

An-Najah National University

Faculty of Engineering and Information Technology. Building Engineering Department Graduation Project II (10611591).

"An Integrated Redesign of Anti-Corruption Commission in Ramallah City"

Submitted by:

Deema shakhsher Fatima daraghma Lama daghlas

Supervisor name: Dr. LuayDwaikat

Presented in partial fulfilment of the requirements for Bachelor degree in Building Engineering.

Dedication:

This work was provided to the Department of Building Engineering and to all those who helped us throughout our study journey, especially to those who supported us with energy and confidence in ourselves that we will finish this path successfully. This work is for all faculty members in the Department of University, Building Engineering at An-Najah National especially our supervisor, Dr. Luay Dwaikat, who was the main director and supporter, to get the best results and learn before we come up with a full integrated project. Finally, we dedicate this work to ourselves as a result of good hard work these years and hope it reflects on our acquired knowledge.

Acknowledgement

The big and always thanks for God every time at any situation. From this platform we would like to thank our parents who were the main supporter despite all the circumstances. In addition, we want to thank all the professors in the construction engineering department from whom we learned directly and were the reason for reaching this much knowledge, and all the special thanks to our supervisor Dr. LuayDwaikat who supported us until this work was accomplished. Finally, a big thank you to An-Najah National University that has given us the opportunity to study over the past five years to discover and develop our interests with all available possibilities.

Disclaimer

This report was written by student (Lama daghlas, Fatima Daraghma, Deema shakhsher) at the Building Engineering Department, Faculty of Engineering, An-Najah National University. It has not been altered or corrected, other than editorial corrections, as a result of assessment and it may contain language as well as content errors. The views expressed in it together with any outcomes and recommendations are solely those of the student (Lama daghlas, Fatima Daraghma, Deema shakhsher). An-Najah National University accepts no responsibility or liability for the consequences of this report being used for a purpose other than the purpose for which it was commissioned.

Contents

1	Cha	apter	r1 Introduction	1
	1.1	Intro	oduction	1
	1.2	stat	ement of the problem	1
	1.3	Obj	ectives	2
	1.4	Met	hodology	2
	1.4	.1	Environmental Architectural Analysis and Environmental	3
	1.4	.2	Site Analysis	3
	1.4	.3	Structural Analysis	3
	1.5	Des	sign constraints	4
	1.6	Sta	ndards and Specifications (Codes)	4
	1.7	Ear	lier Course Work	5
2	Cha	apter	r 2 Environmental - Architectural Aspects	6
	2.1	Intro	oduction:	6
	2.2 buildi	Rela	ations between spaces and main components and other spaces in the	7
	23	l ita	rature review	، ع
	2.0	1	Architectural Standards:	0 8
	2.0	2	Emergency standard:	0
	24	. <u>~</u> .cas	e study	. 35
	1 1	1	case study location:	. 36
	1 1	2	Disruption	. 37
	1 1	3	plans	39
	1 1	4	3d modeling:	. 00
	2.5	Arc	bitectural 3D Model use I umion program	. 42
	2.6	Site	analysis:	. 46
	2.6	.1	Introduction:	. 46
	2.7	Arc	hitectural Drawings	. 56
	2.7	.1	before modification	. 56
	2.7	.2	architectural drawings after modification	. 58
	2.8	Env	vironmental analysis	. 61
	2.8	.1	Introduction:	. 61
	2.8	.2	Shadowing and overshadowing	. 62

	2.8.3	Daylight Factor	78
	2.8.4	Heating and Cooling	89
3	Chapte	r3: Structural Aspects	
3	.1 ST	RUCTURAL ASPECTS	
	3.1.1	introduction:	
	3.1.2	problem definition	98
	3.1.3	Materials:	
	3.1.4	Project designing loads	99
	3.1.5	Design codes and specification:	100
	3.1.6	Structural elements:	
3	.2 Str	uctural design:	101
	3.2.1	Designing information and data:	101
	3.2.2	Beams initial dimensions:	
	3.2.3	columns initial dimensions:	102
3	.3 Mo	del check	103
	3.3.1	gravity checks	103
		g, .	
3	.4 seis	smic design:	
3	.4 sei: 3.4.1	smic design: seismic load analysis	
3	.4 seis 3.4.1 .5 loa	smic design: seismic load analysis d combination :	
3	.4 seis 3.4.1 .5 loa 3.5.1	smic design: seismic load analysis d combination : Ultimate combination :	
3	.4 seis 3.4.1 .5 loa 3.5.1 3.5.2	smic design: seismic load analysis d combination : Ultimate combination : Service load combination :	
3 3 3	.4 seis 3.4.1 .5 loa 3.5.1 3.5.2 .6 seis	smic design: seismic load analysis d combination : Ultimate combination : Service load combination : smic checks:	
3 3 3	.4 seis 3.4.1 .5 loa 3.5.1 3.5.2 .6 seis 3.6.1	smic design: seismic load analysis d combination : Ultimate combination : Service load combination : smic checks: Period check:	
3 3 3	.4 seis 3.4.1 .5 loa 3.5.1 3.5.2 .6 seis 3.6.1 3.6.2	smic design: seismic load analysis d combination : Ultimate combination : Service load combination : smic checks: Period check: Model participation mass ratio:	
3	.4 seis 3.4.1 .5 loa 3.5.1 3.5.2 .6 seis 3.6.1 3.6.2 3.6.3	smic design: seismic load analysis d combination : Ultimate combination : Service load combination : smic checks: Period check: Model participation mass ratio: Base shear check :	
3	 .4 seis 3.4.1 .5 loa 3.5.1 3.5.2 .6 seis 3.6.1 3.6.2 3.6.3 3.6.4 	smic design: seismic load analysis d combination : Ultimate combination : Service load combination : smic checks: Period check: Model participation mass ratio: Base shear check : drift check :	
3	 .4 seis 3.4.1 .5 load 3.5.1 3.5.2 .6 seis 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 	smic design: seismic load analysis d combination : Ultimate combination : Service load combination : smic checks: Period check: Model participation mass ratio: Base shear check : p-delta check :	
333333333333333333333333333333333333333	 .4 seis 3.4.1 .5 load 3.5.1 3.5.2 .6 seis 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 .7 Res 	smic design: seismic load analysis d combination : Ultimate combination : Service load combination : smic checks: Period check: Model participation mass ratio: Base shear check : drift check : p-delta check : quired design element :	
3 3 3 3	 .4 seis 3.4.1 .5 load 3.5.1 3.5.2 .6 seis 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 .7 Red 3.7.1 	smic design: seismic load analysis d combination : Ultimate combination : Service load combination : smic checks: Period check: Model participation mass ratio: Base shear check : drift check : p-delta check : column design :	
3 3 3 3	 .4 seis 3.4.1 .5 load 3.5.1 3.5.2 .6 seis 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 .7 Red 3.7.1 lab splie 	smic design: seismic load analysis d combination : Ultimate combination : Service load combination : smic checks: Period check: Model participation mass ratio: Base shear check : drift check : p-delta check : quired design element : Column design :	
3 3 3 3	 .4 seis 3.4.1 .5 load 3.5.1 3.5.2 .6 seis 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 .7 Red 3.7.1 lab splid 3.7.2 	smic design: seismic load analysis d combination : Ultimate combination : Service load combination : smic checks: Period check: Model participation mass ratio: Base shear check : drift check : p-delta check : column design : Slab design:	

3.7.4	Stairs design :	
3.7.5	Ramp design :	
3.7.6	shear wall design :	
3.7.7	Basement wall :	
3.7.8	sheet piles :	
3.7.9	Water tank:	
3.8 De	etailing:	
4 Chapte	er 4: Electro-Mechanical Aspects	
4.1 Ar	tificial lighting design:	
4.1.1	Introduction:	
4.1.2	Recommended Lux Levels:	
4.1.3	Artificial lighting design	
4.1.4	Summary & conclusion:	
4.2 Pc	wer design:	215
4.2.1	Introduction:	215
4.2.2	Lighting power calculations:	215
4.2.3	Sockets design:	
4.2.4	circuit breaker:	
4.2.5	distribution board:	
4.2.6	Demand factor:	
4.3 H\	/AC Design	
4.4 Ac	oustic System:	
4.4.1	Introduction	
4.4.2	Acoustical software results	
4.4.3	Used Material for space elements	
4.4.4	Structural Elements design acoustically	
4.5 Fir	efighting system design:	
4.5.1	Introduction:	
4.5.2	DETECTORS DISTRIBUTION:	
4.5.3	EXTINGUISHER:	
4.5.4	ALARM SYSTEM:	
4.5.5	FIRE HOSE CABINET DISTRIBUTION:	

4.5	.6	sprinkle distribution:	. 268
4.6	Wa	ter supply system:	. 269
4.6	.1	Introduction:	. 269
4.6	.2	Domestic hot water consumption:	. 270
4.6	.3	Water supply fixture units:	. 271
4.7	Dra	ainage system design	. 279
4.7	.1	Introduction:	. 279
4.7	.2	Problem definition:	. 279
4.8	Pho	otovoltaic Analysis and Design	. 283
4.8	.1	Introduction:	. 283
4.8	.2	The inverter selection:	. 286
5 Qua	antity	y surveying and cost estimation :	. 288
5.1	intro	oduction :	. 288
5.2	met	thodology :	. 288
5.3	Sur	mmary:	. 291
6 Cor	nclus	sion:	. 292

TABLE OF FIGURES:

Figure2-2-1 Sections of the Administrative building	6
Figure 2-2 Bubbly diagram for Ground floor	7
Figure 2-3 Meeting room's dimension (Neufert 4th edition, 2015)	8
Figure 2-4 Meeting Area in our Building	9
Figure 2-5 Entrance Area in our Building	9
Figure 2-6 Kitchen in our Building	10
Figure 2-7 Lecture Room standard	11
Figure 2-8 the type of offices	12
Figure 2-9 single plan office	13
Figure 2-10 standard of area for office management	14
Figure 2-11 workstation's standard (Neufert 4th edition, 2015)	15
Figure 2-12 Stair's dimension (Neufert 4th edition, 2015)	16
Figure 2-13 Stairs in the building	17
Figure 2-14 Elevator's standard (Neufert 4th edition, 2015)	18
Figure 2-15 the elevator in the building	18
Figure 2-16 Relationship between No of local floor & time	21
Figure 2-17 Dimension of WC's	22
Figure 2-18 Space requirement in parking (Neufert 4th edition, 2015)	24
Figure 2-19 Space requirement in parking (Neufert 4th edition, 2015)	24
Figure 2-20 bays size according to parking shape	26
Figure 2-21 Dimension Ramp that fit wheelchair (Neufert 4th edition, 2015)	28
Design Ramp (Neufert 4th edition, 2015)Figure222	29
Figure223-Space required for wheelchair (Neufert 4th edition, 2015)	29
Figure 2-24 the recaption in building	30
Figure 2-25 Standard Reception (Neufert 4th edition, 2015)	30
Figure 2-26 case study photo	35
Figure 2-27section in case study building	37
Figure2-2-28 case study location	37
Figure 2-29 material use in our case study building	38
Figure 2-30 plan of case study building	39
Figure 2-31 site of case study	40
Figure 2-32section of case study	40
Figure 2-333D modeling	42
Figure 2-34 Architectural 3D Model	42
Figure 2-35 Architectural 3D Model	43
Figure2-2-36 Architectural 3D Model	44
Figure 2-37 Architectural 3D Model	45
Figure 2-38Location	47
Figure 2-39 estimate of the mean annual temperature for the larger region of Ramalla	h
	48
Figure 2-40 Ramallah climate temperature(Climate Change Ramallah - Meteoblue,	
2022	49

Figure 2-41 Monthly anomalies for temperature and precipitation 1979-2022	. 49
Figure 2-2-42 The percentage of time spent at various humidity comfort levels,	
categorized by dew point in Ramallah (Weather spark)	. 50
Figure2-2-43Average rainfall in Ramallah (Weather spark)	. 51
Figure 2-44The average of mean hourly wind speeds in Ramallah (Weather spark)	. 52
) Figure2-2-45Wind Direction in Ramallah (Weather spark	. 53
Figure 2-46 ; wind speed in a vear (Climate Change Ramallah - Meteoblue, 2022	. 53
Figure 2-47 wind rose for Ramallah (Climate Change Ramallah - Meteoblue, 2022)	. 54
Figure 2-48 Solar Energy	. 55
Figure 2-49Orientation of the building	. 61
Figure 2-50 : shadow effect on site	. 62
Figure 2-51 : shadow effect on north elevation	. 62
Figure 2-52 : shadow effect on west elevation	. 63
Figure 2-53 : shadow effect on east elevation	. 63
Figure 2-54 shadow effect on site	. 64
Figure 2-55As shown on Figure, the shadow not effect is big from all buildings	. 64
Figure 2-56 : shadow effect on west elevation	. 65
Figure 2-57 : shadow effect on south elevation	. 65
Figure 2-58shadow effect on northern& eastern elevation	. 66
Figure 2-59 shadow effect on site	. 66
Figure 2-60 shadow effect on north elevation	. 67
Figure 2-61 shadow effect on west elevation	. 67
Figure 2-62 shadow effect on east elevation	. 68
Figure 2-63shadow effect on North & east elevation	. 68
Figure 2-64 shadow effect on site	. 69
Figure 2-65 shadow effect on north & west elevation	. 70
Figure 2-66 shadow effect on west & south elevation	. 70
Figure 2-67 shadow effect on east & north elevation	.71
Figure 2-68 shadow effect on east & south elevation	.71
Figure 2-69shadow effect on site	. 72
Figure 2-70 shadow effect on west elevation	. 72
Figure 2-71 shadow effect on east elevation	. 73
Figure 2-72 shadow effect on east & north elevation	. 73
Figure 2-73 shadow effect on site	. 75
Figure 2-74 shadow effect on north elevation	. 75
Figure 2-75 shadow effect on east elevation	. 76
Figure 2-76 shadow effect on west elevation	. 77
Figure 2-77 shadow effect on east elevation	. 77
Figure 2-78 Daylight factor before modification Ground floor & First floor	. 79
Figure 2-79 Daylight factor before modification second & third Floor	. 80
Figure 2-80 Daylight factor before modification fourth floor & Fifth Floor & Sixth Flo	oor
	. 80
Figure2-2-81 daylight factor analysis in Revit for GF & FF before modification	. 81

Figure 2-82daylight factor analysis in Revit for Second Floor& third floor before	
modification.	82
Figure 2-83 daylight factor analysis in Revit for Second Floor& third floor before	0.4
modification.	. 84
rigure 2-84daylight factor analysis in Revit for Ground Floor & First floor after modification	85
Figure 2-85 devilable factor analysis in Revit for SE& 3rd E after modification	86
Figure 2-86 daylight factor analysis in Revit for 4 th F& 6 th &5 th F after modification	. 87
Figure 2-87 solution for Daylight	88
Figure 2-88The heating loads	89
.Figure 2-89The cooling load:	. 90
Figure2-2-90 Heat gain case 1	90
Figure 2-91The wall without insulation layers:	. 90
Figure2-2-92The wall without insulation layers:	. 91
Figure 2-93 Heat losses for case2	91
Figure 2-94 Heat gain case 2.	92
Figure2-2-95PMV for Building case 2	92
Figure 2-96ASHREA 90.1 energy consumption	93
Figure 2-97wall layers after insulation	96
Figure 2-98U value for wall	96
Figure 2-99 Partitions layer	97
Figure 2-100 Glass used in this project	97
Figure 3-3-1 Compatibility checks	103
Figure 3-2axial value for column 2 from ETABS	108
Figure 3-3 axial value for column 3 from ETABS	109
Figure 3-4Limitation (1) 3 span or more in each direction	110
Figure 3-5 limitation 2 rectangular panel	111
Figure 3-6positive moment for beam	114
Figure 3-7 negative moment for beam	114
Figure 3-8 moment for middle strip slab	115
Figure 3-9moment for column strip slab	116
Figure 3-101 he maximum permitted deflection for immediate deflection based on this	3
Table IS 1/360	117
Figure 3-11 deflection value from live load	117
Figure 3-12deflection value from service load	110
Figure 3-13 sesmic hazard map	119
Figure 3-14period value from mode 1	120
Figure 3-15period value from mode 2	120
Figure 3-17 displacement in ground floor	129
Figure 3-17 displacement in ground 1001	129
Figure 3-10column layout	122
Figure 3-reseismic design requirement in conglitudinal Section in column	102
rigure 5-20seismic design requirement in column	132

Figure 3-21the top reinforcement in ground floor in x direction.	. 133
Figure 3-22the bottom reinforcement in ground floor in x direction.	. 133
Figure 3-23 the top reinforcement in ground floor in x direction.	. 134
Figure 3-24the bottom reinforcement in ground floor in y direction.	. 134
Figure 3-25 punching shear factor in each column	. 135
Figure 3-26 Seismic requirement for beam section	. 136
Figure 3-27 disruption of stirrups in beam section	. 136
Figure 3-28longitudinal reinforcement for the beams in the ground floor	. 137
Figure 3-29stairs dimension	. 140
Figure 3-30design loads for stairs	. 140
Figure 3-31design load for stairs	. 142
Figure 3-32ramp model	. 142
Figure 3-33 footing dimensions	. 143
Figure 3-34 critical area dimension	. 144
Figure 3-35 failure line for wide beam shear in the footing	. 145
Figure 3-36compatibility check for mat foundation	. 147
Figure 3-37deformed shape from service load	. 147
Figure 3-38soil pressure under mat foundation	. 148
Figure 3-39 shear check in mat foundation	. 149
Figure 3-40 punching shear in mat foundation	. 150
Figure 3-41top reinforcement in x direction for mat foundation	. 151
Figure 3-42bottom reinforcement in x direction for mat foundation	. 151
Figure 3-43top reinforcement in y direction for mat foundation	. 152
Figure 3-44bottom reinforcement in y direction for mat foundation	. 152
Figure 3-45 shear layout for the building	. 153
Figure 3-46 shear wall reinforcement from ETABS	. 153
Figure 3-47shear wall reinforcement from ETABS	. 157
Figure 3-48sheet pile depth by GEO 5	. 159
Figure 3-49sheet pile spacing and diameter	. 159
Figure 3-50bending moment value foe sheet pile	. 160
Figure 3-51shear value for sheet pile	. 160
Figure 3-52sheet pile reinforcement by geo5	. 161
Figure 3-53sheet pile detail	. 161
Figure 3-54 compatibility check for water tank	. 163
Figure 3-55shear value for water tank wall by ETABS	. 164
Figure 3-56 shear value for water tank base by ETABS	. 164
Figure 3-57 tension value for water tank	. 165
Figure 4-13D lighting modeEmployees Office.	. 173
Figure 4-2lux level on Employees Office	. 174
Figure 4-3 Distribution lighting luminaire.	. 174
Figure 4-4ceiling downlight unit	. 175
Figure 4-5ceiling downlight unit	. 175
Figure 4-6distribution of luminaires and workplan places	. 176

Figure 4-7Glare Rating(UGR1 of Employees Office).	176
Figure 4-8Figure 4-9Glare Rating(UGR2 of Employees Office).	177
Figure 4-10Figure 4-11Glare Rating(UGR3 of Employees Office).	177
Figure 4-123D lighting mode meeting room.	178
Figure 4-13lux value in meeting room	178
Figure 4-14Distribution lighting luminaire of meeting room.	179
Figure 4-15ceiling downlight unit	180
Figure 4-16Glare Rating(UGR)	181
Figure 4-17Glare Rating(UGR1 ofmeeting room)	181
Figure 4-18Figure 4-19Glare Rating (UGR2 ofmeeting room).	182
Figure 4-20Figure 4-21Glare Rating (UGR3 ofmeeting room).	182
Figure 4-22 3D modeling of manager room	183
Figure 4-23 lux value in manager room	183
Figure 4-24 Distribution lighting luminaire in manager room.	184
Figure 4-25 ceiling downlight unit	185
Figure 4-26 ceiling downlight unit	186
Figure 4-27Glare Rating(UGR1 ofmanager room)	187
Figure 4-28Glare Rating(UGR2 ofmanager room).	187
Figure 4-29 3d modeling room	188
Figure 4-30lux value in Archive room	188
Figure 4-31 distribution luminaire in archive room	189
Figure 4-32ceiling downlight unit	189
Figure 4-33 calculation object in archive room	190
Figure 4-34 3D modeling at multipurpose room	190
Figure 4-35lux value in multipurpose room	191
Figure 4-36 lux value is within the range	191
Figure 4-37Distribution lighting luminaire in manager room	192
Figure 4-38ceiling downlight unit	193
Figure 4-39Glare Rating (UGR)	193
Figure 4-40Glare Rating (UGR) plan	194
Figure 4-41Glare Rating(UGR1 ofmultipurpose room)	194
Figure 4-42Glare Rating (UGR 2 ofmultipurpose room).	195
Figure 4-43Glare Rating (UGR3 ofmultipurpose room)	195
Figure 4-44 3D modeling of Reception + waiting room	196
Figure 4-45lux value in multipurpose room	197
Figure 4-46lux value is within the range	197
Figure 4-47ceiling downlight unit	198
Figure 4-48Glare check at Reception + waiting room	199
Figure 4-49Glare check at Reception + waiting room	199
Figure 4-50 3D modeling Corridor	200
Figure 4-51 lux value in multipurpose room	200
Figure 4-52 celling downlight	200
Figure 4-53 3D modeling at the kitchen	201

Figure 4-54 lux value at the kitchen	201
Figure 4-55 celling downlight	202
Figure 4-56 celling downlight	202
Figure 4-57 3D modeling at bathroom	203
Figure 4-58 lux value is within the range	203
Figure 4-59 3D modeling wc	204
Figure 4-60 lux value at wc	205
Figure 4-61 celling downlight	205
Figure 4-62 3D modeling at garage	206
Figure 4-63 lux value at garage	207
Figure 4-64 Distribution luminaire in garage	208
Figure 4-65 celling downlight	209
Figure 4-66 3D modeling library	210
Figure 4-67 lux value at library and it within the range	210
Figure 4-68 distribution luminaire in library	211
Figure 4-69 celling downlight	211
Figure 4-70 glare check at library	212
Figure 4-71 glare check in library and it within the range	213
Figure 4-72 circuit breaker	226
Figure 4-73 distribution board	226
Figure 4-74 reverberation time for Employees room at different frequencies	251
Figure 4-75 wall layers between Multipurpose room - lobby by INSUL software	254
Figure 4-76wall layers between Meeting room - Private office by INSUL software	255
Figure 4-77 wall layers betweenOffice – toilet: by INSUL software	256
Figure 4-78 wall layers between Office – loopy by INSUL software	257
Figure 4-79 wall layers between office & outside:by INSUL software	258
Figure4-480-Sprinkler's Design and Distribution in Parking	262
Figure 4-81CO2 Extinguisher	264
Figure4-482-Powder Extinguisher	265
Figure 4-83Type A Extinguisher	265
Figure4-484-Manual Alarm System	266
Figure4-485-Sound & Light Alarm System	266
Figure4-486-water supply (Grondzik, Kwok, Stein, & Reynolds, 2010, P.872)	269
Figure4-487-Domestic hot water consumption (Grondzik, Kwok, Stein,& Reynolds,	
2010, P.944)	270
Figure 4-88Water flow rate (Grondzik, & Kwok, 2015, P.919)	272
Figure4-489-Diameter & pressure drop per 100 ft(psi) for steel pipe	273
Figure 4-90Diameter & pressure drop per 100 ft(psi) for plastic pipe	274

Table of tables:

Table 1 Double office plan	13
Table 2evaluate number of elevator in office building	19
Table 3the car passenger capacity (p)	20
Table 4 the minimum percent handling capacities (PHC)	20
Table 5 the population of typical buildings for estimating elevator and Escalator requirements	20
Table 7 calculate Number of WC in our Buliding	23
figure 8 corridors One line	23
figure9 corridors two line	23
figure 10 Required minimum number of accessible spaces	25
Table 12the load from ASCE CODE 7-16	99
Table 13 Two way ribbed slab , Slab required thickness as shown:	101
Table 14slab area for each story	104
Table 15the following table shows ETABS reactions:	105
Table 16the following table shows the limitation is satisfied	111
Table 17alpha f for beams	112
Table 18limitation for all frames	113
Table 19ultimate load combination	123
Table 20service load combination	124
Table 21model mass participation ratio	126
Table 22load cases from etabs	127
Table 23base shear from ETABS	127
Table 24Base shear from ETABS	128
Table 25Drift check for all floor	128
Table 26p- delta check	130
Table 27column design and reinforcement	131
Table 28longitudinal reinforcement in beams floor	138
Table 29shear reinforcement in beams floor	138
Table 30single footing reinforcement	146
Table 31shear wall reinforcement	156
Table 32basement wall reinforcement	157
Table 33the active earth pressure	158
Table 34the passive earth pressure	158
Table 35moment value	158
Table 36Recommended Lux Levels	170
Table 37 recommended lux levels for specific working areas within public sector buildings	171
Table 38suggested lux level for the offices	171
Table 39suggested lux level for the car parks	172
Table 40 Number of lighting circuit breaker for ground floor	216
Table 41Number of lighting circuit breaker for first floor	217
Table 42 Number of lighting circuit breaker for second floor	217
Table 43Number of lighting circuit breaker for third floor	219
Table 44Number of lighting circuit breaker for sixth floor	220
Table 45Number of lighting circuit breaker for forth floor	221

Table 46Number of lighting circuit breaker for fifth floor	.222
Table 47 cable cross-sectional area due to current	.223
Table 48:Demand factor	. 227
Table 49Total power lighting	.227
Table 50 Total power for special lode	.228
Table 51The total Cooling and Heating Load in the building	.229
Table 52The Types of the VRF Outdoor Units(Your Business Our, 2022)	.229
Table 53The needed number of split units and their types for Offices	.230
Table 54Recommended STC for partitions (Grondzik, & Kwok, 2015, P.1129)	.247
Table 55Typical STC values for doors (Grondzik, & Kwok, 2015, P.10950)	.247

Abstracts

Integrated building design has emerged as one of the most crucial needs necessary in the modern days, this is to ensure the comfort of users in order to be the proper function, and to ensure that buildings are designed to the highest standards.

An office building is any structure, space, or portion thereof that is used exclusively or primarily for administrative, office, or other types of work.

To ably the principles of integrated design the Anti-Corruption Commission building, which has been designed and constructed and the building is under operation the purpose of the project to reevaluate the design of the current building and performance, which is located in the Al-Bireh Governorate of Ramallah, on a plot of land that is 1800 square meters in size. It has a total area of 4600 square meters, which is divided among 7 floors, plus a two-story basement that is 1800 square meters in size

Information has been collected as the first step in our project, the information collected has been used to evaluate the objectives of the architectural design. Before making any alterations, we assessed the building's essential facilities including emergency staircases, escape routes, car parks and elevators to ensure they comply with standards.

The building has been assessed from an environmental point of view depending on the Revit program and the Design Builder program. The cooling load (237Kw) and the heating load (192 Kw) were calculated, and comparing the results with those after the adjustments. The energy consumption of the building has been estimated (85 Kw/m2).

And then the best structural system that supports the building and meets the necessary economic criteria is selected. Next, computer programs are used to create a safe design. In this project Investigation has been carried out by using computer programs like AutoCAD, Revit, Etabs, Design Builder, and Lumion.

in part two the following investigation done:more details in environmental design (passive system) proposed to improve the system performances,Further detailed structural considerations were conducted for the design, following specific standards. By incorporating these detailed structural considerations within the design process, the project aimed to achieve a sustainable, safe, and cost-effective solution that aligns with the specified design standards.In addition to the architectural and structural considerations, the project also encompassed the electromechanical aspects. These aspects involved the integration and design of various engineering systems to ensure optimal performance and functionality By addressing these electromechanical aspects, the project aimed to ensure the seamless integration of various engineering systems, resulting in a fully functional and sustainable building that meets the desired performance requirements. As part of the project, a comprehensive quantity surveying and cost

estimate process was conducted. This involved a detailed analysis of the materials, labor, and other resources required for the construction project, along with an estimation of the associated costs The quantity surveying and cost estimate process provided valuable insights into the anticipated project costs, enabling effective budgeting, cost control, and informed decision-making throughout the project lifecycle.

the final product of our project be an integrated redesign of all engineering systems in accordance with this type of building recommendations.

Key word: environmental, office building, energy efficiency, energy consumption, Integrated building design.

1 Chapter1 Introduction 1.1 Introduction

The office building is now a place for collaboration, talent recruitment, onboarding, and inspiration with new requirements and expectations that combine physical spaces with technologically supported ways to work, in the office or remotely. Office building is a building that contains separate offices or private companies. The main objective of offices is it to make a suitable work environment for employees to work all for the company goals.

Office environment directly effects on employee satisfaction, creativity, and productivity. Therefore, companies aimed to develop a good reputation in amazing workspaces.

HAYAT MUKAFAHAT AL-FASAD is an office building in al-Bireh governorate in Ramallah, it located on a land that its area is about 1911 square meter with total area of the building 6776 square meter that distributed on two basement floors as garages, seven office floors and roof.

1.2 statement of the problem

Anti-Corruption Commission building has two basement floor, and number of Parking in the floors are not enough, this distribution gave it a weak point in covering all the needs of the building's users and has little vitally.

And the building consists of court stretching from ground floor to third floor, give an anaseismic shape to the building, this is a problem that we tried to find solutions to be better effective and serve the building in terms of ventilation and light input to the building.

Emergency drawers in the building are one of the most important needs that must be met in the building to serve the preparation of employees. Emergency drawers have been checked and those who need to be adjusted to follow specifications for emergency drawers have been modified.

1.3 Objectives

The main objective for this project is to solve the building architecturally, structurally, environmentally and safely to get an integrative design. This process will be according to international standards and specifications.

Analyze the building from an environmental point of view and whether the load in the building is suitable for this type of building or not to follow the specifications specified for it, and see what environmental additions and improvements can be added to improve the use of the building.

1.4 Methodology

The process of this project will run sequentially starting from the existing design until we get a better design and take the desired objective.

Deep understanding and analysis for the existing design is the first step. All systems will be evaluating to find the problems and detections and avoid it in the redesign process.

Firstly, collect standards from books for the building spaces according to its function and compare it with exist design, and the standard of emergency stair, and parking standard and compare it with exist design. Secondly, make site analysis for the project location to take it in consideration in the environment design. Thirdly, evaluate case study have the same function and study the problems that can face. Finally, redesign the building architecturally, structurally, mechanically. electrically, HVAC, lighting, acoustics and fire safety. The redesign will be achieving according to the concepts that done in the previous courses and by using some computer software.

1.4.1 Environmental Architectural Analysis and Environmental

To achieve the desired goals in architecture and environmental fields the research will go in this:

- 1. Study all standards and requirements such as (parking, emergency stair, spaces) using some book (IBC, NUEFURT 4th edition, Time-saver Standards for Building Types, Metric)
- 2. Comparison between the standards and origin design then redesign it as specifications.
- 3. Environmental analysis and site study to get the maximum benefit from passive resources in the redesign.
- 4. Make analysis about the requirements that give thermal comfort for the redesign spaces.

1.4.2 Site Analysis

To achieve the desired goals, the research must contain these information's:

- 1) Information's about the project site.
- 2) Analysis and identification the noise sources existing in the building and its surroundings.
- 3) Studying the effects of surrounding on the building

1.4.3 Structural Analysis

To achieve the desired goals, the research must contain these information's:

- 1) Determine the structural system that will be use in the project.
- 2) Building analysis using computer software such as (SAP, ETABS, REVIT).
- 3) Compare the results with standards and solve the existing problems.

1.5 Design constraints

- 1) Economic Constraints: The Project has to be constructed within the Budget of the owner, Hence, this budget.
- 2) Society Constraints: According to our being a place to work in the building, it is important to design the building space to meet the needs of all employees, for example, those with special needs, since this building serves all people
- 3) Environment Constraints: calculate the energy consumption of the building and dose the result make sense compared to this type of building? and what the environment friendly power sources and how can it be used to achieve the desired result, and check the noise pollution and the effect on my building.

1.6 Standards and Specifications (Codes)

- **IBC 2012: International Building code**: is a model building code developed by the International Code Council (ICC). he IBC addresses both health and safety concerns for buildings based upon prescriptive and performance related requirements
- **NUEFURT 4th edition**: is a reference book for spatial requirements in building design and site planning. First published in 1936 by Ernst Neufert
- **Time-saver Standards for Building Types:** The only comprehensive reference to all building types, Time-Saver Standards for Building Types is loaded with all the essential design criteria and standards you need to prepare preliminary designs, execute programming requirements, and analyze the functions and uses of a building
- **The Metric Handbook:** is the major handbook of planning and design data for architects and architecture students, As well as buildings, the Metric Handbook deals with broader aspects of design such as materials, acoustics and lighting, and general design data on human dimensions and space requirements. The Metric Handbook is the unique reference for solving everyday planning problem
- Palestinian Civil Defense Code
- The American concrete institute code (ACI 318-14):Building Code Requirements for Structural Concrete" ("Code") provides minimum requirements for the materials, design, and detailing of structural concrete buildings and, where applicable, nonbuilding structures

1.7 Earlier Course Work

This project will be achieving by using main concepts taken from previous courses in these fields:

- Architectural design:
 - The main concepts and understanding the spaces in the plans and relations between spaces in any building according to its function have learned from the principles of architectural design course.
 - Make 2-D plans with all its detailing by AutoCAD, make 3-D models by Revit software in the design of buildings using the computer course, and advanced Revit course.
- Environmental design:
 - Lighting concepts in choose the suitable sources for the spaces and its best distribution all these have learned in (design of environmental systems (1) lighting) course.
 - Acoustic concepts and calculations of acoustic amount that give the comfort and suitability for each space taken from (design of environmental systems - acoustics) course.
 - Taking maximum benefits from the sun energy to serve the building needs taken from solar course.
 - The amount of thermal energy that building materials can take naturally taken from (Thermal simulation of buildings) course.
- Structural design:
 - (concrete1, concrete2, advanced concrete and earthquake resistant buildings) courses. From all these courses, we learned the design systems and check the safety for each and give all details need for work.

2 Chapter 2 Environmental - Architectural Aspects.

2.1 Introduction:

Architectural design is a discipline that focuses on covering and meeting the needs and demands, to create living spaces, using certain tools and especially, creativity. Therefore, the aim is to combine the technological and the aesthetic. In this part, we want to make a study and analysis for the existing design and check if there are some ideas that doesn't fit with the specifications and come up with more innovative ideas to improve the performance of the building. Office building can service many functions, so it should achieve all requirements such as dimensions of spaces and the function.

Administrative building Facilities

Figure2-21- Sections of the Administrative building

2.2 Relations between spaces and main components and other spaces in the building

The functional relationships between the departments:

Figure 2-2 Bubbly diagram for Ground floor

2.3 Literature review

2.3.1 Architectural Standards:

2.3.1.1 Building Rooms:

1. Meeting room

These rooms are used for the employees to gather in and do their meeting and discuss their ideas. Meeting rooms are essential is these types of buildings because it has a wide-open space where everybody can see and hear each other clearly. The air volume for each person in these rooms is about 4.5 m² and each person needs between 1.1 - 1.25 m² as min of area in this type of rooms.

Wiley, J(2012). Neufert E. West Sussex, P019 8SQ, UK: Blackwell)

Figure 2-3Meeting room's dimension (Neufert 4th edition, 2015)

A meeting room needs a table with a total area of 27.5 in addition to a movement space, so the required space for the meeting room is not less than 32 square meters,

Figure 2-33 Standard of area for meeting room (European Commission, 2011).

Figure 2-4 Meeting Area in our Building

Dimension of Plan > Standard .. ok

2. Entrance area.

Entrance area Connection between public and working areas. The important functions are lobby, access control, information, visitor registration and waiting zone. Important area for the company's corporate identity- the first impression is decisive. The entrance hall should be enclosed where the entrance leads directly to the open air with an inner door (wind lobby function) It should also offer sufficient room for a lot of moving around .

Figure 2-5Entrance Area in our Building

3. Maintenance room:

There are two sorts of upkeep room:

1. Upkeep and fix for broken gadgets: -

This sort of upkeep room contains a few hardware with various sizes for each one.

2. Upkeep for building frameworks: -

"The maintenance of mechanical, electrical, heating and other building systems, e.g., boiler rooms, gas and electric meter rooms, elevator control rooms, and workrooms for maintenance employees, but excluding such spaces as janitors' broom closets."Wiley,J(2012).Neufert E. West Sussex, P019 8SQ, UK: Blackwell)

4. Kitchen:

Kitchen is truly essential to staff in their work place. An all-around planned kitchen with assortment of offices will develop a climate in a positive working spot that will prompt more effective and long haul representatives at work. Kitchenette is considered as asocial area so it should be as near to the workstations as possible and connected with the communications zones. Space requirements for the kitchenette is one (10 m2) for every approximate 50-100 workplaces

The area in plan: 8 m^2

Figure 2-6Kitchen in our Building

5. Lecture Room:

Figure 2-7 Lecture Room standard

usual size for lecture theaters is 100,150.200,300,400,600 seats , theater with up to 200 seats have a ceiling height have a ceiling height of 3.5 m and are departmental building , if large they are better separate building

these figure show the plan of rectangular lecture theaters.

the amount of space per student for seating in comfort is 70 *65 cm2.

6. Offices

Designing offices requires careful consideration because it is the primary space where employees spend the majority of their working hours in a building. Adequate space is crucial for employee comfort and should accommodate both the employee and those working around them.

type of offices:

- 1- single offices.
- 2- open- plan offices.
- 3- group offices.

The modular dimensions, which have proved successful in recent years, are 1.50 m for single-room offices and 1.35 m for office types based on the combo principle. According to

(Wiley, J(2012). Neufert E. West Sussex, P019 8SQ, UK: Blackwell)

Figure 2-8the type of offices.

Single plan office:

(Neufert Architects'4).

Figure 2-9 single plan office

Dimension of Plan (single office)

Dimension of Plan >Standard. ok

Double office:

Table 1 Double office plan

Dimension of Plan (Double office)

Dimension of Plan >Standard ok

Management office: The standard dimensions of the manager's roomWiley,J(2012).Neufert E. West Sussex, P019 8SQ, UK: Blackwell)

Figure 2-10standard of area for office management

Dimension of Plan (Management office)

Dimension of Plan > Standard...ok

Secretary office: Secretary room the standard area is 10 m2.

(Neufert et al., 2012).

area =14.8m2

Dimension of Plan >Standard.. ok

Workstations are places where items like a computer screen, an alphanumeric keyboard, and a document or sound recording device are essential for completing tasks. Items that are regularly used during the workday should be placed in prominent locations where they are visible and reachable. At the workstation, there should be at least 1.5 m² of unrestricted mobility space

Figure 2-11 workstation's standard (Neufert 4th edition, 2015)

The selection of furniture is a critical factor in creating a productive and appropriate work environment for employees. Adhering to the following standards can ensure that the furniture meets the necessary criteria:

Workstation's furniture dimension (Neufert 4th edition, 2015)

7. Stairs:

For optimal placement, it is ideal to locate a space near the main entrance that is easily accessible and in a common area where electric elevators can be reached. The selection of stairs is based on the number of individuals utilizing the building, with a fixed handrail for protection being a key consideration to ensure safety.

0.55 m width allows 1 person to pass.

- 1.25 m width of allows 2 people to pass.
- 1.875 m wide allowing 3 people to pass.

.(Wiley, J(2012). Neufert E. West Sussex, P019 8SQ, UK: Blackwell)

0.50 m, 21/21 but legally essential stairs 1.00 m, 17/28, high-rise flats 1.25 m width. Stair width in public buildings is calculated according to the required evacuation time \rightarrow p. 318 (Stadiums).

Length of runs on legally essential stairs is ≥ 3 steps up to ≤ 18 steps $\rightarrow \bigcirc$, landing length = *n* times length of stride + 1 depth of tread (e.g. riser to tread 17/29 = $1 \times 63 + 29 = 92$ cm or $2 \times 63 + 29 = 1.55$ m). Doors opening into

Figure 2-12Stair's dimension (Neufert 4th edition, 2015)

Stairs in the building

Figure 2-13 Stairs in the building

It Could be noticed that the main stairs in our building matches the standards mentioned above. The width of the stair is 1.4 m which allows the passage of two people beside each other, one ascending and the other descending.

8. Elevator:

To prevent the transmission of mechanical noise and movement to adjacent rooms, it is crucial that the elevator wall is constructed using fire-resistant and sound-insulating materials, and it should not share a wall with any other room. Adequate artificial lighting and ventilation are also essential requirements, both day and night, to ensure a comfortable experience for users. The number of elevators required is determined based on the number of users in the building, and it is preferable to locate them near the entrance for ease of access.

Elevators must have a minimum clear width of 1.10 meters and a minimum clear depth of 1.40 meters. The mobility space in front of the doors must be at least 1.50 m wide and 1.50 m deep, and it must be as large as the car's floor area.

The speed of the elevator in administrative buildings:

- 5 floors \rightarrow 30 m/min.
- 8 floors \rightarrow 40 m/min.
- 20 floors \rightarrow 150 m/min.

Figure 2-14Elevator's standard (Neufert 4th edition, 2015)

Elevators in the building:

In the main elevators in the building, It Could be noticed that the elevators in the building matches the standard and satisfy all the required dimensions either for the normal users or for the users with disabilities like having a wheelchair.

Figure 2-15 the elevator in the building
Calculating the number of elevators:

(offices) consisting of 7 floors, with a floor area of 660

Calculating

Total area =4592M2

Net area for person =10-12m2/person

PHC= (14-16) %

Population =Total area/10=4592/10=459person

HC =%Hc*population=0.16*459=73.44Person/5minute

Compute rise in order to determine the options, $Rise = (7-1)^{*}4=24$

Minimum car speed: = 350fpm - 400fpm

Capacity options = 2500 lb / 3000 lb /3500 lb

Interval (I) = 25-29 second

	2500/400	2500/300	3000/400	3000/300	3500/400	3500/300
	13	13	16	16	19	19
р	95	98	105	110	115	119
RT	41.05	39.79	45.71	43.64	49.57	47.9
hc	1.78	1.845689872	1.606650623	1.682859762	1.481541255	1.533194154
N	1	1	1	1	1	1
N*	95	98	105	110	115	119
1	8.94335512	8.668845316	9.958605664	9.507625272	10.79956427	10.43572985
PHC	2	2	2	2	2	2
N2	47.5	49	52.5	55	57.5	59.5
12	17.88671024	17.33769063	19.91721133	19.01525054	21.59912854	20.87145969
PHC	3	3	3	3	3	3
N3	31.666666667	32.66666667	35	36.66666667	38.33333333	39.66666667
13	26.83006536	26.00653595	29.87581699	28.52287582	32.39869281	31.30718954
PHC	4	4	4	4	4	4
N4	23.75	24.5	26.25	27.5	28.75	29.75
14	35.77342048	34.67538126	39.83442266	38.03050109	43.19825708	41.74291939

Table 2evaluate number of elevator in office building

PHC	not	not	not	not	not	not
	acceptable	acceptable	acceptable	acceptable	acceptable	acceptable

To evaluate the elevators in our building in a right way the following tables were used from the (MEEB Book, 11th Edition), the main goal is to make the waiting time for the users as less as possible.

According to the results shown above, it is clear that the building needs a fourth elevator. But three elevators were sufficient based on the limited building area and that the building is less crowded.

The following tables used in calculation:

Table 3the car passenger capacity (p)

Facility Type	Interval (sec)	Waiting Time ^a (sec)
OFFICE	BUILDINGS	
Excellent service	15-24	9–14
Good service	25-29	15-17
Fair service	30-39	18 - 23
Poor service	40-49	24-29
Unacceptable service	50+	30+

Table 4 the minimum percent handling capacities (PHC)

Table 2.5: The car passenger capacity (Table 31.5 from MEEB Book, 11th Edition)

Elevator Capacity Ib (kg)	Maximum Passenger Capacity	Normal Passenger ^a Load per Trip
2000 (907)	12	10
2500 (1134)	17	13
3000 (1361)	20	16
3500 (1588)	23	19
4000 (1814)	28	22

Table 5 the population of typical buildings for estimating elevator and Escalator requirements

Building Type	Net Area			
OFFICE BUILDINGS	FT2 PER PERSON (M2/PERSON)			
Diversified (multiple tenancy) Normal Prestige	110–130 (10–12) ^a 150–250 (14–23)			
Single tenancy Normal	90-110 (8-10)			
Prestige	130-200 (12-19)			

Table 2.6: The minimum percent handling capacities (Table 31.6 from MEEB Book, 11th Edition)

Facility	Percent of Population to Be Carried in 5 Minutes		
OFFICE BUILDINGS			
Center city	12-14		
Investment	11.5-13		
Single-purpose	14-16		

Table 2.8: The eleve	tor equipment	recommendations (1	Table 31.9	from MEE	B Book,	11th Edition).
----------------------	---------------	--------------------	------------	----------	---------	----------------

	Car Ca	apacity ^a		Rise	Minimuma	Car Speed
Building Type	lb	kg	ft	m	fpm	m/s
	2500	1250	0-125 126-225	0-40	350-400 500-600	2.0
Office building	3000	1250	226-275	71-85	700	3.15
,	3500	1600	276-375 Above 375	86-115 >115	800 1000	4.0

Figure 2-16 Relationship between No of local floor & time

9. <u>W.C:</u>

a room containing a bath or shower and typically also a washbasin and a toilet.

(Adler, 1999)Table 6 number of bathroom in standard.

Sanitary appl	Sanitary appliances for any group of staff				
Number of persons at work	Number of WCs	Number of washing stations			
1 to 5	1	1			
6 to 25	2	2			
26 to 50	3	3			
51 to 75	4	4			
76 to 100	5	5			
Above 100	One additional WC a	nd washing station for			
	every unit or fraction	of a unit of 25 persons			
Alternative scale of provision of	sanitary appliances for	use by male staff only			
Number of men at work	Number of WCs	Number of urinals			
1 to 15	1	1			
16 to 30	2	1			
31 to 45	2	2			
46 to 60	3	2			
61 to 75	3	3			
76 to 90	4	3			
91 to 100	4	4			
Above 100	One additional WC fo	or every unit or fraction			
	of a unit 50 men pro-	vided at least an equal			
	number of additional	urinals are provided			
If public also use staff toilets, add	d 1 to each number of co	onveniences above			
If work involves he	avy soiling of hands an	d forearms			
Number of persons at work	Number of washing	stations			
1 to 50	1 per 10				
more than 50	1 additional per 20 or	part of 20			

We checked the bathrooms in this building according to this standard And their number is enough ,And available bathroom for people with disabilities

(Buxton & Pamela, 2015)

Figure 2-38 Range of hand-rise basins (non-recessed), activity and circulation spaces

Figure 2-17 Dimension of WC's

Table 6 calculate Number of WC in our Building

floor	Area	number of person	number of wc
GF	610.6	61.06	3
1 floor	610.6	61.06	3
2 floor	600	60	3
3 floor	600	60	3
4 floor	600	60	3
5 floor	600	60	3
6 floor	600	60	3
7 floor	600	60	3

so the bathroom ok

10. <u>Corridors:</u>

hallways, are long passages in a building with doors on one (single-loaded) or both sides (double-loaded). corridors provide the most efficient horizontal means of access and egress to a large amount of rooms. For high density apartment buildings, hallways are shared between many residential units and connect back to vertical modes of circulation in the form of stair cores and elevator lifts. Corridor widths vary to service diverse demands from single users in private homes to large groups of people in public facilities.

Having sufficient parking space for both employees and visitors is crucial to avoid any inconvenience of parking far from the building or in a no-parking zone. The parking facility can be located around the building on the site or underground, depending on the availability of space and to make optimal use of the area.

Figure 2-18Space requirement in parking (Neufert 4th edition, 2015)

The driving path between the parks must be wide depend on the style you use when you arrange your parks, but it's preferable not to be less than 5 m. The dimensions of the standard garage are (2.5 * 5.5 m), these dimensions could be less in private buildings and could be more like if the parking is borders by pillars, walls and columns:

Figure 2-19Space requirement in parking (Neufert 4th edition, 2015)

parking standard:

accessible entrance for building

According to (N.D (2012)-IBC) codein public building at least 60 % of all public entrance shall be accessible.

1-Parking garage: where provided direct access for pedestrians from parking structure to building or facility entrance shall be accessible (N.D (2012)-IBC Code))

2-Entrances from tunnels or elevated walkways: at least one entrance to the building from each tunnel or walkway shall be accessible.

3- Restricted entrance: at least one restricted entrance to the building.

4- Entrance for inmates or detainees: this entrance used only for inmates or detainees, at least one entrance to the building.

5- Service entrance.

parking and passenger loading facility:

table shows Accessible parking spaces, this table from (N.D (2012)-IBC code **Shows** the relation between total number of bays and minimum number of accessible spaces:

TOTAL PARKING SPACES PROVIDED	REQUIRED MINIMUM NUMBER OF ACCESSIBLE SPACES		
1 to 25	1		
26 to 50	2		
51 to 75	3		
76 to 100	4		
101 to 150	5		
151 to 200	6		
201 to 300	7		
301 to 400	8		
401 to 500	9		
501 to 1,000	2% of total		
1,001 and over	20, plus one for each 100, or fraction thereof, over 1,000		

figure 9 Required minimum number of accessible spaces

parking spaces and types:

Parking spaces are usually outlined by 12-20 mm wide yellow or white painted lines. When parking is facing a wall, these lines are often painted at a height of up to 1 m for better visibility.

{nuefert.3 TH}. Where cars are parked in the parking lot facing the wall or facing each other, in this case, cross barriers can be used.

These photos show bays size according to parking shape: (Wiley, J(2012). Neufert E. West Sussex, P019 8SQ, UK: Blackwell)

according to parking shape

according to (Wiley, J(

2012).Neufert E. West Sussex, P019 8SQ, UK: Blackwell) /planning standard design and good practice supplementary planning document]

vehicle size: Minimum bay size for vans {7.5 * 3.5m]

Minimum bay size forcers

{5 * 2.5m only used exceptional circumstances

According to the Palestinian Building Law, Article 31, Specifications for Car Parks

1- The length of the car park shall not be less than 55 and the width of the car park shall not be less than 25

2- The width of the outer passage shall not be less than:

A- 3.5 for parking spaces of no more than 30 carsB-5.25 for car parks with more than 30 cars, and in the event that a separate entrance and exit are provided, item A applies.

multi-story car parking:

For multi-story car parks the requirements for the layout of parking spaces and access are in principle the same as for open car parks{ (Wiley,J(2012).Neufert E. West Sussex, P019 8SQ, UK: Blackwell) }. The proper parking width is 23, however, FGVS recommends a minimum width of 25. All structural elements must be fire-resistant, and the recommended floor height for multi-story parking is from 2.75 to 3.

In the multi-story parking, there are openings that cannot be closed, which leads to open air with a size of one third of the total area of the envelope wall, with the opposite wall at a maximum distance of 70 m This provides good ventilation and protection from external weather factors.(Wiley,J(2012).Neufert E. West Sussex, P019 8SQ, UK: Blackwell)

parking number:

Minimum According to the Palestinian Building Law Article 28.2011 {one car parking must be provided for Every 70 square meters of construction area in office buildings}.

According to metric hand book, {offices: staff; one space for each 25 m2 of gross floor area, or one space for each managerial and executive staff, plus one space for others visitors 10% of the staff parking provision. The following table will show the number of employees on each floor in **the Palestinian Anti-**Corruption Commission building

Note: This number has been calculated based on the space allocated for each person, taking into account the function of the room.

number of managerial and executive staff = 29

each one need one space {29 parking space}

→number of other employee = 206

each four need one space {52 parking space}

→total number of parking for employees = 81

plus 10 % of the staff parking for visitor {9parking}

total number of parking needed for this space = 90 spaces

number of parking available for this building = 75 space {not enough}

12. Ramps:

Ramps are a vital element in modern buildings to ensure accessibility for people with disabilities, particularly those using a wheelchair. The presence of ramps allows them to navigate the building safely and independently, making it easier to move through the various facilities and spaces within the building.

The max slope is 6% for the ramps and it's always better for them to be straight not curved to make it easier for them to move.

If the ramps are longer than 6 meters, an intermediate landing with a min length of 1.50 m is necessary

The width must be at least 1.5 m in corridors, main routes and next to stairs up and down.

- The doors must be with width of 0.9 m at least for clear passage. Toilets changing rooms and showers must open outward

Elevators must have a min clear width of 1.10 m and a min clear depth of 1.40 m. The mobility space in front of the doors must be at least 1.50 m wide and 1.50 m deep, and it must be as large as the car's floor area

The standards are the following

Figure 2-21 Dimension Ramp that fit wheelchair (Neufert 4th edition, 2015)

Table VIII Maximum ramp length between landings

Gradient	Length of ramp between level landings (m)		
1:20	10		
1:19	9		
1:18	8		
1:17	7		
1:16	6		
1:15	5		
1:14	4		
1:13	3		
1:12	2		

Table VI Space required for users of self-propelled wheel chairs to turn through $180^\circ\,(Figure\,4.3)$

Chair type	Space required		
	Length (mm)	Width (mm)	
Manual wheelchair	1950*	1500*	
Attendant propelled	1600-2000	1500-1800	
Electric wheelchair	2275*	1625*	
Electric scooter	2000-2800	1300-2200	

Design Ramp (Neufert 4th edition, 2015)Figure222-

Any ramp should also have:

- A level landing at the top and bottom of the same width as that of the ramp and at least 1.2 m long
- Any intermediate landing of the same width as that of the ramp and at least 1.5 m long; landings should be clear of any door swinging onto it
- · Handrails on both sides of the ramp
- Any open side of a ramp or landing should have a 100 mm high kerb.

Table V Space required for users of self-propelled wheelchairs to turn through 180° (Figure 4.7)

Chair type	Space required		
	Length (mm)	Width (mm)	
Manual wheelchair	1950*	1500*	
Attendant propelled	1600-2000	1500-1800	
Electric wheelchair	2275*	1625*	
Electric scooter	2000-2800	1300-2200	

* 90% of uses.

Figure223-Space required for wheelchair (Neufert 4th edition, 2015)

Reception in the building

The reception area has a pretty good dimensions and it's near the entrance and very visible for the visitors.

Figure 2-22 the recaption in building

Figure 2-23 Standard Reception (Neufert 4th edition, 2015)

2.3.2 Emergency standard:

According (Palestinian Civil Defense Code)p(71-76)

Fire Escape Stairs:

(It is a non-insulated, lightweight external drawer made of metal), If the fire escape method consists of an internal staircase and a fire escape staircase, each must meet the fire protection requirements of indoor stairs and fire escape drawers.

Handle:

Fire escape inserts are provided with walls or handrails on each side that are not less than 0.75 meters high and not more than 1.05 meters.

Material resistance:

Non-combustible materials such as: iron, steel or letter, shall be used in the establishment of fire escape drawers, balconies and other staircase components, as approved by the competent official authority.

Number of exits:

(1) The number of exits serving a floor, balcony or two scales shall not be less than two separate and spaced exits, except as stipulated in this Code for each occupancy case shown in sections V to XII. The number of exits in the building shall not be less than: Three separate and spaced exits if the work load ranges between 500-1000, Four separate and spaced exits if the occupancy load exceeds (1000) person.

By " (n.d(2012).IBC)" p (293-279)

In General, Buildings or portions thereof shall be provided with a means of egress system as Required by this chap ter. The provisions of this chapter shall control the design, Construction and arrangement of means of egress components required to provide an Approved means of egress from structures and portions thereof.

Minimum requirements: It shall be unlawful to alter a building or structure in a manner that Will reduce the number of exits or the capacity of the means of egress to less than Required by this code. Maintenance: Means of egress shall be maintained in accordance with the International Fire Code.

Fire safety and evacuation plans: Fire safety and evacuation plans shall be provided for all Occupancies and buildings where required by the International Fire Code. Such fire safety and evacuation plans shall comply with the applicable provisions of Sections 401.2 and 404 Of the International Fire Code.

GENERAL MEANS OF EGRESS:

- 1. Applicability: The general requirements shall apply to all three elements of the means of egress system, in addition to those specific requirements for the exit access, the exit and the exit dis charge detailed elsewhere
- Ceiling height. The means of egress shall have a ceiling height of not less than 7 feet 6 inches (2286 mm) Exception:
 - 1. sloped ceiling in accordance
 - 2. Ceilings of dwelling units and sleeping units within residential occupancies
 - 3. Allowable projections
 - 4. Stair headroom
 - 5. Door height
 - 6. Ramp headroom
 - 7. The clear height of floor levels in vehicular and pedestrian traffic areas in parking garages in accordance with Section
 - 8. Areas above and below mezzanine floors in accordance
- Floor surface:

Walking surfaces of the means of egress shall have a slip-resistant surface and Be securely attached.

• Means of egress continuity:

The path of egress travel along a means of egress shall not be Interrupted by any building element other than a means of egress component as specified, Obstructions shall not be placed in the required width of a means of egress except Projections per mitted. **By** (N.d,(2012).IBC)" **p (293-279)**

• Elevators, escalators and moving walks:

Elevators, escalators and moving walks shall not be Used as a component of a required means of egress from any other part of the building. (N.d(2012).IBC)

• Design occupant load:

In determining means of egress requirements, the number of Occupants for whom means of egress facilities shall be provided shall be determined.

• Intervening spaces:

Where occupants egress from one room, area or space through another, the design occupant load shall be based on the cumulative occupant loads of all rooms, areas or spaces to that point along the path of egress travel.

• Stairways:

The capacity, in inches (mm), of means of egress stairways shall be calculated by multiplying the occupant load served by such stairway by a means of egress capacity factor of 0.3 inch (7.6 mm) per occupant. Where stairways serve more than one story, only the occupant load of each story considered individually shall be used in calculating the required capacity of the stair ways serving that story. (N.d(2012.IBC)

• Other egress components:

The capacity, in inches (mm), of means of egress components other than stairways shall be calculated by multiplying the occupant load served by such component by a means of egress capacity factor of 0.2 inch (5.1 mm) per occupant.

• Continuity:

The capacity of the means of egress required from any story of a building shall not be reduced along the path of egress travel until arrival at the public way.

• Distribution of egress capacity:

Where more than one exit, or access to more than one exit, is required, the means of egress shall be configured such that the loss of any one exit, or access to one exit, shall not reduce the available capacity to less than 50 percent of the required capacity.

• Egress convergence:

Where the means of egress from stories above and below converge at an intermediate level, the capacity of the means of egress from the point of convergence shall not be less than the sum of the required capacities for the two adjacent stories.

• Doors.

Doors, when fully opened, shall not reduce the required width by more than 7 inches 178 mm. Doors in any position shall not reduce the required width by more than one-half (N.D(2012).IBC)

Improvement:

In order to address the limited parking spaces in the building and improve traffic flow, we have added a parking facility with a circular movement pattern. Additionally, a ramp has been installed to provide easier access to the building. The parking area has been expanded to accommodate a larger number of vehicles within the available space. We have made modifications to the emergency staircase, widening it and improving the exit to comply with fire safety regulations. Furthermore, the windows in the building have been enlarged to allow for sufficient natural lighting and ventilation. We have also implemented architectural and environmental modifications, such as adding solar chimneys to the top three floors. And make a double volume in first &second floor

2.4 case study

Figure 2-24case study photo

1.1.1 <u>case study location:</u> from arch daily <u>Location:</u> Saint-Denis, France Completion: 2019 Gross Floor Area: 29,450 m² Costs: 65,700,000 Euros

Wood Structure: Barthes Bois

Façades: Arora

Figure 2-25section in case study building

Figure2-226-case study location

1.1.2 Disruption

Pulse is a seven-story office building. The building's core – a vast atrium – is covered with a glass roof letting the natural coming into the wooden nave. The rigor of the construction system contrasts with the warm atmosphere and colors of the workplace

Wood can be found in all parts of the building, from the entrance hall to the many floors, creating a warm, quiet and peaceful work environment. The building structure is dual,

mixing core elements in concrete with wooden columns, beams and floors. Services and facilities for employees, including three catering areas, are located around the atrium on the ground floor. An urban garden and terraces can be found on the last floor

Figure 2-27material use in our case study building

The façade of this building is made up of three layers of wood, protected by aluminum slats of three different colors. The metal, concrete and glass that give this project its material identity are replaced with timber, a warm, cozy natural material antithetical to cold Rationalism.

Fassio, Viaud and Bocabeille use a soft, natural form of Rationalism in which not only the walls but the beams, columns, ceilings and floors are covered with timber. Warm hues of this natural material reverberate throughout the building, contrasting with the rigor of its construction.

Pulse will primarily contain offices and workspaces, as well as service areas and leisure facilities. The building's countless windows are repeated without interruption all over the building, letting daylight into every part of its interior. On the top floor are a big city garden with terraces and a bar and coffee shop, all open to the public.

The pulse office building has been designed to provide all the advantages of a leading, modern building office with an excellent geospatial situation and easy national and

international access. The building's cladding, made of aluminum sheeting in three different colors, sparkles in the light of the sun, underlining its friendly rigor while sheltering it against weather.

1.1.3 plans

Figure 2-28plan of case study

building

2.site

Figure 2-29site of case study

Figure 2-30 section of case study

Figure 2-313D modeling

2.5 Architectural 3D Model use Lumion program

Figure 2-32

Architectural 3D Model

Figure 2-33Architectural 3D Model

Figure2-234-Architectural 3D Model

Figure 2-35 Architectural 3D Model

2.6 Site analysis:

2.6.1 Introduction:

A site analysis process will look at issues such as site location, size, topography, zoning, traffic conditions and climate. The analysis also needs to consider any future developments, or changes to the site's surroundings, such as a change of road designations, changing cultural patterns, or other significant building developments within the area. Then, the result is use as a starting point for the development of environment-related strategies during the design process. where all these things must be taken into account to obtain an optimal comfort For users.

1. Location and description & Site accessibility & Site roads:

Anti Corruption Building in" maka street" in Al-Bireh - Ramallah on latitude 31.5419° and 35.1254°..Ramallah is located in the middle of the central mountain range of Palestine within the Jerusalem mountain range. The city rises above sea level between 830-880 meters.

The building is in an active and crowded place due to its location as the movement is crowded during the expected working hours of the institution and the movement is active at night also in the area as it is a vital area in the city.

As the building is located on a corner, where it borders two main streets and is expected to be a source of high nuisance, and from the east side there is the a palestine liberation organization department of refugee building which will negatively affect the sunlight that was It can be used positively for the building.

Figure 2-36 Location of Anti-Corruption Commission Building .

2. Topography & Area:

There is a very slight slope to the land, as the lowest point is at a height of 840.7 and the highest point is at a height of 841, meaning that the land is almost flat.

Temperature:

The temperature in Palestine ranges between 9-24 degrees Celsius and may reach a maximum of about 40 degrees Celsius in the hot summer during the day and may reach in the cold winter to approximately -3 degrees Celsius, as the Ramallah area has an average temperature a little high.

Figure 2-37 estimate of the mean annual temperature for the larger region of Ramallah

The top graph shows an estimate of the mean annual temperature for the larger region of Ramallah. The dashed blue line is the linear climate change trend. If the trend line is going up from left to right, the temperature trend is positive and it is getting warmer in Ramallah due to climate change. If it is horizontal, no clear trend is seen, and if it is going down, conditions in Ramallah are becoming colder over time.

In the lower part the graph shows the so called warming stripes. Each colored stripe represents the average temperature for a year - blue for colder and red for warmer years. "(Climate Change Ramallah - Meteoblue, 2022).

Figure 2-38 Ramallah climate temperature(Climate Change Ramallah - Meteoblue, 2022

Figure 2-39Monthly anomalies for temperature and precipitation 1979-2022

3. Climate:

In this project, the climate of the city of Ramallah-Al-Bireh must be studied, which is characterized by a moderate climate as it is located within the Mediterranean basin at a length of 35.20 and a latitude of 31.90, and the summer season extends for more than 5 months per year and the climate is dry and hot, and extends the short, cold, rainy winter season that does not exceed 3 months most of the time.

4. Humidity:

The relative humidity in Ramallah reaches 65%, which is the average annual rate, as humidity is generally affected by temperature and wind speed.

Humidity Comfort Levels in Ramallah

The percentage of time spent at various humidity comfort levels, categorized by dew point.

Figure2-240-The percentage of time spent at various humidity comfort levels, categorized by dew point in Ramallah (Weather spark)

5. Land setback:

The building is set back from the western side, which is the back of the palestine liberation organization department of refugee building 3 m, and it is set back from the south, which is adjacent to the street and it is set back from the eastern side, which is the front side of the building opposite the street 12 m, and it is set back from the north side, which is the side to the residential building and adjacent to the street 7 m.

6. Rainfall:

The average rainfall in Ramallah is 598 mm per year, January is the most rainy with **12 days**, and the average number of days in which rain is expected per year is 54 days.

Figure2-241-Average rainfall in Ramallah (Weather spark)

The top graph shows an estimate of mean total precipitation for the larger region of Ramallah. The dashed blue line is the linear climate change trend. If the trend line is going up from left to right, the precipitation trend is positive and it is getting wetter in Ramallah due to climate change. If it is horizontal, no clear trend is seen and if it is going down conditions are becoming drier in Ramallah over time. In the lower part the graph shows the so called precipitation stripes. Each coloured stripe represents the total precipitation of a year - green for wetter and brown for drier years. (Climate Change Ramallah - Meteoblue, 2022).

7. Wind:

Average wind vector per hour at a height of 10 m above the ground. Instantaneous wind speed and direction vary more considerably than hourly averages, and the wind experienced at any one site is strongly dependent on the local terrain and other factors. The average hourly wind speed in Ramallah experiences moderate seasonal variation throughout the year. The average hourly wind speed in Ramallah is *essentially constant* during the spring, remaining within 0.2 miles per hour of 7.0 miles per hour throughout.

July is the windiest month of the year, with an average wind speed of 7.5 miles/h. The windy part of the year lasts from May 28 to September 18, with average wind speeds of over 7.0 miles/h. The quietest time lasts from September 17 to May 28. The quietest month of the year in Ramallah is October, with an average hourly wind speed of 6.6 miles/h.The lowest daily average wind speed during the spring is 6.7 miles per hour on May 11.

Figure 2-42 The average of mean hourly wind speeds in Ramallah (Weather spark)

The winds are mostly from the north from September 18 to November 8, peaking at 55% on September 30. And from the west from November 8 to November. And from the south from December 10 to September 18 with a peak rate of 30%. And from the east from November 13 to December 10 with a percentage peak of 35% on November 27.

)Figure2-243-Wind Direction in Ramallah (Weather spark

Figure 2-44 : wind speed in a year (Climate Change Ramallah - Meteoblue, 2022

8. Wind Rose for Ramallah:

Figure 2-45 wind rose for Ramallah (Climate Change Ramallah - Meteoblue, 2022)

9. Solar Energy:

he total daily incident shortwave solar energy reaching the surface of the ground over a wide area, taking full account of seasonal variations in the length of the day, the elevation of the Sun above the horizon, and absorption by clouds and other atmospheric constituents. Shortwave radiation includes visible light and ultraviolet radiation. The average daily incident shortwave solar energy experiences *extreme* seasonal variation over the course of the year.

The *brighter* period of the year lasts for 3.6 *months*, from *May* 5 to *August* 25, with an average daily incident shortwave energy per square meter above 7.5 *kWh*. The *brightest* month of the year in Ramallah is *June*, with an average of 8.5 *kWh*.

The *darker* period of the year lasts for *3.2 months*, from *November 5* to *February 12*, with an average daily incident shortwave energy per square meter below *4.1 kWh*. The *darkest* month of the year in Ramallah is *December*, with an average of *3.1 kWh*.

Figure 2-46Solar Energy

10. Topography:

Ramallah's geographic coordinates are 31.90 degrees latitude, 35.20 degrees longitude, and 2,800 feet elevation for the purposes of this study.

A maximum elevation change of 919 feet and an average height of 2,658 feet above sea level can be found in the terrain within two miles of Ramallah. There are considerable height changes within 10 kilometers (3,153 feet). There are significant elevational changes within 50 kilometers (5,482 feet).

2.7 Architectural Drawings

2.7.1 before modification 2nd Basement:

1st Basement:

Ground floor:

2ndfloor:

3rd floor

6th floor

5th floor

2.7.2 architectural drawings after modification 3rd Basement

2nd Basement:1st Basement:

2ndfloor:

Ground floor:

3rd floor

59

6th floor

4thfloor:

5th floor

2.8 Environmental analysis

2.8.1 Introduction:

At this time, it is vital to take into account environmental factors while creating any structure because of the requirement imposed by the growth in population, the decline in non-renewable energy sources, and the reliance on non-renewable energy sources.

It is crucial to create an integrated design for the building and consider all environmental factors, including the building's orientation, the amount of natural lighting, solar energy, and the industrial heating and cooling values that will be needed. this factors will have an impact on the comfort of users, the building's initial construction costs and also the operating costs of the building.

2.8.1.1 Massing of the building:

Description of the shape of the building affects the ratio of the building's exposure to the sun and wind and various environmental factors. Also consider the ratio of windows and openings to the ratio of facades in The building that controls the amount of sun entering the building. All of these factors It plays a very important role in reducing energy consumption, saving costs, materials and user convenience

2.8.1.2 Orientation of the building:

The orientation of the building is one of the most crucial factors that must be strongly focused on, as it will affect all the specifics and features of the building that are being designed, as well as having a significant impact on the outcomes of the environmental analysis, including the amount of solar energy, the percentage of exposure to the sun, the effect of wind, and other environmental matters that It plays an important role in s The following image displays the building's orientation from above

Figure 2-47Orientation of the building

2.8.2 Shadowing and overshadowing Summer (21/6) At 8:00 AM

Figure 2-48 : shadow effect on site

As shown on the Figure the height of the building makes the most shadow effect in the morning and the near buildings make a little effect according to the distances between the buildings.

North elevation

Figure 2-49 : shadow effect on north elevation

In this North elevation show in figure the height of the building makes the most shadow

Figure 2-50 : shadow effect on west elevation

In eastern elevation show in figure The facade was not affected by the shadows of the neighboring buildings, but by the shadow of the building itself

Figure 2-51 : shadow effect on east elevation

In western elevation show in figure The facade was not affected by the shadows of the neighboring buildings, and the shadow of the building itself.

At 12:00 pm

Figure 2-52 shadow effect on site

Figure 2-53As shown on Figure, the shadow not effect is big from all buildings.

Figure 2-54 : shadow effect on west elevation

As shown in Figure, the shadow effect totally cover the area of north elevation on this time in this figure the western elevation, there is no shadow effect on elevation on this time.

Figure 2-55 : shadow effect on south elevation

this figure the southern& eastern elevation, there is no shadow effect on elevation on this time.

Figure 2-56shadow effect on northern& eastern elevation

At 2:00pm

Figure 2-57 shadow effect on site

As shown on Figure, the shadow effect is small from all buildings heights.

Figure 2-58 shadow effect on north elevation

As shown in Figure, the shadow effect totally covers the area of north elevation on this time.

Figure 2-59 shadow effect on west elevation

As shown in Figure, there is no shadow effect on west elevation on this time.

Figure 2-60 shadow effect on east elevation

As shown in Figure, the shadow effect covers small area of south & east elevation on this time.

Figure 2-61shadow effect on North & east elevation

Winter (21/12) At 8:00 AM

Figure 2-62 shadow effect on site

As shown on Figure, the shadow effect is so big according in the small height of sun in the sky comparison with its height on summer. In addition, near buildings make big shadow effect to our building according to the same cause.

Figure 2-63 shadow effect on north & west elevation

As shown in Figure, the shadow effect totally covers the area of north elevation on this time

Figure 2-64 shadow effect on west & south elevation

As shown in Figure, the shadow effect totally cover the area of west elevation on this time

Figure 2-65 shadow effect on east & north elevation

As shown in Figure, the shadow effect covers small area of east elevation on this time

Figure 2-66 shadow effect on east & south elevation

As shown in Figure, the shadow effect cover small area of south & east elevation on this time

12:00pm

Figure 2-67shadow effect on site

As shown on Figure, the shadow effect is big from all buildings heights.

Figure 2-68 shadow effect on west elevation

As shown in Figure, the shadow effect covers small area of west elevation on this time

Figure 2-69 shadow effect on east elevation

As shown in Figure, the shadow effect covers small area of east & south elevation on this time

Figure 2-70 shadow effect on east & north elevation

As shown in Figure, the shadow effect covers small area of east elevation on this time

At 2:00pm

Figure 2-71 shadow effect on site

As shown on Figure, the shadow effect is big from all buildings heights.

Figure 2-72 shadow effect on north elevation

shown in Figure, the shadow effect totally cover the area of north elevation on this time.

Figure 2-73 shadow effect on east elevation

As shown in Figure, the shadow effect covers small area of east & south elevation on this time

Figure 2-74 shadow effect on west elevation

As shown in Figure, the shadow effect covers small area of west elevation on this time

Figure 2-75 shadow effect on east elevation

As shown in Figure, the shadow effect covers small area of east elevation on this time.

2.8.3 Daylight Factor

The daylight factor (DF), a measure of daylight availability, compares the amount of unobstructed daylight available outside in overcast sky conditions to the amount of daylight available inside a room (on a work plane) (Hopkins,1963).

The amount of light in the room increases with the DF. Even though rooms with an average DF of 2% or higher can be considered daylight, visual tasks may still require the use of electric lighting. When the average DF is 5% or higher, a room will appear to be strongly daylight; in this case, electric lighting will likely not be used during the day (CIBSE, 2002).

We want to evaluate our building according to the specifications and recommendations so we use Revit software, this software does this analysis basing on the principle of the daylight factor which must range between (2-6) %, we will get the results of the rooms from the software and compare the results before and after. Rooms in which the day-light factor is larger than the range will be dealt with in various ways, such as changing the properties of the glass and using louvers and other methods that will be clarified later. As for the rooms in which the day-light factor is less than the range, they are treated using artificial lighting. The next pictures show the daylight factor analysis results for the different floors of the building.

The solutions that we used for the daylight factor will be mentioned later after the next figures:

2.8.3.1 Daylight factor before modification: in Design Builder program: Ground floor & First floor

Figure 2-76Daylight factor before modification **Ground floor & First** *floor*

Second floor & Third floor

Figure 2-78Daylight factor before modification fourth floor & Fifth Floor & Sixth Floor

80

2.8.3.2 Daylight factor before and after

Figure2-279-daylight factor analysis in Revit for GF & FF before modification.

This is the result for daylight factor on the ground floor, as shown in Figure there is regions that have low values in the center of story & in the reception area that is (1% or less), and regions have large values especially near the glass that reaches to (12%).

Lighting Daylight Fa

Second Floor& third floor

(Percent)

Figure 2-80daylight factor analysis in Revit for **Second Floor& third floor** before modification.

This is the result for daylight factor on the second floor, as shown in Figure here is regions that have low values in the center of story that is (1% or less), and regions have large values especially near the glass that reaches to (16%)

Fourth& fifth & sixth floor

Figure 2-81daylight factor analysis in Revit for **Second Floor& third floor** before modification.

This is the result for daylight factor on the Fourth floor, as shown in Figure there is regions that have low values in the center of story & south elevation of the building that is (1% or less), and regions have large values especially near the glass that reaches to (18%).

2.8.3.3 Daylight factor after modification

We make some modifications on the building to resolve the daylight factor to take better natural light to achieve the comfort as recommendations:

- Add glass from the modified one up the court
- Increase the depth of the architecture design on the glass walls to work as cantilever
- Adding a side double volume on the first and second floors from the southern side, and an addition court that helped to light the corridors.

Ground Floor& First floor

Figure 2-82 daylight factor analysis in Revit for **Ground Floor & First floor** after modification.

After modification the daylight become better and the maximum value decrease to 12percent but it doesn't reach to the standard value so we can internal shutter or curtains to give the users free to control the amount of natural light enter the space

The red color is out of the building

Second Floor& third floor

Figure 2-83 daylight factor analysis in Revit for SF& 3^{rd} F after modification

After modification the daylight become better and the maximum value decrease to 15 percent but it doesn't reach to the standard value so we can internal shutter or curtains to give the users free to control the amount of natural light enter the space.

The red color is out of the building

Fourth Floor & Fifth Floor & Sixth Floor

Figure 2-84 daylight factor analysis in Revit for 4^{th} F& 6^{th} & 5^{th} F after modification

After modification the daylight become better and the maximum value decrease to 15 percent but it doesn't reach to the standard value so we can internal shutter or curtains to give the users free to control the amount of natural light enter the space.

The red color is out of the building

2.8.3.4 Solutions For the daylight

We added transverse and longitudinal louvers (cross louvers) on the southern, eastern and western façades to add aesthetics to the building and taking into account architectural considerations, this louver was exploited to add green space to the building.

Figure 2-85 solution for Daylight

2.8.4 Heating and Cooling

2.8.4.1 Introduction

Through the Design Builder program, a simulation was conducted to find out the annual energy consumption of the building. The first case is a simulation without any thermal insulation or any environmental modifications that reduce energy consumption.

Case 1 (Without Insulation Material):

The heating loads:

Temperature for case 1

Figure 2-86The heating loads

Heat losses for case 1.

The cooling load:

.Figure 2-87The cooling load:

Temperature case 1

1										
		Glazing 💻	Walls	Ceilings (in	t) Floors (int)	Partitions (int)	Roofs	Floors (ext)	External Infiltration	External Vent.
		General Lighti	ng 💼 💼	Computer + Equip	Occupancy	Solar Gains Exte	erior Windows			
S	50 –									
R	•			- And					<u>}</u>	
ø	0 -		-							
L C	50									
<u>0</u>	-00 -				\sim					
m	-100									
at	-100 -									
Ĭ	-150 -									

Figure2-288-Heat gain case 1.

The wall without insulation layers:

Source	DesignBuilder					
P Category	Walls 🔹					
Region	General					
lefinition	×					
Definition method	1-Layers 🔹					
alculation Settings	»					
ayers	×					
Number of layers	3 -					
Outermost layer	×					
Material	Brickwork, Outer Leaf					
Thickness (m)	0.1000					
Bridged?						
Layer 2	×					
SyMaterial	Brickwork, Inner Leaf					
Thickness (m)	0.1000					
Bridged?						
Innermost layer	×					
Material	Gypsum Plastering					
Thickness (m)	0.0130					
Bridged?						
-						
U-Value (W/m2-K) 2.						

Figure 2-89The wall without insulation layers:
Case 2 (With Insulation Material and Environmental Adjustments).

Environmental Adjustments:

Some environmental modifications were made to reduce energy consumption to suit the Architectural form of the building. Cantilever and some vertical louvers have been placed to create shading on windows and facades to allow winter sunlight to enter the building to help reduce the amount of heating and to reduce the cooling load in summer. Glass type and U-Value have been improved, add insulation in wall and choose good efficient light in building.

The heating loads:

Figure2-290-The wall without insulation layers:

Temperature for case2

Figure 2-91Heat losses for case2

The temperature is very small compared to the first case due to the addition of insulation materials in the walls and environmental modifications, which leads to increased comfort for users.

The cooling loads:

Temperature case 2

Figure 2-92Heat gain case 2.

There is a difference between radiant heat and required heat, which is less than the first case, so the cooling system will be smaller and result in lower annual energy consumption. The heat gain from glass windows was also reduced as a result environmental modification in its kind and the addition of insulators in the outer walls.

Thermal Comfort:

Figure2-293-PMV for Building case 2

Table 11. Comfort and Setpoint Not Met Summary case2

Comfort and Setpoint Not Met Summary

		Facility [Hours]
	Time Setpoint Not Met During Occupied Heating	0.00
ľ	Time Setpoint Not Met During Occupied Cooling	0.00
	Time Not Comfortable Based on Simple ASHRAE 55-2004	400

From the previous table and graphs, it can be seen that the number of hours thermal comfort is very small for case, which indicates the efficiency of insulation and environmental modifications.

According to the ASHREA 90.1

global energy consumption reference and baseline, energy the consumption of the building is much lower than what is in it, and this indicates that the design is excellent

Figure 2-94ASHREA 90.1 energy consumption

The consumption of the building after insulation is much better than the baseline, as the conservation ratio between the building after insulation and the baseline is 63.06% and this is an excellent result.

CFD:in the last three floor which have a solar chimney

This is excellent result

Wall after insulation :

Constructions Data	
Layers Surface properties Image Calculated Cost Inter	mal source Condensation analysis
General	×
Name palestine insolated new	
Source	
Category	Walls •
Region	PALESTINE, STATE OF
Definition	÷
Definition method	I-Layers +
Lavers	2 2
Number of levers	5 .
Outermost laver	*
Material	jammaien Limestone, extra hard
Thickness (m)	0.0700
☐ Bridged?	
Layer 2	×
Material	Cast Concrete (Dense)
Thickness (m)	0.1000
Bridged?	
Layer 3	- · · ·
SMaterial	Foam - polyurethane
Thickness (m)	0.0700
L bridged :	×
Matorial	Concrete blocks/tiles - block bollow me
Thickness (m)	0 1000
	0.1000
Innermost layer	*
Material	Cement/plaster/mortar - cement plaster
Thickness (m)	0.0130
Bridged?	

Figure 2-95 wall layers after insulation

Figure 2-96U value for wall

General	×
Name 10cm Project partition	
Source	
Category	Partitions •
Region	PALESTINE, STATE OF
Definition	¥
Definition method	1-Layers 🔹
Calculation Settings	»
Layers	×
Number of layers	3 •
Outermost layer	¥
Sy Material	Cement/plaster/mortar - cement plaster
Thickness (m)	0.0130
Bridged?	
Layer 2	×
Image: Second Se	Concrete blocks/tiles - block, hollow, he
Thickness (m)	0.1000
Bridged?	
Innermost layer	×
Image: Second Se	Cement/plaster/mortar - cement plaster
Thickness (m)	0.0130
Bridged?	

Figure 2-97Partitions layer

U-Value (W/m2-K)

2.701

General	
Name	Dbl LoE (e2=.1) Clr 6mm/13mm Air

Figure 2-98Glass used in this project

3 <u>Chapter3: Structural Aspects</u> 3.1 STRUCTURAL ASPECTS

3.1.1 introduction:

The building's structural framework serves as its skeleton and prevents it from collapsing and falling. There are many different types of construction systems since they vary Depending on the components they contain, such as concrete, steel, and wood. The Structural system of the building we have selected for our graduation project is based on Concrete. Slabs, beams, columns, and footings are just a few of the components that come Together to form this system. Each of these components must be designed in accordance with the correct specifications and standards in order to support the building and all the loads placed upon it while still being safe for all building occupants.

3.1.2 problem definition

The building has consisted of 10 stories 3 of them are basement stories, the structural system Has been used in two-way ribbed slab since span length from (7-10) m due to architectural Design.

In this project many designing check will be done by using ETABS software such as {Compatibility,equilibrium, stress - strain, deformation}.

3.1.3 Materials:

3.1.3.1 Concert:

One of the most crucial parts of the structural elements in contemporary industry is Concrete. Cement, fine aggregates, and coarse aggregates are combined with water to Create concrete, a building material that can be poured and will eventually become hard. Although concrete is one of the strongest materials for bearing pressure because it can Withstand extremely high pressure, it performs poorly when it comes toTherefore, the strength of concrete is determined by its capacity to withstand pressure. Withstand tensile strength (compressive strength.

3.1.4 Project designing loads

- **Dead load (DL):**It includes the weight of the building and structural elements Such as columns, slabs and beams.
- **super imposed load (SID):**these are represented in the weight of the nonstructural Elements in the building such as: the load of any finished, partitioning cladding, false ceiling Are all super dead loads.
- Live load (LD):these are represented in the weight of the movable elements in the building such as:occupancy,furniture. the live load used in our project 2.4 KN/m^2 for Commercial floor (ASCE/SEI 7-05, 2010), and I.I = 4 kn/m² for parking. (ASCE/SEI 7-10, 2010).

The following table shows the load from ASCE CODE 7-16.

Table 10the load from ASCE CODE 7-16

	Live	e Load		Live	Load
Occupancy or Use	psf	kN/m ²	Occupancy or Use	psf	kN/m
Assembly areas and theaters	100	In state to a	Residential	in the	
Fixed seats	60	2.87	Dwellings (one- and two-family)	40	1.92
Movable seats	100	4.79	Hotels and multifamily houses		
Dance halls and ballrooms	100	4.79	Private rooms and corridors	40	1.92
Garages (passenger cars only)	50	2.40	Public rooms and corridors	100	4.79
Office buildings			Schools		
Lobbies	100	4.79	Classrooms	40	1.92
Offices	50	2.40	Corridors above first floor	80	3.83
Storage warehouse					
Light	125	6.00			
Heavy	250	11.97			

*Reproduced with permission from Minimum Design Loads for Buildings and Other Structures, ASCE 7-05.

3.1.4.1 Reinforcement steel:

An excellent material for tensile resistance, was used to solve the problem of concrete's Inability to withstand tensile forces, and the two components were combined in many uses to form what is known as reinforced concrete.

- Live load is 2.4KN/m2, we use2.5 KN/m².
- Live load for car garages = 4 KN/m²,
- SID is assumed = 4 KN/m²
- Wall load = 20 KN/m-

3.1.5 Design codes and specification:

American Society of Civil Engineers (ASCE) for loads..

Uniform Building Code (UBC 97) for seismic design and combinations..

American Concrete Institute code ACI 318-14 ..

3.1.6 Structural elements:

3.1.6.1 Slabs

The structural components known as slabs give people inside a building a surface on which to walk and work. There are a variety of slab types that are employed, and they vary Depending on their constituent parts. The most well-known of these types are the solid slab, The one-way ribbed slab, the two-way ribbed slab, and the voided slab. The rapid slab, which Relies on the use of steel reinforcement as a primary component and uses bricks to use less Concrete, is one of the most common types.

3.1.6.2 Beams:

As they transfer loads from the slab and pass them to the columns, beams are one of the Most crucial structural components in the building that connects the columns to one Another. There are many different types of beams, such as hidden beams, where the Thickness of the beam is similar to. There are drop beams, where the beam thickness is Greater than the slab thickness. thickness of the slab. Beam tracks were utilized in this Project primarily due to their increased stiffness and suitability for the spans and purpose of the building.

3.1.6.3 columns:

As they transfer loads from the slab to the beams, then the columns, and finally to the building footings, columns are among the crucial structural components in a building the Columns, which are what give the building its true height, are carefully designed so that Their sections and lengths are adequate.

3.1.6.4 Footing:

The transfer of all incoming loads from the building and all of its structural and non-Structural components through the footings to the soil is crucial. Because the footings are Designed with the proper dimensions to perfectly distribute the loads on the soil, their Design greatly depends on the type of soil and how durable it is.

3.1.6.5 Shear wall

Shear walls are considered one of the structural elements that have very high stiffness and Acts like columns in transferring loads. In the underground floors, where they are known as Retaining walls, they are also utilized when there are horizontal loads.

3.2 Structural design:

The ETABS Software was used for the design simulation, and the following calculations and checks were made to ensure that the model design is accurate:

3.2.1 Designing information and data:

3.2.1.1 material used

- Concert B350 for slabs and beams and columns (fc=28 MPA,=25 KN/ m^3)

-Steel rebar E = 200 GPA , FC =420 MPA , unit weight (γ =78 KN/ m^3)

3.2.1.2 system designing data

the used slab system in the project is two way ribbed slab with hidden beams .

table:depicts the minimum thickness for solid slab, which will used to determine the

Table 11 Two way ribbed slab , Slab required thickness as shown:

	Witho	ut drop pa	anels‡	With drop panels [‡]			
	Exterior panels		Interior panels	Exterior panels		Interior panels	
fy, psi [†]	Without edge beams	With edge beams [§]		Without edge beams	With edge beams [§]		
40,000	ln/33	ln/36	ln/36	tn/36	€n/40	€n/40	
60,000	ln/30	ln/33	ln/33	ln/33	ln/36	ln/36	
75,000	ln/28	ln/31	€n/31	tn/31	€n/34	€n/34	
60,000 75,000 For two-w	$\ell_n/30$ $\ell_n/28$ ay constructions to the second s	$\frac{\ell_n/33}{\ell_n/31}$	$\frac{\ell_n/33}{\ell_n/31}$ the length of s in slabs y	$\ell_n/33$ $\ell_n/31$	$\frac{\ell_n/36}{\ell_n/34}$	ℓ _n /3 ℓ _n /3 g direc	

Slabs with beams between columns along exterior edges. The value of a the edge beam shall not be less than 0.8.

as a rule of thumb: the required thickness for the two-way ribbed slab = $1.1 * LN/_{33}$ The maximum span length = 7.5 m.

The maximum span length = 7.5 h

h required = $1.1^{*} \frac{7.5}{33} = .25$

h = .25 m (initial dimentions)

3.2.2 Beams initial dimensions:

All beams are hidden with main beam in two dimension, with thickness 250 mm and Beam width = 900 mm .and there are drop beam with dimension (500mm*600 mm).

3.2.3 columns initial dimensions:

The following formula used to determinate columns dimension

$$Ac = \frac{p * M}{n * fc}$$

Where:

P: is the total axial load imposed on the column-

M: factor of safety equal 1.1-

n: reduction factor depends on column location-

fc=compressive strength for concrete in MPa.

The Dimensions of the columns have been changed due to the Etabs checks, which will be clarified later, Table below shows the initial dimension:

simple calculation for columns

	width	length	tributary area	WU	pu	Ac	length	width
corner	5.25	2.25	11.8125	18.544	2190.51	286.8525	500	300
center 1	3.65	9.05	33.0325	18.544	6125.547	1203.232	1	500
edge	3.5	5.4	18.9	18.544	3504.816	550.7568	600	300
center 2	4	4.5	18	18.544	3337.92	655.6629	700	300

3.3 Model check

3.3.1 gravity checks

3.3.1.1 Compatibility checks

This Check to make sure that the building model after running is linked and acting Together.

The Figure depicts it.

Figure 3-3-1Compatibility checks

3.3.1.2 Equilibrium checks

This check comparesload's reaction from ETABS with manual reaction from loads inputted to the model:

Dead load:

• Weight of SLAB:

Table 12slab area for each story

ground	571.8
1	571.8
2	601.2
3	620.8
4	580.8
5	580.8
6	580.8
Base 1	1735.8
Base 2	1736.1
total	7643

weight of slabs = SLAB AREA * SELF WEIGHT OF SLAB *UNIT WEIGHT OF CONCRET weight of slabs = 7643 * {(.55*.55*.25)-(.4*.4*.17)/.55^2}*25 = 30587KN.

• Weight of beams :

primary beam dimension :

(.9 m*.25m). /hidden beam

drop beam : (.5m.6m).*

total weight of beams = beams width * beam depth * unit weight of concert (KN/m^3) *total length .

.9mm*.25mm* 25 * 2287 =12864 KN. total weight of hidden beam beams =

.6mm*.5mm* 25 *755=5662.5 KN. total weight of hidden beam beams =

• Weight of columns :

Weight of columns = Column Cross Sectional area x total length of column x Unit Weight of concrete (γ).

→Weight of column (0.6 x0.3) = 21colum*0.6 x 0.3 x 34.68x 25= 3277.26kN.

→Weight of column (0.6 x0.3) = 7*0.6 x 0.3 x 9x 25= 50 kN.

→Weight of column $(0.5 \times 0.5) = 3^{\circ}0.5 \times 0.5 \times 34.68 \times 25 = 650.25 \text{ kN}.$

→ Weight of column $(0.4 \times 0.4) = 2^{\circ}0.4 \times 0.4 \times 34.68 \times 25 = 277.44$ kN.

→ Total weight of all Colum = 3277.26+50+650.25+277.44= 4254.95kN.

• From shear wall:

Weight of shear wall = Perimeter of wall x weight /m

Weight of wall /m = [wall thickness (m) x wall height (m) x Unit Weight of concrete (γ) (kN/m³)].

= [0.3 (m) x 34.68 (m) x 25 kN/m³] = 260 kN/m.

Weight of shear wall = $43.5 \times 260 = 11310$ kN.

• From Basement wall :

Weight of basement wall = Perimeter of wall x weight /m

Weight of wall $/m = [wall thickness (m) x wall height (m) x Unit Weight of concrete (<math>\gamma$) (kN/m³)].

= [0.3 (m) x 9 (m) x 25 kN/m³] = 67.5kN/m.

Weight of shear wall = 173.4x67.5 =11677.5kN.

total building weight = 76360 KN

Table 13the following table shows ETABS reactions:

Output Case	Case Type	Step Туре	Step Number	FX kN	FY kN	FZ kN
Dead	LinStatic			-7.038E-07	-2.276E-06	75007.4064
Live	LinStatic			0	-7.92E-07	24393.0101
sid	LinStatic			0	-1.242E-06	30575.3685

Dead Load

from ETABS = $\underline{75007}$

equluipruim check base reaction from etabs

→ % of error =
$$\frac{|Manual-Sap|}{SAP}$$
 X 100% = $\frac{76360-75007}{75007}$ X 100% = 1.8 <5%

SID load:

SID manual calculation:

Weight Total Area of floors (m2) x SID Load/m2 SID Load/m2 = 4 KN /m2. \Box Weight =7643* 4 =30572 kN.

from ETABS = 30575 KN.

→% of error = $\frac{|\text{Manual-Sap}|}{\text{SAP}} \times 100\% = \frac{30572 - 39575}{35075} \times 100\% = .2 < 5\%$

live load:

live manual calculation:

Weight Total Area of floors (m2) x SID Load/m2 SID Load/m2 = 4 KN /m2. \Box Weight =3471* 4 + 4109 * 2.5=24312kN.

from ETABS= 30575 KN.

→% of error = $\frac{|\text{Manual-Sap}|}{\text{SAP}}$ X 100% = $\frac{24312-24393}{24393}$ X 100 % = .3<5 %

The load of the building is equilibrium

3.3.1.3 stress - strain check:

• <u>column check :</u>

take three column to check:

column 1 :

(Hand Calculation):

Axial Force (Hand Calculation): \rightarrow Column weight +beam weight + Tributary Area of column (m^2) x no. of stories x height of stories * wu

 $\underline{axial \ load} = .3^{*}.6^{*}6^{*}25^{*}1.2 + 12^{*}.9^{*}.25^{*}25^{*}1.2 + (7.15^{*}5)^{*}2^{*}(1.2^{*}(4+4.06)+1.6^{*}4) = 1238 kn.$

(from Etabs):1358

Figure 3-3 the following figure shows the ETABS value

Figure 3-2axial value for column 1 from ETABS

→% of error =
$$\frac{|\text{Manual-Sap}|}{\text{SAP}}$$
 X 100% = $\frac{1238-1358}{1358}$ X 100 % = 8.8 <10 % OK

• column 2:

(Hand Calculation):

Axial Force (Hand Calculation): \rightarrow Column weight +beam weight + Tributary Area of column (m^2) x no. of stories x height of stories * wu

Axial force =. $3^{*}.6^{*}31.64^{*}25^{*}1.2+10.2^{*}.9^{*}.25^{*}25^{*}1.2+(6.3^{*}5.4)^{*}2^{*}(1.2^{*}(4+4.06)+1.6^{*}4)$ + $(6.3^{*}5.4)^{*}7^{*}(1.2^{*}(4+4.06)+1.6^{*}2.5)=4564$ kn.

(from Etabs):4405

Figure 3-4the following figure shows the ETABS value

column 3 :

(Hand Calculation):

Axial Force (Hand Calculation): \rightarrow Column weight +beam weight + Tributary Area of column (m^2) x no. of stories x height of stories * wu

 $\underline{axial \ load} = .6^*.6^*31.64^*25^*1.2 + 11.3^*.9^*.25^*25^*1.2 + (4.55^*7.1)^*2^*(1.2^*(4+4.06) + 1.6^*4) + (6.3^*5.4)^*7^*(1.2^*(4+4.06) + 1.6^*2.5) = 5073kn.$

(from Etabs): 5264Kn

the following figure shows the ETABS value

for Slab and beam check:

Manual calculations:

In order to use the Direct Design Method, the following limitation must be satisfied:

1)3 spans or more in each direction

The following figure shows there are 3 span or more

3-4Limitation (1) 3 span or more in each direction

2) Rectangular panel with $l \log / l short$ in any panel ≤ 2

Figure 3-5limitation 2 rectangular panel

3) For successful span
$$llong/l$$
 short ≤ 1 .

7.7/4.4 =1.7< 2 OKK.

Table 14the following table shows the limitation is satisfied

	L long /l short	
Span 1-2	7.25/6	1.25
Span 2-3	10.5/7.25	1.44

4)Column offset ≤10% of smaller span in the column offset direction.

max offset = 10% **Min* (s1,s2)

max offset = 10% *4.7 = .47.

actual offset = 1/10.5= 9.5 5 < 10 % okk.

5)UNIFORM GRAVITY LOAD WITH LL/ DL < 2

live load = 2.5 KN/m2

dead load = 4 KN/m2

 $LL / DL = .6 < 2 \ OKK$

6)For slab with beams $.2 \le \frac{afAB/lAB^{2}}{afBC/LBC^{2}} \le .5$

afi= $\frac{EcB*Ib}{EcS*Is}$.

Ecb = *modulus* of *elasticity* of *the beam concrete*.

Ecs = *modulus* of *elasticity* of the *slab* concrete.

$$I beam = \frac{900 \times 250^3}{12} = 2.2 \times 10^9$$

$$I \, slab = \frac{7.25 \times 250^3}{12} = 9.1 \, \text{*}s10^9$$

Table 15alpha f for beams

	Frame	l slab	l beam	afi
AB	7700	1E10	2.2 *10 ⁹	0.116
BC	7250	.944E10	2.2*10 ⁹	0.124
CD	439	.6E10	2.2 *10 ⁹	.205
DE	4397	.6E10	2.2 *10 ⁹	0.204

.124/7.25^2

.2≤1.06≤ 5

The limitations are satisfied

Table 16limitation for all frames

LAB	L BC	afiAB	afiBC	Limitation	
		0.116	0.124	1.06	ОК
7.7	7.25				
LBC	L CD	afiBC	afiCD	Limitation	ОК
7.25	4.39	0.124		1.65	
			.205		
LCD	L DE	afiCD	afiDE	Limitation	ОК
4.39	4.37	.205	0.204	1	

7)Moment redistribution is not permitted: No redistribution has been done at any moment, so this limitation is fulfilled.

Uimate load of the beam:

Wu for beam = beam own weight + (Wu for slab x triputary width of beam)] = $[(1.2 \times 5 \times 6 \times 25) + (13.6 \text{ kn /m2} \times 3.75 \text{ m})] = 48.91 \text{ kN/m}.$

Moment= $\frac{\text{wu} * \ln^2}{8} + \frac{\frac{\ln^2}{12}}{12}$ Moment= $\frac{9 * 10.5^2}{8} + \frac{51 * 10.5^2}{12}$

moment = 592 KN.M

From ETABS :

the following figure illustrate the values of Moments in the selected interior beam

	IOT		End Of	fset Location	
Load Case (Load Combination	Modal Case	I-Enc	0.1500	m
1.2d+1.61	-		J-End	d 10.6588	m
			Lengt	h 10.8088	m
Component	Displ	ay Location			
Major (V2 and M3)	▼ ○ :	Show Max 🧕 🧕	Scroll for Values	5.9312	m
Shear V2					
				-16.5999 kN	
Moment M3					
				323.8487 kN-	m
Deflection (Down +)					
I End Jt: 19			J End Jt: 2	32.732 mm	
	_				

Figure 3-6positive moment for beam.

Diagram for Beam B20 at Story Story3 (drop)			×
Load Case/Load Combination	End Offs	et Location	
Load Case Load Combination Modal Case	I-End	0.1500	m
1.2d+1.6 I	J-End	10.6588	m
	Length	10.8088	m
Component Display Location			
Major (V2 and M3) Show Max Scroll for	Values	10.8088	m
Moment M3	+	-369.0612 kN-	m
Deflection (Down +)	End Jt: 20	0.000 mm	
Absolute Relative to Frame Minimum e Relative to Beam Ends Done	© Rela	tive to Story Minin	num

Figure 3-7negative moment for beam

moment=M1-M1/2 - M+ = 692

→difference =
$$\frac{|\text{Manual-Sap}|}{\text{SAP}}$$
 X 100% = $\frac{592-692}{692}$ X 100% = 14.4 %< 15% OK

Slab check :

middle strip moment= W L2(Ln12) ²/8

WU = 13.6 Kn/m2

$$l2 = \frac{4.3}{2} + \frac{4.3}{2} = 4.3 \text{m}.$$

ln2= 7.7 -.45= 7.25m.

middle strip moment = $\frac{13.6 * 4.3 * (7.25)^2}{8}$ =384.23 Kn.m

(from Etabs): the figure below illustrate the values of Moments in the selected interior frame.

Figure 3-8moment for middle strip slab

from ETABS= 332 KN.M

→difference =
$$\frac{|\text{Manual-Sap}|}{\text{SAP}}$$
 X 100% = $\frac{384-345}{345}$ X 100% = 11.3% < 15% OK

column strip :

column strip moment= W L2(Ln12) ²/8 WU = 13.6 Kn/m2 I1 = $\frac{Min (S1/I1)}{4}$ I1= $\frac{4.3}{4}$ = 1.075 In2= 7.7 -.45= 7.25m. column strip moment = $\frac{13.6 * 1,075 * (7.25)^{2}}{8}$ = 96 Kn.m.

the figure below illustrate the values of Moments in the selected interior frame.

						Trans	parency <		•
Section Cuttin	g Line			Load Case			Resultant Fo	rce Location and	Angle
	Start Point	End Point		1.2d+1.6 I			Global X	7.7072	m
Global X	3.725	11.6893	m				Global Y	-9.2949	m
Global Y	-9.3	-9.2898	m	Objects to Include			Global Z	20.76	m
Global Z	20.76	20.76	m	Columns	Beams	Braces	Angle	0.072	dec
				Floors	Walls	Links	/ ligit	0.075	ucg
ntegrated For	ces								
		Right	Side				Left Side		
-	1	2		Z		1	2	Z	—
Force	-3.9500	-3.2598		153.2838		3.9588	3.2598	-97.1051	KN
Moment	-88.7898	-25.8444		-15.9028		81.595	23.9747	15.9028	kN-m
		Save Right	Side C	ut			Save Left Side Cu	t	

Figure 3-9moment for column strip slab

from ETABS= 332 KN.M

→difference =
$$\frac{|\text{Manual-Sap}|}{\text{SAP}}$$
 X 100% = $\frac{96-88}{88}$ X 100 % = 9 % < 15 % OK.

3.3.1.4 Deflection check:

To ensure that the occupants of the facility are at ease and do not experience anxiety or fear of it failing, it is necessary to examine the deflection of the slab.

Following table shows examples of how the maximum permitted deflection (limit) is calculated :

TABLE 9.5(b) -	- MAXIMUM	PERMISSIBLE	COMPUTED	DEFLECTIONS
----------------	-----------	-------------	----------	-------------

Type of member	Deflection to be considered	Deflection limitation		
Flat roofs not supporting or attached to nonstructural elements likely to be damaged by large deflections	Immediate deflection due to live load L	ℓ/180 [°]		
Floors not supporting or attached to nonstructural elements likely to be damaged by large deflections	Immediate deflection due to live load L	ℓ/360		
Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections	That part of the total deflection occurring after attachment of nonstructural elements (sum of the long-term	ℓ/480 [‡]		
Roof or floor construction supporting or attached to nonstructural elements not likely to be damaged by large deflections	or construction supporting or attached to nonstructural deflection due to all sustained loads and the immediate deflection due to any additional live load) [†]			
*Limit not intended to safeguard against ponding. Ponding should be checked by suitable calculations of deflection, including added deflections due to ponded water, and considering long-term effects of all sustained loads, camber, construction tolerances, and reliability of provisions for drainage. *Long-term deflection shall be determined in accordance with 9.5.2.5 or 9.5.4.3, but may be reduced by amount of deflection calculated to occur before attachment of nonstructural elements. This amount shall be determined on basis of accepted engineering data relating to time-deflection characteristics of members similar to those being considered.				
Limit shall not be greater than tolerance provided for nonstructural elements. Limit may be exceeded if camber is provided so that total deflection minus camber does not exceed limit.				

Figure 3-10The maximum permitted deflection for immediate deflection based on this table is I/360

The maximum permitted deflection for immediate deflection based on this table is I/360

L: The slab's critical span length in millimeters

= 10.77/360 = 29m The following figure shows the max deflection from live load by ETABS :

Figure 3-11deflection value from live load

 Δ sap=0.007< Δ max ok.

*figure :*illustrate the values of deflection in the selected interior frame.

Figure 3-12deflection value from service load

The observed numbers are in millimeter

$\Delta max = 1/240$ from service lood

Δmax=10.77/240=44mm

∆sap=33≤∆max<mark>ok</mark>.

3.4 seismic design:

3.4.1 seismic load analysis

The seismic analysis will be done on this model according to UBC-97 code and with response Spectrum method.

There are some parameters that should be defined during the seismic analysis as follows:

3.4.1.1 seismic zone factor (z) :

Seismic Zone Factor,Z

Figure 3-13sesmic hazard map

The building is located in ramallah city wich mean the the sesmic zone is 2A and from the ,map above the sesmic zone factor = .15

3.4.1.2 Soil profile type :

The soil under the building is very dense soil with bearing capacity =350 KN/m2.

its mean that the soil profile is SC.

		AVERAGE SOIL P	ROPERTIES FOR TOP 100 FEET (30 460 mm)	OF SOIL PROFILE
SOIL PROFILE	SOIL PROFILE NAME/GENERIC DESCRIPTION	Shear Wave Velocity, V ₃ test second (m/s)	Standard Penetration Test, 7 [or 76, for cohesionless soil layers] (blows foot)	Undrained Shear Strength, 3g ps (kPa)
S_A	Hard Rock	> 5,000 (1,500)		
SB	Rock	2,500 to 5,000 (760 to 1,500)	7 -	-
Sc	Very Dense Soil and Soft Rock	1,200 to 2,500 (360 to 760)	> 50	> 2,000 (100)
SD	Stiff Soil Profile	600 to 1,200 (180 to 360)	15 to 50	1,000 to 2,000 (50 to 100)
S_E^{-1}	Soft Soil Profile	< 600 (180)	< 15	< 1,000 (50)
SF		Soil Requiring Site-specific	Evaluation. See Section 1629.3.1.	100000

¹Soil Profile Type S_E also includes any soil profile with more than 10 feet (3048 mm) of soft clay defined as a soil with a plasticity index, PI > 20, $w_{inc} \ge 40$ percent and $s_{in} < 500$ psf (24 kPa). The Plasticity Index, PI, and the moisture content, w_{inc} , shall be determined in accordance with approved national standards.

3.4.1.3 Acceleration-Dependent Seismic Coefficient (Ca):

The sesmic cofficant (ca) can be obtained from the following figure . (at soil profile sc and z = .15 CA = .18)

Table 3.6: Seismic Coefficient Ca:

TABLE 16-Q-SEISMIC COEFFICIENT Ca

		SEISMIC ZONE FACTOR, Z				
SOIL PROFILE TYPE	Z = 0.075	Z = 0.15	Z = 0.2	Z = 0.3	Z = 0.4	
SA	0.06	0.12	0.16	0.24	$0.32N_{a}$	
S_B	0.08	0.15	0.20	0.30	0.40Na	
Sc	0.09	0.18	0.24	0.33	0.40N _d	
SD	0.12	0.22	0.28	0.36	0.44Na	
S_E	0.19	0.30	0.34	0.36	0.36Na	
SF			See Footnote 1			

¹Site-specific geotechnical investigation and dynamic site response analysis shall be performed to determine seismic coefficients for Soil Profile Type S_F.

3.4.1.4 velocity-Dependent Seismic Coefficient (Cv) :

The seismic coefficient from table = .25 from table at z = .15, and soil profile =Sc

	SEISMIC ZONE FACTOR, Z				
SOIL PROFILE TYPE	Z = 0.075	Z= 0.15	Z = 0.2	Z = 0.3	Z = 0.4
SA	0.06	0.12	0.16	0.24	$0.32N_{v}$
SB	0.08	0.15	0.20	0.30	0.40N _v
S _C	0.13	0.25	0.32	0.45	0.56N _v
SD	0.18	0.32	0.40	0.54	0.64N _v
S_E	0.26	0.50	0.64	0.84	0.96N _v
SF			See Footnote I		

TABLE 16-R-SEISMIC COEFFICIENT Cv

Site-specific geotechnical investigation and dynamic site response analysis shall be performed to determine seismic coefficients for Soil Profile Type SF.

3.4.1.5 Important factor :

It usually serves to describe or demonstrate how significant a building is :

occ	UPANCY CATEGORY	OCCUPANCY OR FUNCTIONS OF STRUCTURE	SEISMIC IMPORTANCE FACTOR, /	SEISMIC IMPORTANCE ¹ FACTOR, L	WIND IMPORTANCE FACTOR, L
1.	Essential facilities ²	Group I, Division 1 Occupancies having surgery and emergency treatment areas Fire and police stations Garages and shelters for emergency vehicles and emergency aircraft Structures and shelters in emergency preparedness centers Aviation control lowers Structures and equipment in government communication centers and other facilities required for emergency response Standby power-generating equipment for Category 1 facilities Tanks or other structures containing housing or supporting water or other fire-suppression material or equipment required for the protection of Category 1, 2 or 3 structures	1.25	1.50	1.15
2	Hazardous facilities	Group H, Divisions 1, 2, 6 and 7 Occupancies and structures therein housing or supporting toxic or explosive chemicals or substances Nonbuilding structures housing, supporting or containing quantities of toxic or explosive substances that, if contained within a building, would cause that building to be classified as a Group H, Division 1, 2 or 7 Occupancy	1.25	1.50	1.15
3.	Special occupancy structures ³	Group A, Divisions 1, 2 and 2.1 Occupancies Buildings housing Group E, Divisions 1 and 3 Occupancies with a capacity greater than 300 students Buildings housing Group B Occupancies used for college or adult education with a capacity greater than 500 students Group I, Divisions 1 and 2 Occupancies with 50 or more resident incapacitated patients, but not included in Category 1 Group I, Division 3 Occupancies All structures with an occupancy greater than 5,000 persons Structures and equipment in power-generating stations, and other public utility facilities not included in Category 1 or Category 2 above, and required for continued operation	1.00	1.00	1.00
4.	Standard occupancy structures ³	All structures housing occupancies or having functions not listed in Category 1, 2 or 3 and Group U Occupancy towers	1.00	1.00	1.00
5.	Miscellaneous structures	Group U Occupancies except for towers	1.00	1.00	1.00

TABLE 16-K-OCCUPANCY CATEGORY

the building important factor = 1

3.4.1.6 Force Reduction Factor (R) :

The used structural system in the building is #2-3-a which is Building frame system with concrete shear walls. Seismic reduction factor R = 5.5 & Ω =2.8.

				HEIGHT LIMIT FOR SEISMIC ZONES 3 AND 4 (feet)
BASIC STRUCTURAL SYSTEM ²	LATERAL-FORCE-RESISTING SYSTEM DESCRIPTION	R	۰.	× 304.8 for mm
1. Bearing wall system	Light-framed walls with shear panels a. Wood structural panel walls for structures three stories or less b. All other light-framed walls 2 Shear walls	5.5 4.5	2.8 2.8	65 65
	a. Concrete b. Masonry 3. Light steel-framed bearing walls with tension-only bracing 4. Braced frames where bracine carries eravity load	4.5 4.5 2.8	2.8 2.8 2.2	160 160 65
	Steel Steel Concrete ³ Cheavy timber	4.4 2.8 2.8	2.2 2.2 2.2	160
2. Building frame system	1. Steel eccentrically braced frame (EBF)	7.0	2.8	240
	a. Wood structural panel walls for structures three stories or less b. All other light-framed walls	6.5 5.0	2.8 2.8	65 65
	a. Concrete b. Masoury 4. Ordinary braced frames	5.5 5.5	2.8 2.8	240 160
	a. Steel b. Concrete ³ c. Heavy timber 5. Special concentrically braced frames	5.6 5.6 5.6	2.2 2.2 2.2	160 65
	a. Steel	6.4	2.2	240
 Moment-resisting frame system 	 Special moment-resisting frame (SMRF) a. Steel b. Concrete⁴ Masonry moment-resisting wall frame (MMRWF) Concrete intermediate moment-resisting frame (IMRF)⁵ 4. Ordinary moment-resisting frame (OMRF) 	8.5 8.5 6.5 5.5	2.8 2.8 2.8 2.8	N.L. N.L. 160 —
	a. Steel ⁶ b. Concrete ⁷ 5. Special truss moment frames of steel (STMF)	4.5 3.5 6.5	2.8 2.8 2.8	160
4. Dual systems	Shear walls Concrete with SMRF Concrete with steel OMRF Concrete with concrete IMRF ⁵ Masonry with SMRF Masonry with steel OMRF Masonry with steel OMRF Masonry with concrete IMRF ³ g. Masonry with masonry MMRWF Steel EBF	8.5 4.2 6.5 5.5 4.2 4.2 6.0	2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	N.L. 160 160 160 160 160 160
	a. With steel SMRF b. With steel OMRF 3. Ordinary brand frames	8.5 4.2	2.8 2.8	N.L. 160
	a. Sicel with steel SMRF b. Steel with steel OMRF c. Concrete with concrete SMRF ³ d. Concrete with concrete SMRF ³ 4. Special concentrically braced frames a. Steel with steel SMRF	6.5 4.2 6.5 4.2 7.5	2.8 2.8 2.8 2.8 2.8	N.L. 160 — N.L.
5. Cantilevered column building	D. Steel with steel OMRI* 1. Cantilevered column elements	4.2	2.8	357
systems				
 Shear wall-frame interaction systems 	1. Concrete ⁸	5.5	2.8	160
7. Undefined systems	See Sections 1629.6.7 and 1629.9.2	_	-	-

TABLE 16-N-STRUCTURAL SYSTEMS¹

3.5 load combination :

According to UBC -97 , there are two group of combination :

3.5.1 Ultimate combination :

- 1.4 D
- 1.2D + 1.6 L
- 1.2D +L + E
- .9 D + E

Which E = ρ Eh + Ev

 ρ : Redundancy factor and it shall be taken (1) because the structure is located in seismic

zone2.

Eh = EQx + 0.3 EQy OR EQY+ .3 EQX

Ev = 0.5 Ca I D, which it may be taken as zero for allowable stress design .

EV = .09 D.

the following table shows the ultimate load combination

Table 17ultimate load combination

Ultimate load combination		
U1	1.4 D	
U2	1.2 D +1.6 L	
U3	1.29 D +L+EOX+.3 EQY	
U4	1.29 D +L-EOX3 EQY	
U5	1.29 D +L+EOY+.3 EQX	
U6	1.29 D +L-EOY3 EQX	
U7	.81 D +EQX+.3 EQY	
U8	.81 D -EQX3 EQY	
U9	.81 D +EQY+.3 EQX	
U10	.81 D -EQY3 EQX	
ENVELOP	U1 +U2+U3+U4+U5+U6+U7+U+U8+U9+U10.	

3.5.2 Service load combination :

- D
- D+L
- D+E/1.4
- .9 D ± E/1.4
- D + .75 (L+E/1.4)

the following table shows the ultimate load combination

Table 18service load combination

Service load combination :

S1	D
S2	D +L
S3	D + .71 EQX +.21EQY
S4	D71 EQX21 EQY
S5	D + .71 EQY +.21 EQX
S6	D71 EQY21 EQX
S7	.9 D +.71 EQ X+.21 EQY
S8	.9 D71 EQ X21 EQY
S9	.9 D +.71 EQ Y+.21 EQX
S10	.9 D71 EQ Y21 EQX
S11	D +.75 L +.53 EQX+.15 EQY
S12	D +.75 L53 EQX15 EQY
S13	D +.75 L +.53 EQY+.15 EQX
S14	D +.75 L53 EQY15 EQX
Envelop	\$1+\$2+\$3+\$4+\$5+\$6+\$7+\$8+\$9+\$10+\$11+\$12+\$13+\$14

3.6 seismic checks:

3.6.1 Period check:

To ensure that the ETABS generation period is within the period limits from the manual calculation based on the UBC code formula, the following condition must be satisfied :

T ETABS <= 1.4 T method A

period by method A

 $\mathsf{T} = ct * (hn)^{3/4}$

Ct is a factor given by :

.Ct = 0.0853 for steel moment-resisting frames

```
Ct = 0.0731 for reinforced concrete moment-resisting frames and eccentrically braced
```

frames.

Ct = 0.0488 for all other buildings.

hn :building height.

--The building was considered as a bearing shear wall system, hence, the factor (Ct) used for the building was 0.0488.

- hn = 31.9 m

1.4 T manual =1.4 * .0488 * $31.9^{\frac{3}{4}} = .92$

Ty ETABS from mode 1 :

The following figure shows the period by ETABS software.

Plan View - Story8 - Z = 28.04 (m) Mode Shape (Modal) - Mode 1 - Period 1.23668278996573

Figure 3-14period value from mode 1

Ty from mode 1 =1.2 sec >1.4 T manual .

Tx ETABS from mode 2 :

The following figure shows the period by ETABS software.

Plan View - Story8 - Z = 28.04 (m) Mode Shape (Modal) - Mode 2 - Period 1.02760394881956

Figure 3-15period value from mode 2

TX from mode 2 = 1.02 sec> T manual .

The number will be accepted even though it is the larger than the allowable limit Because the code permits some deflections.

3.6.2 Model participation mass ratio:

At least 90% of the components of the model by the modes that are supposed to function in a seismic situation must move and shift in both directions.

the table below shows the model participation mass ratio:

Table 19model mass participation ratio

Case	Mode	Period	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	,
		sec								
Modal	32	0.056	0.0023	0.0001	0	0.8872	0.8628	0	0.	
Modal	33	0.056	0.0002	1.187E-05	0	0.8874	0.8628	0	1.347	
Modal	34	0.055	0.0059	0.0001	0	0.8934	0.863	0	0.	
Modal	35	0.054	0.0005	0.0054	0	0.8939	0.8684	0	0.	
Modal	36	0.053	0.0001	0.0126	0	0.8939	<mark>0.8</mark> 81	0	0.	
Modal	37	0.052	0.0001	0.0003	0	0.894	0.8813	0	0.	
Modal	38	0.052	0.0002	0.0213	0	0.8942	0.9026	0	0.	
Modal	39	0.051	0.0004	0.0056	0	0.8946	0.9082	0	0.	
Modal	40	0.048	2.597E-05	0.0003	0	0.8946	0.9085	0	0.	
Modal	41	0.048	0.0003	0.0008	0	0.8949	0.9094	0	0.	Ī
Modal	42	0.046	0.0001	0.0003	0	0.895	0.9097	0	0.	
Modal	43	0.046	8.79E-06	0.0005	0	0.895	0.9102	0	0.	102
Modal	44	0.045	0.0229	0.0013	0	0.9179	0.9114	0	0.	
Modal	45	0.045	0.0027	0.0004	0	0.9206	0.9118	0	0.	

At mode 45 the building satisfies more than 90% of its component's displacement in each

Direction . The summation of Ux& Uy > 90% \rightarrow check is ok.
3.6.3 Base shear check :

In this check manual base shear should be less than Etabs result .

Base shear can be calculated using the following formula :

 $v = min (2.5 ca, cv/t) w * \frac{I}{R}$

Where :

Cv: velocity seismic coefficient .

I: Importance factor of the building.

R: numerical coefficient representative of the inherent over strength and global ductility.

T: This is the basic natural period of a simple one degree of freedom system which is the time required to complete one whole cycle during dynamic load.

Ca: Seismic coefficient

W: is the summation of the own weight of the structure, SID, and partial of live load KN

Where: W = Dead + SID + 0.25 Live

The table below show the load cases from ETABS :

Table 20load cases from etabs

Load	FZ (KN)
Dead	75007
Sid	30575.3685
Live	24393.0101

The table below show the BASE shear from ETABS :

Table 21base shear from ETABS

				old scale	new scale
Load	T min	V manual KN	VETABSKN	factor	factor
х	0.919	5523.8415	2817.3329	1783	3495.86284
у	0.919	5523.8415	2831.8096	1783	3477.99138

Base shear results from ETABS are less than manual calculations, so the scale factor shall be maximized .

New scale factor = $\left(\frac{F \text{ manual}}{F \text{ etabs}}\right)^*$ old scale factor = 3495.8

the table bellow shows the ETABS base shear after modify the scale factor:

Table 22Base shear from ETABS

Load	Tmin	V manual KN		new scale
LUau	1 111111		VETADSKN	Tacioi
х	0.919	5523.8415	5523.3	3495.86284
у	0.919	5523.8415	5523	3477.99138

% ERROR = $\frac{5523-5522}{5522}$ * 100 % = .08 % < 5 % ok.

3.6.4 drift check :

According to UBC-97, the drift limitation should be more than the lateral displacement between the floor in the building .

The following table shows all drift from floor , If T > 0.7, the drift limitation = $0.02 \times H$ story.

Story	story	Displacement x	Displacement y	drift	drift	delta x	delta y	delta	
	height			Х	у			limit	
story 1	3	0.21	0.29						
story 2	3	0.9	0.9	0.69	0.61	2.6565	2.3485	60	SAFE
story 3	3.84	3.8	2.9	2.9	2	11.165	7.7	76.8	SAFE
story 4	3.62	8.1	5.4	4.3	2.5	16.555	9.625	72.4	SAFE
story 5	3.62	12.6	8.3	4.5	2.9	17.325	11.165	72.4	SAFE
story 6	3.62	17	11	4.4	2.7	16.94	10.395	72.4	SAFE
story 7	3.62	23	15	6	4	23.1	15.4	72.4	SAFE
story 8	3.62	28	19	5	4	19.25	15.4	72.4	SAFE
story 9	3.62	31	23	3	4	11.55	15.4	72.4	SAFE

Table 23Drift check for all floor

Calculation example story 2:

drift x = displacement - x (n) - displacement - x (n-1)

drift y= displacement - y (n) - displacement - y (n-1)

delta - $x = .7^*R^*Drift - x$.

delta - $y = .7^{R*}$ Drift - y.

delta limit = $.02^*$ story height .

Here are some figure showing the value of displacement at the center from service envelop combination .

Figure 3-16displacement in basement 2

The above figure shows displacement in FROM b2 Ceiling

Story: Story3
Ux = -3.887
Uy = -2.903
Uz = -30.246
Rx = -0.002609
Ry = -0.001072
RZ = -0.000194

Figure 3-17displacement in ground floor

The above figure shows displacement in ground Ceiling.

3.6.5 p-delta check :

The effect of \blacktriangle -p can be neglect if the following condition satisfied :

$$\emptyset x = \frac{P}{Sx*H} < .1$$
$$\emptyset y = \frac{P}{Sy*H} < .1$$

where :

p : the maximum service axial force on the story.

Sx :the lateral stiffness in the story in x direction.

Sy :the lateral stiffness in the story in y direction.

Sample of calculation for the first story :

P= 13353 kn.

Sx= 227917.356 kn/m.

sy = 176295.978kn/m

$$\Theta x = \frac{13353}{23392*3.6} < .1 \text{ ok}$$
$$\Theta y = \frac{13353}{31833*3.61} < .1 \text{ okk}$$

The following figure shows the p - delta check for all stories :

Table 24p- delta check

	P(kn.)	Stiffness x	iffness x Stiffness y 🛛 \varTheta		Өу	check
		kn/m	kn/m			
base2	198224.6	30440546.7	26811881	0.002171	0.002464	ok
Base1	172873.8	5418980.14	6458279	0.010634	0.008923	ok
ground	152932.6	2036630.2	1378019	0.019761	0.029205	ok
1	105138	645618.85	818679.4	0.04511	0.035673	ok
2	85709.8	538719.555	674721.7	0.044072	0.035286	ok
3	77555	482694.939	554847.6	0.044507	0.038827	ok
4	46854.12	434676.474	432317.1	0.029859	0.030105	ok
5	28109.22	359215.195	302444.5	0.021676	0.025817	ok
6	13353.12	227917.356	176296	0.016229	0.02104	ok

3.7 Required design element :

3.7.1 Column design :

The columns will be designed based on seismic effect axial and shear based on ACI-318-14 Code.

the flowing figure shows columns distribution in plans.

Figure 3-18column layout

The following table shows the column design :

Table 25column design and reinforcement

Column	Length (mm)	Width (mm)	AS (m <i>m</i> ²	Longitudinal rebar	Stirrup used near support	Stirrup used away support	SO (mm)	S1 (mm)	Lo (mm)	Lab splice (mm)
C1	600	500	2700	14 Ø16	3Ø10	3Ø10	125	150	600	800
C2	800	350	10085	22 Ø25	3Ø10	3Ø10	100	150	800	1250
C3	900	400	15654	20 Ø32	3Ø10	3Ø10	100	150	900	1600
C4	450	600	11859	16 Ø32	3Ø10	3Ø10	100	150	600	1600
C5	450	600	7155	16 Ø25	3Ø10	3Ø10	100	150	600	1250
C6	600	600	9877	22Ø25	3Ø10	3Ø10	150	150	450	1250

3.7.1.1 manual design calculation :

THE COLUMN WITH PU =5500 KN WILL BE DESIGNED MANUALLY .

-FY = 420 MPA , FC`= 28 MPA , P =.01 .

 $\mathbf{AG} = \frac{pu}{.65*.8(.85*fc*(1-.01)+.01*420)} = 380985.6 \text{ m}m^2$

DIMENSIONS = $900*450 = 405000 \text{ M}m^2 > 380985 \text{MM} 2$

5846 KN> 5500 KN ok .

 $AS = .01*405000 = 4050 \text{ m}m^2 \text{ USE } 10 \text{ }\text{\emptyset}25 \text{ }AS = 4900 \text{ }\text{m}m^2.$

To achieve the seismic design for the column:

Figure 3-19seismic design requirement in longitudinal section in column

Where:

$$S_{0} = min \begin{cases} \frac{least \ column \ Dimention}{2} \\ 8 * db \\ 24 * ds \\ 300mm \end{cases}$$

$$S_{1} = min \begin{cases} least \ column \ dimmention \\ 16 * db \\ 48 * ds \\ L_{0} = zone \ 1 \ length = max \begin{cases} clear \ height \ of \ column \ dimention \\ maximum \ column \ dimention \\ 450mm \end{cases}$$

lab splice:

- 1. Rebar percentage ρ between 1% and 6%.
- Lap splice of bars shall be used at the middle height of the column with lap splice length, and shall be designed as tension lap splices and enclosed within transverse reinforcement conforming to the following section.
- 3. Lap splice equals 50 db

figure 3-20seismic design requirement in column

3.7.2 Slab design:

The slab is two way ribbed slab h =30 cm , the required reinforcement will be found using slab concert design in ETABS .

AS min =
$$\begin{cases} \frac{1.4}{fy} \\ \frac{.25\sqrt{f'c}}{fy} \\ & 150^*300 \end{cases}$$

Use 2 Ø 12

in figure , shows the top reinforcement in the slab in X direction:

Figure 3-21the top reinforcement in ground floor in x direction.

The slab need 2Ø12as minimum reinforcement and 2Ø14 in the maximum area as shown .

In figure , shows the bottom reinforcement in the slab in X direction :

Figure 3-22the bottom reinforcement in ground floor in x direction.

The slab need 2 \emptyset 12 as minimum reinforcement and 2 \emptyset 14 in the maximum area as shown .

In figure , shows the top reinforcement in the slab in y direction :

Figure 3-23 the top reinforcement in ground floor in x direction.

The slab need 2 Ø12as minimum reinforcement and 2Ø 14 in the maximum area as shown .

In figure , shows the bottom reinforcement in the slab in y direction :

Figure 3-24the bottom reinforcement in ground floor in y direction.

The slab need 4 Ø12 as minimum reinforcement and 2Ø 14 in the maximum area as shown .

3.7.2.1 check punching shear for the slab:

For panel with beam $\frac{yf*l2}{l1} > 1$ no need to check punching shear.

For panel with hidden beam the punching shear will be checked by ETABS program.

The slab's punching shear stress must be lower than its punching shear stress capacity. The Figure , show the punching shear stress for the first story by ETABS program :

Figure 3-25 punching shear factor in each column

The value of $vup / \emptyset vcp < 1$, the punching shear check is ok. The figure below shows the punching shear value in the slab, the following table shows the $\frac{vf * l^2}{l_1} > 1$ value for the panel :

the
$$\frac{\Im f * l2}{l1}$$
 value

Panel	$\frac{\sqrt{f*l^2}}{l^1} > 1$
panal1	1.22742
panal2	1.580585
panal3	1.516563
panal4	1.616186
panal5	1.293344
panal6	1.847657

3.7.3 Beam design :

Based on shear and moment regarding the seismic effect, the beam needs to be reinforced With longitudinal bars and stirrups.

The top steel bars were divided into 3 zones in the beam and the bottom steel bars into one Zone, and the stirrups were also divided into 3 zones where the stirrups were condensed Near the columns

To achieve the seismic design for the beam for :

Figure 3-26Seismic requirement for beam section

db : main bar diameter .

h: beam depth.

s1:least of (h/4 or $8^* \emptyset$ main bar diameter or 24^* diameter stirrup).

s2 :least of (h/2 or 12 * Ø main bar diameter or 30 cm).

figure below shows the stirrup distribution in beam section :

Figure 3-27 disruption of stirrups in beam section

The figure , shows the required longitudinal reinforcement for the beams in the ground Floor by ETABS program :

Figure 3-28longitudinal reinforcement for the beams in the ground floor

To make it easier to identify the reinforcement details, the beams should be given names. Figure show the beam layout in ground floor :

beam layout in ground floor

3.7.3.1 Flexural design for beam :

Table below shows the number of bars for beams on top and bottom :

Table 26longitudinal reinforcement in beams floor

		Н	d	В	AS	AS min	AS	Ø	#Ø	S	
							max				
B1	TOP	300	260	900	1600	780	4212	18	8	122.333	OK
	Bottom	300	260	900	570	780	4212	14	4	268	OK
B2	TOP	300	260	900	2500	780	4212	20	10	73	OK
	Bottom	300	260	900	870	780	4212	14	4	197.5	OK
B 3	TOP	700	660	500	1412	1100	5940	20	5	90	OK
	Bottom	700	660	500	360	780	4212	14	4	268	OK
B4	TOP	300	260	900	1550	780	4212	16	8	90	OK
	Bottom	300	260	900	570	780	4212	14	4	268	OK
B5	TOP	300	260	900	2020	780	4212	20	8	85	OK
	Bottom	300	260	900	630	780	4212	14	4	268	OK
B6	TOP	300	260	900	1815	780	4212	20	8	77	OK
	Bottom	300	260	900	607	780	4212	14	4	268	OK
B7	TOP	700	660	500	2336	1100	5940	32	6	55	OK
	Bottom	700	660	500	900	1100	5940	16	4	75	OK
B 8	TOP	300	260	1200	3660	866	3660	32	10	75	OK
	Bottom	300	260	1200	3660	866	3660	32	10	120	OK

3.7.3.2 Shear design :

table below shows the number of stirrups for beams on top and bottom :The

Table 27shear reinforcement in beams floor

	vu	vu/Ø	VC	VS	VS MAX	AV/S	AV/AS min	Av/s USE	Ø	AV	S	\$1
								D				
B1	199	265.		58		0.5	0.75	.75	2Ø8	157	133	75
			206		825							
B2	97	129	206	77	825	0.7	0.75	0.75	2Ø8	157	133	75
B3	225	300	291	10	1164	0.3	0.416	0.41	2Ø8	157	254	150
B4	73	97	206	109	825	0.9	0.75	0.9	2Ø8	157	128	75
B5	136	181	206	25	825	0.22	0.75	0.75	2Ø8	157	130	75
B6	300	400	206	193	825	1.7	0.75	1.7	2Ø8	157	100	75
B7	350	466	291.0	175	1164.	0.6	0.41	0.6	2Ø8	157	160	75
B8	300	400	275	124	1100	1.1	1	1.1	2Ø8	157	90	75

Manual Calculation for flexural reinforcement :

for B1

SMIN= max
$$\begin{cases} \frac{1.4}{FY} * b * d\\ \frac{25}{fy} * \sqrt{f'c} * bd \end{cases} = .003*b*d$$

AS top = 1212> AS min Use 6Ø 16 WITH SPACING = 142 mm between bars .

AS bottom = 560< AS min Use 4Ø 14 WITH SPACING = 268 mm between bars .

Manual Calculation for shear design :

-for B1
VU = 199 KN .

$$VU = \frac{199}{.75} = 265 \text{ KN.-}$$

 $VC = \frac{1}{6} * \sqrt{fc} * b * d$
 $VC = \frac{1}{6} * \sqrt{28} * 900 * 260$
 $VC = 206 \text{ KN. -}$
 $VS = \frac{VU}{\emptyset} - VC$
 $VS = 265 - 206 = 58 \text{ KN.}$
 $VS max = 4VC = 825 > 58 \cdot the section is ok.$
 $-\frac{AV}{s} = \frac{vs * 1000}{fy * d} = 1.11.$
 $\frac{AV}{s} \min = \frac{.35 * BW}{.FY} = .75 \text{ mm}^4 \text{ /mm.-}$
 $-As \frac{AV}{.s} > \frac{AV}{.s} \min.$
 $-Assume use 2 Ø 10 @ 157 \text{ mm}.$
According to earthquake design
 $S = \min \{24 \text{ ds or h/4 or 8 \text{ db or } 300\} = 75 \text{ mm}}$

Use 2Ø10 mm @ 75 mm

3.7.4 Stairs design :

The figure below shows the stairs dimension :

The figure below shows the assumption load to design stairs :

Figure 3-30design loads for stairs

3.7.4.1 Design of stairs span :

WU (ultimate load on slab) = $1.2 D+1.6L= 1.2 (5+4)+1.6*5 = 18.8 KN/m^2$.

The slab is simply is simply supported , SO $MU=\frac{wu*l2}{8}$

 $\frac{18.8*3^{2}}{8}$ = 21.15 KN.m=mu

3.7.4.2 Longitudinal reinforcement

$$\rho = \frac{.85*28}{420} * \left(1 - \sqrt{1 - \left(\frac{2.61*10^6*21.15}{1000*28*170}\right)}\right)$$

P = .002

thus :

AS =.002* 1000 *170 = 340 mm^2/m. use 4 Ø 12 /m.

AS = .0018 *1000*200 =360 mm^2/m. In each direction.

3.7.4.3 Check shear for the steps of the stairs:

vu = $\frac{WU*L}{2}$ = $\frac{18.8*3}{2}$ = 28.2 KN/m. \emptyset VC = $\frac{.75}{6}*\sqrt{28}*$ bw*d. \emptyset VC = $\frac{.75}{6}*\sqrt{28}*170*1000=112.44$ kn/m > VU

Shear check is ok .

3.7.5 Ramp design :

The design of slab for the ramp is solid , the following figure shoes the assumption load :

Figure 3-31design load for stairs

Figure , shows the ramp slap model by ETABS .


```
Figure 3-32ramp model
```

3.7.5.1 longitudinal reinforcement

mu =.5 KN/m2 the moment value for ramp are too small use area steel shrinkage

AS min = .0018 * 1000*250 = 450 mm2/m. use 1 Ø12 @25 cm.

3.7.5.2 shear check for the ramp :

from ETABS Vu= 30KN/m .

 \emptyset vc = .75* $\sqrt{f'c}$ *1/6*bw*d = .75* $\sqrt{28}$ *1000*210*10⁻³= 138 kn/m²

Øvc> vu no need for shear reinforcement Ø

3.7.5.3 footing design :

there are two type of footing that have been designed in the building :

1- Single footing .

2- Mat foundation .

3-Wall footing

1. single footing sample of calculation :

design assumption :

-fC`=28 MPA .

FY =420 MPA. -

Bearing Capacity of soil under footing (Q all)= 350 kN/m2-

- Sample Column dimension (450*600 mm) .

-Ultimate force 3100 KN .

AS the support is pin and the column is concentric , so there is no moment in the footing .

Q all < 350 KN/ $m^2 \frac{p}{A} = 350$, Then $\frac{3100}{A} < 350$ \longrightarrow A= 8.8 m2 A = m2.

Assume that the footing is square with area = $B^{L}=9$ (B= L= 3m)

The figure , show the footing dimension wit column .

Figure 3-33 footing dimensions

PU = 3100 *1.4 = 4340 KN.

PU = 1.2 * (1030 +633) + 1.6 *633 = 3008 KN.

AS a primary depth for the footing from punching shear $10\sqrt{pu}$; d = 660 mm.

The depth of footing based on wide beam shear :

d
$$+\frac{150}{q \ all} d^{\frac{2}{3}} = 1.275 \text{ m.}$$

D =850 m .

The wide beam shear covered .

h = 960m; and hence D = .9 m.

check punching shear :

the column dimension 600 mm *450 mm.

The figure ; shows the critical area dimension .

Figure 3-34critical area dimension

Bo = 2 * (width of column + d)+ 2* (length of column + d). = 2* (450+900) +2* (600 +900)= 5.7m

To safety punching shear check :

 $\begin{array}{l} & \sqsubseteq \\ & \swarrow \\ & \swarrow \\ & \checkmark \\ & \forall \\ & \forall$

$$\begin{array}{l} \searrow \ \mbox{VUP} = 4340 - 482 == 3857 \ \mbox{KN} \ . \\ \mbox{I} \ \mbox{OV}_{cp} = 0.75 \times \min \left\{ \begin{array}{c} 1/3 \\ 1/6 \left(1 + \frac{2}{1.5} \right) \\ ***** \end{array} \right\} \times \sqrt{fc} \times bo \times d \times 10^{-3} . \\ \\ \mbox{ØV}_{cp} = 0.75 \times \min \left\{ \begin{array}{c} 1/3 \\ 1/6 \left(1 + \frac{2}{1.5} \right) \\ ***** \end{array} \right\} \times \sqrt{28} \times 5700 \times 900 \times 10^{-3} = 6779 \ \mbox{vup OKK} \ . \end{array}$$

Check wide beam shear :

Two failure line to be check as shown in figure :

Figure 3-35failure line for wide beam shear in the footing

Failure line 1 :

$$\begin{array}{l} & \bigtriangleup \\ & \bigtriangledown \\ & \bigtriangledown \\ & \bigtriangledown \\ & \lor \\ & \neg \\ & \neg$$

single Footing Reinforcement :

Longitudinal reinforcement :

Side of line 1 :

 $Mu1 = \frac{qu*l2}{2} = \frac{482*1.2}{2} = 347 \text{ kn.m2.}$ $\rho = \frac{0.85 \times 28}{420} \left(1 - \sqrt{1 - \frac{2.61 \times 10^6 \times 347}{28 \times 1000 \times 900^2}} \right) = .00114$

AS = .00114 *1000*900 = 1026 mm2/m.

As MIN = ,0018 *1000*960 = 1728 mm2/m > AS \longrightarrow use 7Ø18/m.

Transfer reinforcement :

Side of line 2 :

Mu1 =
$$\frac{qu*l2}{2} = \frac{482*1.275}{2} = 391$$
 kn.m2.

$$\rho = \frac{0.85 \times 28}{420} \left(1 - \sqrt{1 - \frac{2.61 \times 10^6 \times 391}{28 \times 1000 \times 900^2}} \right) = .00129$$

AS = .00129 *1000*900 = 1200 mm2/m.

As min = ,0018 *1000*960 = 1728 mm2/m > AS \Box use 7 Ø18 /m.

The table below shows the required dimension for each column in the basement:

Table 28single footing reinforcement

	PU	length	Width	Depth	wide beam shear	punching shear	Longitudinal rebar	Transfer Rebar
F2	1900	2.45	2.45	0.8	Safe	Safe	7 Ø16	7 Ø16
F3	900	1.8	1.8	0.5	Safe	Safe	5 Ø16	5 Ø16

2. Raft Foundation:

Since the single footing area covers more than 60 % of the building area, a1000 mm thick mat foundation was Used *checks of mat foundation :*

Compatibility check :

All mat foundation part are moving as one part , the check is ok. figure below shows that .

Figure 3-36compatibility check for mat foundation

deflection check :

The maximum allowable deflection 10 mm , the maximum deflection in the footing = 4 mm , the check is ok Figure , show deformation value for the footing .

Figure 3-37deformed shape from service load

soil bearing capacity check :

The soil pressure under the foundation are less than q allowable for the soil . figure , shows the soil pressure Value for the footing .

Figure 3-38soil pressure under mat foundation

3Wide beam shear capacity check :

Max shear (Vu) from ETABS = 90 kn/m2 ,the maximum shear less than $ØV_{cp}$, the shear is ok .

Figure below shows the shear value in mat foundation.

Figure 3-39shear check in mat foundation

Punching shear check :

The value of vup / Ø vcp < 1, the punching shear check is ok. The figure , shows the punching shear value in The mat foundation.

Figure 3-40punching shear in mat foundation

Mat foundation reinforcement :

the mat foundation is solid slab , the required reinforcement will Be found by ETABS by divide the footing into stirp.

Minimum reinforcement required =.0018 * B *H = .0018 * 1000 *1000 = 1620mm2 . USE 6 \emptyset 20/ m. Figure below show the top reinforcement in x direction .

	5.28 m)	
•	-	apo apo apo -
*	-	-
	<u>⊒</u> µ4	•
*	-	

Figure 3-41top reinforcement in x direction for mat foundation

As the figure shows all stirps less than minimum reinforcement , use 6 @ 20 / m.

Figure below show the bottom reinforcement in x direction .

figure 3-42bottom reinforcement in x direction for mat foundation

As the figure shows all stirps less than minimum reinforcement , use $6 \emptyset 20 / m$.

Figure below show the top reinforcement in y direction .

Figure 3-43top reinforcement in y direction for mat foundation

As the figure shows all stirps less than minimum reinforcement , use 6 @20 / m. Figure below shows the bottom reinforcement in y direction .

Figure 3-44bottom reinforcement in y direction for mat foundation

As the figure shows all stirps less than minimum reinforcement , use $6 \emptyset 20 / m$.

3.7.6 shear wall design :

The shear wall shall be designed to resist the axial lateral load and moment from the seismic effect;

The following figure shows the shear wall-pier 16 layout in the ground floor

figure , shows the reinforcement for shear wall 2 -Pier 16 by ETABS .

ETABS Shear Wall Design

ACI 318-14 Pier Design

						Pier I	Details	5							
Story	/ ID	Pier ID	Cent	roid X	(mm)	Centroi	d Y (m	m) Lo	eng	th (mm)	1	hickn	ess (n	nm)	LLRF
Story	/1	P16		17600		98	7.5		2	:075			300		0.621
						Material	Prope	rties							
		E c	(MPa)	f . (f	MPa)	Lt.Wt Fa	ctor (L	Jnitless)	-	f,(MPa	0	f 🕫 (MPa)	-	
		248	370.58	2	8		1			413.69		413	.69	_	
					De	sign Code	Para	meters							
		ф т		₽c	ф.	ф.	(Seisr	nic)	1	Р мах	IP	мия	Рыех		
		0.9	0	.65	0.75		0.6			0.04	0.0	025	0.8		
				Pier	Leg Lo	ocation, L	ength	and Thi	ckn	ess					
	S Lo	itation ocation	ID	Le	ftX, nm	Left Y , mm	Rigi rr	ntX ₂ nm	Ri	ght Y ₂ mm	Le r	ngth nm	Thick m	mess	
		Тор	Leg 1	17	7600	-50	17	600	1	2025	2	075	30	00	
		Bottom	Leg 1	17	7600	-50	17	600	1	2025	2	075	30	00	
				Flex	kural De	esign for P	о, М а	z and M	ص ا						
ation ation	Re	Requir bar Area	ed (mm²)	Re Reir	quired 1f Ratio	Curre Reinf F	ent Ratio	Flexura Combo	al D	P. kN		M . kN-r	z n	M.a. kN-m	Pier mr

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	P. KN	M.œ kN-m	M.a kN-m	Pier A 。 mm²
Тор	5422	0.0087	0.0054	4-1	-1313.5293	0.4387	-556.8837	622500
Bottom	5127	0.0082	0.0054	4-1	-1275.7125	0.5586	444.2578	622500
		-			-			

Shear Design

				•				
Station Location	ID	Rebar mm²/m	Shear Combo	P. kN	M . kN-m	V . kN	φV. kN	φV. kN
Тор	Leg 1	750	envelop ultimate	-1313.5293	549.7386	203.1559	157.5513	543.8301
Bottom	Leg 1	750	envelop ultimate	-1275.7125	444.2578	203.1559	192.4381	578.7169

Figure 3-46shear wall reinforcement from ETABS

The wall should be reinforce in two region , according to ACI -310-14 :

1-Boundaries.

2- web .

Boundary dimension = Min (.1h/4b).

where h: wall height .

b : wall thickness.

Boundary dimension = Min (.32/1.2), use(.32*.3) m.

ACI -310-14 requirement :

-- spacing in vertical and horizontal = 250 mm.

-- p in boundary area = 1 %.

-- Minimum p in vertical and horizontal direction = .25 %.

--maximum p vertical =35 %.

The steel reinforcement in boundary = 1%* 300 * 320 = 960 mm2 \Box use 8 Ø 14 in boundaries . 4 Ø 14 on each face.

The steel reinforcement in web :

p vertical from ETABS = .0087 >> .0025 \square AS = .0087 * 1000* 300 = 2610 mm2 use 14 Ø 16/m in vertical \square 7 Ø 16for each side

AS horizontal minimum = .25%* 300* 1000 = 750 mm2/m = As FROM ETABS

USE 8Ø 14/m in horizontal dimension .4for each side

3.7.6.1 check shear for wall : $\phi V_{cp} = 0.75 \times 1/6 \times \sqrt{f'c} \times bw \times d \times 10^{-3}$

 $\emptyset V_{cp} = 0.75 \times 1/6 \times \sqrt{28} \times 100 \times 240 \times 10^{-3}$

3.7.6.2 Stirrup at Web

The following figure shows the web and boundary dimensions for shear wall .

the web and boundary dimensions for shear wall .

Web reinforced like column :

The following figure shows the seismic requirement for web stirrup spacing;

Use 2 Ø 8 @ 150 mm

The following table shows the other shear wall reinforcement :

Table 29shear wall reinforcement

	thic kness	length	webrein fortwoside:	, veritcal rein	, horizantal rein.	shear check	web stirrup
s.w1	300 mm	.3.43 m	8ø 14	8¢20/m	8ø12/m	ø vc > vu	2ø8/150mm
s.w2	300 mm	4.28 m	8ø 14	9ø32/m	8ø12/m	ø vc > vu	2ø8/150mm
s.w3	300 mm	.2.44 m	8ø 14	8¢25/m	8ø12/m	ø vc > vu	2ø8/150mm
s.w4	300 mm	.2.44 m	8ø 14	14ø20/m	8ø12/m	ø vc > vu	2ø8/150mm
s.w5	300 mm	.2.44 m	8ø 14	14ø20/m	8ø12/m	ø vc > vu	2ø8/150mm
s.w6	300 mm	.2.44 m	8ø 14	14ø20/m	8ø12/m	ø vc > vu	2ø8/150mm
s.w7	300 mm	4.62 m	8ø 14	10ø14 /m	8ø12/m	ø vc > vu	2ø8/150mm
s.w8	300 mm	.3.41 m	8ø 14	9¢25/m	8ø12/m	ø vc > vu	2ø8/150mm
s.w9	300 mm	2.21 m	8ø 14	8¢25/m	8ø12/m	ø vc > vu	2ø8/150mm
s.w10	300 mm	2 m	8ø 14	5¢25/m	8ø12/m	ø vc > vu	2ø8/150mm
s.w11	300 mm	6.55 m	8ø 14	10ø25/m	8ø12/m	ø vc > vu	2ø8/150mm
s.w12	300 mm	4.86 m	8ø 14	16ø18/m	8ø12/m	ø vc > vu	2ø8/150mm

3.7.7 Basement wall :

The basement wall shall be designed to resist the axial lateral load and moment from the Seismic effect:

figure , shows the reinforcement for basement by ETABS.

ETABS 20.0.0 License #*1TK94KCDM5UVHRE ETABS Shear Wall Design ACI 318-14 Pier Design Pier Details Story ID Pier ID Centroid X (mm) Centroid Y (mm) Length (mm) Thickness (mm) LLRF -25834.4 Stbry1 P20 2592.1 49025.1 300 0.481 Material Properties E = (MPa) f' = (MPa) Lt.Wt Factor (Unitless) f + (MPa) f + (MPa) 413.69 24870.58 28 ¢13.69 Design Code Parameters φ_v φ_v(Seismic) IP_{MAX} IP MIN P MAX ¢، фс Ψ× 0.75 0.0025 09 0.65 0.6 10.04 0.8 Pier Leg Location, Length and Thickness Left X. Left Y. Right X₂ Right Y₂ Station ID Length mm Thickness Location mm mm mm mm mm -25830.7 27104.7 -25838.2 49025.1 тор Leg 1 -21920.4 311 Leg 1 -21920.4 -25830.7 27104.7 -25836.2 49025.1 Bottom 300 Flexural Design for P., M.a. and M.a. Station Location Required Rebar Area (mm*) Required Current Flexural Reinf Ratio Reinf Ratio Combo یص M kN-m مت M kN-m Pier A. P ... kN 14707523 36769 0.0025 0.0051 DMalS6 3907.027 721.583 -9605.6388 тор Bottom 36769 0.0025 0.0051 Divitalise 4789.4783 608.1492 -8878.3357 14707523 Shear Design Rebar Shear Combo Pu mm^z/m kN Station ID M. kN-m φV₂ kN φV. kN V. KN Location 22368.8002 Leg 1 750 esuelop stimate 2961,873 2703.0218 3299.8527 13242,3677 тор Bottom Leg 1 750 enuelop (titimate 3876.365 8863.5421 3299.8627 13376.39 22502.8225 Boundary Element Check (ACI 18.10.6.3, 18.10.6.4) Stress Comp MPa Station Location ID Edge Length (mm) Governing Combo Stress Limit C Depth C Limit MPa mm mm P., kN M. kN-m Leg 1 Top-Left Not Req lifed 3-1 6879.9407 -2145.2925 0.49 5.6 Not Req I lied 6879.9407 -2145.2925 Top-Right 3-1 0.45 Leg 1 Bottom-Left Leg 1 Not Reg lired 3-1 8302,8936 -536.6431 0.57 5.6

Figure 3-47shear wall reinforcement from ETABS

Bottlom-Right Leg 1

The following table shows the basement wall reinforcement

Not Req I led

3-1

8312 8936

-535.6431

0.96

56

Table 30basement wall reinforcement

	thickness	length	webrein	veritcal rein.	horizantal rein.	shear check
s.w1	300 mm	49.3m	8ø 14	8ø14 /m	8ø14 / m	ϕ vc > vu
s.w2	300 mm	37 m	8ø 14	8ø14 /m	8ø14 / m	ø vc > vu

3.7.8 sheet piles :

sheet pile was designed because building retaining walls would be risky due to the proximity of the project to other structures and the potential for collapse Due to the depth of the excavation, by using **geo5 2023 program**.

⊻= 18 kn/m2.

3.7.8.1 sheet pile depth manual calculation:

manual calculation for pile depth :

$$ka = \frac{1 - SIN 30}{1 + SIN 30} = .333$$
.

Active earth pressure = $(q + h^2)$ ka $-2c\sqrt{ka}$.

the following figure shows the active earth pressure for each point

Table 31the active earth pressure

point	Ea	Ea (t.m)
1	0-2*1* √.33	.18
2	9*1.8)*.33-2*1* \.33 (4.197
3	9*1.8+D*.8)*.33-2*1* √.33(1.227+.27D

 $kp = \frac{1+SIN \ 30}{1-SIN \ 30} = 3$

\pm Passive earth pressure = (q +h) ka +2c \sqrt{ka} .

the following figure shows the passive earth pressure for each point :

Table 32the passive earth pressure

point	EP	EP (t.m)
4	0-2*1* √ <u>3</u>)-(3.46-
5	D*.8)* 3-2*1* √3 - (3.46+2.4D-

The following figure shows the moment value for each shape :

Table 33moment value

Shape	Force	arm	MOMENT
1	1.62	4.5D	1.62D
2	18.07	3+D	18.07+54D
3	4.197D	.5D	2.0985 D
4	.135D^2 -1.46D	D/3	.045 D^3486d^2
5	3.46D	.5D	-1.73 D^2

Shape	Force	arm	MOMENT
6	1.2 D2	D/3	3996D^3

\Box M @ point 3 =0

By solving the equation D = 6, therefor total length = 9(excavation depth)+1.3*6= 16.8m

3.7.8.2 Sheet pile length by geo5 :

Figure 3-48sheet pile depth by GEO 5

D = 7.13m, total pile length = 17m.

Diameter of sheet pile and spacing:

Figure 3-49sheet pile spacing and diameter

sheet pile reinforcement :

figure , shows the maximum bending moment.

Figure 3-50bending moment value foe sheet pile

figure below shows the maximum shear force.

Figure 3-51shear value for sheet pile

Result from geo5 :

<u>sheet pile detailing :</u>

The following figure the reinforcement result from geo5 :

No. of bars : 16.00 [pcs] ✓ Shear reinforcement SHEAR : SATISFACTORY () Cover : 60.0 [mm] Profile : 12.0 [mm] BENDING : SATISFACTORY () Profile : 32.0 [mm] Spacing : 150.0 [mm] Imm] DESIGN PRINCIPLES : SATISFACTORY ()	einforcement					- Results		
Cover: 60.0 [mm] Profile: 12.0 [mm] DESIGN PRINCIPLES: SATISFACTORY (Design Profile) Profile: 32.0 [mm] Spacing: 150.0 [mm]	of bars :	16.00 [pcs]	✓ Shear reinf	orcement		SHEAR :	SATISFACTORY (90.4%
Profile : 32.0 [mm] Spacing : 150.0 [mm]	er:	60.0 [mm]	Profile :	12.0	[mm]	BENDING : DESIGN PRINCIPLES :	SATISFACTORY (99.6% 10.6%
	ile:	32.0 [mm]	Spacing :	150.0	[mm]			
Additional reinf. profile : 0.0 [mm]	itional reinf. profile :	0.0 [mm]						

Figure 3-52sheet pile reinforcement by geo5

The following figure shows the sheet pile reinforcement :

Figure 3-53sheet pile detail

The following figure shows the piles details :

pile length = 17 m. pile diameter = 80 cm./ pile spacing = 1 .2m. longitudinal reinforcement 16 Ø32 shear reinforcement = Ø12 @ 150 mm .

pile length = 17 m.

pile diameter = 80 cm./ pile spacing = 1 .2m. longitudinal reinforcement 25Ø32

shear reinforcement = Ø12 @ 150 mm .
3.7.9 Water tank:

the tank in the basement story, The building water tank is intermediate, therefore load transfer in two directions.

 \Box {2 >length /height >.5}.

Water tank load:

live load on water tank roof = 4 Kn/m2.

water pressure on water tank base = γ^*h

= 10 * 3 = 30 kn/m2.

3.7.9.1 Water tank check : 1. compatibility check:

All water tank element are moved as one element \Box the check is okk

Figure below shows the water tank.

		End Offset Location	
Load Case	d Combination 💿 Modal Case	LEnd 0.0000	m
Combwater	•	J-End 3.0000	m
		Length 3.0000	m
Component Major (V2 and M3)	Display Location Show Max Scro	ill for Values	
		113.0252 kN at 3.0000 m	
Moment M3		-466.9254 kN	-m
		at 3.0000 m	

Figure 3-54 compatibility check for water tank

2. shear check for wall :

 $-\emptyset vc = \frac{75}{6} * \sqrt{F'C} * bw \ d * 10^{\circ} - 3$ $-\emptyset vc = \frac{75}{6} * \sqrt{28} * 1000 * 340 * 10^{\circ} - 3$

-Øvc = 224 kn. figure belw shows the maxium shear in the wall

Figure 3-55shear value for water tank wall by ETABS

 \square vu= 1.4*VU =158 kn/m2 <Øvc shear check is ok

3. shear check for r base :

$$-\emptyset vc = .\frac{75}{6} * \sqrt{FC} * bw \ d * 10^{-3}$$
$$-\emptyset vc = .\frac{75}{6} * \sqrt{28} * 1000 * 240 * 10^{-3}$$

-Øvc = 158 kn.

figure blow shows the maximum shear in the water tank base.

Figure 3-56shear value for water tank base by ETABS

vu= 1.4*70 =106 <Ø vs okk.

3.7.10.1.4Tension design and check :

For wall:

Figure below shows the ultimate torsion in the wall

Figure 3-57 tension value for water tank

TU design = Sd TU.

Where sd : durability factor .

$$sd = \frac{\emptyset FY}{Y * FS max}$$

capacity reduction factor = $.9\mathcal{Q}$:

average load factor =1.4 γ :

fs :max for normal condition (water) = 138 MPA.

$$sd = \frac{.9*420}{1.4*138} = 1.956$$

TU design = 1.956*136= 266 *Kn/m*

 $AS = \frac{tu \, design}{.9*420} * 1000 = 703 \, mm2/m.$

use $6 \emptyset 14 / r \longrightarrow 3 \emptyset 14$ for each layer.

$$\stackrel{\longrightarrow}{\longrightarrow} \frac{T+c \ Es*As}{AG+n \ As} > 1/3 \ *\sqrt{f'c}$$

where :

c : shrinkage strain

n : modular ratio

T : Service tension.

- ES : modules of elasticity for steel
- As : area of steel .

A g : gross area

$$n = \frac{200000}{4700*\sqrt{FC}} = 8.05.$$

$$\frac{13600+.0003*200000*703}{400000+8.05*703} > 1/3 \times \sqrt{28}$$

 $1.07 < 1.76 \implies$ the thickness is ok.

Check tension for base :

the ultimate torsion in the wall TU =

$$\Box$$
 TU design = Sd TU.

Where sd : durability factor .

$$sd = \frac{\emptyset FY}{\forall *FS max}$$

Ø:capacity reduction factor = .9

γ : average load factor =1.4

fs :max for normal condition (water) = 138 MPA .

$$sd = \frac{.9*420}{1.4*138} = 1.956.$$

TU design = 1.956*10 = 19 Kn/m

Check thickness for tension :

 $AS = \frac{tu \ design}{.9*420} * 1000 = 50mm2/m.$ $use \ 4\emptyset \ 8/m \ \Box > 2 \ \emptyset \ 8 \ for \ each \ layer .$ $\Box > \frac{T+c \ Es*As}{AG+n \ As} > 1/3 \ * \sqrt{fc}$ $n = \frac{200000}{4700*\sqrt{Fc}} = 8.05.$ $\frac{19000+.0003* \ 200000*50}{500000+8.05*50} > 1/3 \ * \sqrt{28}$ $.01 < 1.76 \ \Box > \ the \ thickness \ is \ ok$

3.7.9.2 Wall design and reinforcement:

Mu design= 1.06 sd Mu.

Assume normal exposure , two way and the spacing 150 mm and $h \ge .4$.

Figure below shows fs max value:

Figure 160:normal exposure -two way

 \Box fs max = 210 Mpa.

$$sd = \frac{.9*420}{1.4*240} = 1.125$$

1) Vertical reinforcement -outside surface :

from ETABS Mu= 439 Kn. m.

Mu design= 1.06 * 1.125* 439 = 523 Kn.m.

$$\rho = \frac{0.85 \times 28}{420} \left(1 - \sqrt{1 - \frac{2.61 \times 10^6 \times 523}{28 \times 1000 \times 340^2}} \right) = .0135$$

 $AS = .0135*1000*340 = 4615 \text{mm}^2/\text{m} + 703/^2$ for tension \square 11 Ø 25 /m for vertical reinforcement

2) Vertical reinforcement -outside surface :

from ETABS Mu= 255 Kn. m.

Mu design= 1.06 * 1.125* 255 = 304Kn.m.

$$\rho = \frac{0.85 \times 28}{420} \left(1 - \sqrt{1 - \frac{2.61 \times 10^6 \times 304}{28 \times 1000 \times 340^2}} \right) = .007$$

 $AS = .007*1000*340 = 2527 mm^2/m + 703/2$ for tension \square 7 Ø 25 /m for vertical reinforcement.

3) Horizontal reinforcement -inside surface :

from ETABS Mu= 50 Kn. m.

Mu design= 1.06 * 1.125* 50 = 60Kn.m.

$$\rho = \frac{0.85 \times 28}{420} \left(1 - \sqrt{1 - \frac{2.61 \times 10^6 \times 60}{28 \times 1000 \times 340^2}} \right) = .00139$$

AS =.00139 *1000*340 =471 mm2/m

As min (horizontal)= .003 b h =.003 * 400*1000 = 1200

Use As min + 703/2 for tension \Box use 8Ø 16 /m.

4) Horizontal reinforcement -outside surface :

From ETABS Mu = 45 Kn. m.

Mu design= 1.06 * 1.125* 45 = 53kn.m.

$$\rho = \frac{0.85 \times 28}{420} \left(1 - \sqrt{1 - \frac{2.61 \times 10^6 \times 53}{28 \times 1000 \times 340^2}} \right) = .001$$

AS =.00139 *1000*340 =352 mm2/m \Box \rangle 4 \emptyset 14/m for horizontal reinforcement. As min (horizontal)= .003 b h =.003 * 400*1000 = 1200. Use As min + 703/2 for tension \Box use 8 \emptyset 16/m.

3.7.9.3 Development length:

 $Id = 20 \emptyset$ bar.

 $Id = 20^{*}25 = 500 \text{ mm}.$

The thickness is not ok

This problem will be solved in water tank detail.

3.7.9.4 Base design and reinforcement

moment values for base are small use AS min

As min = .0018 *1000*500 = 900 mm2/muse 5Ø16/m.

3.8 Detailing:

All the structural element detail in the project drawing .

4 <u>Chapter 4: Electro-Mechanical Aspects</u>4.1 Artificial lighting design:

4.1.1 Introduction:

Electric lamp-based lighting is typically referred to as "artificial lighting." In most cases, artificial light may be simply controlled to produce the desired lighting effect. The light can be colored, focused, directed, increased, or diminished. As a result, lighting may provide a variety of effects depending on the needs of a location. The kind of place that needs lighting (office, living room, bathroom, etc.), the kind and quality of light that is required, and the energy consumption of the light fixture will all influence the choice of artificial lighting source. In our project, there are different areas, each of, which needs a different amount of lighting, and this has been taken into account to provide appropriate lighting in all places.

4.1.2 Recommended Lux Levels:

	÷	
Libraries	Bookshelves	200
	Reading areas	500
	Counters	500
Public car parks (indoor)	In/out ramps (during the day)	300
	In/out ramps (at night)	75
	Traffic lanes	75
	Parking areas	75
	Ticket offices	300

Table 34Recommended Lux Levels

The following guidance tables provide recommended lux levels for specific working areas within public sector buildings. In our building we need the lux level for offices and parking. These figures are based on the recommended lux levels by CIBSE (Chartered Institute of Building Services Engineers) and the code for interior lighting. (Recommended Lighting Levels in Buildings - Archtoolbox, n.d.)

Table 35 recommended lux levels for specific working areas within public sector buildings

Offices		Ē"
	Filing, copying, etc.	300
	Writing, typing, reading, data processing	500
	Technical drawing	750
	CAD work stations	500
	Conference and meeting rooms	500
	Reception desks	300
	Archives	200
Retail premises		
	Sales areas	300
	Till areas	500
	Wrapper tables	500
Places of public assembly		
General areas	Entrance halls	100
	Cloakrooms	200
	Lounges	200
	Ticket offices	300

Offices	Suggested Lux Level
Filing, copying etc	300
Writing, typing, reading, processing	500
Technical drawing	750
CAD workstations	500
Conference & meeting rooms	500
Reception area	300
Archives	200
Design office	1,000
Toilets	250
General lighting	120
Precision assembly	1500

Table 36suggested lux level for the offices

Table 37suggested lux level for the car parks.

Car Parks	Suggested Lux Level
Parking bays (multi storey / underground)	75
Access lanes (M-S/UG)	75
Ramps (M-S/UG)	150
Corners (M-S/UG)	150
Intersections (M-S/UG)	150
Multi storey roof level	30
Entrance / exit zones (M-S/UG) day time	300
Entrance / exit zones (M-S/UG) night time	75
Pedestrian areas (M-S/UG)	100
Stairs & lifts (M-S/UG)	100

4.1.3 Artificial lighting design

artificial lighting in the building deserves a lot of attention in this part, Because it significantly influenced users' comfort. While consideration must be given to the lux level, color, direction, color temperature, and the way of dispersing them within the areas without overlooking the amount of energy required by the lighting equipment employed.

The reflection factors used according to the DiaLUX software are the following:

- Ceiling: 75
- Floor: 60
- Wall: 30

Calculations and design will be using the DiaLUX software and according to the required standards and specifications of each space, where one space of each category will be designed and all the required luminaires will be given with a plan of their distribution in the space along with a plan of the lux map contour in the space, the glare will also be checked by making some calculation object surfaces in the important areas, as the following:

4.1.3.1 Employees Office:

The standard lux value in this type of spaces is 500lx with 3500 - 4000 K lighting temperature as the next calculations which is done all by the DiaLUX software shows:

Figure 4-13D lighting mode EmployeesOffice.

Figure 4-2lux level on Employees Office

Figure 4-3 Distribution lighting luminaire.

Luminaire layout plan

REGIOLUX			
Manufacturer	Regiolux	Р	13.8 W
Article No.	1000 14W 830 ET ws (37691114140)	$\Phi_{\text{Luminaire}}$	1007 lm
Article name	relo-UP-RDAS-O/140 LED - Diffusor opal Opal diffuser		
Fitting	1x LED		

Figure 4-4ceiling downlight unit.

Luminaire layout plan

REGIOLUX			
Manufacturer	Regiolux	Р	42.5 W
Article No.	6500 43W 840 ET vw	$\Phi_{Luminaire}$	6531 lm
	(41231044120)		
Article name	zatta-ZTTAB-2 LED - Individual Lens Ontic		
	 Individual Lens Optic		
	inumuua.cens.optic		
Fitting	1x LED		

Figure 4-5ceiling downlight unit.

Glare check:

Figure 4-6distribution of luminaires and workplan places

glare 1 (UGR)

Strongest glare at	120°
max	<10
Target	≤19.0
Viewing sector	60° - 120°
Step width	15°
Height	1.200 m
Index	CG1

Figure 4-7Glare Rating(UGR1 of Employees Office).

glaer2 (UGR)		
Strongest glare at	60°	
max	<10	
Target	≤19.0	
Viewing sector	60° - 120°	13
Step width	15°	16
Height	1.200 m	
Index	CG2	

Figure 4-8Figure 4-9Glare Rating(UGR2 of Employees Office).

glaer3 (UGR)

Strongest glare at	60°
max	16.7
Target	≤19.0
Viewing sector	300° - 60°
Step width	15°
Height	1.200 m
Index	CG3

Figure 4-10Figure 4-11Glare Rating(UGR3 of Employees Office).

<u>Results</u>: the space's artificial lighting design achieve all the requirement and specifications; the light is distributed well and the glare is within the right range and not annoying.

4.1.3.2 Meeting room:

The standard lux value in this type of spaces is 500lx with 3500 - 4000 K lighting temperature as the next calculations which is done all by the DiaLUX software shows:

Figure 4-123D lighting mode meeting room.

Figure 4-13lux value in meeting room

	Ground area	31.95 m ²		Clearance height	3.500 m		
	Reflection factors	Ceiling: 70.0 %,	_	Mounting height	3.500 m		
		Walls: 81.7 %, Floor: 20.0 %		Height Working plane	0.800 m		
	Maintenance factor	0.80 (fixed)	_	Wall zone Working plane	0.000 m		
Re	sults						Ľ
		Symbol	Calcu	lated Ta	rget	Check	Index
w	orking plane	Eperpendicular	739 b	< ≥ 5	500 lx	~	WP2

Figure 4-14Distribution lighting luminaire of meeting room.

Luminaire layout plan

REGIOLUX			
Manufacturer	Regiolux	Ρ	42.5 W
Article No.	6500 43W 840 ET vw RAL 9016 (41231044120)	$\Phi_{\text{Luminaire}}$	6531 lm
Article name	zatta-ZTTAB-2 LED - Individual.Lens.Optic Individual.Lens.Optic		
Fitting	1x LED		

Luminaire layout plan

REGIOLUX				
Manufacturer	Regiolux	Р	35.7 W	
Article No.	7000 36W 830 IP64 DALI2 vw RAL 9016 (SRT+19512026090)	$\Phi_{Luminaire}$	6396 lm	
Article name	SRT-System IP64- SRGSCB/2250 LED - Geräteträger fix Central.Line.Optic Device mount fix Central.Line.Optic			
Fitting	1x LED			

Figure 4-15ceiling downlight unit.

Glare check:

Figure 4-16Glare Rating(UGR)

meeting room Glare 1 (UGR)

Strongest glare at	-33°
max	<10
Target	≤19.0
Viewing sector	60° - 120°
Step width	15°
Height	1.200 m
Index	CG4

Figure 4-17Glare Rating(UGR1 ofmeeting room).

Strongest glare at	195°
max	15.9
Target	≤19.0
Viewing sector	120° - 240°
Step width	15°
Height	1.200 m
Index	CG6

Figure 4-18Figure 4-19Glare Rating (UGR2 ofmeeting room).

.

meeting room Glare 2 (UGR)			
Strongest glare at	-33°		
max	<10		
Target	≤19.0		
Viewing sector	60° - 120°		
Step width	15°		
Height	1.200 m		
Index	CG5		

Utilisation profile: Offices (34.5.1 Conference and meeting rooms)

Figure 4-20Figure 4-21Glare Rating (UGR3 ofmeeting room).

4.1.3.3 Manager room:

Figure 4-22 3D modeling of manager room

Results

Figure 4-23 lux value in manager room

Figure 4-24 Distribution lighting luminaire in manager room.

3F Filippi			3		
Manufacturer	3F Filippi S.p.A.	Ρ		35.0 W	
Article No.	1930	Φ _{Luminai}	ire	4115 lm	
Article name	03F 28W DT8 TW L1204 (CCT 2700)				
Fitting	1x LED L - TW				
🔥 AURA LIGH	іт				
Manufacturer	Aura Light	Р		42.0 W	
Article No.	24318305586	Φι	Luminaire	5260 lm	
Article name	Kvill CE D750 MP 5500 DALI EM 3h White	42W 830			
Fitting	1x LED				
REGIOLUX					
Manufacturer	Regiolux	P		13.8 W	
Article No.	1000 14W 830 ET (37691114140)	ws ⊄	Luminaire	1007 lm	
Article name	relo-UP-RDAS-O/ LED - Diffusor op Opal diffuser	140 al			
Fitting	1x LED				

Figure 4-25 ceiling downlight unit.

REGIOLUX			
Manufacturer	Regiolux	Р	42.5 W
Article No.	6500 43W 840 ET vw RAL 9016 (41231044120)	Φ _{Luminaire}	6531 lm
Article name	zatta-ZTTAB-2 LED - Individual.Lens.Optic Individual.Lens.Optic		
Fitting	1x LED		

Figure 4-26 ceiling downlight unit.

Glare check:

glare1 (UGR)

Strongest glare at	-33°
max	<10
Target	≤19.0
Viewing sector	240° - 300°
Step width	15°
Height	1.200 m
Index	CG7

Figure 4-27Glare Rating(UGR1 ofmanager room).

Figure 4-28Glare Rating(UGR2 ofmanager room).

<u>Results</u>: the space's artificial lighting design achieve all the requirement and specifications; the light is distributed well and the glare is within the right range and not annoying.

4.1.3.4 Archive room:

Figure 4-29 3d modeling room

Figure 4-30lux value in Archive room

Figure 4-31 distribution luminaire in archive room

Figure 4-32ceiling downlight unit.

Figure 4-33 calculation object in archive room

<u>Results</u>: the space's artificial lighting design achieve all the requirement and specifications; the light is distributed well and the glare is within the right range and not annoying.

4.1.3.5 Multipurpose room:

The standard lux value in this type of spaces is 500lx with 3500 - 4000 K lighting temperature as the next calculations which is done all by the DiaLUX software shows:

Figure 4-34 3D modeling at multipurpose room

Figure 4-35lux value in multipurpose room

Results

	Symbol	Calculated	Target	Check	Index
Working plane	Ēperpendicular	642 lx	≥ 500 lx	\checkmark	WP1

Figure 4-36 lux value is within the range.

Figure 4-37Distribution lighting luminaire in manager room.

Luminaire layout plan

03F 18W/940 DALI L620 Article name Fitting 1x LED L - 940

. .

PA KH
- KVX44XVI
X/T/X
KKTZX

20.0 W 1983 lm

Manufacturer	Regiolux	Ρ	13.8 W
Article No.	1000 14W 830 ET ws (37691114140)	$\Phi_{Luminaire}$	1007 lm
Article name	relo-UP-RDAS-O/140 LED - Diffusor opal Opal diffuser		
Fitting	1x LED		

₨₢₫₺₶₶			
Manufacturer	NVC	P	16.9 W
Article No.	70115181	ΦLuminaire	990 lm
Article name	NLED8213AXL 15W 55° 4000K 直下式(窄 边) 赫兹酒店筒灯		
Fitting	1x Luminus LED COB		

Manufacturer	Regiolux	Р	42.5 W
Article No.	6500 43W 840 ET vw	Φ _{Luminaire}	6531 lm
	(41231044120)		
Article name	zatta-ZTTAB-2 LED - Individual.Lens.Optic Individual.Lens.Optic		
Fitting	1x LED		

Figure 4-38ceiling downlight unit.

Glare check:

Figure 4-39Glare Rating (UGR)

Figure 4-40Glare Rating (UGR) plan

glare 8 (UGR)

Strongest glare at	120°
max	10.6
Target	≤19.0
Viewing sector	60° - 120°
Step width	15°
Height	1.200 m
Index	CG3

Figure 4-41Glare Rating(UGR1 ofmultipurpose room).

glare 9 (UGR)

Strongest glare at	120°
max	<10
Target	≤19.0
Viewing sector	60° - 120°
Step width	15°
Height	1.200 m
Index	CG4

Figure 4-42Glare Rating (UGR 2 ofmultipurpose room).

glare10 (UGR)	
Strongest glare at	300°
max	<10
Target	≤19.0
Viewing sector	240° - 300°
Step width	15°
Height	1.200 m
Index	CG5

Figure 4-43Glare Rating (UGR3 of multipurpose room).

<u>Results</u>: the space's artificial lighting design achieve all the requirement and specifications; the light is distributed well and the glare is within the right range and not annoying.

4.1.3.6 Reception + waiting room

The standard lux value in this type of spaces is 300lx with 3500 - 4000 K lighting temperature as the next calculations which is done all by the DiaLUX software shows:

Figure 4-44 3D modeling of Reception + waiting room

Figure 4-45lux value in multipurpose room

Results

	Symbol	Calculated	Target	Check	Index
Working plane	Eperpendicular	379 lx	≥ 300 lx	~	WP12
Ground area	176.45 m ²		Clearance height	3.850 m	
Reflection factors	Ceiling: 70.0 %, Walls: 43.8 %, Floor: 20.0 %		Mounting height	3.850 m – 3.976 n	n
			Height Working plane	0.800 m	
Maintenance factor	0.80 (fixed)		Wall zone Working plane	0.000 m	

Figure 4-46lux value is within the range.

Luminaire layout plan

🎜 AURA LIGHT	\bigcirc		
Manufacturer	Aura Light	Р	27.0 W
Article No.	465336	$\Phi_{\text{Luminaire}}$	2780 lm
Article name	Collina CE D400 Sensor On/Off EM		
Fitting	1x LED		
▶▶● 雷士照明			
Manufacturer	NVC	Р	30.0 W
Article No.	70076150	Φ _{Luminaire}	2300 lm
Article name	NLED621D 30W 24° 象鼻型 4000K 大功率 天花射灯		

PHILIPS				
Manufacturer	Philips	P	31.5 W	
Article name	R5343B 1 xLED395/827 VWB	Φ _{Luminaire}	3783 lm	
Fitting	1x			

Figure 4-47ceiling downlight unit.

1x LED COB

Fitting
Glare check :

Figure 4-48Glare check at Reception + waiting room

Calculation surface 5 (UGR)

Strongest glare at	15°	
max	16.9	-
Target	≤22.0	
Viewing sector	300° - 60°	
Step width	15°	17
Height	1.200 m	
Index	CG6	.6

Figure 4-49Glare check at Reception + waiting room

<u>Results</u>: the space's artificial lighting design achieve all the requirement and specifications, the light is distributed well and the glare is within the right range and not annoying.

4.1.3.7 Corridor:

The standard lux value in this type of spaces is 100lx with 3000 - 4000 K lighting temperature as the next calculations which is done all by the DiaLUX software shows:

Figure 4-50 3D modeling Corridor

Figure 4-51 lux value in multipurpose room

Figure 4-52 celling downlight

4.1.3.8 Kitchen + cafeteria

The standard lux value in this type of spaces is 500lx with 3500 - 4500 K lighting temperature as the next calculations which is done all by the DiaLUX software shows:

Figure 4-53 3D modeling at the kitchen

Figure 4-54 lux value at the kitchen

▶▶■★照明			
Manufacturer	NVC	Р	30.0 W
Article No.	70076150	$\Phi_{\text{Luminaire}}$	2300 lm
Article name	NLED621D 30W 24° 象鼻型 4000K 大功率 天花射灯		
Fitting	1x LED COB		

Figure 4-55 celling downlight

Figure 4-56 celling downlight

<u>Results</u>: the space's artificial lighting design achieve all the requirement and specifications; the light is distributed well and the glare is within the right range and not annoying.

4.1.3.9 Bathroom:

The standard lux value in this type of spaces is 100lx with 2700 - 3000 K lighting temperature as the next calculations which is done all by the DiaLUX software shows:

Figure 4-57 3D modeling at bathroom

Properties	Ē	Emin	Emax	9 1	9z	Index
	(Target)					
Workplane (bathroom) Perpendicular illuminance (adaptive) Height: 0.800 m, Wall zone: 0.000 m	188 lx (≥ 100 lx)	68.0 lx	369 lx	0.36	0.18	WP35

Figure 4-58 lux range

				SIMES Ture per Parehitetture			FR
Manufacturer	Endo Lighting Corp.	Ρ	6.2 W	Manufacturer	SIMES	P	13.0 W
Article No.	ERD2804W_RAD848F	PErsergency lighting	6.2 W	Article No.	5.7201N	Φ _{1-aminative}	513 lm
Article name	Einert Neuenlindet	Φ.umisaire	710.lm	Article name	MINILOOK APPLIQUE		
Particip name	rives coveriges.	Φonergency lighting	710 lm		SINGLE EMISSION L		
Hong	Lamp_Disk75_4000K_ SuperWide	ELF	100 %	Fitting	1x LED 4000K		

<u>Results</u>: the space's artificial lighting design achieve all the requirement and specifications; the light is distributed well and the glare is within the right range and not annoying.

4.1.3.10 W.C :

The standard lux value in this type of spaces is 100lx with 2700 - 3000 K lighting temperature as the next calculations which is done all by the DiaLUX software show

Figure 4-59 3D modeling wc

Figure 4-60 lux value at wc

Luminaire layout plan

Figure 4-61 celling downlight

<u>Results</u>: the space's artificial lighting design achieve all the requirement and specifications; the light is distributed well and the glare is within the right range and not annoying.

4.1.3.11 Garage:

The standard lux value in this type of spaces is 75lx with 4000 - 5000 K lighting temperature as the next calculations which is done all by the DiaLUX software show

Figure 4-62 3D modeling at garage

Results

	Symbol	Calculated	Target	Check	Index
Working plane	Ēperpendicular	87.6 lx	≥ 75.0 lx	 	WP3

Figure 4-63 lux value at garage

Figure 4-64 Distribution luminaire in garage

Luminaire layout plan

<u>Nokka</u>	1		
Manufacturer	NORKA	Р	22.0 W
Article No.	5396808424-E-MC3	$\Phi_{\text{Luminaire}}$	2734 lm
Article name	BRIG m1500, 3760 Im, PMMA Transopal (impact strengthened), 840/4000 K, concentrated beam		
Fitting	1x LED		

Figure 4-65 celling downlight

<u>Results</u>: the space's artificial lighting design achieve all the requirement and specifications; the light is distributed well and the glare is within the right range and not annoying.

4.1.3.12 library:

The standard lux value in this type of spaces is 300lx with 3500 - 4000 K lighting temperature as the next calculations which is done all by the DiaLUX software shows:

Figure 4-66 3D modeling library

Results

	Symbol	Calculated	Target	Check	Index
Working plane	Eperpendicular	326 lx	≥ 300 lx	\checkmark	WP13

Figure 4-67 lux value at library and it within the range

Figure 4-68 distribution luminaire in library

Рәк 三雄极光				
Manufacturer	PAK 三雄极光	Ρ	18.0 W	
Article No.	PAK565165	$\Phi_{Luminaire}$	1334 lm	
Article name	LED天花射灯			
Fitting	1x LED/18W/4000K/60°			

Figure 4-69 celling downlight

Glare check:

Figure 4-70 glare check at library

Working planes

Properties	E
	(Target)
Working plane (library) Perpendicular illuminance (adaptive)	326 lx
Height: 0.800 m, Wall zone: 0.000 m	 Soo (x)

glare (UGR)

Strongest glare at	-33°	
max	<10	
Target	≤19.0	$= (\land $
Viewing sector	120° - 240°	<10
Step width	15°	
Height	1.200 m	
Index	CG10	

Figure 4-71 glare check in library and it within the range

<u>Results</u>: the space's artificial lighting design achieve all the requirement and specifications; the light is distributed well and the glare is within the right range and not annoying.

4.1.4 Summary & conclusion:

One space was designed from each category and the requirements were indicated in each of them, whereby the lighting in each of the spaces was designed according to the correct standards and principles. The selected lighting units was distributed with great care in order for the results to be as accurate as possible.

The artificial lighting units were distributed as perfectly as possible in order to ensure that the light reaches all areas of the room and not leave any dark areas.

The names, pictures and the specifications of the lighting units that were used in every space were added, along with some results that show that the design meets the correct and required specifications, in addition to plans for the locations of the lighting units and contour diagrams for the lux in each space that was designed.

The results were excellent, as all the spaces were Conform to the correct conditions, requirements and specifications.

4.2 Power design:

4.2.1 Introduction:

It is in this part of the project that the electrical wiring of the building is designed. The necessary exits and switches were distributed and the breakers board designed for the building. Since all of the electrical tools in the building are powered by the primary energy feeder to the building, electric energy is one of the most essential commodities in life and has a significant impact on our everyday lives. To meet the building's electrical energy needs, the primary cable must be carefully constructed.

4.2.2 Lighting power calculations: -

4.2.2.1 Sample of calculation:

the circuit breaker load is usually 10 amperes, for lighting so to find the maximum load can 10- ampere circuit breaker has as the following calculations:

lcb = 1.2 * I lode

10 amperes = 1.2 * I lode

I lode =8.333 ampere

To find how many circuit breakers we need in each space on all floors will be taken as a sample of calculation as the following calculations:

In multipurpose hall we have power equal 688

Power (Watt) = I load (Ampere) * Volt (V) * Power factor

688 watt = I load * 220 * 0.9

I load = 3.44 ampere.

Number of circuit breaker for fashion store = 3.44/8.33 =1 circuit breaker

4.2.2.2 Number of lighting circuit breaker for each space in the building. *Table 38 Number of lighting circuit breaker for ground floor*

	Ground Floor Lighting							
Space	Type of	Luminaire	No. of	powe	total	l load	N0	
	luminaire	Power (W)	luminaire	r	power		Of	
			S				CB	
multipurpos	downlight	20	10	200	688	3.47474	1	
e hall	downlight	42.5	3	127.		7		
				5				
	track light	13.8	20	276				
	track light	16.9	5	84.5				
Reception +	downlight	27	1	27	296	1.49494	1	
waiting	downlight	30	2	60		9		
room	downlight	31.5	6	189				
	downlight	20	1	20				
Special	downlight	20	2	40	40	0.20202	1	
waiting								
room	al a com l'arla t	00	0	00	00		4	
escort room	downlight	30	3	90	90	0.45454	.1	
survoillanco	downlight	30	2	60	60	0 30303	1	
room	downinght	50	2	00	00	0.00000		
drivers'	downlight	31.5	2	63	103	0 52020	1	
room	downlight	20	2	40	100	2	•	
corridor	downlight	30	10	300	300	1 51515	1	
oomaon	downinght	00	10		000	2		
cafeteria	downlight	27	4	108	288	1.45454	1	
	downlight	30	6	180		5		
library	track light	18	9	162	296.7	1.49848	1	
,	downlight	35.7	3	107.		5		
	U			1				
	downlight	13.8	2	27.6				
Bathroom	downlight	13	6	78	115.2	0.58181	1	
		6.2	6	37.2		8		
small	downlight	30	2	60	60	0.30303	1	
kitchen	-							

		First Fl	oor Lighting	g			
Space	Type of Iuminaire	Luminaire Power (W)	No. of Iuminaires	power	total power	l load	N0 Of CB
15	downlight	13.8	4	55.2	310.2	1.56666	1
employee	downlight	42.5	6	255		7	
S							
room		10 -	-	10			
break	downlight	42.5	3	127.5	210.3	1.06212	1
room	downlight	13.8	6	82.8		1	
5	downlight	42.5	5	212.5	212.5	1.07323	1
employee	0					2	
S							
room							
6	downlight	42.5	5	212.5	212.5	1.07323	1
employee						2	
S							
room		10.5		0.40	0.40	4 74747	
8	aowniight	42.5	8	340	340	1./1/1/	1
empioyee						2	
room							
meeting	downlight	35.7	3	107.1	192.1	0.97020	1
room	downlight	42.5	2	85		2	•
manager 1	downlight	30	10	300	300	1.51515	1
manager 2	downlight	27	4	108	288	1.45454	1
U	downlight	30	6	180		5	
3 room file	downlight	35.7	1	35.7	107.1	0.54090	1
	downlight	35.7	1	35.7		9	
	downlight	35.7	1	35.7			
Bathroom	downlight	13	6	78	115.2	0.58181	1
	downlight	6.2	6	37.2		8	
small kitchen	downlight	30	2	60	60	0.30303	1
cooridor	downlight	13.8	18	248.4	248.4	1.25454 5	

Table 40 Number of lighting circuit breaker for second floor

	second Floor Lighting										
Space	Type of Iuminaire	Luminaire Power (W)	No. of luminaires	powe r	total power	l load	N0 Of CB				
	downlight	42.5	4	170	170	0.85858 6	1				
2 employee	downlight downlight	42.5 13.8	2	85 13.8	98.8	0.49899	1				
employee	downlight downlight	42.5 13.8	2	85 27.6	112.6	0.56868 7	1				
Deputy General	downlight	42.5	5	212.5	212.5	1.07323 2	1				
Deputy General 01	downlight	42.5	5	212.5	212.5	1.07323 2	1				
Deputy General 02	downlight	42.5	2	85	85	0.42929 3	1				
Deputy General 03	downlight	35.7	2	71.4	71.4	0.36060 6	1				
Deputy General 04	downlight	30	2	60	60	0.30303	1				
Deputy General 05	downlight	27	5	135	135	0.68181 8	1				
Deputy General 06	downlight	35.7	5	178.5	178.5	0.90151 5	1				
Deputy General 07	downlight	42.5	3	127.5	127.5	0.64393 9	1				
break room	downlight	42.5	3	127.5	127.5	0.64393 9	1				
	downlight	13.8	6	82.8	82.8	0.41818 2	1				
cooridor	downlight	13.8	18	248.4	248.4	1.25454 5	1				
Bathroom	downlight	13	6	78	115.2	0.58181	1				
	downlight	6.2	6	37.2		8					

Table 41Number of lighting circuit breaker for third floor

third Floor Lighting										
Space	Type of	l load	N0 Of							
	Iuminaire	(VV)	Iuminaires	er	power	0.0400	CB			
room	downlight	42.5	3	127.	127.5	0.6439	1			
employees	downlight	42.5	Δ	170	197.6	0 9979	1			
employees	downlight	42.0	4	07.0	107.0	8				
	downlight	13.8	2	27.6		-				
employees	downlight	42.5	4	170	197.6	0.9979	1			
	downlight	13.8	2	27.6		8				
Deputy General	downlight	42.5	4	170	170	0.8585 86	1			
Deputy General 01	downlight	42.5	4	170	170	0.8585 86	1			
employees	downlight	42.5	5	212. 5	212.5	1.0732 32	1			
kafiteria	downlight	35.7	5	178. 5	178.5	0.9015 15	1			
IT department	downlight	30	4	120	120	0.6060 61	1			
employees	downlight	27	2	54	54	0.2727 27	1			
data center	downlight	35.7	4	142. 8	142.8	0.7212 12	1			
laboratory	downlight	42.5	4	170	170	0.8585 86	1			
cooridor	downlight	13.8	18	248. 4	248.4	1.2545 45	1			
meeting room	downlight	35.7	3	107. 1	192.1	0.9702 02				
	downlight	42.5	2	85		0.9702				
Bathroom	downlight	13	6	78	115.2	0.5818	1			
	downlight	6.2	6	37. 2		18				

	sixth Floor Lighting										
Space	Type of Iuminaire	Luminaire Power (W)	No. of Iuminaires	pow er	total power	l load	N0 Of CB				
employe	downlight	42.5	2	85	112.6	0.5686	1				
es room	downlight	13.8	2	27.6		87					
employe	downlight	42.5	2	85	98.8	0.4989	1				
es room	downlight	13.8	1	13.8		9					
employe	downlight	42.5	2	85	112.6	0.5686	1				
es room	downlight	13.8	2	27.6		87					
employe	downlight	42.5	2	85	112.6	0.5686	1				
es room	downlight	13.8	2	27.6		87					
secretar	downlight	42.5	2	85	85	0.4292	1				
y room		10 5		0.5	05	93					
secretar y room	downlight	42.5	2	85	85	0.4292 93	1				
meeting	downlight	35.7	3	107.	192.1	0.9702	1				
room				1		02					
	downlight	42.5	2	85		0.9702 02	1				
main office	downlight	13.8	6	82.8	82.8	0.4181 82	1				
	downlight	42.5	2	85	85	0.4292 93	1				
main office	downlight	13.8	6	82.8	82.8	0.4181 82	1				
	downlight	42.5	2	85	85	0.4292 93	1				
director	downlight	42.5	2	85	85	0.4292	1				
director	downliaht	35.7	2	107.	192.1	0.9702	1				
general				1		02					
corridor	downlight	13.8	18	248.	248.4 1.2545		1				
				4		43					
Bathroo	downlight	13	6	78	115.2	0.5818	1				
m	downlight	6.2	6	37.2		18					

Table 43Number of lighting circuit breaker for forth floor

forth Floor Ligh									
Space	Type of	Luminaire	No. of	pow	total	l load	NO		
	luminaire	Power (W)	luminaires	er	power		Of CP		
employees	downlight	/2.5	2	85	112.6	0 5686			
room	downlight	13.8	2	27.6	112.0	87			
employees	downlight	42.5	2	85	112.6	0 5686	1		
room	downlight	13.8	2	27.6	112.0	87			
emplovees	downlight	42.5	2	85	112.6	0.5686	1		
room	downlight	13.8	2	27.6	-	87			
employees	downlight	42.5	2	85	112.6	0.5686	1		
room	downlight	13.8	2	27.6		87			
employees	downlight	42.5	2	85	85	0.4292	1		
		10.5		0.5		93			
employees	downlight	42.5	2	85	85	0.4292	1		
employees	downlight	42.5	2	85	85	0.4292	1		
	genight		_			93			
employees	downlight	42.5	2	85	85	0.4292	1		
		10.5	0	0.5	05	93			
employees	downlight	42.5	2	85	85	0.4292 03	1		
emplovees	downlight	42.5	2	85	85	0.4292	1		
	5					93			
employees	downlight	42.5	2	85	85	0.4292	1		
	al a com l'ach t	10 5	0	05	05	93	A		
employees	aownlight	42.5	2	85	85	0.4292	1		
employees	downlight	42.5	2	85	85	0.4292	1		
	5					93			
Registratio	downlight	35.7	2	107.	192.1	0.9702	1		
n room	downlight	42.0	10	240	040.4	02	4		
cooridor	aownlight	13.8	18	248. 4	248.4	1.2545	l 1		
Bathroom	downlight	13	6	78	115.2	0.5818	1		
	downlight	6.2	6	37.2		18			

Table 44Number of lighting circuit breaker for fifth floor

		fifth Flo	or Lighting				
Space	Type of	Luminaire	No. of	powe	total	l load	N0
	luminaire	Power (W)	luminaire	r	power		Of
_			S				CB
employees	downlight	42.5	2	85	112.6	0.56868	1
room	downlight	13.8	2	27.6		1	
employees	downlight	42.5	2	85	112.6	0.56868	1
room	downlight	13.8	2	27.6		7	
employees	downlight	42.5	2	85	112.6	0.56868	1
room	downlight	13.8	2	27.6		7	
employees	downlight	42.5	2	85	112.6	0.56868	1
room	downlight	13.8	2	27.6		7	
employees	downlight	42.5	2	85	85	0.42929	1
						3	
employees	downlight	42.5	2	85	85	0.42929	1
_						3	
employees	downlight	42.5	42.5 2 85	85	0.42929	1	
omployoos	downlight	12.5	2	0E	95	0 42020	1
employees	uowinigin	42.5	2	00	00	0.42929	I
employees	downlight	42.5	2	85	85	0.42929	1
	genight		_			3	-
employees	downlight	42.5	2	85	85	0.42929	1
						3	
employees	downlight	42.5	2	85	85	0.42929	1
						3	
employees	downlight	42.5	2	85	85	0.42929	1
	al a u va li a la t	40.5		05	05	3	4
employees	aowniight	42.5	2	85	85	0.42929	
Pogistratio	downlight	35.7	2	107 1	102 1	0 07020	1
n room	downingin	55.7	2	107.1	192.1	0.97020	1
corridor	downliaht	13.8	18	248.4	248.4	1.25454	1
	5.4					5	
Bathroom	downlight	13	6	78	115.2	0.58181	1
	downlight	6.2	6	37.2		8	

Cable size:

To find the electricity cable diameter for lighting switches we used the following formula:

I cable = 1.2 * I circuit breaker \rightarrow 1.2 * 10 = 12 Ampere

According the following table, I cable = 1.5mm2.

Table 45 cable cross-sectional area due to current

Nominal cross sectional Area (mm2)	Current (ampere)
1	11
1.5	13
2.5	18
4	24
6	31
10	42
16	56
25	73
36	90
50	131

4.2.2.3 Voltage drop

We took the furthest room from the electrical panel to calculate voltage drop and we used the following formula:

V drop = I load * R.

V drop = I * (δ * 2L /A).

The maximum allowable voltage drops = 5% * 220V = 11Volt

As shown from the previous figure the farthest distance between lighting unit and distribution board is approximately 33m, therefore, voltage drop check can be calculated from the following formula:

$$\mathsf{R}=L*\frac{\mathcal{P}}{\mathsf{A}},$$

Where:

L: max length between lighting unit and electrical distribution bored.

A: Wire cross-sectional area.

 \mathcal{P} : Copper resistivity =1.7*10⁻⁸.

R: electrical wire resistance.

The maximum allowable voltage drops = 5% * 220V = 11Volt.

V drop = $\frac{\mathcal{P}*2L}{A}$ * I= $\frac{1.7*10^{-8}*2*33}{1.5*10^{-6}}$ * 3.47=2.618 <11 so it is ok.

4.2.3 Sockets design:

Special load

Assumption: -

We designed special load sockets for fan coil and split unit.

Special lode for HVAC design:

1. Fan coil with diffusers: we put fan coil with diffusers in ground, first, second, and third floors Because we have a large areas and a lot of people flock come to this place.

2. Split unit: we put split unit in offices.

The power of fan coil is 4500 W and the power of split unit is 500W.

Power = *I***V***powerfacto* 4500= I * 220 * .9 I = 22.7 Amp.

.

I design = I load * 1.15^2

I design = 22.7 * 1.152 = 30 Amp.

Cross wire 6 mm2.

 $\mathsf{R} = L *_{\mathsf{A}}^{\mathcal{P}} = \frac{1.7 * 10^{-8} * 10}{10 * 10^{\circ} - 6} = .03 \ \Omega.$

Drop voltage = $I * \frac{R}{V} = 30 * \frac{0.03}{220} = 0.4 < 11 \text{ V so it is ok}$.

For split unit:

Power = I * V * powerfacto 500 = I * 220 * .9 I = 2.52 Amp.I design = I load * 1.15^2 I design = 22.7 * 1.152 = 3.34 Amp. Cross wire 1 mm^2 . R= $L*\frac{P}{A} = \frac{1.7*10^{-8}*9}{10*10^{-6}} = 0.153 \Omega.$ Drop voltage = $I*\frac{R}{V} = 3.34*\frac{0.153}{220} = 0.2 < 11 \text{ V so it is ok}.$

Normal load:

Normal load has a 2-ampere lode which means in other words 400 watt of power, so the circuit breaker load for normal power can be loaded 5 sockets.

Power = I*V*powerfacto 400 = I * 220 * .9, I = 2.02 AmpI design = I load * 1.15² I design = 2.02 *1.15² = 2.67 Amp. Cross wire 1 mm^2 $R = L*\frac{\mathcal{P}}{A} = \frac{1.7*10^{-8}*9}{10*10^{*}-6} = 0.153 \Omega.$ Drop voltage = $I*\frac{R}{V} = 2.67*\frac{0.153}{220} = 0.18 < 11 \text{ V so it is ok}$.

V 220

This calculation are the same for all floors.

4.2.4 circuit breaker:

A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by an overcurrent or short circuit.

Note: for each special load socket has one line in the distribution board

Figure 4-72 circuit breaker

4.2.5 distribution board:

A distribution board, also referred to as a panel board, breaker panel, electric panel, DB board, or DB box, is a part of an electricity supply system that separates a main electrical circuit into smaller circuits while providing a protective fuse or circuit breaker for each circuit in a single enclosure. A primary switch is typically also included, and more recently, one or more residual-current devices (RCDs) or residual current breakers with overcurrent safety (RCBOs). n.d. (Distribution Commission)

Figure 4-73 distribution board

4.2.6 Demand factor:

The calculation:

The total power load = (special load * demand factor) + (normal load*demand factor) + (lighting load *demand factor).

Table 46:Demand factor.

Demand factor						
normal 0.3						
special	1					
lighting	0.8					

Table 47Total power lighting.

	lighting
floors	power
parking 1	1400
parking 2	1400
parking 3	1400
Ground	
floor	2337
First floor	2596
Second	
floor	1922.5
Third floor	2181
Fourth floor	1770.7
fifth floor	1692.4
sixth floor	1692.4

Total power =18392

Sample of calculation:

• The power of a branch for lighting:

The power of a branch of light = # of lamps * power of 1 lamp

Total power for lighting = total power * demand factor = 18392 * .8 = 14713.6 w

• The power of a branch for normal lode:

Total number of normal power branch circuits = 100.

each normal power branch circuit has total power = Power of each socket * NO. of sockets connected with branch * Demand Factor.

Total Power = 400 * 5 = 2000 Watt,

hence total power = 2000 * 100* 0.3=60000Watt.

Table 48 Total power for special lode

special lode	total power
special lode for fan coil	108000
special lode for split unit	25000
total	133000

The power of a branch for special lode:

The Each special power for branch circuits has total power = Power of each socket * NO. of sockets connected with branch.

The total power load = (special load * demand factor) + (normal load*demand factor) + (lighting load *demand factor) = 60000+14713.6+133000=207713.6 w

Total current = ((Total power/ ($\sqrt{3}$ ×power factor)) = (207713.6/ ($\sqrt{3}$ ×220×.9)) = 605.6 Amp.

Total current for the circuit breaker = $1.15 \times 1 \text{ load} = 1.15*605.6=696.5 \text{ Amb}$. Hence, the circuit breaker needed was 1000 Amb.

The total current in the cable = 1.15 * I C.B = 1.15*696.5 = 801 Amb. The cross-sectional area was needed for cable = 3 * 240 mm2

4.3 HVAC Design

HVAC system calculations:

Table 49The total Cooling and Heating Load in the building

The total Cooling and Heating Load in the building	
The Design Cooling Load in the building (KW)	237
The Design Heating Load in the building (KW)	192

The Outdoor Unit:

Various outdoor units for the VRF system are shown in the following Daikin catalog:

Table 50The Types of the VRF Outdoor Units(Your Business Our, 2022)

OUTDOOR SYSTEM RYYQ38TRXYQ38TRXYQ40TRYYQ40TRYYQ42TRYYQ42TRYYQ44TRYYQ46TRXYQ46TRYYQ45TRXYQ45TRYYQ45TRXYQ45TRYYQ45TRXYQ45TRYY						RYYQ52TRXYQ521	TRYYQ54TRXYQ54T												
	Outdoor u	nit modu	le 1		RYMQST RXYQST	RYMQ10T RXYQ10T	RYMQ10T RXYQ12T	RYMQ12T RXYQ121	RYMQ14T RXYQ14T	RYMQ16T RXYQ16T	RYMQ16T RXYQ16T	RYMQ16T RXYQ16T	RYMQ18T RXYQ18T						
System	Outdoor u	nit modu	le 2		RYMQ10T RXYQ10T	RYMQ12T RXYQ12T	RYMQ16T RXYQ16T	RYMQ16T RXYQ16T	RYMQ16T RXYQ16T	RYMQ16T RXYQ16T	RYMQ16T RXYQ16T	RYMQ18T RXYQ18T	RYMQ18T RXYQ18T						
	Outdoor u	nit modu	le 3		RYMQ20T RXYQ20T	RYMQ18T RXYQ18T	RYMQ16T RXYQ16T	RYMQ16T RXYQ16T	RYMQ16T RXYQ16T	RYMQ16T RXYQ16T	RYMQ18T RXYQ18T	RYMQ18T RXYQ18T	RYMQ18T RXYQ18T						
Capacity rang	e			HP	38	40	42	44	46	48	50	52	54						
Cooling capacity	Nom.			kW	106.0	112.0	118.0	124.0	130.0	135.0	140.0	145.0	150.0						
Heating capacity	Nom.			kW	120.0	125.0	132.0	138.0	145.0	150.0	156.0	162.0	168.0						
Power input -	Cooling	Nom.		kW	31	.0	33.3	35.0	37.0	39.0	40.7	42.4	44.1						
SOHz	Heating	Nom.		kW	29.9	30.9	33.0	34.7	36.8	38.4	40.0	41.6	43.2						
EER					3.42	3.61	3.	54	3.51	3.46	3.44	3.42	3.40						
ESEER					6,361	6.74 '	6.65 '	6.62 *	6.60 1	6.50 1	6.46 1	6.42 1	6,38						
COP					4.01	4.05	4.00	3.98	3.94	3.91	3.90	3.89	3.89						
Maximum nur	mber of con	nectable	indoor u	inits					64 3										
	Liquid	OD		mm		19.1													
	Gas	OD		mm		41.3													
Piping	Piping length	OU-IU	Max.	m		165 ¹													
connections	Total piping length	System	Actual	m		1,000 °						1,000 ³							
	Level difference OU - IU m 90 ° Out						90 ^a Outdoor unit in highest position / 90 ^a Indoor unit in highest position												
Current - SOHz	Maximum	fuse amp	s (MFA)	A			100				1	25							

[RYYQ42T], a 118-kW outdoor unit, was chosen.

The Design Cooling Load = 237 KW, so the number of outdoor units needed = 237/106 = 2 Outdoor Units.

As shown in the accompanying Figure, the maximum permissible distance among outdoor and interior units is 90 meters, which is highly practical in high buildings.

Split unit:

Table	51The	needed	number	of s	olit	units	and	their	tvpes	for	Offices.
1 GIDIC	511110	necaca	mannoer	0, 5	Dire	annes	ana	cricii	cypes.	,	0))/000

Block	Zone	Design Flow Rate (L/s)	Total Cooling Load (kW)	Used Hvac System	HvacSysytem Cooling Capacity (W)	Required Number of Split Indoor Units
First floor	Office	89.4	1.07	Split UnitType(FXAQ32P)	2.2	1
First floor	Manegar	96.7	1.16	Split UnitType(FXAQ32P)	2.2	1
First floor	Meeting	197.8	2.56	Split UnitType(FXAQ32P)	3.6	1
First floor	Employer	306.1	3.74	Split UnitType(FXAQ50P)	1.7	2
First floor	EmployerZ1	140.1	1.68	Split UnitType(FXAQ32P)	1.7	1
First floor	ManegarZ1	61.6	0.74	Split UnitType(FXAQ32P)	3.6	1
First floor	ManegarZ2	56.4	0.68	Split UnitType(FXAQ32P)	3.6	1
First floor	ManegarZ3	55.3	0.66	Split UnitType(FXAQ32P)	3.6	1
First floor	EmployerZ2	175.9	2.11	Split UnitType(FXAQ32P)	3.6	1
First floor	Securtary	62	0.74	Split UnitType(FXAQ32P)	2.2	1
First floor	Director	197.8	2.33	Split UnitType(FXAQ32P)	3.6	1
second floor	Office5	148.6	1.81	Split UnitType(FXAQ32P)	3.6	1
second floor	Office2	218.8	2.64	Split Unit Type(FXAQ50P)	1.7	2
second floor	office3	108.8	1.33	Split Unit Type(FXAQ32P)	3.6	1
floor	Prison	57.7	0.67	Split Unit Type(FXAQ32P)	3.6	1
second floor	Office4	102.5	1.26	Split UnitType(FXAQ32P)	3.6	1
floor	Office	57.4	0.7	UnitType(FXAQ32P)	2.2	1
second floor	Office1	63	0.77	UnitType(FXAQ32P)	2.2	1
second floor	Office6	58.9	0.72	UnitType(FXAQ32P)	2.2	1
floor	Office7	85.9	1.05	UnitType(FXAQ32P)	2.2	1
floor	Office9	125.5	1.53	UnitType(FXAQ32P)	2.2	1
second floor	Office8	203.7	2.46	UnitType(FXAQ50P)	5.6	1
	Office1	132.4	1.61	Split UnitType(FXAQ32P)	3.6	1
I hird floor	Office2	213.5	2.57	Split UnitType(FXAQ50P)	5.6	1
Third floor	Office8	63.7	0.77	Split UnitType(FXAQ32P)	3.6	1

Third floor	Office3	64.3	0.79	Split Unit Type(FXAQ32P)	3.6	1
Third floor	Office7	112.9	1.38	Split Unit Type(FXAQ32P)	3.6	1
Third floor	Office6	65.1	0.8	Split Unit Type(FXAQ32P)	3.6	1
Third floor	Office4	98.3	1.2	Split UnitType(FXAQ32P)	3.6	1
Third floor	Office10	128.6	1.56	Split UnitType(FXAQ32P)	3.6	1
Third floor	Office	77.5	0.93	Split UnitType(FXAQ32P)	3.6	1
Third floor	Office9	212.2	2.56	Split UnitType(FXAQ50P)	5.6	1
Forth floor	Office	74.2	0.86	Split UnitType(FXAQ32P)	3.6	1
Forth floor	OfficeZ1	64.3	0.75	Split UnitType(FXAQ32P)	3.6	1
Forth floor	OfficeZ2	239.7	2.8	Split UnitType(FXAQ50P)	5.6	1
Forth floor	OfficeZ3	167.7	1.95	Split UnitType(FXAQ32P)	3.6	1
Forth floor	OfficeZ4	65	0.75	Split UnitType(FXAQ32P)	3.6	1
Forth floor	Ofice	302.7	3.56	Split UnitType(FXAQ50P)	2.2	2
Forth floor	OfficeZ5	80.1	0.94	Split UnitType(FXAQ32P)	3.6	1
Forth floor	OfficeZ6	85.9	1	Split UnitType(FXAQ32P)	3.6	1
Forth floor	OfficeZ7	79.2	0.92	Split UnitType(FXAQ32P)	3.6	1
Forth floor	OfficeZ8	78.8	0.92	Split UnitType(FXAQ32P)	3.6	1
Forth floor	Office4	72.9	0.84	Split UnitType(FXAQ32P)	3.6	1
Forth floor	Office3	60	0.69	Split UnitType(FXAQ32P)	3.6	1
Forth floor	Office2	60.8	0.7	Split UnitType(FXAQ32P)	3.6	1
Forth floor	OfficeZ9	59.6	0.69	Split UnitType(FXAQ32P)	3.6	1
Forth floor	OfficeZ10	102.8	1.19	Split UnitType(FXAQ32P)	3.6	1
Forth floor	OfficeZ11	74	0.85	Split UnitType(FXAQ32P)	3.6	1
fifth floor	Employer1	86.7	1.06	Split UnitType(FXAQ32P)	3.6	1
fifth floor	Manegar1	50.8	0.62	Split UnitType(FXAQ32P)	3.6	1
fifth floor	Manegar2	55.5	0.68	Split UnitType(FXAQ32P)	3.6	1
fifth floor	Employer2	84.5	1.04	Split UnitType(FXAQ32P)	3.6	1
fifth floor	Employer3	242.5	2.96	Split UnitType(FXAQ50P)	5.6	1
fifth floor	Director	205.5	2.47	Split UnitType(FXAQ50P)	5.6	1

fifth floor	Employer	342.6	4.16	Split UnitType(FXAQ50P)	5.6	1
fifth floor	Manegar3	77.9	0.95	Split UnitType(FXAQ32P)	3.6	1
fifth floor	Manegar	77.5	0.94	Split UnitType(FXAQ32P)	3.6	1
sixth floor	Director	90.2	1.1	Split UnitType(FXAQ32P)	3.6	1
sixth floor	ChairMan	348	4.2	Split UnitType(FXAQ50P)	5.6	1
sixth floor	Presidient	213.6	2.6	Split UnitType(FXAQ50P)	5.6	1
sixth floor	Meeting	172.5	2.24	Split UnitType(FXAQ32P)	3.6	1
sixth floor	Office	126	1.53	Split UnitType(FXAQ32P)	3.6	1
sixth floor	DirectorZ1	223.3	2.62	Split UnitType(FXAQ32P)	2.2	1
sixth floor	Employer	76.9	0.94	Split UnitType(FXAQ32P)	3.6	1
sixth floor	DirectorZ2	57.1	0.7	Split UnitType(FXAQ32P)	3.6	1
sixth floor	EmployerZ1	72.4	0.88	Split UnitType(FXAQ32P)	3.6	1
sixth floor	DirectorZ3	54.1	0.66	Split UnitType(FXAQ32P)	3.6	1

1-1 TECHN	ICAL SPECIF	ICATIONS		FXAQ20MAVE	FXAQ25MAVE	FXAQ32MAVE	FXAQ40MAVE	FXAQ50MAVE	FXAQ63MAVE		
Nominal	Cooling		kW	2.20	2.80	3.60	4.50	5.60	7.10		
Capacity	city Heating		kW	2.50	3.20	4.00	5.00	6.30	8.00		
Power input	Cooling		kW	0.016	0.022	0.027	0.020	0.027	0.050		
(Nominal)	Heating		kW	0.024	0.027	0.027 0.032		0.032	0.060		
Casing	Colour			white (3.0Y8.5/0.5)							
Dimensions	Unit	Height	mm	290	290	290	290	290	290		
		Width	mm	795	795	5 795	1050	1050	1050		
		Depth	mm	230	230	230	230	230	230		
Weight	Unit	kg		11	11	11	14	14	14		
Heat	Dimensions Nr of Rows			2	2	2	2	2	2		
Exchanger		Fin Pitch	mm	1.40	1.40	1.40	1.40	1.40	1.40		
		Face	m²	0.161	0.161	0.161	0.213	0.213	0.213		
		Area									
		Nr of Stages	;	14	14	14	14	14	14		
Fan	Туре			Cross flow fan							
	Quantity			1	1	1	1				
Air Flow Rate	Cooling	High	m*/min	7.50	8.00	9.00	12.00	15.00	19.00		
		Low	m*/min	4.50	5.00	5.50	9.00	12.00	14.00		
Fan	Motor	Quantity		1	1	1	1	1	1		
		Model		QCL9661M	QCL9861M	QCL9661M	QCL9686M	QCL9686M	QCL9686M		
		Output	w	40	40	40	43	43	43		
		(high)									
		Drive		Direct drive							
Refrigerant	Name			nige in R-410A m							

Wall mounted unit

(FXAQ50P, FXAQ32P, FXAQ20P), a 5.6-kW, 3.6-kW respectively indoor units (Split Units), was chosen

Fan coils and diffusers design:

floor	Zone	Floor Area (m2)	Total Coolin g Load (kW)	Desig n Flow Rate (L/s)	Used Hvac System	Hvac Coolin g Capa city (kW)	Requi red Numb er of Fan Coil	The Volum atric Flow Rate /m 2	The Diffuser Voumatric Flow Rate (L/s)	Req no of diffus er
GF floor	0:BreakRoo m	59. 1	2.1 5	186	[FXS Q40]	4.5	1	3.1	68 L/S (150x150 mm)	1
GF floor	0:Carridor	100 .6	2.8 2	234	[FXS Q40]	4.5	1	2.3	127 L/S (225x225 mm)	2
GF floor	Library	57. 5	4.5 7	368 .7	[FXS Q40]	4.5	1	6.4	127 L/S (225x225 mm)	3
GF floor	Driver	22	0.9 4	77. 7	[FXS Q40]	4.5	1	3.5	68 L/S (150x150 mm)	1
GF floor	0:MultiPurp ose	152 .8	12. 01	928 .2	[FXS Q40]	4.5	3	6.1	127 L/S (225x225 mm)	7
GF floor	0:GlassRoo m	33. 7	1.0 1	83. 6	[FXS Q40]	4.5	1	2.5	68 L/S (150x150 mm)	1
GF floor	0:Kitchen	5.7	0.2 1	17. 5	[FXS Q40]	4.5	1	3.1	34 L/S (150x150 mm)	1

floor	Zone	Floor Area (m2)	Total Coolin g Load (kW)	Desig n Flow Rate (L/s)	Used Hvac System	Hvac Coolin g Capa city (kW)	Requi red Numb er of Fan Coil	The Volum atric Flow Rate /m 2	The Diffuser Voumatric Flow Rate (L/s)	Req no of diffus er
GF floor	0:Reception	18. 3	0.6 8	55. 4	[FXS Q40]	4.5	1	3	34 L/S (150x150 mm)	2
GF floor	0:WaitingRo om	12. 8	0.3 8	31. 3	[FXS Q40]	4.5	1	2.4	34 L/S (150x150 mm)	1
first floor	1stFloor:Cor ridor	118. 4	4.3 3	364 .3	[FXS Q40]	4.5	1	3.1	127 L/S (225x225 mm)	3
first floor	1stFloor:Kitc hen	3.7	0.1 7	13. 8	[FXS Q40]	4.5	1	3.7	34 L/S (150x150 mm)	1
first floor	1stFloor:Gla ssRoom	34. 6	1.2	100 .5	[FXS Q40]	4.5	1	2.9	68 L/S (150x150 mm)	2
First floor	Employer	77. 4	3.7 4	306	[FXS Q40]	4.5	1	4.0	127 L/S (225x225 mm)	2
First floor	EmployerZ1	43. 7	1.6 8	140	[FXS Q40]	4.5	1	3.2	68 L/S (150x150 mm)	1
Third floor	Office7	39. 3	1.3 8	113	[FXS Q40]	4.5	1	2.9	68 L/S (150x150 mm)	1
Third floor	Office6	21. 6	0.8	65	[FXS Q40]	4.5	1	3.0	34 L/S (150x150 mm)	1
Third floor	Office10	34. 3	1.5 6	129	[FXS Q40]	4.5	1	3.8	127 L/S (225x225 mm)	1
Forth floor	Office	74	0.8 6	17. 7	[FXS Q40]	4.5	1	0.2	34 L/S (150x150 mm)	1
Forthf loor	Ofice	303	3.5 6	42	[FXS Q40]	4.5	1	0.1	34 L/S (150x150 mm)	1
seco nd floor	2nd:Carridor	161	5.7 8	471 .9	[FXS Q40]	4.5	2	2.9	127 L/S (225x225 mm)	4
seco nd floor	2nd:Kitchen	2.7	0.1 7	14. 5	[FXS Q40]	4.5	1	5.4	34 L/S (150x150 mm)	1
floor	Zone	Floor Area (m2)	Total Coolin g Load (kW)	Desig n Flow Rate (L/s)	Used Hvac System	Hvac Coolin g Capa city (kW)	Requi red Numb er of Fan Coil	The Volum atric Flow Rate /m 2	The Diffuser Voumatric Flow Rate (L/s)	Req no of diffus er
----------------	-----------------	-----------------------	--------------------------------------	-------------------------------------	------------------------	---	--	---	--	------------------------------
third floor	3rd:Kitchen	4.6	0.2 6	20. 5	[FXS Q40]	4.5	1	4.5	34 L/S (150x150 mm)	1
third floor	3rd:Carridor	131 .9	4.6 2	20. 5	[FXS Q40]	4.5	1	0.2	127 L/S (225x225 mm)	1
forth floor	4:Carridor	131 .9	4.6 2	378 .1	[FXS Q40]	4.5	1	2.9	127 L/S (225x225 mm)	3
forth floor	4:Kitchen	3.4	0.1 7	15	[FXS Q40]	4.5	1	4.4	34 L/S (150x150 mm)	1
forth floor	4:GlassRoo m	32. 2	1.2 7	109 .6	[FXS Q40]	4.5	1	3.4	68 L/S (150x150 mm)	2
fifth floor	5:Carridor1	116. 3	3.9 2	339 .4	[FXS Q40]	4.5	1	2.9	127 L/S (225x225 mm)	3
fifth floor	5:GlassRoo m	32. 2	1.1 5	93. 5	[FXS Q40]	4.5	1	2.9	68 L/S (150x150 mm)	1
sixth floor	6:Carridor	105 .4	4.4	358 .2	[FXS Q40]	4.5	1	3.4	127 L/S (225x225 mm)	3
sixth floor	6:GlassRoo m	31. 3	3.2	269	[FXS Q40]	4.5	1	8.6	68 L/S (150x150 mm)	4
sixth floor	6:Kitchen	3.7	0.2 1	16. 8	[FXS Q40]	4.5	1	4.5	34 L/S (150x150 mm)	1

2-1 Technical S	Specifications			FXSQ20 P	FXSQ25 P	FXSQ32 P	FXSQ40 P	FXSQ50 P	FXSQ63 P	FXSQ80 P	FXSQ10 0P	FXSQ12 5P	FXSQ14 0P			
Cooling capacity	Nom.		kW	2.2 (1)	2.8 (1)	3.6 (1)	4.5 (1)	5.6 (1)	7.1 (1)	9.0 (1)	11.2 (1)	14.0 (1)	16.0 (1)			
Heating capacity	Nom.		kW	2.5 (2)	3.2 (2)	4.0 (2)	5.0 (2)	6.3 (2)	8.0 (2)	10.0 (2)	12.5 (2)	16.0 (2)	18.0 (2)			
Power input - 50Hz	Cooling	Nom.	kW	0.04	0.041 (1) 0.044 0.097 (1) (1)		0.074 (1)	0.118 (1)	0.117 (1)	0.185 (1)	0.261 (1)					
	Heating	Nom.	kW	0.02	9 (2)	0.032 (2)	0.08	35 (2)	0.062 (2)	0.106 (2)	0.105 (2)	0.173 (2)	0.249 (2)			
Power input - 60Hz	Cooling	Nom.	kW	0.04	1 (1)	0.044 (1)	0.09	97 (1)	0.074 (1)	0.118 (1)	0.117 (1)	0.185 (1)	0.261 (1)			
	Heating	Nom.	kW	0.02	9 (2)	0.032 (2)	0.08	35 (2)	0.062 (2)	0.106 (2)	0.105 (2)	0.173 (2)	0.249 (2)			
Casing	Colour	•		Unpainted												
	Material			Galvanised steel												
Dimensions	Unit	Height	mm				300									
		Width	mm	550 700 1,000				1,400								
		Depth	mm					7	00							
	Packed unit	Height	mm					3	55							
		Width	mm		770		9	20	1,2	220		1,620				
		Depth	mm					9	00							
Required ceiling void	1>		mm					3	50							
Weight	Unit		kg		23		2	26	3	5	4	6	47			
	Packed unit		kg		28		3	32	4	2	5	54	55			
Decoration panel	Model			B	YBS32DJ\	N1	BYBS4	ISDJW1	BYBS7	'1DJW1	Bì	BS125DJ	W1			
	Colour							White (1	0Y9/0.5)							
	Dimensions	Height	mm					(5							
		Width	mm		650		8	00	1,1	100		1,500				
	I	n "	T					-	~~					1		

[FXSQ40], a 4.5-kW unit, was chosen.

the number of fan coils needed = The Design Cooling load for the space/ Cooling capacity for the unit

the number of fan coils needed =4.33/4.5=1 unit

Diffusers Calculation:

The corridor (1st floor) volumetric flow rate is 364 L/s.

The corridor volumetric flow rate per m2 = tot. volumetric flow rate for the space /total area

The corridor volumetric flow rate per m2 =364/118=3.1 L/s/m2.

The Volumetric flow rate per m2 should be between (5-15) L/s \rightarrow 3.1 < 5

So, the min. flow rate = $5 \times$ Space Area = 592 L/s.

	DF / DE	Core	21					
Supply		Core		```				
Total pressure drop (Pa)		150 × 150	225 x 225	300 x 300	375 × 375	450 × 450	525 × 525	600 x 600
	l/s	34	76	135	211	304	413	540
9	Min Max (m)	1.0-2.0	1.5-2.5	2.0-3.5	2.5-4.5	2.5-6.0	3.0-6.5	3.5-7.0
	Lw		-	-	23	24	26	28
	l/s	45	101	180	282	405	551	720
15	Min Max (m)	1.0-2.5	2.0-3.5	2.5-5.0	3.0-6.0	3.5-7.5	4.0-8.0	4.5-8.5
	Lw	-	25	28	30	31	33	35
	l/s	56	127	225	352	506	689	900
23	Min Max (m)	1.5-3.0	2.5-5.0	3.0-6.0	4.0-7.5	4.5-9.0	5.0-10.0	5.5-10.5
	Lw	27	31	34	36	37	39	41
	l/s	68	152	270	422	608	827	1080
33	Min Max (m)	2.0-3.5	2.5-5.5	3.5-7.5	5.0-9.5	5.5-11.0	6.5-13.0	6.5-13.0
	Lw	32	36	39	41	42	43	45
	l/s	79	177	315	492	709	964	1260
43	Min Max (m)	2.0-4.5	3.0-6.0	4.5-8.5	5.5-11.0	6.5-13.0	7.5-15.0	7.5-15.0
	Lw	36	40	43	45	46	48	49

The first chosen diffuser can handle 34 L/S airflow, and the dimension of the diffuser is (150x150) mm.

The second chosen diffuser can handle 68 L/S airflow, and the dimension of the diffuser is (150x150) mm.

The third chosen diffuser can handle 127 L/S airflow, and the dimension of the diffuser is (225x225) mm.

Duct Sizing:

Depending on the required airflow in each area, we will choose the volume. The DUCTULATOR program was used with the channel depth = 300 mm under the drop beams and the Velocity = 5 m/s.

floor	Zone	The Diffuser Voumatric Flow Rate (L/s)	Req no of diffus er	Airflow	Duct Widt h (mm)	Duct Dim (mm)
first floor	1stFloor:Corridor	127 L/S (225x225 mm)	3	364.3	275	314
first floor	1stFloor:Kitchen	34 L/S (150x150 mm)	1	34	50	122
first floor	1stFloor:GlassR oom	68 L/S (150x150 mm)	2	136	125	207
second floor	2nd:Carridor	127 L/S (225x225 mm)	4	508	375	366
second floor	2nd:Kitchen	34 L/S (150x150 mm)	1	34	50	122
GF floor	0:BreakRoom	127 L/S (225x225 mm)	1	127	100	183
GF floor	0:Carridor	128 L/S (225x225 mm)	2	254	200	266
GF floor	0:MultiPurpose	129 L/S (225x225 mm)	7	889	675	482
GF floor	0:GlassRoom	68 L/S (150x150 mm)	1	68	75	155
GF floor	0:Kitchen	34 L/S (150x150 mm)	1	34	50	122
GF floor	0:Reception	34 L/S (150x150 mm)	2	34	50	122
GF floor	0:WaitingRoom	34 L/S (150x150 mm)	1	34	50	122
third floor	3rd:Kitchen	34 L/S (150x150 mm)	1	34	50	122
third floor	3rd: Corridor	127 L/S (225x225 mm)	1	127	100	183
forth floor	4: Corridor	127 L/S (225x225 mm)	3	381	275	314
forth floor	4: Kitchen	34 L/S (150x150 mm)	1	34	50	122
forth floor	4: Glass Room	68 L/S (150x150 mm)	2	136	125	207

floor	Zone	The Diffuser Voumatric Flow Rate (L/s)	Req no of diffus er	Airflow	Duct Widt h (mm)	Duct Dim (mm)
fifth floor	5: Carridor1	127 L/S (225x225 mm)	3	381	275	314
fifth floor	5: Glass Room	68 L/S (150x150 mm)	1	68	75	155
sixth floor	6: Corridor	127 L/S (225x225 mm)	3	381	275	314
sixth floor	6: Glass Room	68 L/S (150x150 mm)	4	272	200	266
sixth floor	6: Kitchen	34 L/S (150x150 mm)	1	34	50	122

3D HVAC system by Revit program

If the system is VRV system in Ground Floor

4.4 Acoustic System:

4.4.1 Introduction

The acoustic design is an important part no less than any other design part in the building, because of its psychological and health impact on the comfort of the users. There are some criteria that should be take into account during design. Things will calculate is:

- 1- Reverberation time (RT 60)
- 2- Articulation loss (AL)
- 3- Sound Transmission Class (STC)

Reverberation time (RT60):

The time required to reduce the sound to the level of sound that a person can clearly hear, equal to 60 (dB),Using Ecotect to preform simple acoustical analysis for spaces.

Maximum recommended reverberation time for speech in office

Grondzik, & Kwok, 2015, P.1059

Figure474-bellow show the recommended values for RT60

Optimum reverberation times at midfrequency (500–1000 Hz) for various types of facilities (Grondzik, & Kwok, 2015, P.1060).

Articulation:

Articulation (pronunciation and talking) is the ability to physically move the tongue, lips, teeth and jaw to produce sequences of speech sounds, which make up words and sentences.

The level of comprehension and auditory comprehension will be determined within the spaces.

Table 19 common sound pressure level

TABLE 22.5 Common Sound Pressure Levels

Sound Pressure Level (dBA)	Typical Sound	Subjective Impression
150		(Short exposure can cause hearing loss)
140	Jet plane takeoff	
130	Artillery fire, riveting, machine gun	(Threshold of pain)
120	Siren at 100 ft (30 m), jet plane (passenger ramp), thunder, sonic boom	Deafening
110	Woodworking shop, hard-rock band, accelerating motorcycle	Sound can be felt (threshold of discomfort)
100	Subway (steel wheels), loud street noise, power lawnmower, outboard motor	
90	Noisy factory, unmuffled truck, train whistle, machine shop, kitchen blender, pneumatic jackhammer	Very loud, conversation difficult; ear protection required for sustained occupancy
80	Printing press, subway (rubber wheels), noisy office, supermarket, average factory	(Intolerable for phone use)
70	Average street noise, quiet typewriter, freight train at 100 ft (30 m), average radio, department store	Loud, noisy; voice must be raised to be understood
60	Noisy home, hotel lobby, average office, restaurant, normal conversation	
50	General office, hospital, quiet radio, average home, bank, quiet street	Usual background; normal conversation easily understood
40	Private office, quiet home	
30	Quiet conversation, broadcast studio	Noticeably quiet
20	Empty auditorium, whisper	
10	Rustling leaves, soundproof room, human breathing	Very quiet
0		Intolerably quiet Threshold of audibility

Common sound pressure levels (Grondzik, & Kwok, 2015, P.1032).

TABLE 24.8 Suggested Noise Criteria Ranges for Steady Background Noise

Type of Space (and Acoustical Requirements)	NC Curve	Equivalent ^a dBA
Concert halls, opera houses, and recital halls (for listening to faint musical sounds).	10-20	20-30
Broadcast and recording studios (distant microphone pickup used).	15-20	25-30
Large auditoriums, large drama theatres, and houses of worship (for excellent listening conditions).	20-25	30-35
Broadcast, television, and recording studios (close microphone pickup only).	20-25	30-35
Small auditoriums, small theatres, small churches, music rehearsal rooms, large meeting and conference rooms (for good listening), or executive offices and conference rooms for 50 people (no amplification).	25–30	35-40
Bedrooms, sleeping quarters, hospitals, residences, apartments, hotels, motels, and so forth (for sleeping, resting, relaxing).	25-35	35-45
Private or semiprivate offices, small conference rooms, classrooms, libraries, and so forth (for good listening conditions).	30-35	40-45
Living rooms and similar spaces in dwellings (for conversing or listening to radio and TV).	35-45	45-55
Large offices, reception areas, retail shops and stores, cafeterias, restaurants, and so forth (for moderately good listening conditions).	35–50	45-60
Lobbies, laboratory work spaces, drafting and engineering rooms, general secretarial areas (for fair listening conditions).	40-45	50-55
Light maintenance shops, office and computer equipment rooms, kitchens, and laundries (for moderately fair listening conditions).	45-60	55-70
Shops, garages, power-plant control rooms, and so forth (for just acceptable speech and telephone communication). Levels above PNC-60 are not recommended for any office or communication situation.	_	
For work spaces where speech or telephone communication is not required, but where there must be no risk of hearing damage.	—	

Background noise (Grondzik, & Kwok, 2015, P.1107)

From above figure, we determined background noise for each space.

Sound Pressure Level (dB)									dBA
Example Source	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	
Home									
Alarm clock at 4 to 9 ft (ringing)		46	48	55	62	62	70	80	80
Electric shaver at 1 ½ ft	59	58	49	62	60	64	60	59	68
Vacuum cleaner at 3 ft	48	66	69	73	79	73	73	72	81
Garbage disposal at 2 ft	64	83	69	56	55	50	50	49	69
Clothes washer at 2 to 3 ft (wash cycle)	59	65	59	59	58	54	50	46	62
Toilet (refilling tank)	50	55	53	54	57	56	57	52	63
Whirlpool, six nozzles (filling tub)	68	65	68	69	71	71	68	65	74
Window air-conditioning unit	64	64	65	56	53	48	44	37	59
Telephone at 4 to 13 ft (ringing)		41	44	56	68	73	69	83	83
TV at 10 ft	49	62	64	67	70	68	63	39	74
Stereo (teenager listening level)	60	72	83	82	82	80	75	60	86
Stereo (adult listening level)	56	66	75	72	70	66	64	48	75
Violin at 5 ft (fortissimo)			91	91	87	83	79	66	92
Normal conversational speech at 3 ft		57	62	63	57	48	40		63
Outdoors									
Birds at 10 ft						50	52	54	57
Cicadas					35	51	54	48	57
Large dog at 50 ft (barking)		50	58	68	70	64	52	48	72
Lawn mower at 5 ft	85	87	86	84	81	74	70	72	86
Pistol shot at 250 ft (peak impulse levels)				83	91	99	102	106	106
Surf at 10 to 15 ft (moderate seas)	71	72	70	71	67	64	58	54	78
Wind in trees (10 mi/h)				33	35	37	37	35	43
Transportation									
Large trucks at 50 ft (55 mi/h)	83	85	83	85	81	76	72	65	86
Passenger cars at 50 ft (55 mi/h)	72	70	67	66	67	66	59	54	71
Motorcycle at 50 ft (full throttle, without baffle)	95	95	91	91	91	87	87	85	95
Snowmobile at 50 ft	65	82	84	75	78	77	79	69	85
Train at 100 ft (pulling hard)	95	102	94	90	86	87	83	79	94
Train siren at 50 ft	88	90	110	110	107	100	91	78	109
Car horn at 15 ft				92	95	90	80	60	97
Commercial turbofan airplane at 1 mile (from takeoff flight parts)	77	82	82	78	70	56			79
Military helicopter at 500 ft (single engine, medium size)	92	89	83	81	76	72	62	51	80
Interiors									
Amplified rock music performance (large	116	117	119	116	118	115	109	102	121
Autoriaus com		-							
Audiovisual room	85	89	92	90	89	87	85	80	94
Auditorium (applause)	60	68	75	79	85	84	75	65	88
Committee anninen a	80	66	72	77	74	68	60	50	78
Des kessel	/8	/5	73	78	80	78	74	70	84
Organiza		70	90	104	106	101	89	79	108
Kitchen	12	/8	84	89	86	80	72	64	90
Labourton .	86	85	79	78	77	72	65	57	81
Laboratory	65	70	73	75	72	69	65	61	77
Montary	60	63	66	67	64	58	50	40	68
Michanical equipment room	87	86	85	84	83	82	80	78	88
Music practice room	90	94	96	96	96	91	91	90	100
Reception and Johnson	82	85	80	86	83	75	68	62	86
Telesenference	60	66	72	77	74	68	60	50	78
Circumerence	65	74	78	80	79	75	68	60	83

: Figure475-recommended values for STC (Bruno, 2019)

Sound pressure level (Egan, 1988, P.34).

From above figure, we determined sound pressure level in each space

Graph for AL

We will calculate S/N, we already have RT60; So, we can find percent AL from above figure.

S/N = (sound pressure level - background noise)

Acoustical Assessment for rooms:

- $AL^2 < 5\% \rightarrow$ very good.
- AL < 10% → acceptable.
- AL < 20% \rightarrow bad.
- AL > 20% \rightarrow very bad.
- $S/N \ge 20 \rightarrow \text{good}.$
- S/N < 20 \rightarrow acceptable.
- S/N <15 \rightarrow very bad.

Acoustical assessment for rooms

For Multipurpose room

SPL for multi is 83dB, and background noise in Multipurpose room is between 25-30

SPL	BN	S/N	RT60	AL	articulation
83	30	53	1.28	9	91
		good		accept	

S/N = 83- 30 = 53> 30, so it's good.

From graph we find AL = 9% < 10%, so it's accepted

Articulation = 100% - 9% = 91%

For office:

SPL for praying area is 77 dB, and background noise in office is between 35-40

SPL	BN	S/N	RT60	AL	articulation
77	35	42	0.7	6	94
		good		accept	

S/N = 77- 35 = 42> 30, so it's good.

From graph we find AL = 6% < 10%, so it's accepted

Articulation = 100% - 6% = 94%

Sound transmission class (STC)

The ability of wall layers to absorb sound and provide room privacy.

Table 52Recommended STC for partitions (Grondzik, & Kwok, 2015, P.1129).

	Wall, P	urtitio	m, or Panel Between	Sound Isolation Requirement. Background Level in Room Being Considered			
Type of Occupancy	Room Being Considered	and	Adjacent Area	Quiet	Normal		
Normal school buildings without extraordinary or unusual activities or requirements	Classrooms		Adjacent classrooms Corridor or public areas Kitchen and dining areas Shops	STC 42 STC 40 STC 50 STC 50	5TC 40 5TC 38 5TC 47 5TC 47		
			Recreation areas Music rooms Mechanical equipment rooms	STC 45 STC 55 STC 50	5TC 42 5TC 50 5TC 45		
	Music practice rooms		Toilet areas Adjacent practice rooms Corridor and public areas	STC 45 STC 55 STC 45	5TC 42 5TC 50 5TC 42		
Executive areas, doctors' suites; confidential privacy requirements	Office		Adjacent offices General office areas Corridor or lobby Washrooms and toilet areas	STC 50 STC 48 STC 45 STC 50	STC 45 STC 45 STC 42 STC 42 STC 47		
Normal office; normal privacy requirements; any occupancy using rooms for group meetings	Office		Adjacent offices Corridor, lobby, exterior Washrooms, kitchen, dining	STC 40 STC 40 STC 42	STC 38 STC 38 STC 40		
	Conference roo	ms	Other conference rooms Adjacent offices Conidor or lobby Exterior of building Kitchen and dining areas	STC 45 STC 45 STC 42 STC 40 STC 45	STC 42 STC 42 STC 40 STC 38 STC 42		
Large offices, drafting areas, banking floors, etc.	Large general office areas		Corridors, lobby, exterior Data-processing area Kitchen and dining areas	STC 38 STC 40 STC 40	STC 35 STC 38 STC 38		
Motels and urban hotels, Hospitals and dormitories	Bedrooms		Adjacent bedrooms* Bathroom* Living rooms* Dining areas Corridor, lobby, or public spaces	STC 52 STC 50 STC 45 STC 45 STC 45 STC 45	STC 50 STC 45 STC 42 STC 42 STC 42 STC 42		

TABLE 24.13 Recommended STC for Partitions; Specific Occupancies

Table 53Typical STC values for doors (Grondzik, & Kwok, 2015, P.10950).

TABLE 24.3 Typical STC Values for Doors

Door Construction	STC
Louvered door	15
Any door, 2-in. (51-mm) undercut	17
11/2-in. (38-mm) hollow core door, no gasketing	22
11/2-in. (38-mm) hollow core door, gaskets and drop closure	25
1 ³ / ₄ -in. (45-mm) solid wood door, no gasketing	30
1¾-in. (45-mm) solid wood door, gaskets and drop closure	35
Two hollow core doors, gasketed all around, with sound lock	45
Two solid core doors, gasketed all around, with sound lock	55
Special commercial construction, with lead lining and full sealing	45-65

23Typical STC values for windows (Grondzik, & Kwok, 2015, P.1098.Table

TABLE 24.4 Typical STC Values for Windows

Window Construction	STC
Operable wood sash, ½-in. (3.2-mm) glass, unsealed	23
Operable wood sash, ¼-in. (6.4-mm) glass, unsealed	25
Operable wood sash, ¼-in. (6.4-mm) glass, gasketed	30
Operable wood sash, laminated glass, unsealed Operable wood sash, double-glazed, ½-in. (3.2-mm) panes, ¾-in. (9.5-mm) air space, gasketed	28 29
Fixed sash, double ½-in. (3.2-mm) panes, 3-in. (76-mm) air space, gasketed	44
Fixed sash, double ½-in. (3.2-mm) panes, 4-in. (102-mm) air space, gasketed	48

4.4.2 Acoustical software results

Multipurpose room

Figure4476-model of multipurpose room by ease software

Figure477-reverberation time for multipurpose room at different frequencies

Meeting room

Figure478-model of meeting room by ease software

Figure479-reverberation time for meetingroom at different frequencies

Employees room:

Figure480-model of employee room by ease software

Figure 4-74 reverberation time for **Employees room**at different frequencies

Private office

Figure482-model of private office by ease software

Figure483-reverberation time for private office at different frequencies

4.4.3 Used Material for space elements

Finishing material effects on acoustics values according that each type of material has different absorption coefficient. Because the building is office building, most of the .spaces have the same finishing materials

Element	Finishing material
Floor	Tile floor
Ceiling	Ceiling Plaster
walls	Plaster
Doors	Wood (hollow)
windows	Wind. Glass

4.4.4 Structural Elements design acoustically

Each two adjacent spaces affects each other acoustically so its important to design it according to specified criteria to reach the most suitable and comfortable design according to the requirements of space.

4.4.4.1 Wall:

Sound transmission loss (STC) is the coefficient that matter in wall design. It describes how much the combination of layers behave as acoustic insulator

Multipurpose room - lobby

The recommended value is STC 45 to consider it as normal and STC 50 to consider it as quiet.

Figure 4-75 wall layers between **Multipurpose room - lobby** by INSUL software

Meeting room - Private office

The recommended value is STC 42 to consider it as normal and STC 45 to consider it as quiet.

Figure 4-76wall layers between Meeting room - Private office by INSUL software

Office – toilet:

The recommended value is STC 47 to consider it as normal and STC 50 to consider it as quiet.

Figure 4-77 wall layers between Office – toilet: by INSUL software

Office – loopy

The recommended value is STC 42 to consider it as normal and STC 45 to consider it as quiet.

Figure 4-78 wall layers between **Office – loopy** by INSUL software

office & outside:

Between the office and outside there is a wall consisting of 10 mm plaster, 100 mm concrete hollow block, 100 mm cast concrete, & 90 mm limestone.

Figure 4-79 wall layers between **office & outside**:by INSUL software

4.4.4.2 Ceiling:

Impact insulation class (IIC) is the coefficient that matter in ceiling design. It describes how much the combination of layers behave as acoustic insulator.

4.5 Firefighting system design:

4.5.1 Introduction:

fire hazards and damage are a part of every building's life cycle, firefighting system design is crucial to avoid and guard against the destruction brought on by fire, workplace fire safety is crucial and required. Fire safety lowers the possibility of injuries and building damage that can result from fires. It is essential for everyone's safety who might be inside the building during a fire emergency to develop and implement fire safety protocols in the workplace

Fire influences materials either by melting, cracking, twisting or shrinking. One of the most important basics of protecting people's lives when a fire breaks out is the resistance of the building and its construction and finishing materials from this danger, so that the occupants of the building can escape in the event of a fire.

In this project, a firefighting system was installed for the Anti-corruption building in Ramallah. Our municipal building is an administrative building, and the risks are low to medium, so there are many types of firefighting and safety systems used in this building: Sprinkler, Detectors, Extinguisher, Alarm System, Fire Hose, exit signals and emergency drawer.

Procedures:

To design this system some basic information from the Palestinian code for fire prevention and protection was used:

13/12 متطلبات أنظمة الإطفاء والإنذار :

لنوع		الحالات المطلوبة
w 1	دات الإطفاء اليدوية:	
1	طفايات يدوية	جميع الطوابق لجميع الحالات
2 التر	ركيبات الثابتة:	
1	شبكة خراطيم مطاطية	جميع الطوابق للمرائب التي تزيد عن 500 م 2
11 3	نظمة التلقائية الثابتة:	
1	شبكة تلقانية لمرشات مياه مكافحة الحريق	متطلبات مرشات مياه مكافحة الحريق لإشغالات التخزين (مرائب السيارات) طلب من الأقبية أكثر من 1000 م ²
2	شبكة تلقالية لمرشات مواد أخرى	أماكن الخطورة الخاصة حيث لا يمكن استخدم المياه
4	معدات إنذار الحريق:	
1	شبكة الإنذار في المبابي السكنية	حسب ما مهو مطلوب للمبنى
2	شبكة إنذار يدوي	في مواقف <mark>السيارات أ</mark> قل من 500م ²
3	شبكة إنذار تلقائ <mark>ي</mark>	في مواقف السيارات مغلقة الجوانب اكبرمن 500 م ²

معدات مكافحة و إنذار الحريق لإشغالات التخزين (مرآب السيارات).

Fire System:

SPRINKLER FIRE FIGHTING SYSTEM DESIGN:

A fire sprinkler system is a network of sprinklers that spray water on a fire to contain and put it out. Heat or smoke triggers these systems to work (or both). Water is an effective fire suppression agent or the most effective one for many types of fires.

Additionally, because sprinklers use water, a relatively cheap resource that most facilities already have access to, they can be less expensive to operate than other fire suppression systems. A fire sprinkler system may not be the best option in these situations because water can harm some types of property and is ineffective against some fires, such as grease fires.

The sprinkler system is effective in putting out fires in places where paper forms are not handled, such as multi-purpose rooms and corridors. A sprinkler has been chosen from Tyco Fire and the model of EC-8

All areas in which this system will be placed are classified as low hazard according to the Palestinian code for fire prevention and protection. Each sprinkler covers an area of 12 m2 and Max. Distance 4.6 m

EC-8		
Pendent & Recessed Pendent		
Light hazard	K FACTOR	K=8.0 (115,2)
• 3 mm bulb	THREAD SIZE	³ /4" NPT
 Covers areas as large as 	APPROVALS	UL, C-UL, FM, NYC
20' x 20' (6,1 m x 6,1 m)	TEMPERATURE	135°F/57°C, 155°F/68°C
The Series EC-8 Extended Coverage	ESCUTCHEON	Style 30 • Style 40
Pendent Sprinklers are decorative glass bulb sprinklers designed for use in light hazard	ESCUTCHEON FINISH	Natural Brass, Signal White, Chrome Plated
• The recessed version of the EC-8, intended	SPRINKLER FINISH	Natural Brass, Signal White Polyester, Chrome Plated
for use in areas with a finished ceiling, uses	SIN	TY4232
entier the two-piece necessed Escutcheon.	TECH DATA	TFP223

Always refer to the product's Technical Data Sheet for a complete description of all Listing and Approval criteria, design parameters, installation instructions, care and maintenance guidelines, and our limited

FIRE PROTECTION General Products Catalog

TYCO FIRE PROTECTION PRODUCTS

The dimeters of all steel pipe that connect the sprinklers together and connect them with supplier was chosen by:

Steel pipes									
1 in.	2 sprinklers								
1¼ in.	3 sprinklers								
1½ in.	5 sprinklers								
2 in.	10 sprinklers								
$2^{1/2}$ in.	30 sprinklers								
3 in.	60 sprinklers								
3½ in.	100 sprinklers								
4 in.	See Section 8.2								

Figure4-480-Sprinkler's Design and Distribution in Parking

Table 24Sprinkler's Design and Distribution in Parking

Zon`e	zone	Coverage	No. of	No. of	Steel	Max.	Min.	Х	x/2	У	y/2
	area	Area (m2	Sprinklers	Sprinklers	Pipe	Distance	Distance				
)		used	Dim	(m)	(m)				
					(inch)						
Α	327	21	15.6	16	2 1/2	4.6	1.8	4	2	5	2.5
В	323	21	15.4	16	2 1/2	4.6	1.8	3.13	1.565	3.38	1.69
С	227	21	10.8	12	2 1/2	4.6	1.8	4.75	2.375	4	2
D	301	21	14.3	15	2 1/2	4.6	1.8	4.875	2.4375	3.875	1.938
F	86	21	4.1	4	1 1/2	4.6	1.8	3.85	1.925		0
G	23	21	1.1	1	1	4.6	1.8				

Table 25Sprinkler's Design and Distribution in the Corridors

Ground floor

Zone	Zone	Coverage	No. of		Steel	Х	x/2	У	y/2
No.	Area	Area	Sprinklers		Pipe				
	(m2)	(m2)			Dim				
					(inch)				
1	52.7	21	2.509524	4	1 1/2	3.5	1.75	3.8	1.9
2	17.6	21	0.838095	1	1	-	-	-	-
3	3.8	21	0.180952	1	1	-	-	-	-
4	35.8	21	1.704762	2	1	-	-	-	-
5	35	21	1.666667	2	1	-	-	-	-

Table 26Sprinkler's Design and Distribution in the special waiting room (zone7)

zone	coverage	max	no. of	steel pipe	х	x/2
area(m2)	area (m2)	distance(m)	sprinkler	(inch)		
15	21	4	1	1	4	2

Table 27Sprinkler's Design and Distribution in Multi-purpose rooms (zone 6)

Roo m	zone area(m^ 2)	coverag e area	max distance(m)	min distance(m)	no. of sprinkle r	steel pipe dim(inc h)	x	x/2	У	y/2
1	147	21	4.6	1.8	7	2 inch	5.2	2.6	3. 2	1.6

4.5.2 DETECTORS DISTRIBUTION:

While fires can generally spread quickly, some other fires are started due to periods of intense dormant fires. In such cases, highly sensitive fire detection systems must be in place. The faster you want to detect a fire, the more expensive your fire detection system will be.

4.5.3 EXTINGUISHER:

Used to extinguish or control small fires, often in emergency situations and does not require the expertise of a firefighter. Three types were used according to the use of spaces, CO2 Extinguisher: The best choice for places with a lot of electrical equipment and papers such as offices and archive rooms, because it is safe and works by suppressing the fire and cutting off the air supply, and leaving no residue compared to foam extinguisher.

Туре	Part number	Extinguishing agent/ quantity	Model	Propellant	Propellant performance	Extinguishing stream range/ discharge time	Temperature range	Total weight	Bracket H/W/D Ø of container
KS 2 585	001831.0000	CO2 2kg	K2	CO1	34 B	3 m 8.5 s	-30°C to +60°C	5.4 kg	520/250/170 mm Ø 117 mm
KS 5 SE	001821.0000	CO ₂ 5kg	K5	CO2	89 B	4-5 m 13.5 s	-30°C to +60°C	12.5 kg	700/480/160 mm Ø 152 mm

Figure 4-80CO2 Extinguisher

Powder Extinguisher:

It is used in places that contain flammable solids, liquids or gases such as textiles, paper, wood, paint, diesel, gasoline, butane and methane. Therefore, this type was used in the sorting room.

⊙ PX 6 STAR	800631.3016	ABC powder extinguisher 6kg	PG6H	CO ₂	55A	2338	C	ca.6 m ca.22 s	-30°C to +60°C	ca. 9.9 kg	ca. 500/300/165 mm Ø 150 mm
⊙ PH 6 STAR	800631.3015	ABC powder extinguisher 6kg	PG6H	00,	43A	2338	c	ca.6 m ca.22 s	-30°C to +60°C	ca. 9.9 kg	ca. 500/300/165 mm Ø 150 mm
O PH 9 STAR	800641.0000	ABC powder extinguisher 9kg	PG9H	COg	55A	2338	C	ca.7 m ca.23 s	-30°C to +60°C	ca. 14.3 kg	ca. 555/290/185 mm Ø 170 mm
⊙ ^{P 6} STAR	800631.0000	ABC powder extinguisher 6kg	PG6H	001	34A	1838	C	ca.6 m ca.22 s	-30°C to +60°C	ca. 9.9 kg	ca. 500/300/165 mm Ø 150 mm
O P 12 STAR	800651.0000	ABC powder extinguisher 12 kg	PG 12 H	CO ₂	55A	2338	C	ca.7 m ca.32 s	-30°C to +60°C	ca. 18.7 kg	ca. 600/290/205 mm Ø 190 mm

Figure4-482-Powder Extinguisher

Type A Extinguisher:

Use in places exposed to Class A fires on common combustible materials, such as fabric, wood, paper, rubber, and many plastics. This type was used in the prayer room and corridors

Figure 4-81Type A Extinguisher

4.5.4 ALARM SYSTEM:

Although strobe lights and sirens do not put out fires, fire alarms can mitigate property losses by alerting people who can do so. Fire alarm systems automatically warn everyone of a fire outbreak, so bystanders, guests or employees inside the building can respond quickly. Fire alarms can also trigger the fire sprinkler system automatically. Two types were used in this project:

- Manual Alarm System

Manual call points (MCP)

- * IP 30 IK 07
- Surface-mounting or flush-mounting (IP 30)
 Dimensions: 90x90x57 mm (surface-mounting with its base) or 90x90x24 mm (flush-mounting with flush boxes for wining devices drilling diameter 67 mm for 60 mm fixing centres) Can be fitted on trunking Cat. Nos 0 104 63/64, 35x105 mm or 50x105 mm, with the universal support Cat. No 0 109 13

- Call by pressing the membrane (pressure 2.5 kg) with clear display of the call position Reset on front of device, with special key Cat. No 0 380 38 (supplied with the product) Possibility to add an optional mechanical status indicator Cat. No 1 380 93 to provide additional signalling . Can receive a sealable cover Cat No 0 380 97

MCP for fire detection and fire alarm systems

- Conform to EN 54-11 standard
 CE-CPR approved
- Type A simple action
 Color of the mechanical enclosure red RAL 3000
- · MCP conventional 2 contacts
- Equipped with 2 NO/NC contacts 5 A 24 VDC
 Second contact can be used to trigger CCTV camera (visually and recording allows remote viewing and recording of any malicious act)

Figure4-484-Manual Alarm System

Sound & Light Alarm System:

\$49AV-0001

Figure4-485-Sound & Light Alarm System

4.5.5 FIRE HOSE CABINET DISTRIBUTION:

A high-pressure hose that carries water or other fire-retardant material such as foam to put out fires. On the outside it is connected to either a fire engine or a fire hydrant. Indoors it can be permanently connected to a building's vertical pipe or plumbing system. It was used in places near emergency exits.

Each fire hose serves about 30 meters.

	. н	ose N	lounting	_	
	Ð			e.e	(IO)
CRADDLE		BRACKET		REELS	
MODEL	TYPE	HOSE	HOSE LENGTH	WORKING /SERVICE PRESSURE	BURST PRESSURE
SFSJ40R-UL	Single Jacket	1 1/2"	15m, 30m	200 psi	600 psi

Safety System:

EVACUATION PATHS:

Signs indicate entrances and exits to the building so that visitors can easily access them, and escape quickly in the event of an emergency, thus executing evacuation quickly and minimizing injuries that can result from a fire.

G	LO-001	<u>E</u>	GL0-002	$\Im \rightarrow$		4					
RIO-	<u>∝</u> →	GL0-004		GL0-005	1						
Tape	Part number	Composition (W = W = D)	Defense	Voliage range	EC protection class/						
GLO-001	925991,0001	250 s 174 s 34 mm	24 m	230V 50/50Hz, 220V DC + 25V-20%	83254	1					
GLO-062	1025091.0002	260 x 155 x 70 mm	24 m	230V 50/80Hz. 220V DC + 25V-2076	1954						
GLO-003	825/991.0003	250 x 178 x 34 mm	22 m	230V 50/60Hz. 220V DC +25/-20%	81954						
61.0-094	925991.0004	300 x 92 x 125 mm	16 m	230V 50/60Hz, 220V DC +25/-20%	8/1954						
61.0-005	925991.0005	236 x 181 x 64 mm	24 m	230V 50/60Hz, 220V DC + 25/-20%	64P-60						

4.5.6 sprinkle distribution:

vertical system:

4.6 Water supply system:

4.6.1 Introduction:

One of the main systems that must done in each building to achieve the requirements and needs of the building and its users is the water supply system. It is very important to design it integrated with the other systems to avoid conflicts.

The design will contain water installations and calculate the amount of water needed inside the building. The diameters of the pipes and the pressure required for water in the floors were calculated, and auxiliary pumps were used.

A boiler was used for hot water.

TABLE 20.2 Planning Guide for Water Supply^a

	Per Cap Da	Per Capita (as Listed) Daily Usage	
Building Usage	Gallons	Liters	
Airports (per passenger)	3-5	11-19	
Apartments, multiple-family (per resident)	60	227	
Bath houses (per bather)	10	38	
Construction, semipermanent (per worker)	50	189	
Day with no meals served (per camper)	15	57	
Luxury (per camper)	100-150	378-568	
Resorts, day and night, with limited plumbing (per camper)	50	189	
Tourist, with central bath and toilet facilities (per person)	35	132	
Courses with seasonal occupancy (per resident) Courses tourist with individual bath units (ner nerson)	50	189	
Clubs	50	143	
Country (per resident member)	100	378	
Country (per nonresident member present)	25	95	
Dwellings			
Boardinghouses (per boarder)	50	189	
Additional kitchen requirements for nonresident boarders	100-150	38	
Multiple-family apartments (per resident)	40	151	
Rooming houses (per resident)	60	227	
Single family (per resident)	50-75	189-284	
Estates (per resident)	100-150	378-568	
Factories (per person per shift)	15-35	57-132	
Highway rest area (per person)	5	19	
Hotels with private baths (two persons per room)	60 50	227	
institutions other than hospitals (per person)	75-125	284-473	
Hospitals (per bed)	250-400	946-1514	
Laundries, self-service (per washing)	50	189	
Livestock (per animal)			
Cattle (drinking)	12	45	
Dairy (drinking and servicing)	35	132	
Goat (drinking) Hon (drinking)	4	15	
Horse (drinking)	12	45	
Mule (drinking)	12	45	
Sheep (drinking)	2	8	
Steer (drinking)	12	45	
Motels with bath, toilet, and kitchen facilities (per bed space)	50	189	
With bed and toilet (per bed space)	40	151	
Dueminht with flush trillets (ner camper)	25	95	
Trailer, with individual bath units, no sewer connection (per trailer)	25	95	
Trailer, with individual baths, connected to sewer (per person)	50	189	
Picnic			
With bath houses, showers, and flush toilets (per picnicker)	20	76	
With tollet facilities only (per picnicker)	10	38	
Chickens (our 100)	5-10	10.38	
Turkers (per 100)	5-10	19-38	
Restaurants with toilet facilities (per patron)	7-10	26-38	
Without toilet facilities (per patron)	21/2-3	9-11	
With bas/cocktail lounge (additional quantity per patron)	2	8	
Schools			
Boarding (per pupil)	75-100	284-378	
Day, with caleteria, gymnasium, and showers (per pupil)	25	95	
Day without caleteria ownoasiums or showers (per pupil)	20	57	
Service stations (per vehicle)	10	38	
Stores (per toilet room)	400	1514	
Swimming pools (per swimmer)	10	38	
Theaters			
Drive-in (per car space)	5	19	
Movie (per auditorium seat) Mindrae	5	19	
Construction (per person per shift)	50	189	
Day (school or office, per person per shift)	15	57	
and mental provide the termination of the second	19		

Figure4-486-water supply (Grondzik, Kwok, Stein, & Reynolds, 2010, P.872)

In a building, 57 liters per person is needed for water supply in a day. The largest number of users of the building per day is about 235 users, the total daily water needed is 13395 liters/day, which equal 13.40 m3 /day.

As a result, water is pumped from the municipality every 4 days so it's important to take care that water will never end on a non-pumped day, so we put roof tanks to store water for 5 days at least. Our building considered as commercial building so we need 5 tank.

Figure4..5:the tank use

4.6.2 Domestic hot water consumption:

TABLE 21.10 Domestic Hot Water, Commercial/Institutional

Maximum Hour	Maximum Day	Average Day
3.8 gal (14.4 L)/student	22.0 gal (83.4 L)/student	13.1 gal (49.7 L)/student
5.0 gal (19 L)/student	26.5 gal (100 L)/student	12.3 gal (46.6 L)/student
6.0 gal (23 L)/unit	35.0 gal (132.6 L)/unit	20.0 gal (75.8 L)/unit
5.0 gal (20 L)/unit	25.0 gal (94.8 L)/unit	14.0 gal (53.1 L)/unit
4.0 gal (15 L)/unit	15.0 gal (56.8 L)/unit	10.0 gal (37.9 L)/unit
4.5 gal (17 L)/bed	30.0 (114 L)/bed	18.4 gal (69.7 L)/bed
0.4 gal (1.5 L)/person	2.0 gal (7.6 L)/person	1.0 gal (3.8 L)/person
1.5 gal (5.7 L)/max meals/h	11.0 gal (41.7 L)/max meals/h	2.4 gal (9.1 L)/avg meals/day ^b
0.7 gal (2.6 L)/max meals/h	6.0 gal (22.7 L)/max meals/h	0.7 gal (2.6 L)/avg meals/day ^b
12.0 gal (45.5 L)/apt.	80.0 gal (303.2 L)/apt.	42.0 gal (159.2 L)/apt.
10.0 gal (37.9 L)/apt.	73.0 gal (276.7 L)/apt.	40.0 gal (151.6 L)/apt.
8.5 gal (32.2 L)/apt.	66.0 gal (250 L)/apt.	38.0 gal (144 L)/apt.
7.0 gal (26.5 L)/apt.	60.0 gal (227.4 L)/apt.	37.0 gal (140.2 L)/apt.
5.0 gal (19 L)	50.0 gal (195 L)/apt.	35.0 gal (132.7 L)/apt.
0.6 gal (2.3 L)/student	1.5 gal (5.7 L)/student	0.6 gal (2.3 L)/student ^b
1.0 gal (3.8 L)/student	3.6 gal (13.6 L)/student	1.8 gal (6.8 L)/student ^b
	Maximum Hour 3.8 gal (14.4 L)/student 5.0 gal (19 L)/student 6.0 gal (23 L)/unit 5.0 gal (20 L)/unit 4.0 gal (15 L)/unit 4.5 gal (17 L)/bed 0.4 gal (1.5 L)/person 1.5 gal (5.7 L)/max meals/h 0.7 gal (2.6 L)/max meals/h 12.0 gal (45.5 L)/apt. 10.0 gal (37.9 L)/apt. 8.5 gal (32.2 L)/apt. 7.0 gal (26.5 L)/apt. 9.0 gal (19 L) 0.6 gal (2.3 L)/student 1.0 gal (3.8 L)/student	Maximum Hour Maximum Day 3.8 gal (14.4 L)/student 22.0 gal (83.4 L)/student 5.0 gal (19 L)/student 26.5 gal (100 L)/student 6.0 gal (23 L)/unit 35.0 gal (132.6 L)/unit 5.0 gal (20 L)/unit 25.0 gal (94.8 L)/unit 4.0 gal (15 L)/unit 15.0 gal (94.8 L)/unit 4.5 gal (17 L)/bed 30.0 (114 L)/bed 0.4 gal (1.5 L)/person 2.0 gal (7.6 L)/person 1.5 gal (5.7 L)/max meals/h 11.0 gal (41.7 L)/max meals/h 0.7 gal (2.6 L)/max meals/h 6.0 gal (22.7 L)/max meals/h 12.0 gal (45.5 L)/apt. 80.0 gal (303.2 L)/apt. 10.0 gal (37.9 L)/apt. 73.0 gal (20.1 L)/apt. 7.0 gal (26.5 L)/apt. 60.0 gal (22.7 L)/max meals/h 12.0 gal (45.5 L)/apt. 60.0 gal (20.2 L)/apt. 9.0 gal (19.1 L) 50.0 gal (20.2 L)/apt. 0.0 gal (21.9 L)/apt. 60.0 gal (22.7 L)/apt. 10.0 gal (32.1 L)/apt. 60.0 gal (20.2 L)/apt. 0.0 gal (21.2 L)/apt. 60.0 gal (22.7 L)/apt. 0.0 gal (19.1 L) 50.0 gal (195 L)/apt. 0.0 gal (21.1 L)/student 1.5 gal (5.7 L)/student 1.0 gal (3.8 L)/student 3.6 gal (13.6 L)

Figure4-487-Domestic hot water consumption (Grondzik, Kwok, Stein,& Reynolds, 2010, P.944).
In a building, 3.8 liters per student is needed for water supply in a day. The largest number of users of the building per day is about 230 users, the total daily water needed is 900 liters/day, which equal 0.9 m3 /day.

Diameter calculation:

floor	0	1	2	3	4	5	6
pressure(psi)	38.97	33.77 4	28.578	23.382	18.186	12.99	7.794

Water pressure in a building

4.6.3 Water supply fixture units:

TABLE 21.15 Water Supply Fixture Units (WSFU)

			Load	Values in	WSFU
Fixture	Occupancy	Type of Supply Control	Cold	Hot	Total
Bathroom group	Private	Flush tank	2.7	1.5	3.6
Bathroom group	Private	Flush valve	6	3	8
Bathtub	Private	Faucet	1	1	1.4
Bathtub	Public	Faucet	3	3	4
Bidet	Private	Faucet	1.5	1.5	2
Combination fixture	Private	Faucet	2.25	2.25	3
Dishwashing machine	Private	Automatic		1.4	1.4
Drinking fountain	Offices, etc.	3/2 in. (9.5 mm) valve	0.25		0.25
Kitchen sink	Private	Faucet	1	1	1.4
Kitchen sink	Hotel, restaurant	Faucet	3	3	4
Laundry trays (1 to 3)	Private	Faucet	1	1	1.4
Lavatory	Private	Faucet	0.5	0.5	0.7
Lavatory	Public	Faucet	1.5	1.5	2
Service sink	Offices, etc.	Faucet	2.25	2.25	3
Shower head	Public	Mixing valve	3	3	4
Shower head	Private	Mixing valve	1	1	1.4
Urinal	Public	1 in. (25 mm) flush valve	10		10
Urinal	Public	34 in. (19 mm) flush valve	5		5
Urinal	Public	Flush tank	3		3
Washing machine, 8 lb (3.6 kg)	Private	Automatic	1	1	1.4
Washing machine, 8 lb (3.6 kg)	Public	Automatic	2.25	2.25	3
Washing machine, 15 lb (6.8 kg)	Public	Automatic	3	3	4
Water closet	Private	Flush valve	6		6
Water closet	Private	Flush tank	2.2		2.2
Water closet	Public	Flush valve	10		10
Water closet	Public	Flush tank	5		5
Water closet	Public or private	Flushometer tank	2		2

Water Supply Fixture Units (Grondzik, Kwok, Stein, & Reynolds, 2010, P.991)

By using upper figure, calculate total FU for each floor.

floor	WSFU'S	Total WSFU'S
GF +SF+THF	7WC'S*5	53
	7 lavatory*2	
	1kitchen sink*4	
FIRST+4F+5F	6WC'S*5	46
	6 lavatory*2	
	1kitchen sink*4	
6F	6WC'S*5	81
	6 lavatory*2	
	1kitchen sink*4	
total		378

Water flow rates:

Figure 4-82Water flow rate (Grondzik, & Kwok, 2015, P.919)

From upper figure, determined water flow rate for vertical, horizontal & branches for each floor.

pipe	FU	water flow
GF	+SF+THF	
vertical	378	80
horizantal	53	30
branch	5	5
FF+	-4F+5F	
vertical	378	80
horizantal	46	25
branch	5	5
Pipe	6F	
vertical	378	80
horizantal	81	40
branch	5	5

Determined diameter pipe& pressure drop

Figure4-489-Diameter & pressure drop per 100 ft(psi) for steel pipe

Figure 4-83Diameter & pressure drop per 100 ft(psi) for plastic pipe

Friction Pressure Loss in Water Meters

from upper figure, determined possible diameter for vertical, meter, horizontal & branches.

pipe	material	A.L(ft)	E.L(ft)
vertical	steel	81.85696	122.7854
horizontal	рvс	20	24
branch	рус	30	36

Water flow rate (vertical) = 80 gpm

inch	4''	3"	2 1/2"	2"
loss/100	0.4	1.6	5	9
loss/122.79	0.49116	1.96464	6.1395	11.0511

possible diameter for vertical pipe with pressure losses for zone A

meter diameter	1 1/2"	1"	3/4''
Pressure loss (psi)	2	6	16

possible diameter for horizontal pipe (GF+SF+thF) with pressure losses

Water flow rate for GF+SF+thF (horizontal)=30 gpm

inch	3''	2 1/2"	2"	1 1/2"
loss/100	0.28	0.8	2	7
loss/24	0.0672	0.192	0.48	1.68

possible diameter for horizontal pipe FF+4F+5F

with pressure losses.

inch	3''	2 1/2"	2"	1 1/2"
loss/100	0.2	0.6	1.5	5
loss/24	0.048	0.144	0.36	1.2

possible diameter for horizontal pipe 6F with pressure losses.

inch	3"	2 1/2"	2"
loss/100	0.6	1.8	3.2
loss/24	0.144	0.432	0.768

Water flow rate (branch)=5 gpm

inch	1 1/2"	1 1/4"	1"	3/4"
loss/100	0.21	0.54	2	7
loss/36	0.0504	0.1296	0.48	1.68

Selected pipes:

selected diameter for pipes (GF&tFF&SF) with pressure losses

LINE	vertical	meter	hor.	branch
diameter	4''	1 1/2"	3''	1 1/2"
press. Loss	0.4	2	0.07	0.05

Total loss=2.52

selected diameter for pipes (4F+5F+FF) with pressure losses for zone

LINE vertical		meter	hor.	branch	
diameter	4''	1 1/2"	3''	1 1/2"	
press. Loss	0.4	2	0.04	0.05	

Total=2.49

LINE	vertical		hor.	branch	
diameter	4''	1 1/2"	1 1/2"	1 1/2"	
press. Loss	0.4	2	0.14	0.05	

Total=2.6

For Ground floor, available pressure is 38.97 psi

The critical pressure is 12 psi

The maximum allowable loss=38.97-12=26.97 psi

The total loss in GF is 2.52 < max loss so it's ok

26.97-2.52=24.45psi

But we need a limiter 24 psi

For First floor, available pressure is 33.7psi

The critical pressure is 12 psi

The maximum allowable loss =33.7-12=21.7

The total loss in FF is 2.49<max so its ok

21.7-2.49=19.21psi But we need a limiter 19 For second floor, available pressure is 28.57psi The critical pressure is 12 psi The maximum allowable loss =28.57-12=16.57 The total loss in FF is 2.52<max so its ok 16.57-2.52=14.05psi But we need a limiter 14 For third floor, available pressure is 23.38psi The critical pressure is 12 psi The maximum allowable loss =23.38-12=11.38 The total loss in FF is 2.52<max so its ok 11.38-2.52=8.86psi But we need a limiter 8psi For 4F floor, available pressure is 18.18psi The critical pressure is 12 psi The maximum allowable loss =18.18-12=6.18 The total loss in FF is 2.49<max so its ok 6.18+2.49=3.69psi NO need a limiter For 5F floor, available pressure is 12.99psi The critical pressure is 12 psi The maximum allowable loss =12.99-12=0.99 The total loss in FF is 2.49>max so its ok 0.99+2.49=3.48psi But we need a pump 5psi For 6F floor, available pressure is 7.79psi

The critical pressure is 12 psi The maximum allowable loss =7.79-12=-4.21 The total loss in FF is 2.49<max so its ok 4.21+2.6=6.8psi But we need a pump 7psi

4.7 Drainage system design

4.7.1 Introduction:

One of the most crucial systems in every structure is the drainage system. Human comfort and necessities give it prominence. The major goal of this system is to transport waste over a smooth channel to the municipal sewage system.

The accomplishment of the work is impacted by earth geometry. It relies on the land's tropical surface gradient and the hardness or softness of the soil

4.7.2 Problem definition:

This system mainly will connect from toilets and kitchen. Its very important to have a long life system according to its work sensitivity. Its must take care about choosing the material of work, size and location for each.

Design recommendations:

Wc and floor trap need PVC pipe with diameter of 4 inch with slope of 1%. Lavatory, shower, sink need PVC pipe with diameter of 2 inch with slope of 2%

- Maximum distance between manholes is 15m.

After performing the process of distributing water supply pipes inside the building and based on the distribution of furniture, especially laundries and toilets, a process of drawing and designing sewage drainage system according to its type:

1. Gray water gathers in the shower and in the washbasins.

2. Black water: This is the water that accumulates in the toilets and kitchen sink.

3. Storm water: Rainwater fills this reservoir.

TABLE 20.2 Drainage Fixture Units (dfu)

PART A. BY TYPE OF FIXTUR	RE		
	Drainage Fixture	Minimur	n Trap Size
Fixture(s)	Units (dfu)	in.	mma
Automatic clothes washers: Commercial ^b	3	2	51
Residential	2	2	51
Bathroom group: Water closet (1.6 gpf [6 Lpf]), lavatory, and bathtub or shower; with or without a bidet and emergency floor drain	5	_	_
Bathroom group: Water closet (>1.6 gpf [6 Lpf]), lavatory, and bathtub or shower; with or without a bidet and emergency floor drain	6	_	_
Bathtub ^c (with or without overhead shower or whirlpool)	2	11/2	38
Bidet	1	1 3/4	32
Combination sink and tray	2	11/2	38
Dental lavatory	1	11/4	32
Dental unit or cuspidor	1	11/4	32
Dishwashing machine ^d , domestic	2	11/2	38
Drinking fountain	0.5	1 3/4	32
Emergency floor drain	0	2	51
Floor drains	2	2	51
Kitchen sink, domestic	2	11/2	38
Kitchen sink, domestic, with food waste grinder and/or dishwasher	2	11/2	38
Laundry tray (1 or 2 compartments)	2	11/2	38
Lavatory	1	1 1/4	32
Shower	2	11/2	38
Service sink	2	11/2	38
Sink	2	11/2	38
Urinal	4	e	
Urinal, 1 gal (3.8 L) per flush or less	2 ^f	e	
Urinal, nonwater supplied	0.5	e	
Wash sink (circular or multiple) each set of faucets	2	11/2	38
Water closet, flushometer tank, public or private	4'	e	
Water closet, private (1.6 gpf [6 Lpf])	31	e	
Water closet, private (>1.6 gpf [6 Lpf])	4 ^t	e	
Water closet, public (1.6 gpf [6 Lpf]),	4 ^f	e	
Water closet, public (flushing >1.6 gpf [6 Lpf])	6 ^f	e	
PART B. BY SIZE OF TRAP			
Fixture Drain or Trap Size			
in. mm ^a Drainage Fixtur	re Unit (dfu) Value		
1¼ 32	1		
11/2 38	2		
2 51	3		
21/2 64	4		
3 76	5		
4 102	6		

Drainage fixture units (Grondzik& Kwok, 2015, P.945).

From above figure, shown the total drainage fixture unit in a building

floor	WSFU'S	Total WSFU'S
GF +SF+THF	7WC'S*4	37
	7 lavotary*1	
	1kitchen sink*2	
FIRST+4F+5F	6WC'S*4	32
	6 lavotary*1	
	1kitchen sink*2	
6F	11WC'S*4	57
	11lavotary*1	
	1kitchen sink*2	
total		264

			Ma	ximum Total Number of di	fu Allowable	
Diamet	er of Pipe		Stacks ^b			
in.	mmc	Horizontal Branch	One Branch Interval	Three Branch Intervals or Less	Greater than Three Branch Intervals	
11/2	38	3	2	4	8	
2	51	6	6	10	24	
21/2	64	12	9	20	42	
3	76	20	20	48	72	
4	102	160	90	240	500	
5	127	360	200	540	1100	
6	152	620	350	960	1900	
8	203	1400	600	2200	3600	
10	254	2500	1000	3800	5600	
12	305	3900	1500	6000	8400	
15	381	7000	d	d	d	

TABLE 20.3 Horizontal Fixture Branches and Stacks^a

Figure 4-4-84Horizontal Fixture Branches and Stacks (Grondzik& Kwok, 2015, P.946)

TABLE 20.5 Building Drains and Sewers

Diameter of Pipe		Maximum N Drain or Bu	lumber of dfu Connect ilding Sewer, Including Fall, in. per f	ed to Any Portion of t Branches of the Build (% slope)	he Building ding Drain ^a
(in.)	(mm) ^b	^{1/16} (0.5%)	^{1/8} (1.04%)	^{1/4} (2.1%)	^{1/2} (4.2%)
2	51			21	26
21/2	64			24	31
3	76		36	42	50
4	102		180	216	250
5	127		390	480	575
6	152		700	840	1000
8	203	1400	1600	1920	2300
10	254	2500	2900	3500	4200
12	305	3900	4600	5600	6700
15	381	/000	8300	10,000	12,000

Figure 4-85Building Drains and Sewers (Grondzik& Kwok, 2015, P.948)

Diameter	Total	Maximum Developed Length* of Vent, Feet (m)b									
of Soil or	Fixture	Diameter of Vent, In. (mm) ^b									
in. (mm) ^b	Vented (dfu)	1% (32)	132 (38)	2 (51)	2½ (64)	3 (76)	4 (102)	5 (127)	6 (152)	8 (203)	10 (254)
134	2	30									
(32)		(9.1)									
135	8	50	150								
(38)	10	(15.2)	(45.7)								
192	10	30	100								
(50)	12	20	76	200							
(51)	12	(0 1)	(22.0)	(61.0)							
2	20	26	50	150							
(51)		(7.9)	(15.2)	(45.7)							
21/2	42		30	100	300						
(64)			(9.1)	(30.5)	(91.0)						
3	10		42	150	360	1040					
(76)			(12.8)	(45.7)	(109.7)	(317)					
3	21		32	110	270	810					
(76)			(9.8)	(33.5)	(82.3)	(246.9)					
3	53		(0.3)	(28.7)	230	(207.2)					
(/6)	102		(8.2)	(28.7)	(70.1)	(207.3)					
(76)	102		17.61	(26.6)	(64.0)	(120 (1)					
4	43		25	35	85	250	980				
(102)			(7.6)	(10.7)	(25.9)	(76.2)	(298.7)				
4	140		25	27	65	200	750				
(102)			(7.6)	(8.2)	(19.8)	(61.0)	(228.6)				
4	320			23	55	170	640				
(102)				(7.0)	(16.8)	(51.8)	(195.0)				
4	540			21	50	150	580				
(102)				(6.4)	(15.2)	(45.7)	(176.8)				
5	190				28	82	320	990			
(127)					(8.5)	(25.0)	(97.5)	(301.8)			
5	490				21	63	250	760			
(127)	940				(0.4)	(19.2)	(76.2)	(231.6)			
(127)	340				(5 5)	(16.2)	(64.0)	(204.2)			
5	1400				16	49	190	590			
(127)					(4.9)	(14.9)	(57.9)	(179.8)			
6	500					33	130	400	1000		
(152)						(10.1)	(39.6)	(121.9)	(304.8)		
6	1100					26	100	310	780		
(152)						(7.9)	(30.5)	(94.5)	(237.7)		
6	2000					22	84	260	660		
(152)						(6.7)	(25.6)	(79.2)	(201.2)		
6	2900					20	11	240	600		
(152)	1800					(0.1)	(23.5)	(73.2)	(182.9)	040	
(203)	1000						(9.4)	(29.0)	(73.2)	(286 5)	
8	3400						24	73	190	729	
(203)							(7.3)	(22.3)	(57.9)	(222.4)	
8	5600						20	62	160	610	
(203)							(6.1)	(18.9)	(48.8)	(185.9)	
8	7600						18	56	140	560	
(203)	10000000						(5.5)	(17.1)	(42.7)	(170.7)	100000
10	4000							31	78	310	960
(254)	72.00							(9.4)	(23.8)	(94.5)	292.6
10	/200							24	60	240	740
(254)	11.000							20	(18.3)	(/3.2)	225.6
(25.4)	11,000							(6.1)	(15 5)	(61.0)	103.0
10	15,000							18	46	180	571
(254)	13,000							(5.5)	(14.0)	(54.9)	(174 2)
12.341								(3.3)	(14.0)	(24.2)	(1/4.2)

TABLE 20.4 Size and Developed Length of Stack Vents and Vent Stacks

Figure 4-86Size and Developed Length of Stack Vents and Vent Stacks (Grondzik& Kwok, 2015, P.947)

type	diameter(inch)	slope%
vent	4	0
drainage	4	1
sewer	2	1
between manhole	6	1
Vertical stack	4	0
Sewear to manhole	8	1

Figure 4-87Diameter & slope for type of fixture

4.8 Photovoltaic Analysis and Design

4.8.1 Introduction:

We developed a solar energy system and utilized sunshine to lower the building's power consumption because our buildings consume a lot of energy and have several equipment that require a lot of electricity.

Designing and procedures:

The energy of solar radiation varies according to the geographical location of the site area, our project is located in Palestine, specifically in Ramallah city.

The geographic coordination for the Palestine:

Latitude angle (Palestine) = 32° .

Longitude angle =35.22°

In Palestine the largest rate of radiation during the year is direct radiation, which is more appropriate for fixing modules as tilted modules.

Module selection

:The specification data of the used photovoltaics module.

Mechanical Specification

Format	2054 mm × 1134 mm × 32 mm (including frame)
Weight	26.0 kg
Front Cover	3.2 mm thermally pre-stressed glass with anti-reflection technology
Back Cover	Composite film
Frame	Silver anodised aluminium
Cell	6 × 22 monocrystalline Q.ANTUM solar half cells
Junction box	53-101 mm × 32-60 mm × 15-18 mm Protection class IP67 with bypass diodes
Cable	4 mm ² Solar cable; (+) ≥1400 mm, (-) ≥1400 mm
Connector	Stäubli MC4-Evo2, Hanwha Q CELLS HQC4; IP68

The mechanical specification data of the used photovoltaics module

Electrical Characteristics

WER CLASS			480	485	490	495	500
MMUM PERFORMANCE AT STANDARD T	EST CONDITIONS, ST	C' (POWER TO	DLERANCE +5 W/-0) W)			
Power at MPP ¹	PMPP	[W]	480	485	490	495	50
Short Circuit Current ¹	Isc	[A]	13.51	13.54	13.57	13.60	13.6
Open Circuit Voltage ¹	Voc	[V]	45.59	45.62	45.65	45.67	45.7
Current at MPP	IMPP	[A]	12.78	12.83	12.89	12.95	13.0
Voltage at MPP	V _{MPP}	[V]	37.57	37.79	38.02	38.24	38.4
Efficiency ¹	η	[%]	≥20.6	≥20.8	≥21.0	≥21.3	≥21.
IIMUM PERFORMANCE AT NORMAL OP	ERATING CONDITION	S, NMOT ²					
IMUM PERFORMANCE AT NORMAL OPP Power at MPP	ERATING CONDITION	S, NMOT ²	360.1	363.8	367.6	371.3	375
IMUM PERFORMANCE AT NORMAL OP Power at MPP Short Circuit Current	ERATING CONDITION	S, NMOT ² [W] [A]	360.1 10.89	363.8	367.6	371.3	375
IMUM PERFORMANCE AT NORMAL OPP Power at MPP Short Circuit Current Open Circuit Voltage		5, NMOT ² [W] [A] [V]	360.1 10.89 43.00	363.8 10.91 43.02	367.6 10.94 43.05	371.3 10.96 43.08	375 10.9 43.1
IMUM PERFORMANCE AT NORMAL OPP Power at MPP Short Circuit Current Open Circuit Voltage Current at MPP	ERATING CONDITION: P _{MPP} I _{SC} V _{OC} I _{MPP}	5, NMOT ² [W] [A] [V] [A]	360.1 10.89 43.00 10.04	363.8 10.91 43.02 10.09	367.6 10.94 43.05 10.14	371.3 10.96 43.08 10.19	375 10.9 43.1 10.2

The electrical specification data of the used photovoltaics module

The chosen module has a dimension of (2.05*1.130) m. has a maximum power of 500Wp.

In this project, we have630m2 for roof where its area has been exploited and we put 191photovoltaic cells

•

The cells are designed at an angle of 30° tilted portrait. Array power = num. of module *power of module. = 191 * .500 KW = 95.5 KW.

Daily useful energy = peak sun hour * System Efficiency *power peak.

=E = 4.5 *0.8*95.5 = 343.83 KWh/day=125487kwh/year

Cover 30%

The arrangement of the used photovoltaics modules on the roof of the building

We put on parking in gf floor Umbrellas covered with solar panels and we put 86photovoltaic cells

The cells are designed at an angle of 30° tilted portrait. Array power = num. of module *power of module. = 86 * .500 KW = 44 KW.

Daily useful energy = peak sun hour * System Efficiency *power peak.

=E = 4.5 *0.8*44 = 159 KWh/day=57818kwh/year

Cover 19%

The arrangement of the used photovoltaics modules on the Umbrellas covered the parking of car

4.8.2 The inverter selection:

The required power of the inverters (kW) = 0.9 * The array power (kW).

=0.9*95.5=85.95KW

For pv in parking

The required power of the inverters (kW) =0.9 * The array power (kW)

=0.9*44=39.6

Output side				
AC Grid connection type	Three phase (3W+PE or 4W+PE)			
Earthing system	TN-S, TN-C, TN-CS, TT			
Rated AC power (Pacr @cosf=1)	10000 W	12500 W	15000 W	
Maximum AC output power (Pacmax @cosf=1)	10000 W	12500 W	15000 W	
Maximum apparent power (Smax)	10000 VA	12500 VA	15000 VA	
Rated apparent power (Sr)	10000 VA	12500 VA	15000 VA	
Maximum reactive power (Qmax)	6000 VAR	7500 VAR	9000 VAR	
Nominal power factor and adjustable range	> 0.995; 0,81 inductive / capacitive			
Rated AC grid voltage (Vac,r)		380V, 400V ⁽	9	
Rated Output Current (lac nom)	14.5 A	18.1 A	21.7 A	
Maximum AC output current (lac,max)	16 A	20 A	23 A	
Contributory fault current		lac,max x 1,1	5	
Rated output frequency (fr)		50 Hz / 60 Hz	2	
Output frequency range (fminfmax)		4753 Hz / 5763	Hz ⁽²⁾	
Total harmonic distortion of current		<3%		
Max DC Current Injection (% of Iac,max)		< 0.5%*lac,ma	X	
Maximum AC cable		16 mm ² coppe	M	
AC connection type		AC quick fit conn	ector	
Output protection				

The rated output power of the inverter = 15000 W.

The required number of inverters = The total inverters power /*Theoutputratedpowerofeachinverte*

=85.95/15=6

We need 6inverters.on roof

On parking:

The required number of inverters = The total inverters power */Theoutputratedpowerofeachinverte*

=39.6/15=3 We need 3inverters.

5 **Quantity surveying and cost estimation :**

5.1 introduction :

Estimating costs is one of the most crucial and accurate things that is done before the implementation of any project after developing every aspect of our building, including the architectural, mechanical, structural, environmental, electrical, HVAC, safety, and firefighting systems, we still need to reach our goal by providing our professors with cost and quantity estimations.

5.2 methodology :

This procedure will be carried out by creating a bill of quantities for all materials and labor utilized in the project, then estimating each material and labor, and finally determining the total cost.

the following table shows The bill of quantities for the faculty schedule, which includes labor costs as well as quantity and unit costs = 11,127,123 NIS

Tabular cost breakdown structure :

the following table shows the bill of quantity and costs ;

				Unit cost				Total
	Item description	Unit	quantity					cost
						Labor	Labor	
				Material	Material	unit	total	Total
ID	Item description	unit	quantity	unit cost	total cost	cost	cost	cost
1				structure				
1.1				sub structure	Э			
1.1.1	earth work							
1.1.1.1	excavation work	cm	17022	35	595770			595770
1.1.1.2	disposal work	cm	25533	35	893655			893655
1.1.1.3	Backfilling work	cm	1046	35	36610			36610
		lump						
1.1.1.4	mobilization	sum						30000
		lump						
1.1.1.5	soil test	sum						3000
1.1.2	foundation							
1.1.2.1				footing				
1.1.2.1.1			:	single footing	g			
1.1.2.1.1.1	form work	sm	115	2.6	299	9.6	1104	1403
1.1.2.1.1.2	reinforcement	ton	3	4200	12600	800	2400	15000
1.1.2.1.1.3	concert	cm	90	300	27000	14	1260	28260
1.1.2.1.1.4	water proofing	sm	240	7	1680	6.84	1641.6	3321.6
1.1.2.1.1.5	blinding form work	sm	13	2.6	33.8	9.6	124.8	158.6

				Unit cost				Total	
	Item description	Unit	quantity					cost	
				Motorial	Motorial	Labor	Labor	Total	
חו	Item description	unit	quantity	Iviaterial	total cost		total	rotal	
112116	blinding concert	cm	11	300	3300	14	154	3454	
1111211110									
1.1.2.1.2	mat +wall footing								
1.1.2.1.2.1	form work	sm	348	2.6	904.8	9.6	3340.8	4245.6	
1.1.2.1.2.2	reinforcement	ton	40	4200	168000	800	32000	200000	
1.1.2.1.2.3	concert	cm	672	300	201600	14	9408	211008	
1.1.2.1.2.4	water proofing	sm	1117	7	7819	6.84	7640.28	28	
1.1.2.2			. (columns nec	:k				
1.1.2.2.1	form work	sm	104	2.6	270.4	9.6	998.4	1268.8	
1.1.2.2.2	steel	ton	4.3	4200	18060	800	3440	21500	
1.1.2.2.3	concert	cm	14	300	4200	14	196	4396	
1.1.2.2.4	water proofing	sm	105	/	735	6.84	718.2	1453.2	
1.2	Super Structure								
1.2.1.1			colum	ins and shea	ar walls				
								32805.	
1.2.1.1.1	columns form work	sm	2689	2.6	6991.4	9.6	25814.4	8	
1.2.1.1.2	column reinforcement	ton	80	4200	336000	800	64000	400000	
1.2.1.1.3	column concert	cm	279	300	83700	14	3906	87606	
12114	S W form work	sm	3158	2.6	8210.8	9.6	30316.8	36527. 6	
1.2.1.1.5	S.W reinforcement	ton	127	7	889	800	101600	102489	
1.2.1.1.6	S.W concert	cm	435	300	130500	14	6090	136590	
1.2.1.2			Ba	asement 3 s	lab				
								41101.	
1.2.1.2.1	form work	sm	3369	2.6	8759.4	9.6	32342.4	8	
12122	steel slab and ground	ton	15	4200	63000	800	12000	75000	
1.2.1.2.2	concert slab and	ton	10	4200	00000	000	12000	73000	
1.2.1.2.3	ground beams	cm	260	300	78000	14	3640	81640	
	water proofing slab						16628.0	33645.	
1.2.1.2.4	and ground beams	sm	2431	7	17017	6.84	4	04	
1.2.1.3		1	baseme	nt 2/baseme	ent 1 slab	1		41101	
12131	form work	sm	3369	2.6	8759.4	9.6	32342.4	41101. 8	
1.2.1.3.2	steel	ton	10	4200	42000	800	8000	50000	
1.2.1.3.3	concert	cm	465	300	139500	14	6510	146010	
		bloc							
1.2.1.3.4	# of blocks	k	2007	7	14049	1	2007	16056	
1.2.1.3		1	typic	cal story slab	9.1/6	1		EECC0	
1.2.1.3.1	form work	sm	4563	2.6	11863.8	9.6	43804.8	55666. 6	
1.2.1.3.2	steel	ton	29	4200	121800	800	23200	145000	
1.2.1.3.3	concert	cm	1177	300	353100	14	16478	369578	
		bloc							
1.2.1.3.4	# of blocks	k	4952	7	34664	1	4952	39616	
1.2.1.4	Stair work		276	26	077.6	0.6	3600 6	1597 0	
12141	steel	ton	45	4200	18900	800	3600	22500	
1.2.1.4.3	concert	cm	92	300	27600	14	1288	28888	
1.2.1.5	Ramp					1			
1.2.1.5.1	formwork	sm	630	2.6	1638	9.6	6048	7686	
1.2.1.5.2	steel	ton	5	4200	21000	800	4000	25000	
1.2.1.5.3	concert	cm	165	300	49500	14	2310	51810	
1.2.1.6	basement wall								
1,2,1,6,1	formwork	sm	3153	2.6	8197 8	9.6	30268.8	6	
1.2.1.6.2	steel	ton	30	4200	126000	800	24000	150000	
1.2.1.6.3	concert	cm	464	300	139200	14	6496	145696	
1.2.1.7	Beams								
1.2.1.7.1	steel	ton	83	4200	348600	800	66400	415000	

				Unit cost				Total
	Item description	Unit	quantity				cost	
				Motorial	Motorial	Labor	Labor	Total
חו	Item description	unit	quantity		total cost	cost	cost	COST
1.2.1.8		unit	quantity	water tank	10141 0031	0031	0031	0031
1.2.1.8.1	formwork	sm	50	2.6	130	9.6	480	610
1.2.1.8.2	steel	ton	6.5	4200	27300	800	5200	32500
1.2.1.8.3	concert	cm	33	300	9900	14	462	10362
1.2.1.9	sheet piles							0
								140500
1.2.1.9.1	steel	ton	281	4200	1180200	800	224800	0
1.2.1.9.2	concert	СМ	1197	300	359100	14	16758	375858
12103	excevation work	см	1107	50	50850			50850
1.2.1.3.5	excavation work	Civi	Non -	-structural el	ement			33030
1.3.1	internal partition							0
1.3.1.1	block	sm	3129	19	59451	20	62580	122031
1.3.1.2	insulation volume	cm	156	350	54600	20	3120	57720
1.3.2	external wall					-	-	-
1.3.2.1	block	sm	2360	19	44840	20	47200	92040
1.3.2.2	stone	sm	2360	120	283200	34	80240	<u>3634</u> 40
1.3.2.3	concert	cm	236	300	70800	20	4720	75520
1.3.2.4	insulation volume	cm	118	350	41300	20	2360	43660
1.4	OUT SIDE WORK							
1.4.1	Pavement	sm	105	1000	105000			105000
1.4.2	asphalt	sm	1312	50	65600			65600
1.4.3	base coarse	cm	326	600	195600			195600
3								Tatal
	Item description	Linit	quantity	Unit cost				rotal
			quantity F	l lectrical Wo	rk			0031
	Wires 1.5 mm.	M.R	3300	5			16500	
	Single Switch	Unit	58		95			5510
	double Switch	•	88		100			8800
	Electrical generator	Unit	3		5000)		15000
	Distribution board	Unit	17		2700)		45900
	Lamps (luminaiure)	Unit	804	150				120600
	Photovoltaic modules	Unit	277	600			166200	
	Inverts	Unit	9	3000			27000	
	Sockets Unit 142 115 16							
			Mechani	cal and HVA				400
	PVC pipes-4	M.R	120	4			480	
	Tanka	IVI.K	5	250			1750	
	Tank support	Unit	5	300			1500	
<u> </u>	manholes	Unit	3	110			330	
<u> </u>	roof drain water pipe 2	U.I.C					000	
	inch	Unit	5	25			125	
	Floor drain							
		Unit	40		33			1320
	Roof drain							
		Unit	5	25			125	
	Split unit	Unit	60	2000			120000	
	Fan coil	Unit	27	4000			108000	
	elevators	Unit	3	100000			300000	
	Lavatory	Unit	47		1000)		47000
	WC cabinet	Unit	47	1800			84600	
	Handicapped lavatory	Unit	7	1200				8400
	Handicapped WC							
	cabinet	Unit	7		1700)		11900
	meter		6		150			900
	collectors	l	D Eirofia	abting overer	150 n Cost			900
	Firebouro		Firefiç	gnung syster	in Cost			
1	riieiluuse			1				1

				Unit cost				Total
	Item description	Unit	quantity					cost
						Labor	Labor	
				Material	Material	unit	total	Total
ID	Item description	unit	quantity	unit cost	total cost	cost	cost	cost
	extinguisher type A	unit	42		100		•	4200
	fire sprinkler	unit	160	40			6400	
	Firehouse	M.R	14	600			8400	
	4 inch pipe	M.R	165	20			3300	
	2 1/2 inch pipe	M.R	3	15			45	
	3inch pipe	M.R	14	15			210	
	3 1/2 inch pipe	M.R	5	20			100	
	1 inch pipe	unit	120	8			960	
	emergency sign	unit	35	30			1050	
	jockey pumb	unit	1	200			200	
	electrical pumb	unit	1		350			350
	Fire Alarm Panel	unit	6	50			300	
	Heat Detector	unit	150	20			3000	
	Smoke detectors	unit	40	30			1200	
	Fire alarm manual							
	station		65	100			6500	
	external finishes							
	Building Stone	SM	1,314				120	157680
	Windows & Door Sills	M.R	265				260	68900
	Stone Joints	CM	72.4				470	34028
	Concrete	CM	2604				300	781200
	Insulation	CM	744				350	260400
	Block	unit	4860	2.5			12150	
	Internal finishes							
	partitions SM 3797.5							
	Plastering	SM	5375				17	91375
	Painting	SM	6870				17	116790
	Ceiling plastering	SM	5200	17			88400	
	Floor tiling	SM	4200				85	357000
	Paving for Basement	SM	70				40	2800
	Curb stone for parking	M.R	75				50	3750
	Aluminum louvers	units	200				30	6000
	Curtain walls	SM	850				900	765000
	Aluminum for windows	SM	866				600	519600
	Hanging wood door	unit	65				1200	78000
	Single fire resisting							
	door	unit	7				2000	14000
	External Steel Doors	unit	2				1000	2000
	Stair marble	MR	308				250	77000
	Glazing Doors	Unit	2				1600	3200

5.3 Summary:

The outcomes of gathering complete information about the building and estimating the cost can be stated as follows:

total cost of the building = 11,127,123 NIS

Unit cost = 1300 NIS $/m^2$

6 <u>Conclusion:</u>

The first stage of the project was looking for requirements and standards for public offices and commercial constructions utilizing NEUFERT ARCHITECTS' DATA and METRIC HANDBOOK PLANNING AND DESIGN DATA.

Following that, a design for all required fields was created.

Architectural aspect:

The building's horizontal and vertical circulation was investigated. The linkages of the spaces to one other and the extent of the spaces in the building were also evaluated, and changes were made to ensure that they met the standards.

Environmental aspect:

The environmental factors impacting this project were analyzed in terms of orientation, shading, cooling and heating and the daylight factor in this section of the project, and the required alterations were made so that the daylight within the building meets the criteria.

Structural aspect:

All structural elements in this project were properly designed in accordance with the ACI 318-14 and UBC 97 regulations, and all structural and seismic inspections were completed satisfactorily.

Electro-Mechanical aspect:

In order to improve the facility and meet the project's needs, a number of systems, including artificial lighting, HVAC, power, water, drainage, and vertical transportation, were designed in this section of the project.

Quantity surveying and Cost Estimate:

The last phase of the project involved calculating the overall project cost with the highest level of accuracy feasible. It was discovered that the total project cost is 11,127,123 NIS, with a unit cost of 1300 NIS $/m^2$

References:

1- Neufert, E., Neufert, P., Kister, J., Sturge, D., & Brockhaus, M. (2015). Architect's Data (4th ed.). Chichester, West Sussex: Wiley-Blackwell.

2- Adler, D. (1999). Metric handbook: planning and design data. Architectural Press.

4- Callender, J. H. (1974). Time-saver standards for architectural design data. New York: McGraw-Hill.

7- ArchDaily:

https://www.archdaily.com/917946/pulse-office-building-and-restaurants-bfv-architectes

8-weather spark:

Ramallah Climate, Weather By Month, Average Temperature (Palestinian Territories) -Weather Spark

9- Google Map:

https://www.google.com/maps/@32.2403386,35.3535766,10.12z

10-Watson et al.,(1997).Time saver standards by architectural design. Sandra Olenik, Printworks, Ltd., Madison, CT, USA: McGraw-Hill

11--(Building Code Requirements for Structural Concrete (ACI 318-14) Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14) An ACI Standard and Report from IHS, 2014)

12-- (2012-IBC, n.d.)

- 13--{(Ramthun,M(2022).Roadway Design Manual]
- 14-- (Palestinian Civil Defense Code)
- 15-(Khedari, J. (2006).solar energy: ELSEVIER)
- 16-American Concrete Institute code ACI 318-14

17-Uniform Building Code (UBC 97) for seismic design and combinations

18-American Society of Civil Engineers (ASCE) for loads.