
i

An-Najah National University

Faculty of Graduate Studies

Error-Detecting and Error-Correcting

Using Hamming and Cyclic Codes

By

Ne'am Hashem Ibraheem Ibraheem

Supervisor:

Dr. "Mohammad Othman" Omran

This Thesis is Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Science in Mathematics, Faculty of Graduate
Studies, An-Najah National University, Nablus, Palestine.

2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 iii

Dedication

To my parents "Hashem & Amal"

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 iv

Acknowledgments

I would like to thank Dr. Mohammad Omran for his guidance and

suggestions, as well as work's associates in Hisham Hijjawi college of

technology.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 v

 رارـــإق

: مقدم الرسالة التي تحمل العنوان‘ أنا الموقع أدناه

Error-Detecting and Error-Correcting Using
Hamming and Cyclic Codes

 اكتشاف الأخطاء وتصحیحھا باستخدام شیفرات ھامنج والشیفرات الحلقیة

باستثناء ما تمت الاشارة الیھ ‘ أقر بأن ما اشتملت علیھ ھذه الرسالة انما ھي نتاج جھدي الخاص

دم من قبل لنیل أي درجة أو لقب علمي وان ھذه الرسالة ككل، أو أي جزء منھا لم یق‘ حیثما ورد

.أو بحثي لدى أي مؤسسة تعلیمیة أو بحثیة أخرى

Declaration

 The work provided in this thesis, unless otherwise referenced, is the

researcher’s own work, and has not been submitted elsewhere for any other

degree or qualification.

Student’s Name : اسم الطالب
Signature : التوقيع
Date: التاريخ

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 vi

List of contents

Subject Page
Dedication III

Acknowledgments IV

List of Contents VI

List of Tables XI

List of Figures XIII

Abstract XIV

Preface 1

History 5

 Introduction to Algebra 8
1.1 Groups 8
1.2 Permutation Groups 9
1.3 Cyclic Permutations 11
1.4 Cyclic Groups & the Order of an Element 12
1.5 Cosets 14
1.6 Fields 15
1.7 Polynomials over the Binary Field 17
1.8 Construction of Galoise Field 21
1.9 Vector Spaces over Finite Fields 29
 Linear Block Codes 36
2.1 Basic Concepts of Block Codes 36

2.2 Definitions and Properties of the Linear Block Codes 37

2.3 The Generator Matrix 38

2.4 Encoding Scheme 39

2.5 Parity-Check Matrix 44

2.6 Encoding Circuit for a Linear Systematic Code 48

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 vii

Error Detection, Error Correction& Decoding
Schemes 50
3.1 Channel Model/Binary Systematic Channel 50

3.2 General Methods of Decoding Linear Codes over BCS 52

3.3 Maximum Likelihood Decoding 55

3.4 Nearest Neighbor Decoding/Minimum Distance Decoding 55

3.5 Syndrome & Error Detection/Correction 63

3.5.1 Syndrome & Error Detection 63

3.5.2 Syndrome & Error Correction 66

3.6 Error-Detecting & Error-Correcting Capabilities of

Block Codes

70

3.6.1 Error-Detecting Capabilities of Block Codes 70

3.6.2 Error-Correcting Capabilities of Block Codes 73

3.7 Standard Array for Linear Codes 76

3.8 Syndrome Decoding 85

3.9 Decoding Circuits using Combinational Logic Circuits 87

 Binary Hamming Codes 90
4.1 Construction of Binary Hamming Codes 90

4.2 The Generator & the Parity Check Matrices of Binary

Hamming Codes

94

4.3 Hamming Encoding 98

4.4 Hamming Decoding 107

4.4.1 Syndrome & Error Detection/Correction 107

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 viii

4.4.2 Standard array for Hamming Codes 111

4.4.3 Syndrome Decoding (Table-Lookup Decoding) 113

4.4.4 Checking of Parity Bits in Hamming Codes 114

4.5 Shortened Hamming Codes 117

4.6 Extended Hamming Codes 120

4.6.1 Construction of Extended Hamming Codes 120

4.6.2 Error-Detecting & Error-Correcting Capabilities of

Extended Hamming Codes

123

Cyclic Codes 127

5.1 Description of Cyclic Codes 127

5.2 Algebraic Properties of Cyclic Codes 128

5.3 The Generating Polynomial & its Algebraic Properties 131

5.4 The Generating Matrix, Check Polynomials &

 the Parity Check Matrix for Cyclic Codes

141

5.4.1 The Generator Matrix 141

5.4.2 Check Polynomials 142

 5.4.3 Parity Check Matrices 144

5.4.4 Systematic Form of 149

5.5 Encoding Operation 152

5.5.1 Nonsystematic Encoding 152

5.5.2 Systematic Encoding 154

5.6 Shift-Register Encoders for Cyclic Codes 158

5.6.1 Nonsystematic Encode 159

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 ix

5.6.2 Systematic Encoder 163
5.7 Cyclic Codes Decoding 168
References 178
Appendix A 180
Appemdix B 183
ةالملخص بالعربی ب

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 x

List of Tables
Subject page

Table 1: Modulo-2 addition 9

Table 2: Modulo-2 addition 16

Table 3: Modulo-2 multiplication 16

Table 4: Three Representations for the Elements of
 Generated by

22

Table 5: Minimal Polynomials of the Elements in
Generated by

28

Table 6:Linear Systematic Block Code with

44

Table 7: IMLD Table for 59

Table 8: Decoding Table for a (5, 2) Linear Code 86

Table 9: Truth Table for the Error Digits of the
Correctable Error Patterns of the Linear Code

88

Table 10: Parameters for Some Hamming Codes 92
Table 11: A (7, 4, 3) Hamming Code 99
Table 12: Four-bit Numbers 103

Table 13: Exclusive-or Operation (XOR) 104

Table 14: Decoding Table for a (7, 4, 3) Hamming Code 113

Table 15: Truth Table for the Error Digits of the

Correctable Error patterns of the (7, 4, 3) Hamming Code

114

Table 16: 121

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 xi

Table 17: The Polynomial Representation of the

(7, 4) Cyclic Code

129

Table 18: All Cyclic Codes of Length 4 142

Table 19: The (7, 4) Cyclic Code Generated by

154

Table 20: The (7, 4) Cyclic Code Generated by

 in Systematic Form

156

Table 21: Corresponding Syndromes of the Cyclic Shifts

 of

171

Table 22: Computing the Syndrome & its Cyclic Shifts 174

Table 23: Decoding table for the (7, 4) Cyclic Code

Generated by

176

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 xii

List of figures
Subject page

Figure 1: Model of a Data Transmission System 2

Figure 2: Systematic Form of a Codeword 41

Figure 3: Encoding Circuit for a Linear Systematic Code 48

Figure 4: Encoding circuit for a Linear Systematic (5, 2) Code 49

Figure 5: A Communication Channel 51

Figure 6: Binary Systematic Channel54 52
Figure 7: Simplified Model of a Code System 53
Figure 8: Syndrome Circuit for a Linear Systematic Code 65
Figure 9: Syndrome Circuit for the (5, 2) Code 66
Figure 10: Standard Array for the (5, 2) Linear Code 80
Figure 11: General Decoder for a Linear Block Code 87
Figure 12: Decoding Circuit for the Code 89

Figure 13: Standard Array for 117
Figure 14: Decoding Circuit for the (7, 4, 3) Code 115
Figure 15: Flip-Flop 158
Figure 16: Shift Register 159
Figure 17: Nonsystematic Encoder for the (7, 4) Cyclic Code
With Generator Polynomial

160

Figure 18: Nonsystematic Encoder for the (7, 4) Cyclic Code
with Generator polynomial

162

Figure 19: Systematic Shift-Register Encoder for the (7, 4) Cyclic

164

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 xiii

 Code With

Figure 20: Systematic Shift-Register Encoder for the (7, 4) Code

with

167

Figure 21: Syndrome Circuit for the (7, 4) Cyclic Code Generated

by

171

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 xiv

Error-Detecting and Error-Correcting Using Hamming and

Cyclic codes
By:

Ne'am Hashem Ibraheem Ibraheem
Supervisor by :

Dr. "Mohammad Othman" Omran
Abstract

In this thesis we provide an overview of two types of linear block codes:

Hamming and cyclic codes. We study the generation, encoding and

decoding of these codes as well as studying schemes and/or algorithms of

error-detecting and error-correcting of these codes.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

1

Preface
Coding theory is concerned with the transmission of data across

noisy channels and the recovery of corrupted messages. It has found

widespread applications in electrical engineering, digital communication,

mathematics and computer science. While the problems in coding theory

often arise from engineering applications, it is fascinating to note the

crucial role played by mathematics in the development of the field.

The importance of algebra in coding theory is a commonly acknowledged

fact, with many deep mathematical results being used in elegant ways in

the advancement of coding theory; therefore coding theory appeals not just

to engineers and computer scientists, but also to mathematicians and hence,

coding theory is sometimes called algebraic coding theory.

An algebraic techniques involving finite fields, group theory, polynomial

algebra as well as linear algebra deal with the design of error-correcting

codes for the reliable transmission of information across noisy channels.

Usually, coding is divided into two parts:

 1. Source coding:

v Source encoding

v Source decoding

2. Channel coding:

v Channel encoding

v Channel decoding

Source encoding involves changing the message source to a suitable code

say to be transmitted through the channel. Channel encoding deals with

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

2

the source encoded message , by introducing some extra data bits that will

be used in detecting and/or even correcting the transmitted message. Thus

the result of the source encoding is a codeword, say . Likewise, channel

decoding and source decoding are applied on the destination side to decode

the received codeword as correctly as possible. Figure 1 represents a

model of a data transmission system.

Figure 1: Model of a Data Transmission System

For example: Consider a message source of four fruit words to be

transmitted: apple, banana, cherry and grape. The source encoder encodes

these words into the following binary data (:

apple→ , banana→ , cherry→ ,

grape→ .

Suppose the message ‘apple’ is to be transmitted over a noisy channel. The

bits will be transmitted instead. Suppose an error of one bit

occurred during the transmission and the code is received instead as

seen in the following figure. The receiver may not realize that the message

Channel encoder

Source encoder

Message source

Channel decoder

Source decoder

Receiver

Channel
(Noise)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

3

was corrupted and the received message will be decoded into ‘banana’.

These a communication error occurred.

With channel coding, this error may be detected (and even corrected) by

introducing a redundancy bit as follows :

The newly encoded message ‘apple’ is now . Suppose this message

was transmitted and an error of one bit only occurred. The receiver may get

one of the following: or . In this way, we can detect

the error, as none of or is among our encoded

messages.

Note that the above channel encoding scheme does not allow us to correct

errors. For instance, if is received, then we do not know whether

 comes from , or . However, if more three

redundancy bits are introduced instead of one bit, we will be able to correct

errors. For instance, we can design the following channel coding scheme:

Source encoder

Message source
(apple)

Source decoder

Receiver
(banana)

Channel
(Noise)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

4

Again if the message was transmitted over a noisy channel and

that there is only one error introduced, then the received word must be one

of the following five: or

. Since only one error occurred and since each of these five

codes differs from by only one bit, and from the other three

correct codes and by at least two bits,

then the receiver will decode the received message into and,

hence, the received message will be correctly decoded into ‘apple’.

Algebraic coding theory is basically divided into two major types of codes:

Linear block codes and Convolutional codes.

In this thesis we present some encoding and decoding schemes as well as

some used error detection/correction coding techniques using linear block

codes only. We discuss only two types of linear block codes: Hamming and

cyclic codes.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

5

History
The history of data-transmission codes began in 1948 with the

publication of a famous paper by Claude Shannon. Shannon showed that

associated with any communication channel or storage channel is a number

C (measured in bits per second), called the capacity of the channel, which

has the following significance: Whenever the information transmission rate

R (in bits per second) required of a communication or storage system is less

than then, by using a data-transmission code, it is possible to design a

communication system for the channel whose probability of output error is

as small as desired. Shannon, however, did not tell us how to find suitable

codes; his contribution was to prove that they exist and to define their role.

Throughout the 1950s, much effort was devoted to finding explicit

constructions for classes of codes. The first block codes were introduced in

1950 when Hamming described a class of single-error-correcting block

codes and he published what is now known as Hamming code, which

remains in use in many applications today.

In 1957, Among the first codes used practically were the cyclic codes

which were generated using shift registers. It was quickly noticed by

Prange that the cyclic codes have a rich algebraic structure, the first

indication that algebra would be a valuable tool in code design.

In the 1960s, the major advances came in 1960 when Hocquenghem and

Bose and Ray-Chaudhuri found a large class of multiple-error-correcting

codes (the BCH codes). The discovery of BCH codes led to a search for

practical methods of designing the hardware or software to implement the

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

6

encoder and decoder. In the same year independently, Reed, Solomon and

Arimoto found a related class of codes for nonbinary channels.

Concatenated codes were introduced by Forney (1966), later Justesen used

the idea of a concatenated code to devise a completely constructive class of

long block codes with good performance.

During the 1970s, these two avenues of research began to draw together in

some ways and to diverge further in others. Meanwhile, Goppa (1970)

defined a class of codes that is sure to contain good codes, though without

saying how to identify the good ones.

The 1980s saw encoders and decoders appear frequently in newly designed

digital communication systems and digital storage systems.

The 1990s witnesses an evaluation of all groups in informatics at the

universities in Norway. The evaluation was performed by a group of

internationally recognized experts. The committee observed that the period

1988-92, had the largest number of papers (27) published in internationally

refereed journals among all the informatics groups in Norway. In the

period 1995-1997 the goal of finding explicit codes which reach the limits

predicted by Shannon's original work has been achieved. The constructions

require techniques from a surprisingly wide range of pure mathematics:

linear algebra, the theory of fields and algebraic geometry all play a vital

role. Not only has coding theory helped to solve problems of vital

importance in the world outside mathematics, it also has enriched other

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

7

branches of mathematics, with new problems as well as new solutions. In

1998 Alamouti described a space-time code.

In 2000 Aji, McEliece and others synthesize several decoding algorithms

using message passing ideas. In the period 2002-2006 many books and

papers are introduce such as Algebraic soft-Decision Decoding of Reed-

Solomon Codes by Koetter R., and Error Control Coding: Fundamentals

and Applications by Lin and Costello and Error Correction Coding by

Moon T. in 2005.

During This decade, development of algorithms for hard-decision decoding

of large nonbinary block codes defined on algebraic curves. Decoders for

the codes known as hermitian codes are now available and these codes may

soon appear in commercial products. At the same time, the roots of the

subject are growing even deeper into the rich soil of mathematics.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

8

Chapter 1

Introduction to Algebra

As mentioned earlier in the Preface, the study of linear block codes

requires basic knowledge in modern algebra and linear algebra. Hence, in

this chapter we provide the reader with basic definitions and terminologies

that help in the understanding of the material in this thesis. Groups, fields,

vector spaces and other definitions and concepts in algebra that relate to

linear block codes are discussed in this chapter.

1.1 Groups
Definition 1.1: Let be a set of elements. A binary operation on is a

rule that assigns to each pair of a unique element in .

We say that is closed under .

Definition 1.2: A group (or simply) is a set of elements together

with a binary operation on such that:

(i) The operation is associative:

For any , .

(ii) There is a unique element , called the identity element, such that

.

(iii) For every , there is a unique element , called the inverse

of , such that .

Theorem 1.1: A group is said to be commutative if its binary operation

is commutative, i.e., for every , .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

9

Definition 1.3: The order of a group , denoted by is the number of

elements in if has a finite number of elements, and is ∞ otherwise. A

group is finite (infinite) if is finite (infinite).

Example 1.1: Consider the set . Let the binary operation

be denoted by and defined as follows:

 Table 1: modulo-2 addition

 0 1
0 0 1
1 1 0

This binary operation is called modulo-2 addition. Is easy to check that

 is a communication group under .

For simplicity the modulo-2 addition operation will be denoted by .

1.2 Permutation Groups

Definition 1.4: A permutation of a nonempty set is a

one-to-one mapping of the set onto itself. This permutation can be

denoted by:

where .

Note that, the order of the columns in this representation of is immaterial.

For example, = .

The set of all permutations on is denoted by .

The composition operation, denoted by , on is defined by ,

where is applied first and then , for any two permutations .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

10

Clearly is again a permutation in , so is closed under the

operation . , is the identity permutation in .

The inverse of any is ,

which is itself a permutation in .

Composition of permutations is associative; for and , we have

. Thus we have this theorem:

Theorem 1.2: The set is a group.

Note that the composition is not commutative since

So (is not a commutative group.

Remark 1.1: The number of elements of .

Example 1.2: Let , then the set of all permutations on is

denoted by and elements, where

 1

1 1
 1
 1
 1
 1
 1

From the above table we have is a group.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

11

Definition 1.5: The pair is said to be a subgroup of given group

 if is a nonempty subset of and is itself a group under the same

operation of .

Example 1.3: Let . The pair is a subgroup of in

Example 1.2, according to the following table.

 1
1 1

 1

 1

1.3 Cyclic permutations
Definition 1.6: A permutation is called a cycle of length or

-cyclic if there exists a list of distinct integers

such that

In this case will be denoted by . A cycle of length 2 is called a

transposition.

Remark 1.2: The transposition is its own inverse.

Observe that represent

the same cycle.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

12

Example 1.4: The permutation is the 4-cycle

.

Remark 1.3: The composition of disjoint cycles is commutative; i.e, if
 are disjoint cycles then .

Theorem 1.3: Every permutation in can be expressed uniquely (up to

order) as a product of disjoint cycles.

Example 1.5: In , the permutation can be

expressed as a product or .

Theorem 1.4: Every cycle of length is a product of transpositions.

Example 1.6: .

1.4 Cyclic Groups & the Order of an Element
Definition 1.7: Let be an element in a group , then the set

 is called a cyclic subgroup of generated

by , written , and is called a generator of .

By convention, .10 =a

Definition 1.8: If , then the group is said to be cyclic.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

13

Example 1.7: The group , where , is cyclic. Since

every element in can be generated by ;

. So .

Definition 1.9: Let be an element in a group , then the smallest

positive integer such that equals to the identity in is said to be the

order of and is denoted by . If no such exists then is said to be

of infinite order.

Remark 1.4: The order of an element should not be confused with the

order of a group, which is the number of elements in the group.

Remark 1.5: The order of the -cycle in is .

Remark 1.6: If is a product of disjoint cycles say ,

then the order of denoted by is the least common multiple(lcm)

of the orders of these disjoint cycles. i.e.,

 .

Example 1.8: Let . Then;

, and the order of is:

.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

14

1.5 Cosets
Definition 1.10: Let be a subgroup of a group and . The set

 is called a left coset of in . Similarly,

 is called a right coset of in .
Note that we can write instead of

Of course, in a commutative group, the left and right cosets are the same.

Definition 1.11: Let be a subgroup of a finite group . The number of
distinct left (right) cosets of in denoted by .

Example 1.9: Consider the group as given in

Example 1.2 and consider the subgroup .

Then there are left cosets as well as 3 right cosets.

The left cosets of are found as follows:

And

Thus the left cosets of are .

The right cosets of are found in a similar way, and they are

.

Theorem 1.5: For a subgroup of , left cosets of H satisfiy the following:

(i) If and , then .

(ii) if and only if .

(iii) Any two left cosets of say & are either equal or disjoint.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

15

(iv) , where the union runs over the set of distinct cosets of

in .

Fact 1.1: Left cosets of a subgroup H of G define an equivalence relation

on G:

(i) Reflexive: .

(ii) Symmetric: if then .

(iii) Transitive: if & then .

Note that theorem 1.5 and fact 1.1 apply for right cosets as well.

1.6 Fields
Definition 1.12: Let be a nonempty set on which two binary operations,

addition and multiplication are defined. Then the system

is a field if the following conditions are satisfied:

(i) is a commutative group.

(ii) is a commutative group.

(iii)Multiplication is distributive over addition; that is, for any three

elements and in :

The elements of the field are called scalars. The field will be

denoted by as long as the operations (+) and (.) are understood from the

context.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

16

Definition 1.13: If has a finite number of elements, it is said to be a finite

field. The number of elements in the field is called the order of the field

 and is denoted by .

Remark 1.7: The set (where is prime) is a field of

order under modulo- addition and multiplication. This field is called a

prime field.

Example 1.10: The set is a field of order 2 under modulo-2

addition and modulo-2 multiplication. It has the following addition and

multiplication tables:

 Table 2: modulo-2 addition Table 3: modulo-2 multiplication

This field is called a binary field and it satisfies: , so the addition

and subtraction are interchangeable.

Basic properties of finite fields:

In the following, let be a finite field of order , where is a prime

number.

(i) For every

(ii) For any two nonzero elements .

(iii) and imply that .

 0 1
0 0 1
1 1 0

 0 1
0 0 0
1 0 1

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

17

(iv) Let .

(v) All finite fields are also called Galois fields and denoted by .

According to (v) the prime field will be denoted by , hence, the

binary field in Example 1.10 is denoted by .

1.7 Polynomials over the Binary Field
A polynomial of degree over is a polynomial with

coefficients from i.e,

where or for

Theorem 1.6: Over there are polynomials of degree .

Example 1.11: There are four polynomials of degree 2 over and

they are: , and .

Now, the polynomials over can be added (or subtracted), multiplied

and divided modulo 2. Let be a

polynomial over and let be as above. Then:

 where

and .

When is divided by , we obtain a unique pair of polynomials: the

quotient and the remainder over with degree of is

less than that of . We then write .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

18

Example 1.12: Let

Hence, .

 = .

Example 1.13: Divide by using long-
division over

1

1

1

1

3

2

2

34

234
++

+

+

+

+++
xx

x
x

xx
x

xx
xxxx

 and . We then have

Remark 1.8: If =0 we say that is divisible by or is a

factor of .

Theorem 1.7: If is a root of a polynomial then is divisible

by).

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

19

Fact 1.2: If we have a polynomial over with an even number of

terms, then it is divisible by) because this polynomial has the

number 1 as a root.

Example 1.14: Let . Consider

 is divisible by

Definition 1.14: A polynomial of degree over is said to be

irreducible over if is not divisible by any polynomial over

 of degree less than but greater than zero. Otherwise is

reducible.

Example 1.15: Let be a polynomial over .

 does not have neither "0" nor "1" as roots. So is not divisible by

any polynomial of degree 1: nor . Consequently, it cannot be

divisible by a polynomial of degree 2. So is irreducible over

Theorem 1.8: Any irreducible polynomial over of degree divides

.

Example 1.16: You can check that the polynomial as

in Example 1.15 divides = since

)(124 +++ xxx).

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

20

Definition 1.15: An irreducible polynomial of degree is said to be

primitive if the smallest positive integer for which divides is

. Otherwise is not a primitive.

Remark 1.9: In modulo-2 addition we have the following;

Theorem 1.9: Let be a polynomial over then for any we

have the following:

 (1.1)

Proof: Let

Then using remark 1.9, we have:

= +

Since or 1 = we have:

= + +…+

= (1.2)

Now, for by(1.2) we have;

 +

 + +…+ ,

etc.

So for any , . ■

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

21

1.8 Construction of Galois Field

In this section we construct the Galois Field of elements

 from the binary field . We begin with the two elements 0

and 1, from and a new symbol . Then we define a multiplication

 to introduce a sequence of powers of as follows:

,

Now, we have the following set of elements:

Now suppose is a primitive polynomial of degree over such

that . Then divides , and so we have:

 . If we replace by , we obtain:

 ,

This implies: ,

Adding 1 to both sides (use modulo-2 addition): = 1, and hence

. Therefore, the set above becomes finite and consist of the

elements: .

Remark 1.10:

(i) In the construction of the Galois field , we use a primitive

polynomial of degree and require that the element be a root of

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

22

. Since the powers of generate all the nonzero elements of

, is a primitive element.

(ii) The elements of have three representations shown in Table 4.

Example 1.17: Let , the polynomial is a

primitive polynomial over Set . Then

= . Using this, we can construct:

The element is used repeatedly to form the polynomial

representations for the elements of :

,

,

 =1

Table 4: Three Representations for the Elements of

 Generated by

Power representation Polynomial
representation in

3-tuple representation

0 0 (0 0 0)
1 1 (1 0 0)

 (0 1 0)

 (0 0 1)

 (1 1 0)

 (0 1 1)

 (1 1 1)

 (1 0 1)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

23

Remark 1.11:

(i) The power representation is used in multiplying or dividing the

elements of as:

and, where is the multiplicative inverse

of .

(ii) An representation is used for adding the elements of

by adding the corresponding components of their tuples, in modulo-

2 addition.

For example, if

then , where is

carried out in modulo-2 addition.

Definition 1.16: Let be a field, and let be a nonempty subset of

. Then is called a subfield if is itself a field.

Definition 1.17: If is a subfield of a field , then is called an extension

field of or simply an extension of .

Note that, the set is an extension field of because is

a subfield or the ground field of

And polynomials with coefficients from may not have roots from

 but has roots from an extension field of .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

24

For example, is irreducible over and therefore it

does not have roots from . However, it has three roots from the field

. If we substitute the elements of given by (Table 4) into

, we find that are the roots of . We

may verify this as follows using (Table 4):

,

, (1.3)

.

Since are all roots of , then

. We may verify this equality by

multiplying out the product above using Table 4.

Let be a polynomial of degree with coefficients from . If is

a root of , the polynomial may have other roots from .

Then what are these roots? This is answered by the following theorem.

Theorem 1.10: Let be a polynomial with coefficients from

and be an element in an extension field of such that is a

root of , then for any , we have is also a root of .

Proof: By substituting into the equation in (1.1)

we have: ,

But is a root of for any . ■

The element is called a conjugate of .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

25

Fact 1.3: According to Theorem 1.10 above, if is a primitive element

then all conjugates of are also primitive elements of .

Example 1.18: The polynomial in Example 1.17 has

as a root in the extension field of such that:

By using (Table 1.6) the conjugates of are:

(, (

[Note that (]. From the Theorem 1.10 these

conjugates of must be also roots of . (See eq. (1.3))

Theorem 1.11: The nonzero elements of form all the roots

of .

Proof: Let be a non zero element in the field . Then by using

property (iv) of the fields we have: ,

Adding 1 to both sides:

This implies that is a root of . ■

Corollary 1.1: The elements of form all the roots of .

Definition 1.18: A minimal polynomial of over is a smallest

degree polynomial such that , where .

For example, the minimal polynomial of the zero element 0 of is

and the minimal polynomial of the unit element 1 is .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

26

Basic properties of minimal polynomials:

(i) Let be a polynomial over and be the minimal

polynomial of . If is a root of , then is divisible by .

Proof: Dividing by , we obtain ,

where the degree of is less than the degree of .

Consider,

 (Because

. Now, if then is a polynomial with degree less

than degree of and has as a root. This is a contradiction to the fact

that is the minimal polynomial of . Hence

 and so is divisible by . ■

(ii) The minimal polynomial of in GF() is unique

Proof: Let be two minimal polynomials of .

If we take as minimal polynomials of then by (i) is divisible

by . And if we take as minimal polynomials of then we have

 is divisible by . Hence, ■

(iii) The minimal polynomial of in GF() is irreducible

Proof: Suppose that is not irreducible , where

both have degrees greater than zero and less than the degree

of .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

27

Since . This is a

contradiction to the fact that is the minimal polynomial of .

Therefore, must be irreducible. ■

(iv) The minimal polynomial of in GF() divides

Proof: It follows from corollary 1 and property i. ■

(v) Let be an irreducible polynomial over and be the

minimal polynomial of in . If , then = .

Proof: It follows from (i) that divides .

,

But and is irreducible hence we must have

 ■

(vi) Let be the minimal polynomial of an element in and let

be the smallest integer such that .

Then: (1.4)

Example 1.19: Consider the Galoise field given by table 4.

Let be the minimal polynomial of an element .

The conjugates of are; .

(Note that).

Hence, by (1.4) we have:

 where

 (1.5)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

28

Multiplying out right-hand side of the equation 1.5 using Table 4, then we

obtain the following:

 +1

All the minimal polynomials of the elements in are given in the

following table.

Table 5: Minimal Polynomials of the Elements in Generated by

Conjugate roots Minimal polynomials
0
1

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

29

1.9 Vector Spaces over Finite Fields
Definition 1.19: Let be set of elements on which a binary operation

called addition is defined. Let be a finite field. A scalar multiplication

operation denoted by is defined between the elements in and elements

in . Then is called a vector space over the field if it satisfies

the following conditions:

(i) is a commutative group under addition.

(ii) For any scalar in and any element in , is an element in . (iii) (Distributive laws) for any elements in and any scalars in

,

(iv) (Associative law) for any in and any and in ,

(v) Let 1 be the identity element of . Then, for any in ,

The elements of are called vectors.

Remark 1.12: Let be an extension field of then can be considered

as a vector space over .

Since the set is an extension field of , then can be

considered as a vector space over Let denote that set of all

distinct tuples over

Then is a vector space with + is vector addition and . is scaller

multiplication.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

30

Example 1.20: Let . The vector space of all tuples over

consists of the following 8 vectors:

Definition 1.20: Let be a nonempty subset of a vector space over a

field then is a subspace of if is itself a vector space over .

Theorem 1.12: Let be a nonempty subset of a vector space over a field

. Then is a subspace of if and only if the following condition is

satisfied: if and , , then is also in .

Note that, a necessary and sufficient condition for a nonempty subset of a

vector space over to be a subspace is:

if , then .

Example 1.21: Consider the vector space of all tuples over

given in Example 1.20. Then the set of these vectors

 satisfies the condition of theorem 1.12, so

it is a subspace of .

Definition 1.21: Let , ,…, be vectors in a vector space over a

field . A vector in is called a linear combination o f , ,…, if:

there are a scalars , , …, in s.t., … .

Clearly, the sum of two linear combinations of , ,…, is also a linear

combination of , ,…, and the product of a scalar in and a linear

combinations of , ,…, is also a linear combination of , ,…, .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

31

So the set of all linear combinations of , ,…, forms a subspace of .

Definition 1.22: Let be a vector space over a field and let

 be a nonempty subset of . The span of is defiend as:

… .

Clearly, the set is a subspace of , called the subspace generated (or

spanned) by . Given a subspace of , a subset of is called a

generating set (or spanning set) of if and we also say spans

.

Remark 1.13: If is already a subspace of , then .

Example 1.22: Let be a subset of

over . Then

.

Definition 1.23: The vectors , ,…, in a vector space over a field

are said to be linearly dependent if there exist constants , ,…, from ,

not all zero, such that:

+ +…+ = 0. (1.6)

Otherwise, , ,…, are called linearly independent. That is , ,…,

are linearly independent if whenever + +…+ =0, we must

have: = =0.

Example 1.23: The set is linearly
independent.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

32

Example 1.24: The set is linearly

dependent since .

Remark 1.14: Any set which contains 0 is linearly dependent. Any set

containing at least two identical vectors is also linearly dependent. For

example, the set and the set

 are linearly dependent.

Theorem 1.13: For any vector space there exists at least one linearly

independent set which spans the space. Hence we have the following

definition.

Definition 1.24: The set , ,…, } of vectors in a vector space

over a field is said to form a Basis for if:

(i) spans ,

(ii) is linearly independent.

Definition 1.25: The dimension of a vector space , denoted , is

the number of vectors in a basis of .

Remark 1.15:

(i) If , ,…, form a basis for a vector space , then they must be

nonzero distinct vectors.

(ii) A vector space over a finite field can have many bases; but all bases

contain the same number of elements, called .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

33

Theorem 1.14: If , ,…, form a basis for a vector space , then

every vector in can be written in one and only one way as a linear

combination of the vectors in .

Example 1.25: Consider the vector space of all 3-tuples over GF(2). Let

us form the following 3-tuples: , , .

Then every 3-tuple () in can be expressed as a linear

combination of as follows:

()= . + . + .

Therefore, , , span the vector space .

We also see that , , are linearly independent. Hence, they form a

basis for and the dimension of is 3.

This set of vectors is called the standard basis for .

Theorem 1.15: Let be a vector space over and ,

then has elements.

Proof:

(i) If , ,…, is a basis for , then

… .

Since , there are exactly 2 choices for each .

Hence, has exactly elements.

Theorem 1.16: If , ,…, is linearly independent then is

a dimensional subspace of .

Corollary 1.2: Let be an dimensional vector space, and let

, ,…, be a set of vectors in then:

(i) If is linearly independent, then it is a basis for .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

34

(ii) If spans , then it is a basis for .

Definition 1.26: Let be two

-tuples in over then:

(i) We define the Euclidean inner product (also know as scalar product or

dot product) of u and v as:

 .

(ii) The two vectors u and v are said to be orthogonal if .

(iii) Let be a nonempty subset of . The orthogonal complement of

is defined to be: .

Example 1.26: Let , , be vectors

in over then:

. Hence, and are orthogonal.

Example 1.27: Let over . To find

. Let then:

 and
Hence, we have . Since and can be either 0 or 1, we can

conclude that .
Theorem 1.17: Let be a subspace of . Then:

(i) is a subspace of .

(ii)

(iii)

Theorem 1.18: Let be a dimensional subspace of . Then we have

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

35

.

Remark 1.16: If is an orthogonal complement of , then is also an

orthogonal complement of . Hence, we say that and are

orthogonal complements.

Remark 1.17: If is a given matrix, we associate the following four

fundamental vector spaces with : the null space of , the row space of ,

the null space of and the column space of .

Remark 1.18: Recall that

(a) The Null space of

(b) The row space of is the set of all linear combinations of the rows

of

Theorem 1.19: If is a given matrix, then:

(i) The null space of is the orthogonal complement of the row space

of with dim (row space) + dim (null space) .

(ii) The null space of is the orthogonal complement of the column space

of dim (column space) + dim (null space of)

Most information given in this chapter are from .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

36

Chapter 2

Linear Block Codes
2.1 Basic Concepts of Block Codes

The data of output of the source encoder are represented by sequence of

binary digits, zeros or ones. In block coding this sequence is segmented

into message blocks consisting of digits each.

There are a total of distinct messages. The channel encoder, according

to certain rules, transforms each input message into a word

 with .

Definition 2.1: Given the binary field , we define:

(i) A binary word of length over is an tuple

 of binary digits .

(ii) A binary block code of length over is a nonempty set of

binary words of length each.

(iii) Each element of is called a codeword in .

(iv) The size of , denoted by , is the number of codewords in .

Example 2.1: Let . Then is a binary block code of

length and size .

A set of distinct codewords of length each, over the binary field

, is called a Binary Block Code .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

37

2.2 Definitions & Properties of the Linear Block Codes

We now introduce linear codes and discuss some of their elementary

properties.

Definition 2.2: A binary block code of length and codewords

is called linear if its codewords form a -dimensional subspace of the

vector space of all -tuples over the field .

It is clear, from the above definition, a linear combination of codewords in

 is also a codeword in .

Basic properties of a linear block code :

(i) The zero word , is always a codeword.

(ii) If is a codeword, then is also a codeword.

(iii) A linear code is invariant under translation by a codeword. That is, if

is a codeword in linear code , then .

(iv) The dimension of the linear code is the dimension of as a

subspace of over , i.e.,

Example 2.2: Let . Then is a linear block

code often called the repetition code.

Example 2.3: Let

. Then is a

 linear block code. Since any linear combination of the codewords in

 is also a codeword in . For instance,

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

38

Example 2.4: Find a basis for the linear block code given in

Example 2.3.

To find a basis for , we use algorithm 1 of Appendix B as follows;

The leading 1's in the REF are in 1, 2 & 3, then the original columns of

corresponding to these leading columns form a basis for . Thus

 is a basis of given code .

2.3 The Generator Matrix

Since a linear code is -dimensional subspace of then knowing

a basis of it enables us to describe its codewords explicitly. In coding

theory, a basis for a linear code is often represented by a matrix , called

a generator matrix. To obtain the generator matrix G for the linear

code we choose any linearly independent codewords in

and arrange them as rows of a matrix. So, we have

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

39

 (2.1)
where for .

Then each codeword of is a linear combination of the codewords .

i.e. where .

Definition 2.3: A generator matrix for a linear code is a

matrix whose rows form a basis for

By this definition, then is the row space of

Algorithm 1 of Appendix B can be used to find the generator matrix of

any linear linear code .

Example 2.5: The generator matrix for the linear code given in

Example 2.3 is

,

Note is a basis of as

shown in example 2.4.

2.4 Encoding Scheme
If is the message to be encoded, then the

corresponding codeword can be given as follows:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

40

 (2.2)
i.e. is a codeword of with coefficients .

Remark 2.1:

For each -tuple (message) there corresponds one

and only one codeword . So there are distinct

messages and corresponding distinct codewords.

Example 2.6: Let

 be the set of messages to be encoded using the

generator matrix of the linear code given in

Example 2.3:

Then the corresponding codewords are:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

41

Remark 2.2: Since the rows of generate the linear code, the

encoder has only to store the rows of and to form a linear combination

of these rows with entries from the message.

Definition 2.4: Let be a message to be encoded. Then

the corresponding codeword in a linear code

has a systematic structure, if it may be divided into two parts, the message

part consisting of the digits and the redundant checking

part which consists of parity-check digits as shown in Figure 2 below

Redundant Checking part
n-k digits

Message Part
k digits

Figure 2: Systematic Form of a Codeword

Definition 2.5: A linear systematic block code is a linear code with the

systematic structure of the codewords

The encoder is called systematic.

Using elementary row operations and/or column permutations for a linear

systematic code the generator matrix can be written in the

following form:

 (2.3)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

42

where is the identity matrix and is a matrix which

generates parity-check digits.

We call this form of the systematic form of a generator matrix .

Now, let be the message to be encoded using the

systematic form of a generator matrix , then the corresponding codeword

is:

.

And hence, the rightmost digits of are represent, the message digits

 to be encoded:

 (2.4)

And the leftmost digits of represent the parity-check digits, which

is linear sums of the message digits

. (2.5)

The equations given by (2.5) are called parity-check equations of the

code.

Example 2.7: Consider the given in example 2.3 with the generator

matrix

Using elementary row operations and/or column then the generator matrix

 can be written as follows:

.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

43

Therefore, a linear systematic code which is generated by is

completely specified by (2.4) and (2.5). To show this:

Let be a message to be encoded. The corresponding

codeword is

given by these equations:

Thus, the corresponding codewords for the messages

 given in

Example 2.6 are shown in Table 6 below:

Note that the code generated by is not necessarily the same code that

would be obtained by . But is an equivalent code of which is defined

in the following definition:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

44

Table 6: Linear Systematic block code with
Message Codeword

)

)

)

)

)

)

)

)

Definition 2.6: Two codes are equivalent if they can be formed

by generator matrices , respectively, that are related by

elementary row operations or column permutation. We call these matrices

 equivalent generator matrices.

2.5 The Parity-Check Matrix

Another matrix associated with every linear block code is the parity-check

matrix .

By Theorem 1.19, the null space of is orthogonal to the row space of .

So we construct an matrix whose rows form a basis of the

null space of in this case .

An tuple is a codeword in the code generated by if and only if

. This matrix is called a parity-check matrix of the code .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

45

The linear combinations of the rows of the matrix form the dual

code of which is defined as follows;

Definition 2.7: Let be a linear code in . The dual code of is

the orthogonal complement of the subspace of .

Note that is linear code with .

Remark 2.3: The dual code of is spanned by the null space of the

generator matrix of .

Example 2.8: Consider the linear block code given in example 2.3

with the generator matrix .

To find the parity-check matrix of , we find a basis of which forms

the rows of . To do this we use Algorithm 2 of appendix B as follows;

Form the matrix

 1 2 3 4 5

 2 5 1 3 4

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

46

Therefore, .

As a result, a parity-check matrix for a linear code is a

generator matrix for its dual code where

For a linear systematic code the parity check matrix can be written

in systematic form as the follows:

 (2.6)

Where is the transpose of the matrix in .

Theorem 2.1: For an linear systematic block code with generator

matrix and parity check matrix we have .

Proof: Consider and

.

Now, we have

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

47

where is modulo-2 addition.

Note that the matrix given in (2.6) is a parity-check matrix of an

equivalent code , generated by given in (2.3), of the linear code .

Theorem 2.2: An linear systematic block code is completely

specified by its parity-check matrix .

Proof: Let be the message to be encoded. Then the

corresponding codeword would be

Since then we have;

,

 (2.7)

These parity-check equations can be give by this general equation:

 (2.8)

for .

Rearranging equation (2.8) we obtain the same parity-check equations of

(2.5).

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

48

2.6 Encoding Circuit for a Linear Systematic Code

In this section, we will introduce an linear systematic codes via a

direct descriptive approach by the implementation in (Figure 3).

Given -data bits as the message , then the encoding

circuit for an linear systematic code can be implemented based on

the equations of (2.4) and (2.5).

Figure 3: Encoding Circuit for a Linear Systematic Code

Here denotes modulo-2 addition and denotes connection if

 and no connection if .

Let to be encoded then this message is shifted into

the message register and simultaneously into the channel. As soon as the

entire message has entered the message register, the parity-check

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

49

digits are formed at the outputs of the modulo-2 adders . These

parity-check digits are then serialized and shifted into the channel.

Example 2.9: The encoding circuit for a linear systematic code

given in (Example 2.7) is shown in (Figure 4), where the connection is

based on the parity-check equations given in this example.

,

 Figure 4: Encoding Circuit For a Linear Systematic Code

Input

To channel

+

To channel

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

50

Chapter 3

Error Detection, Error Correction & Decoding Schemes

A fundamental concept in secure communication of data is the ability to

detect and correct the errors caused by the channel. In this chapter, we will

introduce the general schemes/methods of linear codes decoding.

3.1 Channel Model / Binary Symmetric Channel

The channel is the medium over which the information is conveyed.

Examples of channels are telephone lines, internet cables and phone

channels, etc. These are channels in which information is conveyed

between two distinct places or between two distinct times, for example, by

writing information onto a computer disk, then retrieving it at later time.

Definition 3.1: A communication channel consists of a finite channel

alphabet as well as a set of forward channel

probabilities received sent), satisfying

 (3.1)

See figure 5.

Note that received sent) is the conditional probability that is

received, given that is sent.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

51

Figure 5: A Communication Channel

Definition 3.2: A communication channel is said to be memoryless if the

outcome of any transmission is independent of the outcome of any previous

transmission i.e.

If and are words of length , then

 (3.2)

Now, for purposes of analysis, channels are frequently characterized by

mathematical models, which (it is hoped) are sufficiently accurate to be

representative of the attributes of the actual channel.

In this thesis we restrict our work on a particularly simple and practically

important channel model, called the binary symmetric channel (BSC),

defined as follows:

Definition 3.3: A binary symmetric channel (BSC) is a memoryless

channel which has channel alphabet and channel probabilities

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

52

,
.

Figure 6 below shows a BSC with crossover probability p.

Figure 6: Binary Symmetric Channel

3.2 General Methods of Decoding Linear Codes over BSC
In a communication channel we assume a codeword is

transmitted and suppose is received at the output of the

channel. If is a valid codeword, we may conclude that there is no error in

. Otherwise, we know that some errors have occurred and we need to find

the correct codeword that was sent by using any of the following general

methods of linear codes decoding:

1. Maximum likelihood decoding,

2. Nearest neighbor/Minimum distance decoding

3. Syndrome decoding

4. Standard array

5. Syndrome decoding using truth table

0
1-p

0

1 1
1-p

P

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

53

These methods for finding the most likely codeword sent are known as

decoding methods.

Recall that the model of a data transmission system can be represented as

follows in Figure 7.

Figure 7: Simplified Model of a Code System

We start with the maximum likelihood decoding, which coincides with the

minimum distance decoding under some conditions which will be studied

in the following two sections, then we consider more comprehensive

methods.

3.3 Maximum Likelihood Decoding
Suppose the codewords form the linear block code

 and suppose a BSC with crossover probability is used.

Let a word of length be received when a codeword

 is sent. Then, The maximum likelihood

decoding (MLD) will conclude that is the most likely codeword

transmitted if maximizes the forward channel probabilities i.e.

 (3.3)

where .

Message (u) Encoding (v) BSC (r)
(Error)

Detecting &
Correcting (v)

Decoding (u)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

54

Example 3.1: Let be a linear block code. Let

 is received when is transmitted over a BSC with

crossover probability then we can try to find the more likely

codeword sent for by computing the forward channel probabilities:

 ,

 .
According to MLD; since the second probability is larger than the first, we

can conclude that is more likely to be the codeword sent.

Now, There are two kinds of MLD:

(i) Complete maximum likelihood decoding (CMLD). If a word is

received, find the most likely codeword transmitted. If there are more

than one such codewords, select one of them arbitrarily.

(ii) Incomplete maximum likelihood decoding (IMLD). If a word is

received, find the most likely codeword transmitted. If there are more

than one such codewords, request a retransmission.
In general; for a BSC with crossover probability we have the

following forward channel probability:

 (3.4)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

55

where is the number of places at which and differ.

Since , so this probability is larger for larger values of

, i.e. for smaller values of .

Hence, this probability is maximized by choosing a codeword for which

 is as small as possible.

This value leads us to another decoding method that is the nearest

neighbor decoding or (minimum distance decoding).

3.4 Nearest Neighbor Decoding/Minimum Distance Decoding

In this section an important parameters of linear block codes called the

hamming distance and hamming weight are introduced as well as the

minimum distance decoding.

Definition 3.4: Let and be two

binary words. The Hamming distance or simply (distance) from to ,

denoted by or , is defined to be the number of positions

that the corresponding elements differ:

, (3.5)

where:

Example 3.2: Let and be two

codewords in the linear block over . Then the hamming

distance from to is;

.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

56

Theorem 3.1: Let , and be words of length over . Then we

have:

(i) ,

(ii) ,

(iii) ,

(iv) (Triangle inequality).

Proof: The proof of , and is obvious from the definition of the

Hamming distance. We just prove (iv).

Use the definition of the hamming distance in (3.5). Therefore, we want to

show the following:

 (3.6)

If then

.

If then .

If . If .

Otherwise, if which is contradiction.

Hence, , for some .

Therefore, (3.6) is proved is also proved. █
Definition 3.5: Let be a binary -tuple. The

(Hamming) weight of , denoted by , is defined to be the number of

nonzero components of ; that is,

, (3.7)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

57

where 0 is the zero word and

Remark 3.1: The hamming weight of can also be equivalently defined

by; .

Example 3.3: The hamming weight of is 3.

Lemma 3.1: If , then .

Proof: (since is a vector space which is

commutative group under addition. So for there is additive inverse

denoted by s.t.,)

. █

Note that in binary codes negation is unnecessary. The following corollary

is an immediate consequence of lemma 3.1.

Corollary 3.1: If be two binary tuples, then .

Example 3.4: For

 and .

We now explain the minimum distance decoding; suppose the

codewords from a code are being sent over a BSC.

If a word is received, the nearest neighbor decoding or (minimum

distance decoding) will decode to the codeword that is the closest one

to the received word . Such procedures can be realized by an exhaustive

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

58

search on the set of codewords which consists of comparing the received

word with all codewords and choosing of the closest codeword. That is;

. (3.8)

Just as for the case of maximum likelihood decoding, we can distinguish

between complete and incomplete decoding for the nearest neighbor

decoding. For a given received word , if two or more codewords satisfy

(3.8), then the complete decoding arbitrarily selects one of them to be the

most likely word sent, while the incomplete decoding requests for a

retransmission.

Theorem 3.2: For a BSC with crossover probability , the maximum

likelihood decoding is the same as the nearest neighbour decoding.

Proof: Let denote the code in use and let denote the received

word (of length). Then for any codeword , and for any , using

MLD we have

 (3.9)

Since , so the probability in (3.9) is larger for larger

values of , i.e. for smaller values of . Hence, it is the same

as the nearest neighbor decoding. █

Remark 3.2: In this thesis we will assume that all communication channels
are binary channels having crossover probabilities . Consequently, we

can use the minimum distance decoding to perform MLD.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

59

Example 3.5: Recall that in example 3.1 we use MLD, let us use the

minimum distance decoding for the same example.

, , by using nearest

neighbor decoding, we decode to . The IMLD table for is as

shown in Table 7, where '_' means that retransmission is sought.

Table 7: IMLD Table for .
Received Decode to

 0 2
 1 3
 1 1 _

 1 1 _

 2 2 _

 2 0
 2 2 _

 3 1

Now, we introduce two parameters of linear block code the

(Minimum) distance of and the minimum weight of .

Definition 3.6: For a code containing at least two codewords, the

(minimum) distance of , denoted by or , is

.

Corollary 3.2: According to lemma 3.1, the (minimum) distance of a

binary block code is;

 (3.10)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

60

Remark 3.3: We can denote a code using the parameters

 as code, where the length of code is ,

dimension of the code is and is the distance of the code .

Example 3.6: Let

be an linear code. The minimum distance of is .

Since , ,

 ,

, .

Hence, is a binary linear code.

Definition 3.7: The parameter is called

the minimum weight of the linear code .

Theorem 3.3: The minimum distance of a linear block code is equal to

the minimum weight of its nonzero codewords.

Proof:

Since is a linear code, so the sum of two vectors is also a codeword

 in . █

In (Example 3.6)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

61

Next, we prove a number of theorems that relate the weight structure of a

linear block code to its parity-check matrix.

Theorem 3.4: A linear block code which has as parity-check

matrix, contains a nonzero codeword of hamming weight if and only if

there exist columns of s.t. the vector sum of these columns is equal to

the zero word.

Proof: Let be the parity-check matrix for a

linear code and let be a nonzero codeword in

 s.t., has nonzero components say , ,…, where

.

Now, since is a codeword in

 + +…+

(Suppose that are columns of s.t.

 (3.11)

Consider an -tuple whose nonzero components are

, ,…, . We want to show that .

Consider the product

+ +…+

. From (3.11)

. █
PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

62

Corollary 3.3: Let be a linear block code with parity-check matrix . If

no or fewer columns of add to , the code has minimum

weight at least .

Corollary 3.4: Let be a linear block code with parity-check matrix .

The minimum weight or (Minimum distance) of is equal to the smallest

number of columns of that sum to .

Example 3.7: Let

be linear code with the corresponding parity-check matrix

.

We see that all columns are nonzero and that no two of them are equals.

Therefore, no two or fewer columns sum to 0. Hence, the minimum weight

of is at least 3.

Note that, the zeroth, first and fourth columns add up to zero, i.e.,

.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

63

3.5 Syndrome & Error Detection/ Correction

3.5.1 Syndrome & Error Detection

Consider an linear code . Let be a codeword

that was transmitted over a noisy channel (BSC). Let

be the received vector at the output of the channel. Because of the channel

noise, may be different from . Hence, the vector sum

 (3.12)

is an -tuple where .

This -tuple is called an error vector or (Error pattern). The in are the

transmission errors caused by the channel noise.

Definition 3.8: Let be an linear code with parity-check

matrix . Then for a received word , the syndrome of , denoted by

or (is:

 (3.13)

Or

Note that is a linear map

Remark 3.4:

(i) is a codeword and the receiver accepts as the

transmitted codeword.

(ii) When , we know that the received word and the presence

of errors has been detected.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

64

Definition 3.9: An error pattern is called an undetectable error pattern if

it is identical to a codeword.

When a codeword is transmitted over a noisy channel, and undetectable

error pattern occurred to the transmitted codeword then, the received

word will be , which is also a codeword since it’s the sum of

two codewords. Thus, the syndrome of will be zero.

In this case, the decoder accepts as the transmitted codeword and thus

commits an incorrect decoding, and we say that the decoder makes a

decoding error.

Now, let be a parity-check matrix in a systematic form of an linear

code. Then based on (3.13), the syndrome digits are as follows;

 Syndrome digits are;

 (3.14)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

65

Note that, the syndrome digits given in (3.14) can be formed by a circuit

similar to an encoding circuit as follows:

Figure 8: Syndrome Circuit for a Linear Systematic Code

Example 3.8: Consider the linear code whose parity-check matrix

 in systematic form given in example 3.7.

Let be the received word. Then its syndrome is given

by:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

66

 Syndrome digits are;

The syndrome circuit for this code is shown in figure 9.

Figure 9: Syndrome Circuit for the Code

3.5.2 Syndrome & Error Correction

Theorem 3.5: The syndrome of a received vector depends

only on the error pattern , and not on the transmitted codeword .

Proof: Since

+

+ +

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

67

Then by (3.13) we have;

But, then (3.15)

So the syndrome of doesn't depend on █

We now use the syndrome for error correction; let be a parity-check

matrix in a systematic form of an linear code . Then the syndrome

digits of the received word can be formed as follows;

 (3.16)

The system above (3.16) of linear equations can be solved for the digits of

an error pattern by the following procedure for error

correction which is using (3.14, 3.16).

1. Compute the syndrome of the received word

 using (3.14)

2. Solve the system of the equations in (3.16) for .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

68

Note that the system (3.16) is an of linear equations, and

so, it doesn't have a unique solution.

3. Compute the decoded word :

Theorem 3.6: The linear equations of (3.16) do not have a unique

solution but have solutions.

In other words, there are error patterns that result in the same syndrome,

and the true error pattern is just one of them.

Theorem 3.7: For the BSC, the most probable error pattern is the one

that has the smallest number of nonzero digits.

Example 3.9: Again, we consider the code with the parity-check

matrix . Let be the transmitted

codeword over BSC and be the received vector.

The problem is to find the digits of an error pattern .

1. Compute the syndrome of using (3.14)

2. Solve the system (3.16) for with as

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

69

 There are error patterns that satisfy the above system depending

 on they are:

 .

 Now, since the channel is BSC, Then the most probable error pattern

 that satisfies the system above is which has the

 smallest number of nonzero digits.

3. The receiver decodes the received word into the

following codeword ;

 .

 We see that the receiver has made a correct decoding.

Later we show that the linear code considered in this example is

capable of correcting any single error over a span of five digits; that is, if a

codeword is transmitted and if and only if one digit is changed by the

channel noise, the receiver will be able to determine the true error vector

and to perform a correct decoding.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

70

3.6 Error-Detecting & Error-Correcting Capabilities of

Block Codes

3.6.1 Error-Detecting Capabilities of Block Codes

Definition 3.10: Let be a positive integer. A code is

error detecting if, whenever a codeword incurs at least one and at most

 errors, the resulting word is not a codeword.

Definition 3.11: A code is exactly error detecting if it is

error detecting but not error detecting.

Example 3.10: Consider the linear code of Example 3.6.

. This code is

a -error detecting since changing any codeword in one position does not

result in another codeword. In other words,

 needs to change 3-bits,

 needs to change 5-bits,

 needs to change 2-bits,

 needs to change 2-bits,

 needs to change 2-bits,

 needs to change 3-bits

In fact, is exactly error detecting. Since is not a -error-

detecting. Therefore, if two errors occur in the first and second digits of the

codeword (0 0 1 1 1) we obtain the codeword (1 1 1 1 1). Hence, these two

errors will not be detected.

Lemma 3.2: A block code with minimum distance is capable of

detecting all the error patterns of or fewer errors.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

71

Proof: If the minimum distance of a block code is , any two distinct

codewords of differ in at least places. For this code, no error pattern

of or fewer errors can change one codeword into another.

Therefore, any error pattern of or fewer errors will result in a

received vector that is not a codeword in . █
Lemma 3.3: A block code with minimum distance cannot detect all

the error patterns of errors.

Proof: WLOG, suppose are two codewords of that are

differ in places.

Now,

.

Let be an error pattern of errors which has 1's in the corresponding

positions of the 1's of . Then will be the zero codeword.

Hence, this error will not be detected. █

The same argument applies to error patterns of more than errors.

Now, a cording to lemma 3.2 and lemma 3.3, we can conclude this

theorem;

Theorem 3.8: A code with minimum distance is an exactly

-error detecting code.

Proof: Suppose has minimum distance . By lemma 3.2 is capable

of detecting all error patterns of or fewer errors.

By lemma 3.3 cannot detect all the error patterns of errors. So, it is

an exactly -error detecting code. █

For instance, Example 3.10 is an exactly -error detecting code.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

72

Even though a linear code with minimum distance guarantees

detecting all the error patterns of or fewer errors, it is also

capable of detecting a large fraction of error patterns with or more

errors. For instance, consider again the code given in Example

3.10. Suppose that an error pattern of 2-errors occurs during the

transmission of then;

Theorem 3.9: An linear code is capable of detecting error

patterns of length .

Proof: Among the possible nonzero error patterns, there are

undetectable error patterns that are identical to the nonzero

codewords. Hence,

 detected errors █

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

73

Remark 3.5:

(i) If an error pattern is not undetectable error pattern, the received

vector will not be a codeword. Hence, the syndrome will not be zero. In

this case, error will be detected.

(ii) There are exactly error patterns are detectable error patterns.

(iii) For large , is in general much smaller than . Therefore, only a

small fraction of error patterns pass through the decoder without being

detected.

(iv) The random-error-detecting capability of a block code with minimum

distance is .

3.6.2 Error-Correcting Capabilities of Block Codes

If a block code with minimum distance is used for random-error

correction, one would like to know how many errors that the code is able to

correct.

Theorem 3.10: A block code with minimum distance guarantees

correcting all the error patterns of or fewer errors. The

parameter is called the random-error-correcting capability of the code.

() where denotes greatest integer

function.

Proof: Let be the minimum distance of a block code .

Since is either odd or even let be a positive integer s.t.

 (3.17)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

74

Now, let be the transmitted codeword and be the received word. Let

be any other codeword in . Then, by the triangle inequality and hamming

distance: (3.18)

Suppose that an error pattern of errors occurs during the transmission of

i.e. . Since are codewords in , we have

. But (By 3.17)

Then

Case 1: If

 (3.19)

Case 2: If (add in to both sides)

 (3.20)

The inequality in (3.19) and (3.20) says that if an error pattern of or fewer

errors occurs, the received word is closer by the minimum distance

decoding to the transmitted codeword than other codeword in . Based

on the MLD this means that the conditional probability is greater

than for . So is decoded into , which is the actual

transmitted codeword.

On the other hand, the code is not capable of correcting all the error
patterns which contains more than errors.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

75

i.e. there is at least one case where an error pattern contains more than

errors results in a received word which is closer to an incorrect codeword

say than to the actual transmitted codeword . To see this consider the

following case:

Consider be

linear code. Choose where

 and the random-error-correcting capability of the code

 is .

Suppose that is transmitted and is corrupted by the error

pattern . Then the received word is

 (3.21)

Let s.t. where be two error

patterns that satisfy the following conditions:

(i)

(ii) don't have nonzero components

in common places.

Obviously, from (i) and by using

 (3.22)

Combining (3.21) and (3.22), we obtain the following:

 and .

So must be decoded into , not v and the error will not be corrected.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

76

3.7 Standard Array for Linear Codes

Let us now consider another method of decoding linear block codes that

uses MLD or the minimum distance decoding.

Recall that is the set of codewords that is a subset of

the set of all -tuples .

In this decoding scheme is evenly partition into disjoint subsets

, s.t. each contains exactly one codeword (say).

Now, we build the as follows:

Step 1: Start each with an element of , e.g.

Step 2: Choose an -tuple of minimum weight. Then the

second element in each is

Note that the element is called a coset leader.

Step 3: We repeat step 2 by choosing (coset leader) where

 of minimum weight from the remaining -tuples that

were not included in any up to the previous step

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

77

Remark 3.6: The above - tuples can be arranged as entries of

matrix s.t.: .





















++++

++++
=

−−−−

×−

kkniknknkn

ki

ki

kkn

veveveve

veveveve
vvvv

M

2222212

2222212

221

22

LL

MMMMMM

LL

LL

Remarks 3.7:

(i) The entries of the column of represent the subset

 . (3.23)

(ii) The entries of the first row of represent the code .

(iii) The row of is called the coset and the first entry of this row is

 a coset leader .

(iv) Each -tuple of appears only once in and hence containing all

-tuples.

(v) The standard array built is not a unique.

(vi) Each coset consists of -tuples of the form

 .

(vii) Each column consists of -tuples with the topmost one as a

 codeword in .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

78

Example 3.11: Consider this linear code

. The standard

array for shown as follows:

10101011000101110010
10011010100110110100
00110111111100000001
00101111001101100010
00011110101110100100
01111101101000101000
10111011100100110000

00111111101100100000

4838288

4737277

4636266

4535255

4434244

4333233

4232222

4321

4321

=+=+=+=
=+=+=+=
=+=+=+=
=+=+=+=
=+=+=+=
=+=+=+=
=+=+=+=

====

vevevee
vevevee
vevevee
vevevee
vevevee
vevevee
vevevee

vvvv

DDDD

Figure 10: Standard Array for the Linear Code.

Theorem 3.11: The sum of any two words in the same row of the standard

array is a codeword in .

Proof: Suppose that be two -tuples in the row where

 and is the word with minimal weight in the row.

Then since is linear. █

Theorem 3.12:

(i) No two tuples in the same row of a standard array are identical.

Proof: Suppose two tuples in the row are identical, say

 with . This means that , which is a

contradiction since row contains distinct codewords . █

(ii) Every tuple appears in one and only one row.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

79

Proof: Suppose that an -tuple appears in both row and the row

with . So for some .

Then . But are two

codewords in the linear code , so is again a codeword in , say .

Then . This implies that the -tuple is in the row of the

array, which contradicts the construction rule of the array that , the first

element of the row, should be unused in any previous row. Therefore,

no -tuple can appear in more than one row of the array █

From the previous theorem we can conclude this corollary;

Corollary 3.5:

(i) There are disjoint columns in the standard array.

(ii) Every word appears exactly once in the standard array.

Theorem 3.13:

(i) Each row in the standard array consists of distinct elements.

Proof: Clearly, each row consists of the -tuples since the first row

containing codewords by (Theorem 3.12 (i)) no two -tuples in the

same row of a standard array are identical. █

(ii) There are disjoint rows in the standard array.

Proof: Since there are tuples over and the are partitioned

into disjoint columns so we have, disjoint rows in the

standard array. █

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

80

Fact 3.1: Any element in a coset can be used as its coset leader. This does

not change the elements of the coset; it simply permutes them.

We now, explain the standard array decoding:

Let us use the disjoint columns of the standard

array for decoding the code .

Suppose that the codeword is transmitted over the BSC. From (3.23) if

the error pattern caused by channel was a coset leader, the received word

 will be . So will be decoded correctly into the

transmitted codeword .

On the other hand, if the error pattern caused by the channel is not a coset

leader, an erroneous decoding will result as in the following example:

Let be an error pattern caused by the channel and lie in the coset and

under the codeword . Then and the received word is

.

Thus, the received word . So it is decoded into , which is not the

transmitted codeword . So an erroneous decoding will result.

Result: Every linear code is capable of correcting different

error patterns which are denoted by the coset leaders. For this reason, the

 coset leaders (including the zero codeword) are called the correctable

error patterns.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

81

Theorem 3.14: Given an linear code with minimum distance

, no two tuples of weight or less can be in the same

coset of .

Proof: Let be a linear code with minimum distance and minimum

weight . Let and be two tuples of weight or less which are in

the same coset

then must be a nonzero codeword in , where the weight of is:

,

But this is impossible since . Therefore, no two

tuples of weight or less can be in the same coset of .

Corollary 3.6: All -tuples of weight or less can be used as coset leaders.

Theorem 3.15: If each coset leader is chosen to have minimum weight in

its coset, the decoding based on the standard array is the minimum distance

decoding or the MLD.

Proof: Let be the received word. Suppose that is found in the

column and coset of the standard array. Then is decoded into the

codeword . Since , the distance between and is

 (3.24)

Now, consider the distance between and any codeword, say ,

,

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

82

Since and are two different codewords in the linear code, then the

sum is again codeword, say . Thus,

 (3.25)

Since and are in the same coset, then by assumption,

 by (3.16 and 3.17) (3.26)

So the result (3.26) says that the received word is decoded into a closet

codeword. █

Theorem 3.16: If all the -tuples of weight or less are used as

coset leaders of the standard array for the linear code then

there is at least one -tuple of weight that cannot be used as a coset

leader.

Proof: Let be a minimum weight codeword of , that is .

Let and be two tuples which satisfy the following two conditions:

(i) ,

(ii) and do not have nonzero components in common places.

It follows from the definition that since its sum is a codeword and

.

Suppose we choose s.t., . Since ,

we have;

,

Now, if is used as a coset leader, then cannot be a coset leader. █

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

83

Corollary 3.7: An linear code is capable of correcting all

the error patterns of or fewer errors, but it is not capable of correcting all

the error patterns of weight .

Hence, we say that the code is exactly error correcting

Example 3.12: Consider example 3.11 where the vector

is the transmitted codeword from and the received word is

, which lies in column whose coset leader

. So is correctable error pattern.

Other wise, consider the transmitted codeword is and the

received word is , then the error vector is

, which is not coset leader in the standard array

for the linear code. So is uncorrectable error pattern. To show this;

, which is

not the transmitted codeword . So an erroneous decoding will result.

The minimum distance for the above code is 3. Thus, the code guaranteed

to correct all error patterns of single errors since the random error

correcting capability of the code is

and the random error detecting capability is

Note from the standard array of Example 3.11 not all error

patterns of weight two are correctable. You can select arbitrary only two of

them. Because of the code is capable of correcting (Including

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

84

the zero word) different coset leaders where five of them are

error patterns of single errors.

Hence, the decoder in (Example 3.11) is capable of correcting all errors of

weight ;

and two different error patterns of weight 2;

Theorem 3.17:

(i) All the -tuples of a coset have the same -tuple syndrome.

(ii) The syndromes for different cosets are different.

Proof: Let be the parity check matrix of the given linear code .

(i) Consider the coset whose coset leader is and let be a word in

that coset then for some . The syndrome of is;

,

. The equality above says that the syndrome of any word in

a coset is equal to the syndrome of the coset leader. Therefore, all the

word of a coset have the same syndrome. █

(ii) Let be the coset leaders of the different cosets,

respectively, where . Suppose that the syndrome of these two

cosets are equal then;

say . Thus in the coset, thus

in the cosets, which

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

85

 contradicts Theorem 3.7 that states every tuple appears in one and only

one coset in the standard array. █

Corollary 3.8: There is a one-to-one correspondence between a coset and

an tuple syndrome. Or, there is a one-to-one correspondence

between a coset leader (a correctable error pattern) and a syndrome.

3.8 Syndrome Decoding

In this section we will discuss a scheme for decoding linear block codes,

that uses a one-to-one correspondence between a coset leader and a

syndrome. So we can form a decoding table, which is much simpler to use

than a standard array. The table consists of coset leaders (the

correctable error patterns) and their corresponding syndromes.

So the exhaustive search algorithm on the set of syndromes of

correctable error patterns can be relised if we have a decoding table, in

which syndromes correspond to coset leaders.

The decoding of a received word consists of three main steps:

(i) Calculation of the syndrome of the received word ;

(ii) Search the decoding-table for the coset leader that corresponds to

the

 syndrome .

(iii) Decode the received word into the codeword .

The decoding scheme described above is called the syndrome decoding or

table-lookup decoding.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

86

Example 3.13: Consider

 with the parity-check matrix .

The correctable error patterns and their corresponding syndromes are

shown in the following decoding table. Table 8 was constructed from

standard array for the linear code given in Example 3.11.

Table 8: Decoding Table for an Linear Code
Syndrome Coset leader

(0 0 0) (0 0 0 0 0)
(1 0 0) (1 0 0 0 0)
(0 1 0) (0 1 0 0 0)
(0 0 1) (0 0 1 0 0)
(1 1 1) (0 0 0 1 0)
(1 1 0) (0 0 0 0 1)
(1 0 1) (1 0 1 0 0)
(0 1 1) (1 0 0 1 0)

Suppose that the codeword is transmitted and

 is received. The decoding of a received word , we use the

three steps of syndrome decoding;

(i) the syndrome of , is ;

(ii) from (Table 8) the coset leader is ,

(iii) decode the received word into the codeword

In that example the decoding is correct since the error pattern caused by the

channel is a coset leader. Therefore, the decoding is correct if and only if

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

87

the error pattern caused by the channel is a coset leader. Otherwise we say

a decoding error is committed.

3.9 Decoding Circuits Using Combinational Logic Circuits
Recall the table-lookup decoding of an linear code from the above

section. In this section the table-lookup decoding will be implemented.

The decoding table regarded as the truth table of switching functions:

,

 (3.27)

.

Where are the syndrome digits, which are regarded as

switching variables, and are the estimated error digits.

Now, when these switching functions are derived and simplified,

a combinational logic circuit with the syndrome digits as inputs and

the estimated error digits as outputs can be realized.

The general decoder for an linear code based on the table-lookup

scheme is shown in Figure 11 which depends primarily on the complexity

of the combinational logic circuit (error-pattern-detecting circuit).

Figure 11: General Decoder for a Linear Block Code.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

88

Example 3.12: Again consider the linear code give in Example

3.13. The syndrome circuit for this code is shown in Figure 12. From Table

8 we form the following truth table.

Table 9: Truth Table for the Error digits of the Correctable Error patterns

of the linear code

0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0
1 1 1 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0

The switching expressions for the five error digits are

,

Where denotes the logic-AND operation, denotes the logic-OR

operation and denotes the logic-COMPLEMENT of . These five

switching expressions can be realized by seven 3-input AND gates. The

circuit of this decoder is shown in Figure 12.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

89

Figure 12: Decoding Circuit for the Code

Received
word

+ + +

+ + + + +

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

90

Chapter 4

Binary Hamming Codes

4.1 Construction of Binary Hamming Codes

Hamming codes are the first important class of linear error-correcting

codes named after its inventor, Richard W. Hamming (1950) who asserted

by proper encoding of information, errors induced by a noisy channel or

storage medium can be reduced to any desired level without sacrificing the

rate of information transmission or storage. We discuss the binary

Hamming codes with their shortened and extended versions that are

defined over . These Hamming codes have been widely used for

error control in digital communication and data storage. They have

interesting properties that make encoding and decoding operations easier.

In this section we introduce Hamming codes as linear block codes that are

capable of correcting any single error over the span of the code block

length.

Suppose the linear code has an matrix as the parity

check matrix and that the syndrome of the received word is given by

. Then the decoder must attempt to find a minimum weight

which solves the equation

.

Write and ,

where and each is an

dimensional column vector over , then

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

91

.

In other words, the syndrome may be interpreted as the vector sum of those

columns of the matrix corresponding to the positions of the errors.

Now, consider all error words of weight one are to have distinct

syndromes, and then it is evidently necessary and sufficient that all

columns of the matrix must be distinct.

For if say then if then now, if

 then for .

In other words, the parity-check matrix of this code consists of all the

nonzero -tuples as its columns. Thus, there are

possible columns.

The code resulting from above is called a Binary Hamming code of length

 and where .

Definition 4.1: For any integer there is a Hamming code, Ham ,

of length with parity bits and information bits.

Using a binary parity check matrix whose columns are all of the -

dimensional binary vectors different from zero, the Hamming code is

defined as follows:

Ham

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

92

Table 10: Parameters for Some Hamming Codes
M Hamming Code
3 (7, 4)
4 (15, 11)
5 (31, 26)
6 (63, 57)
7 (127, 120)

Theorem 4.1: The minimum distance of a Hamming code is at least .

Proof: If Ham contained a codeword of weight 1, then would have

1 in the position and zero in all other positions.

Since , then column of must be zero. This is a

contradiction of the definition of . So Ham has a minimum weight of

at least 2.

If Ham contained a codeword of weight 2, then would have 1 in

the and positions and zero in all other positions. Again, since

, then are not distinct. This is a contradiction.

So Ham has a minimum weight of at least 3.

Then . Since in linear codes, then ,

therefore the minimum distance of Hamming code is at least .

Theorem 4.2: The minimum distance of a Hamming code is exactly 3.

Proof: Let be a Hamming code with parity-check matrix . Let

us express the parity-check matrix in the following form:

, where each represents the column of

. Since the columns of are nonzero and distinct, no two columns add to

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

93

zero. It follows from corollary 3.3 that the minimum distance of

a Hamming code is at least 3. Since consists of all the nonzero -tuples

as its columns, the vector sum of any two columns, say and , must

also be a column in , say i.e. . Thus,

 (In modulo 2-addition)

It follows from (Corollary 3.4) that the minimum distance of a Hamming

code is exactly 3.

Corollary 4.1: The Hamming code is capable of correcting all the error

patterns of weight one and is capabe of detecting all 2 or fewer errors.

Proof: Use lemma 3.2 and theorem 3.10 with to show this

corollary as follows;
. So the Hamming code is capable of correcting

all the error patterns of weight one.

And . Thus it is also has the capability of detecting

all 2 or fewer errors.

Result For any positive integer , there exists a Hamming code

 with the following parameters:

Code length:

Number of information symbols:

Number of parity-check symbols:

Random-error-correcting capability: .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

94

4.2 The Generator and the Parity Check matrices of Binary
 Hamming Codes Ham

The Hamming code is a linear block code so we use (2.3) and (2.6) to

construct the parity-check matrix and the generator matrix in the

systematic form for this Hamming code. Rewrite (2.3) and (2.6) as follows:

 (4.1)

 (4.2)

The parameters of Hamming code are:

, then the parity-check matrix of

a Hamming code is constructed by listing all non zero -dimensional

distinct columns.

Thus the systematic form of is a matrix whose right side is all of the

nonzero -tuples of weight > 1 in any order. The left side is just the

identity matrix .

(4.3)

Where is an identity matrix and the submatrix consists of

 columns which are the tuples of weight 2 or more.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

95

So the generator matrix can be obtained from by taking the transpose

of the left hand side of with the identity identity matrix on the left

hand side.

 (4.4)























−−−−−−

−

−

−

0001

0100
0010
0001

1,221,220,22

1,22120

1,11110

1,00100

LK

MMMMMMKMM

KK

KK

KK

mmmm

m

m

m

mmm qqq

qqq
qqq
qqq

Note that if the parity check matrix is not in a systematic form then by

row operations or column permutations you can reorder the columns of

to obtain the systematic form of which is resulting in an equivalent code.

Example 4.1: For consider the matrix

 (4.5)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

This can be considered a parity check matrix for a Hamming code.

Clearly is not in a systematic form. By reordering the columns of as:

1, 2, 4, 8, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15 we obtain;

 1 2 4 8 3 5 6 7 9 10 11 12 13 14 15

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

96

Example 4.2: For there is a Hamming code , of length

, and with

.

Consider

Then

The solution vector;

. So there are

 codewords that satisfy the equations above depending on the four

free variables

.

Now

(0011001),(0110011),(0010110),(0101010),(1111111),(1101001),

(0111100),(1011010),(1110000),(1001100),(1100110),(1010101)}.

is a linear block code. One can easily check that the sum of any two

codewords in this code is also a codeword.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

97

The generator matrix can be obtained from algorithm 1 in appendix B as

follows:

Clearly, the matrices and are not in the systematic form, so the

systematic form of a generator matrix can be obtained by row operations

and/or column permutations as follows; .

And hence, the parity-check matrix using (4.3, 4.4) becomes;

,

which gives a different set of Hamming codewords and thus a different (7,

4) binary Hamming code. To find the code , we find the nullspace

of H, i.,e, the set of all 7-tuples , …, such that

.

By computing the nullspace of H, we obtain

(1000111),(1011001),(

0101011),

(0011110),(1110010),(1111111), (1100001),(1101100),(1001010),

(0111000),(1010100),(0100110), (0001101)}.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

98

Clearly, of this code consists of all nonzero distinct columns of length

.

Now apply (Corollary 3.4) to the problem of determining . Clearly

, since the columns of are nonzero and distinct. However,

there are many subsets of three columns of , summing to 0, for example,

. Thus , and so the error-correcting

capability of is . That is, it is capable of

correcting all error patterns of weight 1 or fewer.

4.3 Hamming Encoding
Let be the length of the encode message. Let be the length of message

to be encoded. Therefore is the length of error checking digits.

Since Hamming codes are linear block codes, then the encoding operation

can be described in terms of a generator matrix

where the codewords are obtained as linear combination of the rows of

That is, the Hamming code is the row space of .

Hence, for a message we have the codeword

 which is given by:

, (4.6)

where is redundant checking part of a codeword , and is the

message part of .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

99

Example 4.3: Consider

(1000111),(1011001),(0101011),(0011110),(1110010),(1111111),

(1100001),(1101100),(1001010),(0111000),(1010100),(0100110),

(0001101)}.

With the generator matrix:

.

Let

be message set to be encoded, then its corresponding

codewords, according to (4.6), are shown in (Table 11) where .

Table 11: A Hamming Code
Message Codeword ()

(0000) (0000000)
(0011) (0010011)
(0101) (0110101)
(0111) (1000111)
(1001) (1011001)
(1011) (0101011)
(1110) (0011110)
(0010) (1110010)
(1111) (1111111)
(0001) (1100001)
(1100) (1101100)
(1010) (1001010)
(1000) (0111000)
(0100) (1010100)
(0110) (0100110)
(1101) (0001101)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

100

Now, the weight distribution of a Hamming code of length is

shown in the following definition;

Theorem 4.3: The number of codewords of weight , , of a Hamming

code is simply the coefficient of in the expansion of the following

polynomial;
 (4.7)

This equation is the weight enumerator for the Hamming codes.

Example 4.4: The weight enumerator for the Hamming code which

is given in example 4.3 is:
.

Hence, the weight distribution is

 and .

One can easily check that distribution from table 11.

We now consider the following algorithm that is used to encode

Hamming codes:

(i) All bit positions that are powers of two are used as parity bits. (Positions

1, 2, 4, 8, 16, 32, 64, etc).

(ii) All other bit positions are for the data to be encoded.

(Positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc).

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

101

(iii) Each parity bit calculates the parity for some of the bits in the code

word. The position of the parity bit determines the sequence of bits that

it alternately checks and skips.

§ Position 1 (n=1): skip 0 bit (0=n−1), check 1 bit (n), skip 1 bit (n), check

1 bit (n), skip 1 bit (n), etc. (1,3,5,7,9,11,13,15,...)

§ Position 2 (n=2): skip 1 bit (1=n−1), check 2 bits (n), skip 2 bits (n),

check 2 bits (n), skip 2 bits (n), etc. (2,3,6,7,10,11,14,15,...)

§ Position 4 (n=4): skip 3 bits (3=n−1), check 4 bits (n), skip 4 bits (n),

check 4 bits (n), skip 4 bits (n), etc. (4,5,6,7,12,13,14,15,20,21,22,…)

§ Position 8 (n=8): skip 7 bits (7=n−1), check 8 bits (n), skip 8 bits (n),

check 8 bits (n), skip 8 bits (n), etc. (8-15,24-31,40-47,...)

§ Position 16 (n=16): skip 15 bits (15=n−1), check 16 bits (n), skip 16 bits

(n), check 16 bits (n), skip 16 bits (n), etc. (16-31,48-63,...)

§ Position 32 (n=32): skip 31 bits (31=n−1), check 32 bits (n), skip 32 bits

(n), check 32 bits (n), skip 32 bits (n), etc. (32-63,96-127,...)

§ General rule for position n: skip n−1 bits, check n bits, skip n bits, check

n bits...

§ And so on.

This general rule can be shown visually by the following table, which use

to signify data bits and to signify parity bits.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

102

…

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit position

 Encoded data bits

X X X X X X X X X X X
Data word

(without parity)

X X X X X X X X P1

Parity bit

coverage X X X X X X X X P2

X X X X X X X X P3

X X X X X X X X P4

X X X X X X X X X X X X X X X

Data word (with

parity)

In other words, in a Hamming Code, parity bit is used to hold the parity

bit for all bits in the code whose locations have a binary representation with

a 1 in position .

Consider the table of four-bit binary numbers and their decimal equivalent

positions shown in Table 12.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

103

Table 12: Four-bit Numbers

 Position
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

Now, since the numbers 1, 3, 5, 7, 9, 11, 13, 15, etc, have all in position

0 in their binary representations, then is used to store the parity

information for each of the bits in these locations. In other words, is

used to store parity information on itself and on message bits

, etc.

The numbers 2, 3, 6, 7, 10, 11, 14, 15, etc, have all in position 1 in their

binary representations, then is used to store the parity information for

each of the bits in these locations. In other words, is used to store parity

information on itself and on message bits , etc.

The numbers 4, 5, 6, 7, 12, 13, 14, 15, etc, have all in position 2 in their

binary representations, then is used to store the parity information for

each of the bits in these locations. In other words, is used to store parity

information on itself and on message bits , etc.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

104

And the numbers 8, 9, 10, 11, 12, 13, 14, 15, etc, have all in position 1

in their binary representations, then is used to store the parity

information for each of the bits in these locations. In other words, is

used to store parity information on itself and on message bits

, etc.

After the data bits are inserted into their appropriate positions, the parity

bits calculated in each case using an even parity operation which is defined

in the following definition.

Definition 4.2: An even parity operation make the total number of in a

specific group of bit positions even.

For instance, since is a parity bit for the bits ,

then if we have an odd number of 1's then else setting it to 0.

The calculation of an even parity can be done by applying the

exclusive-or operation, denoted XOR or .

Table 13: Exclusive-or Operation (XOR/)

 0

 1

 1

 0

Remark 4.1: In the above insert the bits of a message from left to right to

preserve on the binary representation of each value.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

105

Here is an example of how this process works.

Example 4.5: For consider the message

"1 0 1 0 1 1 0 1 0 1 1"

1 2 3 4 5 6 7 8 9 10 11

to be encoded then we have a 15-bit Hamming code with 4

bits and 11 information bits.

Firstly the 11-data bits are inserted into positions:

3, 5, 6, 7, 9, 10, 11, 12, 13, 14 and 15.

 "1 0 1 0 1 1 0 1 0 1 1"

And the remaining positions 1, 2, 4 and 8 (which are power of 2) are used

to store parity bits which are calculated in each case using an even parity.

See the table below.

Parity

bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit position

Encoded data
bits

 1 1 0 1 0 1 1 0 1 0 1
Data word
(without
parity)

1 1 0 0 1 0 0 1 P1

Parity bit
coverage

1 1 1 0 1 0 1 1 P2

0 1 1 0 1 0 1 0 P3

1 1 1 0 1 0 1 1 P4

 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1

Data word
(with parity)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

106

We write the output codeword from left to right using as the first bit

from the left to the output codeword. Hence, the encoded codeword that

would be sent is "1 1 1 0 0 1 0 1 1 1 0 1 0 1 1".

Note that, this example can be computed by placing the message-bits in the

following simple table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Bit

position

 ؟ ؟ 1 ؟ 0 1 0 ؟ 1 1 0 1 0 1 1
Message

bits

We now, after placing the data in the last table we find that in positions 3,

6, 9, 10, 12, 14 and 15 we have a "1". Using table 12 we obtain the binary

representation for each of these values.

We then exclusive OR the resulting values (XOR: it sets the output to 1 if

we have an odd number of 1's else setting it to 0). The results of this

activity are shown below:

 0 0 1 1 3
 0 1 1 0 6
 1 0 0 1 9
 1 0 1 0 10
 1 1 0 0 12
 1 1 1 0 14
 1 1 1 1 15

The parity bits are then put in the proper locations in the above table. Thus

the following end result:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

107

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Bit

position

1 1 0 1 0 1 1 1 0 1 0 0 1 1 1
Message

bits

Thus "1 1 1 0 0 1 0 1 1 1 0 1 0 1 1" is the encoded codeword that would be

sent.

4.4 Hamming Decoding

4.4.1 Syndrome & Error Detection/Correction

Suppose that a codeword is transmitted over BSC and the received word

is (is an error pattern)

Recall that we can decode the received word of the linear code

using property of a parity-check matrix of that linear code which is given

in (Section 2.5) as follows;

 (4.8)

We now use that property (4.8) of as the decoding step, by compute the

syndrome

Therefore, the syndrome depends only on the error pattern and not on the

transmitted codeword .

Now, since a Hamming code is capable of correcting only a single error,

suppose that consists of zero in all positions except 1 at the position;

Where the 1 is equal to . (That is, the error is in the position).

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

108

Note that, an error pattern which consists of zero in all positions except at

 position can be denoted by . Hence, .

Let us express the parity-check matrix in the following form:

, where represents the column of .

Then the syndrome is:

, the column of .

Hence, the syndrome directly identifies the error location as position.

The decoding algorithm is shown as the following:

Remark 4.2: The following algorithm fails if more than one error occurs.

Algorithm:

(i) Compute the syndrome for the received binary word , ,

(ii) If , then the decoded codeword is , and output ,

(iii) Otherwise, the syndrome will be equal to a unique column of say

denote the column of which is equal to (). Hence, there is

an error in position of . Add 1 (modulo-2) to the coordinate of ,

and output the result as .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

109

Example 4.6: Suppose that the message is encoded to the

codeword which is given in example 4.3.

If the word is received, when is transmitted over

BSC, then the decoding algorithm proceeds as follows:

Consider the parity-check matrix of

Then;

(i) ,

(ii) This syndrome corresponds to column 6 of . Therefore, the decoded

value of is;

Then the transmitted codeword is , which is

corresponds to the message is (1110), since the generator is systematic.

Note that the above algorithm is special case of the algorithm given in

section 3.5.2. To see this;

4.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

110

5.

 (4.9)

Then we solve the system (4.9). The solution vector is

.

Free variable

Error pattern

0 0 0 0 (1 1 1 0 0 0 0)
0 1 0 0 (0 1 0 0 1 0 0)
0 0 1 0 (0 0 0 0 0 1 0)
0 0 0 1 (0 0 1 0 0 0 1)
1 0 0 0 (1 0 0 1 0 0 0)

But assuming the error pattern consists of zero in all positions except

at a single position, so the unique solution for that system (4.9) is

. Which is the sixth column of .

6. Compute the decoded vector ;

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

111

4.4.2 Standard Array for Hamming Codes
Recall from Theorem 3.14 for an linear code with minimum

distance all the tuples of weight or less can be used

as coset leaders of a standard array of .

So, if we form the standard array for a Hamming

code, then all the tuples of weight 1 can be used as coset

leaders. Because The Hamming code is a linear single error-correcting code
.

The number of -tuples of weight 1 is . Since in

the Hamming codes, the code has cosets (Including the word zero).

Thus, the zero word and the tuples of weight 1 form all the

coset leaders of the standard array for a

Hamming code.

This says that a Hamming code corrects only the error patterns of single

error and no others.

This means that the Hamming codes belong to an extremely exclusive class

of codes, the perfect codes which is defined as the following;

Definition 4.3: A -error-correcting code is called a perfect code if its

standard array has al the error patterns of or fewer errors and no others as

coset leaders.

Remark 4.3: Hamming codes form a class of single-error-correcting

perfect codes. The only other binary linear perfect codes are the repetition

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

112

codes and the Golay code (see the reference 12 for more

information about these two linear perfect codes).

Example 4.7: The standard array for given in table 4.2 which

consists of 16 columns and 8 rows, its first row consists of

codeword, shown in Figure 13 below.

00011000100111...011010000100100000001
00011110100100...011011100100010000010
00010010100010...011000100101110000100
00001010101110...011110100110110001000
00111010110110...010010100000110010000
01011010000110...001010101100110100000
10011011100110...111010110100111000000
00011010100110...011010100100110000000

Figure 13: Standard Array for .

Suppose that the codeword is transmitted and

 is received word. For decoding , we use figure 13 as

follows;

Since in the third column and second row of the standard array, then

 is the sum of the coset leader and the codeword

. Hence,

, which is the transmitted

codeword.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

113

4.4.3 Syndrome Decoding (Table-Lookup Decoding)

Decoding of Hamming codes can be accomplished easily with the table-

lookup decoding described in section 3.8, which is much simpler to use

than a standard array.

For instance, the standard array of the Hamming code ()

given in Figure 13 can be represented by a decoding table consisting of

only 2 columns instead of 16. To see this, study the following example.

Example 4.8: Consider the Hamming code given in table 11, that

have the parity-check matrix

Then the zero word and the -tuples of weight 1 form all the coset leaders

of the standard array for a Hamming code.

Thus, the correctable error patterns and their corresponding syndromes are

given as follows:

Table 14: Decoding Table for a Hamming Code
Coset leader

Syndrome

(0000000) (000)
(1000000) (100)
(0100000) (010)
(0010000) (001)
(0001000) (011)
(0000100) (101)
(0000010) (111)
(0000001) (110)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

114

As in Section 3.9, the table-lookup decoding of this (7, 4, 3) Hamming

code may can be implemented as follow.

From the decoding table we form the truth table of seven switching

functions expressions for the seven error digits. These functions are:

Table 15: Truth Table for the Error Digits of the Correctable Error Patterns

of the (7, 4, 3) Hamming Code
 Syndrome Correctable error pattern (Coset leader)

0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 1

The complete circuit of the decoder is shown in Figure 14.

4.4.4 Checking of Parity Bits in Hamming Codes

To complete the decoding operations for , the received side

would re-compute the parity bits and compare them to the ones received

(again using an XOR even parity). If they were the same the result will

be all i.e., no error occurred. If a single bit was flipped the location of

the flipped bit is determined using Table 12.

Example 4.9 shows how this process works.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

115

Figure 14: Decoding Circuit for the Code

Example 4.9: Let's say that the bit in position 14 was corrupted and turned

from 1 to 0 during transmission the codeword 1 1 1 0 0 1 0 1 1 1 0 1 0

1 1). The new data word (with parity bits) is now 1 1 1 0 0 1 0 1 1 1 0

1 0 0 1).

The receiving end would see the following encoded sequence:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Bit

position

1 0 0 1 0 1 1 1 0 1 0 0 1 1 1
Received

data
word

Below is the re-calculation of the parity bits of

using XOR even parity in each case.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

116

 0 0 1 1 3
 0 1 1 0 6
 1 0 0 1 9

 1 0 1 0 10
 1 1 0 0 12
 1 1 1 1 15

The re–calculated parity information is then compared to the parity

information sent/received as follows:

 1 0 1 1 sent/received
 0 1 0 1 new calculated

The final step is to evaluate the integer value of the parity bits

 Parity bit

 1 1 1 0 Binary

 1* 1* 1* 0* decimal

Flipping the bit changes (1 1 1 0 0 1 0 1 1 1 0 1 0 0 1) back into (1 1 1

0 0 1 0 1 1 1 0 1 0 1 1). Removing the parity check bits gives the original

data message =(1 0 1 0 1 1 0 1 0 1 1).

All these steps can be shown as follows:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

117

Parity

bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit position

 1 0 0 1 0 1 1 1 0 1 0 0 1 1 1

Received data
word

0 1 0 0 1 0 0 1 1

1 1 0 0 1 0 1 1 1

1 1 0 0 1 0 1 0 0

1 1 0 0 1 0 1 1 1

4.5 Shortened Hamming Codes

The Hamming can easily be shortened by

deleting any columns from the parity-check matrix of a

Hamming code. This deletion results in an matrix

. Now, using as a parity-check matrix, we obtain a shortened

Hamming code with the following parameters:

Code length:

Number of information symbols:

Number of parity-check symbols:

Minimum distance:

Theorem 4.4: The minimum distance of a shortened Hamming

code is at least 3.

Proof: Consider the parity-check matrix of a Hamming code is a

 matrix , which consists of all the nonzero distinct columns.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

118

If we delete any columns from then this deletion results in a

 matrix , which is used as a parity-check matrix of a

shortened Hamming code. Clearly, the matrix consists of nonzero and

distinct columns, hence the minimum distance of a shortened

Hamming code is at least 3.

Now, we want to show that the minimum distance may be not exactly 3.

Let and any two columns of , consider

Case 1: if ,

Case 2: if . So the

minimum distance of a shortened Hamming code is at least 3.

Example 4.10:

Consider the parity-check matrix of the

Hamming code is in systematic form;

If we delete from the submatrix all the columns of even weight, we

obtain an matrix ,

where consists of columns of odd weight. Since all the

columns of have an odd weight, the sum of any two columns say and

 results in a column say have even weight, that is

 (since consists of all columns of odd weight)

Thus no three columns in adds to zero. However, for a column of

weight 3 in , ther exists three columns and in such that

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

119

.

So, the shortened Hamming code with as a parity-check matrix has

minimum distance exactly 4 by corollary 3.4.

Theorem 4.5: The distance 4 shortened Hamming code can be used for

correcting all error patterns of single error and simultaneously detecting all

error patterns of triple errors or fewer.

Proof: By lemma 3.2 and theorem 3.10.

Decoding of the Distance 4 Shortened Hamming Code

Let be the received word when

 transmitted codeword.

If a single error occurs in the position of i.e.,

Thus, the syndrome of

, where consists of all columns of weight odd.

The result syndrome is nonzero and it contains an odd number of 1's.

However, when double errors occur, i.e.,

The syndrome is also nonzero, but it contains even number of 1's. Since

.

We now, based on these facts, decoding can be accomplished in the

following manner:

(i) If , then we assume that no error occurred,

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

120

(ii) If and it contains odd number of 1's, we assume that a single

error occurred. The error pattern of a single error that corresponds to is

added to the received word for error correction.

(iii) If and it contains even number of 1's, an uncorrectable error

pattern has been detected.

4.6 Extended Hamming Codes

4.6.1 Construction of Extended Hamming Codes

The Hamming , , can be easily extended by adding an

extra parity bit to each of its codeword to obtain an -code called

an extended Hamming code,

The extended code may have stronger error detection capability as we will

see in the later section.

The following definition generates the extended Hamming code,

, given a Hamming code .

We can extend the Hamming code by extending each codeword

of by one position. This is done by adding a new parity check bit,

 to the codeword, such that the weight of the codeword is even.

Then the resulting is an extended Hamming code .

This new parity check bit, is sometimes called a parity check digit.

For instance, if

 is even.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

121

Example 4.11: based on the Hamming code , given in

(Table 11) is shown in the following table.

 Table 16:

(0000000) (00000000)
(0010011) (10010011)
(0110101) (00110101)
(1000111) (01000111)
(1011001) (01011001)
(0101011) (00101011)
(0011110) (00011110)
(1110010) (01110010)
(1111111) (11111111)
(1100001) (11100001)
(1101100) (01101100)
(1001010) (11001010)
(0111000) (10111000)
(1010100) (11010100)
(0100110) (10100110)
(0001101) (10001101)

Theorem 4.6: An extended Hamming code of an

Hamming code, , is an linear code.

Where , & the numbers 3

and 4 are the minimum distance of , respectively.

Proof:

From the definition of extended hamming code the parity check will be

added by one bit, so the new length is .

The length of message doesn't change because the new bit is added as a

parity check not information bit, so the number of information bits still .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

122

In order to show that is a linear, Let and

s.t., and are the corresponding codewords of . The vector

 will be identical to in the last positions.

If has odd weight then we can, without loss of generality, assume

that has odd weight and has even weight. Thus the first entry of is

1 and the first entry of is 0. It follows that the first entry of

must be 1. Therefore is even.

Since , then .

If has even weight, then and must be either even or both odd.

In either case, their first positions have the same entry which is 0, because

of 0 + 0 = 0 and 1 + 1 = 0. Therefore is even.

Since , then .

We now show that the minimum distance of is 4.

Since minimum weight of is 3, suppose for some

Hamming codewords . Then one of or has even parity and the

other has parity odd, say has even parity. Suppose are the

extended Hamming codewords obtained by adding check digits to

, respectively. Then since has even parity and

since has odd parity.

So, .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

123

Definition 4.4: The parity check of is obtained by the parity

check matrix of by adding a zero column on the left, and a row

of all 1's on the bottom as follow:

4.6.2 Error-Detecting & Error-Correcting Capabilities of Extended

Hamming Codes

Corollary 4.2: For , we can detect up to 3 errors but still can

only correct a single error.

Proof: Since the distance of is 4, then we have the following;

The random-error-detecting capability of =

The random-error-correcting capability of = .

Let be check matrix of and be

check matrix for an extended Hamming code, .

If be transmitted codeword and

 be a received word with only one error. Then using the

syndrome we can detect/correct that error.

First, if the error occurred in the last bits.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

124

Computing the syndrome of where the first column of , denotes

by .

 (4.10)

But the syndrome of the corresponding codeword of , say is;

Since there is an error in one of bits of .

So (4.10) will be as follows;

The last row of the syndrome will be 1, i.e.

Since is an even number, but there is an error in one bit of .

Hence, will be an odd number.

So, (4.11)

Clearly from (4.11) that the syndrome matches a column of .

Hence, there is an error in position of . Add 1 (modulo-2) to the

coordinate of .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

125

Second, Suppose now that only the parity bit is in error. Then will be

zero, so and this matches the first column of .

Thus, we can assume 1 error has occurred and switch the bit of the word

corresponding to that column.

Now suppose 2 errors have occurred. Wherever they occur the parity of the

entire word will be correct, thus the syndrome will have a 0 in the last row

and will not be a column of the check matrix. But the syndrome will not be

zero since codewords of the extended Hamming code have minimum

distance 4. Thus a nonzero, non-column syndrome indicates 2 errors.

Example 4.12: Consider the (7, 4) Hamming code given in table 11, with

the check matrix .

Then

is the parity check matrix of an extended Hamming code, .

If be a received word then:

Hence, there is an error in position 2 of . Add 1 to the coordinate of

so, .

If be a received word then:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

126

Hence, there is an error in position 0 of . Add 1 to the coordinate of

so, .

If be a received word then:

Thus the syndrome will have a 0 in the last row and will not be a column of

the check matrix. Thus a nonzero, non-column syndrome indicates 2 errors.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

127

Chapter 5

Cyclic codes

Cyclic codes form an important subclass of linear block codes and

were first studied by Prange in 1957. These codes are popular for two main

reasons: first, they are very effective for error detection/correction and

second, they possess many algebraic properties that simplify the encoding

and the decoding implementations.

5.1 Description of Cyclic Codes
If the components of an -tuple are cyclically shifted

one place to the right, we obtain another -tuple,

,

which is called a cyclic shift of .

Clearly, the cyclic shift of is obtained by moving the right most digit

 of to the left most digit and moving every other digit

 one position to the right.

If the components of are cyclically shifted places to the right, the

resultant -tuple would be

 . (5.1)

Remark 5.1: Cyclically shifting -places to the right is equivalent to

cyclically shifting -places to the left.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

128

Definition 5.1: An linear code is called cyclic if any cyclic shift of

a codeword in is also a codeword in i.e. whenever ,

then so is .

Example 5.1: Consider the following linear code ;

.

One can easily check that the cyclic shift of a codeword in is also a

codeword in . For instance, let , then:

.

Hence, the code is a cyclic.

Remark 5.2: The pair is not arbitrary chosen.

We show later in section (5.3) that is the degree of the polynomial

that generates the cyclic code .

5.2 Algebraic Property of Cyclic Codes

In this section we prove an important algebraic property of cyclic codes

which simplifies the encoding and syndrome computation.

Recall the polynomial representation

 (5.2)

of the -tuple as defined in Section 1.8..

Each codeword corresponds to a polynomial of degree .

We shall call the polynomial the code polynomial of .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

129

 Remark 5.3: The correspondence between the codeword and the
polynomial is one-to-one. So from now on, we will use the terms
"codeword" and "code polynomial" interchangeably.

Example 5.2: The polynomial representation of the cyclic code of

Example 5.1 is given in following table:
Table 17: The Polynomial Representation of the Cyclic Code

Codeword Code polynomial
(0000000) 0
(1101000)
(0110100)
(1011100)
(0011010)
(1110010)
(0101110)
(1000110)
(0001101)
(1100101)
(0111001)
(1010001)
(0010111)
(1111111)
(0100011)
(1001011)

Clearly, each codeword in (Table 17) corresponds to a polynomial of

degree . The nonzero code polynomial of minimum degree in this

cyclic code is and it's of degree 3.

The code polynomial that corresponds to the codeword

 is

 (5.3)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

130

The following theorem shows an interesting algebraic relationship between

 and .

Theorem 5.1: In the cyclic code, the code polynomial is

simply the remainder resulting from dividing the polynomial by

.

Proof: Consider the codeword in the

cyclic code .

The code polynomial that corresponds to that codeword is

.

Now, if the components of that are cyclically shifted -places to the right,

then the corresponding codeword will be

.

The code polynomial that corresponds to the code word is given in

(5.3).

Now, multiplying by , we obtain

.

 (5.4)

where . (5.5)

Since modulo 2-addition and by (5.3),

 (5.6)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

131

Then the code polynomial is simply the remainder resulting from

dividing the polynomial by .

5.3 The Generator Polynomial and its Algebraic Properties

In this section, we prove number of important algebraic properties of the

polynomial called the generator of the code.

Property 1: The nonzero code polynomial of minimum degree in a cyclic

code is unique.

Proof: Suppose that is a non zero

code polynomial of minimum degree .

Suppose is not unique.

Then there exists another code polynomial of degree , say

.

Since is linear,

 is

also a code polynomial which has degree less than .

If , then is a nonzero code polynomial

with degree less than the minimum degree , a contradiction to the

minimally of . Thus . This implies that .

Hence, is unique.

From now on, we use as the

unique non zero polynomial of minimum degree in .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

132

Property 2: The constant term must be equal to 1.

Proof: Suppose that . Then

.

By shifting cyclically places to the right (or one place to the

left), we obtain nonzero code polynomial,

which has a degree , a contradiction to the minimally of . Thus

.

Example 5.3: Consider the cyclic code given in table 17. The unique

nonzero code polynomial with minimum degree is:

.

Moreover, we treat the coefficients of as the components of a

codeword .

Theorem 5.2: The cyclic -shifts of the minimal degree code

polynomial , given by;

(5.7)

are all code polynomials in . Moreover, all linear combinations of (5.7)

are also code polynomials.

Proof: Consider the polynomials , which

have degrees , respectively.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

133

Since , then by replacing by in

(5.5 and 5.6) we obtain the following:

 (5.8)

That is, (5.8) are cyclic shifts of the code polynomial in an

cyclic code .

Using definition 5.1 of the cyclic code, then (5.7) are also code

polynomials in .

Now, since is linear code, then all linear combinations of (5.7),

are also code polynomials where or 1.

Example 5.4: Consider the cyclic code given in table 17 with

 where the corresponding codeword is

. Then the following polynomials are cyclic shifts

of and also code polynomials in ;

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

134

Moreover, all linear combinations of are

code polynomials in ;

The example above showed that g(x) generates the cyclic code

given in (Table 17). Hence we call it the generator polynomial of .

Definition 5.2: The generator polynomial of a cyclic code is the unique

non zero polynomial of minimal degree in and is denoted by

.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

135

Property 3: A binary polynomial of degree is a code polynomial

if and only if it is a multiple of .

Proof: Let be a binary polynomial of degree or less.

Suppose that is a multiple of . Then

 .

Since is a linear combination of the code polynomials,

,

then is a code polynomial in .

 Now, let be a code polynomial in .

Dividing by , we obtain

,

where either is identical to zero or the degree of is less than the

degree of .

Rearranging the equation above, we have

,

It follows from the first part that is a code polynomial.

Since both and are code polynomials in linear code, then

 must also be a code polynomial.

If , then is a nonzero code polynomial whose degree is less

than the degree of .

This contradicts the assumption that is the unique nonzero code

polynomial of minimum degree. Thus, must be identical to zero.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

136

Hence, . This proves that a code polynomial is a

multiple of .

Lemma 5.1: There are distinct code polynomials of degree

in .

Proof : Suppose is a code polynomial of degree . Then by

(Property 3) is a multiple of and

can be written as

 for some

polynomial .

Since , then there are a total of distinct polynomials of

degree .

Thus, the number of polynomials of degree is also .

Note that, the polynomials given in lemma 5.1 form all code

polynomials of the cyclic code .

Property 4: The degree of the generator polynomial of an cyclic

code is .

Proof: Let be the generator polynomial of a linear

cyclic code , then from (Chapter 2) a linear code has

distinct codewords. from (Lemma 5.1) there are distinct code

polynomials.

Now, by one to one corresponding of the codeword and code polynomial

we have;

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

137

At this point, a natural question is how to select a generator polynomial

 which generates the cyclic code .

Theorem 5.3: The generator polynomial of an cyclic code is a

factor of .

Proof: Multiplying by results in a polynomial of degree

 since is a polynomial of degree . Dividing by

, then we obtain the following equation from (5.6)

where the code polynomial is the remainder and it is obtained by

shifting to the right cyclically times.

But . Hence,

 (5.8)

Now, using (Property 3) is a multiple of , say

From (5.8) we obtain

Thus, is a factor of .

Definition 5.3: Let be a fixed polynomial over . Two

polynomials are said to be congruent modulo , written

if is divisible by

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

138

Corollary 5.3:

Proof: By (Theorem 5.3) for some of degree .

.

Theorem 5.4: If is a polynomial of degree that divides ,

then generates an cyclic code.

Proof: Let be a polynomial of degree that divides then

, for some of degree . Consider the

polynomials , which all have degree .

A linear combination of these polynomials is

is also a polynomial of degree and is a multiple of .

There are a total of such polynomials and they form an linear

code .

Now, we show this linear code is cyclic.

Let be a code polynomial in this code.

To complete this proof we must show the cyclic shift of is also a code

polynomial in

Multiplying by , we obtain

 (5.9)

Rearranging the equation (5.9) we have

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

139

 (5.10)

Equation (5.10) show that is a multiple of .

But is a polynomial of degree , so it is can be written as follows;

Thus, (5.10) will be written as follows;

 (5.11)

The last equation (5.11) showed the cyclic shift of is a linear

combination of . Hence, is also a code

polynomial and the linear code generated by is

an cyclic code.

Note that, theorem 5.4 actually says that any factor of with

degree generates an cyclic code , by taking all linear

combination of . In other words, the code

polynomials span .

i.e.,

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

140

Example 5.5: The generator polynomial of the (7, 4) cyclic code is a

factor of and it is a polynomial of degree 3.

The polynomial can be factored as follows:

.

There are two factors of degree 3 each generates a (7, 4) cyclic code.

If , then from above we can design (7, 4) cyclic code

where (5.12)

In fact, (5.12) generates the same cyclic code given in Example 5.1.

If , then the cyclic code consists of

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

141

Note that, in the above example we can find a (7, 3) cyclic code generated

by the generator polynomial

 in the same way.

5.4 The Generating Matrix, the Check Polynomial and the

 Parity Check Matrix for Cyclic Codes

5.4.1 The Generator Matrix

Recall that the code polynomials span an

 cyclic code with generator polynomial

. Then, if the -tuples corresponding

to these code polynomials are used as the rows of an matrix, we

obtain the following generator matrix for :























=

−

−

−

−

kn

kn

kn

kn

gggg

gggg
gggg

gggg

G

.....0...00

0..0.....00
0..00.....0
0..000.....

210

210

210

210

MM

Note that, all rows of are linearly independent. So,

 form the basis for .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

142

Example 5.6: Design all cyclic codes of length 4 using the generator

polynomial and generator matrix for each cyclic code.

Factorization of over has the form

Table 18: All Cyclic Codes of Length 4
Generator polynomial Generator matrix

1

Note that, .

5.4.2 Check Polynomials

Let be a cyclic code with the generator polynomial (of

degree , then (5.13)

where the polynomial has the degree and is of the following form:

with .

We call the check polynomial of or the parity polynomial of .

The check polynomial will be used to determine if the received word is a

codeword in the cyclic code as follows;

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

143

Theorem 5.5: Let be a cyclic code with a generator polynomial

 and check polynomial . Then if and only if

.

Proof: Suppose (5.14)

for some .

Multiply both sides of (5.14) by then we obtain

 Suppose . To show that , we

must show is a multiple of by (Property 3 of).

Consider .

where are the quotient and remainder polynomials,

respectively.

Multiply both sides of the above equation by then we obtain

But

by (5.13)

 or but , so

. Therefore is a multiple of .

Remark 5.4: The check polynomial of the cyclic code generated

by is .

Proof: From (5.13).

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

144

Example 5.7: Consider the (7, 4) cyclic code generated by

 with the parity check polynomial

.

Then the polynomial is a code polynomial of if and

only if .

 Since

and
xxx

xx
xx

xx
xxxx

xx
xxxxxxx

++

+

+

+

+

+++

+

++++++

23

8

8

29

289

310

2389107

00

1

Thus is a code polynomial of .
 5.4.3 Parity Check Matrices

In this section we will use the check polynomial of the cyclic code

to generates the dual code .

Theorem 5.6: Suppose is a cyclic code with the check polynomial

, then

(i) The parity check matrix for is



















=

−

0

01

01

000

00
00

hh

hhh
hhh

H

k

k

kk

LL

LM

LL

LL

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

145

(ii) The polynomial

 (5.15)

generates an cyclic code .

Note: the polynomial is defined as the reciprocal of

Proof:

(i) We show that any codeword in is orthogonal to

every row of .

Let be a code polynomial in . Then

 for some polynomial of degree .

Multiplying by , we obtain

 (5.16)

Clearly the powers do not appear in (5.16). If we expand

the product on the left-hand side of (5.16), the coefficients of

 must be equal to zero, i.e.

 (5.17)

The system (5.17) can be represent as follows

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

146



















=





































−

−

0

0
0

000

00
00

1

1

0

0

01

01

MM

LL

LM

LL

LL

nk

k

kk

v

v
v

hh

hhh
hhh

It follows from (5.17) that any codeword is

orthogonal to the word and to the any cyclic

shift of , i.e. any codeword is orthogonal to every row of .

Therefore, is a parity-check matrix of the cyclic code .

Proof (ii): To show that is an cyclic code generated by the

polynomial , it is sufficient to show that

 is a factor of .

Observe that from (5.13)

 (5.18)

Now, if we substituted in (5.18), then we obtain

 (5.19)

Multiplying both sides of (5.19) by

 (5.20)

Rewrite (5.20) using in the left hand side of (5.20)

But so we have the following

Therefore is indeed a factor of and hence, the polynomial

 generates an cyclic code .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

147

Note that the row space of is the dual of .

Moreover, since the parity check matrix is obtained from the polynomial

, we call the parity polynomial of . Hence, a cyclic code is also

specified by its parity polynomial.

Definition 5.4: In an cyclic code the minimum distance (The

minimum weight) of the dual code is the degree of the polynomial

.

Example 5.8: Consider the (7,4) cyclic code given in table 17 with

generator polynomial and generator matrix

.

Then the parity polynomial is

and hence, the reciprocal of is

The parity check matrix of is

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

148

Now, The dual code of , which is generated by

 consists of

Clearly, the minimum distance (minimum weight) of is 4, which is the

degree of the polynomial .

The parity check matrix can be used to check the codewords of the cyclic

code as in the following theorem:

Theorem 5.8: is a codeword in a cyclic code if and only if

.

This can be expressed as

0

000

00
00

1

1

0

0

01

01

=





































−

−

nk

k

kk

r

r
r

hh

hhh
hhh

M

LL

LM

LL

LL

Proof: It follows from theorem 5.6 (i) that any codeword

 in is orthogonal to every row of .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

149

5.4.4 Systematic Form of

The generator matrix in systematic form can also be formed easily using

these three steps:

Consider is the cyclic code with the generator polynomial .

First: Dividing by the generator polynomial for

, we obtain

 , (5.21)

where is the remainder with the following form:

Second: Rearranging (5.21), for , we obtain the following

 (5.22)

Since the R.H.S. of (5.22) is a multiple of for , then

the L.H.S. is a code polynomial in .

Third: Arranging the coefficients of the left hand side of (5.22) as rows

of a matrix as follows























=

−−−−−−

−−

−−

−−

1000

0100
0010
0001

1,12,11,10,1

1,2222120

1,1121110

1,0020100

*

LL

MMMMMMMM

L

LL

LL

knkkkk

kn

kn

kn

bbbb

bbbb
bbbb
bbbb

G =

which is the generator matrix of in the systematic form. Since the rows of

 span the row space of it, where any linear combination of these rows is

again codeword in the row space.

 is also a codeword, where is row in .

 codewords.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

150

But is spanned by the row space of .

Moreover, the rows of are linearly independent.

 generates .

The corresponding parity check matrix for is the following

matrix;























=

−−−−−−−−−

−

−

−

1,11,21,11,0

2,1221202

1,1211101

0,1201000

1000

0100
0010
0001

knkknknkn

k

k

k

bbbb

bbbb
bbbb
bbbb

LL

MMMMMMM

L

LL

LL

Example 5.9: Again, let us consider the (7, 4) cyclic code given in table 17

which is generated by .

Clearly, the generator matrix and the parity check matrix of given in

example 5.8 are not in systematic form so;

Dividing by , we have

.

Rearranging the equations above using (5.24), we obtain the following four

code polynomials:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

151

Arranging the coefficients of these four code polynomials as rows of the

 matrix

which is the generator matrix of in systematic form.

The corresponding parity check matrix for is

Important fact: The above algorithm can be made easier when it uses the

power representation for the elements of given in section 1.8.

Given as a primitive polynomial which has a

zero in at the primitive element , and thus all codewords

satisfy .

 That is

 (5.23)

And the parity check matrix

For example: The above generator matrix given in example 5.9 can be

formed in another way using (5.23).

Since the polynomial is a primitive polynomial which

has a zero in at

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

152

where are the remainders when we divide

by , respectively.

Arranging the coefficients of these four polynomials

 as rows of the matrix

which is the generator matrix of in systematic form.

& .

5.5 Encoding Operations

5.5.1 Nonsystematic Encoding

In an cyclic code, every code polynomial can be expressed as a

multiple the message and

where the degree of is .

 (5.24)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

153

 .

Using the vectors the code polynomial given in (5.24) can be

expressed as follows;

 (5.25)

where correspond to the , respectively.

Therefore, an cyclic code is completely specified by its generator

polynomial .

Remark 5.5: The degree of is equal to the number of parity-check

digits of the code.

Example 5.10: Consider the cyclic code generated by

, where message set is

.

Using (5.24), the corresponding encoded messages are given in the

following table.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

154

Table 19: The Cyclic Code Generated by
Messages

Message

polynomials
Code polynomials

(By 5.24)

Codewords

(By 5.25)
(0000) 0 0=0. (0000000)
(1000) 1 (1101000)
(0100) (0110100)
(1100) (1011100)
(0010) (0011010)
(1010) (1110010)
(0110) (0101110)
(1110) (1000110)
(0001) (0001101)
(1001) (1100101)
(0101) (0111001)
(1101) (1010001)
(0011) (0010111)
(1011) (1111111)
(0111) (0100011)
(1111) (1001011)

5.5.2 Systematic Encoding

In systematic encoding the codeword is divided into two parts:

the message part and the redundant checking part. The message part

consists of the message digits and the redundant checking part consists

of parity-check digits.

Encoding in systematic form consists of three steps:

Consider the message vector and the corresponding message polynomial

.

.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

155

Step 1: Shift to the right positions by multiplying by to

obtain a polynomial of degree .

 (5.26)

Observe that the vector corresponding to (5.26) is

Step 2: Dividing by the generator polynomial to obtain the

remainder (the parity-check digits).

 (5.27)

Where and are the quotient and the remainder, respectively.

Since the degree of is , the degree of must be or

less, that is,

Step 3: Obtain the code polynomial by adding to as

follows

which corresponds to the codeword

.

Recall that the division by the generator polynomial of the above

algorithm becomes easier when it is use the power representation of the

elements of .

For if

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

156

 (5.28)

Example 5.12: The systematic form of the 16 codewords in the (7, 4)

cyclic code which is given in (Table 19) are listed in the following table.

For the message polynomial there is

 s.t. is a codeword in .

Table 20: The (7,4) Cyclic Code Generated by in
Systematic form

Message

Message
polynomial

Codeword

Code polynomial

(0000) 0 (0000000) 0
(1000) 1 (1101000)
(0100) (0110100)
(1100) (1011100)
(0010) (1110010)
(1010) (0011010)
(0110) (1000110)
(1110) (0101110)
(0001) (1010001)
(1001) (0111001)
(0101) (1100101)
(1101) (0001101)
(0011) (0100011)
(1011) (1001011)
(0111) (0010111)
(1111) (1111111)

For instance, let be the message to

be encoded.

Step 1; Multiplying by ;

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

157

Step 2; Dividing by the generator polynomial .

1

100

1

1

23

3

3

24

234

235

45

346

3563
+++

++

++

+

++

++

++

+

++

++++
xxx

xx
xx

xxx
xxx

xxx
xx

xxx
xxxxx

We obtain the remainder . Thus, the code polynomial is

.

Note that, if then

For instance, if then

.

if then

.

Etc.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

158

5.6 Shift-Register Encoders for Cyclic Codes

In this section we present circuits for performing the encoding operation by

presenting circuits for computing polynomial multiplication and division.

Hence, we shall show that every cyclic code can be encoded with a simple

finite-state machine called a shift-register encoder.

To define the shift register we want to the following definition;

Definition 5.5: A D flip-flop is a one-bit memory storage in the field

.

 Figure 15: Flip-Flop

External clock: Not pictured in our simplified circuit diagrams, but an

important part of them, which generates a timing signal ("tick") every

seconds.

When the clock ticks, the content of each flip-flop is shifted out of the flip-

flop in the direction of the arrow, through the circuit to the next flip-flop.

The signal then stops until the next tick.

Adder: The symbol of adder has two inputs and one output, which is

computed as the sum of the inputs (modulo 2-addition).

+ Out put

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

159

Multiplication: The symbol of multiplication has one input and one

output, where the output is the multiplication of the input and the number

 which is stored in this symbol (either 1 or 0), where 0 represented by no

connection and 1 by a connection.

Definition 5.6: A shift-register is a chain of D flip-flops connected

to each other, where the output from one flip-flop becomes the input of the

next flip-flop.

Figure 16: Shift Register

All the flip-flops are driven by a common clock, and all are set or reset

simultaneously.

5.6.1 Nonsystematic Encoder

Recall that for an cyclic code the code polynomial

corresponding to the message is obtained by the encoding operation

of polynomial multiplication:

.

It turns out that polynomial multiplication is easy to implement using the

shift register encoder, and we shall now make a brief study of this subject

using the following example.

 Out put

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

160

Example 5.13: Consider a generator polynomial for a (7, 4) binary cyclic

code of is .

Then the corresponding shift-register encoder of the polynomial

multiplication

 (5.29)

is shown in figure 17.

Figure 17: Nonsystematic Encoder for (7, 4) Cyclic Code with Generator
Polynomial .

Hear we have 3 flip-flops since .

Now let's understand why the circuit of (Figure 17) can be used for

polynomial multiplication in (5.29).

First: The flip-flops of figure 17 are initially filled with 0's,

Second: Input the sequence (First-element first) followed by

 0's

one bit every tick to the shift register via the input arrow.

Let us now study the behavior of the circuit at each tick of the clock:

Input

+ + Output

+

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

161

Tick 0: input

Shift registers contents:

Output

Tick 1: input

Shift registers contents:

Output

Tick 2: input

Shift registers contents:

Output

Tick 3: input

Shift registers contents:

Output

Tick 4: input

Shift registers contents:

Output

Tick 5: input

Shift registers contents:

Output

Tick 6: input

Shift registers contents:

Output

Hence, the output sequence will be , where the

are defined by equations above.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

162

Now let be the generator polynomial of given

in (Table 19). Consider the information bits are (1 0 1 1) then the

nonsystematic encoder is shown as follows:

Figure 18: Nonsystematic Encoder for the (7, 4) Cyclic Code with

Generator Polynomial .

First: The flip-flops of figure 18 are initially filled with 0's,

Second: Input the sequence followed by 0's

one bit every tick to the shift register via the input arrow.

Let us now study the behavior of the circuit at each tick of the clock:

Tick 0: input

Shift registers contents:

Output

Tick 1: input

Shift registers contents:

Output

Tick 2: input

Shift registers contents:

Input

+ +

Output

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

163

Output

Tick 3: input

Shift registers contents:

Output

Tick 4: input

Shift registers contents:

Output

Tick 5: input

Shift registers contents:

Output

Tick 6: input

Shift registers contents:

Output

Hence, the corresponding codeword will be .

5.6.2 Systematic Encoder

The encoder of Figure 17 could be simpler, but it is unfortunately not

systematic encoder.

However, the idea to design a systematic shift-register encoder for the

previous cyclic code is to use the result of section 5.5.2, which says that if

 is an information polynomial, then

 (5.30)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

164

is a systematic encoding rule for a cyclic code with generator polynomial

, where is the remainder polynomial dividing by

.

The following figure shows the encoding circuit for an (7, 4) cyclic code

with generator polynomial .

Figure 19: Systematic Shift-Register Encoder for a (7, 4) Cyclic Code with

In this circuit the flip-flops store the parity check digits

(the coefficients of) at the last tick.

Note that the right-most symbol of the word is the first symbol to enter the

encoder. The gate is turned on until all the information digits have been

shifted into the circuit

The encoder operation is carried out as follows:

Step 1: Reset the coefficients of the flip-flops, i.e.

Step 2: The behavior of the circuit at each tick of the clock:

Note that the input to the gate in stage is:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

165

where is the stored digit of the second flip-flop in the stage.

Tick 0: Input to the channel:

Input to the gate:

Shift registers contents:

Tick 1: Input to the channel:

Input to the gate:

Shift registers contents:

Tick 2: Input to the channel:

Input to the gate:

Shift registers contents:

Tick 3: Input to the channel:

Input to the gate:

Shift registers contents:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

166

Step 3: Break the feedback connection by turning off the gate.

Step 4: Shift the parity-check out and send them into the channel.

The parity-check digits and are the contents of

the shift register in tick 3. In this case,

Hence, the output sequence to the channel will be .

Now let be the generator polynomial of given

in table 20. Consider the information bits are () then the

systematic encoder is shown as follows:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

167

Figure 20: Systematic Shift-Register Encoder for the (7, 4) Cyclic Code

with

Step 1: Reset all the flip-flops.

Step 2:

Tick 0: Input to the channel:

 Input to the gate:

 Shift registers contents:

Tick 1: Input to the channel:

 Input to the gate:

 Shift registers contents:

Tick 2: Input to the channel:

 Input to the gate:

 Shift registers contents:

Tick 3: Input to the channel:

 Input to the gate:

 Shift registers contents:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

168

Step 3: Break the feedback connection by turning off the gate.

Step 4: Shift the parity-check out and send them into the channel.

The parity-check digits and are the contents of

the shift register in tick 3. In this case,

For example, if the information bits are (1 0 1 1), the corresponding

codeword will be (1 0 0 1 0 1 1).

5.7 Cyclic Codes Decoding

Decoding of cyclic codes consists of the same three steps as for decoding

linear codes:

1. Syndrome computation,

2. Association of the syndrome to an error pattern,

3. Error correction.

Recall from Chapter 3 for any linear code, we can form a standard array, or

we can use the reduced standard array using syndromes. For cyclic codes it

is possible to exploit the cyclic structure of the code to decrease the

memory requirements.

First we must determine if the received word is a codeword in or not

using (Theorem 5.5) which is say that an if and only if

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

169

If we determine the closest codeword in using the

syndrome of as follows:

Since every valid received code polynomial must be a multiple of the

generator polynomial of , then when we divide by the

remainder is zero exactly when is a codeword, i.e.

Thus we can employ the division algorithm to obtain a syndrome as

follows:

where is the quotient and is the remainder polynomial having

degree less than the degree of :

Thus, to compute the syndrome we can use a circuit such as that in the

figure 19 as we will see after the following useful result about cyclic codes

and syndromes.

Theorem 5.8: Let be the syndrome of a received polynomial

. Let be the polynomial obtained

by cyclically right-shifting and let denote its syndrome. Then

 is the remainder obtained when dividing by .

Proof: With the cyclic shift is

,

which can be written as

 (5.31)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

170

It follows from (Theorem 5.1).

Rearranging (5.31), we have

 (5.32)

Dividing both sides of (5.32) by and using the fact that

 and , we obtain

 (5.33)

Where is the remainder resulting from dividing by ,

which is the syndrome of .

Rearranging (5.33), we obtain the following relationship between

and :

 (5.34)

Thus is the remainder from dividing by

Hence, is the syndrome of .

By induction, the syndrome that corresponds to cyclically shifting

 times to produce is the remainder of when divided by

.

Example 5.14: For the (7, 4) cyclic code with generator

, let be the received word. The

syndrome of can be computed from dividing

 by

If

Then

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

171

 The remainder is the syndrome of

 is the syndrome.

Then the cyclic shifts of and their corresponding syndromes are

shown in the following table:

Table 21: Corresponding Syndromes of the Cyclic Shifts of
Polynomial Syndrome

The syndrome computation can be accomplished with a division circuit as

shown in the following figure:

Figure 21: Syndrome Circuit for the (7, 4) Cyclic Code Generated by

Gate 1

Gate 2

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

172

This circuit consists of stage and it is shifting the received word

 from the right end.

The behavior of the circuit at each tick of the clock is;

Note that the received polynomial is shifted into the register with all stages

initially set to 0.

Tick 0: Input to the gate 1:

 Shift registers contents:

 Input to the gate 2: 0

Tick 1: Input to the gate 1:

 Shift registers contents:

 Input to the gate 2: 0

Tick 2: Input to the gate 1:

 Shift registers contents:

 Input to the gate 2:

Tick 3: Input to the gate 1:

 Shift registers contents:

 Input to the gate 2:

Tick 4: Input to the gate 1:

 Shift register contents:

 Input to the gate 2:

Tick 5: Input to the gage 1:

 Shift register content:

 Input to the gate 2:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

173

Tick 6: Input to the gate 1:

 Shift register content:

As soon as the entire has been shifted into the register, break the

feedback connection by turning off gate 1 where the syndrome

 in its registers in tick 6. In this case,

.

For example, if the received word is , the corresponding

syndrome will be (1 0 1).

Now after the gate 1 is closed the system will be shifted 6 or more times.

The registers contain successively the syndromes corresponding to

the cyclically shifted polynomials , which is showed in (Table 5.21).

That operations can be shown in the following steps:

Tick 7: Input to the gate 2:

 Output: the contents of the shift register:

Tick 8: Input to the gate 2:

 Output: the contents of the shift register:

Tick 9: Input to the gate 2:

 Output: the contents of the shift register:

Tick 10: Input to the gate 2:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

174

 Output: the contents of the shift register:

Tick 11: Input to the gate 2:

 Output: the contents of the shift register:

Tick 12: Input to the gate 2:

 Output: the contents of the shift register:

For instance, the following table shown how we can computing the

syndrome and its cyclic shifts for .

Table 22: Computing the Syndrome and its Cyclic Shifts

Clock Input Registers syndrome

Initial: 0 0 0

 1 1 1 0 0

 2 1 1 1 0

 3 1 1 1 1

 4 0 1 0 1

 5 1 0 0 0

 6 1 1 0 0

 7 0 0 1 0

…………………….(turn off gate)

 8 0 0 1

 9 1 1 0

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

175

 10 0 1 1

 11 1 1 1

 12 1 0 1

 13 1 0 0

Now, Let be the received polynomial with the syndrome , i.e.

 (5.35)

and let be the error pattern. Then the

transmitted codeword is:

 (5.36)

Since is a multiple of the generator polynomial , i.e.

, combining (5.35) and (5.36), we have the following

relationship between the error pattern and the syndrome:

 (5.37)

This shows that the syndrome is equal to the remainder resulting from

dividing by .

However, the error pattern is unknown to the decoder. Therefore, the

decoder has to estimate based on the syndrome . If is a coset

leader in the standard array and if table-lookup decoding is used, can

be correctly determined from the syndrome.

From (5.37), we see that is identical to zero if and only if either

 or it is identical to a codeword, in other words if is an

undetectable error patterns.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

176

Remark 5.6: The minimum distance of the cyclic code is equal to

the minimum weight of which is equal to the degree of the

minimum polynomial of that is .

Remark 5.7: The cyclic code is capable of correcting up to

 errors made by channel.

Example 5.15: Consider again the decoder for the cyclic code with

generator polynomial . The following table-lookup

decoding shows the error vectors and their corresponding syndrome vectors

and polynomials. The code has cosets and, therefore, there

are eight correctable error patterns (including the zero word). Since the

minimum distance of the code is 3, it is capable of correcting all the error

patterns of weight 1 or 0. Hence, all the 7-tuples of weight 1 or 0 can be
used as coset leaders. There are coset leaders, which is

shown in the following table.

Table 23: Decoding Table for the (7, 4) Cyclic Code generated by

Syndrome

Syndrome polynomial

Error

Error polynomial

000 0 0000000 0
100 1 1000000 1
010 0100000
001 0010000
110 0001000
011 0000100
111 0000010
101 0000001

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

177

Let be the received word. The syndrome of

showed in previous example where , then from this table we

recognize that the received polynomial has an error in the second bit.

Thus the transmitted codeword is:

.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

178

References

1. Attarian Ad., Hutzel An. And Neal Ry. Algebraic Coding Theory.

2006. 12P.

2. Berlekamp E. A Survey of Algebraic Coding Theory. No. 28. New

York: Wien; 1970. 38P.

3. Bhattacharya P., Jain S. and Nagpaul S. Basic Abstract Algebra. 2nd

ed. Cambridge University; 1994. 486P.

4. Blahut R. Algebraic Codes for Data Transmission. United Kingdom:

Cambridge University Press; 2003. 482p.

5. Doran R., Ismail M., Lam T., Lutwak E. and Spigler R. Encyclopedia

of Mathematics and its Applications. 2nd ed. Cambridge University

Press; 2002. 205.

6. Hall J. Notes on Coding Theory. United State America: Michigan State

University. 2003. 10P.

7. Hamming R. Error Detecting and Error Correcting Codes. Bell Syst.

Tech. J., 29. 1950; 147-160.

8. Han Y. Introduction to Binary Linear Block Codes. National Taipei

University. Taiwan. 97P.

9. Kolman B. Introductory Linear Algebra: with Applications. 3rd ed.

United States of America: Prentice Hall; 1997. 608P.

10. Kabatiansky G, Krouk E, Semenov S. Error Correcting Coding and

Security for Data Networks. John Wiley & Sons, Ltd; 2005. 278p

11. Lemmermeyer F. Error Correcting Codes. 2005. 100P.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

179

12. Lint J. Graduate Texts in Mathematics: Introduction to Coding

Theory. 3rd ed. Netherlands: Springer; 1999. 227p.

13. Ling Sa. And Xing CH. Coding Theory: A First Course. Cambridge

University. 2004. 222P.

14. Lin SH, Costello DA. Error control coding: Fundamentals and

Applications. United States of America: Prentice-Hall; 1983. 603p.

15. Moon T. Error correction coding: Mathematical Methods and

Algorithms. United States of America: John Wiley and Sons; 2005.

756p

16. Roweis S. Equivalent Codes & Systematic Forms. Lecture. 2006.

17. Valenti M. The Evolution of Error Control Coding. Member, IEEE.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

180

Appendix A

1. An Elementary Row Operation
Let be a matrix over ; an elementary row operation performed on

 is any one of the following three operations:

(i) Interchanging two rows,

(ii) Multiplying a row by a nonzero scalar,

(iii) Replacing a row by its sum with the scalar multiple of another row.

2. Reduced Row Echelon Form (RREF)
An matrix is said to be in reduced row echelon form (RREF) when it

satisfies the following properties:

(i) All rows consisting entirely of zeros, if any, are at the bottom of the

matrix.

(ii) Reading from left to right, the first nonzero entry in each row that does

not consist entirely of zeros is a , called the leading entry of its row.

(iii) If rows and are two successive rows that do not consist entirely

of zeros, then the leading entry of row is to the right of the

leading entry of row .

(iv) If a column contains a leading entry of some row, then all other entries

in that column are zero.

3. Solutions of Linear Systems of Equations

A linear system of the form

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

181

 (eq. 1)

is called a homogeneous system. We can also write (eq. 1) in matrix form

as

Where: and

The augmented matrix of this system,

 Using reduced row echelon form (RREF) The solution is:

To the homogeneous system (eq. 2) is called the trivial solution. A solution

 to a homogeneous system in which not all the are zero is

called a nontrivial solution.

4. Linearly Dependent & Linearly Independent
The procedure to determine if the vectors , ,…, are linearly

dependent or linearly independent is as follows:

Step 1: Form Equation,

+ +…+ = 0, (eq. 3)

which leads to a homogeneous system.

Step 2: Construct the augmented matrix associated with the homogeneous

system of (eq. 1). And transform it to reduced row echelon form.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

182

Step 3: If the homogeneous system has only the trivial solution, then the

given vectors are linearly independent; if it has a nontrivial solution, then

the vectors are linearly dependent.

5. Basis
Let = { , ,…, } be a set of nonzero vectors in a vector space .

The procedure for finding a subset of S that is a basis for span is as

follows:

Step 1: Form (e.q. 1),

+ +…+ = 0,

which leads to a homogeneous system.

Step 2: Construct the augmented matrix associated with the homogeneous

system of equation (1). And transform it to reduced row echelon form.

Step 3: The vectors corresponding to the columns containing the leading

 form a basis for span .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

183

Appendix B

Algorithm (1)
Input: A nonempty subset of .

Output: A basis for , the linear code generated by a non empty

set .

Description: Form the matrix whose columns are the nonzero codewords

in .

Use elementary row operations to put in REF and locate the leading

columns in the REF. Then the original columns of corresponding to these

leading columns form a basis for .

Algorithm (2)
Input: A nonempty subset of .

Output: A basis for the dual code , where .

Description: Form the matrix whose rows are all codewords in .

Use elementary row operations to place in RREF. Let be the

submatrix of consisting of all the nonzero rows of the RREF:

(Here, denotes the zero submatrix).

The matrix contains leading columns. Permute the columns of to

form where denotes the identity matrix. Form

a matrix as follows: where denotes the transpose of

. Apply the inverse of the permutation applied to the columns of to the

columns of to form . Then the rows of form a basis for .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 أ

 جامعة النجاح الوطنية
 عمادة كلية الدراسات العليا

اكتشاف الأخطاء وتصحيحها باستخدام شيفرات هامنج
 والشيفرات الحلقية

 إعداد

 إبراهيم إبراهيمنعم هاشم

 إشراف

 عمران" محمد عثمان. "د

لمتطلبات درجة الماجستير في الرياضيات بكلية الدراسات العليا قدمت هذه الأطروحة استكمالا
 فلسطين، في جامعة النجاح الوطنية في نابلس

2009

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 ب

 اكتشاف الأخطاء وتصحيحها باستخدام شيفرات هامنج والشيفرات الحلقية
 إعداد

 راهيمإبٍ إبراهيمنعم هاشم
 إشرافا

 عمران" محمد عثمان. "د
 الملخص

لى شيفرات إثنائية اتصاليفية تشفير الرسائل القادمة من المرسل عبر قنوات تناقش الرسالة ك

 .جماعية خطية مبنية على نظام شيفرات هامنج والشيفرات الحلقية

ثم التحقق من مدى صحة الشيفرات المستلمة من قبل المستلم والبحث عن كيفية لتصحيح

 .الناجمة عن قنوات الاتصال) ن وجدتإ(الأخطاء

 . لى الشكل الذي أرسلت عليه من قبل المرسلإعادتها إا فك تلك الشيفرات المعدلة ووأخير

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

