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Abstract 

Vehicle Routing Problem (VRP) is one of the most common real-world 

operations research applications that grasped a rich attention from 

researchers in order to develop as much realistic models as possible. 

Although researches have been conducted to solve different variants of 

VRP model, richer models are still required to simulate more real-life 

circumstances. For instance, the emerging unexpected conditions (i.e.: 

accidents, or unexpected congestion); and dealing with over-capacitated 

acquired fleet of trucks. More importantly, VRP models have been 

proposed as isolated from the most effective factor on the success of VRP 

plan on ground; who is the driver. Therefore, this research spots the light 

on the effect of driver behavior on the optimal VRP plan, and evidences are 

given by figures to convince decision makers with the possibility of 

integrating such factor provided with the significance of the accompanying 

effects. The level of autonomy of making logistical decisions such as speed 

or route changing decisions for both planner and drivers have been 

represented in the model by involving risk taking parameters, and the effect 

of changing the level of autonomy on VRP total costs has been investigated 

using a sensitivity analysis. Also, in order to enhance the model 

configurations‟ practicability; the idea of “ride sharing” is introduced by 
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involving not only full time regular drivers to serve, but also occasional 

drivers set to be available to serve when shortages happens in logistical 

services, or when remote orders are received from rural or country-side 

areas as uncommon destinations for regular drivers. For the purpose of 

ensuring environmental friendly logistical practices, the policy of velocity 

maximization has been used as well as imposing environmental penalties 

on the chosen rate of velocity associated with certain fuel consumption 

rate.  Whereas the proposed VRP model satisfies both the driver by 

assigning a certain level of autonomy; and the firm‟s financial objectives 

via total costs minimization; it additionally accounts for the consumed 

energy during serving customers in order to optimize the service time. A 

numerical instance with a hypothetical data set has been solved by Eclipse 

Java 2018-9 solver by using two heuristic methods which are adaptive 

solving algorithms and are able to find a local optimal solution (i.e.: the 

Greedy, and the Intra-route neighborhood heuristic), both revealed the 

same near-optimal solutions. Such VRP modeling and results have been 

used as a proof of concept to verify the proposed VRP model. Ultimately, 

the results are analyzed sensitively and show that  the resulted insignificant 

increase in VRP costs due to assigning different levels of autonomy for 

drivers are still reasonable, as the total costs‟ objective function weight has 

a mere effect on the total optimal solution, while that for the energy 

consumption function has the largest effect.   
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Chapter One 

 Introduction 
 

1.1 General Background 

One of the most popular applications of the operation research science is 

Vehicle Routing Problem (VRP). VRP; which was defined by Clarke and 

Wright (1964) as serving customers‟ network distributed in different 

geographic points, using different capacities‟ fleet of trucks. VRP-related 

studies have been exponentially grown about six percent per year in the 

literature researches (Eksioglu et al., 2009). Besides, VRP has grasped its 

importance due to its wide usage in the logistics and transportations‟ 

aspects. Moreover, the literature has concentrated on different variants 

related to VRP, in which the scholars set models and solutions for many 

real life problems to control difficulties associated with different stages of 

transportation. Such difficulties are the travel times of transportation, pick 

up and deliveries time window and input information (Braekers et al. , 

2016).  

 Paraskevopoulos et al. (2017) stated that the routing and scheduling 

planning process confront some challenges with allocating scarce resources 

for certain services. On the other hand, VRP topic has widely been 

analyzed due to its impact on various industries (Lahyani et al., 2017).  

Based on taxonomic review related to VRP topic since 2009 up to 2015, it 

reveals that the literature focused on some important VRPs‟ aspects, and 

different models were suggested to solve different objectives‟ problems, for 
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instance, the capacitated VRP, periodic VRPs, VRP with time windows and 

others (Braekers et al., 2016). Additionally, a very crucial side which 

considerably affects the optimal results required for such a VRP case is 

human factors. Jabbour et al. (2015) published a study relating to the 

importance of integrating green human resources (GHRM) in order to 

optimize the use of a Green Supply Chain Management (GSCM) that 

considers using a certain green policy when applying the supply chain 

stages. The drivers who are the subjects that manage the transportation 

process are critical to be considered while analyzing a VRP model. 

Controlling those drivers‟ behaviors would fundamentally improve the 

sought goals when applying any VRP model. Accordingly, a literature 

review has been made by Alam and McNabola (2014) and found that 

controlling the driver behavior in a green manner can reduce the fuel 

consumption by 45%. In the same vein, Liimatainen (2011) developed a 

study of utilization of fuel consumption data to be used in an incentive 

system for the heavy-duty vehicles‟ drivers as a practical solution to be 

used by logistical companies to motivate drivers to stick to the energy- 

efficient routing plan. He also mentioned that such behaviors are variable 

with the individual differences, by which the fuel consumption could vary 

up to 30%. 

A study conducted by Archetti et al. ( 2016) discussed VRP topic with a 

special case, when using occasional drivers as a ridesharing concept to 

serve different logistical companies.  Based on that, this work will focus on 

developing a multi criteria approach for solving a VRP model, which takes 
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into consideration the green policy; by which the environmental issues are 

being studied and solved by accounting for the optimal velocity range 

accompanied with the lowest environmental penalty imposed on certain 

fuel consumption rate. Also, the effects of drivers‟ differences on the 

driving pattern will be understood in order to introduce representative 

parameters that could be integrated with VRP model to optimize its results. 

Such differences are; level of autonomy, drivers ages and fatigue 

relationship, their level of skills and performance, and the training and 

awareness sessions they exposed to, are all intended to be studied in 

examine the possibility of integrating a human factor which is able to 

optimize VRP solutions realistically on ground.  The occasional drivers 

who are the third external partners to be used for excess or remote 

customers‟ orders as a safety procedure are the third issue to be studied in 

this research. The model is assumed to produce the minimum travelling 

costs and fuel consumption. The following literature review systematically 

compares between the different contributions and the developed solving 

methods. Also, the research problem as well as research significance, 

questions and objectives are finally defined clearly. Consequently, the main 

aim of this research is to develop a model that can consider several aspects 

of green VRP such as occasional drivers and drivers‟ differences. 
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1.2 Problem Statement 

VRP topic has been widely discussed in the literature. The challenge on 

providing a realistic model that reflects the real-life aspects is being 

adapted by multiple academic researchers. Though, it is clear that the 

variants used to be studied while considering that there are no differences 

between drivers, and so, all the near optimal results are idealized regardless 

the driver behavior pattern (Srinivas and Gajanand, 2017). Different 

objectives had been analyzed such as minimizing the routing travelling 

costs, travelling time and distance as well as reducing the air pollution 

levels resulted from such logistical activities. Recently, other persistent 

necessities have emerged as a result of the accelerated development of the 

technological and transportation industries. For instance: adopting a green 

policy when modeling for VRPs‟ different variants, integrating drivers‟ 

behavior with VRPs models, including occasional drivers in the routing 

plan, considering the route status such as congestions issues as an 

important factor to be planned for and taking into consideration the 

required customer service level. Consequently, this study aims to develop 

and near optimally solve an eco-friendly VRP model integrated with driver 

behavior controlling parameters, involving both regular and occasional 

drivers. To the best of our knowledge, as can be shown from the reviewed 

literature, those topics had been studied individually and VRP models have 

been studied as isolated from the driver‟s behavior pattern.  
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1.3 Research Significance 

From what has been discussed above, the necessity is being emerged to 

develop a rich VRP model which is able to quantitatively and qualitatively 

improve the three pillars of sustainability; the economy, the environment, 

and the society. Developing a VRP model that improves the perceived 

quality of the value-chain stakeholders (i.e.: from the corporate 

management down to the customer) is expected to prosper the logistical 

firm‟s outcomes. More specifically, the society members from rural areas 

to city-center dwellings will be satisfied with VRP services offered not 

only by capacitated regular drivers‟ set, but also by occasional drivers. 

Recently, the logistical practices and industrial activities are being 

aggressively developed, not only locally but also globally across 

continents, and the routing planning system becomes more complex and 

forked. Therefore, the idea of ridesharing is considered as a safety method 

for over-capacity delivery requirements. The concept of ridesharing has 

been defined as sharing the individual travelers of the travelling costs for 

riding others‟ vehicles for a trip when they have similar time schedules, 

such idea has been introduced in the state of art by Furuhata et al. (2013). 

This concept has been developed later by  Walmart to be their vision in 

using in-store customers to make delivery for on-line customers who are 

close to their destination (Archetti et al., 2016). On the other hand, such 

service will load additional compensation costs on VRP costs; however, 

they are optimized by the proposed model. Furthermore, controlling the 

drivers‟ behavior; who significantly affects the routing process desired 
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outcomes on ground; will sustain that the drivers‟ behaviors‟ variations are 

controlled, and the effect on the routing expenses is optimized as well. 

However, integrating the driver behavior concept in VRP model; 

represented by controlling the assigned level of autonomy for drivers; is 

expected to improve the driver satisfaction level. This in turn would help in 

achieving the strategic objectives of the firm by mitigating variance 

between the planned and on ground achievements. Finally, the recent 

orientation toward a green environment and sustainable world has imposed 

an urgent attention from researchers and practitioners; a service as logistics 

are considered as major sources for pollution and so, VRP model would 

never be comprehensive unless accounting for a green policy.  

Consequently, an eco-friendly VRP model is developed by controlling the 

routing optimum velocity and enforcing an environmental penalty on fuel 

consumption rate; while considering at the same time both society 

satisfaction and firms‟ economy prosperity. 

1.4 Research Objectives 

This work aims to achieve the following objectives: 

1. To identify the best configurations of VRP model to be a rich and 

realistic model that simulates real circumstances of logistical firms‟ 

activities. The proposed model is intended to be sustainable by 

optimizing the economic objectives of VRP plan; improving the society 

satisfaction level, and accounting for a green logistical policy. Such 

VRP configurations are involving the use of a third part to cover 
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shortages in logistical services to improve the service level as well as 

incorporating the driver‟s behavior when designing the logistical 

services‟ network. Such objectives are intended to be optimized 

financially and environment-friendly.  

2. To develop a comprehensive and solvable mathematical model that 

consists of the required multi-objectives function that satisfies the 

required VRP model configurations. This then is verified as a proof of 

concept in line with the intended objectives of VRP model. 

1.5 Proposed Methodology 

This study is following the analytical operations research‟s methodology in 

order to achieve the objectives of this research. Firstly, in order to 

determine the required configurations of VRP model to be a rich and 

realistic and to identify the current problems and the suggested future 

works; a systematic literature review is conducted. This will ensure a 

comprehensive understanding of the limitations and gaps of the available 

VRP model. As a result, the problem that will be solved in the proposed 

VRP model could be determined and defined in terms of its required 

objectives to be achieved by the model, as well as understanding the 

accompanying constraints to solve the model. Such problem definition is 

important to be thoroughly understood and confirmed as it 

comprehensively covers the total features of the intended VRP variants and 

characteristics; this is necessary to ensure that the representing 

mathematical model which will be formulated later on consists of all the 
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required preliminaries and functions, and to know the necessary 

configurations for applying VRP model on ground. And as such, all the 

obtained knowledge will be integrated for defining the best configurations 

and specifications for the intended VRP model.  

Secondly, a mathematical model that accounts for the obtained VRP 

configurations is formulated as a comprehensive and solvable VRP model, 

and then it is coded using the suitable language in a way that integrates all 

the approved VRP model specifications. After that, the proper solving 

algorithms are determined; depending on the model characteristics; and the 

model is solved by using the proper solver. More specifically, the heuristics 

algorithms are examined to solve the model as they are usually able to 

solve different real-life aspects‟ VRP models even for a large scale size, 

such algorithm could improve the quality of the solutions in short 

computing time, Juan et al. (2015). As VRP is NP-Hard problem, heuristics 

are used to solve it until finding a local optimal solution. Two specific 

algorithms are intended to be used; the Greedy method, and Intra-Route 

Heuristic Neighborhood Search method; the first algorithm initializes the 

near optimal solution, which might be improved by using the second 

algorithm. Both methods are adaptive and iteratively improve the candidate 

solutions until find the local optimal solution. Such heuristics‟ algorithms 

could not find the global optimal solution in comparison with the exact 

methods. Therefore, solving the model by two methods might improve the 

obtained near-optimal solution, as the used heuristics could not maintain 

that the solution is global such as the case when using exact algorithms.  
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Thirdly, in order to validate the proposed model, a numerical instance is 

solved using the proper solver and algorithms. Furthermore, sensitivity 

analyses are conducted to test the affective relationships on the model 

results. Such results could be used to influence important decisions related 

to logistical firms‟ activities and will be evidences to convince decision 

makers towards the required changes on the available logistical systems. 

Figure 1 presents flow chart of the proposed methodology. 

 

 

Figure 1: Flowchart of the proposed Methodology. 

1.6 Thesis Organization 

This thesis has been organized as following:  

Chapter Two includes the literature that has been reviewed systematically 

in order to get a comprehensive understanding about the available VRP 

models, and to define their gaps and limitations. Chapter Three describes 

the proposed mathematical model in terms of its formulation, preliminaries, 

decision variables, parameters, assumptions, objective functions‟ and 
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constraints‟ formulations and descriptions, as well as the linearization 

process.  Chapter Four introduces results of the proposed numerical 

instance that has been used with hypothetical data set, in order to verify the 

solvability and validity of the model. Those results release an optimal VRP 

routing solution, including the optimal consumed energy, the optimal 

velocity, the optimal environmental penalty, and the optimal total costs. 

Also, the model decision variables solutions present the decision to choose 

either regular or occasional driver; the optimal loaded quantity, and the 

optimal choice of velocity rate. Chapter Five discusses the sensitivity 

analyses that are conducted on risk taking parameters and total costs and on 

the effect of each objective function weight on the total optimal solution. 

Finally, conclusions, limitations, and future works are presented in Chapter 

Six.  
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Chapter Two 

 Literature Review 

2.1 Overview 

This chapter presents the systematic literature review related to VRP topic.  

Since the focus of this research is developing a rich VRP model that 

incorporates real-life configurations, the available suggested VRP models 

have been understood in order to identify the emerged gaps and scan the 

future works as have been suggested in recent literature. Miscellaneous 

literatures of variants and contributions of the proposed VRP models are 

classified as related to the following topics:  

 Classical VRP 

 Green VRP 

 Rich VRP 

 VRP and drivers‟ behavior 

2.2 Classical VRP 

The case of a gasoline trucks‟ fleet serving multiple stations had firstly 

been considered as a Truck Dispatching Problem by Dantzig and Ramser 

(1959). In their paper, they were seeking to satisfy all stations demand 

totally with the minimum possible covered mileage, by solving the problem 

as a linear programming formulation. Later on, Clarke and Wright (1964) 

had generalized the problem into the case of solving the best network of 

customers spread around a central depot point. However, both researches 

had not considered the real life aspects which are associated with the large 
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scale real problems. Nevertheless, it becomes an easier challenge to create 

more practical solutions to serve the reality. The technological revolution 

as well as the telecommunications industry helped vigorously in applying 

the idea of the trucks dispatching problem considering different real life 

requirements. 

In relation to VRP research topics, different taxonomic reviews and 

classification studies were executed. Eksioglu et al. (2009) explained the 

methodology to classify VRP-pertinent literature, they argued that VRP 

related literature were disjointed over time and an all-encompassing review 

study is needed in order to keep track of the topic much easier and in 

discriminating manner. Depending on their work (2009), another detailed 

review was accomplished by Braekers et al. (2016), in which they analyzed 

the various trends of VRP found in literature between (2009- 2015). A 

review of 277 articles revealed that academic researchers have focused on 

different variants of VRP topic and different important points were 

discussed. Such a rich topic brought the opportunity to study different real 

life problems associated with VRP. For instance, the Heterogonous Fleet 

VRP (HFVRP) in which the capacity of the trucks was variable; Koç et al. 

(2016) presented a comparative analysis of the literature presented through 

thirty years of studying the HFVRP and the related variants and meta-

heuristic algorithms, the HFVRP has been defined as serving a set of 

customers with known demands by a limited or unlimited capacitated fleet 

of trucks, with the minimum vehicle costs. Also, Lai et al. (2016) studied a 

multi-graph HVRP with time constrained, and solved the mixed integer 



13 

 

 

linear programming model with a Tabu search heuristic, which provided an 

enhanced routing costs and better customer service. Moreover, other related 

variants were widely studied in the literature such as: VRP with Time 

Windows (VRPTW) which is related with the different service time for 

each customer, VRP with Pickup and Delivery (VRPPD), the Multi Depot 

VRP (MDVRP), the Periodic VRP (PVRP) and Backhauls VRP (VRPB).  

In order to understand the different variants of VRP, some studies in the 

literature were reviewed regarding each variant and the contributions were 

analytically compared. More specifically, VRPTW; which refers to the 

time collapsed when serving the customer until ending the service; various 

literatures discussed that variant. Lahyani et al. ( 2015) presented a 

taxonomic review and compared between the soft times windows in which 

penalties are given for late vehicles‟ service, while with hard time windows 

the vehicle is not allowed to arrive late. 

Meanwhile, VRP were expanded in a way that serving the industrial 

applications, Gribkovskaia et al. (2008) studied the case of satisfying only 

the profitable pickup points‟ demands. In their study, a mixed integer linear 

programming formulation has been designed to minimize the total cost 

associated with the covered routes with totally delivered orders, and 

partially satisfied pickups. They argued that it is sometimes more beneficial 

to serve the same customer twice rather than creating a full route circle. 

Recently, Belgin et al. (2018) published a study regarding VRPPD with 

two-echelon (2E-VRPPD), in which the pickup and delivery operations are 

being accomplished simultaneously, with the same vehicle delivering the 
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orders totally from depot to the destinations, and from destinations back to 

the depot point. Both Node-based mathematical model and a hybrid 

heuristic algorithm were used to solve the 2E-VRPPD in medium and large 

size.   

When considering the fleet‟s trucks differences, the capacity of the 

truck/vehicle is one of the important decisions that affect the optimal VRP 

network choices. Lahyani et al. (2015) mentioned that the Capacitated 

Vehicle Routing Problem (CVRP) provides a solution with the minimum 

costs with a closed route circle, one time customer service by one vehicle, 

and the route total demand must not exceed the assigned vehicle capacity. 

Also, Li et al. (2016) shed the light on the combination-vehicle attributes as 

a combination Tuck Routing problem (CTRP), in which the vehicle types 

and the travelled distances were considered in a survey, and a heuristic 

algorithm was applied to solve a real logistical case.  

However, another challenging variant rather than the regular single VRP is 

the MDVRP. In this setting, the final clients; who are not clustered around 

each single depot; are being served from different depots. Montoya-Torres 

et al. (2015) have published a literature review work about the MDVRP 

considering different VRP variants‟ works. Also, they presented different 

approaches which had been suggested to solve the problem. Consequently, 

researches were extended on the topic of the MDVRP to be as realistic and 

serve the real applications as effectively as possible. Lahyani et al. (2017) 

introduced in their work a combination of Multi-Depot Fleet Size and Mix 

VRP (MDFSMVRP). Both Branch-and-Cut and Branch-and-Bound 
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algorithms were used to solve the suggested formulations with different 

indexes. An improvement on the lower and upper bounds on the tested 

instances has been achieved considerably. 

Referring to the PVRP which has been defined by Campbell and Wilson 

(2014) as a vehicle routing problem with multiple periods‟ service; the 

customers orders‟ are being scheduled to be met on multiple periods, with 

the same fixed quantity. A recent study presents the PVRP as a flexible 

characteristic, in which Archetti et al. (2017) discussed the Flexible PVRP 

(FPVRP) where the objective function here minimizes the total routing 

costs while giving some flexibility of the customer orders‟ satisfaction 

frequencies and quantity, during the planning horizon, rather than fixed 

frequencies and quantity. Also, the FPVRP considers the inventory costs 

accompanied with the objective function, which is modeled in the 

Inventory Routing Problem (IRP). The results of their work revealed that 

the costs were minimized better than using PVRP or IRP.    

According to the routes‟ types that are planned to be covered by the 

available fleet of trucks, another variant emerged; VRP with Backhauls 

(VRPB) in which both delivery and pickup are available on the same 

routes. A study conducted by Koç and Laporte (2018) analyzed the 

different VRPBs literature and compare between the exact and heuristic 

algorithms. Also, the literatures available about the standard VRPB as well 

as the different variants are tabulated in the study, with the defined 

mathematical model and solution. Accordingly, Bortfeldt et al. (2015) had 

extended VRPB into clustered with three dimensional loading problem 
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(3L-VRPCB). Here, the line-haul customers should be served before the 

backhauls ones. Two hybrid algorithms were suggested to plan for the 

packing and routing procedures. Also, García-Nájera et al. (2015) 

suggested a multi-objective model that minimizes the number of vehicles, 

the traveling costs and the un-serviced backhauls. And so, the suggested 

similarity–based evolutionary algorithm brought solutions for real life 

applications.   

Recently, it has been noticed that three VRP variants are more important to 

consider in a combined VRP model, in order to be a Rich VRP (RVRP), 

those are the Open VRP (OVRP), the Dynamic VRP (DVRP) and the 

Time-Dependent VRP (TDVRP) (Braekers et al., 2016). Various 

researches concentrated on those variants and suggested different 

algorithms to solve the optimal solution. For instance, the OVRP, which 

supposes that vehicles should not return to the depot after making 

deliveries. A work presented by Marinakis and Marinaki (2014) suggested 

a new developed  Bumble Bees Mating Optimization (BBMO) Algorithm 

to solve the OVRP. A comparative analysis was conducted between the 

other meta-heuristic, evolutionary and other nature inspired algorithms. 

They argued that the results were satisfactory and better solutions were 

revealed. According to the important variant; the DVRP, wide researches 

were conducted as accompanied with different mix of other variants. The 

DVRP grasped its importance from the fact that the real life aspects are 

mostly dynamic in their natures and requirements. Pillac et al. (2013) 

published a review paper which comprehensively studied the different 
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DVRP works from different perspectives. Specifically, two dimensions are 

important to understand when studying the DVRP; from which the 

dynamicity degree comes; which are the evolution and quality of the 

information being transferred across the planning horizon. Regarding the 

evolution, the information could be changed after the planners defined a 

routing plan, while the quality of the information immerses from the 

uncertain demand available data. As the recent technological revolution 

provides an easier following up system for the routing planning process, as 

the complexity of the DVRP increases and the need for richer VRP models 

is emerged.  

Furthermore, another important variant of VRP is the Time-Dependent 

VRP (TDVRP). Accordingly, Maden et al. (2010) mentioned that the 

previous VRP variants were being studied supposing that the routing plan 

is static regarding to the vehicles speeds and journey time. On the contrary, 

the traffic congestion will aggressively affect the optimal solution of the 

planned routes from costs and distances overviews. Therefore, the study of 

VRP would be more realistic when considering the current traffic 

prosperities. As nowadays, on point information about traffic on a certain 

route would help in identifying the expected time to cross a certain route. 

Thus, using the TDVRP would highly improve the optimal solution of the 

routing plan with minimum costs and time. Moreover, the optimal solution 

is expected to be enhanced not only in minimizing time durations for the 

planned routes but also in CO2 emissions of the travelled journey. A case 

study conducted by Maden et al. (2010) described a heuristic algorithm 
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which minimizes the total travel time of VRP, taking into account the 

variation caused by the expected traffic congestion, which is usually higher 

during rush hours. The results of the study which were conducted on a 

south western sample in the United Kingdom shows that 7% of CO2 

emissions were reduced comparing with the traditional VRP model with 

emissions‟ saving objective.   

Franceschetti et al. (2013) presented an integer linear programming 

formulation which considers minimizing the costs of the travelled journey 

in both emissions and drivers‟ costs. Such a model is referred to a Time-

Dependent Pollution VRP (TDPVRP). They documented that using the 

assumption of a fixed speed rate when planning for VRP optimal solution 

would deviate from the expected CO2 emissions by 20% for the gasoline 

vehicles. Also, both congestion and free flow cases were studied and a 

complete characterization of the optimal solution was derived which 

prescribes all the speed and congestion properties. Another interesting 

work considering the TDVRP including the path selection decision was 

presented by Huang et al. (2017). Here, the conventional assumption of the 

given customer location and arcs was improved by providing a path 

selection choice explicitly in the road network, this means that the model 

provides a solution with optimal route and path selection decision 

depending on both departure times and congestion levels related to the 

suggested network. A variant called Time Dependent VRP with Path 

Selection (TDVRP-PS) has been solved using The Route-Path 

Approximation (RPA) method which provides near optimal solution taking 
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into consideration a stochastic traffic conditions.   

2.3 Green VRP 

The logistics and distribution processes world are highly crossed with the 

persistent need of green policy applications worldwide. For this point, 

different researches have considered the green awareness toward having a 

sustainable VRP models. A survey conducted by  Lin et al. (2014) 

comprehensively reviewed the different available literature on the Green 

VRP (GVRP). The suggested models were analytically compared and 

categorized into GVRP and Pollution Routing Problem (PRP). Suggestions 

were presented about considering the GVRP with other VRP variants. The 

philosophy of this work considered the traditional VRP researches, a 

survey on the GVRP and presented how the traditional VRP could interact 

with the GVRP in the coming inspired researches‟ topics. This work could 

be used as a starting point in order to help researches and logistics 

practitioners in creating a sustainable VRP work that considers the 

important variants combining the most important real life aspects and the 

green continual needs.   

One of the available rich works that combines green issues with VRP has 

been recently published by Niu et al. (2018). Authors considered an Open 

VRP model with Time Windows constraint (GOVRPTW). A hybrid Tabu 

Search Algorithm was suggested depending on the Comprehensive Modal 

Emission Model (CMEM). The suggested model aimed to minimize the 

routing costs regarding both the fuel and CO2 emission costs. The results of 
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realistic instances computed on a Chinese sample revealed that such an 

open VRP model reduced both fuel costs by 20% and CO2 emissions costs 

by 30% approximately.  

For the purpose of controlling the environmental pollution caused by the 

distribution process emissions, a paper has recently been published by 

Hosseini-Nasab and Lotfalian (2017) classifying between the selected route 

type by the fuel consumption level depending on the average velocity level. 

They argued in their work that many researchers solved the green VRP 

with considering the fuel consumption rate minimization (Gurtu et al., 

2015; Zhong et al., 2004), the case that impedes a similar route planning in 

terms of sticking to a certain route type and average velocity during the 

routing plan, which is not practical when implementation. Therefore, they 

have suggested that studying the effect of road type on average velocity 

and the accompanying fuel consumption rate would be effective in 

reducing fuel cost and emissions (Fagerholt et al., 2010).  A three 

objectives‟ mathematical model has been proposed which; 1) minimizing 

the travelling costs and the consumed energy, 2) minimizing the  fuel 

consumption rate by minimizing the incurred environmental penalty, and 3) 

maximizing customer satisfaction level in terms of maximum possible 

average velocity. After running the model on numerical instances, the 

results revealed that an improvement opportunity is existed for reducing the 

environmental pollution and planning for an eco-friendly routing plans; by 

considering the relation between the route type and certain fuel 

consumption rates associated with CO2 emission. This in turn would save 
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the non-renewable natural resources. Also, they suggested that as the model 

is NP-Hard programming and will be time consuming for solving large 

instances; it would be more realistic to solve the model by using heuristics, 

meta-heuristics or an exact method, such as; Spatial branch-and-bound, and 

Branch-and-reduce (Burer and Letchford, 2012).   

2.4 Rich VRP 

As mentioned by Braekers et al. (2016), the reviewed researches between 

(2009-2015) were considering the real life aspects of VRP as individual 

cases, or only considering some variants. As a result, the suggested models 

cannot be easily generalized for real cases and applications. Therefore, 

future work considering multiple variants to have a richer VRP models 

were suggested. The RVRP is defined as VRP model that considers various 

real life complexities (Goel and Gruhn, 2008). Related to the available 

published rich VRPs models, Lahyani et al. (2015) presented a taxonomic 

review to analyze literature available about RVRP. They also provided the 

proper requirements that should be available to consider a study as a RVRP 

study. An important matter they mentioned was the gap between the 

suggested RVRP models in the literature and the complexity of the real life 

aspects. They argued that most researches focused on providing a 

mathematical model with solution rather than adjusting the real life 

characteristics with the suggested model. In their paper, they provided the 

requirements as the optimization criteria, constraints and preferences that 

should be available in order to produce a RVRP model. One more work on 

the RVRP was presented by Goel and Gruhn (2008). The variants that were 
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studied as combined are: time windows restrictions, heterogamous fleet of 

trucks with variable travel times, travel costs and capacity, multi-

dimensional capacity constraints, multiple pickups and delivery locations‟ 

service, different starting and ending point and route restrictions. 

According to the high constrained provided model, an iterative 

improvement approaches such as Reduced Variable Neighbourhood Search 

(RVNS) algorithm and a tour relatedness measure. The results of the 

computational experiments revealed that the suggested algorithm would 

work effectively under dynamic planning systems. In the same vein, a case 

study on the semiconductor supply chain released two mixed integer linear 

programming formulations (Madankumar and Rajendran, 2018). The 

model which considers a Green VRP with Pickup and Delivery variants (G-

VRPPD-SCC) aims to minimize the related routes‟ and schedules‟ costs 

related to the semi-conductor supply chains. The results were compared 

with other suggested models in literature and had a less computing time 

and performed well in solving different problems instances.  

Similarly, Soleimani et al. (2018) studied the collection and distribution 

(pick-up and delivery) of the original and remanufactured, End of Life 

(EOL) products. A Green VRP with Pickup and Delivery (GVRPPD) 

model was suggested to reduce the collection and distribution processes-

related costs as travelling costs (fuel cost), cost of setting up the 

distribution centers as well as minimizing the supplying vehicles and air 

pollution levels. The multi-objective non-linear programming model has 

been linearized and solved by a fuzzy approach. Testing the model on a 
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real case study proofed the achieved improvement on the objectives. 

Therefore, such a GVRPPD model would highly increase the efficiency of 

the related businesses working on reverse logistical chains.   

As shown from the previous literature review, different researches were 

published on VRP variants (Gribkovskaia et al., 2008). Recently, the topic 

is still attracting academic researchers in a way that meets the logistical 

practitioners‟ needs. Mostly, the suggested VRP models with various 

combinations of the variants focus on minimizing travelling costs as well as 

time, such as: García-Nájera et al. (2015) and  Soleimani et al. (2018). New 

gap has been emerged in order to make VRP models more practical and 

beneficial. Specifically; enhancing customer satisfaction, creating more 

practical models by adding new operational planning characteristics such as 

cross docking process, connecting constrained scheduling process with 

routing problem, considering road environment when planning for a VRP 

model, using occasional drivers as an economic sharing concept and 

studying the most effective human factors related to VRP topic.  

The cross docking process was studied by Ahmadizar et al. (2015) as a two 

level VRP. The process which includes three main activities named as 

collection of arrived goods from the coming inbound trucks, classifying 

products into same kind categories and finally dispatching each category to 

the defined destination points. Implementing the cross docking processes is 

possible on different choices of routes‟ network available on ground to 

arrive to the suppliers and delivery destinations. The proposed model 

assigns products, suppliers, cross-docks as well as the optimal routes‟ 
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network and schedules. They presented a hybrid genetic algorithm that was 

applied on several examples to minimize the purchasing, distribution and 

holding in storage costs. Studying the reverse logistics operations was 

suggested as further research point. Furthermore, the optimization of VRP 

solutions not only include minimization of related costs and time, but also 

would be extended to include the availability of required resources which 

are considered as scarce and important to sustain the required VRP plans.  

Paraskevopoulos et al. (2017) reviewed the literature executed on 

synchronizing the important resources schedules with the routing plans. 

Although some literature were found using the variants as Skill VRP or 

Technician Routing Problem in their study, the topic is still not enough 

matured. The mentioned taxonomic review claimed that a paper published 

by Tozlu et al. (2015) has presented the idea from both product and service 

planning view, as a Variable Neighborhood Search Algorithm (VNS) was 

suggested to solve a routing model for assigning a limited  health care 

service providers to different patients. The review also suggested different 

gaps as an opportunity for future researches.   

Additionally, VRP topic would serve considerably the logistics 

practitioners who are stick to definite partners and with whom they need to 

maintain their required service level as agreed with contractual obligations. 

VRP with service level constraints has recently been studied by Bulhões et 

al. (2018). A compact mathematical formulation, a branch and cut 

algorithm, and a hybrid genetic algorithm were proposed to balance 

between the required service level with a minimum costs. Therefore, 
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planning for a VRP with an acceptable level of service would highly 

increase the profit of a certain logistics company, such a topic is important 

for academic researchers to study, and include as much rich variants as 

possible. Subsequently, studying factors affecting the service level is 

important when preparing a routing plan. Such factors are the drivers‟ 

behaviors which significantly affect the routing decisions such as speed and 

routes choices. An analytical framework for studying the relationship 

between the drivers‟ behavior and VRP is presented by  Srinivas and 

Gajanand (2017). They claimed that the available literature studied VRP 

variants as separated from the topic of drivers‟ behaviors, though, the 

planner behaviors of VRP were also considered. This work motivates 

researchers to integrate the drivers‟ behaviors factors within the familiar 

objectives of VRP; minimizing costs, time and pollution. This inspiring 

work might bring new thinking in modeling VRPs and facilitate applying 

them easily in real life.  

As been noticed from the latter mentioned topics, there are many factors 

affecting the suggested optimal solution found by the chosen VRPs models. 

And as such, the proposed solution method should be innovated as 

accounts for the surrounded conditions as last-mile and same-day delivery 

capability. Amazon and Walmart have introduced the idea of crowd-

shipping by assigning orders to people interested in serving by their own 

vehicles for customers not far away from their own destinations for certain 

compensation (Barr and Wohl, 2013; Bensinger, 2015). Accordingly, a new 

variant has been proposed as a practical solution for the rigid capacitated 
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vehicle routing plan in the name of occasional drivers. Archetti et al. 

(2016) have suggested using a third party logistical service to cover the 

shortage happening in the assigned fleet of trucks, or received orders from 

far destinations, in order to satisfy better customer satisfaction and increase 

service efficiency and availability. Since implementing such a solution 

would increase the routing plan costs, an optimal planning for VRP 

modeling is required. Therefore, Archetti et al. (2016) have presented a 

multi-start heuristic approach that minimizes the total costs associated with 

assigning orders for both regular and occasional drivers. The results 

revealed that a dramatic cost saving could be achieved when applying an 

economic compensation scheme for the company and the occasional 

drivers, the way that will improve and the availability and flexibility of the 

drivers to serve. On the other hand, more challenges associated with the 

other VRP variants are existed and need to be considered in order to 

optimize the benefits of crowd-shipping practically. Recently, a work 

presented by Macrina et al. (2017) claimed that using the occasional drivers 

with multiple deliveries with time window constraint (VRPODTW) would 

positively serve the logistical companies in both routing plan and costs 

savings, though, more variants are important to be considered in order to 

optimize VRPODTW solution.  

Depending on the previous discussion, this work extends the idea of using 

occasional drivers, by studying it with other important variants; i.e.: 

developing VRPOD plan as an eco-friendly plan, and optimizing the usage 

of occasional drivers by controlling their behavior. Section 2.5 spots the 
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light on the literature published about drivers‟ behaviors and the 

encountered effects on the routing plan.    

2.5 VRP and driver behavior 

Studying VRP with different variants will definitely improve the routing 

plan and reveal a rich VRP model. Though, there is a gap exists between 

the planning stage for the optimal VRP and the real implementation stage, 

for instance, the driver behavior is such an important factor that affects 

VRP solution on reality. In general, literature had spot the light on the 

human factors which affect the driving behavior; such as: the effect of 

fatigue rate due to overload work (Murray and Park, 2013;Ting et al., 2008;  

Zhang et al., 2016), the effect of driver age, gender and personality on risky 

driving behavior (Zuckerman and Kuhlman, 2000), and the level of 

autonomy assigned for the driver who executes the routing plan on ground 

(Srinivas and Gajanand, 2017). Nevertheless, when reviewing the 

published VRP modeling researches, it is been argued by Srinivas and 

Gajanand (2017) that the different  VRP variants‟ researches have been 

presented over years as isolated from driver behaviors and its effect on the 

real optimal solution. They supported their claim by reviewing the existing 

studies on driver behavior; such as Ting et al. (2008) and Tran et al. (2011), 

as well as reviewing different published researches of various variants of 

VRP models (Qian and Eglese, 2016).   

Srinivas and Gajanand (2017) have believed that; whatever VRP objective 

was, it is important to think about the driver sentiment when setting the 



28 

 

 

routing plan. In cases such as VRP with time window, circumstances would 

be different in reality and the driver might need frequent or infrequent 

break to be able to achieve the plan objectives. Other cases which 

minimizing pollution was their objective, it would be lower costs-plan if 

the driver had an autonomy level in route or speed choices in a matter that 

reduces emissions, or even reducing travel time on ground.  And as a result, 

the driver satisfaction will be better in a way that will improve the 

environmental, economic and social performance of the logistical firm. The 

presented framework could be used as a starting point to include the driver 

behavior in a VRP model in terms of reducing total VRP costs, by sharing 

the routing plan decisions between driver and planner.  

A study had discussed the idea of studying the driver behavior and its effect 

on the risk homeostasis towards speed selection and the accident rate was 

published by Janssen and Tenkink (1988), and under general conditions, it 

is been believed that safety engineering measures would be reduced by 

shift in behavior. In the same regard, Iversen (2004) has studied the relation 

between the perceived attitude and the driving behavior pattern.  The 

results had shown a strong correlation, as attitude toward rule violation, 

speeding and the careless driving are strongly related to reckless driving, 

drinking and seat belt use, which in turn could capture the risk taking 

behavior and help to predict driver‟s driving pattern in the future. 

Additionally, he reflected the results of two theories that discussed the 

effect of the perceived attitude on person‟s control over performance, i.e.: 

1) Theory of Reasoned Action (TRA) (Fishbein and Ajzen, 1975); and 2) 
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Theory of Planned Behavior (TPB) (Ajzen, 1985). Both theories have been 

studied as related to driving behavior research such as: speeding, drunk 

drivers, and aggressive driving pattern, in order to predict risky driving 

behavior and its effect on accidents in the future.  

In the same vein, Møller and Gregersen (2008) have examined other 

relations of risk driving behavior rather than safety motives, those that had 

positive significant effect were: 1) the psychosocial function of driving 2) 

other driving related interaction with friends; and 3) leisure time activities 

pattern such as playing PC-games. Doing body building and partying with 

friends were also found to be related to increased risky driving pattern. 

They recommended that other motives rather than safety issues are required 

to control driving pattern, such as behavioral related issues and activities.   

From what had been discussed above, it is expected to enhance VRP results 

on ground when considering the driver‟s behavior. Since this research 

includes two types of drivers; (i.e.: regular drivers, and occasional drivers), 

both drivers‟ behaviors are considered and the effect of their behaviors on 

the routing costs is monitored and analyzed through sensitivity analysis. 

Which in turn will help in; deciding the proper level of autonomy as 

assigned between planner and driver; increasing the driver satisfaction; as 

well as achieving better customer satisfaction level due to higher service 

availability for both the nearby and remote customers. And as such, the 

evidence that VRP model is solvable and practical will be a motivation to 

control driver‟s behavior pattern‟s effect on different related issues as 

stated above in the literature.   
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2.6  Summary 

This chapter provides a comprehension understanding of VRP topic and 

introduces a wide range of the related variants available in literature. More 

specifically, the classical VRP definitions and its developments overtime 

have been presented, in order to provide knowledge to understand the topic 

of VRP thoroughly. Also, gaps that have been found in the reviewed 

literature are identified and analyzed in order to construct this research‟s 

objectives after determining the problem statement and concluding its 

significance. According to the fact that the intended VRP model in this 

research is required to be an eco-friendly model, the literature about green 

VRP have been reviewed.    

Furthermore, rich VRP models that were found in literature have been 

discussed according to their contributions and limitations. Ultimately, as 

the focus of this study is to consider the driver behavior when modeling a 

VRP plan; the available literature that discusses the driver behavior effects 

generally on driving have also been covered.   
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Chapter Three 

 Model Formulation 

3.1 Overview 

As the previous sections have discussed the published literature about VRP 

variants in order to determine the rational research gaps and manage the 

future researches‟ suggestions; this section presents the proposed 

mathematical model which translates this research objectives. A Mixed 

Integer Non Linear Programming Multi-Objective Model (MINLP-MOM) 

has been developed in terms of objective functions and constraints, in order 

to be solved into near optimal VRP network. Also, the Fixed-Charge 

modeling has been used to control one choice of route type. Later on, the 

MINLP-MOM is linearized in order to facilitate solving the proposed 

model. Understanding the research objectives comprehensively would lead 

to a mature realization of the proper model components.  

3.2 Mixed Integer Non Linear Programming (MINLP) and 

VRP modeling 

VRP is classified as undirected graph, that has a depot (o) and customers‟  

source and destinations nodes (i , j) ; to be satisfied through an optimal 

route, without allowing for sub tours (i.e.: either routes that do not satisfy 

capacity constraint, or route that do not include depot on their route), and 

also, imposes  demand and capacity constraints; this in turn could be 

formulated as an Integer Program as a basic VRP model (Rader, 2010).  In 

this research,  further decision variables have been added to the basic 
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version of VRP model; accounting for releasing  an optimal routing 

solution integrated with decisions; related to the  assignment of the driver 

type associated with the minimum costs (i.e.:  regular  ( ) or occasional 

( ), and C: the assigned driver costs ), and the decision to choose the 

optimal route type and carried load (i.e.: , and ).  And as 

such, the model includes binary variables as well as continuous variables in 

terms of objective functions and constraints; as there will be a 

multiplication of two binary variables in the fourth objective function, 

which results in a Mixed Integer Non Linear Programming (MINLP). 

The MINLP model is formulated as a basic example as following:  

 

    Where:  

3.2.1 Fixed-Charge Model 

In order to integrate the decisions of the four types of routes, Fixed-Charge 

modeling has been used (Rader, 2010). Such formulation allows for one-

time charge when a certain activity is performed and so its value is not 

equal zero. The formulation of this type of model requires adding number 

of binary variables equals to the number of the associated decisions. In this 

research, as there are four routes‟ types, and only one route type is assigned 

for either the chosen regular driver or the chosen occasional driver.  And so 

there are four representative binary variables represented by the summation 

of the binary variable   have been included in the model, while “r” 

represents the chosen route type. Each variable refers to the chosen optimal 
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velocity during the routes‟ network.  In order to integrate the fixed charged 

model in the mathematical model, the summation of the binary variables 

refers to the available decisions such as the chosen routes type; are 

multiplied as following:  

 

                 Where  

  

Such arrangement requires that another constraint that connects between 

the decisions to choose one of the available routes‟ types only if the regular 

driver  has been assigned. The same criterion is applied on the 

occasional driver decisions . Such constraint could be formulated for 

example; by multiplying the binary variable of choosing the route type one 

( ) by a sufficiently large value which is known as M; (i.e. 

mathematically M: ∞). This will ensure that the binary variable ( ) 

equals one if and only if the associated driver type binary variable equals 

one as well. In order to ensure choosing only one route type, the summation 

of routes‟ variables should equal one. The model will be as following:  
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3.3 Model description 

The MINLP-MOM model has been designed as a set of regular and 

occasional drivers‟ logistics service. Accordingly, a set of customers from i 

to j is generated randomly in terms of locations coordinates and demands. 

The suggested model has managed three important issues related to VRP 

which are:1) improving the service level by using a third party as 

occasional driver in order to satisfy customers located far from the regular 

drivers‟ destinations network,2) sustaining green driving behaviors through 

controlling the chosen velocity range, and imposing environmental penalty, 

3) considering the drivers‟ behavior when planning for VRP by studying 

the effect of the driver‟s choice on the total transportation costs by inserting 

a risk-taking probability. 

Sets of arcs (i, j), occasional drivers (K), and regular drivers (D) were 

proposed to be used in generating solutions. Four objective functions have 

been composed in order to manage: 1) minimization of energy 

consumption level associated with traversing VRP plan (denoted by Z1), 2) 

maximization of velocity level to a certain upper limit in order to reduce 

CO2 emissions (denoted by Z2), 3) minimization of penalty associated with 
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velocity choice (denoted by Z3), and 4) minimization of total travelling 

costs incorporating the driver‟s behavior effect (denoted by Z4).  And as 

such, four decision variables have been proposed, i.e.: 1) assigning a 

regular driver to implement the suggested VRP plan, 2) assigning an 

occasional driver to implement the suggested VRP plan, 3) the quantity 

carried by the vehicle which satisfies the demands of customers associated 

with VRP plan and minimizes the energy consumed by the vehicle through 

each VRP trip, and 4) the near optimal route type choice referring to the 

near optimal average velocity range. The model mathematical formulation 

is presented in the following section. The first three objective functions 

have been adopted from the work conducted by Hosseini-Nasab and 

Lotfalian (2017), while the forth objective function have been developed 

from the formula introduced by Srinivas and Gajanand (2017); by 

including the occasional drivers in all objective functions and constraints.  

3.4 Model Preliminaries  

This section provides the used indices, sets, decision variables, parameters, 

and assumptions; in order to understand the proposed mathematical model 

components.                                          

3.4.1 Indices and sets 

o: Depot point.   

i: Customer node, i = 0, 1,…,N. 

j: Destination node, j = 1,…,N. 
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D: set of regular drivers to be assigned. 

K: set of occasional drivers to be hired.  

r: Index of routes‟ types associated with an allowable velocity range, r = 

1,2,3,4. (adopted from: Hosseini-Nasab and Lotfalian, (2017)  

3.4.2  Decision Variables 

X_ijdr:1,if a regular driver d travels from node i to node j through route 

type r;  

: Load carried by the vehicle from node i to node j  

 (Kg). 

O_(ijkr ):1,if an occassioanl driver k travels from node i to node j through 

route type r; otherwise:0. 

: 1, if the vehicle travels from node i to node j along route type r ; 

otherwise: 0, r=1,2,3,4. 

3.4.3 Parameters 

Table 1 presents the parameters that have been used in the proposed VRP 

model. 
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Table 1: The parameters of the proposed VRP model 

M: a sufficiently large positive value (mathematically, M: )  

 
     ,  : 

. 

 

:   

 

: X-Coordinate  for node i. 

: X-Coordinate for node j. 

: Y-Coordinate for node i. 

: Y-Coordinate for node j. 

: Velocity of travel from node i to node j along route type r (Km/hr), 

,  

: Demand at node i (Kg), where  = 0. 

CAP: Capacity of the vehicle (Kg). 

: Fuel consumption factor for route type r 

Occasional driver distance factor representing willingness of driver to serve,  

: The maximum velocity limit allowed on route type r (Km/hr).  

: Occasional driver compensation scheme‟s factor,  

: Parameter of risk-taking behavior by the planner in order to determine level of autonomy of the 

planner.  

: Parameter of risk-taking behavior by a regular or occasional driver in order to determine the level of 

autonomy for the assigned driver. 

:  

. 

: Salary cost for a regular driver d . 

:  

 
:  

Cost of travel from depot o to customer i  

Cost of travel by the occasional driver k from customer i  to the occasional driver k destination 

 

Cost of travel by an occasional driver k from his/her destination to the depot o  

 
. 

:  

 
: Target weight for each objective function ( ) which would be determined by the planner. 

: Total value of the near optimal solution (  = ). 
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3.4.4 Model Assumptions 

1. All vehicles are identical in terms of load and capacity limit. 

2. All vehicles depart from the depot carrying the total quantity required to 

satisfy the demand of all received orders.  

3. Customers‟ demand and locations are known in advance and all 

customer demands should be satisfied 

4. Regular drivers serve up to a known radius-distance of customers‟ nodes 

(1 Km-200 Km).  

5. There are one or more route types existing between every pair of nodes.  

6. There are four types of routes depending on the allowable average 

velocity range  (Hosseini-Nasab and Lotfalian, 2017; Samaras, 2012): 

Type One: for velocities below 30 Km/hr, this has the highest fuel 

consumption rate, such as riding vehicles in city-urban environment) 

I. Type Two:  for velocities between 31 Km/hr and 55 Km/hr, the fuel 

consumption rate decreases, such as driving in the sub-urban or rural 

areas.  

II. Type Three: for velocities between 56 Km/hr and 80 Km/hr, fuel 

consumption rate also decreases, such as driving in rural or high ways. 

III. Type Four: driving with these average velocities‟ range will increase 

the fuel consumption rate, such as freeways driving conditions.   

7. Depending on the velocity ranges rule, the following assumption has 

been proposed:  (Samaras, 2012). 

8. The distances along the different route types between the same pair of 

nodes could be different and measured as a rectilinear distance. 
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9. The proposed model accounts for optimizing the service time by finding 

the least amount of summation of the traversed distances. While the 

other methodology which solves for time window constraints and 

requires using other fuzzy logic Lin et al. (2014); has been relaxed. 

10.    , as the minimum average fuel consumption 

rate on the near optimal velocity is found to be at least around 5 

L/100Km for a particular vehicle type (Samaras, 2012)  

11. Regular and occasional drivers are trained to stick to the announced 

velocity policy and the assigned route. 

12. Regular and Occasional drivers are given a certain amount of autonomy 

(  in taking route and velocity-related decision, as compared to the 

planner autonomy level (β) according to the following conditions:    0 

 ≤ a ≤  ≤ b , a , b   :i.e.: Parameter of risk- taking behavior by 

the planner is larger than the one taken by the driver, this is because 

planner has a wider perspective from strategic point view rather than the 

driver who has a tactical or operational perspective.   

13. The occasional driver k is willing to serve through a route type r, if the 

extra distance travelled to reach driver destination is less than or equal 

to (γ − 1) times the direct distance from the depot to the occasional 

driver destination:  

14.   

15. All costs of traversing an arc (i, j) are measured as cost of a rectilinear 

distance, for each regular driver d, and occasional driver k; this is to 
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ensure that the associated costs of VRP plan are used regarding to a 

specific formula rather than using estimated costs which vary from case 

to other; the used formula is shown in equation (1). Other networks‟ 

types could be adaptive in the model depending on the real case data.  

                                                          (1)            

i, j =1,…..,N, i≠j, l=d  (regular), k  (occasional). 

16. Occasional drivers are paid according to the following compensation 

scheme adopted from Archetti et al. (2016) , ( ) * 

. 

17.  Training costs are assumed to be paid to train drivers on different 

driving pattern, training costs follow a uniform distribution from 10$  to 

30$ according to the required driving pattern (Asrawi et al., 2017). 

3.4.5 Objective Function 

The four objective functions in the model are given as follows. The first 

objective function is given in equation (2). 

 Energy consumption minimization: 

                                                 (2) 

Description of equation (2): minimizes the summation of: the quantity 

loaded from node i to node j distance from node i to j through route      

type r. 
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The first objective function minimizes the consumed energy during serving 

destinations, by VRP routing in terms of traversed distances and load 

quantity for each route. This will help in minimizing customer service time. 

The second objective function is given in equation (3).   

 Velocity maximization 

                                               (3) 

Description of equation (3): maximize the summation of:  (the velocity of 

route type r from node i to node j multiplied by binary variable (1 if route 

type r is chosen to serve from node i to node j; 0 otherwise). 

The second objective function maximizes the chosen velocity rate up to the 

maximum allowed velocity limit that ensures the possible minimum fuel 

consumption rate (120 Km/h), and so, pollution rate is decreased for each 

near optimal route. The third objective function is given by equation (4) 

 Penalty related to velocity policy minimization 

                                                 (4) 

Description of equation (4): Minimize the summation of: (the penalty of 

route type r from node i  to node j  binary variable (1 if route type r is 

chosen to serve from node i to node j; 0 otherwise).  

The third objective function minimizes the environmental penalty of fuel 

consumption imposed on the chosen velocity rate for each route. The fourth 

objective function is given by equation (5). 
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 Total travelling costs minimization 

Min 

       (5)  

 

Where: 

 

, and  

 

Description of equation (5): minimize the summation of: binary variable    

(1 if regular driver d assigned to serve from node i to node j through route 

type r; 0 otherwise)  binary variable (1 if route type r is chosen to serve 

from node i to node j; 0 otherwise)  the total costs of travelling from 

node i  to node j by regular drivers set (D) through route type r + the 

summation of:  binary variable (1 if occasional driver k assigned to serve 

from node i to node j through route type r; 0 otherwise) binary variable 

(1 if route type r is chosen to serve from node i to node j; 0 otherwise)  

the total costs of travelling from node i  to node j by occasional drivers set 

(K) through route type r.  
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Where: 

The total cost of travelling from node i to node j through route type r 

associated with the regular driver d = the summation of : the expected value 

of: ( the cost of traversing arc i, j by regular driver d + salary cost for a 

regular driver d + training cost for a regular driver d through type r ) +  risk 

taking behavior sensitivity value by the planner multiplied by the square 

root of the quadrate of risk taking behavior sensitivity by the regular driver 

d   the variance of : ( the cost of traversing arc i, j by regular driver d + 

salary cost for a regular driver d + training cost for a regular driver d 

through type r) and: 

The total cost of travelling from node i to node j through route type r 

associated with the occasional driver k = the summation of : ( the expected 

value of: the training costs of an occasional driver k +  cost of travelling 

depot o to customer i through route type r +  cost of travelling customer i to 

an occasional driver k through route type r  cost of travelling from 

occasional driver k to depot o through route type r ) multiplied by 

compensation factor of an occasional driver k)  + risk taking behavior 

sensitivity value by the planner multiplied by the square root of the 

quadrate of risk taking behavior sensitivity by the occasional driver k   

the variance of : (the training costs of an occasional driver k +  cost of 

travelling depot o to customer i through route type r +  cost of travelling 

customer i to an occasional driver k through route type r  cost of 

travelling from occasional driver k to depot o through route type r )  

multiplied by compensation factor of an occasional driver k). 
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The fourth objective function minimizes the total costs of VRP routing plan 

associated with choosing either regular or occasional driver, integrated with 

minimizing the costs of assigning a certain level of autonomy for the 

chosen type of driver; for each route. Collectively, the total multi-objective 

function is given in equation (6).  

 Total optimal solution 

                                                                        (6) 

Description of equation (6): optimize the summation of (the target weight 

 for objective function i  the optimal solution of the objective 

function . 

3.5 Constraints 

The following are the constraints of the model: 

                                  (7) 

Description of equation (7): the summation of the chosen route types from 

node i to j by a regular driver d should be less than or equal 1; for each 

destination node j;   

(8) 

Description of equation (8): the summation of the chosen route types from 

node i to node j by an occasional driver k should be less than or equal 1; for 

each destination node j;  
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Description of equation (9): the summation of the binary variable value     

(1 if regular driver d assigned to serve from node i to node   through route 

type r; 0 otherwise) associated with choosing a regular driver d to serve 

from node i to node  through route type r  the summation of the binary 

variable value (1 if regular driver d assigned to serve from node i to node  

through route type r; 0 otherwise) associated with choosing a regular driver 

to serve from node l to node j through route type r = 0; for each node 

destination , and regular driver d.  

 

Description of equation (10): the summation of the binary variable value    

(1 if occasional driver k assigned to serve from node i to node  through 

route type r; 0 otherwise) associated with choosing an occasional driver k 

to serve from node i to node  through route type r  the summation of the 

binary variable value (1 if occasional driver k assigned to serve from node i 

to node  through route type r; 0 otherwise) associated with choosing an 

occasional driver to serve from node  to node j through route type r = 0; 

for each node destination , and occasional driver k.  
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       (11) 

Description of equation (11): the summation of the load carried from node i 

to node  through route type r the summation of the load carried from node 

 to node j through route type r should equal the demand of node ; for each 

node .    

 

Description of equation (12): the summation of the load carried from node i 

to node j through route type r is larger than or equal to the summation of: 

(binary variable value (1 if regular driver d assigned to serve from node i to 

node j through route type r; 0 otherwise); for each node i, j, j, and 

regular driver d  multiplied by binary variable (1 if route type r is chosen to 

serve from node i to node j; 0 otherwise) multiplied by the demand of node 

j through route type r; for each r = 1,2,3,4.  

 

Description of equation (13): the summation of the load carried from node i 

to node j through route type r is larger than or equal to the summation of: 

(binary variable value (1 if occasional driver k is assigned to serve from 

node i to node j through route type r; 0 otherwise); for each node i, j, j, 
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and occasional driver k  multiplied by binary variable (1 if route type r is 

chosen to serve from node i to node j; 0 otherwise) multiplied by the 

demand of node j through route type r; for each r = 1,2,3,4.  

 

Description of equation (14): the load carried from node i to node j through 

route type r is less than or equal to the subtract of the capacity of the 

vehicle and the demand of node i  binary variable value (1 if regular 

driver d assigned to serve from node i to node j through route type r; 0 

otherwise); for each node i, j, j, regular driver d, and route type r 

multiplied by binary variable (1 if route type r is chosen to serve from node 

i to node j; 0 otherwise).  

 

Description of equation (15): the load carried from node i to node j through 

route type r is less than or equal to the subtract of the capacity of the 

vehicle and the demand of node i  binary variable value (1 if occasional 

driver k is assigned to serve from node i to node j through route type r; 0 

otherwise); for each node i, j, j, occasional driver k, and route type r 

multiplied by binary variable (1 if route type r is chosen to serve from node 

i to node j; 0 otherwise).  

(16) 
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Description of equation (16): the summation of binary variable value (1 if 

occasional driver k is assigned to serve node j through route type r; 0 

otherwise) is less than or equal 1; for each node i, and occasional driver k.  

 

Description of equation (17):  binary variable value (1 if regular driver d 

assigned to serve from node i to node j through route type r; 0 otherwise)  

maximum allowed velocity for regular driver  fuel consumption factor 

for route type r  binary variable (1 if route type r is chosen to serve from 

node i to node j; 0 otherwise the penalty associated with travelling 

through route type r; for each node i,  j,  j, regular driver d, and route 

type r.  

 

Description of equation (18):  binary variable value (1 if occasional driver 

k assigned to serve from node i to node j through route type r; 0 otherwise) 

 maximum allowed velocity for occasional driver k  fuel consumption 

factor for route type r binary variable (1 if route type r is chosen to serve 

from node i to node j; 0 otherwise) the penalty associated with travelling 
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through route type r; for each node i, j, j, occasional driver k, and route 

type r. 

        

,         (19) 

Description of equation (19): the summation of the binary variable value  

(1 if occasional driver k is assigned to serve from node i to node j through 

route type r; 0 otherwise)  the summation of the binary variable value (1 

if regular driver d is assigned to serve from node i to node j through route 

type r; 0 otherwise) = 1; for each node i, and j, j, occasional driver k, 

and regular driver d.   

 

Description of equation (20): the summation of binary variable (1 if route 

type r is chosen to serve from node i to node j; 0 otherwise) = 1; for each 

node i, and j, j, and route r. 

    

, ,                     (21)  

Description of equation (21): binary variable value (1 if regular driver d 

assigned to serve from node i to node j through route type r; 0 otherwise) 

should be less than or equal M multiplied by binary variable (1 if route type 
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r is chosen to serve from node i to node j; 0 otherwise; for each node i, 

destination node j; M ≈ ∞. 

M *  

,                      (22) 

Description of equation (22): binary variable value (1 if occasional driver k 

assigned to serve from node i to node j through route type r; 0 otherwise) 

should be less than or equal M multiplied by binary variable (1 if route type 

r is chosen to serve from node i to node j; 0 otherwise); for each node i, 

destination node j; M ≈ ∞.   

                  (23) 

Description of equation (23): the load carried from node i to the depot o 

through route type r equals zero; for each node i, and route type r.  

 Non-negativity constraint: 

                          (24) 

 Binary variable for assigning a regular driver :  

ϵ {0, 1}  (25)  

Binary variable for assigning an occasional driver: 

ϵ{0,1} (26)  
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 Binary variables for choosing route type: 

 ϵ {0, 1}                            (27) 

The implications of the above-mentioned constraints are as follows: 

constraints (7) & (8) ensure that the assigned regular or occasional driver 

can choose at most one route type to travel from node i to node j. 

Constraints (9) & (10) imply the flow conservation law of the chosen route 

type by both the regular and the occasional drivers. Constraint (11) implies 

the flow conservation law of goods carried during a certain route. 

Demands‟ constraints for both regular and occasional driver are controlled 

by constraints (12) & (13), respectively, while capacity constraints are 

presented by constraints (14) & (15) for regular and occasional driver, 

respectively. According to the assumption that an occasional driver can at 

most serve the same customer only once, constraint (16) guarantees this 

assumption. The maximum allowed velocity for regular or occasional 

driver which is lower than the velocity upper bound are controlled by 

constraints (17) & (18), respectively. Additionally, in order to ensure that 

each customer is served by either regular or occasional driver; constraint 

(19) is employed. In the same vein, only one route type choice is possible 

either by the assigned regular or occasional driver as presented by 

constraint (20). Constraints (21) & (22) ensure that the chosen route type 

could only be assigned to a regular or an occasional driver, respectively; if 

and only if the driver is assigned to serve from node i to j; otherwise the 

route type is not considered. Furthermore, constraint (23) guarantees that 

vehicle returns empty to the depot. Constraints (24) refers to the non-
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negative loaded quantity, and finally constraints (25), (26), and (27) imply 

choosing binary variables for the decisions of the regular driver, the 

occasional driver, and the route type, respectively.    

3.6 Linearization 

Despite that the practical problems like transportation model are naturally 

modeled as Mixed Integer Non Linear Programming (MINLP) (Burer and 

Letchford, 2012), which would allow to mathematically model it to be 

more representative by involving more reality conditions and decision 

variables; it will be linearized in order to be solved as a MIP model, which 

in role facilitates the optimization and solving process and improve its 

solvability for larger instances; especially that there are quite effective 

exact and heuristic algorithms by using the available MIP solvers (Burer 

and Letchford, 2012).This process will be conducted by proposing two 

auxiliary variables that represent the product of the two binary variables in 

the fourth objective function ( , as well as the other related non-linear 

constraints‟ expressions (i.e.: constraints; 12,13,14, and 15) (Coelho, 2013). 

The following auxiliary variables have been defined in order to linearize 

the nonlinear expressions in the proposed VRP model: 

: 1, if the regular driver d is assigned to serve from node i to node j 

along route type r; otherwise: 0. 

: 1, if the occasional driver k is assigned to serve from node i to node 

j along route type r; otherwise: 0. 

Fourth Objective Function Nonlinear Expression (   
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Min  

  

Linear equivalent of  : 

Min  

  

                                                                                         (29) 

                                                                                           (30) 

                                                                      (31) 

                                                                                         (32) 

                                                                                           (33) 

                                                                      (34) 

j; 

                                                            Nonlinear expression 

j;  

                                                            Linear equivalent  (35) 
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j , Linear equivalent  (36) 

 

 

 

                                                                                     Linear equivalent (37) 

 

 

The fourth objective function (i.e.: total costs minimization) has been 

linearized by defining two auxiliary variables with the support of 

constraints 29 to 34. Constraints 29 and 30 will ensure that will be 

zero if either  are zero. Constraint 31 will make sure that 

 will take value 1 if both binary variables are set to 1. Similarly, 

Constraints 32 and 33 will ensure that will be zero if either 
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 are zero. Constraint 34 will make sure that  will take 

value 1 if both binary variables are set to 1. 

3.7 Summary  

This chapter has presented the formulation of the proposed VRP model that 

involves both regular and occasional drivers; integrated with risk taking 

behaviors‟ parameters encountered within eco-friendly logistical practice. 

This model has been formulated as MINLP using the Fixed Charge 

problem in order to achieve the intended objectives of the proposed VRP 

routing plan. And then, the model has been linearized in order to be solved 

by the available Mixed Integer Programing (MIP) solvers. And as such, the 

proposed model as it is constructed with the associated constraints will 

allow optimizing the routing plan to serve set of destinations using both 

regular and occasional drivers‟ set; controlling simultaneously their driving 

behavior by assigning a pre-determined level of autonomy for both the 

planner and the driver. This in turn allows the driver to make decisions 

related to speed or route in case there is unexpected condition emerged, 

such as accidents or unexpected congestions. For the purpose of ensuring a 

green logistical practice, the model ensures choosing the optimal possible 

velocity rate accompanied with the optimal lowest environmental penalty. 

Also, by controlling the driver behavior through assigning a certain level of 

autonomy, it would be possible to define the rational extent to which the 

drivers can make decisions, and then verify their performance on ground. 

Additionally, such optimized routing plan prevails the optimal loaded 

quantity for each destination and the related total costs required to serve it 
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by the cost-effective driver type. Such arrangements ensure having a 

comprehensive VRP model which is expected to improve the firm obtained 

objectives; the driver satisfaction, and the customer satisfaction level. 

Chapter Four introduces a numerical instance that has been solved as a 

proof of concept in order to verify the validity and solvability of the 

proposed model. The numerical instance results, as well as the solving 

algorithms are also discussed.    
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Chapter Four 

 Model Results 

4.1 Overview 

This chapter introduced a numerical instance using hypothetical data set in 

order to verify the solvability and the validity of the proposed VRP model. 

The proposed hypothetical set has been presented in Section 4.2; where all 

the stochastic data have been generated randomly and are analyzed and 

optimized using the proposed model. Eclipse Java 2018-9 is intended to be 

used for coding the mathematical proposed model and to solving it using 

the proper solving algorithms. Section 4.3 presents the solver 

characteristics and information related to the chosen solving methods. 

Finally, section 4.4 discusses the numerical results that have been obtained 

by solving the proposed VRP model using the suggested numerical 

example.  

4.2 Numerical Example 

For the purpose of assessing the proposed mathematical model as 

compared to other previous literature models, a hypothetical example with 

a data set  is borrowed from literature, namely, from Hosseini-Nasab and 

Lotfalian, (2017). More specifically, four sets have been proposed to be 

used in solving the model, i.e.: 1) a set of customers (N), 2)  a set regular 

drivers‟ (D) 3) a set of occasional drivers (K) 4) a set of route types (R). 

The problem has been tested on an identical fleet of vehicles. At each edge 

there is a certain allowed velocity; according to the available road type 

(i.e.: urban areas, sub-urban, rural areas, and highways); that follows a 
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uniform distribution given by U [1,120] Km/hr. such a velocity average 

decision is identified according to the available route type on ground, and 

then the model chooses the near optimal velocity that minimizes the 

environmental penalty. Since the demand of the customers changes every 

day, it was assumed that the distance of customers‟ coordinates from the 

depot point follows also a uniform distribution given by U [10,300] Km for 

each customer node. Customer‟s demand has also been generated randomly 

from a uniform distribution given by U [200, 1000] Kg in order to initialize 

values for the parameter  assigned to the proposed coordinates. Table 

2 presents the parameters proposed values to be used in solving the model.  

Table 2: Numerical example data for the model parameters 

Parameter Value 

Period Per day 

M 100 

 U [10,200] Km 

 U [50,200] Km 

 U [1,120] Km/hr 

 U [200,1000] Kg 

CAP 1000 Kg 

  .05 

 U [1,3] 

   (a=5,b=10), where:  

0  ≤ a ≤  ≤ b 

U [0,5] 

 (a=5, b=10), where: 

0  ≤ a ≤  ≤ b 

U [5,10] 

 U [1,3] 

 U [10,30] $ 

 U [10,30] $ 

 U [7 , 9] $ 

In order to assess the capability of the proposed model in optimizing a VRP 

problem encountered with the proposed conditions, a numerical instance 
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has been proposed. Sets of 5 customers; 4 identical vehicles, K=3 

occasional drivers, and r = 4 types of routes; have been used as inputs to 

solve VRP model. Tables (3 & 4) present, respectively, the customers‟ 

coordinates and demands data; as been generated randomly by Eclipse 

software according to the given ranges. Table 5 presents the occasional 

drivers‟ destinations coordinates from depot point which is assumed to 

have (0,0) coordinates. 

Table 3: The proposed customers' coordinates 

Coordinate  

(X , Y) 

  Customer ID 

(1) (2) (3) (4) (5) 

X-coordinate 54 120 186 85 113 

Y-coordinate 114 46 23 126 57 

Table 4: Proposed customers’ demands (Kg) 

Customer ID (1) (2) (3) (4) (5) 

Demand(Kg) 600 400 200 300 300 

Table 5: Occasional drivers' destinations’ coordinates from depot 

point 

 

 

                  K  

Depot  

(1) (2) (3) 

       (0,0) (114,81) (63,146) (198,102) 
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4.3 Eclipse Java Solver and Algorithms 

Eclipse Java 2018-09 software has been used for coding the mathematical 

model and solving VRP proposed problem. As VRP is one of the classic 

Operations Research and discrete optimization problems; it is solved by 

heuristic methods, such methods are based upon rules of thumb, common 

sense or refinement s of exact methods. A heuristic algorithm usually 

results in a near-near optimal solution as compared with exact algorithms, 

which are able to find a global-near optimal solution (Rader, 2010).  

The Greedy algorithm solves VRP by constructing the routes for the drivers 

using a sequential greedy insertion algorithm, which inserts customers into 

the active route in non-decreasing order of their distance to the depot, and 

then starts a new route when violating the vehicle capacity constraint, and, 

when all customers have been inserted as initial solution, this method 

improves each route using a 2-exchange neighborhood. On the other hand, 

the Intra-Route Heuristic Neighborhood Search method has the ability to 

solve large instances and is preferable for the real-case problems such as 

VRP-related models (Hosseini-Nasab and Lotfalian, 2017). Both methods 

are classified as adaptive-local search heuristic algorithms that incorporate 

random elements into the classic local search method; by choosing 

candidate solutions outside the selection rule and then repeat the process 

until finding the best near-optimal solution. Accordingly, in this research, 

the proposed converted MIP model is solved by the two heuristic-methods 

(i.e.: The Greedy solution and The Intra-Route Heuristic Neighborhood 

Search in order to assess the near optimality of the resulted solutions.). 
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Such algorithms are suitable to solve a multi-objective combinatorial 

problem as VRP considering that the highest priority objective to solve is 

finding the minimum cost rout in terms of optimal traversed distances 

(optimal route) while considering the driver behavior, which leads to the 

optimal cost-effective choice of the driver type. And then, the resulted 

consumed energy as well as the optimal velocity type, and the associated 

environmental penalty solutions are being developed using the adaptive 

local search heuristics algorithms. This multi-objective heuristics‟ solving 

methodology is able to initialize the initial near optimal routing plan using 

the Greedy algorithm, and then to improve the near optimal routing plan by 

using the Intra-route local search algorithm using 1-0 exchange move. And 

so, the proposed model is able to produce the optimal routing plan with the 

optimal minimum travel distance and minimum number of vehicles to 

complete the distribution service, this ensures that every assigned route will 

be balanced in terms of the assigned driver type, the assigned route type, 

the optimal velocity, penalty and consumed energy (Liu et al., 2006).        

4.4  Numerical Results 

The model was coded by Java and solved via Eclipse 2018-09 on a PC 

  440 @1.86  and 2.00 GB RAM. 

This section presents the results of solving the numerical instance 

introduced previously in the hypothetical data set.  
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4.4.1 Green Routing Plan with Occasional and Regular Drivers’ 

Assignment  

After solving the model using the introduced algorithms; the routing 

travelling costs, the model decision variables as well as the near optimal 

solution for the objective functions have been prevailed. The near optimal 

routing solution has shown that the 5 customers would be served by only 2 

identical vehicles among the available 4 vehicles in the following two 

routes; (3 – 5 -2), and (4 – 1). Both algorithms have revealed the same near 

optimal routing plan, which supports the proposition that this is the optimal 

possible routing plan within such objectives and constraints. Figure 2 

describes the near optimal traversed routes.  

 

Figure 2: The near optimal VRP Routing Plan produced by the Greedy and Intra-route 

Neighborhood heuristic algorithms. 
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4.4.2 Near optimal Routing Plan in terms of Routes’ Classification 

and Driver Type 

Table 6 illustrates the values of the model decision variables given in terms 

of choosing a regular or occasional driver to serve during the trip from 

node i to node j ( and,  respectively). Also, the near 

optimal quantities that would be loaded from node i, to node j along the 

distance between nodes i and j are shown in the same table (  and, 

 respectively). And as a result, the near optimal energy which is 

consumed during each trip has been known, which indicates for the 

customer satisfaction level. Additionally, the resulted near optimal total 

travelling costs for each trip are also displayed according to the chosen 

driver type  and, ). For instance, the trip from depot node 

0 to node 3 is assigned for a regular driver   and, 

with the total associated cost of 255.46 $. The near optimal 

load to be carried by the regular driver equals to 200 Kg in order to satisfy 

the demand of node 3. This quantity would be transferred along a distance 

of 504 Km resulting in a near optimal energy of 100800 (Kg.Km). Overall, 

the results of the proposed numerical instance have shown that all the 

chosen drivers where among the regular drivers‟ set, despite that the 

occasional driver compensation scheme‟s factor has chosen to be the 

minimum allowable value (i.e.:  =1). However, using different data set 

with different destinations‟ coordinates would probably produce different 

assignment plan. Also, developing a cost effective compensation scheme is 
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expected to increase the probability that the model chooses the occasional 

drivers.   

On the other hand, the decisions to choose one of the possible four routes‟ 

types are presented in Table 7 where the values of the decision variables 

are shown incorporated with the near optimal chosen velocity; penalty, and 

fuel consumption factor (α) during each trip. For example, the second trip 

between node 3 and node 5 would be executed by an near optimal velocity 

of 21 Km/h, and so the associated binary decision 

variable whereas the other binary variables 

associated with the rest of routes‟ type equal zero; such decision variable 

value indicates for the first classification of routes‟ types with a fuel 

consumption factor α equals 0.15, resulting in an near optimal penalty of 3 

$.  

Table 6: Near optimal values of the model decision variables and 

parameters 
 

Near 

optimal 

Served 

Destinations 

 

 

 

 

 

 
($) 

 

 
($) 

 

Near 

optimal 

values 

of  

(Kg) 

 

(Km) 

Near 

optimal 

values of 

Energy 

(Kg.Km) 

(0,3 ) 1 0 255.46 0 200 504 100800.0 

(3,5) 1 0 216.46 0 300 221.3 66400.0 

(5,2) 1 0 212.46 0 400 104.5 41800.0 

(0,1) 1 0 214.46 0 600 105.5 63300.0 

(1,4) 1 0 257.46 0 300 170 51000.0 

   *Note: β=8, 𝝙=4, 𝜸=1, ρ=1 
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4.4.3 Objective Functions’ Components’ Near Optimal Results 

After solving the proposed numerical instance by Eclipse Java 2018-09 

software using Greedy and Intra-Route algorithms; it has been revealed that 

both methods had the same near-near optimal solutions and routings, and 

so, it is the best solution for such a discrete optimization problem. Table 8 

displays the solutions of the objective functions as resulted from both 

methods.  

However, all the results of this numerical instance have been obtained by 

considering that all the weights of the four objective functions are equal 

subjectively from importance perspective (i.e for each i 

=1,2,3,4), such proposition is used as a qualitative indicator for the firm 

decision makers to be able to alter the preferences depending on the firm 

strategy.  

Table 7: Near optimal values of the decision variables of choosing 

route type, and the associated near optimal velocities, penalties and α 

values. 

 

Near 

optimal 

Served 

Destinations 

 

Near 

optimal 

 

(Km/hr) 

 

Near optimal Route 

Type 

 

Near 

optimal 

route 

type (r) 

 

Near 

optimal 

α value 

 

Near 

optimal 

penalty 

($) 
    

(0,3 ) 69 0 0 1 0 3 0.07 4.0 

(3,5) 21 1 0 0 0 1 0.15 3.0 

(5,2) 30 1 0 0 0 1 0.06 1.0 

(0,1) 48 0 1 0 0 2 0.08 3.0 

(1,4) 2 1 0 0 0 1 0.14 0.3 

By comparing the results of the objective functions‟ components; it could 

be inferred that the energy component accounts for the largest percentage 

of the total near optimal solution with a percent of 99.58 %; which is the 
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same result got from the work accomplished by Hosseini-Nasab and 

Lotfalian, (2017). And after that, the total costs‟ component refers to 0.35% 

from the total near optimal value. Other components have low 

contributions; i.e.: penalty with 0.0035 %, and velocity with 0.05 %). 

Consequently, it is apparent that the consumed energy is important to be 

managed wisely by the logistical firm management and should acquire an 

important attention. Besides, as the total costs‟ component has an 

acceptable percent of contribution even that driver„s behavior is being 

taken into consideration; it is an important matter that needs to be 

strategically planned. 

Table 8: Near optimal values for objective functions 

Objective Function Greedy Solution Intra-Route Heuristic 

Neighborhood Search 

Total penalty (Z3) 11.3 11.3 

Total velocity (Z2) 170.0 170.0 

Total energy (Z1) 323300.0 323300.0 

Total costs (Z4) 1156.3 1156.3 

 324637.6 324637.6 
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4.5 Summary 

For the purpose of assessing the solvability of the proposed mathematical 

model which incorporates using the concept of ride sharing, while 

controlling the driver‟s behavior for both occasional and regular drivers; 

within a green logistical practice; this chapter analyzed a numerical 

instance with hypothetical data. Accordingly, the model has been solved 

using Eclipse Java 2018-9 program. As a result, the model was able to 

release an eco-friendly VRP routing plan, incorporated with controlling the 

risk level in assigning the autonomy for drivers. The optimal routing has 

been obtained in order to optimally serve the proposed set of customers, by 

trading off between the associated optimal velocities; penalties, energy, and 

total VRP costs. Moreover, the results have shown that the energy 

consumption as well as the total VRP costs have been reported as the 

largest percent of the total optimal solution, which in turn requires that 

more intensive analyses are needed in order to investigate the effect pattern 

of such objective functions on the optimal solution. Therefore, sensitivity 

analysis is conducted and discussed in the next chapter on different 

relations in order to get a better understanding and to use such results to 

rationally introduce effective optimal logistical strategies.   
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Chapter Five 

 Sensitivity Analysis 

5.1 Overview 

For the purpose of analyzing the effect of the risk level in the planner plan 

when assigning level of autonomy to drivers on the near optimal total costs; 

this section  presents the results of sensitivity analysis on the risk taking 

parameters for both planner and driver (i.e.: β, and 𝝙 respectively). Besides, 

in order to analyze the weight of the total costs‟ objective function 

component as well as the other components, sensitivity analysis is also 

conducted on the effect of such weights on the total near optimal solutions. 

The following sections present the analyses results.  

5.1.1 The Effect of Risk Taking Parameters on the Near Optimal 

Total Costs  

Changing the level of autonomy for both planner and drivers could be 

achieved by changing the risk-taking parameters. Though, such process 

would affect the total costs of the routing plan, and as such, this 

relationship should be sensitively analyzed in order to determine the best 

trade-off between driver satisfaction level and the firm satisfaction level. 

Initially, it has been proposed that both planner and driver have zero value 

for both the planner and the driver β, and 𝝙, respectively, which is the 

traditional VRP model where driver behavior is not considered. The results 

have shown that the total costs were the minimum in this arrangement.  

Another three scenarios of different values of β, and 𝝙 have been examined 
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to represent the three possible scenarios for the risk level from the planner 

perspective: 1) the neutral-risk level as seen in scenario 2, 2) the risk-seeker 

level as seen in scenario 3, and 3) the risk-averse level as seen in scenario 

4. All the proposed scenarios have been studied with their effects on the 

total costs‟ objective function ( ). Table 9 presents the four scenarios of 

different level of autonomy combinations (i.e.: different risk patterns from 

planner perspective), and their associated total VRP routing costs. As 

expected, relaxing the model from such parameters (scenario 1) would 

result in the minimum total costs of VRP plan (1064.00$), while assigning 

equal level of autonomy for the driver in making decisions related to speed 

or route choice (scenario 2) has increased the total VRP costs have slightly 

increased the total costs of VRP plan by 4.3% (i.e.: 1110.16 $). This 

change is due to the increased amount of the variance in the total costs‟ 

function (see equation 5). However, the importance of incorporating the 

driver‟s behavior when planning for a rich and realistic VRP model would 

ensure applying the model effectively on ground. Also, driver satisfaction 

would be enhanced while maintaining at the same time a cost-effective 

VRP plan.  

Comparing the sensitivity analysis results for the four scenarios shows an 

acceptable change in the total VRP costs; as the highest costs is associated 

with the risk-seeker planner due to assigning a high level autonomy for the 

driver  (i.e. : 1150.54$) is larger than the risk-averse planner scenario (4); 

when β = 8, and 𝝙 = 1 ; by 5.8%. Such difference is still accepted as long 

as other perceived characteristics of the model are going to be improved, in 
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terms of driver satisfaction level, as well as customer satisfaction level due 

to the higher and efficient level of service availability. Though, the risk-

seeker planner‟s scenario; when β = 6, and 𝝙 = 5; opposes that the 

responsibility of driver is important and his decisions will be effective, and 

the driver may exhibit a risk seeking, risk-neutral, or risk-averse behavior 

depending on his nature. The nature of the driver could be determined by 

using behavioral survey of the driver which should be updated regularly 

from the previous route and speed decisions in order to predict their 

actions. This helps in determining the proper level of autonomy as assigned 

to the driver.   

Figure 3 displays the pattern of the effect of changing the risk level on the 

total VRP costs. The four scenarios are shown on the X-axis while the 

resulted total VRP costs are reported on the Y-axis in dollars‟ unit. More 

specifically, the trajectory shows a growth in the total VRP costs when the 

parameters‟ values where gradually increased from the relaxed condition 

where there is no risk (i.e.: β=0, and 𝝙=0; where driver behavior have not 

been considered) before decreasing again when reducing the level of 

autonomy of the driver (scenario 4).  

Such a relation requires an extended explanation of the effect that the total 

VRP costs‟ component has on the total near optimal solution. Obtaining a 

better comprehension of the real effect of the total VRP costs on the total 

multi-objective function‟s solution will rationally help in planning for the 

best near optimal VRP plan for satisfying the logistical firm strategic 

objectives. The following section discusses the effect of each objective 
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function qualitatively on the total near optimal solution in order to get a 

clearer explanation about each function effect on the total near optimal 

solution of VRP plan. 

Table 9: Sensitivity analysis results the effect of five scenarios of risk 

patterns on the total VRP near optimal solution  

Experiment no. Risk Pattern of the 

planner 

β 𝝙  (  ($) Percentage 

Change 

(%) 

Scenario.1 No risk 0 0 1064.00 - 

Scenario.2 Risk-neutral planner 4 4 1110.16  +4.3 % 

from 

scenario 1 

Scenario.3 Risk-seeker planner 6 5 1150.54 +5.8 from 

scenario 4 

Scenario.4 Risk-averse planner   8 1 1087.00 - 

 

 

Figure 3: The relationship of the effect of different scenarios of risk level against the total VRP 

costs‟ near optimal solution. 

5.1.2 The Effects of the objective Functions Weights on the Total Near 

optimal Solution 

In order to understand the effect of each objective function on the total near 

optimal solution qualitatively; related weights have been changed by 
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assigning different values for each objective function interchangeably. 

Table 10 presents the resulted near optimal values of the total multi-

objective function for five different scenarios including the equivalence 

status that has been conducted in the numerical instance. By analyzing the 

results; it is shown that the objective function of energy consumption 

minimization (   has the highest effect on the total near optimal solution 

(  Whereas the other trials of assigning different 

weights for the objective functions did not change the total near optimal 

solution considerably.  Figure 4 describes the trajectory for the five 

scenarios of changing the weights‟ values associated with each objective 

functions. It is apparent that the objective functions associated with; the 

velocity maximization ( , penalty minimization (  and total costs 

minimization ( ; all have nearly the same effect on the total multi-

objective function by merely changing its value when increasing their 

weights. In comparison, the first objective function of minimization the 

energy consumption (  has dramatically affected the total multi-objective 

function near optimal solution from 324586.30 up to 647882.32; similar to 

the results obtained by Hosseini-Nasab and Lotfalian, (2017), which in role 

requires that a serious attention should be existed from the firm 

management for introducing effective planning for the locations of their 

warehouses and the chosen occasional drivers, in order to control the 

resulted energy. This ensures improving the customer satisfaction level by 

minimizing the consumed energy, as well as releasing a better near optimal 

solution for the whole VRP model. Consequently, this is evidence that the 

total VRP costs‟ component has a minor effect on the total near optimal 
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solution.  So, this is an opportunity for the logistical firm management to 

incorporate drivers‟ behavior when planning for a VRP even though the 

related total costs would be increased.   

Table 10: The Sensitivity analysis results of the effect of objective 

functions’ weights on the total near optimal solutions 

Experiment no. 
    

Total value of the near optimal 

solution (  ($) 

Scenario 1 1 1 1 1 324586.30 

Scenario 2 1 1 2 1 324634.32 

Scenario 3 1 2 1 1 324734.32 

Scenario 4 2 1 1 1 647882.32 

Scenario 5 1 1 1 2 325746.46 

 

 

Figure 4: The Relationship of the Weights of the Objective Functions and the Total Near 

optimal Solution 
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5.2 Summary 

This chapter has introduced the sensitivity analyses that have been 

conducted for, firstly; studying the effect of changing the assigned level of 

autonomy to control the driver behavior on; the total optimal VRP costs, 

and secondly; studying the significance of the effect of  each objective 

function on the total objective function optimal solution; by the changing 

the associated weights. This in turn would be used by decision makers in 

setting strategies and plans for an optimal the logistical decisions. In 

general, the risk taking behavior parameters have a positive relationship on 

the total optimal VRP costs; as the level of autonomy for the driver 

increased, as the total costs also increased. Though, by conducting the 

second sensitivity analysis, it was apparent that the total costs‟ objective 

function has a minor effect on the total objective function near-optimal 

solution, and so, such increase in total costs could be rationally traded off 

when assigning a certain level of autonomy for drivers, while maintaining 

at the same time a cost effective VRP plan.  Additionally, the energy 

consumption level should grasp higher attention from the firm management 

in order to optimally serve customers and improve VRP total solution.  
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Chapter Six 

 Conclusions and Recommendations 

6.1 Summary 

This research has answered the question of formulating a rich VRP model 

to be as realistic when is applied on ground as possible. In order to 

introduce a rich VRP model that has comprehensive characteristics 

improving the perceived quality and efficiency of the model for the value-

chain stakeholders. More precisely, the firm financial objectives, the 

customer satisfaction level, as well as the driver satisfaction level have 

been studied and included in one VRP model. Moreover, the environment 

sustainability issue has been considered by both reducing fuel consumption 

level and maintaining a green driving behavior. This altogether contributed 

to the three components of sustainability effectively.  

 As the model solves different issues, it has been constructed using both 

continuous and binary integer variables, and so MINLP approach has been 

used in order to manage all the mode‟s objectives. The model formulation 

and the related objective functions; constraints, assumptions, parameters, 

decision variables, and sets have all been identified in details. Also, in 

order to assess the validity and applicability of the proposed model; a 

hypothetical data set has been used to solve a numerical instance using 

Eclipse Java 2018-9 solver, which optimized the model solutions using the 

Greedy and Intra-route heuristic neighborhood algorithms. Those solutions 

have been reported and analyzed illustrating VRP plan with the four 

objective functions (i.e.: energy consumption minimization, velocity 
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maximization, penalty minimization, and total costs minimization), in order 

to satisfy the research objectives. Firstly, the issue of minimizing the total 

VRP costs as to be a cost-effective service network has been optimized in 

terms of all the associated service costs including destinations‟ cost, 

driver‟s training cost, and salary cost. Secondly, the customer satisfaction 

level has been improved by optimizing the consumed energy during 

serving the customer that affects the service time; which depends on 

optimizing the carried load along the distance of a near optimal routing 

network. Also, the customer satisfaction not only has been improved from 

the service time, but also by improving the service availability probability. 

This issue has been manipulated by considering the idea of ridesharing by 

incorporating the occasional drivers as a third logistical party that serves 

when either there is a shortage in the firm‟s hired regular drivers, or when 

customer‟s location is located far away from the regular drivers‟ assigned 

destinations, such as rural and country-side areas (i.e.: represented by the 

binary variable  ). Although such process would increase VRP costs 

due to the compensation paid to the occasional drivers, the model optimizes 

those costs as well. Thirdly, the proposed model optimize the total costs 

even when controlling the driver‟s behavior in terms of controlling the 

level of autonomy that is assigned  to the driver by the planner, as a 

technique to determine the risky level of a certain logistical firm. More 

specifically, the model has incorporated risk-taking parameters in order to 

adjust the drivers‟ behavior which is represented by their possibility in 

making decisions related to speed or route on ground. However, the 

sensitivity analysis on the relationship between risk-taking parameters and 
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VRP total costs prevailed that such arrangement has a positive effect on 

VRP total costs, as increasing the assigned level of autonomy for driver has 

increased the model total costs due to the increased variance. Nevertheless, 

this issue has been justified by conducting a sensitivity analysis on the 

effect of the objective functions‟ weights on the total near optimal solution. 

It has been shown that doubling the weight of the objective function that 

minimizes VRP total costs did not affect the total near optimal solution 

considerably. On the other hand, the objective function associated with 

minimizing the consumed energy has the largest effect when doubling its 

weight; by increasing the total near optimal solution just about the double; 

(Note that such procedure checks the effects qualitatively). Based on that, 

incorporating driver behavior parameter when designing a delivery network 

such as VRP; is still reasonable even though the total costs have increased 

merely.  

Ultimately, such results show the importance of the model, and they could 

be used as a justification for the ability of designing a VRP model that 

serves the firm strategy; the driver satisfaction, and the customer. By using 

such multi-objectives VRP model, it could be ensured that the affective 

factors that contribute to a certain network success have been considered in 

terms of controlling the level of autonomy of the assigned drivers. By this, 

a new contribution has been added to VRP modeling taking into 

consideration the human differences‟ effect on the routing decisions.  
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6.2 Research Contribution 

This research contributed to the literature by introducing a comprehensive 

rich VRP model in terms of its objectives and heuristic solution that 

released more practical and realistic characteristics. As compared to 

previous VRP models, their suggested variants and the developed models 

were being introduced as isolated from the driver behavior. Whereas 

accounting for the driver autonomy ensures that the driver can makes 

decision on time when unexpected conditions are emerged. Besides, the 

driver will be more satisfied when dealing with him as a human who can 

think and make decisions, rather than as a robot or a vehicle that needs to 

apply the assigned plans whatever emergent matters happen. And so, this 

research could be used as an evidence for the logistical firm; that assigning 

autonomy to drivers maintains a reasonable VRP plan which is still cost 

effective and efficient. Also, according to the idea of using the occasional 

drivers to satisfy shortages in delivery service; considering the occasional 

driver autonomy will increase the willingness of such drivers to serve even 

though their compensation rate does not increased, as the speed and route 

decisions will be tolerant with their conditions. 

By adopting the proposed model by a certain logistical company, there will 

be a chance for reviewing the collected data released from applying the 

model for a certain trial period, the proposed model‟s results could be 

assessed and verified if the expected objectives have been achieved. And 

so, analyzing such results sensitively will help in determining the proper 

level of autonomy of drivers. 
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6.3 Limitations and Recommendations 

 While the model has been programmed and solved successfully 

releasing the same near-optimal solution by two algorithms; the Greedy 

and Intra-route neighborhood heuristic; such heuristic approach cannot 

guarantee that such solutions are global. This is due to the fact that such 

a discrete optimization problem is difficult to be solved by an exact 

method (Rader, 2010). 

 The model has been assumed as a static model, while such incorporation 

of occasional drivers‟ use and driver autonomy level requires that the 

model accounts for dynamicity. And so, dynamic programming 

languages e.g. Python will ensure updating the routing plan input data 

such as new received orders close to the assigned network, or even 

newly emerged route conditions such as unexpected congestion or 

accident that requires updated level of autonomy for the driver.  

 The model has been solved by assuming that the fleet of vehicles is 

homogenous, and so, all the vehicles are assumed to have the same 

driving characteristics, in terms of fuel consumption rate and speed.  

 Although the model is behaving eco-friendly by accounting for the 

velocity and environmental penalty, there is no gas emission index that 

could be used to optimize its level.  

 Involving occasional drivers require that approved list of drivers are 

known in advance, this is important for controlling the level of 

autonomy assigned to them. Otherwise, their driving patterns would be 
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fluctuated in in a way that minimizes the probability to expect the 

suitable level of autonomy and their driving risk level characteristics.  

6.4 Future work 

Applying the model using real cases will improve its reliability and 

validity. Additionally, better realistic results will be obtained which can be 

used by decision makers more effectively.  For example, using different 

compensation scheme for the occasional drivers would modify the model 

propositions and reveal different assignment plans. The driver behavior has 

been studied in this research to investigate the possibility to involve 

representative parameters (i.e.: risk taking behavior parameters), in VRP 

model while maintaining a reasonable and cost effective VRP plan. On the 

other hand, such parameters could be studied by investigating their effect 

on different objective functions in VRP model, such as their effect on 

reducing service time, or producing different driving patterns. Moreover, 

verifying the actual validity as well as the model practicability requires that 

the model should be applied on ground. This will ensure that the proposed 

VRP plan has achieved actual improvements on the firm; driver, and 

society satisfactions. This could be conducted by comparing results before 

and after applying the model. Acquiring real verified data by a certain 

logistical firm is expected to increase the probability that other firms will 

adopt the model as well. In addition, integrating other human 

characteristics such as: fatigue, age and experience level will improve the 

reality of the proposed model and allow obtaining better effective VRP 

plans. More specifically, studying the effect of such human factors on VRP 
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plan allows determining precisely the drivers‟ differences and the resulted 

effects on the routing plan. Including such important parameters could be 

used as a comprehensive assessment tool for the used human resources, and 

help the human resource management in setting development, training, and 

awarding plans. Finally, using the Global Positioning System (GPS) when 

applying the proposed model on real cases would improve the obtained 

VRP plans, considering that on-time communication between drivers and 

firm‟s operation‟ planner would ensure assigning the proper level of 

autonomy. This maintains the driver behavior with autonomy under 

monitoring and control.        
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 دمج الاختلافات بين السائقين في تحديد المسار الأمثل لمشكمة توجيو المركبة الخضراء
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 د. محمد عثمان
 د. يحيى صالح

 الممخص

مشكمة توجيو المركبة تعتبر إحدى أىم تطبيقات عموم بحوث العمميات المعاصرة, وقد حظيت 
باىتمام كبير من الباحثين نظراً لأىميتيا الكبيرة في تطبيقات تصميم شبكات النقل الموجستية. عمى 

ج الخاصة بيذه المشكمة وحميا باستخدام عمم بحوث العمميات الرغم من ذلك, تم تطوير النماذ
بمعزل عن تأثير العوامل البشرية المتعمقة بالعنصر الأىم المطبَق لمخطة عمى أرض الواقع وىو 
السائق. في ىذا البحث تم دراسة إمكانية إضافة العامل البشري ودراسة تأثيره عمى الخطة 

فرض متغيرات متعمقة بمستوى المخاطرة التي يتخذىا المخطط  جستية الأمثل. تم ذلك من خلالو الم
عند قيامو بتوكيل السائق بما يسمى " مستوى السيطرة" بنسبة معينة , بحرية اتخاذ قرارات  متعمقة 
بالنقل مثل تغيير السرعة او الطريق المخطط ليما أثناء مرحمة التخطيط, و ذلك تبعا لظروف 

ذه لخطة النقل وتوصيل البضائع, مثل حدوث أزمة غير متوقعة في طارئة يتعرض ليا أثناء تنفي
غير أوقات الذروة المتوقعة أو حدوث حادث سير قد يعيق من إكمال الخطة بالطريق و السرعة 

النموذج المخطط ليا, مما يؤثر عمى تمبية طمبات الزبائن و إرضائيم بالوقت المطموب.  ييدف 
المقدم أيضاً لتحقيق متطمبات الديمومة عمى ثلاث مستويات, أولُا عمى المستوى الاقتصادي من 

بالخطة المثمى, وعمى   المتعمقةخلال تصميم نموذج رياضي قادر عمى تقميل تكاليف النقل 
تبة المستوى البيئي من خلال قدرة النموذج عمى تحديد السرعة المثمى و تقميل الغرامة المالية المتر 

عمييا و المعتمدة عمى نسبة استيلاك الوقود. أما بالنسبة لتحقيق الديمومة عمى الصعيد المجتمعي, 
فكرة التشارك الاقتصادي التي تتضمن استخدام مجموعة من  السائقين الاحتياط  استخدامفقد تم 

صيل السائقين من أجل تمبية طمبات الزبائن المتواجدين في المناطق النائية البعيدة عن نقاط تو 
التابعين لشركة النقل, أو من الممكن استخداميم في حالة حصول نقص بخدمة سائقي الشركة, 



 ج

 

 

أيضاً, من خلال إضافة  بيذا يمكن تحسين الخدمة المقدمة لمزبائن من حيث توافرىا وفعاليتيا.
الوظيفي  التحكم بالعامل البشري رياضياً من قبل النموذج المقدم, يمكن تحسين مستوى الرضا

لسائقي الشركة, وأيضا عند إعطاء السائق الاحتياط حرية اتخاذ القرار بنسبة معينة, سيصبح 
إمكانية توافرىم أكبر حيث سيكون ىناك مرونة باختيار الطريق و السرعة المناسبة ليم. إضافة إلى 

دة عمى المسافة ذلك, تم استخدام دالة اليدف المتعمقة بتقميل الطاقة المبذولة بالنقل والمعتم
والحمولة, حيث يمكن استخدامو كمؤشر لتحسين جودة خدمة النقل من أجل تحسين الجودة لمزبائن. 
 كل ىذه النتائج ستعود بفائدة عمى عائدات الشركة وستجعل تحقيق أىدافيا الاستراتيجية أفضل, 

مركز المدن. وستزيد من شبكة الزبائن الخاصة بيا من أقصى المناطق النائية حتى ساكني 
العنصر البشري إلى النموذج المقدم لزيادة تكاليف النقل  بالمقابل, من المتوقع أن تؤدي إضافة

بسبب زيادة الانحراف المعياري عن التكمفة المتوقعة, لذلك, تم عمل تحميلات الحساسية لدراسة 
سواء, وبين التكاليف  العلاقة بين زيادة مستوى السيطرة لمسائق التابع لمشركة والاحتياط عمى حد  

المتعمقة بالخطة الأمثل لمنقل. أظيرت نتائج دراسة الحساسية أن العلاقة إيجابية وأن الزيادة 
الحاصمة بالتكمفة كانت بسيطة. ولكن, من أجل التأكد من مدى تأثير ىذه الزيادة عمى الحل الكمي 

تأثير وزن كل دالة ىدف عمى تم عمل دراسة حساسية لفحص  الأمثل المتعمق بكل دالات اليدف,
الحل الأمثل, و قد أظيرت النتائج أن دالة اليدف المتعمقة بتقميل تكاليف النقل كان ليا تأثير بسيط 
عمى تكاليف النقل حتى عند مضاعفة الوزن الخاص بيا, بينم مضاعفة وزن دالة اليدف المتعمقة 

. النموذج الرياضي المطور ىو نموذج غير بتقميل الطاقة المبذولة بالنقل كان لو التأثير الأكبر
خطي لتسييل  نموذجخطية مكون من متغيرات صحيحة وغير صحيحة تم تحويمو لاحقاً إلى 

            إمكانية حمو. تم إجراء برمجة النموذج المقدم باستخدام لغة الجافا باستخدام برنامج الحل
(Eclipse Java 2018-9 باستخدام خوارزميات الحل ,)(Heuristics ًوالتي أظيرت تطابقا )

   لنفس الخطة المثمى مما يرجح أن تكون ىي الخطة الأمثل.
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