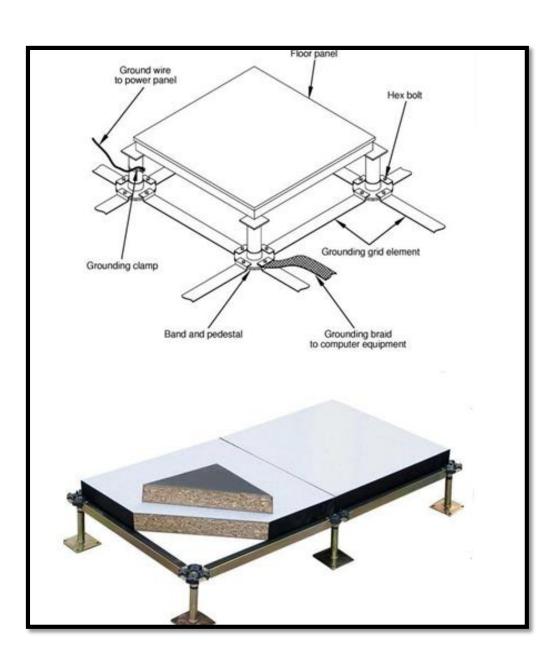


Figure 7-6: Componant of raised floor system.

7.5 Fire protection system

Fire protection system is a necessity in every structural since the hazard of a fire is possible in every minute and unexpected. In a place like a Masjid the most sensitive area is the prayer halls because of the carpet on the floor and the wood used in decoration inside, fire hose cabinet also fire extinguisher are established plus smoke detector and alarm system in case.

Figure 7-7: Fire hose cabinate.

CHAPTER 8

QUANTITITIES

SURVAYING

Work	Unit	Quantity		Cost (N	IS)
Earth works					
Excavation	M ³	2178		65340)
Backfilling	M ³	1462		30000)
External works	-	-		37100	0
	Total cos	t = 466340)		
concrete wo	orks		Material	Labor	total
plain Concrete (B300)	M ³	69.7	22304	6970	29274
Footing Concrete (B300)	M ³	64.3	20576	9860	30436
U-beams Concrete	M ³	243	78016	52200	130216
Ring beam	M ³	18.3	5856	7880	13736
Beams	M ³	21.19	6780	6400	13180
Concrete for slabs	M ³	32	10240	8000	18240
Concrete for columns	M ³	262	83840	26400	110240
concrete for shear wall	M ³	64.7	20704	3560	24264
		t = 369586			
		el work	,		
Steel for footing	Ton	9.6		28800)
Steel for All beams	Ton	16.32		48960)
Steel for ground slab	Ton	3.6	10800		
Steel for ground slab	Ton	13.1	39300		
steel for columns	Ton	18	5400		
Steel for shear wall	Ton	5.55	16650)
		t = 149910)		
		ishing		24690	
Plastering	M ²	1234		24680	
Painting	M ²	1234	12340		
Tiling	M ²	198	19800		
Skirting	M	82	900		
Doors	- M ²	-	13700		
Glasses	M ²	257	91700		
roof floor screed		600	36400		
Alcubond	M ²	1456	728000		
Raised floor M ² 510 151000				U	
Total cost = 1078520					

Block					
Ribs	No	1260	3780		
Internal walls	No	450	1800		
	Total co	st = 5570			
	Electri	ical work			
Electrical installation and					
equipment	-	-	27700		
		st = 27700			
	Mechar	nical work			
mechanical installation and equipment	_	_	20500		
HVAC system	_	_	79500		
pumps	_	_	3300		
panipa		t = 103300			
		elements			
Dome	M ²	52.3	20900		
stairs	No	40	7200		
510113		st = 28100	7200		
		onal cost			
		ablution			
concrete	M ³	209.9	172000		
Block (10*20*40)	M ²	274	13700		
rib	No.	1650	4950		
blaster	M ²	623	12460		
paint	M ²	623	6230		
stones	M ²	215	75750		
doors	-	-	10600		
glasses	M ²	8.4	3780		
tile	M ²	100	15200		
Electrical	-	-	10700		
Mechanical	_	-	42950		
Multi-purpose hall					
concrete	M ³	25.7	21000		
Block (10*20*40)	M ²	147.2	7360		
rib	No.	485	1455		
blaster	M ²	377	7540		
paint	M ²	377	3770		

stones	M ²	148	52875		
doors	-	-	2500		
glasses	M ²	15.6	7020		
tile	M ²	75	7500		
Electrical	-	-	4000		
mechanical	-	-	1500		
	Iman	n room			
concrete	M ³	8	6560		
Block (10*20*40)	M ²	81.3	4065		
Block (20*20*40)	No.	785	2355		
rib	No.	132	369		
blaster	M ²	70	1400		
paint	M ²	70	700		
stones	M ²	76	26725		
doors	-	-	3400		
glasses	M ²	4.5	2025		
tile	M ²	19	1900		
Electrical	-	-	1600		
Mechanical	-	-	8600		
	Mi	naret			
concrete	М	24	84000		
plaster	M ²	315	6300		
paint	M ²	315	3150		
alcubond	M ²	320	160000		
glasses	М	42	10500		
doors	-	-	2500		
Electrical	-	-	3500		
Total cost = 814489					
Total cost of the project = 2925615					
Total cost / m ² = 2535.2					

References

- . عبد السلام احمد نظيف الهيئة المصرية العامة كتاب در اسات في العمارة الاسلامية- مكتبة بلدية طولكرم م 1989. [1]
- . 1996 . محمد ماجد خلوصي . الموسوعة الهندسية المعمارية .[2]
- 1998 . محمد ماجد خلوصي المسجد عماره وطراز وتاريخ .[3]
- [4]. http://scienceray.com/technology/elements-of-structural-design/#ixzz2BYT1yg6N.
- [5]. Arthur H. Nilson , David Darwin, Charles W. Dolan. (2010) Design of Concrete Structures, published by McGraw-Hill
- [6]. R, C. Hibbeler. (2009) Structural Analysis, published by Prentice-Hall.
- [7]. (course, seismic design of building, chapter one second semester 2013/2014, Dr. Jalal Nimer Dabbeek).
- [8]. Groundzik W, Kwork G., Stein B. and Reynolds J. Mechanical and electrical equipment for building. 2008
- [9]. http://www.lightingassociates.org/i/u/2127806/f/tech_sheets/Luminaires.pdf
- التوصيات العامة للإنارة د .1978 ابر اهيم بدر ان د. اديت اونك نقابة المهندسين الاردنيين .[10]
- [11]. Jones, J Knight and P. Building services. Great Britain, 1995.
- [12]. (www.engineeringtoolbox.com 2013).
- [13]. Roberts D. and Croome J. Air-conditioning and ventilation of building.
- [14].http://www.afedonline.org/water%20efficiency%20manual/PDF/5Chapter%204_Buildings. pdf.
- [15]. (course, HVAC, second semester 2013/2014, Dr. Fadi Fatyer).
- [16]. http://en.wikipedia.org/wiki/Faisal_Mosque.
- . الجهاز المركزي للإحصاء الفلسطيني الاحوال المناخية في الاراضي الفلسطينية ٢٠٠٨ .[17]

[18]. The American Concrete Institute code ACI 318-5.

[19]. Code, U. B. (1997). UBC. 1997. in International Conference of Building Officials, Uniform Building Code, Whittier, California.

[20]. ACI 318 Committee. (2011). Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary. In American Concrete Institute (p. 503).

[21]. Jordanian code for load 2006.

[22]. ASCE for load computation.

[23]. Mechanical code adapted to the Palestinian authority.

[24]. ASHRAE Code.

[25]. (course, acoustics, first semester 2013/2014, Dr. Muhannad Haj Hussein).