Graduation Project II Analysis and Design of UMT Building.

Name: Qais Tanbour Nabeel Bishtawy. Sabri Hasan. nedal aqel.

Underspervision of: Dr. Shaker Al-Bitar.

* General Description for UMT Building. * Gravity Analysis. * Seismic Analysis. * Checking the seismic performance using Pushover Analysis * Detailing

*General Description:

*The total area for the building=4000 m²
*Typical floor height=+3.375 m
*A36 for structural steel
*Reinforced steel GR60
*Concrete compressive strength=28 MPa

***WHY UMT ?!**

Plan Drawing

Usage of the Ground

*Combinations used

Service load Combinations

- 1. D
- 2. D+L
- 3. D+0.75L
- 4. 0.6D
- 5. 1.095D+0.91Ehx+0.273Ehy
- 6. $1.07D+0.68 E_{hx}+0.205 E_{hy}+0.75L$
- 7. $0.505D+0.91 E_{hx}+0.273E_{hy}$

Ultimate load Combinations

- 1. 1.4D
- 2. 1.2D+1.6L
- 3. 1.2D+1.0L
- 4. 0.9D
- 5. 1.366D+1.3 Ehx+0.39 Ehx+L
- 6. 1.366D+1.3 Ehy+0.39 Ehx+L
- 7. 0.764D+1.3Ehx+0.39Ehy
- 8. 0.764D+1.3E_{hy}+0.39E_{hx}

General Checks:

- Compatibility Check.
- Equilibrium Check.
- Internal Check.

*Gravity Analysis

Block 1:

*Block Area=1276 m²
*Period=0.411 second.
*Dead error=1.7%
*Live error=0.7%
*Superimposed error=0.01%
*Max internal Check error=5.66%

* Gravity Analysis Block 1:

#	X coordinate	Y Coordinate	Moment from Sap(<u>kN.m</u>)	Total moment every three points(sap) (kN.m)	Total moment every three points (Manual) (kN.m)	%Error
	X1=21.25	Y1= 9.72	M1=142			
1	X2=28.05	Y2=9.72				
	X1=21.25	Y1=11.35	M2= -190			
2	X2=28.05	Y2=11.35				
	X1=21.25	Y1=12.98	M3= 93	307.5	294.89	4.4
3	X2=28.05	Y2=12.98				
	X1=21.25	Y1= 23.32	M1=119			
4	X2=28.05	Y2=23.32				
	X1=21.25	Y1=24.9	M2= -184			
3	X2=28.05	Y2=24.9				
	X1=21.25	Y1= 26.48	M3=102	294.5	277	6.3
0	X2=28.05	Y2=26.48				

Chosen Frames for internal Check

Manual And Etabs Results Xframe

* Gravity Analysis Block 1:

*Etabs max Deflection=17.42mm *Allowable max Deflection= $\frac{L_{shortest span}}{240} = \frac{4700}{240} = 19.58 \text{ mm}$ *Etabs<Max Deflection \downarrow ok

Deflection Check Using Etabs

*Gravity Analysis

Block 2:

*Block Area=631 m²
*Period=0.654 second.
*Dead error=0.3%
*Live error=0.77%
*Superimposed error= 0.3%
*Max internal Check error=5.66%

Chosen Frame for internal Check

*Gravity Analysis

Block 3:

*Block Area=210 m²
*Period=0.476 second.
*Dead error=2.07%
*Live error=0.0%
*Max internal Check error=4.6%

*Seismic Analysis And Design

- General Description for the location parameter.
- Geometry of the structure.
- Vertical and Horizontal irregularities.
- Seismic Analysis method.

General Description for the location

Occupancy Category

Risk Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and Ice Loads

Risk Category
I
п
ш

Buildings and other structures designated as essential facilities

established by the Authority Having Jurisdiction and is

sufficient to pose a threat to the public if released^a

General Description for the location

Ground Motion Parameter

(S₁) =1.25*Z=1.25*.2=0.25 (S_s) =2.5*Z=2.5*.2=0.5

General Description for the location

Soil Type > C

Site Classification				
Sile Class	Ŷ,	Ñ or Ñ _{ch}	à,	
A. Hard rock	>5,000 ft/s	NA	NA	
B. Rock	2,500 to 5,000 ft/s	NA	NA	
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50 blows/ft	>2,000 lb/ft ²	
D. Stiff soil	600 to 1,200 ft/s	15 to 50 blows/ft	1,000 to 2,000 lb/ft2	
E. Soft clay soil	<600 ft/s	<15 blows/ft	<1,000 lb/ft2	
	Any profile with more than	10 ft of soil that has the following ch	aracteristics:	
 — Plasticity index PI > 20, — Moisture content w ≥ 40%, — Undrained shear strength 3_x < 500 lb /ft² 				
F. Soils requiring site response analysis in accordance with Section 21.1	See Section 20.3.1			

Note: For SI: 1 ft = 0.3048 m; 1 ft /s = 0.3048 m/s; 1 lb /ft² = 0.0479 kN/m².

Mapped Risk-Targeted Maximum Considered Earthquake (MCE_R) Spectral Response Acceleration

*Seismic Analysis

General Description for the location

• Site coefficient:

(
$$F_a$$
) =1.3
(F_v) =1.5

		Parameter at Short Period							
šite Class	$S_5 \leq 0.25$	$S_{5} = 0.5$	$S_3 = 0.75$	$S_5 = 1.0$	$S_s \ge 1.25$				
А	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.2	1.2	1.1	1.0	1.0				
D	1.6	1.4	1.2	1.1	1.0				
Е	2.5	1.7	1.2	0.9	0.9				
F	See Section 11.4.7								

Note: Use straight-line interpolation for intermediate values of S_5

Site Coefficient, Fr

	Mapped Risk-Targeted Maximum Considered Earthquake (MCE _R) Spectral Response Acceleration Parameter at 1-s Period						
Site Class	$S_I \leq 0.1$	$S_I = 0.2$	$S_{l} = 0.3$	$S_{l} = 0.4$	$S_l \ge 0.5$		
A	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.7	1.6	1.5	1.4	1.3		
D	2.4	2.0	1.8	1.6	1.5		
Е	3.5	3.2	2.8	2.4	2.4		
F	See Section 11.4.7						

Note: Use straight-line interpolation for intermediate values of S1.

General Description for the location

Design Spectral Accelerations

$$SD_1 = \frac{2}{3} * F_V * S_1 \implies SD_1 = 1 * 1.5 * 0.25 = 0.375$$

 $SD_s = \frac{2}{3} * F_a * S_s \implies SD_s = 1 * 1.3 * 0.5 = 0.65$

General Description for the location

- Importance Factor I=1
- Seismic Design category D,D
 We choose the worst D

Risk Category from Table 1.5-1	Snow Importance Factor, I _s	Ice Importance Factor— Thickness, I _I	loe Importance Factor—Wind, I _w	Seismic Importance Factor, I _e
I	0.80	0.80	1.00	1.00
II	1.00	1.00	1.00	1.00
III	1.10	1.15	1.00	1.25
IV	1.20	1.25	1.00	1.50
		Risk Cate	gory	
Value of S_{DS}		l or II or III	IV	
$S_{DS} < 0.167$		А	А	
$0.167 \le S_{DS} < 0.3$	3	В	С	
$0.33 \le S_{DS} < 0.50$	1	С	D	
$0.50 \leq S_{DS}$		D	D	

Seismic Design Category Based on 1-s Period Response Acceleration Parameter

_	Risk Cate	egory
Value of S _{D1}	I or II or III	IV
$S_{D1} < 0.067$	А	А
$0.067 \le S_{D1} < 0.133$	в	С
$0.133 \le S_{D1} < 0.20$	С	D
$0.20 \le S_{D1}$	D	D

Geometry of the Structure

- Frame System Used
 Two types of Frame systems
 1- Moment Resisting Frame
 - 2- Building frame system

Table 12.2-1 Design Coefficients and Factors for Seismic Force-Resisting Systems

Seismic Force-Resisting System	ASCE 7 Section Where Detailing Requirements Are Specified	Response Modification Coefficient, R*	Overstrength Factor, Ω ₀ ^b	Deflection Amplification Factor, C_d^c
C. MOMENT-RESISTING FRAME SYSTEMS				
1. Steel special moment frames	14.1 and 12.2.5.5	8	3	51/2
2 Steel energial truce moment frames	14.1	7	3	514
3. Steel intermediate moment frames	12.2.5.7 and 14.1	41/2	3	4
4. Steel ordinary moment frames	1225.6 and 14.1	51/2	5	5
5. Special reinforced concrete moment frames"	12.2.5.5 and 14.2	8	3	51/2
6. Intermediate reinforced concrete moment frames	14.2	5	3	41/2
7. Ordinary reinforced concrete moment frames	14.2	3	3	21/2

Horizontal irregularities.

Туре	Description	Reference Section	Selamic Design Category Application
la.	Torsional Irregularity: Torsional irregularity is defined to exist where the maximum story drift, computed including accidental torsion with $A_t = 1.0$, at one end of the structure transverse to an axis is more than 1.2 times the average of the story drifts at the two ends of the structure. Torsional irregularity requirements in the reference sections apply only to structures in which the diaphragms are rigid or semirigid.	12.3.3.4 12.7.3 12.8.4.3 12.12.1 Table 12.6-1 16.3.4	D, E, and F B, C, D, E, and F C, D, E, and F C, D, E, and F D, E, and F B, C, D, E, and F
16.	Extreme Torsional Irregularity: Extreme torsional irregularity is defined to exist where the maximum story drift, computed including accidental torsion with $A_c = 1.0$, at one end of the structure transverse to an axis is more than 1.4 times the average of the story drifts at the two ends of the structure. Extreme torsional irregularity requirements in the reference sections apply only to structures in which the diaphragms are rigid or semirigid.	12.3.3.1 12.3.3.4 12.3.4.2 12.7.3 12.8.4.3 12.12.1 Table 12.6-1 16.3.4	E and F D D B, C, and D C and D C and D D B, C, and D
2.	Reentrant Corner Irregularity: Reentrant corner irregularity is defined to exist where both plan projections of the structure beyond a reentrant corner are greater than 15% of the plan dimension of the structure in the given direction.	12.3.3.4 Table 12.6-1	D, E, and F D, E, and F
3.	Disphragm Discontinuity Irregularity: Disphragm discontinuity irregularity is defined to exist where there is a disphragm with an abrupt discontinuity or variation in stiffness, including one that has a cutout or open area greater than 50% of the gross enclosed disphragm area, or a change in effective disphragm stiffness of more than 50% from one story to the next.	12.3.3.4 Table 12.6-1	D, E, and F D, E, and F
4,	Out-of-Plane Offset Irregularity: Out-of-plane offset irregularity is defined to exist where there is a discontinuity in a lateral force-resistance path, such as an out-of-plane offset of at least one of the vertical elements.	12.3.3.3 12.3.3.4 12.7.3 Table 12.6-1 16.3.4	B, C, D, E, and F D, E, and F B, C, D, E, and F D, E, and F B, C, D, E, and F
5.	Nonparallel System Irregularity: Nonparallel system irregularity is defined to exist where vertical lateral force-resisting elements are not parallel to the major orthogonal axes of the seismic force-resisting system.	12.53 12.73 Table 12.6-1 16.34	C, D, E, and F B, C, D, E, and F D, E, and F B, C, D, E, and F

Horizontal irregularities

Load Case Name		EQYBaseshear	Design
Load Case Type		Linear Static	✓ Notes
Exclude Objects in this Grou	p	Not Applicable	
Mass Source		Mass_source	
P-Delta/Nonlinear Stiffness			
Use Preset P-Delta Setti	ngs None	M	odify/Show
O Use Nonlinear Case (Lo	ads at End of Case NO	T Included)	
Nonlinear Case			
Loads Applied			-
Loads Applied Load Type	Load N	ame Scale	Factor
Loads Applied Load Type Load Pattem	Load N EQyBaseshear	ame Scale	Factor 1 Add
Loads Applied Load Type Load Pattern	Load N EQyBaseshear	ame Scale	Factor 10 Add Delete
Loads Applied Load Type Load Pattem	Load N EQyBaseshear	ame Scale	Factor Add Delete
Loads Applied Load Type Load Pattem	Load N EQyBaseshear	ame Scale	Factor Add Delete

Horizontal irregularities

 Diaphragm Discontinuity irregularity Does not exist

Horizontal irregularities

- Out of Plan offset irregularity
- No discontinuity in the lateral force resisting frame I Not Exist

Horizontal irregularities

- Non-Parallel Lateral Load Resisting System →
- All the lateral force-resisting elements Parallel → Not Exist

Vertical irregularities.

Туре	Description	Reference Section	Seismic Design Category Application
la.	Stiffness-Soft Story Irregularity: Stiffness-soft story irregularity is defined to exist where there is a story in which the lateral stiffness is less than 70% of that in the story above or less than 80% of the average stiffness of the three stories above.	Table 12.6-1	D, E, and F
1b.	Stiffness-Extreme Soft Story Irregularity: Stiffness-extreme soft story irregularity is defined to exist where there is a story in which the lateral stiffness is less than 60% of that in the story above or less than 70% of the average stiffness of the three stories above.	12.3.3.1 Table 12.6-1	E and F D, E, and F
2.	Weight (Mass) Irregularity: Weight (mass) irregularity is defined to exist where the effective mass of any story is more than 150% of the effective mass of an adjacent story. A roof that is lighter than the floor below need not be considered.	Table 12.6-1	D, E, and F
3.	Vertical Geometric Irregularity: Vertical geometric irregularity is defined to exist where the horizontal dimension of the seismic force-resisting system in any story is more than 130% of that in an adjacent story.	Table 12.6-1	D, E, and F
4.	In-Plane Discontinuity in Vertical Lateral Force-Resisting Element Irregularity: In-plane discontinuity in vertical lateral force-resisting element irregularity is defined to exist where there is an in-plane offset of a vertical seismic force-resisting element resulting in overturning demands on supporting structural elements.	12.3.33 12.3.34 Table 12.6-1	B, C, D, E, and F D, E, and F D, E, and F
5a.	Discontinuity in Lateral Strength–Weak Story Irregularity: Discontinuity in lateral strength–weak story irregularity is defined to exist where the story lateral strength is less than 80% of that in the story above. The story lateral strength is the total lateral strength of all seismic-resisting elements sharing the story shear for the direction under consideration.	12.3.3.1 Table 12.6-1	E and F D, E, and F
5h.	Discontinuity in Lateral Strength-Extreme Weak Story Irregularity: Discontinuity in lateral strength-extreme weak story irregularity is defined to exist where the story lateral strength is less than 65% of that in the story above. The story strength is the total strength of all seismic-resisting elements sharing the story shear for the direction under consideration.	12.3.3.1 12.3.32 Table 12.6-1	D, E, and F B and C D, E, and F

Vertical irregularities

- Stiffness-soft story Irregularities
- **Stiffness Weak Story**

Vertical irregularities

Weight mass Irregularity =>

Vertical irregularities

Vertical geometric Irregularity =>

horizontal dimension of the seismic force system in any story is more than 130% of that in the adjacent story

Exist in Block 2

Vertical irregularities

- In-Plane Discontinuity in Vertical Element Resisting Lateral Force =>
- in-plane offset of the lateral force resisting elements > No > Not Exist

Seismic Analysis Methods

- Equivalent Lateral Force Method (ELF).
- Response Spectrum Analysis(MCER).
- Time History Analysis .
- Static nonlinear analysis (pushover analysis)

Sample calculation on block 3*

Modal analysis & Mass participation * ratio

Case	Mode	Period sec	UX	UY	UZ	Sum UX	Sum UY
Modal	1	0.592	0.71	0	0	0.71	0
Modal	2	0.419	0	0.7111	0	0.71	0.7111
Modal	3	0.237	0	0	0	0.71	0.7111
Modal	4	0.124	0.2056	0	0	0.9156	0.7111
Modal	5	0.114	0	0.1921	0	0.9156	0.9031

- Program calculated period
- 90%mass 5 modes needed
Equivalent Lateral Force Method (ELF).

Block 3:

- Seismic Weight =>
- V=Cs*W
- Cs max=SDs*I/R
- Cs = SD1*I/(T*R)
- Cs min =.04 SD1 *I

Story number	Mass of one floor Etabs (Kg)	Weight of one floor Etabs (KN)
4	293600.35	2880.219434
3	306828.78	3009.990332
2	306828.78	3009.990332
1	306828.78	3009.990332
base	60767.6	596.130156
total weight	1214086.69	11910.19043

Ту	0.42	sec
W	11906.12	KN
		V=Cs*W
Cs	0.11	1289.83
Cs max	0.15	1775.973
Cs min	0.03	340.5151

Equivalent Lateral Force Method (ELF).

Block 3:

- Program calculated period —
- Period in X direction =0.592 s
- Period in Y direction = 0.419 s

Equivalent Lateral Force Method (ELF).

Block 3:

- Manual period
- Lower limit of period =
- $T = Ct * h_n^X = 0.425S$
- Upper limit of period
- Ta = Cu^{*} Ct * h_n^x =1.4*.425=0.595 S

T from program is less than 0.595 & more than 0.425 is Ok

Coefficient for Upper Limit on Calculated Period

Parameter at 1 s, S _{D1}	Coefficient C _u		
≥0,4	1.4		
0.3	1.4		
0.2	1.5		
0.15	1.6		
≤0.1	1.7		
ructure Type	C,	x	
oment-resisting frame systems in which the	he		
force and are not enclosed or adjoined b	by I		
prevent the frames from deflecting when subjected to seismic forces:	ne		
Steel moment-resisting frames	$0.028 (0.0724)^a$	0.8	
eel eccentrically braced frames in accordance with Table 12.2-1 lines B1 or D1	0.03 (0.0731) ^a	0.75	
eel buckling-restrained braced frames	$(0.03 (0.0731)^{a})$	0.75	
cor ouckning restrance oraced manes			

"Metric equivalents are shown in parentheses.

Equivalent Lateral Force Method (ELF).

Block 3:

- **Base Shear Calculation:**
- Base Shear Distribution =>

Lateral load to stories X :-

	h	elevation	weight	w*h	F(KN)	error %
Story4	3375	13500	2880.219	38882.962	219.5309	0.03413
Story3	3375	1012 5	3009.99	30476.152	172.0666	0.03416
Story2	3375	6750	3009.99	20317.435	114.711	0.03413
Story1	3375	3375	3009.99	10158.717	57.35552	0.03421

Equivalent Lateral Force Method (ELF).

Block 3:

Torsional Irregularity Check X-Direction:

 Ratio=
delta max delta Avg irregularity
<1.2 no

Story	Load Case/Co Directi	Direction	Maximum	Average	Ratio	irregularity
	mbo		mm	mm		
Story4	EQx 2	Х	4.586	4.569	1.004	None
Story3	EQx 2	Х	3.247	3.224	1.007	None
Story2	EQx 2	Х	1.847	1.83	1.009	None
Story1	EQx 2	Х	0.648	0.632	1.025	None

Equivalent Lateral Force Method (ELF).

Block 3:

Accidental Torsion Calculation

Ratio= $\frac{delta max}{delta Avg}$ \implies <1.4 no accidental

Torsion

$$Ax = \left(\frac{delta \ max}{1.2 x delta \ Avg^{2}}\right)$$

Story	Load Case/Comb o	Directio n	Maximu m delta mm	Averag e delta mm	Ratio	Ax calculated	Ax calculate d
Story4	EQx 2	X	4.589	4.569	1.005	0.7005373 7	1
Story3	EQx 2	X	3.249	3.224	1.008	0.7052561 2	1
Story2	EQx 2	Х	1.848	1.831	1.01	0.7073995 1	1
Story1	EQx 2	Х	0.648	0.632	1.026	0.7300512 7	1

- SDs =0.65 sec
- SD1 =0.375 sec

Horizontal Response spectrum

Response spectrum scaling *

Based on ASCE 7-16 *

The base shear from response spectrum must be * equal or more than 100 % from base shear from ELF .If its not a scaling for response must be made .

response spectrum scaling	responce base shear (befor scaling)	equvilant base shear	scale factor	responce base shear (after scaling)
for base shear force	951.0061	1289.83	1.36	1289.83

Response Spectrum Analysis(MCER).

Drift Check

- Amplified drift=Cd*Story drift Etabs
- Allowable Drift > from Table

Allowable Drift=0.02*h(story)=67.5mm.

_	Risk Category			
Structure	l or II	I	N	
Structures, other than masonry shear wall structures, four stories or less above the base as defined in Section 11.2, with interior walls, partitions, ceilings, and exterior wall systems that have been designed to accommodate the story drifts	$0.025h_{sx}^{c}$	0.020h _{xx}	0.015h _{ax}	
Masonry cantilever shear wall structures ^d	$0.010h_{sx}$	$0.010h_{xx}$	$0.010h_{xx}$	
Other masonry shear wall structures	$0.007h_{sx}$	$0.007h_{xx}$	$0.007h_{xx}$	
All other structures	0.020h _{sx}	$0.015h_{xx}$	$0.010h_{xx}$	

 ${}^{a}h_{sx}$ is the story height below level x.

^bFor seismic force-resisting systems solely comprising moment frames in Seismic Design Categories D, E, and F, the allowable story drift shall comply with the requirements of Section 12.12.1.1.

"There shall be no drift limit for single-story structures with interior walls, partitions, ceilings, and exterior wall systems that have been designed to accommodate the story drifts. The structure separation requirement of Section 12.12.3 is not waived.

^dStructures in which the basic structural system consists of masonry shear walls designed as vertical elements cantilevered from their base or foundation support that are so constructed that moment transfer between shear walls (coupling) is negligible.

Response Spectrum Analysis(MCER).

Block 3:

Drift Check

Amplified drift=4.5*Story drift Etabs

Allowable Drift=0.02*3375=67.5 mm.

story	load case	load direction	maximum displacment	drift	drift * Cd/l
Story4	EQXres Max	Х	16.477	5.397	26.985
Story3	EQXres Max	Х	11.08	5.149	25.745
Story2	EQXres Max	Х	5.931	4.078	20.39
Story1	EQXres Max	Х	1.853	1.853	9.265

load direction

Υ

Υ

Υ

Υ

maximum displacment

8.857

5.984

3.227

1.013

load case

EQYres Max

EQYres Max

EQYres Max

EQYres Max

story

Story4 Story3

Story2

Storv1

drift * Cd/l

14.365

13.785

11.07

5.065

drift

2.873

2,757

2.214

1.013

Vertical Response spectrum

Equation=0.3Sav*D

Time History analysis*

Time history analysis was made from a data for a previous earthquake happened in * turkey area

So the data was scaled based on response spectrum for building area *

3 earthquakes were used and scaled *

Matched time history *

Target/Matched Response Spectrum

Reference/Spectrally Matched Acceleration Time History

Reference/Spectrally Matched Acceleration Time History

Th-2

Th-2

Target/Matched Response Spectrum

Reference/Spectrally Matched Acceleration Time History

Time History scale*

Based on ASCE 7-16

The base shear from response spectrum must be equal or more than 100 % from base shear from ELF .If its not a scaling for response must be made .

scaling time history	time history base shear (befor scaling)	equivilant base shear	scale factor	time History base shear (after scaling)
for base shear force	989.6329	1289.83	1.3033419	1289.83

Time History drift*

*Because the numbers of time history data are less than 7 the maximum drift form the 3 file was taken

story	load case	load direction	maximum displacment	drift	drift * Cd/l
Story4	time history Y Max	Y	7.964	2.495	12.475
Story3	time history Y Max	Y	5.469	2.465	12.325
Story2	time history Y Max	Y	3.004	2.048	10.24
Story1	time history Y Max	Y	0.956	0.956	4.78

story	load case	load direction	maximum displacment	drift	drift * Cd/l
Story4	time history X Max	Х	14.937	5.002	25.01
Story3	time history X Max	Х	<mark>9.935</mark>	4.71	23.55
Story2	time history X Max	Х	5.225	3.627	18.135
Story1	time history X Max	Х	1.598	1.598	7.99

Time History Results*

Summery of displacement

			\frown	
story	load direction	equivelant	response	history
Story4	Y	13.175	14.365	12.475
Story3	Y	12.84	13.785	12.325
Story2	Y	10.54	11.07	10.24
Story1	Y	5.005	5.065	4.78

story	load direction	equivelant	response	history
Story4	Х	26.265	26.985	25.01
Story3	Х	25.285	25.745	23.55
Story2	Х	20.31	20.39	18.135
Story1	Х	9.39	9.265	7.99

Block 4 Performance:

Models

Moment resisting frame

Block 4 Performance:

Bracing Model:

• Moment Hinge

Elastic Perfectly plastic Behavior

				Type
Point	Moment/SF	Curvature/SF	^	O Moment - Rotation
E-	-0.1	-8.301		1 O Homest Consistent
D-	-1	-8.3		Winess Leasth 0.1
C-	-1	-8.3		
B-	-1	0		Relative Length
А	0	0		Hysteresis Type And Parameters
В	1.	0.		
С	1.	8.3		Hysteresis Type Isotropic
			2 Symmetric	·····
D E Load Carr O Droj Is E	1. n 1 rying Capacity Be ps To Zero ktrapolated	8.3 8 301 yond Point E	✓ Symmetric	No Parameters Are Required For This Hysteresis Type
D E Load Carr O Droj O Is E: Scaling fo	1. o 1 rying Capacity Bey os To Zero xtrapolated or Moment and Cur	8.3 8 301 yond Point E	✓ Symmetric	No Parameters Are Required For This Hysteresis Type
D E Load Carr O Droj O Is E: Scaling fo	1. or 1 rying Capacity Ber ps To Zero ktrapolated or Moment and Cur	8.3 8 301 yond Point E rvature	Symmetric	No Parameters Are Required For This Hysteresis Type
D E Load Carr I Droj Is E: Scaling fo	1. n 1 rying Capacity Bey ps To Zero xtrapolated or Moment and Cur Yield Moment	8.3 8.301 yond Point E rvature Moment SF 245	Symmetric	No Parameters Are Required For This Hysteresis Type
D F Load Carr O Dro O Is E Scaling fo Use V Use	1. n 1 rying Capacity Bey ps To Zero ktrapolated or Moment and Cur Yield Moment Yield Curvature	8.3 8 301 yond Point E rvature Moment SF Curvature SF	ositive Negative	No Parameters Are Required For This Hysteresis Type
D Load Carr Droj Is E: Scaling for Use Use (Str	1. n 1 rying Capacity Bey ps To Zero ktrapolated or Moment and Cur Yield Moment Yield Curvature cel Objects Only)	8.3 8 301 yond Point E rvature Moment SF Curvature SF	Symmetric	No Parameters Are Required For This Hysteresis Type
D Load Carr Droj Is E: Scaling for Use Use (State Acceptar	1. n 1 rying Capacity Bey ps To Zero xtrapolated or Moment and Cur Yield Moment Yield Curvature sel Objects Only) ice Criteria (Plastic	8.3 8.3 9 and yond Point E rvature Moment SF 245 Curvature SF c Curvature/SF) P	Symmetric	No Parameters Are Required For This Hysteresis Type
D F Load Carr O Droj Is E: Scaling for Use (Sta Acceptar	1. n 1 rying Capacity Bey ps To Zero xtrapolated or Moment and Cur Yield Moment Yield Curvature sel Objects Only) ice Criteria (Plastic mmediate Occupar	8.3 8.3 9 an1 yond Point E rvature Moment SF Curvature SF Curvature/SF) P Icy 2.	Symmetric	No Parameters Are Required For This Hysteresis Type
D Load Carr O Droj Is E: Scaling for Use (State Acceptar	1. n 1 rying Capacity Bey ps To Zero xtrapolated or Moment and Cur Yield Moment Yield Curvature teel Objects Only) ice Criteria (Plastic mmediate Occupar ife Safety	8.3 8.3 9 and yond Point E rvature Moment SF Curvature SF Curvature/SF) P Icy 2. 4.	Symmetric	No Parameters Are Required For This Hysteresis Type

Block 4 Performance:

 Assigning hinges in the beginning, middle and end of the members.

Result Failure mode.

Block 4 Performance:

Bracing Model:

Result Push over curve.

Manual check :

Summation of external works =summation of internal works

$$\sum \mathbf{P} \Delta = \sum Mp * \theta$$

Block 4 Performance:

Bracing Model: Manual check :

 $\sum \mathbf{P} \Delta = \sum Mp * \theta$

TABLE: Pushover Capacity Curve X			
LoadCase	Step	Displacement	BaseForce
Text	Unitless	m	KN
push over x	0	0.000255	0
push over x	1	0.126329	1260.525
push over x	2	0.166491	1586.268
push over x	3	0.363835	2493.029
push over x	4	0.513835	3147.911
push over x	5	0.630407	3591.762
push over x	6	0.786691	3907.754
push over x	7	0.939921	4128.501
push over x	8	1.096304	4287.505
push over x	9	1.102395	4291.582
push over x	10	1.12826	4299.066
push over x	11	1.274711	4150.062

	sap 2000 result	manual result	error %
base shear	4299.066	4567.525926	5.8775786

Block 4 Performance:

Push over curve in X direction

Block 4 Performance:

Y direction:

 Assigning hinges in the beginning, middle and end of the members.

Block 4 Performance:

Result Push over curve.

Manual check :

Summation of external works =summation of internal works

$$\sum \mathbf{P} \Delta = \sum Mp * \theta$$

TABLE: Pushover Capacity Curve Y			
LoadCase	Step	Displacement	BaseForce
Text	Unitless	m	KN
push over y	0	3.73E-06	0
push over y	1	0.049886	382.247
push over y	2	0.066907	504.65
push over y	3	0.084663	545.724
push over y	4	0.084663	545.724
push over y	5	0.08559	546.166
push over y	6	0.120404	556.088
push over y	7	0.400035	328.073
push over y	8	0.550035	200.503
push over y	9	0.700035	73.308

	sap 2000 result	manual result	error %
base shear	556.088	663.7866667	16.22489153

Push over curve in Y direction

Difference between building * parameter from Code ASCE-7 2016 and pushover analysis results

X direction					
from pus	h-over analysis	from code			
Response		Response			
Modification	8.95	Modification	4.50		
Coefficient, Ra		Coefficient, Ra			
Overstrength	3.41	Overstrength	3.00		
Factor, Ω0		Factor, Ω0			
Deflection		Deflection			
Amplification	8.93	Amplification	4.00		
Factor, Cd		Factor, Cd			

Y direction					
from push-over analysis		from code			
Response		Response			
Modification	2.41	Modification	4.50		
Coefficient, Ra		Coefficient, Ra			
Overstrength	1.45	Overstrength	3.00		
Factor, Ω0		Factor, Ω0			
Deflection		Deflection			
Amplification	2.41	Amplification	4.00		
Factor, Cd		Factor, Cd			

*Retailing

Beams Detailing

- Cross section in Beams:
- Lap splices:
- Continuity in bars:
- Stirrups at distance 2h: $\leq d/4$. $\leq 6db$. ≤ 150 mm. spacing = 100 mm.
- Stirrups at mid of the beam: $\leq S = d/2.$

Column Detailing

Cross Sections: L_o : \geq max column dimension. \geq 1/6 of clear height of column. ≥ 450 mm. splicing: 500 mm Transverse steel: \leq ¹/₄ minimum member dimension. \leq 6 db. $\leq S_o$

Footing Detailing

Steel Connections:

Beam-Column Flange Connection Stiffeners are used Beam-Column Web Connection Beam-Girder Connection

Thank you