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Error-Detecting and Error-Correcting Usng Hamming and
Cyclic codes
By:
Ne'am Hashem | braheem | braheem
Supervisor by :
Dr. " Mohammad Othman" Omran
Abstract

In this thesis we provide an overview of two types of linear block codes:
Hamming and cyclic codes. We study the generation, encoding and
decoding of these codes as well as studying schemes and/or algorithms of

error-detecting and error-correcting of these codes.
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Preface
Coding theory is concerned with the transmission of data across

noisy channels and the recovery of corrupted messages. It has found
widespread applications in electrical engineering, digital communication,
mathematics and computer science. While the problems in coding theory
often arise from engineering applications, it is fascinating to note the
crucial role played by mathematics in the development of the field.
The importance of algebra in coding theory is a commonly acknowledged
fact, with many deep mathematical results being used in elegant ways in
the advancement of coding theory; therefore coding theory appeals not just
to engineers and computer scientists, but also to mathematicians and hence,
coding theory is sometimes called algebraic coding theory.
An algebraic techniques involving finite fields, group theory, polynomial
algebra as well as linear algebra deal with the design of error-correcting
codes for the reliable transmission of information across noisy channels.
Usually, coding is divided into two parts:
1. Source coding:

v/ Source encoding

v/ Source decoding
2. Channel coding:

v/ Channel encoding

\/ Channel decoding

Source encoding involves changing the message source to a suitable code

say u to be transmitted through the channel. Channel encoding deals with
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the source encoded message 11, by introducing some extra data bits that will

be used in detecting and/or even correcting the transmitted message. Thus

the result of the source encoding is a codeword, say 1. Likewise, channel

decoding and source decoding are applied on the destination side to decode

the received codeword r as correctly as possible. Figure 1 represents a

model of a data transmission system.

Source encoder Source decoder
1
Ers 1w

Channel encoder Channel Channel decoder
v (Noise) T

Figure 1. Model of a Data Transmission System

For example: Consider a message source of four fruit words to be

transmitted: apple, banana, cherry and grape. The source encoder encodes

these words into the following binary data (u; ., 5 ., ):

apple—u, = (0 0), banana—1, = (0 1), cherry—u, = (1 0),
grape—u, = (1 1).

Suppose the message “apple’ is to be transmitted over a noisy channel. The

bits 1, = (0 0) will be transmitted instead. Suppose an error of one bit

occurred during the transmission and the code (0 1) is received instead as

seen in the following figure. The receiver may not realize that the message
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was corrupted and the received message will be decoded into ‘banana’.

These a communication error occurred.

Source encoder Source decoder
00 01

With channel coding, this error may be detected (and even corrected) by

introducing a redundancy bit as follows (v, v, v; 1,):

(00)=v,=(000),(01)=1v,=(011),
(10)=1r,=(101),11)—v,=(110)

The newly encoded message ‘apple’ is now (0 0 0). Suppose this message

was transmitted and an error of one bit only occurred. The receiver may get

one of the following: (1 0 0),(0 10)or (0 0 1). Inthis way, we can detect

the error, as none of (1 00),{0 107 or (0 01) is among our encoded

messages.

Note that the above channel encoding scheme does not allow us to correct

errors. For instance, if (1 0 0) is received, then we do not know whether

(100) comes from (000), (101) or (110). However, if more three

redundancy bits are introduced instead of one bit, we will be able to correct

errors. For instance, we can design the following channel coding scheme:
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(00)—=(00000),(01)—(01111),

(10)—(10110),(L1)—=(11001)

Again if the message (0 0 0 0 0) was transmitted over a noisy channel and
that there is only one error introduced, then the received word must be one
of the following five: (10000),(01000),(00100),(00010) or
(00001). Since only one error occurred and since each of these five
codes differs from (0 0 00 0) by only one bit, and from the other three
correct codes (0 1111),(10110)and (11001) by at least two bits,
then the receiver will decode the received message into (0 0 0 00) and,

hence, the received message will be correctly decoded into ‘apple’.

Algebraic coding theory is basically divided into two major types of codes:
Linear block codes and Convolutional codes.

In this thesis we present some encoding and decoding schemes as well as
some used error detection/correction coding techniques using linear block
codes only. We discuss only two types of linear block codes: Hamming and

cyclic codes.
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History

The history of data-transmission codes began in 1948 with the
publication  of a famous paper by Claude Shannon. Shannon showed that
associated with any communication channel or storage channel is a number
C (measured in bits per second), called the capacity of the channel, which
has the following significance: Whenever the information transmission rate
R (in bits per second) required of a communication or storage systemis less
than C then, by using a data-transmission code, it is possible to design a
communication system for the channel whose probability of output error is
as small as desired. Shannon, however, did not tell us how to find suitable
codes; his contribution was to prove that they exist and to define their role.
Throughout the 1950s, much effort was devoted to finding explicit
constructions for classes of codes. The first block codes were introduced in
1950 when Hamming described a class of single-error-correcting block
codes and he published what is now known as Hamming code, which
remains in use in many applications today.
In 1957, Among the first codes used practically were the cyclic codes
which were generated using shift registers. It was quickly noticed by
Prange that the cyclic codes have a rich algebraic structure, the first
indication that algebra would be a valuable tool in code design.
In the 1960s, the major advances came in 1960 when Hocquenghem and
Bose and Ray-Chaudhuri found a large class of multiple-error-correcting
codes (the BCH codes). The discovery of BCH codes led to a search for

practical methods of designing the hardware or software to implement the
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encoder and decoder. In the same year independently, Reed, Solomon and
Arimoto found a related class of codes for nonbinary channels.
Concatenated codes were introduced by Forney (1966), later Justesen used
the idea of a concatenated code to devise a completely constructive class of
long block codes with good performance.

During the 1970s, these two avenues of research began to draw together in
some ways and to diverge further in others. Meanwhile, Goppa (1970)
defined a class of codes that is sure to contain good codes, though without
saying how to identify the good ones.

The 1980s saw encoders and decoders appear frequently in newly designed

digital communication systems and digital storage systems.

The 1990s witnesses an evaluation of all groups in informatics at the
universities in Norway. The evaluation was performed by a group of
internationally recognized experts. The committee observed that the period
1988-92, had the largest number of papers (27) published in internationally
refereed journals among all the informatics groups in Norway. In the
period 1995-1997 the goal of finding explicit codes which reach the limits
predicted by Shannon's original work has been achieved. The constructions
require techniques from a surprisingly wide range of pure mathematics:
linear algebra, the theory of fields and algebraic geometry all play a vital
role. Not only has coding theory helped to solve problems of vital

importance in the world outside mathematics, it also has enriched other
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branches of mathematics, with new problems as well as new solutions. In
1998 Alamouti described a space-time code.

In 2000 Aji, McEliece and others synthesize several decoding algorithms
using message passing ideas. In the period 2002-2006 many books and
papers are introduce such as Algebraic soft-Decision Decoding of Reed-
Solomon Codes by Koetter R., and Error Control Coding: Fundamentals
and Applications by Lin and Costello and Error Correction Coding by
Moon T. in 2005.

During This decade, development of algorithms for hard-decision decoding
of large nonbinary block codes defined on algebraic curves. Decoders for
the codes known as hermitian codes are now available and these codes may
soon appear in commercial products. At the same time, the roots of the

subject are growing even deeper into the rich soil of mathematics.
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Chapter 1

Introduction to Algebra
As mentioned earlier in the Preface, the study of linear block codes
requires basic knowledge in modern algebra and linear algebra. Hence, in
this chapter we provide the reader with basic definitions and terminologies
that help in the understanding of the material in this thesis. Groups, fields,
vector spaces and other definitions and concepts in algebra that relate to

linear block codes are discussed in this chapter.

1.1 Groups
Definition 1.1: Let ¢ be a set of elements. A binary operation = on  is a

rule that assignsto each pair @ and b of ¢ auniqueelementc = a = b inG.

We say that - is closed under =.

Definition 1.2: A group (G,*) (or simply ) isaset G of elements together
with a binary operation = on ¢ such that:
(i) The operation = is associative:
Forany a,b,c € G,(a*b)*c=ax*(b=*c).
(ii) There is a unique element e € G, called the identity element, such that
a*e=e*a=a Ya€aG.
(iii) For every a € G, thereis a unique element ¢=* € G, caled the inverse
of g, suchthat g *a ' =a * *a = e.
Theorem 1.1: A group ( is said to be commutative if its binary operation =

Iscommutative, i.e., forevery a,b € G,a*b = b = q.
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Definition 1.3: The order of a group &, denoted by |G|, is the number of
elements in  if G has a finite number of elements, and is « otherwise. A

group G isfinite (infinite) if |G| is finite (infinite).

Example 1.1: Consider the set ¢ = Z, = {0, 1}. Let the binary operation =

be denoted by @ and defined as follows:

Table 1: modulo-2 addition

@ 0 1
0 0 1
1 1 0

This binary operation @ is called modulo-2 addition. Is easy to check that
: IS a communication group under .

For simplicity the modulo-2 addition operation @ will be denoted by +.

1.2 Permutation Groups
Definition 1.4: A permutation o of a nonempty set A ={1,2,..,n} is a

one-to-one mapping of the set A onto itself. This permutation ¢ can be

denoted by:

7= (5(1) J(.HJ)J whereg(i) =jEA Vi, j=1,2, .., n

Note that, the order of the columns in this representation of @ isimmaterial.
1 2 3) _ 2 3 l)
2 3 1 3 1 27

The set of all permutationson 4 = {1,2,...,n} isdenoted by 5,,.

For example, (

The composition operation, denoted by o, on S, is defined by g, o g,

where o, is applied first and then a,, for any two permutations o,,a, € S,,.
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Clearly o, 00, is again a permutation in S,, so S,is closed under the

operation o. 1 = 1 g D IS the identity permutationin S,,.
_ (1 e oM. g (a(l) .. g(n)
The inverse of any g = (J(l) J(_n)) isog™" = ( 1, )

which is itself a permutationin S,,.
Composition of permutations is associative; for g, ,0, and g,, we have

(0,0 g,)00, = 0,0 (0, 0 ;). Thus we have this theorem:

Theorem 1.2: The set (S,,, 0) isagroup.
Note that the composition is not commutative since o, o g; = g5 0 7.

So (5,,, 0) is not a commutative group.
Remark 1.1: The number of elementsof S,, = n!.

Example 1.2: Let A = {1,2,3}, then the set of all permutations on 4 is

denoted by S5 and |S;| = 3! = 6 elements, where

S=0=(133)5=G3e=G1)

0 1 Oy Oz H1 Mz H3
1 1 04 0z Hy Ha Ha
o, 04 a, 1 K3 ! Ha
g3 03 1 01 Ha M3 My
Hy Ha Ha Hz 1 04 a;
Ko M2 K3 H1 92 1 93
K3 Ha Hi Ha O1 g2 1

From the above table we have (5;,0) isagroup.
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Definition 1.5: The pair (H,*) is said to be a subgroup of given group
(G,#) if H isanonempty subset of ¢ and is itself a group under the same

operation * of .

Example 1.3: Let H = {1,0,,0,}. The pair (H,0) is a subgroup of S in

Example 1.2, according to the following table.

1.3 Cyclic permutations

Definition 1.6: A permutation ¢ € S, is called a cycle of length & or
k-cyclic (k = n) if there exists a list of distinct integers a; a, ... a, € S
such that
gla,)=a,.,, i=1,... k-1

o(a,) = a;

gla) =a ifa€{a,a, .. a,}.

In this case g will be denoted by (a, ...a; ). A cycle of length 2 is called a

transposition.

Remark 1.2: The transposition (a, a,) isitsown inverse.
Observe that (a, a, ... a,),(a, .. a,a,),...&(a, a, ... a,_,) represent

the same cycle.
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1 2 3 4 5

L3 1 2 5)655 Is the 4-cycle

Example 1.4: The permutation ¢ = (

(14 2 3).

Remark 1.3: The composition of disjoint cycles is commutative; i.e, if

a,,d, aredigoint cyclesthen g, 00, = 7, 00,.

Theorem 1.3: Every permutation in S, can be expressed uniquely (up to

order) as a product of digoint cycles.

Example 15: In §,, the permutation o = @ gg

= o

i g]canbe

expressed asaproduct (1 5 6)(2 4)or (2 4)(1 5 6).
Theorem 1.4: Every cycle of length k is a product of k — 1 transpositions.

Example 1.6: 0 = (1 4 2 3)= (1 3)(1 2)(1 4).

1.4 Cyclic Groups & the Order of an Element

Definition 1.7: Let a be an element in a group (G,+), then the set
H={a"=a=..xa|ne€ Z7}iscalled acyclic subgroup of G generated

n—fimas

by a, written H = {a), and a is called a generator of H.

By convention, a° =1.

Definition 1.8: If G = (a), then the group (G,*) is said to be cyclic.
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Example 1.7: The group (Z-,+), where Z; = {0,1,2, 3,4}, iscyclic. Since

every element in Z-can be generated by a = 2;
at=2 a'=2+2=4a*=a"+a=4+2=1,a* =a*+a=1+
2=3 a’=a*"+a=3+2=0

S0 Z, = (2).

Definition 1.9: Let a be an element in a group (G,+), then the smallest
positive integer n such that @™ equals to the identity in (¢ is said to be the

order of a and is denoted by ord(a). If no such n exists then a is said to be

of infinite order.

Remark 1.4: The order of an element should not be confused with the

order of a group, which is the number of elements in the group.

Remark 1.5: The order of the k-cyclein S, is k.

Remark 1.6: If o €5, is aproduct of disoint cycles say o = o0, ...q,,
then the order of o denoted by ord(o) is the least common multiple(lcm)

of the orders of these digjoint cycles. i.e.,
ord(o) = lem{ord(o,),...,ord(s,).

1 2 3 4567
35 41276

g=(13 4)(2 5)(6 7), andthe order of ais:

Example 1.8: Let 0 = ( ) € 55, Then;

ord(o) = lem(3,2,2) = 6.
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15 Cosets
Definition 1.10: Let H be a subgroup of agroup (G,*) and a € . The set

a*H={a+=h:he€H} is caled a left coset of H in . Similarly,
H+a={h+a:h e H}iscaledaright coset of HinG.

Note that we can write aH({Ha) instead of a * H(H * a)

Of course, in acommutative group, the left and right cosets are the same.

Definition 1.11: Let H be a subgroup of a finite group &. The number of
distinct left (right) cosets of H in ¢ denoted by [G: H] = %

Example 1.9: Consider the group 5; = {1,0,,0,,1t,i-, i3} 8 given in

Example 1.2 and consider the subgroup H = {1, u,}.

Thenthereare [G: H] = % — % _ 3 |eft cosets as well as 3 right cosets.

R

The left cosets of H are found as follows:
1H=(23)H=H={1,u,)
(123)H=(012)H={(123),(12)} = {0,153}

And (132)H=(13)H ={(132),(13)}= {05, 145)
Thus the left cosets of H are {H,{(1 23),(12)},{(132),(13)}}

The right cosets of H are found in a similar way, and they are

{L ugd{onpush{og,uz 1k

Theorem 1.5: For asubgroup H of &, left cosets of H satisfiy the following:
(i) fae Gand b € aH, then bH = aH.

(i) aH=DbH ifandonlyif a=*h € H.

(iii) Any two left cosetsof i say aH & bH are either equal or digoint.
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(iv) G = U,; aH, where the union runs over the set of distinct cosets of H
inG.
Fact 1.1: Left cosets of a subgroup H of G define an equivalence relation

on G:

(i) Reflexive: a € aH.
(il) Symmetric: if a € bH then b € aH.

(iii) Transitive: if a € bH & b ecHthena € cH.

Note that theorem 1.5 and fact 1.1 apply for right cosets as well.

1.6 Fields
Definition 1.12: Let F be a nonempty set on which two binary operations,

addition " + " and multiplication "." are defined. Then the system (F, +,.)

isafield if the following conditions are satisfied:

(i) (F,+) isacommutative group.

(i) (F — {0},.) isacommutative group.

(ii)Multiplication is distributive over addition; that is, for any three
gementsa,bandcinF: a.(b+c¢)=a.b+a.c

(b+c)a=hba+c.a

The elements of the field F are called scalars. The field (F,+,.) will be

denoted by F as long as the operations (+) and (.) are understood from the

context.
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Definition 1.13: If F has afinite number of elements, it is said to be afinite
field. The number of elements in the field F is called the order of the field

F and is denoted by| F|.

Remark 1.7: Theset Z, = {0,1,...,p — 1} (where p is prime) is afield of

order p under modulo-p addition and multiplication. This field is called a

prime field.

Example 1.10: The set Z, = {0,1] is a field of order 2 under modulo-2

addition and modulo-2 multiplication. It has the following addition and

multiplication tables:

Table 2;: modulo-2 addition

16

Table 3: modulo-2 multiplication

+ 0 1 ) 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Thisfield is called a binary field and it satisfies: 1 + 1 = 0, so the addition

and subtraction are interchangeable.

Basic properties of finite fields:

In the following, let F be a finite field of order p, where p is a prime

number.

(i) Foreveryy a € F,a.0=0.a=10

(i1) For any two nonzero elements a, b € F,a.b = 0.

(i) @.b = 0and a = 0 imply that b = 0.
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then

(iv) LetO#a€Z,—a.qa...a=a""1 =1
. ’
p—1 times

(v) All finite fields are also called Galois fields and denoted by G F.

According to (v) the prime field Z,, will be denoted by GF(p), hence, the

binary field Z, in Example 1.10 is denoted by GF(2).

1.7 Polynomialsover the Binary Field
A polynomial f(x) of degree n over GF(2) is a polynomial f(x) with
coefficients from GF(2),1.e,

f)=f+fix+fix*++ fx"wheref,=0or1for0 =i =< n.
Theorem 1.6: Over GF(2) thereare 2™ polynomials of degree n.

Example 1.11: There are four polynomials of degree 2 over GF(2) and
theyare: X*, 1 +X*, X +X*and 1+ X + X°.

Now, the polynomials over GF(2) can be added (or subtracted), multiplied
and divided modulo 2. Let g(x) =g, + g, x +g-x" +--+g,,x™ be a
polynomial over GF(2) and let f(x) be as above. Then:

max {m,n} : o; = 0 I >m
(f + 9)(x) = T2 (F + g,)x! where F-0 isn

and (f.g)(x) = T3 (Zimo fimi - Gr X"
When f(x) isdivided by g(x), we obtain a unique pair of polynomials: the
guotient g(x) and the remainder r(x) over GF(2) with degree of r(x) is

less than that of g(x). Wethenwrite f(x) = g(x)g(x) + r(x).
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Example 1.12: Let f(x) =1+ x* + x*z2 g(x) = x + x°
(f+g))=A1+0)+0+Dx+ A+ D)x*+ (1 +0)x°

Hence, (f + g)(x)=1+x+x* = (f — g)(x).
(f.g)(x) = (1.0)+ ((0.1) + (L.1))x + ((1.1) + (0.1) + (1.0) )»?
+((1L.0)+ (0.1 + (1.1 + (1.0))x®
+((1.0) + (0.0) + (1.1) + (1.1) + (0.0)) x* + (1.1)x>
=x + x* +x° +x°.

Example 1.13: Divide f(x) = x* + x* + x* by g(x) = x + 1 using long-
division over GF(2):

X3+ x+1
x+1>x“+x3+x2

X4+X3

g(x)=x*+x+1andr(x) = 1. We then have

() =x"4+3+x7=(3+x+DHE+D+1

Remark 1.8: If r(x)=0 we say that f(x) isdivisibleby g(x) or g(x) isa

factor of f(x).

Theorem 1.7: If a is aroot of a polynomial f(x) then f(x) is divisible

by(x — a).
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Fact 1.2: If we have a polynomial over GF(2) with an even number of

terms, then it is divisible by (x + 1) because this polynomial has the

number 1 as aroot.

Example 1.14: Let f)=1+x%+x% +x*, Consider

F)=1+1+1+1=0= f(x)isdvisibleby (x + 1)

Definition 1.14: A polynomial p(x) of degree m over GF(2) is said to be
irreducible over GF(2) if p(x) is not divisible by any polynomial over

GF(2) of degree less than m but greater than zero. Otherwise p(x) is

reducible.

Example 1.15: Let f(x)=x*+x+ 1 be a polynomial over GF(2).
f(x) does not have neither "0" nor "1" asroots. So f(x) is not divisible by
any polynomial of degree 1. x nor x + 1. Consequently, it cannot be

divisible by a polynomial of degree 2. So f (x) isirreducible over GF(2).

Theorem 1.8: Any irreducible polynomial over GF(2) of degree m divides
FRCH)

Example 1.16: You can check that the polynomial f(x)=x*+x+1as
in Example 1.15 divides x**~* + 1=x7 + 1 since

x4+ 1= (xF+x+1)(x*+x2+x+1).
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Definition 1.15: An irreducible polynomial p(x) of degree m is said to be
primitive if the smallest positive integer n for which p (x) divides x™ + 1is

n = 2" —1. Otherwise p(x) is not a primitive.

Remark 1.9: In modulo-2 addition we have the following;

(a+ b)Y =a*+b°

Theorem 1.9: Let f(x) be a polynomial over GF(2) then for any { 0 we

have the following:

[FG)]? = f(x?) (1.2)

Proof: Let f(x)=f + fix + -+ f,x"
Then using remark 1.9, we have:
P20 = (fy + fix + -+ fx")?
ST+ () o+ ()
Since f;=00r1 f*=f;, wehave:
= £+ + £ () 2+ ()"
=f(?)= f2(0) = f(x?) (1.2)
Now, for £*(x) = ((f(x))?)? by(1.2) we have;
= (F(X)) = (fy + fix® + oo+ 2777
= ) + ot (™)
= ftfxt L) = F) = FA00) = Fe),
etc.
Soforany i = 0, [f()]* = F(x™). .
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1.8 Construction of GaloisField GF(2™)

In this section we construct the Galois Field GF(2") of 2" elements
(n = 1) from the binary field GF(2). We begin with the two elements O
and 1, from GF(2) and a new symbol «. Then we define a multiplication

(.) to introduce a sequence of powers of « as follows:

A
F

J-times

Now, we have the following set of elements:
GF(2™) ={0,1,a,a% a*,...,a/, ..}

Now suppose p(x) is a primitive polynomial of degree n over GF(2) such
that p(a) = 0. Then p(x) divides x2"~* + 1, and so we have:

X2 7141 = g(x).p(x). If wereplace x by @, we obtain:

a1+ 1 =g(a)pla) = q(a).0=0,

Thisimplies: ¢2"~1+1 =0,

Adding 1 to both sides (use modulo-2 addition): @2"~* = 1, and hence
a®" = a. Therefore, the set above becomes finite and consist of the 2®

+

dements: GF(2™) = {0,1,a, a2, ..., a® 2.

Remark 1.10:

(i) In the construction of the Galois field GF(2™), we use a primitive

polynomial p(x) of degree n and require that the element « be aroot of
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p(x). Since the powers of « generate all the nonzero elements of
GF(2™), e iISaprimitive element.

(i) The elements of GF(2™) have three representations shown in Table 4.

Example 1.17: Let n=3, the polynomia p(x)=1+x+x? is a
primitive polynomial over GF(2). Set p(a)=1+a+a® =0. Then
a®=1 + a. Using this, we can construct:

GF(23) = {0,1,a,a?, ..,a® 2} ={0,1,a,a?,a?, a* a°,a’).

The element «® = 1+ « is used repeatedly to form the polynomial
representations for the elements of GF(2?):
a*=a.a’=a(l+a)=a+a?,
a’=a.a*=ala+a?)=a’+a’=a*"+14+a=1+a+a?

ab=a.a’=a(l+a+a?)=a+a’+a’=a+a’>+1+a=1+a*

Table 4: Three Representations for the Elements of GF(2?)
Generated by p(x) =1+ x + x°

Power representation Polynomial 3-tuple representation
representation in o
0 0 (000)
1 1 (100)
o v (010
o’ o (001)
o 1+ o (110)
o* o+ o’ 011
0’ 1+o0+0° (111)
0® 1+ o’ (101)
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Remark 1.11:
(i) The power representation is used in multiplying or dividing the
elements of GF(2*) as.

a'tl i+ j<2m—1
ﬂ’1ﬂ"’ = ﬂ’:.+j = ﬂ-':""_f_':zn—l:' jf. _|_Jr e |
1 dij=2n—1

and, = =a'.a? 7! where a2 ~/=! is the multiplicative inverse

of a/.

(i) Ann — tuple representation is used for adding the elements of GF(2*)
by adding the corresponding components of their n —tuples, in modulo-
2 addition.

For example, if u = (ug,uq,...,u,_1) and v = (v,, vy, ..., v,,_) in GF(2™),

then u+v = (uy + vy, uy +v4,..., 8, +1,_,), Whereu, + v, is

carried out in modulo-2 addition.

Definition 1.16: Let (E,+,.) be afield, and let F be a nonempty subset of
E.Then F iscalled asubfield if (F,+,.)isitself afield.

Definition 1.17: If F isasubfield of afield E, then E is called an extension

field of F or simply an extension of F.

Note that, the set GF(2™) is an extension field of GF(2) because GF(2) is
asubfield or the ground field of GF(2™).
And polynomials with coefficients from GF(2) may not have roots from

GF(2) but has roots from an extension field of GF(2).

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

24

For example, p(x) = 1 + x + x® isirreducible over GF(2) and therefore it
does not have roots from GF(2). However, it has three roots from the field
GF(2*). If we substitute the elements of GF(2*) given by (Table 4) into

1+ x+x3, we find that «, ®®, and a* are the roots of 1 + x + x*. We

may verify this as follows using (Table 4):

l+a+a’=1+a+1+a=0,

1+ + (@) =1+a*+a*=1+a*+1+a* =0, (1.3
l1+a*+ (@) =1+a+a”*+1+a+a* =0.

Since o, ?,and a* are all roots of p(x), then

p(x) = (x + a)(x + a?)(x + a*). We may verify this equality by

multiplying out the product above using Table 4.

Let f(x) be apolynomial of degree n with coefficients from GF(2). If g is

aroot of f(x), the polynomial f(x) may have other roots from GF(2™).

Then what are these roots? This is answered by the following theorem.

Theorem 1.10: Let f(x) be a polynomial with coefficients from GF(2),
and 3 be an element in an extension field GF(2™) of GF(2) suchthat g isa
root of f(x), then for any i = 0, we have g2 is also a root of f(x).
Proof: By substituting g into the equation in (1.1)

we have: [f(B)]* = f(B*),
But f(f)=0 :;f(ﬁz:) = 0= Zisaroot of f(x) forany i = 0. m

The element 2" is called a conjugate of j.
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Fact 1.3: According to Theorem 1.10 above, if « is a primitive element
then all conjugates of ¢ are also primitive elements of GF(2™).

Example 1.18: The polynomial p(x) = 1+ x + x* in Example 1.17 has «
asaroot in the extension field GF(2*) of GF(2), such that:
pl@y=1+a+a*=1+a+1+a=0

By using (Table 1.6) the conjugates of « are:

(@ =a?, (@) =a*

[Note that (¢)>" = a® = a¢”.@ = 1.« = a]. From the Theorem 1.10 these
conjugates of ¢ must be alsorootsof p(x) =1+ x+ x®. (Seeeq. (1.3)
Theorem 1.11: The 2™ — 1 nonzero elements of GF(2™) form all the roots
of x2" -1 +1.

Proof: Let 5 be a non zero element in the field GF(2"). Then by using
property (iv) of the fields we have: 52"~ = 1,

Adding 1 to both sides: 52"~ + 1 =0

Thisimpliesthat 2 isaroot of x2" -1+ 1. n

Corollary 1.1: The elements of GF(2™) formall the roots of ¥2" + x.
Definition 1.18: A minimal polynomial of § over GF(2) is a smallest
degree polynomial ¢(x) suchthat @(5) = 0, where § € GF(2™).

For example, the minimal polynomial of the zero element O of GF(2™)is x

and the minimal polynomial of the unit element 1isx + 1.
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Basic properties of minimal polynomials:
(i) Let f(x) be a polynomial over GF(2) and ¢(x) be the minimal

polynomial of 8. If §isaroot of f(x), then f(x) isdivisible by ¢(x).
Proof: Dividing f(x) by ¢(x), weobtain f(x) = a(x)@(x) + r(x),
where the degree of r(x) isless than the degree of @ (x).
Consider, F(#) = al) () +r(B)

0=a(B).0+7r(B) (Becausef(B)=w(B)=0)

= 7r(f)=0. Now, if r(x) = 0 then r is a polynomial with degree less
than degree of ¢(x) and has f§ as aroot. Thisis a contradiction to the fact
that ¢ (x) is the minimal polynomial of 3. Hence
r(x)=0,f(x)=alx)e(x)and so f(x) isdivisibleby @(x). =

(i) The minimal polynomial ¢ (x) of £ in GF(2") isunique
Proof: Let y(x) & g(x) be two minimal polynomials of .
If we takey(x) as minimal polynomials of £ then by (i) ¢(x) is divisible
by y(x). And if we take @ (x) as minimal polynomials of g then we have

y(x) isdivisible by ¢ (x). Hence, y(x) = ¢(x) -

(i) The minimal polynomial ¢(x) of g in GF(2") isirreducible
Proof: Suppose that ¢(x) is not irreducible = @(x) = y(x)1(x), where

both y(x),7(x) have degrees greater than zero and less than the degree

of (x).
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Since gB)=y(P)tB)=0=y(B)=00rt(8)=0. This is a
contradiction to the fact that «(x) is the minimal polynomial of j.

Therefore, @(x) must be irreducible. n

(iv) The minimal polynomial ¢ (x) of g in GF(2™) divides 2"+ x
Proof: It follows from corollary 1 and property i. u
(v) Let f(x) be an irreducible polynomial over GF(2) and @(x) be the
minimal polynomial of 8 in GF(2™). If f(5) = 0, then @(x) = f(x).
Proof: It follows from (i) that ¢ (x) divides f(x).
= f(x) = a()e(x),
But ¢(x) = 1 and f(x)is irreducible hence a(x) =1 = we must have
Fl) =) n
(vi)Let @(x) be the minimal polynomial of an element 5 in GF(2™) and let
e be the smallest integer such that £2° = g.
Then: @(x) = [T:23(x + 82). (1.4)

Example 1.19: Consider the Galoise field GF(2*) given by table 4.
Let ¢(x) be the minimal polynomial of an element 5 = «=.

The conjugates of 8 are; (a)? = af,(a®)?" = al? = o°.

(Notethat (a3)2" = (a?)? = a?* = a&?).

Hence, by (1.4) we have:

o) =[I23(x + f* ) where e = 3

gx)=x+a)x+a®)(x+ a®) (1.5
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Multiplying out right-hand side of the equation 1.5 using Table 4, then we
obtain the following:
pX)=x*+(@ +a*+a®)x* + (e®+ar+a®)x+a'
=4+ (l+a+l4a+a?+1+ad)x?+(e+a+a®+a?)x+l
=x+x7+1
All the minimal polynomials of the elements in GF(2%) are given in the

following table.

Table 5: Minimal Polynomials of the Elements in GF(23) Generated by
plx)=1+x+x°

Conjugate roots Minimal polynomials
0 X
1 1+ x
a,a’,at 1+ x+ x°®
a®,a,at 1+ x? + x°
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1.9 Vector Spacesover Finite Fields

Definition 1.19: Let V be set of elements on which a binary operation
called addition + is defined. Let F be afinite field. A scalar multiplication
operation denoted by"." is defined between the elements in F and elements
in V. Then < V, +, = is called a vector space over the field F if it satisfies
the following conditions:
(i) V isacommutative group under addition.
(i) For any scalar ¢ in F and any element vin V,a. visan element in 1.
(iii) (Distributive laws) for any elements;, 17 in ¥V and any scalars a, b in

F, a.(fu+v)=au+a.v,

(a+b).v=av+bv

(iv) (Associativelaw) forany vinV andany a and b in F,

(a.b).v = a.(b.v)
(v) Let 1 be the identity element of F. Then, forany vinV, 1.v = v.

The elements of V are called vectors.

Remark 1.12: Let K be an extension field of k, then K can be considered
as a vector space over k.

Since the set GF(2") is an extension field of GF(2), then GF(2™) can be
considered as a vector space over GF(2). Let V,, denote that set of all 2™
distinct n —tuples (£, f. ... f,_y)over GF(2).

Then (V,, +,.) is a vector space with + is vector addition and . is scaller

multiplication.
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Example 1.20: Let n = 3. The vector space I; of all 3 —tuplesover GF(2)
consists of the following 8 vectors: (00 0),(001),(010),(01 1),
(100),(101),(110),(111).

Definition 1.20: Let S be a nonempty subset of a vector space IV over a

field F then S isasubspace of V if S isitself a vector space over F.

Theorem 1.12: Let S be a nonempty subset of a vector space I over afield
F. Then Sis a subspace of V if and only if the following condition is
satisfied: if u,v € Sand y,§ € F, then yu + dvisasoin S.

Note that, a necessary and sufficient condition for a nonempty subset S of a
vector space IV over GF(2) to be a subspaceiis:

if x,yve S, thenx+y €S.

Example 1.21: Consider the vector space V; of all 3 —tuples over GF(2)
given in Example 120. Then the set of these vectors
(000),(001),(110),(111) satisfies the condition of theorem 1.12, so

it is a subspace of ;.

Definition 1.21: Let v,,v,,...,v7, be k vectors in a vector space V over a
field F. A vector v in Vis called a linear combination o f v,,v.,..., v, if:
thereareascalarsc,,ca, ...,c, INF St., v = ¢;17;, + €, V5 +... 405, Uy

Clearly, the sum of two linear combinations of v,,v,,...,7, is aso a linear
combination of v,,v,,...,17, and the product of a scalar ¢ in F and a linear

combinations of v,,v,,...,17, iISaso alinear combination of v,,1.,..., ;.
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So the set of all linear combinations of v,,v,,...,17, forms a subspace of V.

Definition 1.22: Let V be a vector space over a field F and let
5= {v,,1,,..., 17, } be anonempty subset of 1. The span of S is defiend as:
< 8§ == {c,v, +c,v, +...4+c, v, :c; €EF, v, € 5}

Clearly, the set <~ § = is a subspace of I/, called the subspace generated (or
spanned) by S. Given a subspace € of V, a subset S of (C is called a
generating set (or spanning set) of C if € =< § > and we also say S spans
C.

Remark 1.13: If S isaready a subspace of V', then < § == &.

Example1.22: Let S = {(0001),(0010),(0100)} beasubset of 1/,
over GF(2). Then<< S =>={(0000),(0001),(0010),(00100),
(0011),(0101),(0110),(0111)}

Definition 1.23: The vectors v,,v,,...,17, inavector space V over afield F
are said to be linearly dependent if there exist constants c.,c.,...,c, from F,
not all zero, such that:

vt vt e, = 0. (1.6)
Otherwise,v,,1,,...,17, are called linearly independent. That is v,,v,,...,17,
are linearly independent if whenever c,v.,+c,v,+...+c,17,=0, we must
have: c,=c, = -+ = ¢, =0.

Example 1.23: The set {(0001)(0010),(0100) is linearly
independent.
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Example 1.24: The set {(0001),(1000),(1001)} is linearly
dependent since (0001)+ (1000)+ (1001)= (000 0).

Remark 1.14: Any set which contains O is linearly dependent. Any set

containing at least two identical vectors is also linearly dependent. For
example, theset {(0001),(0000),(1001)}andthe set

£(1001),(1000),(1001)}arelinearly dependent.

Theorem 1.13: For any vector space there exists at least one linearly
independent set which spans the space. Hence we have the following
definition.

Definition 1.24: The set B = {v,,v,,...,7;} Of vectorsin a vector space V
over afield F is said to form a Basis for I if:

(i) B spans 1/,

(ii) B islinearly independent.

Definition 1.25: The dimension of a vector space V, denoted dim(V), is

the number of vectorsinabasisof V.

Remark 1.15:

() If v,,v,,...,v, form a basis for a vector space V', then they must be
nonzero distinct vectors.

(ii) A vector space IV over afinite field F can have many bases; but all bases

contain the same number of elements, called dim (7).
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Theorem 1.14: If S = {v,,v,,...,v, ] form abasis for a vector space I, then
every vector in ¥V can be written in one and only one way as a linear
combination of the vectorsin S.

Example 1.25: Consider the vector space I of all 3-tuples over GF(2). Let
us form the following 3-tuples: e, = (1 00), e, =(010), e; = (0 01).
Then every 3-tuple (a, a,a,) in V; can be expressed as a linear
combination of g,, e, e, asfollows:

(a, a, a,)= ag. ex+a,. e, +a,. e,

Therefore,e, e, ,e. span the vector space V.

We also see thet e,, e,, e, are linearly independent. Hence, they form a
basis for V;and the dimension of V,is 3.

This set of vectorsiis called the standard basis for V.

Theorem 1.15: Let V be a vector space over GF(2) and dim(V) = k,
then V has 2% elements.

Pr oof:

(i) f B ={v,,v,,...,17;, }isabasisfor V, then
V={c,v,+c,v,+...tov,.:c;, €EGF(2)v, € B}

Since|GF(2)| = 2, there are exactly 2 choices for each ¢, 1 =i < k.
Hence, VV has exactly 2% elements.

Theorem 1.16: If § = {v,,v,,...,v5} IS linearly independent then < § = is
a k —dimensional subspace of V/,.

Corollary 1.2 Let ¥V be an n —dimensional vector space, and let
B = {v,,v,,...,17,} be aset of n —vectorsin V" then:

(i) If B islinearly independent, then it isabasisfor V.
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(i) If B spans V, then it isa basis for V.
Definition 1.26: Let u = (uy uy ... u,_qJandv = (v, v, ... v,_,) be two
n-tuplesin I/, over GF(2) then:
(i) We define the Euclidean inner product (also know as scalar product or
dot product) of uand v as:
UV = Ug. Vg + U Uy + oo F Uy 1. Vg
(ii) The two vectorsu and v are said to be orthogonal if 1.1 = 0.
(iii) Let S be a nonempty subset of V.. The orthogonal complement S+of S
isdefinedtobe: St ={v eV, v.s =0V¥seS}
Example1.26: Letu=(1111),v=(1110), w= (100 1) be vectors
in 17, over GF(2) then:
wr=1-1+1-1+1-1+1-0=1
u-w=1-1+1-0+1-0+1-1=20
v-w=1-1+1-04+1-0+0-1=1.Hence, uand w are orthogonal.
Example 1.27: Let S={(0100),(0101)} €V, over GF(2). To find
St Letv = (v, v, 1, 3) € S+ then:
v-(0100)=0=v,=0andv-(0101)=0=1v,+1v; =0
Hence, we have v, = v, = 0. Since v, and 17, can be either 0 or 1, we can
conclude that S+ = {(0 00 0),(0 01 0),(10003,(1010)}
Theorem 1.17: Let C be a subspace of 1/,. Then:
(i) €+ isasubspace of V,.
(ie nct = {0}
(iiiy)cuct =V,

Theorem 1.18: Let C be ak —dimensional subspace of V. Then we have
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dim(C) + dim(C*H) =n.
Remark 1.16: If €+ is an orthogonal complement of ¢, then C is also an
orthogonal complement of C+. Hence, we say that ¢ and C* are
orthogonal complements.
Remark 1.17: If A isagiven kxn matriX, we associate the following four
fundamental vector spaces with A: the null space of A4, the row space of A4,
the null space of A™ and the column space of A.
Remark 1.18: Recall that
(@) The Null spaceof A = {x € R™: AX = 0}
(b) The row space of A is the set of all linear combinations of the rows
Of Ay
Theorem 1.19: If A isagiven kxn matrix, then:
(i) The null space of A is the orthogonal complement of the row space
of A with dim (row space) + dim (null space) = n.
(i) The null space of AT isthe orthogonal complement of the column space
of A with dim (column space) + dim (null space of A7) =k

Most information given in this chapter are from [3,9 &11].
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Chapter 2

Linear Block Codes
2.1 Basic Conceptsof Block Codes
The data of output of the source encoder are represented by sequence of
binary digits, zeros or ones. In block coding this sequence is segmented
into message blocks u = (ugy u, ... u,_,) consisting of k digits each.
There are a total of 2% distinct messages. The channel encoder, according
to certain rules, transforms each input message wuinto a word

V= (1, V; ...U,_; ) Withn = k.

Definition 2.1: Given the binary field GF(2) = {0, 1}, we define:

(i) A binary word w of length n over GF(2) is an n —tuple
w = (Wow; ...w,_, ) of binary digitsw, € GF(2) Vi=0,...,.n— 1.
(i)A binary block code of lengthn over GF(2) is a nonempty set C of

binary words w of length n each.
(ii1) Each element w of € iscalled acodeword in C.

(iv) Thesizeof C, denoted by |C|, is the number of codewordsin (.

Example 2.1: Let ¢ = {00,01,10,117. Then C is abinary block code of
lengthn = 2 and size |C| = 4.
A set of 2% distinct codewords w of length n each, over the binary field

GF(2) = {0, 1}, iscaled aBinary Block Code C(n, k).
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2.2 Definitions & Propertiesof the Linear Block Codes
We now introduce linear codes and discuss some of their elementary

properties.

Definition 2.2: A binary block code C(n, k) of length n and 2% codewords
is called linear if its 2* codewords form a k-dimensional subspace of the
vector space I, of all n-tuples over the field GF(2).

It is clear, from the above definition, a linear combination of codewords in

€ isaso acodeword in C.

Basic properties of alinear block code C(mn,k):

(i) Thezeroword (0 0 ... 0), isaways a codeword.

(ii) If ¢ isacodeword, then (—c) isalso a codeword.

(iii)A linear code is invariant under translation by a codeword. That is, if ¢
isacodeword in linear code C, then C + ¢ = C.

(iv) The dimension k of the linear code C(n, k) is the dimension of C as a

subspace of I, over GF(2), i.e, dim(C) = k.

Example2.2: Let € = {(A A... A): 4 € GF(2)). Then C isalinear block

code often called the repetition code.

Example2.3: LetC ={(11100),(00110),(11111),
(11010),(00011),(11001),(00000),(00101)}. Then C is a
(5,3) linear block code. Since any linear combination of the codewords in

 isaso acodeword in . For instance,
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(00011)+(11001)=(11010)eC
(00011)+(11010)=(1L1001)€eC
(11001)+(11010)=(00011) eC
(00011)+(11001)+(11010)=(00000)eC

Example 2.4: Find a basis for the linear block code C(5,3) given in

Example 2.3.

To find abasis for C, we use algorithm 1 of Appendix B as follows;

1011010 MO011010
1011010, lom0o1011
A=[t110001/—fo0omo0o 111
0111100/ 0000000
oo10111 looooooo

The leading 1's in the REF are in 1, 2 & 3, then the original columns of A

corresponding to these leading columns form a basis Efor . Thus

071
B = ]I , Is a basis of given code C.

1
1
1
1

(== e

[ R R

2.3 TheGenerator Matrix G,

Since a linear code C(n, k) is k-dimensional subspace of V,, then knowing
a basis of it enables us to describe its codewords explicitly. In coding
theory, a basis for alinear code C is often represented by a matrix ¢, called
a generator matrix. To obtain the generator matrix G for the linear C(n, k)
code we choose any k linearly independent codewords g,,4, ..., §i._1 IN C

and arrange them asrows of a k& x n matrix. So, we have
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- gu -
g1 oo Go1-- Gon-
. 910 Y11~ YGin-
G = | — : . . 2.1)
. k-10 Gr-11 Gr-1.1
Lk —1-

Where g:’ = (g:'ﬂ g:’i g:’.]:—ij for 0 = EI = ;‘-'
Then each codeword v of € isalinear combination of the codewords g,.

i.e.v=3Y"1ag, wherea; € {0,1].

Definition 2.3: A generator matrix G, for alinear C(n, k) code is a
matrix whose k rows form a basis for C.

By this definition, then € is the row space of G.

Algorithm 1 of Appendix B can be used to find the generator matrix ¢ of
any linear C(n, k) linear code .

Example 2.5: The generator matrix for the linear code C(5,3) given in

Example 2.3 is

11100
G=[{] 011 D],
11111

Note B={(11100),(00110),(11111)]}is a basis of C(5,3) as

shown in example 2.4.

2.4 Encoding Scheme
If w=(uyu; ... u,_;) Iis the message to be encoded, then the

corresponding codeword 17 can be given as follows:

o= w.lr
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-gﬂ_

= (Up Uy o Up—g) .| | T UpGo T UGy + =+ U3 Gpez. (2.2)

L1

i.e. X tu, g, isacodeword of C with coefficients u,,u,, ..., Uj_;-
Remark 2.1:

For each k-tuple (message) u = (ug,uy,...,u;_4) there corresponds one
and only one codeword v = (v,,14,...1,_). SO there are 2% distinct

messages and corresponding 2% distinct codewords.

Example2.6: Let U = {(000),(011),(110),(010),(00 1),

(100),(101),(111)} be the set of messages to be encoded using the

11100
generator matrixG=[{] 011 {]] of the linear code C(5,3) givenin
11111

Example 2.3:

Then the corresponding codewords are: V,, 17, ...V, _,
U, = (000)==V, =(00000)

U, =(011) =5V, =(11001)

U, = (110) 25y, = (1101 0)

=

= 01025y, = 00110
=02y —a111 1
— (100 — (1110 0)
U, — (10122 y. — 0001 1)

= =

U —(A1DZ5y — 0010 1)
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Remark 2.2: Since the rows of ( generate the C(n, k) linear code, the

encoder has only to store the k rows of & and to form a linear combination

of these rows with entries from the message.

Definition 2.4 Let v = (u, 1, ... u;_, ) be a message to be encoded. Then
the corresponding codeword v = (1, v, ... v,_,) in alinear code C(n, k)
has a systematic structure, if it may be divided into two parts, the message
part consisting of the k digits u, u, ...u;_, and the redundant checking

part which consists of n — k parity-check digits as shown in Figure 2 below

Redundant Checking part M essage Part

n-k digits k digits
Figure 2: Systematic Form of a Codeword

Definition 2.5: A linear systematic block code is a linear code with the

systematic structure of the codewords. !

The encoder is called systematic.

Using elementary row operations and/or column permutations for a linear

systematic (n,k) code the generator matrix & can be written in the

following form:

)
4 i _
G.‘«:x."! = ‘g:: — G= [F.fxn:“l—rrlur"} (23)

Hr-1
Poo Pt v Pom—x—1 100 0
P1g Py v Pim—p—1 010 0

=P P2y o Pamp—y @01 0
Pr-10 Pr-11 = Pr-1m-x-1 0 0 0 .. 1
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where [, isthe k x k identity matrix and P isak x (n— k) matrix which
generates parity-check digits.

We call this form of G the systematic form of a generator matrix G.

Now, let u = (u, u, ... u,_,) be the message to be encoded using the
systematic form of a generator matrix ¢, then the corresponding codeword
IS:

v=uG=ul[P [.,]=[uP ul.

And hence, the rightmost i digits of 1 are represent, the message digits
Ug,Us, ..., U;,_4 t0 be encoded:

V,_p;, = VO0=i<k (2.4)
And the leftmost n — k digits of 1 represent the parity-check digits, which

Is linear sums of the message digits

V; = UgPo; +UsPy; + o F Ui Ppsy; VO0OSj<n—k (2.5
The n — k equations given by (2.5) are called parity-check equations of the

code.

Example 2.7: Consider the € (5,3) given in example 2.3 with the generator

matrix
11100

G=[{]{]110]
11111

Using elementary row operations and/or column then the generator matrix

(¢ can be written as follows:

11100];p 4. (L1100
6={0 011 o222 G—{]l{]l{]).
11111 0 10 0 1
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Therefore, a linear systematic code 6(5,3) which is generated by G is

completely specified by (2.4) and (2.5). To show this:

Let u = (ug u,; w,) be a message to be encoded. The corresponding
1 1|1 0 O
codewordisv = (g vy 1, V3 V) = (Uy U, 'uz).({] 1(0 1 {])
0 110 0 1

given by these equations:
Vg = U
Uy = Uy +U; + U,
Vs = Ug

1:'13 = 14[-1
Uy = U5

Thus, the  corresponding  codewords for the  messages
{(000),(011),(110),(010),(001),(100),(L01),(111)}givenin

Example 2.6 are shown in Table 6 below:

Note that the code C generated by G is not necessarily the same code € that

would be obtained by G. But C is an equivalent code of € which is defined

in the following definition:
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Table 6: Linear Systematic block codewith k =3 andn =5

Message u Codeword v
(000) (00000)
011) 00017
(110) (10 ;L_livﬂL_{;)
(010) 01010
(00 1) ©100%)
(10 0) (11 ;L_E:_{;)
(10 1) (10 ;Lj_;t)
(111) (11 ;L_li_;t)

Definition 2.6: Two codes C; and C. are equivalent if they can be formed
by generator matrices G, and G,, respectively, that are related by

elementary row operations or column permutation. We call these matrices

&, & G, equivalent generator matrices.
2.5 TheParity-Check Matrix Hy—j).n

Another matrix associated with every linear block code is the parity-check

matrix H.

By Theorem 1.19, the null space of & is orthogonal to the row space of .
So we construct an (n — k) X n matrix H whose rows form a basis of the
null space of G inthiscase G.H™ = 0.

An n —tuple v is a codeword in the code generated by ¢ if and only if

H.vT = 0. Thismatrix H is called a parity-check matrix of the code .
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The 2™ linear combinations of the rows of the matrix H form the dual

code C+(n,n — k) of C which is defined as follows;

Definition 2.7: Let C(n, k) bealinear codein V,,. The dual code C+ of C is
the orthogonal complement of the subspace C of 17,.

Note that C* islinear code with dim(C) + dim(C*) = n.

Remark 2.3: The dual code €+ of € is spanned by the null space of the

generator matrix & of C.

Example 2.8: Consider the linear block code € (5,3 given in example 2.3

11100
with the generator matrix G = [0 0 1 1 0}
11111

To find the parity-check matrix H of C, we find a basis of €+ which forms
the rows of H. To do this we use Algorithm 2 of appendix B as follows;

Form the matrix G

1110 a] - [1 100 1] (oralis)
G=[00110—00®O0 1|—
11111 000m1
1 23 45
00100
W1001 11001)[10000
G=[{]{]1{]1.F"=[{]{]1{]1 00010
000Mm1 0oo0o0miljooooo
01000
(1 11 0 0\ (, 7
= {]101@);>
0 1l0 0 1
2 51 34
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01000
00001
. /10110 0 . or 0100
H‘(o 1‘111)_>H‘H'F ‘01111)'38?83
00010
11000
10111

Therefore, C+ ={(11000),(10111),(00000),(01111)}

As a result, a parity-check matrix H,,_x).» for alinear code C(n, k) is a

generator matrix for its dual code C+ where
oo Ngq homn_1
hl ‘ Ihm hn Ry
]—‘( 1

n—k—1.0 J—Fc—l.l h]:—.ﬁ:—i.]:—l

For alinear systematic (n, k) code € the parity check matrix can be written

in systematic form as the follows:

10 .. 0 pCC 701_3 A Tc?l-'c—‘l.ﬂ
. 01 . 0 p p e P
H = [I]:—.i( FT] _ 01 :11 L-1.1 (2.6)
ID ID wer l -I-GCI:-:—,"'—']_ -I-G-.I..H—-I\'—I " .I-G'I‘._I'H_'I‘._I

Where PT is the transpose of the matrix P in G = [P,.,._. 1.

Theorem 2.1: For an (n, k) linear systematic block code € with generator

matrix ¢ and parity check matrix H we have G.HT = 0.
Proof: Consider [j = (P.E{){I:]!—.[{:IU.[{) and

H = (I |[PTnsyae) = HT = (P-[”_k- )

Fxin-k)

Now, we have
.
G HT (Flcx n—k) |-I ) ( " ) = F.icx{lz—.fc] + F.R:x(]:—k] =0

l-:)-{(]:—.i-: ]
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where + is modulo-2 addition. |
Note that the matrix H given in (2.6) is a parity-check matrix of an

equivalent code C, generated by G given in (2.3), of the linear code C.

Theorem 2.2: An (n, k) linear systematic block code C is completely
specified by its parity-check matrix H.

Proof: Let u = (uy u,... u,_,) be the message to be encoded. Then the
corresponding codeword would be

V= (Vo Vg o Vp g Ug Uy o Upy)

Since H.1>T = 0 then we have;

T".:]
™
10 .. 0 py P1o Pr-10 : 0
0L .. 0 py P1y e Pr-11 Unei=1|_ |0
: 1 Up 2l
00 .. 1 Pon-s-1 Pro-x—1 = Pr-in-k-1 1‘?1 0
Up—1
Vg + Pog-Up + Pig- Uy + -+ Pr_g0-Up—g = 0
Uy + Pog-Up TP Us o FPp_g5.Uyg =0 (2.7)

Up—t—1 T Pon-k-1-Up T Pimot—1-Us T F D gpogemg Uy = 0

These n — k parity-check equations can be give by this general equation:

U; + Poj-Up + D1 Uy -+ Py Uy =0 (2.8)
for0=j<n—=k,

Rearranging equation (2.8) we obtain the same parity-check equations of

(2.5).
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2.6 Encoding Circuit for aLinear Systematic (n, k) Code

In this section, we will introduce an (n k) linear systematic codes via a

direct descriptive approach by the implementation in (Figure 3).
Given k-data bits as the message u = (u, ... u;_,), then the encoding

circuit for an (n, k) linear systematic code can be implemented based on

the equations of (2.4) and (2.5).

a1 T chaing

Figure 3: Encoding Circuit for a Linear Systematic (n, k) Code

Here & denotes modulo-2 addition and — % denotes connection if

p;; = 1 and no connection if p;; = 0.
Let u=(u, ... u,_,) to be encoded then this message is shifted into

the message register and simultaneously into the channel. As soon as the

entire message has entered the message register, the n — k parity-check
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digits are formed at the outputs of the n — k& modulo-2 adders @. These

parity-check digits are then serialized and shifted into the channel.

Example 2.9: The encoding circuit for a linear systematic (5,3) code

given in (Example 2.7) is shown in (Figure 4), where the connection is

based on the parity-check equations given in this example.
Ty = Uy

k@
- |

Figure 4: Encoding Circuit For aLinear Systematic (5,3) Code
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Chapter 3

Error Detection, Error Correction & Decoding Schemes
A fundamental concept in secure communication of data is the ability to
detect and correct the errors caused by the channel. In this chapter, we will

introduce the general schemes/methods of linear codes decoding.

3.1 Channed Model / Binary Symmetric Channe

The channel is the medium over which the information is conveyed.
Examples of channels are telephone lines, internet cables and phone
channels, etc. These are channels in which information is conveyed
between two distinct places or between two distinct times, for example, by

writing information onto a computer disk, then retrieving it at later time.

Definition 3.1 A communication channel consists of a finite channel

aphabet A=1{a,a;,..,a,_,} as well as a set of forward channel
probabilities P(a; received | a; sent), satisfying

Z:’f:_; P(a; received | a,;sent) =1, V0=i<q (3.1)
Seefigure 5.

Note that P(a; received | a, sent) is the conditional probability that a; is

received, given that a, is sent.
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Figure 5: A Communication Channel

Definition 3.2: A communication channel is said to be memoryless if the
outcome of any transmission is independent of the outcome of any previous

transmission i.e.
Ifv=(vyv, ... v,_s)andr=(r,r ..r,_,)aewordsof length n, then

p(r received|v sent) = []-2 p(r; received|v; sent) (3.2)

Now, for purposes of analysis, channels are frequently characterized by
mathematical models, which (it is hoped) are sufficiently accurate to be
representative of the attributes of the actual channel.

In this thesis we restrict our work on a particularly simple and practically
important channel model, called the binary symmetric channel (BSC),
defined as follows:

Definition 3.3: A binary symmetric channel (BSC) is a memoryless

channel which has channel alphabet {0, 1} and channel probabilities
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p(1 received|0 sent) = p(0 received|1 sent) = p <

[ NS

p(0 received|0 sent) = p(1 received|1 sent) = 1 —p.

Figure 6 below shows a BSC with crossover probability p.

Figure 6: Binary Symmetric Channel

3.2 General Methods of Decoding Linear Codesover BSC

In a communication channel we assume a codeword v = (v, ... 1,_,) IS
transmitted and suppose r = (73, ... T;,_, ) IS received at the output of the
channel. If  isavalid codeword, we may conclude that there is no error in
1. Otherwise, we know that some errors have occurred and we need to find
the correct codeword that was sent by using any of the following general
methods of linear codes decoding:

1. Maximum likelihood decoding,

2. Nearest neighbor/Minimum distance decoding
3. Syndrome decoding

4. Standard array
5

. Syndrome decoding using truth table
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These methods for finding the most likely codeword sent are known as
decoding methods.
Recall that the model of a data transmission system can be represented as

followsin Figure 7.

Message (u)| Encoding (v) BSC(r) Detecting & Decoding (u)
(Error) Correcting (v)

Figure 7. Simplified Model of a Code System

We start with the maximum likelihood decoding, which coincides with the
minimum distance decoding under some conditions which will be studied
in the following two sections, then we consider more comprehensive

methods.

3.3 Maximum Likelihood Decoding
Suppose the codewords {v,,v,,...,,x_,} form the linear block code

C(n, k) and suppose a BSC with crossover probability p < % IS used.

Let aword r = (7,17 ... 7,,_,) Of length n be received when a codeword
v, = (v, vV, ..V, )EC is sent. Then, The maximum likelihood
decoding (MLD) will conclude that v, is the most likely codeword

transmitted if 7. maximizes the forward channel probabilitiesi.e.

P(r received|v, sent) = 'ma.rL.;_ECF(r recei'i.-'ed|’t-‘j sent) (3.3
Vji=01,.,2%-1

where p(r received|v, sent) = [T} p(r; received|v;, sent).
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Example 3.1: Let € ={(000),(011)} be a linear block code. Let
= (111)isreceived when v = (0 1 1) is transmitted over a BSC with
crossover probability p = 0.05 then we can try to find the more likely
codeword sent for » by computing the forward channel probabilities:

P(1 1 1received|0 0 O sent) =

= (P(1 received|0 sent))?

= (0.05)* = 0.000125,

P(11 1received|0 11 sent) =

= P(1 received|0 sent) x (P(1 received|1 sent))”

— (0.05)(0.95)% = 0.045125.

According to MLD; since the second probability is larger than the first, we

can conclude that 011 is more likely to be the codeword sent.

Now, There are two kinds of MLD:

(i) Complete maximum likelihood decoding (CMLD). If a word r is
received, find the most likely codeword transmitted. If there are more
than one such codewords, select one of them arbitrarily.

(ii) Incomplete maximum likelihood decoding (IMLD). If a word r is
received, find the most likely codeword transmitted. If there are more

than one such codewords, request a retransmission.

In general; for a BSC with crossover probability p <<= we have the
following forward channel probability:
n—1
P(r received|v sent) = n'p('r,- received|r, sent)
=0
=p*(1 - )™ (3.4)
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where e is the number of places at which + and v differ.

Sincep < 1 = 1 — p > p, S0 this probability is larger for larger values of
n — e, i.e. for smaller values of e.

Hence, this probability is maximized by choosing a codeword 1 for which
e isas small as possible.

This value e leads us to another decoding method that is the nearest

neighbor decoding or (minimum distance decoding).

3.4 Nearest Neighbor Decoding/Minimum Distance Decoding
In this section an important parameters of linear block codes called the
hamming distance and hamming weight are introduced as well as the

minimum distance decoding.

Definition 3.4: Let x = (xy X; ... X,_,) and v= (1, v, ... V,_,)betwo
binary words. The Hamming distance or simply (distance) from x to v,
denoted by d(x,v) or d,(x,)), is defined to be the number of positions
that the corresponding elements differ:
dy(x,y) = d(x,y) = 55 d(x,0), (35)

. e Y 1 El.f -1*"-:' + J?:'
where: d(x,,v;) = {{] iFx, =y,
Example 3.2 Let x=(00111) and y=(1 100 1) be two
codewords in the linear block C(5,2) over GF(2). Then the hamming
distance from x to v is,

do,y) =2 ,dx,y)=1+1+1+1+0=4
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Theorem 3.1: Let x, y and z be words of length n over GF(2). Then we
have:

(i) 0=d(x,v)=n,

(i) d(x,v) =0 S x =y,

(i) d(x, y) = d(,x),

(iv) d(x, z) = d(x,v) + d(v,z) (Triangle inequality).

Proof: The proof of (i), (ii) and (iii) is obvious from the definition of the
Hamming distance. We just prove (iv).

Use the definition of the hamming distance in (3.5). Therefore, we want to
show the following:

d(xg,zg) + -+ d(x,_1,2,-1) =

d(xg, Vo) ++d(x,_1, Vy_y) +d(g, 2p) + -+ d(Vy_1,Z,-1) (3.6)
If x, =z, thend(x,;,z,) =0

= d(x,z,)=0=d(x,v,) +d(y,z,)=0+00r1+ 1

If x, = z, then d(x,,z,) = 1.

Ify, £x, =2dly,x,)=1.1fy, £z, =2 d(v,z,)=1.

Otherwise, if y; = x; and y, = z; = x, = z, which is contradiction.
Hence, d(x,,z,) = d(x,,v,) +d(y,,z), forsomei =0,1,...,n = 1.
Therefore, (3.6) is proved = (iv) is aso proved. |
Definition 3.5: Let x = (x;x;..x,_,) be a binary n-tuple. The
(Hamming) weight of x, denoted by w(x), is defined to be the number of
nonzero components of x; that is,

w(x) =d(x,0) = X1 d(x,,0), (3.7)
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1 ifx, =0
0 ifx,=0

where 0 is the zero word and d(x;,0) = {
Remark 3.1: The hamming weight of x can also be equivalently defined
by; w(x) = w(xg) + wlx,) + -+ wl(x,_.).
Example 3.3: The hamming weightof x =(1 1 0 0 1)is3.
Lemma3.l: If x,v €V, thend(x,y) = w(x — ).
Proof: d(x,v)=d(x—vy,v—y) (since V, is a vector space which is
commutative group under addition. So for v € I/, there is additive inverse
denotedby -y € V,st, —yv+v=v—y=0)

=d(x—y,0)=w(x—Vv)
=d(x,v) =w(x —y). H

Note that in binary codes negation is unnecessary. The following corollary

Is an immediate consequence of lemma 3.1.

Corollary 3.1: If x,y betwo binary n —tuples, then d(x, v) = w(x + v).
Example34: Forx=(1 0 01 0 1 1),y=(1 1100 1 0)

dix,y)=4andw(x+yv)=w(0 1 110 0 1)=4

We now explain the minimum distance decoding; suppose the

codewords v, v, ..., ,k_, from acode C(n, k) are being sent over aBSC.
If a word r is received, the nearest neighbor decoding or (minimum
distance decoding) will decode r to the codeword v, that is the closest one

to the received word r. Such procedures can be realized by an exhaustive
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search on the set of codewords which consists of comparing the received
word with all codewords and choosing of the closest codeword. That is;

d(r,v.) =min,ecdr,v,) Vi=01,.., 2k — 1. (3.8
Just as for the case of maximum likelihood decoding, we can distinguish
between complete and incomplete decoding for the nearest neighbor
decoding. For a given received word 7, if two or more codewords satisfy
(3.8), then the complete decoding arbitrarily selects one of them to be the
most likely word sent, while the incomplete decoding requests for a

retransmission.

Theorem 3.2: For aBSC with crossover probability p < i the maximum

likelihood decoding is the same as the nearest neighbour decoding.

Proof: Let C(n, k) denote the code in use and let + denote the received
word (of length 7). Then for any codeword 1, and for any 0 = ¢ < n, using

MLD we have
d(r,v) = e = P(r received|v sent) = p*(1 —p)" ¢ (3.9)
Since p {:% = 1— p = p, SO the probability in (3.9) is larger for larger

values of n — g, i.e. for smaller values of e = d(r,17). Hence, it is the same

as the nearest neighbor decoding. |

Remark 3.2: Inthis thesis we will assume that all communication channels
are binary channels having crossover probabilities p < 1 Conseguently, we

can use the minimum distance decoding to perform MLD.
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Example 3.5: Recall that in example 3.1 we use MLD, let us use the

minimum distance decoding for the same example.
d((111),0000) =3, d((111),(011))=1, by using nearest

neighbor decoding, we decode » to (0 1 1). The IMLD table for C is as

shown in Table 7, where' ' means that retransmission is sought.

Table7: IMLD Tablefor (.

Received v | d(r,(000))| d(r.(0 1 1)) | Decodeto
(000) 0 2 (000)
(100) 1 3 (000)
(010) 1 1 _
(001) 1 1 _
(110) 2 2 _
(011) 2 0 (011)
(101) 2 2 _
(111) 3 1 (011)

Now, we introduce two parameters of linear block code C the

(Minimum) distance of ¢ and the minimum weight of C.

Definition 3.6: For a code € containing at least two codewords, the
(minimum) distance of ¢, denoted by d,..,.,(C) or d(C), is
Ay (C)=d(C)=min {d(x,v):x,yEC,x # vV}

Corollary 3.2: According to lemma 3.1, the (minimum) distance of a

binary block code C is;

dpin (C)=d(C) = min{w(x+v):x,veE C x = v]} (3.10)
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Remark 3.3: We can denote a code C(n, k) using the parameters

n,k,andd,,, a (n,k,d,;,) code where the length of code C is n,

n

dimension of the code € is k and d,,,,, is the distance of the code C.

Example 3.6: Let € = {(00000),(00111),(11111)(11000)}
be an (5,2) linear code. The minimum distance of Cisd,,.,,(C) = 2.
Sinced((00000),(00111)=3,d((00000),(11111))=5,
d((00000),(11000))=2d((00111),(11111))=2,
d((00111),(11000))=5,d((11111),(11000)) =3,

Hence, C isabinary linear (5,2,2) code.

Definition 3.7: The parameter w,,;,, = min{w(c):c € C,c = 0} is called

the minimum weight of the linear code (.

Theorem 3.3: The minimum distance of a linear block code C is equal to

the minimum weight of its nonzero codewords.
Proof: d,,;, = min{d(x,v):x,v € C,x = v}
=min{w(x +v):x,v € C,x # v}
Since € is alinear code, so the sum of two vectors x, y is also a codeword

cin=min{w(c):ceC,cx0}=w,,,. u

w(00111D),w(l111 1),}

In (Example 3.6) d ;s (€) = min { w(11000)

= 'm{ﬂ{B, 5J 2} =2 = Winin
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Next, we prove a number of theorems that relate the weight structure of a

linear block code to its parity-check matrix.

Theorem 3.4: A linear block code C(n, k) which has H as parity-check
matrix, contains a nonzero codeword v of hamming weight [ if and only if
there exist [ columns of H s.t. the vector sum of these I columns is equal to
the zero word.

Proof:(=) Let H = {hy,h,,...,,_,} be the parity-check matrix for a
linear code C(n, k) and let v = (1, 7, ... 1,,_,) be anonzero codeword in

C st., w(v) = = v has [ nonzero components say v; ,1;_,..., V;, where

D=, <, << =n— 1
Now, since visacodewordin ¢ = 0 = H.v"

= hovg+ -+ h, 1V,

= h !-11-'1-1+h LVt t h:;. vy,

=h; +h_+--+h

(&) Suppose that 7; ,h; , ..., t;, are [ columns of H sit.
hy +h; +-+h;=0 (3.11)
Consider an n-tuple x = (x, ... x,,_;) whose nonzero components are
Xi Xy, X, = w(x) = 1. We want to show that x € C.
Consider the product H. x™ = hgxy + -+ Ry 1 X4
= h,; X +h, x, +..+ D %,
=h; +h, +--+h
= 0. From (3.11)

= x e (. [ |
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Corollary 3.3: Let C be alinear block code with parity-check matrix H. If
no d,., — 1 or fewer columns of H add to 0, the code has minimum

weight at least d. ...

Corollary 3.4: Let C be alinear block code with parity-check matrix H.
The minimum weight or (Minimum distance) of € is equal to the smallest

number of columns of H that sum to (.

Example 3.7: Let C={(00000),(00111),(11001),(11110)}

be (5, 2) linear code with the corresponding parity-check matrix
110 0 0

H=|o 0 1 1 0|
101 0 1

We see that all columns are nonzero and that no two of them are equals.
Therefore, no two or fewer columns sum to 0. Hence, the minimum weight
of C(5,2)isat least 3.

Note that, the zeroth, first and fourth columns add up to zero, i.e,,

RRHRERE

= W = Qo = 3.

min min
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3.5 Syndrome & Error Detection/ Correction

3.5.1 Syndrome & Error Detection

Consider an (n, k) linear code €. Let v = (v, v, ... 1,,_,) be a codeword
that was transmitted over a noisy channel (BSC). Let r = (ip 1y ... 15, 1)
be the received vector at the output of the channel. Because of the channel
noise, r may be different from 1. Hence, the vector sum

e=r+v=1_(g € ..€,_1) (3.12)
iIsann-tuplewheree, =1 forr, = v, Vi=0,1,...,n—1.

This n-tuple is called an error vector or (Error pattern). The 1's in e are the

transmission errors caused by the channel noise.

Definition 3.8: Let € £V, be an (n, k) linear code with parity-check
matrix H. Then for areceived word r, the syndrome of v, denoted by s(r)
or (s)is:

sr)=s=r.H =(sy .5, 1_1) (3.13)

S
Ors" =H." = :
Sn—k—1.

Notethat sisalinear map s : 1V, = V,

n—=k

Remark 3.4:

(i) s(r) =0 < r € C = risacodeword and the receiver accepts r as the

transmitted codeword.

(i) When s = 0, we know that the received word r & € and the presence

of errors has been detected.
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Definition 3.9: An error pattern e is called an undetectable error pattern if
it isidentical to a codeword.

When a codeword v is transmitted over a noisy channel, and undetectable
error pattern e occurred to the transmitted codeword v then, the received
word r will be r = v+ e, which is also a codeword since it’s the sum of
two codewords. Thus, the syndrome of  will be zero.

In this case, the decoder accepts r as the transmitted codeword and thus

commits an incorrect decoding, and we say that the decoder makes a

decoding error.

Now, let H be a parity-check matrix in a systematic form of an (n, k) linear

code. Then based on (3.13), the syndrome digits are as follows;

s)=s(rpry . Ty ) =7.H = (55 .8 p_joq)

1 0 0
0 1 0
( j 0 0 1
- TG Tl T:—l .
: Fon Fn r B -1
P i Plara
| F10 Praa Fr1a-5-1 |
— Syndrome digits are;
So =T + T—kPoo t Th-k+1P1o T+ T 1Pr-1.0
S =T + T ilor1 + Thops1Pas + o T 1 Pi-11 (3.14)

Shnok—1 = Th—k-1 + Tk Pon—k-1 + To—ke1Pin—k-1 +.. -HV;: L) P e |
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Note that, the syndrome digits given in (3.14) can be formed by a circuit

similar to an encoding circuit as follows:

f "1k Ta=k+1 LA

Figure 8: Syndrome Circuit for a Linear Systematic (n, k) Code

Example 3.8: Consider the (5,2) linear code whose parity-check matrix
10011
01011
00110

H= in systematic form given in example 3.7.

Let r = (1, 1y 5 13 7,) be the received word. Then its syndrome is given

by:
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S=(88,8)=0ynr, 1 1373).

N = ="
=l =
==l e ™ =]

= Syndrome digits are;
So =To+T13+T1,
S;=h+1,+T1,

S, =T, + 15

The syndrome circuit for this code is shown in figure 9.

Figure 9: Syndrome Circuit for the (5,2) Code

3.5.2 Syndrome& Error Correction

Theorem 3.5: The syndrome s of a received vector r = v+ ¢ depends
only on the error pattern e, and not on the transmitted codeword 1.

Proof: Sincer = v+ e
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Then by (3.13) we have;

s(ry=s=r.H ' =(v+e)H  =v.H +e.HT

But, 7. H" = 0thens(r) =e.H" (3.15)

So the syndrome of r doesn't depend on v |

We now use the syndrome for error correction; let H be a parity-check
matrix in a systematic form of an (n, k) linear code €. Then the syndrome
digits of thereceived word r = (7, 1y ... 1;,_, ) can be formed as follows;

s(r)=s(rpr .. n_)=e¢e HT = (Sg o Spop—1)

1 0
0 1
( ) 0 0 1
== E,:} El E':_j .
] P P e Pop-i1
plﬂ pll Plx_\;;_l
L Fr1o Pray Prlak1 |

= Sy =€ t €, _;Doo T €n-ns1P1o T T € 1Pr-10
S5 =€t €, yPorT€_pralii T T 6, _1Pr_11 (3.16)
5

Cn—t-1 T xPom—1—1 T Cpn2t4Pim—p—1 T T 1P 4n—1r-1

n—k—1
The system above (3.16) of linear equations can be solved for the digits of

an error pattern ey, e, ...,e,_, by the following procedure for error

correction which is using (3.14, 3.16).
1. Compute the syndrome s = (s, s, ... 5,_,_,) Of the received word
r=(ry,n ..1,_;)using (3.14)

2. Solve the system of the equationsin (3.16) for e = (e, e; ... ,,_;)-
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Note that the system (3.16) is an (n — k) x n of linear equations, and
S0, it doesn't have a unique solution.
3. Compute the decoded word 17"
vo=r+e
Theorem 3.6: The n — k linear equations of (3.16) do not have a unique
solution but have 2% solutions.
In other words, there are 2% error patterns that result in the same syndrome,

and the true error pattern e isjust one of them.

Theorem 3.7: For the BSC, the most probable error pattern e is the one

that has the smallest number of nonzero digits.

Example 3.9: Again, we consider the code C(5,2) with the parity-check
10011
01011
00110

codewordover BSCandr = (1 0 1 1 1) be the received vector.

matrix H = .Let v=(0 0 1 1 1) be the transmitted

The problemisto find the digits of an error pattern e = (e, e, e, e; e,).

1. Computethe syndrome s = (s, s; s,)0f r= (101 11)using (3.14)

1 00
010
s=r.HT=(1 0111 o0 1= 0 0
111
110
2. Solve the system (3.16) for e = (e; e, e, e; e.) with s =(100) as
€
10011
1001 1y|e:| 1 010110
00110/|¢€s 0 ee.eee,

=¥
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E,:} +€3 +€4_ =l

=18, te;+e =0

There are 27 = 4 error patterns that satisfy the above system depending
one; e, =000r01orl0orl 1theyare
(100000100101 110),(1011 1)

Now, since the channel is BSC, Then the most probable error pattern

that satisfies the systemaboveise = (1 0 0 0 0)which hasthe

smallest number of nonzero digits.

3. The receiver decodes the received word = (1 0 1 1 1) into the
following codeword 17,
v'=r+e=(10111)+(1 000 0)=( 011 1)

We see that the receiver has made a correct decoding.

Later we show that the (5,2) linear code considered in this example is

capable of correcting any single error over a span of five digits; that is, if a
codeword is transmitted and if and only if one digit is changed by the
channel noise, the receiver will be able to determine the true error vector

and to perform a correct decoding.
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3.6 Error-Detecting & Error-Correcting Capabilities of
Block Codes

3.6.1 Error-Detecting Capabilities of Block Codes
Definition 3.10: Let u be a positive integer. A code € is

u —error—detecting if, whenever a codeword incurs at least one and at most
u errors, the resulting word is not a codeword.

Definition 3.11: A code C is exactly u —error—detecting if it is
u —error—detecting but not (u + 1) —error—detecting.

Example 3.10: Consider the linear C(5,2,2) code of Example 3.6.
C={00000),(00111),(L1111),(11000)}. Thiscodeis

a 1-error—detecting since changing any codeword in one position does not
result in another codeword. In other words,

(00000)—(00111)— needsto change 3-bits,
(00000)—(11111)— needsto change 5-bits,

(00000)— (11000)— needsto change 2-bits,

(00111)— (11111)— needsto change 2-bits,

(00111)— (11000)— needsto change 2-bits,
(11111)—(11000)— needsto change 3-bits

In fact, € is exactly 1—error— detecting. Since C is not a 2-error-
detecting. Therefore, if two errors occur in the first and second digits of the
codeword (00 1 1 1) we obtain the codeword (1 1 1 1 1). Hence, these two

errors will not be detected.

Lemma 3.2: A block code € with minimum distance d,.,,, is capable of

detecting all the error patterns of d,,;,, — 1 or fewer errors.
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Proof: If the minimum distance of a block code C is d any two distinct

miin?

codewords of C differinat least d.,.,,, places. For this code, no error pattern

min

of d,.,, —1 or fewer errors can change one codeword into another.

Therefore, any error pattern of .., — 1 or fewer errors will result in a

min

received vector » that is not a codeword in . [

Lemma 3.3: A block code ¢ with minimum distance d cannot detect all

min

the error patternsof d__.  errors.

min

Proof: WLOG, suppose x & v are two codewords of C(n, k,d,,.,,) that are

differind,,., places.

€ islinear code
Now, d(x,v) = d,;, = w(x + 1) = d, w(v)=d(v,0)
= iy

Let e be an error pattern of d,..,, errors which has 1's in the corresponding

positions of the 1's of v. Then r = 1» + e will be the zero codeword.

Hence, this error will not be detected. [ |

The same argument applies to error patterns of morethan d,..,,, errors.

min

Now, a cording to lemma 3.2 and lemma 3.3, we can conclude this

theorem;

Theorem 3.8: A code C with minimum distance d Is an exactly

min

(d,.., — 1)-error—detecting code.

min

Proof: Suppose C has minimum distance d,..,,. By lemma 3.2 € is capable
of detecting all error patterns of d,..;,, — 1 or fewer errors.

By lemma 3.3 € cannot detect all the error patterns of d,,.,, errors. So, it is

min

anexactly (d,,,,, — 1)-error—detecting code. N

min

For instance, Example 3.10 is an exactly 1-error-detecting code.
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Even though a linear code with minimum distance d,., Quarantees

n
detecting all the error patterns of d,.,,, —1 or fewer errors, it is also
capable of detecting a large fraction of error patterns with d,,;,, or more
errors. For instance, consider again the € (5,2,2) code given in Example
3.10. Suppose that an error pattern of 2-errors occurs during the
transmissionof v = (11 11 1) then;
(11111)=(00111)eC
(11111)—=(01011)&C
(11111)—=(0110)&C
(11111)—-(0111MMEC
(11111)—-(10011HEC
(11111)—-(1010H&C
(11111)—-¢10110) &
(11111)—-¢1100)&C
(11111)—-¢11010)&C

(11111)—>(11100)&C

Theorem 3.9: An (n, k) linear code is capable of detecting 2™ — 2% error
patterns of length n.
Proof: Among the 2™ — 1 possible nonzero error patterns, there are 2% — 1

undetectable error patterns that are identical to the 2% —1 nonzero

codewords. Hence,
2" —1—(2F=1)=2"—1—-2+1 = 2™ — 2% detected errors [
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Remark 3.5:

(i) If an error pattern is not undetectable error pattern, the received
vector will not be a codeword. Hence, the syndrome will not be zero. In
this case, error will be detected.

(ii) There are exactly 2™ — 2% error patterns are detectable error patterns.

(iii) For large n, 2% isin general much smaller than 2. Therefore, only a

small fraction of error patterns pass through the decoder without being
detected.

(iv) The random-error-detecting capability of a block code with minimum

distance d,,;, isd,.;, — 1.

3.6.2 Error-Correcting Capabilities of Block Codes

If a block code ¢ with minimum distance d IS used for random-error

correction, one would like to know how many errors that the code is able to

correct.

Theorem 3.10: A block code with minimum distance d guarantees

min

Iﬁ“i“‘i

correcting all the error patterns of t —[ ] or fewer errors. The

parameter ¢ is called the random—error—correcti ng capability of the code.

([d"“f‘_ll =t=t<-""—<t+1) where [ ] denotes greatest integer
function.

Proof: Let d,,,,, be the minimum distance of a block code C(n, k).

Since d,,;,, iseither odd or even let t be a positive integer s.t.
2t+1=d,,;, =2t+2 (3.17)
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Now, let v be the transmitted codeword and r be the received word. Let x
be any other codeword in C. Then, by the triangle inequality and hamming
distance: d(x,v) < d(x,7) +d(r,v) (3.18)
Suppose that an error pattern of £ errors occurs during the transmission of 12
i.e. d(r,v) = t. Since v, x are codewordsin €, we have
d(x,v) = d,..,. Butd,,,, =2t +1 (By 3.17)
Thend(x,r) +d(r,v) zd(x,v) = dp;, = 2t + 1
= dxr)=2t+1—-d(r,)=2t+1—-1
Cael: Ifi =t
= dx,r)=t+1>t=t=d(r,v)
= d(x,7) = d(r,v) (3.19)
Case2: If t <t = t—1t > 0(add t into both sides)
=2t—t>t=2t—t+1>t>1t
= dx,r)=2t+1—t=t=d(rv)
= d(x,7) >d(r,v) (3.20)
The inequality in (3.19) and (3.20) says that if an error pattern of t or fewer
errors occurs, the received word 1 is closer by the minimum distance
decoding to the transmitted codeword v than other codeword x in . Based
on the MLD this means that the conditional probability P(r|v) is greater
than P(r|x) for x = 1. SO r is decoded into v, which is the actual
transmitted codeword.

On the other hand, the code is not capable of correcting all the error

d?‘i‘!:?’l._j'

patterns which contains more than t = [—] errors.
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I.e. there is at least one case where an error pattern contains more than ¢
errors results in a received word  which is closer to an incorrect codeword
say x than to the actual transmitted codeword v. To see this consider the
following case:

Consider € ={(00000),(11001),(11110),(00111)}be(5,2,3)
linear code. Choose v = (11001),x=(11110) & ((5,2,3)where

d(r,x) = d,,,, = 3 and the random-error-correcting capability of the code
€(523)ist = [2m2=] = [ =1,

Suppose that v = (1 100 1) is transmitted and is corrupted by the error
pattern e, = (0 0 1 1 0). Then the received word is
r=v+e, =(11111)=e, =r+v
= w(e,) =w(r +v) =d(r,v) (3.20)
Let x=(11110) st. x=v+e, +e, where e, ande, be two error
patterns that satisfy the following conditions:
(i) e, +e,=v+x=(00111)
— e =(00111)+(00110)=(00001)
(i) e, , e, don't have nonzero components
In common places.
Obviously, from (i) and by usinge; = r + v
e, =x+v+e =x+vrv+(r+v)=x+r
= w(e,) =wlx+7r) =d(x,7) (3.22)
Combining (3.21) and (3.22), we obtain the following:
d(r,v) = 2and d(x,r) = 1.

So r must be decoded into x, not v and the error will not be corrected.
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3.7 Standard Array for Linear Codes

Let us now consider another method of decoding linear block codes that
uses MLD or the minimum distance decoding.

Recall that € = {v,,17,, ..., 17,x]} IS the set of codewords that is a subset of
the set of dl n-tuplesV,, = {v,,17,, ..., 75n

In this decoding scheme V, is evenly partition into 2% disjoint subsets
D,,D,, ..., D,x, st. each D, contains exactly one codeword (say v;).

Now, we build the D,"s as follows:

Step 1: Start each D, with an element v; of C,e.g. v, = (00...0)
Dl % D:- Dn.'-.'

v, =(00..0) v, v, U,k

Step 2: Choose an n-tuple e, € V, —C of minimum weight. Then the

second element in each D, isv, + e

Dl Dz - D:‘ - Dz.l':
v, =(00..0) v, v, »
Ez + T'11 Ez + T’z Ez + T?:' EE + sz.l':

Note that the element e, is called a coset |eader.

Step 3: We repeat step 2 by choosing e; (coset leader) where
i =3,4,..,2"7% of minimum weight from the remaining n-tuples that

were not included in any D; up to the previous step
D, D, D, D.x

v, =(00..0) 5 U U,k
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EE + T11 EE + T12 EE + T!:' Ez + sz.".'

e n-k + 14 En—k + 1+ e n-k + 1 eon-& + U,k
- - - = =4 -

=

Remark 3.6: The above n- tuples can be arranged as entries of 27 x 2%

matrix M st..m;; = e; + v;.

é v v, L v, L Ve U
_g e, +v, e,+tv, L e+v, L e, +v, 3
kg T e ! ! ! ! oo
é a
éezn-k tv, e, tv, L ezn-k +v, L ezn- +V2kg
Remarks 3.7:
(i) Theentries of the j** column of M represent the subset
D.={v,e +v;,e; +v,...,e;n-x+ 1] (3.23)

(i) Theentries of the first row of M represent the code € = {v;,17,, ..., 17,x ).

(i) The i*" row of M iscalled the i*" coset and the first entry of this row is
acoset leader g, .

(iv) Each n-tuple of 17, appears only once in M and hence M containing all
n-tuples.

(v) The standard array built is not a unique.

(vi) Each i*" coset consists of 2% n-tuples of the form
e +C={e tv:v; €ECL

(vii) Each column consists of 2"~* n-tuples with the topmost one as a

codeword in .
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Example 3.11: Consider this linear code

C(5,2)={(00000),(11001),(11110),(00111)} The standard

array for C shown as follows:

Dl DZ D3 D4

v, = 00000 v, =11001 v, =11110 v, =00111

e, =10000 e, +v,=01001 e, +v,=01110 e, +v, =10111
e, =01000 e, +v, =10001 e, +v,=10110 e, +v, =01111
e, =00100 e, +v,=11101 e, +v,=11010 e, +v, =00011
e, =00010 e +v, =11011 e, +v, =11100 e, +v, =00101
e, = 00001 € +Vv, =11000 e, +v,=11111 e, +v, =00110
e, =10100 e, +v,=01101 e, +v, =01010 e, +v, =10011
g, =10010 g, +v,=01011 e, +v, =01100 e, +v, =10101

Figure 10: Standard Array for the (5,2) Linear Code.

Theorem 3.11: The sum of any two words in the same row of the standard

array isacodeword in C.
Proof: Suppose that e, + v, e; + 1, be two n-tuples in the I** row where
v, v, € C i =k and ¢ is the word with minimal weight in the I*" row.

Then (g, +v,)+ (g, + v,) =1, + 1, € C since C islinear. |

Theorem 3.12:

(i)  Notwon —tuplesin the same row of a standard array are identical.
Proof: Suppose two n —tuples in the I** row are identical, say

e +v; =g +v;, with i =j. This means tha v, =v,, which is a
contradiction since 1°* row contains distinct codewords v,, v, ..., v,x. W

(i1)

Every n —tuple appears in one and only one row.
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Proof: Suppose that an n-tuple v appears in both I* row and the m** row
withl <m.Sov = ¢ + v, =e, + v; forsomei = .

Then e +v, =e¢,, + = ey, =6+ (‘[-‘:- +’[-‘j-). But v, v, are two
codewords in the linear code C, so v; + v; isagain a codeword in C, say v;.
Thene, = e, + v.. Thisimplies that the n-tuple e, isin the I** row of the

array, which contradicts the construction rule of the array that e, , the first

™!

element of the m** row, should be unused in any previous row. Therefore,

no n-tuple can appear in more than one row of the array |

From the previous theorem we can conclude this corollary;
Corollary 3.5:

(i)  Thereare 2% disjoint columns in the standard array.
(i)  Every word appears exactly once in the standard array.

Theorem 3.13:

(i)  Eachrow in the standard array consists of 2% distinct elements.
Proof: Clearly, each row consists of the 2* n-tuples since the first row

containing 2* codewords by (Theorem 3.12 (i)) no two n-tuples in the

same row of a standard array are identical. |

(i)  Thereare 2" * disjoint rows in the standard array.

Proof: Since there are 2™ n —tuples over GF(2) and the are partitioned

into 2% disjoint columns so we have, — = 2"7% disjoint rows in the

F

standard array. |
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Fact 3.1: Any element in a coset can be used as its coset leader. This does

not change the elements of the coset; it simply permutes them.

We now, explain the standard array decoding:

Let us use the 2% digoint columns D,,D,, ..., D, ..., D« of the standard
array for decoding the code (.

Suppose that the codeword v; is transmitted over the BSC. From (3.23) if

the error pattern e, caused by channel was a coset |eader, the received word
r will be r=e,+v, €D, So r will be decoded correctly into the

transmitted codeword v;.

On the other hand, if the error pattern caused by the channel is not a coset

leader, an erroneous decoding will result as in the following example:

Let x be an error pattern caused by the channel and lie in the I** coset and
under the codeword v, # 0. Then x = ¢; + v, and the received word is
r=vtx=¢e+(n+v) =€+

Thus, the received word r € D,.. So it is decoded into v,., which is not the

transmitted codeword v;. So an erroneous decoding will result.

Result: Every (m, k) linear code is capable of correcting 2™ * different

error patterns which are denoted by the coset leaders. For this reason, the

2% coset leaders (including the zero codeword) are called the correctable

error patterns.
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Theorem 3.14: Given an (n, k) linear code C with minimum distance
d

no two n —tuples of weight t = [M] or less can be in the same

min? -
4

coset of C.
Proof: Let C(n, k) be alinear code with minimum distance and minimum

weight o Let x and y be two n —tuples of weight t or less which are in

the same coset
wx)=tandw(y) <t
then x + v must be a nonzero codeword in C, where the weight of x + v is:

min?

wix+v) = wlx)+w(y) £2t=2 [E“"H;_i] < 2%min”% dy:y —1=d

But this is impossible since w(v) = d,.,¥Wv € C. Therefore, no two

n —tuples of weight t or less can be in the same coset of C. |

Corollary 3.6: All n-tuples of weight ¢ or less can be used as coset leaders.

Theorem 3.15: If each coset leader is chosen to have minimum weight in
Its coset, the decoding based on the standard array is the minimum distance

decoding or the MLD.

Proof: Let r be the received word. Suppose that r is found in the i*®
column D, and I*" coset of the standard array. Then r is decoded into the
codeword v,;. Since r = ¢; + 1, the distance between + and v, is
dir,v,)=wlr+v,)=w(e + v, +1,) = w(g) (3.24)
Now, consider the distance between » and any codeword, say 17,

a(rv) = w(r +1;) =w(e +v,+1)
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Since v; and v; are two different codewords in the linear code, then the
sum v; + v, is again codeword, say v.. Thus,

d(r,‘t-}) = wi(e + v.) (3.25)
Since g; and ¢; + v, arein the same coset, then by assumption,

w(e) =w(e, + 1) = d(r,v,) = d(r,v;) by (3.16 and 3.17) (3.26)
So the result (3.26) says that the received word is decoded into a closet

codeword. [

Theorem 3.16: If all the n-tuples of weight t = [M] or less are used as
coset leaders of the standard array for the linear code C(n, k,d,;,) then
there is at least one n-tuple of weight ¢ + 1 that cannot be used as a coset
leader.

Proof: Let v be a minimum weight codeword of C, that is w(v) = d,,;,,-
Let x and v be two n —tuples which satisfy the following two conditions:
() x+v=nr,

(i) x and y do not have nonzero components in common places.

It follows from the definition that x,y since its sum is a codeword and

dpin = W) =wlx +y) =wlx) +w(y).

Suppose we choose v st.,, w(y) =t +1. Since 2t+ 1 =d, ., =<2t+ 2,
wehave, 2t +1 =d,,, =wx)+wh)=wlx)+t+1<2t+2
=t=w(x)s=t+1l=wkx)=tort+1,

Now, if x isused as a coset leader, then y cannot be a coset |eader. H
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Corollary 3.7: An (n,k,d,.,,,) linear code ( is capable of correcting all
the error patterns of ¢ or fewer errors, but it is not capable of correcting all
the error patterns of weight t + 1.

Hence, we say that the code is exactly t —error—correcting

Example 3.12: Consider example 3.11 where the vector v; = (111 10)
IS the transmitted codeword from € (5,2 and the received word is

r= (011 00), whichliesin column D, whose coset |eader

e =(10010). Soe iscorrectable error pattern.

Other wise, consider the transmitted codeword isv; = (111 10) and the
received word is r=(00110) then the error vector is
e=1v; +7r= (1100 0) which is not coset leader in the standard array
for the (5, 2) linear code. So e is uncorrectable error pattern. To show this;
r=(001 IO)ME =(000 {]lji&}*[-;L = (0011 1), which is
not the transmitted codeword 17;. So an erroneous decoding will result.

The minimum distance for the above code is 3. Thus, the code guaranteed
to correct all error patterns of single errors since the random error
correcting capability of the codeis

e = [ = [ -

-
F

and the random error detecting capability isd,,,,, —1=3—1=2

5

2) — 10 error

Note from the standard array of Example 3.11 not all (

patterns of weight two are correctable. You can select arbitrary only two of

them. Because of the code C is capable of correcting 2"~* = 8 (Including
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the zero word (0 0 00 0)) different coset leaders where five of them are

error patterns of single errors.
Hence, the decoder in (Example 3.11) is capable of correcting all errors of
weight 1;
e, =(10000),e;=(01000),e, =(00100),e; =(00010),
e, =(00001)
and two different error patterns of weight 2;
e, =(10100),e,=(10010)
Theorem 3.17:
(i)  All the 2% n-tuples of a coset have the same (n — k)-tuple syndrome.
(i)  The syndromes for different cosets are different.
Proof: Let H be the parity check matrix of the given (n, k) linear code (.
(i)  Consider the coset whose coset leader is ¢, and let 1, be a word in
that coset then v, = ¢; + v, for some v, € C. The syndrome of v, is,
s(v.)=v.H = (g, + v )HT = gH" +v,HT = ¢HT = s(g;),
(v,HT = 0). The equality above says that the syndrome of any word in
a coset is equal to the syndrome of the coset leader. Therefore, all the

word of a coset have the same syndrome. |
(i) Lete;, e bethe coset leaders of the j**, 1% different cosets,

respectively, where j < 1. Suppose that the syndrome of these two
cosets are equal then; s(e) =s(e) = g™ =gl = (6 +e )i =0=1(g +&) € C
sy v,. Thusv, =e +e, = e =¢ +1v;, = g in the j*" coset, thus e

inthe I**and j** cosets, which
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contradicts Theorem 3.7 that states every n —tuple appears in one and only

one coset in the standard array. |
Corollary 3.8: There is a one-to-one correspondence between a coset and

an (n— k) tuple syndrome. Or, there is a one-to-one correspondence

between a coset leader (a correctable error pattern) and a syndrome.

3.8 Syndrome Decoding

In this section we will discuss a scheme for decoding linear block codes,
that uses a one-to-one correspondence between a coset leader and a
syndrome. So we can form a decoding table, which is much simpler to use

than a standard array. The table consists of 2" % coset leaders (the

correctable error patterns) and their corresponding syndromes.

So the exhaustive search algorithm on the set of 2" % syndromes of
correctable error patterns can be relised if we have a decoding table, in
which syndromes correspond to coset leaders.

The decoding of areceived word consists of three main steps:

(i)  Calculation of the syndrome s of the received word 7;
s()=r.H =sT=H. T
(i)  Search the decoding-table for the coset leader e that corresponds to
the
syndrome s.
(ii1) Decode the received word r into the codeword v = r + e.
The decoding scheme described above is called the syndrome decoding or

table-lookup decoding.
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Example 3.13: Consider €(5,2,3) ={(00000),(11001),(11110),
10011

(001 11)}withthe parity-check matrix = {0 1 0 1
0011

1
0
The correctable error patterns and their corresponding syndromes are

shown in the following decoding table. Table 8 was constructed from

standard array for the (5,2) linear code given in Example 3.11.

Table 8: Decoding Table for an (5,2 Linear Code

Syndrome (s) Coset leader (e)
(000) (00000
(100) (10000)
(010) (01000
(001) (00100
(111) (00010
(110) (00001
(101) (10100)
(011) (10010)

Suppose that the codeword v=(11001) is transmitted and

r=(01011)isrecelved. The decoding of areceived word r, we use the

three steps of syndrome decoding;
100

010

(i) thesyndromeofr,iss=(01011).[001]=(011);
111
110

(i)  from (Table 8) the coset leaderise = (1 0 01 0),

(ii1)decode the received word r into the codeword
V=r+e=(01011D+(10010)=(11001)

In that example the decoding is correct since the error pattern caused by the

channel is a coset leader. Therefore, the decoding is correct if and only if
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the error pattern caused by the channel is a coset leader. Otherwise we say
a decoding error is committed.
3.9 Decoding Circuits Using Combinational Logic Circuits

Recall the table-lookup decoding of an (n, k) linear code from the above

section. In this section the table-lookup decoding will be implemented.
The decoding table regarded as the truth table of n switching functions:
€ = fo(So, 81, ) Soge—1 s

(3.27)
€r_1 = fo_1(80,81, o) Sptm1)-
Where s,, s, ..., 5,_;-, ae the syndrome digits, which are regarded as
switching variables, and e,, e, ...,e,_;_, are the estimated error digits.
Now, when these n switching functions are derived and simplified,
a combinational logic circuit with the n — k syndrome digits as inputs and
the estimated error digits as outputs can be realized.
The general decoder for an (n, k) linear code based on the table-lookup
scheme is shown in Figure 11 which depends primarily on the complexity

of the combinational logic circuit (error-pattern-detecting circuit).

T gmaus b o P r
EBuiier reister ¢

L.

Eanaai

Figure 11: General Decoder four a Linear Block Code.
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Example 3.12: Again consider the linear code C(5,2) give in Example
3.13. The syndrome circuit for this code is shown in Figure 12. From Table

8 we form the following truth table.

Table 9: Truth Table for the Error digits of the Correctable Error patterns
of the (5, 2" linear code

! 81 8; €y €, €; €3 €y
0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0
1 1 1 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0

The switching expressions for the five error digits are

e, =S5 " NSy Asy"

= (85 A8 AS,)V (8o As VA S,)

e; = (Sp A8, AS)V (s, " As,AS,)

g, = Sg NS NSy

Where A denotes the logic-AND operation, v denotes the logic-OR

operation and s‘ denotes the logic-COMPLEMENT of s. These five

switching expressions can be realized by seven 3-input AND gates. The

circuit of this decoder is shown in Figure 12.

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

89

Received
L n " LS 3
word

Figure 12: Decoding Circuit for the Code C(5, 2)
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Chapter 4

Binary Hamming Codes

4.1 Construction of Binary Hamming Codes

Hamming codes are the first important class of linear error-correcting
codes named after its inventor, Richard W. Hamming (1950) who asserted
by proper encoding of information, errors induced by a noisy channel or
storage medium can be reduced to any desired level without sacrificing the
rate of information transmission or storage. We discuss the binary
Hamming codes with their shortened and extended versions that are
defined over GF(2). These Hamming codes have been widely used for
error control in digital communication and data storage. They have

interesting properties that make encoding and decoding operations easier.

In this section we introduce Hamming codes as linear block codes that are
capable of correcting any single error over the span of the code block
length.
Suppose the linear code C(n, k) hasan (n — k) x n matrix H as the parity
check matrix and that the syndrome of the received word r is given by
sT = H.r". Then the decoder must attempt to find a minimum weight e
which solves the equation

sT=H.e".
Writee = (e,, ey, ...,8,_s)and H = (hghy, ..., h, _1),
where e € GF(2)Vi=0,1,.,n—1 and each h, is an (m—k)

dimensional column vector over GF(2), then
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€

e
1 .
sT =[hg hyhyill © |=2"1e h,.

,Elz—l

In other words, the syndrome may be interpreted as the vector sum of those

columns of the H matrix corresponding to the positions of the errors.

Now, consider all error words of weight one are to have distinct

syndromes, and then it is evidently necessary and sufficient that all
columns of the H matrix must be distinct.

For if w(e) =1say g =1thens” =h,if g =1 then s;7 = h; now, if

s T

£s; " thenh, = hfori = J.
In other words, the parity-check matrix H of this code consists of all the
nonzero (n — k)-tuples as its columns. Thus, there are n=20=% —1

possible columns.

The code resulting from above is called a Binary Hamming code of length

n=2"—-ladk=2"—-1—-—mwherem =n— k.

Definition 4.1: For any integer m > 1 there isa Hamming code, Ham (m),
of length 2™ — 1 with m parity bitsand 2™ — 1 — m information bits.

Using abinary mxn parity check matrix H whose columns are all of the m-
dimensional binary vectors different from zero, the Hamming code is

defined as follows:

Ham (m) — {'[.1 — (’[.‘G v, "'T"J:—l) c I’E:lH.T-‘T — {]}
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Table 10: (n, k) Parameters for Some Hamming Codes

Hamming Code
(7. 4)
(15, 11)
(31, 26)
(63, 57)
(127, 120)

~NoloawZ

Theorem 4.1: The minimum distance of aHamming code is at least 3.

Proof: If Ham () contained a codeword 1 of weight 1, then 1» would have

h

1 inthe i*" position and zero in all other positions.
Since Hv™ =0 = h,, then {** column of H must be zero. This is a

contradiction of the definition of H. So Ham (m) has a minimum weight of

at least 2.

If Ham (m) contained a codeword 1 of weight 2, then 1» would have 1 in
the i*® and j** positions and zero in all other positions. Again, since
H.v" =0 = h,+ hy, then h, & h; are not distinct. This is a contradiction.
So Ham (1) has a minimum weight of at least 3.

Then W,

min = 3 Since d = H,:'m:_]:

in linear codes, then d > 3,

min min

therefore the minimum distance of Hamming code is at least 3. |

Theorem 4.2: The minimum distance of a Hamming code is exactly 3.

Proof: Let C(n, k) be aHamming code with parity-check matrix H Let

mxn*

us express the parity-check matrix H in the following form:

H=[hy,.. k.., k.., hym_, ], where each h, represents the i* column of

H. Since the columns of H are nonzero and distinct, no two columns add to

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

93

zero. It follows from corollary 3.3 that the minimum distance of
aHamming code is at least 3. Since H consists of all the nonzero m-tuples
as its columns, the vector sum of any two columns, say h; and F;, must
aso beacolumnin H, say h_i.e. h; + h; = h.. Thus,

h; + h; + h, = 0 (In modulo 2-addition)

It follows from (Corollary 3.4) that the minimum distance of a Hamming

codeis exactly 3. N

Corollary 4.1: The Hamming code is capable of correcting all the error

patterns of weight one and is capabe of detecting all 2 or fewer errors.

Proof: Use lemma 3.2 and theorem 3.10 with d = 3 to show this

min

corollary as follows;

t= [—dm:f_l] = [3_1] = 1. So the Hamming code is capable of correcting

all the error patterns of weight one.

Andd . —1=3—1=2. Thusitis also has the capability of detecting

min

all 2 or fewer errors. [

Result For any positive integer m = 1, there exists a Hamming code
C(n, k,d,..,) with the following parameters:

Codelength: n = 2™ — 1

Number of information symbols. k = 2™ —m — 1

Number of parity-check symbols: n — k =m

Random-error-correcting capability: t = 1 (d,,.;, = 3).
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4.2 The Generator and the Parity Check matricesof Binary
Hamming Codes Ham (m)

The Hamming code is a linear block code so we use (2.3) and (2.6) to

construct the parity-check matrix H and the generator matrix ¢ in the

systematic form for this Hamming code. Rewrite (2.3) and (2.6) as follows:

g Pyo Pys v Pon-i-1 100 .. 0
4, Pio Py v Piaoi—g o190 .0
Gh = g: = [P I:‘-] = TG:C TG:-l wee TG:I..:_,"-_-_[ ID ID l e ID (4.1)
T Prcio Progs = Progmpor 1 @0 0_
0 Pg Py -
01 .. 0 p, p - P
H" — [I”_k FT] — o1 511 r—1.1 (4.2)
00 o L Doy Proios v Prcinoies
The parameters of Hamming code are.

(n,k,d,..) =(2™—1,2" —1 —m,3), then the parity-check matrix H of
a Hamming code is constructed by listing all non zero m-dimensional
distinct columns.

Thus the systematic form of H is a matrix whose right side is all of the
nonzero m-tuples of weight > 1 in any order. The left side is just the

identity matrix I.,..

10 0 Q00 910 D—1.0
01 .. 0 901 411 Q1

H = [‘F:rn mek] = : (43)
00 .1 Dom—1 Q4 m—1 Dy m—1

Where I, is an m X m identity matrix and the submatrix @ consists of

k= 2™ —1—m columns which are the m —tuples of weight 2 or more.
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So the generator matrix ¢ can be obtained from H by taking the transpose

of the left hand side of H with the identity I, identity matrix on the left

hand side.

95

44
6=| 9 |=le"1]= (4.9)
é Qoo Qos K Jo,m-1 1 0 0 K 0
g O K Oyt 0 1 0 K 0
e P P K U m-1 0 0 1 K 0
g N K N N N N N N
ng’"- 2-m,0 qz"‘- 2-ml K q2"‘2- m,m-1 1 0 0 L 0

Note that if the parity check matrix H is not in a systematic form then by
row operations or column permutations you can reorder the columns of H

to obtain the systematic form of H which is resulting in an equivalent code.

Example 4.1: For m = 4 consider the matrix
1010101010101 01
. 0110011001 10011
H_{]{]ﬂllll{]{]{]{illlll (4.5)
ooo0o0OO0OO0OO0OB1T1I111111
12 3 45 6 78 9101112131415

This can be considered a parity check matrix for a (15, 11) Hamming code.

Clearly H* is not in a systematic form. By reordering the columns of H* as:

1,2,4,8,35,6,7,9, 10, 11, 12, 13, 14, 15 we obtain;

10001101 1010101

o1 00101 10110011
H= U4|Q4x11) =

oo1o0oo0 11 10001 111

ooo 1 o000 1111111

1 2 4 8 3 5 6 7 9 10 11 12 13 14 15
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Example 4.2: For m = 3 thereis aHamming code Ham(3), of length

n=2"-1=2*-1=7andk=2"—-1—m=2°—-1—3=4with

fv=(yv,v,v; 0, VsV )EVHvT =0}
0001111
Consider H= [0 1 1{1011]
1010101
T:IC'-
Uy
00011117 |V2 0
ThenH.'[-'T:{]:‘»[{] 11001 1]. U3 =[O
10101011 |V 0
Vs
Vg
= vy +v, U5+, =0

vy + 1, + U5 1, =0

Vv, +v,+1,+1, =0
The solution vector;
UV={U,+ U, + VU, Uy + Vs + Vg, Vs,V + Vs + T, Uy, Us, Vg ). SOthereare
2* = 16 codewords that satisfy the equations above depending on the four
free variables
v, 1, V5V, = {0000,0011,0101,0111,1001,1011,1110,0010,1111,0001,
1100,1010,1000,0100,0110,1101.
Now Ham (3) = {(0000000),(1000011),(0100101),(0001111)

(0011001),(0110011),(0010110),(0101010),(1111111),(1101001),
(0111100),(1011010),(1110000),(1001100),(1100110),(1010101)} .

isa (7,4) linear block code. One can easily check that the sum of any two

codewords in this code is also a codeword.
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The generator matrix & can be obtained from algorithm 1 in appendix B as

follows:
1000011

G={]1{]{]1{]1
0001111
0011001

Clearly, the matrices ¢ and H are not in the systematic form, so the

systematic form of a generator matrix ¢ can be obtained by row operations

011]121000
: ~_ (10110100
and/or column permutations as follows; G = 1110010}
1100001
And hence, the parity-check matrix H using (4.3, 4.4) becomes,
1000111
H={010101 1),
0011110

which gives a different set of Hamming codewords and thus a different (7,

4) binary Hamming code. To find the code Ham(3), we find the nullspace

of H,i.,e theset of al 7-tuplesv = (v, ..., vg) such that
_‘[.‘l:}_

10
H.T’T={]:}(D 1
00

[ R
== O
=
=
o= e

By computing the nullspace of H, we obtain
Ham (3) = {(0000000),(0010011),(0110101), (1000111),(1011001),(

0101011),
(0011110),(1110010),(1111111), ( 1100001),(1101100),(1001010),
(0111000),(1010100),(0100110), (0001101)} .
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Clearly, H of this code consists of all nonzero distinct columns of length
m = 3.
Now apply (Corollary 3.4) to the problem of determining d,.,,. Clearly

d + 1, 2, since the columns of H are nonzero and distinct. However,

min

there are many subsets of three columns of H, summing to O, for example,

1 0 1 0
Of+(1|+]|1]=]0
0 0 0 0

capability of Cist = [d—‘l] =[

. Thus d — 3, and so the error-correcting

min

3

_1] = 1. That is, it is capable of

-
F

correcting all error patterns of weight 1 or fewer.

4.3 Hamming Encoding
Let n be the length of the encode message. Let i be the length of message

to be encoded. Therefore n — k is the length of error checking digits.

Since Hamming codes are linear block codes, then the encoding operation

can be described intermsof a (2™ —m — 1) X (2™ — 1) generator matrix
G = ['!?r Iﬂ.:—'.l—w.]
where the codewords are obtained as linear combination of the rows of

That is, the Hamming code is the row space of .

Hence, for a message u = (u, U4, ... Usm_,._,) We have the codeword
v = (1, V... V;m_5 ) wWhich is given by:

v=wuG=u[Q" In_o_. ]=[wQ" u] (4.6)
where u. Q7 is redundant checking part of a codeword v, and u is the

message part of 1.
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Example 4.3: Consider
Ham (3) = {(0000000),(0010011),(0110101),

(1000111),(1011001),(0101011),(0011110),(1110010),(1111111),
(1100001),(1101100),(1001010),(0111000),(1010100),(0100110),

(0001101)}.
With the generator matrix:
0111000
c— 1010100
1110010
1100001

Let U = {(0000),(1000),(0100),(1100),(0010),(1010),(0110),
(1110),(0001),(1001),(0101),(1101),(0011),(1011),(0111),(1111)}
be message set to be encoded, thenits 2% = 22"-™-1 = 16 corresponding

codewords, according to (4.6), are shown in (Table 11) where v = u.G.

Table11: A (7,4,3) Hamming Code

Message (1t) Codeword (1)
(0000) (0000000)
(0011) (0010011)
(0101) (0110101)
(0111) (1000111)
(1001) (1011001)
(1011) (0101011)
(1110) (0011110)
(0010) (1110010)
(11112) (1111111)
(0001) (1100001)
(1100) (1101100)
(1010) (1001010)
(1000) (0111000)
(0100) (1010100)
(0110) (0100110)
(1101) (0001101)
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Now, the weight distribution of a Hamming code of length n = 2™ — 1 is

shown in the following definition;

Theorem 4.3: The number of codewords of weight i, A,, of a Hamming

code is simply the coefficient of z' in the expansion of the following

polynomial;
1

A@) =—{(1+2)" +n(l-2)(1- 22y 5 ) (4.7)

1+1

This equation is the weight enumerator for the Hamming codes.

Example 4.4: The weight enumerator for the (7,4) Hamming code which

Isgiven in example 4.3 is:
A(z) = é{(l +2) +7(1—2)(1—2z2)3} =147z + 7z + 2",

Hence, the weight distribution is
AG:]‘JAJZAZ :AS :ABZDJAB :Aq_: ?, andA?:]_

One can easily check that distribution from table 11.

We now consider the following algorithm that is used to encode
Hamming codes:
(i) All bit positions that are powers of two are used as parity bits. (Positions
1,2, 4, 8, 16, 32, 64, etc).
(ii) All other bit positions are for the data to be encoded.
(Positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc).
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(ii1) Each parity bit calculates the parity for some of the bits in the code

§

word. The position of the parity bit determines the sequence of bits that
it alternately checks and skips.

Position 1 (n=1): skip 0 bit (0O=n—1), check 1 bit (n), skip 1 bit (n), check
1 bit (n), skip 1 bit (n), etc. (1,3,5,7,9,11,13,15,...)

Position 2 (n=2): skip 1 bit (1=n—1), check 2 bits (n), skip 2 bits (n),
check 2 bits (n), skip 2 bits (n), etc. (2,3,6,7,10,11,14,15,...)

Position 4 (n=4): skip 3 bits (3=n—1), check 4 bits (n), skip 4 bits (n),
check 4 bits (n), skip 4 bits (n), etc. (4,5,6,7,12,13,14,15,20,21,22,...)
Position 8 (n=8): skip 7 bits (7=n—1), check 8 bits (n), skip 8 bits (n),
check 8 bits (n), skip 8 bits (n), etc. (8-15,24-31,40-47,...)

Position 16 (n=16): skip 15 bits (15=n—-1), check 16 bits (n), skip 16 bits
(n), check 16 bits (n), skip 16 bits (n), etc. (16-31,48-63,...)

Position 32 (n=32): skip 31 bits (31=n—1), check 32 bits (n), skip 32 bits
(n), check 32 bits (n), skip 32 bits (n), etc. (32-63,96-127,...)

General rule for position n: skip n—1 bits, check n bits, skip n bits, check
n bits...

And so on.

This general rule can be shown visually by the following table, which use d

to signify data bits and p to signify parity bits.
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15 14 13 12 11 10 7 6 5 4 3 2 1 Bit position
dqq | dip | de | de | dy | de dy | da|da| P3|dy| Pa| P | Encoded databits
Dataword
X | X | X | X | X]X X | XX X (without parity)
X X X X X X X | m Parity bit
X X X | X X | X X | X P2 | coverage
X X X | X X | X | X | X P3
X X X | X [ X | X P4
X | X | X ]| X|X]X XXX X X X X e word (with
parity)

In other words, in a Hamming Code, parity bit p; is used to hold the parity

bit for all bits in the code whose locations have a binary representation with

alinpositioni.

Consider the table of four-bit binary numbers and their decimal equivalent

positions shown in Table 12.
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Table 12: Four-bit Numbers

2° =8 27 =4 21 =2 20 =1 Position
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

Now, since the numbers 1, 3, 5, 7, 9, 11, 13, 15, etc, have all 1’s in position
0 in their binary representations, then p, is used to store the parity
information for each of the bits in these locations. In other words, p, is
used to store parity information on itself and on message bits
d, d,d,ds,d;, dg d,,, etc.

The numbers 2, 3, 6, 7, 10, 11, 14, 15, etc, have all 1's in position 1 intheir
binary representations, then p, is used to store the parity information for
each of the bits in these locations. In other words, p, is used to store parity
information on itself and on message bits d,,d;,d..,d;,d-,d 4 d,4, €tC.
The numbers 4, 5, 6, 7, 12, 13, 14, 15, etc, have all 1's in position 2 in their
binary representations, then p, is used to store the parity information for
each of the bits in these locations. In other words, p; is used to store parity

information on itself and on message bits d,,d;,d,, ds, ds, d.,d4 4, EtC.
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And the numbers 8, 9, 10, 11, 12, 13, 14, 15, etc, have al 1's in position 1
in their binary representations, then p, is used to store the parity
information for each of the bits in these locations. In other words, p, is

used to store parity information on itself and on message bits

dﬁidﬁid?idgidgidlﬂidll’ etC

After the data bits are inserted into their appropriate positions, the parity
bits calculated in each case using an even parity operation which is defined

in the following definition.

Definition 4.2: An even parity operation make the total number of 1'sina
specific group of bit positions even.
For instance, since p, is a parity bit for the bits d,,d,,d,, d-,d-,ds, d5,

then if we have an odd number of 1'sthen p, = 1 else setting it to O.

The calculation of an even parity can be done by applying the

exclusive-or operation, denoted XOR or @.

Table 13: Exclusive-or Operation (XOR/@®)
x@y
0

X

0
0
1
1

(B N N W

1
1
0

Remark 4.1: In the above insert the bits of a message from left to right to

preserve on the binary representation of each value.
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Example 4.5 For m = 4 consider the message

"1010110101 1"

12345678 9 1011

to be encoded then we have a (2™ — 1 =) 15-bit Hamming code with 4

bits and 11 information bits.

Firstly the 11-data bits are inserted into positions:

3,5,6,7,9,10, 11, 12, 13, 14 and 15.

101011 01 0 1

1II

And the remaining positions 1, 2, 4 and 8 (which are power of 2) are used

to store parity bits which are calculated in each case using an even parity.

See the table below.
Parity | 15 14 | 13 | 12 | 11 | 10 6 5 4 3 2 1 Bit position
bit
Encoded data
dy1 | d1o | ds | de | dr | de s | de | da|da| Paldy | Py | Py bits
Dataword
1/1]0]l1]0]1 10 1 (without
parity)
1 1 0 0 0 1 PL
1 1 1 0|1 1 1 P2 | Parity bit
coverage
0 1 1 0|1 110 P3
1 1 1 O |1 |0 |1 P4
1 1 0|10 1 100|111 Dataword
(with parity)
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We write the output codeword from left to right using p, = 1 asthefirst bit
from the left to the output codeword. Hence, the encoded codeword that
would besentis”111001011101011".

Note that, this example can be computed by placing the message-bits in the

following simple table:

Bit
15|14 (13|12|11|10, 9|8 | 7|6 | 5| 4| 3| 2| 1 |poston
Me;&age
1/1(0|1|0|1|2|¢|O|1|0O|¢|21]|¢|¢ oWt

We now, after placing the data in the last table we find that in positions 3,
6, 9, 10, 12, 14 and 15 we have a "1". Using table 12 we obtain the binary
representation for each of these values.

We then exclusive OR the resulting values (XOR: it sets the output to 1 if
we have an odd number of 1's else setting it to 0). The results of this

activity are shown below:

positions

3

6

9

10
12
14
15

Sl Prooro |+
HFRROROPR PR |N
FRroooror |-

P3 =

=

]
I

=
I

The parity bits are then put in the proper locations in the above table. Thus

the following end result:
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Bit
1511413 |12|11/10|9 |8 |7 |6 |5| 4|3 | 2| 1 |nposton

Me;&age
1/1/0|12|01|2|2|0|1|0|0O|2|1]|1) HUWts

Thus"111001011101011"isthe encoded codeword that would be

sent.

4.4 Hamming Decoding

4.4.1 Syndrome & Error Detection/Correction

Suppose that a codeword v is transmitted over BSC and the received word
Isr=1v+ e (eisanerror pattern)

Recall that we can decode the received word r of the C(n, k) linear code
using property of a parity-check matrix H of that linear code which is given

in (Section 2.5) asfollows;
Hvl=0vel(nk) (4.8)

We now use that property (4.8) of H as the decoding step, by compute the
syndrome

sT=HrT=H.(v+e) =Hv +He =He

Therefore, the syndrome depends only on the error pattern ¢ and not on the

transmitted codeword 1-.

Now, since a Hamming code is capable of correcting only a single error,
suppose that e consists of zero in all positions except 1 at the i** position;
e=(ege, ... ..eom_,)=(0..010..0)

h

Wherethe 1 isequal to e,. (That is, the error isin the i** position).
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Note that, an error pattern e which consists of zero in all positions except at
i*" position can be denoted by e,. Hence, e, = (0..01 0...0).

Let us express the parity-check matrix H in the following form:

H=[hy.. h,.. hym_.], where h, represents the i** column of H.

Then the syndrome is:

€o
sT=H.rT =H.e" =[hy,...,h;,...,hom_4].| &
e m_y
_O_
0
= [hq,.., hyo, hom_ ] [1 ] = Ry
0
nl

= s7 = h,, the i™" column of H.
Hence, the syndrome directly identifies the error location as i** position.

The decoding algorithm is shown as the following:

Remark 4.2: The following algorithm fails if more than one error occurs.

Algorithm:

(i) Compute the syndrome for the received binary word r, s¥ = H.7 7,

(ii) If s™ = 0, then the decoded codeword is 1%, and output vv* = 7,

(ii1) Otherwise, the syndrome will be equal to a unique column of H say ¢
denote the column of H which is equal to s™ (s™ = k). Hence, there is
an error in position i of r. Add 1 (modulo-2) to the i**® coordinate of r,

and output theresult as v* = r + e.
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Example 4.6: Suppose that the message u = (11 10) is encoded to the
codewordv = (00111 10)e Ham(3)whichisgiveninexample 4.3.
If the word r= (001110 0) is received, when v is transmitted over

BSC, then the decoding algorithm proceeds as follows:
Consider the parity-check matrix of Ham (3)

1000111
H=({]l{]1{]ll)
0011110
Then;
0
0
So 1000111y |1 1
(I)ST=[S1 =H?"T=({]1D1{jll). 1 =[1]=hﬁ,
Sa2 00111110/ |1 1
0
n

(ii) This syndrome corresponds to column 6 of H. Therefore, the decoded
valueof r=(0011100)is;
vV'=r+e=(0011100)+(0000010)=(0011110)

Then the transmitted codeword is v"=(0011110) which is

corresponds to the message is (1110), since the generator is systematic.

Note that the above algorithm is special case of the algorithm given in

section 3.5.2. To see this;

l
(=
=

=

Il
Sor
= = O
= O O
il =]
=T
= e
= Ly

ey e
I
—
el el
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l=e, +e,+e-+e¢,

110

(4.9)

Then we solve the system (4.9). The solution vector is

g =

(14+e.+e.+e.,1+e, +e.+e.,1+e,+e,+e.,6,,6.,6-,6)
4 3 ] 3 3 & 3 £ 3 3 dr &5 ]

Free variable Error pattern
€3 €4 B35 €5 e=(ege e e; e, e e;)
0000O (1110000
0100 (0100100
0010 (0000010
0001 (0010001
1000 (1001000

But assuming the error pattern e consists of zero in all positions except

at a single position, so the unique solution for that system (4.9) is
(0000010). Which is the sixth column of H.

6. Compute the decoded vector v,

v =r+e=(0011110) + (0000010) = (0011100)
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4.4.2 Standard Array for Hamming Codes

Recall from Theorem 3.14 for an (n, k, d,,;,,) linear code C with minimum
distance d,,,,, al the n —tuples of weight £ = [d”—_l] or less can be used
as coset leaders of a standard array of (.

So, if we form the standard array for a (2™ —1,2™ — 1 —m, 3) Hamming

code, then all the (2™ — 1) —tuples of weight 1 can be used as coset

leaders. Because The Hamming code is alinear single error-correcting code

== =1

The number of (2™ — 1)-tuplesof weight 1is 2™ — 1. Sincen — k =m in

-
F

the Hamming codes, the code has 2™ cosets (Including the word zero).
Thus, the zero word and the (2™ — 1) —tuples of weight 1 form all the
coset leaders of the standard array for a (2™ —1,2"—1-—m,3)
Hamming code.

This says that a Hamming code corrects only the error patterns of single
error and no others.

This means that the Hamming codes belong to an extremely exclusive class

of codes, the perfect codes which is defined as the following;

Definition 4.3: A t-error-correcting code is called a perfect code if its

standard array has al the error patterns of + or fewer errors and no others as

coset leaders.

Remark 4.3: Hamming codes form a class of single-error-correcting

perfect codes. The only other binary linear perfect codes are the repetition
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codes and the (23,12) Golay code (see the reference 12 for more

information about these two linear perfect codes).

Example 4.7: The standard array for Ham (3) given in table 4.2 which

consists of 16 columns and 8 rows, its first row consists of 2% =16

codeword, shown in Figure 13 below.

0000000 0010011 0110101 . 0100110 0001101
1000000 1010011 1110101 . 1100110 1001101
0100000 0110011 0010101 . 0000110 0101101
0010000 0000011 0100101 . 0110110 0011101
0001000 0011011 0111101 . 0101110 0000101
0000100 0010111 0110001 . 0100010 0001001
0000010 0010001 0110111 . 0100100 0001111
0000001 0010010 0110100 0100111 0001100

Figure 13: Standard Array for Ham (3).

Suppose that the codeword v = (0110101) is transmitted and
= (1110101) is received word. For decoding r, we use figure 13 as
follows;

Since r in the third column and second row of the standard array, then
1 is the sum of the coset leader e, = (1000000) and the codeword
v, = (0110101). Hence,

v* = (1110101) + (1000000) = (0110101), which is the transmitted

codeword.
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4.4.3 Syndrome Decoding (T able-L ookup Decoding)

Decoding of Hamming codes can be accomplished easily with the table-
lookup decoding described in section 3.8, which is much simpler to use
than a standard array.

For instance, the standard array of the (7,4,3) Hamming code (Ham (3))
given in Figure 13 can be represented by a decoding table consisting of

only 2 columns instead of 16. To see this, study the following example.

Example 4.8: Consider the (7,4) Hamming code given in table 11, that
have the parity-check matrix
100011171
H={010/101 1)
0011110
Then the zero word and the 7-tuples of weight 1 form all the coset leaders

of the standard array for a (7,4, 3) Hamming code.

Thus, the correctable error patterns and their corresponding syndromes are

given as follows:

Table 14: Decoding Table for a (7,4,3) Hamming Code

Coset leader Syndrome
e =g e ee; e eses) He® = (Sp 81 ;)
(0000000) (000)
(1000000) (100)
(0100000) (010)
(0010000) (001)
(0001000) (011)
(0000100) (101)
(0000010) (111)
(0000001) (110)
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As in Section 3.9, the table-lookup decoding of this (7, 4, 3) Hamming
code may can be implemented as follow.
From the decoding table we form the truth table of seven switching
functions expressions for the seven error digits. These functions are:
€y = SgAS;  ASy" €, =Sp' NS AS;" € =8, A5 AS,
€; = S ' A S; AS, e, = Sy ASy A S, es = S, AS; A S,
8; = Sy NSy NS, °
Table 15: Truth Table for the Error Digits of the Correctable Error Patterns

of the (7, 4, 3) Hamming Code
Syndrome Correctable error pattern (Coset leader)

L
L]
L
[
L
8]
qn
=}
M
b
M
(g%
o
(18]
D
m
]
D
o

R R OOOoOIRL O
R OO OoOIo

O RFFPPFPOOIO
ellelle]] Jlellellelle]

0
0
0
0
0
1
0
0

elilelleollellellel] e
ellellellelle]l] Jdlelle
ellellelle]] Jlellelle
el Jdlellellellellelle]
RIO|IO|I0O|I0|O0|0|0

=
=

The complete circuit of the decoder is shown in Figure 14.

4.4.4 Checking of Parity Bitsin Hamming Codes

To complete the decoding operations for Ham (m), the received side
would re-compute the parity bits and compare them to the ones received
(again using an XOR — even parity). If they were the same the result will
be dl 0's i.e., no error occurred. If a single bit was flipped the location of
the flipped bit is determined using Table 12.

Example 4.9 shows how this process works.
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Figure 14: Decoding Circuit for the (7,4,3) Code

Example 4.9: Let's say that the bit in position 14 was corrupted and turned

from 1 to O during transmission the codeword v = (1110010111010

1 1). The new data word (with parity bits) isnow r =(11100101110

1001).

The receiving end would see the following encoded sequence:

Bit
15(14 131211 |10 8 | 7 4 2 | 1 | postion

Received

d
1,001 |0]1 1|0 0 11 Wg‘rz

Below is the re-calculation of the parity bitsof r = (111001011101001)

using XOR — even parity in each case.
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positions

1

1 3
0 6
1 9
0 10
0

1

1

12
15

SR =P OO |[m
H R R, OOk O |&
ClhroOoRrOR P |

XOR

The re-calculated parity information is then compared to the parity

information sent/received as follows:

8 4 2 1 parity — bit

1 0 1 1 sent/received

O 1 0 1 newcaculaed
AOR 1 1 1 0

The final step isto evaluate the integer value of the parity bits

D4 Ds D2 D1 Parity bit
1 1 1 0 Binary
Z =14 1% 23 1% 22 1% 21 0*2° decimal

Flipping the 14" bit changes (111001011101001) back into (111

001011101011). Removing the parity check bits gives the original
datamessage u=(10101101011).

All these steps can be shown as follows:
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Parity | 15 14 |13 |12| 11 |10 | 9 8 7 6 5 4 | 3 2 1 Bit position

bit

Received data
word
1 o lo|1] o 1/1]12]l0|l1] 0 |o|1]1 1
0 1 0 0 1 0 0 1 1 P4
1 1 0 0 1 0|1 1] 1 P2
1 1 0 | o1 ol1| 0 |o Pz
1 1 o lo|1] 0o |1]1]1 Dy

4.5 Shortened Hamming Codes

The Hamming (2™ —1,2™ — 1 —m, 3) can easly be shortened by
deleting any [ columns from the parity-check matrix H of a
Hamming code. This deletion resultsinan m X (2™ — 1 — 1) matrix
H'. Now, using H' as a parity-check matrix, we obtain a shortened
Hamming code with the following parameters:

Codelength: n' = 2™ —1—1

Number of information symbols: k' = 2™ -1 —-m —1

Number of parity-check symbols: m = n' — k'

Minimum distance: d =3

min —

Theorem 4.4: The minimum distance of a shortened (n',k") Hamming

codeisat least 3.
Proof: Consider the parity-check matrix of a (n, k) Hamming code is a

mx (2™ — 1) matrix H, which consists of all the nonzero distinct columns.
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If we delete any [ columns from H then this deletion results in a
mx (2™ —1 — 1) matrix H’, which is used as a parity-check matrix of a
shortened Hamming code. Clearly, the matrix H' consists of nonzero and

distinct columns, hence the minimum distance of a shortened (n', k")

Hamming code is at least 3.

Now, we want to show that the minimum distance may be not exactly 3.

Let h, and fi; any two columns of H', consider

hy+ h; = h

Caseliifh, e H'=hi+h +h,=0=d,, =3,

Case 2. if h,@€H' =h,+h+h,#0 Vh,eH =d,,;, >3. So the

minimum distance of ashortened (n', k") Hamming codeisat least 3. =

Example 4.10:
Consider the parity-check matrix H of the (2™ —1,2"—m —1,3)

Hamming code is in systematic form;

H=(,0

If we delete from the submatrix @ all the columns of even weight, we
obtainanm x 2™~ matrix H' = (1,.,|Q"),

where Q' consists of 2™~ * —m columns of odd weight. Since all the
columns of H' have an odd weight, the sum of any two columns say h; and
h; results in acolumn say i; have even weight, that is

h; +h; = h; € H' (since H' consists of all columns of odd weight)

Thus no three columns in H' adds to zero. However, for a column h, of

weight 3in Q', ther exists three columns f;, h; and h,, in I, such that
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hy+h, +h,+h,=0.
i T )
So, the shortened Hamming code with H' as a parity-check matrix has

minimum distance exactly 4 by corollary 3.4.

Theorem 4.5. The distance 4 shortened Hamming code can be used for
correcting all error patterns of single error and simultaneously detecting all
error patterns of triple errors or fewer.
Pr oof: By lemma 3.2 and theorem 3.10.
|
Decoding of the Distance 4 Shortened Hamming Code
Let r=(rpr ..Tom-1_,) be the received word when
v = (v, ) ...vym-1_, ) transmitted codeword.
If asingle error occurs in the i** position of v i.e.,

r=v+e =V, .0 .0om-1_, )+ (00..010..0)
Thus, the syndrome of r
s(r)=H'.e,” =h', where H' consists of all columns of weight odd.
The result syndrome is nonzero and it contains an odd number of 1's.
However, when double errors occur, i.e.,
r=v+e= (Vv ..V ..Vom-1_,)+(00..010..010...0)
The syndrome is also nonzero, but it contains even number of 1's. Since
s()=H'.e" =h', +1',.
We now, based on these facts, decoding can be accomplished in the

following manner:

(i) If s(r) = 0, then we assume that no error occurred,
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(i) If s(r) = 0 and it contains odd number of 1's, we assume that a single

error occurred. The error pattern of asingle error that correspondsto s is

added to the received word for error correction.

(iii) If s(r) = 0 and it contains even number of 1's, an uncorrectable error
pattern has been detected.

4.6 Extended Hamming Codes

4.6.1 Construction of Extended Hamming Codes
The Hamming (n, &, d,,,;,,), Ham(m), can be easily extended by adding an

extra parity bit to each of its codeword to obtain an (7, &, d 1, )-COde called

an extended Hamming code, Ham(m)"

The extended code may have stronger error detection capability as we will
see in the later section.

The following definition generates the extended Hamming code,

Ham(m)", given aHamming code Ham(m).

We can extend the Hamming code Ham(m) by extending each codeword
of Ham(m) by one position. This is done by adding a new parity check bit,
x, € {0, 17 to the codeword, such that the weight of the codeword is even.
Then the resulting is an extended Hamming code Ham(m)".

This new parity check bit, x, is sometimes called a parity check digit.

For instance, if v = (v, 1, ... v,,) € Ham(m)

=1V =(X% U, 1, ..1,) € Ham(m)” < w(v”)iseven.
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Example 4.11: Ham(3)" based on the Hamming code Ham(3), given in

(Table 11) is shown in the following table.

Table 16: Ham(3)"

Ham(3) Ham(3)"
(0000000) (00000000)
(0010011) (10010011)
(0110101) (00110101)
(1000111) (01000111)
(1011001) (01011001)
(0101011) (00101011)
(0011110) (00011110)
(1110010) (01110010)
(1111111) (11111111)
(1100001) (11100001)
(1101100) (01101100)
(1001010) (11001010)
(0111000) (10111000)
(1010100) (11010100)
(0100110) (10100110)
(0001101) (10001101)

Theorem 4.6: An extended Hamming code Ham(m)" of an (n,k,3)
Hamming code, Ham(im), is an (7, k,4) linear code.

Wheren = 2™ — 1,k =2™—1—m, i = n+ 1,k = k & the numbers 3
and 4 are the minimum distance of Ham(3) and Ham(3)", respectively.
Proof:

From the definition of extended hamming code the parity check will be

added by one bit, so the new lengthisn + 1.

The length of message doesn't change because the new bit is added as a

parity check not information bit, so the number of information bits still k.

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

122

In order to show that Ham(m)" is a linear, Let v,* and v,” € Ham(m)"
st., v; and v, are the corresponding codewords of Ham(im). The vector
;" + 1,” will beidentical to v; + v, inthelast 2™ — 1 positions.

If v, + v, has odd weight then we can, without loss of generality, assume
that 17, has odd weight and v, has even weight. Thus the first entry of v,~ is
1 and the first entry of v,” is 0. It follows that the first entry of v,” + v,”
must be 1. Therefore w(v," + v,7) is even.

Since v; + v, € Ham(m), thenv,” + v, € Ham(m)".

If v, + v, has even weight, then v, and v, must be either even or both odd.
In either case, their first positions have the same entry which is 0, because
of 0+0=0and 1+ 1=0. Thereforew(v;” + 17,7} is even.

Since v, + v, € Ham(m), thenv,” + v,” € Ham(m)".

We now show that the minimum distance of Ham(m)" is4.

Since minimum weight of Ham(m) is 3, suppose d(v,,v,) = 3 for some
Hamming codewords 17, & .. Then one of v, or 1, has even parity and the
other has parity odd, say v, has even parity. Suppose v, " and v, are the
extended Hamming codewords obtained by adding check digits x,,1, to
v, and v,, respectively. Then x, = 0 since v, has even parity and v, = 1
since y has odd parity.

So, d(v,",v,7) =d(vy,v,) +d(xg,15) =3 +1 =4 |
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Definition 4.4: The parity check H* of Ham (i)~ is obtained by the parity
check matrix H of Ham(m) by adding a zero column on the left, and arow

of all 1's on the bottom as follow:
0
| H

= . — mEn
H m+ilx(n+d) = 0

AT 1

4.6.2 Error-Detecting & Error-Correcting Capabilities of Extended

Hamming Codes

Corollary 4.2: For Ham(m)", we can detect up to 3 errors but still can

only correct asingle error.

Proof: Since the distance of Ham(m)" is 4, then we have the following;
The random-error-detecting capability of Ham(m)*=d,.,,, —1 =3

The random-error-correcting capability of Ham(m) =t = [d“z—_l] =1 m

0

H

Let H = (hy ... h,) be check matrix of Ham(m) and H" = be

0
1

1

check matrix for an extended Hamming code, Ham(m)".
If v° = (x, vy ... 1,) € Ham(m)" be transmitted codeword and
= (x,7; .. 7,) beareceived word with only one error. Then using the

syndrome we can detect/correct that error.

First, if the error occurred in the last n bits.
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0
Computing the syndrome of »* where the first column of H*, 0 denotes
1
hq
by [ 1 ]
: h h R RS £
e e g wn T . G 1 n
s(ry=H".(r") = 0 1). :
Y10 T
— %, [h:, [511]+ 7 [h
_ x,gh,:, Yy 1,0,
-l B
3 :,,:,,hc+r'1hl -I— -+, 0, I
(X + I+ .. T
[0 +r0y +"'+'i‘;:|i't]:]
_..{:0 + '?"1 + "'+ T,!
_ [ ir-lhj +"'+ F;:h]; (4 10)
Colxg 11 r;,] '

But the syndrome of the corresponding codeword of r~, say r Is;
T,

s(r) = H.rT = (h ...Ft”j_[i

T

m

— [rhy+ 1h, ] =h, =0

Since there is an error in one of bits of r.

So (4.10) will be as follows;

r!(.r..h:l _ [ S(r:l ]

B PO O
The last row of the syndrome s(+*) will be l,i.e. x, +7 + -+ 1, =1
Since w(r*) is an even number, but there is an error in one bit of .
Hence, w(r*) will be an odd number.

SIPC I Py [

0, s(r*) = I 1] = h,; (4.11)
Clearly from (4.11) that the syndrome matches a column of H".

Hence, there is an error in position i of +*. Add 1 (modulo-2) to the i*®

coordinate of r~.
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Second, Suppose now that only the parity bit isin error. Then s(r) will be
0

zero, so s(r*) = 0 and this matches the first column of H*.

1
Thus, we can assume 1 error has occurred and switch the bit of the word
corresponding to that column.
Now suppose 2 errors have occurred. Wherever they occur the parity of the
entire word will be correct, thus the syndrome will have a0 in the last row
and will not be a column of the check matrix. But the syndrome will not be
zero since codewords of the extended Hamming code have minimum

distance 4. Thus a nonzero, non-column syndrome indicates 2 errors.

Example 4.12: Consider the (7, 4) Hamming code given in table 11, with
1000111
thecheck matrix H=|0 1 01 0 1 1|=[h, h, hy h, ks hg h-]
0011110
01000111
Then H* — g g é E % E 1 é TR hy” k" Ry Ry s b By
11111111

IS the parity check matrix of an extended Hamming code, Ham(3)".

Ifr=(01100111)beareceived word then:
0

sT(r)=Ho"T =

1l _

0 1
1
Hence, there is an error in position 2 of . Add 1 to the 2 coordinate of »

s0,v=(01000111)

Ifr=(11000111)beareceived word then:
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sT(ry=H*+T = = hy

= O

Hence, there is an error in position 0 of r. Add 1 to the 0*" coordinate of

so,v=(01000111)

Ifr=(11100111)beareceived word then:
0

1
Tisy — * o-T
s'(ry=H".7r 0
0
Thus the syndrome will have a 0 in the last row and will not be a column of

the check matrix. Thus a nonzero, non-column syndrome indicates 2 errors.
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Chapter 5

Cyclic codes
Cyclic codes form an important subclass of linear block codes and
were first studied by Prange in 1957. These codes are popular for two main
reasons. first, they are very effective for error detection/correction and
second, they possess many algebraic properties that simplify the encoding

and the decoding implementations.

5.1 Description of Cyclic Codes
If the components of an n-tuple v = (v, v, ...17,_,) are cyclically shifted
one place to the right, we obtain another n-tuple,

v = (v,_; vy . Vyoa),
which is called a cyclic shift of v.
Clearly, the cyclic shift of 1 is obtained by moving the right most digit
v,_, Of v to the left most digit and moving every other digit
Vg, V4, ..., T,_, ONE position to the right.
If the components of 1 are cyclically shifted i places to the right, the

resultant n-tuple would be

v = (‘[-‘”_:- Vh—i+1 - Vp—1 Vg Uy - T!J:—:'—l:]' (5'1)

Remark 5.1. Cyclically shifting 1 i-places to the right is equivalent to
cyclically shifting v (n — i)-places to the left.
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Definition 5.1: An (n, k) linear code C is called cyclic if any cyclic shift of
acodeword in C isalso acodeword in C, i.e. whenever (v, v, ...1,_4) € C,

thensois (v,,_; vy ... 1,_5).

n—a

Example 5.1: Consider the following (7,4) linear code C;

C = {(0000000),(1101000),(0110100),(1011100),(0011010),
(1110010),(0101110),(1000110),(0001101),(1100101),(0111001),
(1010001),(0010111),(1111111),(0100011),(1001011)}.

One can easily check that the cyclic shift of a codeword in € is dso a
codeword in (. For instance, let v = (1101000)¢€ C, then:
v = (0110100) € C.

Hence, the code € isacyclic.

Remark 5.2: The pair (n, k) = (7,4) is not arbitrary chosen.
We show later in section (5.3) that n — k is the degree of the polynomial

that generates the cyclic code C (n, k).

5.2 Algebraic Property of Cyclic Codes
In this section we prove an important algebraic property of cyclic codes
which simplifies the encoding and syndrome computation.
Recall the polynomial representation

V(X)) =1, F U X+ VX7 + v, X" (5.2)
of the n-tuple v = (v, v, ...17,_, ) asdefined in Section 1.8..
Each codeword corresponds to a polynomial of degree = n — 1.

We shall call the polynomial v(x) the code polynomial of v.
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Remark 5.3: The correspondence between the codeword v and the
polynomial v(x) is one-to-one. So from now on, we will use the terms
"codeword" and "code polynomial" interchangeably.

Example 5.2: The polynomial representation of the (7,4) cyclic code C of

Example 5.1 is given in following table:
Table 17: The Polynomial Representation of the (7,4) Cyclic Code

Codeword (17) Code polynomial v(x)

1o —(0000000) 0
v, =(1101000) 1+ x+x°

v, =(0110100) x +x% +x*
v, =(1011100) 14+ x2+x% +x*
v, =(0011010) ¥ +xP+x°

v, =(1110010)

1+ x+x2+x°

v, =(0101110)

x4+ x3 4+ x4 x5

v, =(1000110)

14 x* + x°

v, =(0001101)

34 xt+x®

v, =(1100101)

1+ x+x*+x°

v, =(0111001)

x4+ x?4+x% 4+ x°

v, =(1010001)

14 x2+x®

v,, =(0010111) x? +xt + x> +x8

v, =(1111111) | 1+x+x"+x® +x+x° +x°
;. =(0100011) x +x° +x°

v,5; =(1001011) 14+ x4+ x° +x°

Clearly, each codeword in (Table 17) corresponds to a polynomial of

degree = 6. The nonzero code polynomial of minimum degree in this

cycliccodeis 1 + x + x* and it's of degree 3.

The code polynomial that corresponds to the codeword
TJI\” = (T!]!—f T:]!—!'+1 T!]!—l T!G- le T!]!—!'—l) IS
VE () = Uy + Vg X+ 1y x

+17 .L-:I 4+ 1 _L-!I+1 + o+ 17, l—]!—i 5.3
o 1 n—i-1
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The following theorem shows an interesting algebraic relationship between
v(x) and v (x).

Theorem 5.1: In the cyclic C(n, k) code, the code polynomial v (x) is
simply the remainder resulting from dividing the polynomial x*.17(x) by
X"+ 1.

Proof: Consider the codeword v = (v, v,..7;..V,_;..V,_,) In the

cyclic code C (n, k).
The code polynomial that corresponds to that codeword 17 is
v(x) = vy + vy X+ + X+ v X by X
Now, if the components of that v are cyclically shifted i-placesto the right,
then the corresponding codeword will be
v = (Upy Ve e Vpoy Vo Vg o U e Uy
The code polynomial that corresponds to the code word v is given in
(5.3).
Now, multiplying v(x) by x, we obtain
xLv(x) =vpxt ottt 4ot ey xR
=Xt + 4 v, x4+ " (’[-‘]:_:- + e+ 't-‘”_l.r"‘l)

=vox' -+ v x4+ e+, x4+ x"g(x) (5.4

n
where g, (x) = v,_;, +1,_;. X+ -+ 1, _;x L. (5.5)
Since g(x) + g(x) = 0 modulo 2-addition and by (5.3),

v(x) =x" g, () + q,(x0) + (q,(x) +vgxt + vy L+, XY

=g, ()" + 1)+ 1% (5.6)
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Then the code polynomial v (x) is simply the remainder resulting from

dividing the polynomial x*.v(x) by x™ + 1. |

5.3 The Generator Polynomial and its Algebraic Properties
In this section, we prove number of important algebraic properties of the

polynomial called the generator of the code.

Property 1. The nonzero code polynomial of minimum degree in a cyclic

code C isunique.

Proof: Suppose that g(x) = g, + g-x + -+ g,_,x"~* + x" isanon zero
code polynomial of minimum degree r.

Suppose g (x) is not unique.

Then there exists another code polynomial of degree r, say
gx)=g,+gix+-+gi_x 7+

Since C IS linear,
g+ g () =(go+ go) + (g1 +g)x + -+ (Gr-g + gr-1)X " IS
also a code polynomial which has degree less than r.

If g(x)+g (x)=0, then g(x)+ g (x) is a nonzero code polynomial
with degree less than the minimum degree r, a contradiction to the
minimally of r. Thus g(x) + g“(x) = 0. This implies that g*(x) = g(x).
Hence, g(x) isunique. |
From now on, we use g(x)=g,+ g-x+ -+ g,_,x""*+x" as the

unique non zero polynomial of minimum degreein C.
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Property 2: The constant term g, must be equal to 1.

Pr oof: Suppose that g, = 0. Then
gx)=gx+.+g_x"" 1 +x" =v=(0 g;... g,_, 1 0..0).

By shifting g(x) cyclically n — 1 places to the right (or one place to the

left), we obtain nonzero code polynomial,
g U(x) =g, +g.x+.. g X P+l =2 v =

(91 92 - gr-110..0)

which has a degree » — 1 < r, a contradiction to the minimally of r. Thus

QDIO H

Example 5.3: Consider the (7,4) cyclic code given in table 17. The unique

nonzero code polynomial with minimum degreeis:
glx)=1+x+ x>
Moreover, we treat the coefficients of g(x) as the components of a

codewordv =(1 10100 0).

Theorem 5.2: The cyclic (n— r)-shifts of the minimal degree code
polynomial g(x) =1+ g,x+..+g,_,x"* + x", given by;
1.g(x), xg (x),x*g(x), ..., x" 7" 1g(x)
(5.7)
are al code polynomials in C. Moreover, all linear combinations of (5.7)

are also code polynomials.

Proof: Consider the polynomials xg(x),x?g(x),....x" "1 g(x), which

have degreesr + 1,r + 2, ...,nn — 1, respectively.
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Since g,.1 = Grea = - = g,_, = 0, then by replacing v(x) by g(x) in
(5.5 and 5.6) we obtain the following:

xg(x) = g, (x" + 1)+ g () = gV (%)

x2g () = (g2 + G100+ D+ g () = g@ ()

(5.8)

X" G(X) = Groy 4 GroaXte. +G,_ X T2 (X" + 1) + gV (1)
= g™ Y ()

That is, (5.8) are cyclic shifts of the code polynomial g(x) in an (n,k)

cyclic code C.

Using definition 5.1 of the cyclic code, then (5.7) are also code

polynomialsin C.

Now, since C islinear code, then all linear combinations of (5.7),

v(x) =upg(x) +uxg(x) + -+ 1wy, X T g(x)

are also code polynomials where ., = 0 or 1. |

Example 5.4: Consider the cyclic C(7,4) code given in table 17 with
gx)=1+x+x* where the corresponding codeword is
v;=(110 10 0 0). Then the following polynomials are cyclic shifts
of g(x) and also code polynomialsin C(7,4);
xg(xX)=x+x*+x*=v.,=(01101000)eC
glx)=x+x*+x* =, =(0011010HeC

AT glx) =x" P gy =% glx) =

B Hxt+ =0, =(0001101)€C
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Moreover, al linear combinations of g(x),xg(x),x*g(x),x*g(x) are
code polynomialsin C(7,4);
gx)+xgx)=1+x"+x*+x*=v,=(1011100)
gx)+x%g)=1+x+x?+x*=v:=(1110010)
gxX)+3g()=1+x+x*+x*=v,=(1100101)
xg(X)+xg(x)=x+x*+x*+x°=v,=(0101110)
g+ g =x+x"+x*+x*=v,=(0111001)
g+ g =+ +x+x*=v,=(0010111)
gX)+xg)+ g =1+x"+x"=v,=(1000110)
gx)+xgx)+x¥g(x)=1+x"+x*=v,,=(1010001)
gxX)+x%g(0)+xg(x)=1+x+x +x +x* +x° +x°
—v,=(1111111)

xg(x)+xPg(x)+Pgx)=x+x*+x*=v,,=(0100011)
g(xX)+xg(x)+x?g(x)+x3g(x) =1+ x% + x> +x°

= v,.=(1001011)
The example above showed that g(x) generates the cyclic code C(7,4)

givenin (Table 17). Hence we call it the generator polynomial of C.

Definition 5.2: The generator polynomial of a cyclic code C is the unique
non zero polynomial of minimal degree r in C and is denoted by

gx)=1+gx+-+g,_x" 1 +x"
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Property 3. A binary polynomial of degree = n — 1 is a code polynomial
if and only if it isamultiple of g (x).
Proof: (<) Let v(x) be a binary polynomial of degree n—1 or less.
Suppose that v (x) isamultiple of g(x). Then
vix)=(a, +a;x+-+a,_,_x" 7" Dglx)

= a,g9(x) +axg(x)+ -+ a,_,_x" T 1g(x).
Since v(x) isalinear combination of the code polynomials,

g(x),xg(x), ..., x" g (%),

then v(x) isacode polynomial in .

(=) Now, let v(x) be acode polynomial in C.
Dividing v(x) by g (x), we obtain
v(x) =alx).g(x)+ b(x),
where either b(x) is identical to zero or the degree of b(x) is less than the
degree of g(x).
Rearranging the equation above, we have
b(x) =v(x) +alx).glx),
It follows from the first part that a(x). g(x) is a code polynomial.
Since both v(x) and a(x).g(x) are code polynomials in linear code, then
b(x) must also be a code polynomial.
If b(x) = 0, then b(x) is a nonzero code polynomial whose degree is less
than the degree of g (x).
This contradicts the assumption that g(x) is the unique nonzero code

polynomial of minimum degree. Thus, b(x) must be identical to zero.
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Hence, v(x)=alx).g(x). This proves that a code polynomial is a

multiple of g (x). |

Lemma 5.1: There are 2"~ distinct code polynomials of degree = n — 1
inC.

Proof : Suppose v(x) is a code polynomial of degree = n — 1. Then by
(Property 3) v(x) isamultipleof g(x) =1+ g,x+..+g,_.x"* +x" and
can be written as
v(x)=(a;+ax+-+a,__x"7"Hglx)=a(x).g(x) for some
polynomial a(x).

Since a; = 0 or 1, then there are a total of 2™~ distinct polynomials of
degree = n—r — 1.

Thus, the number of polynomials of degree = n — 1 isalso 2™ 7. N

Note that, the 2"~" polynomials given in lemma 5.1 form all code

polynomials of the (n, k) cyclic code C.

Property 4. The degree of the generator polynomial of an (n, k) cyclic
codeisn — k.

Proof: Let g(x) =1 + g.x+.. +x" be the generator polynomial of alinear
cyclic code C(n, k), then from (Chapter 2) a linear C(n, k) code has 2%
distinct codewords. from (Lemma 5.1) there are 2™~" distinct code
polynomials.

Now, by one to one corresponding of the codeword and code polynomial

wehave 2" =2"""=n—r=k=r=n—k m
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At this point, a natural question is how to select a generator polynomial

g (x) which generates the (n, k) cyclic code C.

Theorem 5.3: The generator polynomial g(x) of an (n, k) cyclic code is a
factor of x™ + 1.

Proof: Multiplying g (x) by x* results in a polynomial x*. g(x) of degree
n since g(x) is a polynomial of degree n — k. Dividing x*.g(x) by
x™ + 1, then we obtain the following equation from (5.6)

X5 g(0) = (Grore + GrraiX + o+ g XD + 1)+ g% (%)
where the code polynomial g“”(x) is the remainder and it is obtained by
shifting g (x) to theright cyclically k times.

Butv, ,=1andv,_,., =--=1,_, = 0. Hence,
i g(x) ="+ 1)+ g% ) (5.8)
Now, using (Property 3) g%’ (x) is amultiple of g(x), say
g% () = a(x).g(x)
From (5.8) we obtain
X"+ 1= x"gx)+ g% (%) = x*g () + ax). g(x)
= (r‘i‘ - a{.x:)). g(x)

Thus, g (x) isafactor of x™ + 1. |

Definition 5.3: Let f(x) be a fixed polynomial over GF(2). Two

polynomials g(x) and h(x) are said to be congruent modulo f(x), written

g(x) = h(x)mod f(x)
if g(x)— h(x)isdivisibleby f(x)

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com

138

Corollary 5.3: x™ = 1 mod g(x)
Proof: By (Theorem5.3) x™ + 1 = g(x)q(x) for some g (x) of degree k.
=2gxX)/x"+1=2x"+1=0mod g(x)= x" = 1mod g(x). |

Theorem 5.4: If g(x) isapolynomial of degree n — k that divides x™ + 1,
then g(x) generates an (n, k) cyclic code.
Proof: Let g(x) be apolynomial of degree n — k that divides x™ + 1 then
x"+1=gq(x).g(x), for some g(x) of degree k. Consider the k
polynomials g(x),xg(x),...,x* *g(x), which al have degree <n — 1.
A linear combination of these k polynomialsis
v(x) = agg(x) + a,xg(x) + -+ a,_x* 1 g(x)
= (ag+a;x+ - +a,_;x¥)g(x)

Is also a polynomial of degree = n — 1 and isa multiple of g(x).
There are a total of 2% such polynomials and they form an (n, k) linear
code C.
Now, we show this (n, k) linear code is cyclic.
Let v(x) =1, + vyx+ -+ v,_;x"* be acode polynomial in this code.
To complete this proof we must show the cyclic shift of 17(x) isalso a code
polynomial in C
Multiplying v(x) by x, we obtain
xv(x) = vox + v x4+ -+ 1, X7

= (Vy 1 VX + VX2 + v, X ) v, X"+,

=YW +v,_, "+ 1) (5.9)

Rearranging the equation (5.9) we have
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v P (x) = w(x) + v, (x" +1)

= x(Qy+ A x+ -+ a_ X Hgx) + 1, 1.g(x). g(x)

= (Apx+ A x° + -+ a,_xg(x)+v,_5.9(x). g(x)

= g(x).[(apx + a;x® + -+ a,_x)+v,_.q(x)] (5.10)
Equation (5.10) show that v (x) is a multiple of g (x).
But g(x) isapolynomial of degree k&, soit is can be written as follows;
g(x) =uy + U X+ -+ X"
Thus, (5.10) will be written as follows;

V() = gQO[(agx + + ap X)) + 1, 1. (Up + U X + -+ X5)]

= g [(agx + - + @y X%) + (U1 Up + Uy U X + o+ 1y X7)]

(ap + Vy_;. U X+ (@ + 1,5 U )X
+ooed (Apeq + Vg )XF

= g(x)v, Uy + (ag + vy 1. uy )xg(x) + (g + Vo U)X g(x) + -+

(@ps +1y_1)x ()

= g(X)vy_yup + g(x)

(5.11)
The last equation (5.11) showed the cyclic shift v’ (x) of v(x) is a linear
combination of g(x),xg(x),...,x*"2g(x). Hence, v *'(x) is also a code
polynomial and the linear code generated by g(x),xg(x),...,x*"*g(x) is

an (n, k) cyclic code. |

Note that, theorem 5.4 actually says that any factor g(x) of x™ + 1 with
degree n — k generates an (n,k) cyclic code ¢, by taking all linear
combination of g(x),xg(x),..,x**g(x). In other words, the k code
polynomials g (x), xg(x), .., x** g (x) span C.

ie, C=< g(x),xg(x),..,x"g(x) =
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Example 5.5: The generator polynomial g(x) of the (7, 4) cyclic codeis a
factor of x” + 1 and it isapolynomial of degree 3.

The polynomial x” + 1 can be factored as follows:
x+1l=1+x)0+x+x3)(1+x% +x%).

There are two factors of degree 3 each generates a (7, 4) cyclic code.

If g(x) =1+ x+ x?, then from above we can design (7, 4) cyclic code C
where C =< g(x),xg(x),...,x* *g(x) > (5.12)
In fact, (5.12) generates the same cyclic code given in Example 5.1.

If g(x) =1+ x* + x3, then the cyclic code consists of

v, =(0000000)

g)=1+x2+x3=1,=(1011000)
xg(x)=x+x*+x*=v,=(0101100)
gx)=x?+x*+x*= v, =(0010110)
Cglx)=x*+x*+x*= v, =(0001011)
gxX)+xgx)=1+x+x>+x*=v;=(1110100)

g+ g =1+ +x"+x°=1v,=(1001110)

g+ g =1+ +x"+x°*=v.=(1010011)

g+ g =x+x"+x*+x°=1,=(0111010)
xg()+x3g()=x4+x*+x"+x*=1v,=(0100111)

g+ g =x*+*+x"+x*=v,,=(0011101)
gx)+xgx)+x*gx)=1+x+x>=v,,=(1100010)
g(xX)+xgx)+xgx)=1+x+x"+x* +x* +x°>+x°

=, =(1111111)
gxX)+xg(xX)+xg(x)=1+x*+x*=v,,=(1000101)
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xg(x)+x*g()+Pg()=x+x"+x*=v,,=(0110001)
gx)+xg(x)+x"g)+x3gx) =14+x+x* +x°

— v, =(1101001)

Note that, in the above example we can find a (7, 3) cyclic code generated

by the generator polynomial

gx) =1+ x(1+x+x*)=1+x*+x*+ x* inthesame way.

5.4 The Generating Matrix, the Check Polynomial and the
Parity Check Matrix for Cyclic Codes

5.4.1 The Generator Matrix
Recall that the k code polynomials g(x),xg(x),..,x* *g(x) span an

(n, k) cyclic code C with generator polynomial
g(x) =go+ g1x+ -+ g,_p X" . Then, if the k n-tuples corresponding
to these k code polynomials are used as the rows of an kxn matrix, we

obtain the following generator matrix for C:

€ O 09, - S . O, O 0O O 0 u
go 9 9, 9, . . . . . 0.« 0 O 0 3
G=é0 0 g, 9, 9, - . . : . 0, O 04
e 1 u
e I
go o . . . 09, & 9 . .- - - 9.H

Note that, al rows of G are linearly independent. So,

g(x),xg(x), ..., x*1g(x) form the basis for C.
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Example 5.6 Design all cyclic codes of length 4 using the generator

polynomial and generator matrix for each cyclic code.

Factorization of x* + 1 over GF(2) hasthe form

M +l=x+DEFE+ P+ x+ D=+ DE+DEP+ 1)

Table 18: All Cyclic Codes of Length 4

Generator polynomial g(x) Generator matrix & (x)
1 I

1+x (110 0]

0110

001 1]

1+ x2 1 01 07

01 01!

v+t +r+1 [1111]
xt+1 [000 0]

Notethat, x* +1 = 0mod x* + 1.

5.4.2 Check Polynomials
Let C be a cyclic (n, k) code with the generator polynomial g(x) (of

degreen — k), thenx™ + 1 = g(x)h(x) (5.13)
where the polynomial i(x) has the degree k and is of the following form:
R(x)=hg+ hyx+ o+ Ry x®

with h, = h;, = 1.

We call h(x) the check polynomial of C or the parity polynomial of C.

The check polynomial will be used to determine if the received word is a

codeword in the cyclic code € asfollows;
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Theorem 5.5 Let C(n, k) be a cyclic code with a generator polynomial
g(x) and check polynomial h(x). Then v(x) € C if and only if
v(x)h(x) = 0mod x™ + 1.

Proof: (=) Suppose v(x) € € = v(x) = alx) g(x) (5.14)
for some a(x) € V..

Multiply both sides of (5.14) by h(x) then we obtain

v(x)h(x) =a(x)gh(x) =a(x)(x" +1) = 0mod (x" + 1)

(&) Suppose v(x)h(x) = 0 mod x™ + 1. To show that v(x) € C, we
must show v (x) isamultiple of g(x) by (Property 3 of g(x)).

Consider v(x) = g(x)g(x) +r(x),degr(x) < deg g(x).

where g(x)&r(x) are the quotient and remainder polynomials,
respectively.

Multiply both sides of the above equation by h(x) then we obtain
v(x)hi(x) = g(x)g () h(x) + r(x) h(x)

But v(x)h(x) =0modx" + 1 & g(x)h(x)=x"+1=0mod x™ + 1
by (5.13)

=r(x)h(x)=0modx" +1=1r(x)=0o0r h(x)=0but h(x) = 0, s0

r(x) = 0. Therefore v(x) = g(x)g(x) isamultiple of g (x). N

Remark 5.4: The check polynomial of the cyclic code C(n, k) generated
by g(x)ish(x) = (x"+1)

glx)

Proof: From (5.13).
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Example 5.7: Consider the (7, 4) cyclic code generated by
glx)=1+x+x° with the parity check polynomial
hix)=1+x+ x> +x*.
Then the polynomial r{x) = x + x> + x® is a code polynomial of ¢ if and
only if ¥(x)h(x) = 0 mod x” + 1.
Sincer(x).h(x)=(x + x>+ x®)(1+x + x*+x%)

=x+ x4+ 7+ "+ %+

and
X3+ %% + X
x7+1>x1°+x9+x8+x3+x2+x

XlO + X3

X%+ x® +x% + X

Thus r(x)h(x) = 0mod x” + 1 = r(x) isacode polynomial of C(7,4).
5.4.3 Parity Check Matrices

In this section we will use the check polynomial h(x) of the cyclic code C

to generates the dual code C+.

Theorem 5.6: Suppose ( isacyclic (n, k) code with the check polynomial
h(x) =1+ h;x + -+ x* then

(i) The parity check matrix for C is

@, h, L hy 0 L 0q
é 0
L_60 ho L ohoh L ooy
el L a
80 0 L 0 h L hg
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(ii) The polynomial

R(x) = xFh(x™Y) = hy + hy_ x4 -+ hyx® (5.15)
generates an (n,n — k) cyclic code C+.
Note: the polynomial .(x) is defined as the reciprocal of 1 (x)
Pr oof:
(i) We show that any codeword v = (1,74, ...,1,,_4 ) in C is orthogonal to
every row of H.
Let v(x) =1, + v,Xx+ - +1,_,x" " be a code polynomial in €. Then
v(x) = alx).g(x) for some polynomial a(x) of degree < k — 1.
Multiplying v (x) by h(x), we obtain
v(x)h(x) =alx)g(x)h(x)

=al(x)(x"+ 1)

=a(x)+ x"a(x) (5.16)
= (a, +ax+-—+a,_ X+ ax" + a x4 o4 gy xMH
Clearly the powers x*,x**1, ..., x™~1 do not appear in (5.16). If we expand
the product v(x)h(x) on the left-hand side of (5.16), the coefficients of

k

Xk oRE

, ..., X"~ must be equal to zero, i.e.
voh, +v hy_,++1v,hy=0
vih, + v+ UL 1y =0
(5.17)
Vy_ gy + v, gl g -+, =0

The system (5.17) can be represent as follows
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éh h, L hy 0O L 0, 0 &
e u u
€0 h L h h L 0g, q:gou
el L G 0 @&u
e ue u e.u
e0 0 L 0 h L hygd,.q &i

It follows from (5.17) that any codeword v = (v, v, ...v,_;) €EC IS
orthogonal to the word h = (hy h;_; ...hy 0...0) and to the any cyclic
shift of h, i.e. any codeword v € C is orthogonal to every row of H.

Therefore, H is a parity-check matrix of the cyclic code C. N

Proof (ii): To show that €+ isan (n,n — k) cyclic code generated by the
polynomial h(x) = hy + hs_yx + -+ hyx®, it is sufficient to show that
h(x)isafactor of x™ + 1.

Observe that from (5.13)
gxh(x)=x"+1 (5.18)
Now, if we substituted x=* in (5.18), then we obtain
gx Dh(x ) =ExHY+1=x"+1 (5.19)
Multiplying both sides of (5.19) by x™
Xgx DHhx ) =)+l ="+ 1Dx"=1+x" (5.20)
= x""*x* in the left hand side of (5.20)

Rewrite (5.20) using x™ = x"***
XFh(x D g ) =x"+ 1
But 11(x) = x*h(x~1) so we have the following

RO *gx D] =x"+1

Therefore h(x) isindeed afactor of x™ + 1 and hence, the polynomial

h(x) generates an (n,n — k) cyclic code C*. n
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Note that the row space of H isthedual C+ of C.
Moreover, since the parity check matrix H is obtained from the polynomial

h(x), wecal h(x) the parity polynomial of C. Hence, acyclic code is also

specified by its parity polynomial.

Definition 5.4: In an (n, k) cyclic code ¢ the minimum distance (The

minimum weight) of the dual code C* is the degree of the polynomial

h(x) = x*h(x™1).

Example 5.8: Consider the (7,4) cyclic code given in table 17 with

generator polynomial g (x) = 1 + x + x* and generator matrix
1

G = :

0
1
1
0

e =
== = ]

0
0
1
0

= O O O

1
01
00
00
Then the parity polynomial h(x) is
(x"+1) x+1

_ 42 g 4
e _1+.E+.¥3_1+l+l +x

hix) =

and hence, the reciprocal of h(x) is
) =x*h(x D =x*h(x D =x*A+x 1 +x24+x%)

=14+x%4+x*4+x*

The parity check matrix H of C(7,4)is

1110100
1101 {]]
11101
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Now, The dual code C*+(7,3) of (, which is generated by
h(x) =1+ x%+ x? + x* consists of

v, =(0000000)

Ax)=1+x2+x34+x*=v,=(1011100)

xh(x) =x+3+x*+x°=1v,=(0101110)
h()=xT4+x*+x°4+x5=v,=(0010111)

M) +xh(x)=1+x+x*+x°=1v,=(1110010)

RO +xh(x) =1+ +x°+x°=1v;=(1001011)
xh()+x2h() =x+x*+x*+x* =1, =(0111001)

RO+ xh() +xPh(x) =1+x+x*+x°* =1, =(1100101)
Clearly, the minimum distance (minimum weight) of C* is 4, which is the

degree of the polynomial h(x) = 1+ x? + x* + x*,

The parity check matrix H can be used to check the codewords of the cyclic

code (C asin the following theorem:

Theorem 5.8: r is a codeword in a cyclic code C(n, k) if and only if

H':J:—Fc:lxnrr = 0.

This can be expressed
@k h., b h, 0O L Ogérou
€0 h L h h L 0gr 3:0
el L vé il
e ue u
e0 0 L 0 h L hgg.i

Proof: It follows from theorem 5.6 (i) that any codeword

v = (Vy,1,,...,17,_;) IN C(n, k) isorthogonal to every row of H. |
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54.4 SystematicFormof G & H

The generator matrix in systematic form can also be formed easily using

these three steps:
Consider C(n, k) isthe cyclic code with the generator polynomial g( x).

First: Dividing x™"~%** by the generator polynomial g(x) for
i =0,1,...,k— 1, weobtain
X" =, (x0)g(x) + b, (%), (5.21)
where b; (x) is the remainder with the following form:
b,(x)=bg+ byx++b _,_x"E?
Second: Rearranging (5.21), for i = 0,1, ...,k — 1, we obtain the following
b, (x) + x™** = a,(x)g(x) (5.22)
Since the R.H.S. of (5.22) is a multiple of g(x) for i =0, ...,k =1, then
the L.H.S. b,(x) + x™***! isa code polynomial v, in C.
Third: Arranging the k coefficients of the left hand side of (5.22) as rows

of ak x n matrix as follows

é b00 bOl b02 L bO,n- K-1 1 00 L 0[]
é p
& b, b, L b, 010 L 03
G =éb, b, b, L Db,,, 001 00=( By iy | T2 )
Sy v v v W ww G
5 g
SDk. w0 by be, L bn: 000 L 1H

which is the generator matrix of ¢ in the systematic form. Since the rows of

:* span the row space of it, where any linear combination of these rows is
again codeword in the row space.

— X% _ ¢,R, isalso acodeword, where R, is i** row in G,

c, =0 or 1 = 2% codewords.
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But |C| = 2% = ( is spanned by the row space of G*.
Moreover, the rows of ¢* are linearly independent.

— (G~ generates €.

The corresponding parity check matrix for € is the following (n — k )xn
matrix; H™ = (I]!—.it |BT(1:—R:|>CR)

€ 00 L 0 by by, by, L by U
©10LO b, b, b, L b, &
=80 0 1 0 by, b, b, L b, U
@ ! o I ! I 3
00 L 1 by Bor Bpws L byl

Example 5.9: Again, let us consider the (7, 4) cyclic code given in table 17
which is generated by g(x) =1 + x + x°.

Clearly, the generator matrix ¢ and the parity check matrix H of C givenin
example 5.8 are not in systematic form so;
Dividing x®,x*, x°,and x° by g (x), we have
2 =glx)+ (1 +x),
x* =xg(x)+ (x +x2),
W =(x?+Dgx)+(1+x+x2),
= +x+ Dglo)+ (1 + x).
Rearranging the equations above using (5.24), we obtain the following four
code polynomials: v, (x)=1+x + 23,
v (x) =x +x* +x*,
vo(x)=1+x+x%+x°

vy(x) =1+ x4+x%+x°,
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va(x) =1+x7 + x5

Arranging the coefficients of these four code polynomials as rows of the

4 x 7 matrix
1101000

Ga:ﬂll{]l{]{]
1110010
1010001

which is the generator matrix of C(7,4) in systematic form.

The corresponding parity check matrix for € (7,4) is
100101 1]

Important fact: The above algorithm can be made easier when it uses the

power representation for the elements of C given in section 1.8.

Given g(x) =1+ g,x + -+ x""* as a primitive polynomial which has a
zero in GF(2™ %) at the primitive element @, and thus all codewords v
satisfy v(a) = a(a)g(a) = ala).0 = 0.

Thatisl+ g+ - +a™ % =0

— g = + g a+-+ I£?”_k—lﬂ,:lz—.ic—l (5_23)

And the parity check matrix H = [a® a* ... a™ ']

For example: The above generator matrix ¢* given in example 5.9 can be
formed in another way using (5.23).

Since the polynomial g(x) =1 + x + x2 is a primitive polynomial which
hasazeroin GF(2%) at «

then

l+a+a’=0—=a’=1+a=b(x)=1+x
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=s1,(x)=1+x+x*=v,=(1101000)
a*=a(e)=a(l+a)=a+a® = b (x) =x+x°
=sv,(x)=x+x"+x*=v,=(0110100)

a’ =ala)=ala+a®)=1+a+a’=hb(x)=1+x+x"
=1,(xX)=1+x+x*+x"=v,=(1110010)

a® =ala®)=1+a’ = by (x) =1+ x*
S1,x)=1+x"+x*=2>v,=(1010001)

where b, b,,b,& b, are the remainders when we divide x*,x*, x>and x°®
by g(x), respectively.

Arranging  the  coefficients of these  four polynomials

v (x), 17, (x), v, (x) & v;(x) as rows of the 4x7 matrix

which is the generator matrix of C(7,4) in systematic form.

) 1001011
&H=[a"a* a* a® a* a®> a°]=(0101110].
00101
5.5 Encoding Operations

5.5.1 Nonsystematic Encoding

Inan (n, k) cyclic code, every code polynomial 1(x) can be expressed as a
multiple the message u(x) and g(x)=1+g,x+-+ g, _,x" 1 +x7
where the degree of g(x) isr = n—k.

v(x) =ulx).g(x) (5.24)

= (ul',} +u-1 X + e +u’.i(—1x:k_1>.'g(x:j
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= (Upg(x) + Uy xg(x) + -+ up_x 1 g(x)).
g(x)

= (Up Uy o Up—q) IQEE)
" 1g(x)
Using the vectors the code polynomial v(x) given in (5.24) can be
expressed as follows;

&0 &1 " Es
gy &1 T By

o &1 " &y
U= (Up Uy .. Up—1) ’ 1 (5.25)

gy &1 " By
& & 7 Er

U =1 GFUL']:

where 1 and v correspond to the u(x )and 1(x), respectively.

Therefore, an (n, k) cyclic code is completely specified by its generator

polynomial g(x).

Remark 5.5: The degree of g(x) is equal to the number of parity-check

digits n — k of the code.

Example 5.10: Consider the cyclic code € (7,4 generated by

g(x) =1+ x+ x*, where message set is

U = {(0000),(1000),(0100),(1100),(0010),(1010),(0110),(1110),
(0001),(1001),(0101),(1101),(0011),(1011),(0111),(1111)}.
Using (5.24), the corresponding encoded messages are given in the

following table.
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Table 19: The Cyclic Code C(7,4) Generated by g(x) = 1 + x + 3

M essages M essage Code polynomials Codewords
u polynomials u(x) v(x) = ulx).g(x) v
(By 5.24) (By 5.25)
(0000) 0 0=0.g(x) (0000000)
(1000) 1 T+ x+x° (1101000)
(0100) X X + %2+ x* (0110100)
(1100) 1+ x 1+ x? +x° +x* (1011100)
(0010) X’ 2+t 42 (0011010)
(1010) 1+ x2 1+ x+x%+ x5 (1110010)
(0110) X+ x° x+x3+x* +x° (0101110)
(1110) 1+ x+x? 1+ x*+x° (1000110)
(0001) e x3 +xt + 8 (0001101)
(1001) 1+ x3 1+x+x*+1x° (1100101)
(0101) X+ x° x+x?+x° +x° (0111001)
(1101) 1+ x+x° 1+ x? +x° (1010001)
(0011) v 453 x2 +x* 4+ x° +x° (0010111)
(1011) I1+x*+x% |1+x+x*+x%+x*+2°+x° (1111111)
(01112) Xx+x?+x° x + x>+ x° (0100011)
(1111) 1+ x+x%+x° 1+ x° +x° +x° (1001011)

5.5.2 Systematic Encoding

In systematic encoding the codeword v is divided into two parts:

the message part and the redundant checking part. The message part

consists of the k message digits u and the redundant checking part consists

of n — k parity-check digits.

Encoding in systematic form consists of three steps:

Consider the message vector 1 and the corresponding message polynomial

U(x).

U= Uy Uy o Up_q) = UX) = Uy + U X+ o+ Uy X
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Step 1: Shift i to the right n — k positions by multiplying 2(x) by x™~* to
obtain a polynomial of degree = n — 1.

ATRU(X) = Up X A ug X ey ™ (5.26)
Observe that the vector corresponding to (5.26) is

(00 ... 0 up uy uyy)

n—k
Step 2: Dividing x™ " u(x) by the generator polynomial g(x) to obtain the
remainder b(x) (the parity-check digits).
X" TRulx) = alx)g(x) + b(x) (5.27)
Where a (x) and b(x) are the quotient and the remainder, respectively.
Since the degree of g(x) isn — k, thedegree of b(x) mustben —k — 1 or
less, that is, _
b(x) = by +byx 4+ by x"F1 e (by by by gy 00 ... 0)
k
Step 3: Obtain the code polynomial v(x) by adding b(x) to X" *u(x) as
follows
v(x) =b(x) + x" u(x) = a(x)g(x)
= by + byx + -+ by xR
FUGXTTE F U xR gy xR
which corresponds to the codeword

(Do by oo by Ug Uy U ).

Recall that the division by the generator polynomial g(x) of the above

algorithm becomes easier when it is use the power representation of the
elements of .

Forg(x)=1+g,x+—+x"%ifl+gx+-+x"""=0
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then .
n-k—1

— X" =1+ g x ot Gy X (5.28)
Example 5.12: The systematic form of the 16 codewords in the (7, 4)
cyclic code which isgivenin (Table 19) are listed in the following table.

For the message polynomial u(x) = ug + usx +u.x + uzx° there is

b(x) = by + byx + by x? st. b(x) + x*u(x) isacodeword in C (7, 4).

Table 20: The (7,4) Cyclic Code Generated by g(x) =1+ x+x in

Systematic form

M essage M essage Codeword Code polynomial

u polynomial u(x) v v(x)
(0000) 0 (0000000) 0
(1000) 1 (1101000) 1+ x4+ 3
(0100) X (0110100) X+ x2 + x*
(1100) 1+ x (1011100) 1+ 3%+ +x*
(0010) X2 (1110010) 1+ x+ 2 410
(1010) 1+ x? (0011010) x? +x*+x°
(0110) r + 12 (1000110) 1+ x* +2°
(1110) 1+ x+x° (0101110) X+ +xt+ 20
(0001) x3 (1010001) 1+ x2 + x°
(1001) 1+ x° (0111001) x+x?+x%+x°
(0101) x + x° (1100101) 1+ x+x* +x°
(1101) 1+ x4+ 18 (0001101) 2+t + 8
(0011) x? + 3 (0100011) x4+ x4+ x°
(1011) 1+ x% +x° (1001011) 1+x%+x%+x°
(0111) X+ x* +x° (0010111) x? +xt+ x4
(1111) | 14+ x+ 2+ % | (1111112) |1+ x+ 22+ 3 +x* +x° + 18

For instance, let u(x) =1+ x* +x* <= u= (1 0 1 1) bethe messageto

be encoded.

Step 1; Multiplying u(x) by x*;

u(x).x*=x*+x>+x*—= (0001011
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Step 2; Dividing u(x). x* by the generator polynomial g(x) =1 +x + x2,

X2+ x2+x+1

x3+x+1 ix‘5+x5+x3

X6+X4 +X3
X5+X4
XS +X3+X2

x* +x% +x

X3 + X
X2+ x+1

0+0+1

We obtain the remainder b(x) = 1. Thus, the code polynomial is
v(x) =

b)) +xPu()=1+2*+x°+x°—=v=(100 1011).

u

Notethat, if x* + x+1=0thenx®* = x+ 1
For instance, if u(x)=1then ¥*u(x)=x*=14+x=bh(x) =1+ x
v =bx)+Pux)=1+x+x*=v=(1101000).

if u(x)=14+x% +x° then
Pu) =+ +x* =1+ +x*A+0+ 1 +x)V =1+x+
Y4x+l+14+4x*=1=bx)=1

=v) =) +2ux)=1+x*+x>+x*=2v=(1001011),

Etc.
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5.6 Shift-Register Encodersfor Cyclic Codes

In this section we present circuits for performing the encoding operation by
presenting circuits for computing polynomial multiplication and division.
Hence, we shall show that every cyclic code can be encoded with a simple
finite-state machine called a shift-register encoder.

To define the shift register we want to the following definition;

Definition 5.5: A D flip-flop is a one-bit memory storage in the field
GF(2).

—» D —

Figure 15: Flip-Flop

External clock: Not pictured in our simplified circuit diagrams, but an
important part of them, which generates a timing signal ("tick") every ¢,
seconds.

When the clock ticks, the content of each flip-flop is shifted out of the flip-
flop in the direction of the arrow, through the circuit to the next flip-flop.

The signal then stops until the next tick.

Adder: The symbol of adder has two inputs and one output, which is

computed as the sum of the inputs (modulo 2-addition).

— (Do >
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Multiplication: The symbol of multiplication has one input and one

output, where the output is the multiplication of the input and the number

g; which is stored in this symbol (either 1 or 0), where O represented by no

connection and 1 by a connection.

Definition 5.6: A shift-register is achain of (n — k) D flip-flops connected
to each other, where the output from one flip-flop becomes the input of the

next flip-flop.

__ 5D » D »y» o —000— 10 |—

Figure 16: Shift Register

All the flip-flops are driven by a common clock, and all are set or reset

simultaneously.

5.6.1 Nonsystematic Encoder
Recall that for an (n,k) cyclic code ¢ the code polynomia v(x)

corresponding to the message u(x) is obtained by the encoding operation
of polynomial multiplication:

v(x) = ulx)g(x).
It turns out that polynomial multiplication is easy to implement using the
shift register encoder, and we shall now make a brief study of this subject

using the following example.
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Example 5.13: Consider a generator polynomial for a (7, 4) binary cyclic
codeof isg(x) = go + g,x + g.x* + gz x°.
Then the corresponding shift-register encoder of the polynomial
multiplication
v(x) =ulx).g(x)

= (Up + U X+ U X7 + Uz ) (gp + G + G2 X7 + gax°) (5.29)

Is shown in figure 17.

HFigure 17: Nonsystematic Encoder for (7, 4) Cyclic Code with Generato
Polynomial g(x) = g, + g,x + g.x~ + g; x°.

Hear we have 3 flip-flopssincen = 7 and k = 4.
Now let's understand why the circuit of (Figure 17) can be used for
polynomial multiplication in (5.29).
First: The flip-flops of figure 17 are initially filled with O's,
Second: Input the sequence u,,u,,u-,u; (First-element first) followed by
n—kO0's
(g Uy, U, uy 00 0)
one bit every tick to the shift register viathe input arrow.

Let us now study the behavior of the circuit at each tick of the clock:
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Tick O0: input u,

Shift registers contents: (i, 0 0)
Output vy = uy g0

Tick 1: input u,

Shift registers contents: (1, wu, 0)
Output v, = 1, gq + Up g4

Tick 2: input u,

Shift registers contents: (u, 1, u,)
Output 17, = U, gy + U, G, + UpFa
Tick 3: input u,

Shift registers contents: (i e, u;)
Output v; = uzgg + Uz g3 + U gz + Up g3
Tick 4. input 0

Shift registers contents: (0 5 1)
Output v, = U39, + UG, + U, G5
Tick 5: input 0

Shift registers contents: (0 0 u,)
Output 15 = U, g5

Tick 6: input O

Shift registers contents: (0 0 0)
Output v; = U392

Hence, the output sequence will be (v, v, 1,175 v, V5 1), Where the v,’s

are defined by equations above.
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Now let g(x) =1 + x + x be the generator polynomial of C(7,4) given

in (Table 19). Consider the information bits are (1 0 1 1) then the

nonsystematic encoder is shown as follows:

Figure 18: Nonsystematic Encoder for the (7, 4) Cyclic Code with
Generator Polynomial g(x) = 1 + x + x>,

First: The flip-flops of figure 18 are initially filled with O's,
Second: Input the sequence (1 0 1 1) followed by n — k O's

(1011000)

one bit every tick to the shift register viathe input arrow.

Let us now study the behavior of the circuit at each tick of the clock:
Tick 0: input 1

Shift registers contents: (1 0 0)

Output v, = 1

Tick 1: input O

Shift registers contents: (1 1 0)

Output v; =1

Tick 2: input 1

Shift registers contents: (1 0 1)
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Output v, = 1

Tick 3: input 1

Shift registers contents: (1 1 0)
Output 1v; =1

Tick 4: input 0

Shift registers contents: (0 1 1)
Output v, = 1

Tick 5: input 0

Shift registers contents: (0 0 1)
Output v; = 1

Tick 6: input O

Shift registers contents: (0 0 0)
Output v, = 1

Hence, the corresponding codeword willbe (11111 11).

5.6.2 Systematic Encoder

The encoder of Figure 17 could be simpler, but it is unfortunately not
systematic encoder.

However, the idea to design a systematic shift-register encoder for the
previous cyclic code is to use the result of section 5.5.2, which says that if
u(x) isan information polynomial, then

u(x) = ux).x™* + b(x) mod g(x) (5.30)
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IS a systematic encoding rule for a cyclic code with generator polynomial
g(x), where b(x) is the remainder polynomial dividing w(x).x"~* by
g(x).

The following figure shows the encoding circuit for an (7, 4) cyclic code

with generator polynomial g(x) = g, + g.x + g-x> + g.x°.

. B Gate e——

|
T

S
SRS
{
- Code word

Parity digits

~c

Message X" Ku(X) o
Figure 19: Systematic Shift-Register Encoder for a (7, 4) Cyclic Code with
gx) =g, + g x+g.x°+ g, x°

In this circuit the flip-flops store the (n — k) parity check digits by, by, b-

(the coefficients of b(x)) at the last tick.

Note that the right-most symbol of the word is the first symbol to enter the
encoder. The gate is turned on until all the information digits have been

shifted into the circuit

The encoder operation is carried out as follows:

Step 1. Reset the coefficients of the flip-flops, i.e. f;(0) =0 ¥i=0,1,2

Step 2: The behavior of the circuit at each tick of the clock:

R

Note that the input to the gate in £*" stageis: fo (i — 1) + u;
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where f; isthe stored digit of the second flip-flop inthe i — 1 stage.
Tick O: Input to the channel: u; = v,

Input to the gate: 0 + u,

Shift registers contents: (1,9, Usg; Uzg-)

Tick 1: Input to the channel: u, = v.

Input to the gate: u, + 15 g-

Shift registers contents:

(Us Gy T U3000: Uz Gy TU30:0: T UGy UG-+ UG T U04)

Tick 2: Input to the channel: u; = v,

Input to the gate: w, + 19, + U- g, + U5 9

Shift registers contents:

(Us Go + U3 G190 + U2 G2T0 + U3 G250

UsGo t U300 T UG T U39, T U G201+ Us G204

UG, T U3 G102 T UG T UL G2 T UGG T UG, T USG5 )

Tick 3:  Input to the channel: u, = v,

Input to the gate:

Ug T U 01 T U30:G2 T Uz G0 TULG: T UG102 T U292 T Uz 02

Shift registers contents:

(UoGo + U910 + U3 G10280 + Uz Go + UsG280 + U3 G:10280 + U205
+Uz9290

U Go F Uz G100 F U000 + Uz GaGo +UgGr F U201+ U3 .02 +U3G100

TU; 0201 T U102 T U20:8: T U30204
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UgGs T U301 02 TUG: T U G T UG T U3 §0G1 T UG T U 0,02
+U30:0, T Uz Go G2 T UG T U30:0> T UG5 T U302)

Step 3: Break the feedback connection by turning off the gate.

Step 4: Shift the parity-check out and send them into the channel.

The parity-check digits b, = v,, b, = 17; and b, = 1, are the contents of

the shift register in tick 3. In this case,
by = wggo + Uz 9100 + U391 9280 + U3 G0 + U3 92 G0 + U301 9280
T U G082 T U30:00

by = U 9y +U39100 T U20200 + Uz G200 + UGy + U291 + U201 G5
T U3 0100 T U1 G201 T U30:8: T U20201 T U820+

b, = wog, +Uzg:9; T UG T U Gg T U g1 T U3 GpG1 F UgGz T U916
+ U910, T U3 GpF2 T UG, T UGG T UG, T UG2)

Hence, the output sequence to the channel will be (v, v; v, 15 v, s v7;).

Now let g(x) =1 + x + x° be the generator polynomial of C(7,4) given
in table 20. Consider the information bits are (u, i, u,u5) then the

systematic encoder is shown as follows:
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. _'n-@_- - |—_-*GEJ
I i
- Code word
Farity digits
—

Message ¥ fui¥) o

Figure 20: Systematic Shift-Register Encoder for the (7, 4) Cyclic Code

with g(x) =1 + x + x3

Step 1. Reset all the flip-flops.
Step 2
Tick O: Input to the channel: u; = v,
Input to the gate: 0 + u,
Shift registers contents: (u; u; 0)
Tick 1: Input to the channel: u, = v
Input to the gate: 0 + 1.,

Shift registers contents: (1, 1, +1u; s

Tick 2: Input to the channel: u, = v,

Input to the gate: 1, + 1,

Shift registers contents: (u, + uy  u; + Us + Uy
Tick 3: Input to the channel: u, = v,

Input to the gate: u, + 1, + U,

Shift registers contents:

(Up +2, +1Uy; Uy +u, +U, U, +U, +Ug)
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Step 3: Break the feedback connection by turning off the gate.
Step 4: Shift the parity-check out and send them into the channel.
The parity-check digits b, = v,, b; = v, and b, = v, are the contents of
the shift register in tick 3. In this case,
by =uy +u; + ug,
b, = ug+u;+u,
b, = u, +u, + u,.
For example, if the information bits are (1 0 1 1), the corresponding

codeword will be(21001011).

5.7 Cyclic Codes Decoding

Decoding of cyclic codes consists of the same three steps as for decoding
linear codes:

1. Syndrome compuitation,

2. Association of the syndrome to an error pattern,

3. Error correction.

Recall from Chapter 3 for any linear code, we can form a standard array, or
we can use the reduced standard array using syndromes. For cyclic codes it
Is possible to exploit the cyclic structure of the code to decrease the

memory requirements.

First we must determine if the received word 1 is a codeword in ¢ or not
using (Theorem 5.5) which is say that an r(x) &€ C if and only if
r(x)h(x) =0mod x" + 1 = (x™ + 1)divededr(x)h(x)
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If r(x)& C we determine the closest codeword in C(n, k) using the
syndrome of r(x) as follows:
Since every valid received code polynomial r(x) must be a multiple of the
generator polynomial g(x) of C, then when we divide »(x) by g(x) the
remainder is zero exactly when r(x) isacodeword, i.e.
r(x)=a(x)g(x)+0

Thus we can employ the division algorithm to obtain a syndrome as
follows:

T(x) = a(x)g(x)+ s(x)
where a(x) is the quotient and s(x) is the remainder polynomial having
degree less than the degree of g(x):
s(x) =5y + 8, x+ -+ 5, p_x"F3
Thus, to compute the syndrome we can use a circuit such as that in the

figure 19 as we will see after the following useful result about cyclic codes

and syndromes.

Theorem 5.8: Let s(x) be the syndrome of a received polynomial

r(x)=71, +n,x + - +71,_,x"*. Let 7*(x) be the polynomial obtained

by cyclically right-shifting r(x) and let s*’(x) denote its syndrome. Then

s (x) is the remainder obtained when dividing xs(x) by g(x).

Proof: With (x) = 1, +ryx 4+ 7,_,x"* the cyclic shift ¥V (x) is
n-1

-
rU ) = A+ 1, x T

which can be written as
xr(xX)=7,_, "+ D +rY ) (5.31)
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It follows from (Theorem 5.1).

Rearranging (5.31), we have

rY) =7 (4 1)+ xr () (5.32)
Dividing both sides of (5.32) by g(x) and using the fact that
x"+ 1= g(x).hi(x)and r(x) = a(x)g(x) + s(x), we obtain

a® ()g(x) +sP(x) =719 (x) + x(a(x)g() +s(x)) (533
Where s®)(x) is the remainder resulting from dividing v’ (x) by g(x),
which is the syndrome of 7 (x).

Rearranging (5.33), we obtain the following relationship between s (x)
and xs(x):

xs(x) = [a'il:' (x)+ 7,_ h(x) + xa (x)]g(.r) +s@(x) (5.34)
Thus s*}(x) isthe remainder from dividing xs(x) by g (x)

Hence, s’ (x) is the syndrome of ¥ (x). n

A

By induction, the syndrome s® (x) that corresponds to cyclically shifting
r(x) i timesto produce " (x) is the remainder of x*s(x) when divided by

g(x).

Example 5.14: For the (7, 4) cyclic code with generator
gx)=x*+x+1,letr=(0 1101 1 1) be the received word. The

syndrome of r(x) can be computed from  dividing
r)=x+x2+x*+x°+x%byglx)=1+x+x°
fl+x+x*=0=x*=1+x

Thenr(x) = x+x% + x* + x° +x°
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=x+x"+x(1+x)+x°(1+x)+ (1 +x)°
=x+x+x+x 4+ +1l+x+1+x=x

F=§= The remainder is the syndrome of r

s=x=s= (0 1 0)isthe syndrome.

Then the cyclic shifts of r(x) and their corresponding syndromes are

shown in the following table:

Table 21: Corresponding Syndromes of the Cyclic Shifts of (x)

Polynomial Syndrome
r(x) = x+x% +x* +x°+x° s(x)=x
) =1+ +x3+ 1%+ 1 s®(x) =7
rP2)=1+x+x3+x*+2° sHU)=1+x
r) =14+x+x2 +x*+° s® () = x +x?
rY ) =x+x? +x3 4 x5+ o8 sHO) =1+x+x2
rE ) =1+x2+x3 +xt+ 8 s¥0) =1+ %7
rS ) =1+x+23 +xt+5 sy =1

The syndrome computation can be accomplished with a division circuit as

shown in the following figure:

Input
--]-j-'-—-n-h Gate 1

Figure 21: Syndrome Circuit for the (7, 4) Cyclic Code Generated by
glx)=1+x+x°
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This circuit consists of n — k stage and it is shifting the received word

r=(1p 1y m 13 7y 75 75) fromtheright end.

-

The behavior of the circuit at each tick of the clock is;

Note that the received polynomial is shifted into the register with all stages

initially set to 0.

Tick O:

Tick 1;

Tick 2:

Tick 3:

Tick 4:

Tick 5:

Input to the gate 1: r;

Shift registers contents: (7
Input to the gate 2: 0

Input to the gate 1: r

Shift registers contents: (5 15
Input to the gate 2: 0
Input to the gate 1: 7,

Shift registers contents: (r, -
Input to the gate 2: 7

Input to the gate 1: r,

Shift registers contents: (1; + 1;
Input to the gate 2: 1

Input to the gate 1: r,

Shift register contents: (7, + 13
Input to the gate 2: 1, + 1

Input to the gage 1: 1,

Shift register content:
(n4+n+1, nt+rn+r+rn

Input to the gate 2: 1y, + 2 + 15

'?"3 + '?"5 + '?"ﬁ

0 0

0)

T, +71, T3)

T +1)

Bt
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Tick 6: Input to the gate 1: 7,
Shift register content:
(1, +15+1+15 15+, +1+1 1, 15 +1,+1)
As soon as the entire r(x) has been shifted into the register, break the

feedback connection by turning off gate 1 where the syndrome
s(x)=s, +s,x + s,x” initsregistersin tick 6. In this case,

So =Te+1:+13+T, ,§;=T-+T,+1 +1, &8, =T, +T5; +7, +15.
For example, if thereceivedwordis(0 0 1 0 1 1 0), the corresponding

syndrome will be (1 0 1).

Now after the gate 1 is closed the system will be shifted 6 or more times.

The registers contain successively the syndromes s (x) corresponding to
the cyclically shifted polynomials 7 (x), which is showed in (Table 5.21).
That operations can be shown in the following steps:
Tick 7. Inputtothegate2: r, + 1, + 1 +71;
Output: the contents of the shift register:
SV = 4n+r+n ntn+n+n n4n+n+r)
Tick 8: Inputtothegate2: r; +1; + 1. + 715
Output: the contents of the shift register:
s =(n+n4n+rn RnAn+n+n L+n+n+n)
Tick 9: Inputtothegate2: 1, + 1, +1; + 1,
Output: the contents of the shift register:
sSBP) =ttt A AL AT A AT )

Tick 10: Inputtothegate2: r, + 1, +713 +7;
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Output: the contents of the shift register:
sSY) = +n4n4n AR AT AT T T 4T)
Tick 11: Inputtothegate 2: 1, + 1, + 15 + 15
Output: the contents of the shift register:
s =+ 41 +1s A AT+ T AT T, +T)
Tick 12: Inputtothegate2: 1, + r; + 1, + 15

Output: the contents of the shift register:

sSH) =t T, AT T AT, T AT AT )

For instance, the following table shown how we can computing the

syndrome and its cyclic shiftsforr= (0 1 1 0 1 1 1).

Table 22: Computing the Syndrome and its Cyclic Shifts

Clock Input Registers syndrome
Initial: 0 0O
1 1 1 00
2 1 1 10
3 1 1 11
4 0 1 01
5 1 0 0O
6 1 1 00
7 0 010
......................... (turn off gate)
8 001 s () = 7
9 110 sP(x)=1+x
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10 0 11 s = ¢ 4 2

11 1 1 1 sWE) =1+x+x*
12 10 1 sB) =1 +x?

13 1 00 s®() =1

Now, Let r(x) be the received polynomial with the syndrome s(x), i.e.
r(x) = alx)g(x) + s(x) (5.35)
and let e(x)=e, +e;x + - +e,_;x" ' be the error pattern. Then the
transmitted codeword v(x) is:

vix)=1rx)+e(x) (5.36)
Since v(x) is a multiple of the generator polynomial g(x), i.e
v(x) = b(x)g(x), combining (5.35) and (5.36), we have the following
relationship between the error pattern and the syndrome:

e(x) =[alx)+ b(x)]g(x)+ s(x) (5.37)
This shows that the syndrome is equal to the remainder resulting from
dividing e (x) by g(x).

However, the error pattern e(x) is unknown to the decoder. Therefore, the
decoder has to estimate e (x) based on the syndrome s(x). If e(x) is a coset
leader in the standard array and if table-lookup decoding is used, e(x) can
be correctly determined from the syndrome.

From (5.37), we see that s(x) is identical to zero if and only if either

e(x)=0 or it is identical to a codeword, in other words if e(x) is an

undetectable error patterns.
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Remark 5.6: The minimum distance of the cyclic code C(n, k) is equal to
the minimum weight of C(n, k) which is equal to the degree of the

minimum polynomial g(x) of C(n, k) that isn — k.

Remark 5.7: The cyclic code C(n, k) is capable of correcting up to

dynin—1 (n—kl-—1
t= [“—] = [’ - ]errors made by channel.

Example 5.15: Consider again the decoder for the cyclic code with

generator polynomial g(x) =1+ x+x*. The following table-lookup

decoding shows the error vectors and their corresponding syndrome vectors
and polynomials. The code has 27-* = 2% = 8 cosets and, therefore, there
are eight correctable error patterns (including the zero word). Since the
minimum distance of the code is 3, it is capable of correcting all the error

patterns of weight 1 or 0. Hence, all the 7-tuples of weight 1 or O can be

used as coset leaders. There are (S) + G) = § coset leaders, which is

shown in the following table.

Table 23: Decoding Table for the (7, 4) Cyclic Code generated by
gx)=1+x+x°

Syndrome | Syndrome polynomial Error Error polynomial e (x)
g s(x) e
000 0 0000000 0
100 1 1000000 1
010 X 0100000 x
001 x? 0010000 x?
110 14+ x 0001000 x?
011 X+ x° 0000100 x*
111 1+ x+ x? 0000010 x>
101 1+ x? 0000001 x®
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Let ¥=(0110111) be the received word. The syndrome of r
showed in previous example where s = (0 1 0), then from this table we

recognize that the received polynomial +(x) has an error in the second bit.

Thus the transmitted codeword is:
v=r+e=(0110111D+0100000)=(0010111.
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Appendix A

1. An Elementary Row Operation

Let A be a matrix over GF(2); an elementary row operation performed on

A isany one of the following three operations:

(i) Interchanging two rows,
(i) Multiplying arow by a nonzero scalar,

(ii1) Replacing arow by its sum with the scalar multiple of another row.

2. Reduced Row Echelon Form (RREF)

An mxn matrix is said to be in reduced row echelon form (RREF) when it

satisfies the following properties:

(i) All rows consisting entirely of zeros, if any, are at the bottom of the
matrix.

(if) Reading from left to right, the first nonzero entry in each row that does

not consist entirely of zerosisa 1, called the leading entry of its row.
(ii)If rows i and i + 1 are two successive rows that do not consist entirely
of zeros, then the leading entry of row i + 1 is to the right of the
leading entry of row i.
(iv) If a column contains a leading entry of some row, then all other entries

in that column are zero.

3. Solutionsof Linear Systems of Equations

A linear system of the form
Vy3€ F V356 + o+ Vi =0
1'121{,'1 + T122C2 + -+ 1:'12.;: C.i( — D
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: (eq. 1)
T?]!:lcl + TI‘]!Z CE + et '[-'”_;:Ck = U

is called a homogeneous system. We can also write (eg. 1) in matrix form

as AX =0 (eq.2)
V11 Vy2 Vi Cy
_ Va1 V35 Vs z
Where: A, ;. = : and Xy = | :
TI‘]!] T"J:E T!]!.i( C-E'C

The augmented matrix of this system,

V11Vi2 - Vik|p

Va1 Vaz Vg

,1?111 Viz Ung O

Using reduced row echelon form (RREF) The solutionis:

€= Cy=-= ¢, =0

To the homogeneous system (eg. 2) is called the trivial solution. A solution
c,,C,,...,C; 10 @ homogeneous system in which not all the x, are zero is
called anontrivial solution.

4. Linearly Dependent & Linearly Independent

The procedure to determine if the vectors v,,v.,...,v, are linearly
dependent or linearly independent is as follows:

Step 1. Form Equation,

cvte,vat.. e, 17,.= 0, (eg. 3)
which leads to a homogeneous system.

Step 2: Construct the augmented matrix associated with the homogeneous

system of (eg. 1). And transform it to reduced row echelon form.
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Step 3: If the homogeneous system has only the trivial solution, then the
given vectors are linearly independent; if it has a nontrivial solution, then

the vectors are linearly dependent.

5. Bass
Let S= {v.,1,,...,17,} beaset of nonzero vectorsin avector space V, .
The procedure for finding a subset of S that is a basis for span Sis as
follows:
Step 1. Form (e.q. 1),
c vyFC, Vot oy 1, = 0,
which leads to a homogeneous system.
Step 2: Construct the augmented matrix associated with the homogeneous
system of equation (1). And transform it to reduced row echelon form.

Step 3. The vectors corresponding to the columns containing the leading

1's form a basis for span §.
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Appendix B

Algorithm (1)

Input: A nonempty subset B of /..

Output: A basis for € =< B =, the linear code generated by a hon empty
set B.

Description: Form the matrix A whose columns are the nonzero codewords
incC.

Use elementary row operations to put 4 in REF and locate the leading
columns in the REF. Then the original columns of 4 corresponding to these

leading columns form a basis B for .

Algorithm (2)

Input: A nonempty subset B of /.

Output: A basis for the dual code €+, where C =< B =.

Description: Form the 2% X n matrix A whose rows are all codewords in €.
Use elementary row operationsto place 4 in RREF. Let ¢ bethe k x n
submatrix of A consisting of all the nonzero rows of the RREF: 4 = ()
(Here, 0 denotes the (2% — k) X 1 zero submatrix).

The matrix (¢ contains k leading columns. Permute the columns of & to
form G = G.P = (X|I;,) where I, denotes the k x k identity matrix. Form
amatrix H asfollows: H = (I,_,|—X") where X7 denotes the transpose of
X. Apply the inverse of the permutation applied to the columns of ¢ to the

columns of H to form H = H.PT. Then the rows of H form abasis for €.
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