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Error-Detecting and Error-Correcting Using Hamming and 

Cyclic codes 
By: 

Ne'am Hashem Ibraheem Ibraheem 
Supervisor by : 

Dr. "Mohammad Othman" Omran 
Abstract 

         
In this thesis we provide an overview of two types of linear block codes: 

Hamming and cyclic codes. We study the generation, encoding and 

decoding of these codes as well as studying schemes and/or algorithms of 

error-detecting and error-correcting of these codes.         
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Preface 
Coding theory is concerned with the transmission of data across 

noisy channels and the recovery of corrupted messages. It has found 

widespread applications in electrical engineering, digital communication, 

mathematics and computer science. While the problems in coding theory 

often arise from engineering applications, it is fascinating to note the 

crucial role played by mathematics in the development of the field.  

The importance of algebra in coding theory is a commonly acknowledged 

fact, with many deep mathematical results being used in elegant ways in 

the advancement of coding theory; therefore coding theory appeals not just 

to engineers and computer scientists, but also to mathematicians and hence, 

coding theory is sometimes called algebraic coding theory.  

An algebraic techniques involving finite fields, group theory, polynomial 

algebra as well as linear algebra deal with the design of error-correcting 

codes for the reliable transmission of information across noisy channels.  

Usually, coding is divided into two parts: 

 1. Source coding: 

v Source encoding 

v Source decoding 

2. Channel coding: 

v Channel encoding 

v Channel decoding 

Source encoding involves changing the message source to a suitable code 

say  to be transmitted through the channel. Channel encoding deals with 
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the source encoded message , by introducing some extra data bits that will 

be used in detecting and/or even correcting the transmitted message. Thus 

the result of the source encoding is a codeword, say . Likewise, channel 

decoding and source decoding are applied on the destination side to decode 

the received codeword  as correctly as possible. Figure 1 represents a 

model of a data transmission system. 
 

 

Figure 1: Model of a Data Transmission System 
 

For example: Consider a message source of four fruit words to be 

transmitted: apple, banana, cherry and grape. The source encoder encodes 

these words into the following binary data ( :   

apple→ , banana→ , cherry→ , 

grape→ . 

Suppose the message ‘apple’ is to be transmitted over a noisy channel. The 

bits  will be transmitted instead. Suppose an error of one bit 

occurred during the transmission and the code  is received instead as 

seen in the following figure. The receiver may not realize that the message 

Channel encoder 
 

Source encoder  
 

Message source 

Channel decoder 
 

Source decoder 
 

Receiver 

Channel 
(Noise) 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


3 
 

was corrupted and the received message will be decoded into ‘banana’. 

These a communication error occurred. 
 

 
 

With channel coding, this error may be detected (and even corrected) by 

introducing a redundancy bit as follows : 

 

 
The newly encoded message ‘apple’ is now . Suppose this message 

was transmitted and an error of one bit only occurred. The receiver may get 

one of the following:  or . In this way, we can detect 

the error, as none of  or  is among our encoded 

messages.  

                                                     

Note that the above channel encoding scheme does not allow us to correct 

errors. For instance, if  is received, then we do not know whether 

 comes from ,  or . However, if more three 

redundancy bits are introduced instead of one bit, we will be able to correct 

errors. For instance, we can design the following channel coding scheme: 

Source encoder  
 

Message source 
(apple) 

Source decoder 
 

Receiver 
(banana) 

Channel 
(Noise) 
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Again if the message  was transmitted over a noisy channel and 

that there is only one error introduced, then the received word must be one 

of the following five:  or 

. Since only one error occurred and since each of these five 

codes differs from  by only one bit, and from the other three 

correct codes  and  by at least two bits, 

then the receiver will decode the received message into  and, 

hence, the received message will be correctly decoded into ‘apple’.  

 

Algebraic coding theory is basically divided into two major types of codes: 

Linear block codes and Convolutional codes. 

In this thesis we present some encoding and decoding schemes as well as 

some used error detection/correction coding techniques using linear block 

codes only. We discuss only two types of linear block codes: Hamming and 

cyclic codes.  
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History 
The history of data-transmission codes began in 1948 with the 

publication     of a famous paper by Claude Shannon. Shannon showed that 

associated with any communication channel or storage channel is a number 

C (measured in bits per second), called the capacity of the channel, which 

has the following significance: Whenever the information transmission rate 

R (in bits per second) required of a communication or storage system is less 

than  then, by using a data-transmission code, it is possible to design a 

communication system for the channel whose probability of output error is 

as small as desired. Shannon, however, did not tell us how to find suitable 

codes; his contribution was to prove that they exist and to define their role.  

Throughout the 1950s, much effort was devoted to finding explicit 

constructions for classes of codes. The first block codes were introduced in 

1950 when Hamming described a class of single-error-correcting block 

codes and he published what is now known as Hamming code, which 

remains in use in many applications today. 

In 1957, Among the first codes used practically were the cyclic codes 

which were generated using shift registers. It was quickly noticed by 

Prange that the cyclic codes have a rich algebraic structure, the first 

indication that algebra would be a valuable tool in code design. 

In the 1960s, the major advances came in 1960 when Hocquenghem and 

Bose and Ray-Chaudhuri found a large class of multiple-error-correcting 

codes (the BCH codes). The discovery of BCH codes led to a search for 

practical methods of designing the hardware or software to implement the 
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encoder and decoder. In the same year independently, Reed, Solomon and 

Arimoto found a related class of codes for nonbinary channels. 

Concatenated codes were introduced by Forney (1966), later Justesen used 

the idea of a concatenated code to devise a completely constructive class of 

long block codes with good performance. 

During the 1970s, these two avenues of research began to draw together in 

some ways and to diverge further in others. Meanwhile, Goppa (1970) 

defined a class of codes that is sure to contain good codes, though without 

saying how to identify the good ones.  

The 1980s saw encoders and decoders appear frequently in newly designed 

digital communication systems and digital storage systems.  

 

The 1990s witnesses an evaluation of all groups in informatics at the 

universities in Norway. The evaluation was performed by a group of 

internationally recognized experts. The committee observed that the period 

1988-92, had the largest number of papers (27) published in internationally 

refereed journals among all the informatics groups in Norway.  In the 

period 1995-1997 the goal of finding explicit codes which reach the limits 

predicted by Shannon's original work has been achieved. The constructions 

require techniques from a surprisingly wide range of pure mathematics: 

linear algebra, the theory of fields and algebraic geometry all play a vital 

role. Not only has coding theory helped to solve problems of vital 

importance in the world outside mathematics, it also has enriched other 
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branches of mathematics, with new problems as well as new solutions.  In 

1998 Alamouti described a space-time code. 

In 2000 Aji, McEliece and others synthesize several decoding algorithms 

using message passing ideas. In the period 2002-2006 many books and 

papers are introduce such as Algebraic soft-Decision Decoding of Reed-

Solomon Codes by Koetter R.,  and Error Control Coding: Fundamentals 

and Applications by Lin and Costello and Error Correction Coding by 

Moon T. in 2005. 

During This decade, development of algorithms for hard-decision decoding 

of large nonbinary block codes defined on algebraic curves. Decoders for 

the codes known as hermitian codes are now available and these codes may 

soon appear in commercial products. At the same time, the roots of the 

subject are growing even deeper into the rich soil of mathematics. 
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Chapter 1 

Introduction to Algebra 

As mentioned earlier in the Preface, the study of linear block codes 

requires basic knowledge in modern algebra and linear algebra. Hence, in 

this chapter we provide the reader with basic definitions and terminologies 

that help in the understanding of the material in this thesis. Groups, fields, 

vector spaces and other definitions and concepts in algebra that relate to 

linear block codes are discussed in this chapter. 
 

1.1   Groups 
Definition 1.1: Let  be a set of elements. A binary operation  on  is a 

rule that assigns to each pair  of  a unique element  in .  

We say that  is closed under .  
 

Definition 1.2: A group  (or simply ) is a set  of elements together 

with a binary operation  on  such that: 

(i) The operation  is associative:  

For any , . 

(ii) There is a unique element , called the identity element, such that 

. 

(iii)  For every , there is a unique element , called the inverse 

of , such that . 

Theorem 1.1: A group  is said to be commutative if its binary operation  

is commutative, i.e., for every , . 
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Definition 1.3: The order of a group , denoted by  is the number of 

elements in  if  has a finite number of elements, and is ∞ otherwise. A 

group  is finite (infinite) if  is finite (infinite).  
 

Example 1.1: Consider the set . Let the binary operation  

be denoted by  and defined as follows: 
 
                                      Table 1: modulo-2 addition 

 0 1 
0 0 1 
1 1 0 

 

This binary operation  is called modulo-2 addition. Is easy to check that 

 is a communication group under .  

For simplicity the modulo-2 addition operation  will be  denoted by . 
 

1.2   Permutation Groups 

Definition 1.4: A permutation  of a nonempty set  is a 

one-to-one mapping of the set  onto itself. This permutation  can be 

denoted by:  

where . 

Note that, the order of the columns in this representation of  is immaterial. 

For example,  = .  

The set of all permutations on  is denoted by .  

The composition operation, denoted by , on  is defined by , 

where  is applied first and then , for any two permutations . 
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Clearly  is again a permutation in , so is closed under the 

operation . , is the identity permutation in . 

The inverse of any  is , 

which is itself a permutation in . 

Composition of permutations is associative; for  and , we have 

. Thus we have this theorem: 
 

Theorem 1.2: The set  is a group. 

Note that the composition is not commutative since   

So ( is not a commutative group.                                                                       
 

Remark 1.1: The number of elements of . 
 

Example 1.2: Let , then the set of all permutations on  is 

denoted by  and  elements, where 

 

 

 
 1      

1 1      
   1    
  1     
    1   
     1  
      1 

From the above table we have  is a group. 
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Definition 1.5: The pair  is said to be a subgroup of given group 

 if  is a nonempty subset of  and is itself a group under the same 

operation  of . 
 

Example 1.3: Let . The pair  is a subgroup of  in 

Example 1.2, according to the following table. 
 

 1   
1 1   

   1 

  1  
 

1.3   Cyclic permutations 
Definition 1.6: A permutation  is called a cycle of length  or  

-cyclic  if there exists a list of distinct integers  

such that 

 

 

 

 

In this case  will be denoted by . A cycle of length 2 is called a 

transposition. 

Remark 1.2: The transposition  is its own inverse.  

Observe that  represent 

the same cycle. 
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Example 1.4: The permutation  is the 4-cycle 

. 
 

Remark 1.3: The composition of disjoint cycles is commutative; i.e, if  
 are disjoint cycles then .    

 

Theorem 1.3: Every permutation in  can be expressed uniquely (up to 

order) as a product of disjoint cycles. 
 

Example 1.5: In , the permutation  can be 

expressed as a product   or . 
 

Theorem 1.4: Every cycle of length  is a product of  transpositions.  
 

Example 1.6: . 
   
 

1.4   Cyclic Groups & the Order of an Element 
Definition 1.7: Let  be an element in a group , then the set 

 is called a cyclic subgroup of  generated 

by , written , and  is called a generator of .  

By convention, .10 =a  
 

Definition 1.8: If , then the group  is said to be cyclic. 
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Example 1.7: The group , where , is cyclic. Since 

every element in can be generated by ; 

. So . 
 

Definition 1.9: Let  be an element in a group , then the smallest 

positive integer  such that  equals to the identity in  is said to be the 

order of  and is denoted by . If no such  exists then  is said to be 

of infinite order.  
 

Remark 1.4: The order of an element should not be confused with the 

order of a group, which is the number of elements in the group. 
 

Remark 1.5: The order of the -cycle in  is .   
 

Remark 1.6: If  is a product of disjoint cycles say , 

then the order of  denoted by  is the least common multiple(lcm) 

of the orders of these disjoint cycles. i.e., 

 . 

 
Example 1.8: Let . Then;   

, and the order of   is: 

. 
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1.5   Cosets 
Definition 1.10: Let  be a subgroup of a group  and . The set  

 is called a left coset of  in . Similarly, 

 is called a right coset of  in .  
Note that we can write  instead of  

Of course, in a commutative group, the left and right cosets are the same. 
 

Definition 1.11: Let  be a subgroup of a finite group . The number of 
distinct left (right) cosets of  in  denoted by . 

 

Example 1.9: Consider the group  as given in 

Example 1.2 and consider the subgroup .  

Then there are  left cosets as well as 3 right cosets. 

The left cosets of  are found as follows: 

 

 
And  

Thus the left cosets of  are . 

The right cosets of  are found in a similar way, and they are 

. 
 

Theorem 1.5: For a subgroup  of , left cosets of H satisfiy the following: 

(i)  If  and , then . 

(ii)    if and only if . 

(iii)  Any two left  cosets of  say  &  are either equal or disjoint. 
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(iv)  , where the union runs over the set of distinct cosets of  

in .   

Fact 1.1: Left cosets of a subgroup H of G define an equivalence relation 

on G: 

(i) Reflexive: .  

(ii)  Symmetric: if  then .    

(iii)  Transitive: if  &  then .  

Note that theorem 1.5 and fact 1.1 apply for right cosets as well.  
 

1.6   Fields 
Definition 1.12: Let  be a nonempty set on which two binary operations, 

addition  and multiplication  are defined. Then the system  

is a field if the following conditions are satisfied: 

(i)  is a commutative group. 

(ii)  is a commutative group. 

(iii)Multiplication is distributive over addition; that is, for any three 

elements  and  in :     

                                             

The elements of the field  are called scalars. The field  will be 

denoted by  as long as the operations (+) and (.) are understood from the 

context.  
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Definition 1.13: If  has a finite number of elements, it is said to be a finite 

field. The number of elements in the field  is called the order of the field 

 and is denoted by . 
 

Remark 1.7: The set  (where  is prime) is a field of 

order under modulo-  addition and multiplication. This field is called a 

prime field. 
 

Example 1.10: The set  is a field of order 2 under modulo-2 

addition and modulo-2 multiplication. It has the following addition and 

multiplication tables: 
 
         Table 2: modulo-2 addition        Table 3: modulo-2 multiplication  

                              

  
 

This field is called a binary field and it satisfies: , so the addition 

and subtraction are interchangeable. 

 

Basic properties of finite fields: 

In the following, let  be a finite field of order , where  is a prime 

number.  

(i) For every  

(ii) For any two nonzero elements .  

(iii)  and  imply that . 

 0 1 
0 0 1 
1 1 0 

 0 1 
0 0 0 
1 0 1 
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(iv) Let .               

(v) All finite fields are also called Galois fields and denoted by . 

 

According to (v) the prime field  will be denoted by , hence, the 

binary field  in Example 1.10 is denoted by . 
 

1.7   Polynomials over the Binary Field 
A polynomial  of degree  over  is a polynomial  with 

coefficients from  i.e,  

where  or  for   
 

Theorem 1.6: Over  there are  polynomials of degree . 
 

Example 1.11: There are four polynomials of degree 2 over  and 

they are: , and .  

Now, the polynomials over  can be added (or subtracted), multiplied 

and divided modulo 2. Let  be a 

polynomial over  and let  be as above. Then:  

 where  

and . 

When  is divided by , we obtain a unique pair of polynomials: the 

quotient and the remainder  over  with degree of  is 

less than that of .  We then write . 
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Example 1.12: Let  

 
Hence, . 

 
                      
                = . 
 
Example 1.13: Divide  by  using long-
division over  

1

1

1

1

3

2

2

34

234
++

+

+

+

+++
xx

x
x

xx
x

xx
xxxx

 

 and . We then have  

 

 

Remark 1.8: If =0 we say that  is divisible by  or  is a 

factor of . 
 

Theorem 1.7: If  is a root of a polynomial  then  is divisible 

by ). 
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Fact 1.2: If we have a polynomial over  with an even number of 

terms, then it is divisible by ) because this polynomial has the 

number 1 as a root. 
 

Example 1.14: Let . Consider 

 is divisible by  
 

Definition 1.14: A polynomial  of degree  over  is said to be 

irreducible over  if  is not divisible by any polynomial over 

 of degree less than but greater than zero. Otherwise  is 

reducible. 
 

Example 1.15: Let  be a polynomial over .                      

 does not have neither "0" nor "1" as roots. So  is not divisible by 

any polynomial of degree 1:  nor . Consequently, it cannot be 

divisible by a polynomial of degree 2. So  is irreducible over  
 

Theorem 1.8: Any irreducible polynomial over  of degree divides 

.  

Example 1.16: You can check that the polynomial  as 

in Example 1.15 divides =  since 

  )( 124 +++ xxx ). 
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Definition 1.15: An irreducible polynomial  of degree  is said to be 

primitive if the smallest positive integer  for which  divides  is 

. Otherwise  is not a primitive. 
 

Remark 1.9: In modulo-2 addition we have the following; 

 
 

Theorem 1.9: Let  be a polynomial over  then for any  we 

have the following: 

                                                                                    (1.1) 
 

Proof: Let   

Then using remark 1.9, we have: 

    

= +    

Since   or 1  =  we have: 

= + +…+           

=                                                                      (1.2) 

Now, for   by(1.2) we have; 

                            

                           +                                                                                             

                           + +…+ , 

etc.  

So for any , .                                                            ■ 
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1.8   Construction of Galois Field   

In this section we construct the Galois Field  of  elements 

 from the binary field . We begin with the two elements 0 

and 1, from  and a new symbol . Then we define a multiplication 

 to introduce a sequence of powers of  as follows: 

 

 

 
, 

 

Now, we have the following set of elements: 

  

Now suppose  is a primitive polynomial of degree  over  such 

that . Then  divides , and so we have: 

 . If we replace  by , we obtain: 

 ,  

This implies:  , 

Adding 1 to both sides (use modulo-2 addition):  = 1, and hence  

. Therefore, the set above becomes finite and consist of the  

elements: . 
 

Remark 1.10:  

(i) In the construction of the Galois field , we use a primitive 

polynomial  of degree  and require that the element  be a root of 
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. Since the powers of  generate all the nonzero elements of 

,  is a primitive element.  

(ii) The elements of  have three representations shown in Table 4. 
 

Example 1.17: Let , the polynomial  is a 

primitive polynomial over  Set . Then 

= . Using this, we can construct:      

  

The element  is used repeatedly to form the polynomial 

representations for the elements of  : 

, 

, 

 =1  

 
Table 4: Three Representations for the Elements of  

 Generated by    
 

Power representation Polynomial 
representation in  

3-tuple representation 

0 0 (0 0 0) 
1 1 (1 0 0) 

  (0 1 0) 

  (0 0 1) 

  (1 1 0) 

  (0 1 1) 

  (1 1 1) 

  (1 0 1) 
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Remark 1.11: 

(i) The power representation is used in multiplying or dividing the 

elements of  as: 

   

and,   where  is the multiplicative inverse                

of . 

(ii)  An  representation is used for adding the elements of  

by adding the corresponding components of their tuples, in modulo-

2 addition. 

For example,  if   

then  , where  is 

carried   out in modulo-2 addition. 

 

Definition 1.16: Let  be a field, and let  be a nonempty subset of 

. Then  is called a subfield if  is itself a field. 
 

Definition 1.17: If  is a subfield of a field , then  is called an extension 

field of  or simply an extension of . 
 

Note that, the set  is an extension field of  because  is 

a subfield or the ground field of  

And polynomials with coefficients from  may not have roots from 

 but has roots from an extension field of .  
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For example,  is irreducible over  and therefore it 

does not have roots from . However, it has three roots from the field 

. If we substitute the elements of  given by (Table 4) into 

, we find that  are the roots of  . We 

may verify this as follows using (Table 4): 
 

, 

,                     (1.3) 

. 

Since  are all roots of , then  

. We may verify this equality by 

multiplying out the product above using Table 4. 

  

Let  be a polynomial of degree  with coefficients from . If  is 

a root of , the polynomial  may have other roots from . 

Then what are these roots? This is answered by the following theorem.  
 

Theorem 1.10: Let  be a polynomial with coefficients from  

and  be an element in an extension field  of  such that  is a 

root of  , then for any , we have  is also a root of .                                                                         

Proof: By substituting  into the equation in (1.1)                                         

we have: ,  

But is a root of  for any .          ■ 

The element  is called a conjugate of .                                                
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Fact 1.3: According to Theorem 1.10 above, if  is a primitive element 

then all conjugates of  are also primitive elements of . 

Example 1.18: The polynomial  in Example 1.17 has  

as a root in the extension field  of   such that: 

                 

By using (Table 1.6) the conjugates of   are: 

( ,    (      

[Note that ( ]. From the Theorem 1.10 these 

conjugates of  must be also roots of  .   (See eq. (1.3)) 

Theorem 1.11: The   nonzero elements of  form all the roots 

of . 

Proof: Let  be a non zero element in the field . Then by using 

property (iv) of the fields we have: , 

Adding 1 to both sides:  

This implies that  is a root of  .                                     ■ 
 

Corollary 1.1: The elements of  form all the roots of .   

Definition 1.18: A minimal polynomial of  over  is a smallest 

degree polynomial  such that , where . 

For example, the minimal polynomial of the zero element 0 of  is  

and the minimal polynomial of the unit element 1 is . 
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Basic properties of minimal polynomials: 

(i) Let  be a polynomial over  and  be the minimal 

polynomial of . If   is a root of , then  is divisible by  . 

Proof: Dividing  by , we obtain , 

where the degree of  is less than the degree of . 

Consider,  

                              (Because  

. Now, if  then  is a polynomial with degree less 

than degree of  and has  as a root. This is a contradiction to the fact 

that  is the minimal polynomial of . Hence 

 and so  is divisible by  .    ■ 
 

(ii) The minimal polynomial  of  in GF( )  is unique 

Proof: Let  be two minimal polynomials of . 

If we take  as minimal polynomials of  then by (i)  is divisible 

by . And if we take  as minimal polynomials of  then we have 

 is divisible by . Hence,                                            ■ 
 

(iii) The minimal polynomial  of  in GF( ) is irreducible 

Proof: Suppose that  is not irreducible , where 

both  have degrees greater than zero and less than the degree                

of . 
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Since . This is a 

contradiction to the fact that  is the minimal polynomial of . 

Therefore,  must be irreducible.       ■ 
 

(iv) The minimal polynomial  of  in GF( ) divides  

Proof: It follows from corollary 1 and property i.    ■ 

(v)  Let  be an irreducible polynomial over  and  be the 

minimal polynomial of  in . If , then  = . 

Proof: It follows from (i) that  divides . 

, 

But  and is irreducible hence  we must have 

                                                                                             ■ 

(vi) Let  be the minimal polynomial of an element  in  and let 

be the smallest integer such that .                                         

Then:                                                           (1.4) 
 

Example 1.19: Consider the Galoise field  given by table 4. 

Let  be the minimal polynomial of an element .  

The conjugates of  are; . 

(Note that ).  

Hence, by (1.4) we have: 

 where   

                                                       (1.5) 
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Multiplying out right-hand side of the equation 1.5 using Table 4, then we 

obtain the following: 

 
      +1 

       

All the minimal polynomials of the elements in  are given in the 

following table. 
 

Table 5: Minimal Polynomials of the Elements in  Generated by 
 

Conjugate roots Minimal polynomials 
0  
1  
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1.9   Vector Spaces over Finite Fields  
Definition 1.19: Let  be set of elements on which a binary operation 

called addition  is defined. Let  be a finite field. A scalar multiplication 

operation denoted by  is defined between the elements in  and elements 

in . Then  is called a vector space over the field  if it satisfies 

the following conditions:     

(i)  is a commutative group under addition. 

(ii) For any scalar  in  and any element in ,  is an element in . (iii) (Distributive laws) for any elements  in  and any scalars  in 

,   
         

(iv) (Associative law) for any  in  and any and  in , 

 
(v) Let 1 be the identity element of . Then, for any  in ,  

The elements of  are called vectors. 
 

Remark 1.12: Let  be an extension field of  then  can be considered 

as a vector space over .  

Since the set  is an extension field of , then  can be 

considered as a vector space over  Let  denote that set of all  

distinct tuples  over  

Then  is a vector space with + is vector addition and . is scaller 

multiplication. 
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Example 1.20: Let . The vector space  of all tuples over  

consists of the following 8 vectors:  

 

 

Definition 1.20: Let be a nonempty subset of a vector space  over a 

field  then  is a subspace of  if  is itself a vector space over . 
 

Theorem 1.12: Let be a nonempty subset of a vector space  over a field 

. Then is a subspace of  if and only if the following condition is 

satisfied: if  and , , then  is also in . 

Note that, a necessary and sufficient condition for a nonempty subset  of a 

vector space  over  to be a subspace is:  

if , then . 
 

Example 1.21: Consider the vector space  of all tuples over  

given in Example 1.20. Then the set of these vectors 

 satisfies the condition of theorem 1.12, so 

it is a subspace of  . 
 

Definition 1.21: Let , ,…,  be  vectors in a vector space  over a 

field . A vector  in is called a linear combination o f , ,…,  if: 

there are a scalars , , …,  in  s.t., … . 

Clearly, the sum of two linear combinations of , ,…,  is also a linear 

combination of , ,…,  and the product of a scalar  in  and  a linear 

combinations of , ,…,  is also a linear combination of , ,…, . 
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So the set of all linear combinations of , ,…,  forms a subspace of . 
 

Definition 1.22: Let  be a vector space over a field  and let                   

 be a nonempty subset of . The span of  is defiend as:  

… .  

Clearly, the set  is a subspace of , called the subspace generated (or 

spanned) by . Given a subspace  of , a subset  of  is called a 

generating set (or spanning set) of  if   and we also say  spans 

. 

Remark 1.13: If  is already a subspace of , then . 
 

Example 1.22: Let  be a subset of  

over . Then  

. 
 

Definition 1.23: The vectors , ,…,  in a vector space  over  a field  

are said to be linearly dependent if there exist constants , ,…, from , 

not all zero, such that: 

+ +…+ = 0.                                                                          (1.6) 

Otherwise, , ,…,  are called linearly independent. That is , ,…,  

are linearly independent if whenever + +…+ =0, we must 

have: = =0. 
 
Example 1.23: The set  is linearly 
independent. 
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Example 1.24: The set  is linearly 

dependent since .  
 

Remark 1.14: Any set which contains 0 is linearly dependent. Any set 

containing at least two identical vectors is also linearly dependent. For 

example, the set  and the set  

 are linearly dependent. 
 

Theorem 1.13: For any vector space there exists at least one linearly 

independent set which spans the space. Hence we have the following 

definition. 

Definition 1.24: The set , ,…, } of vectors in  a vector space  

over a field  is said to form a Basis for  if: 

(i)  spans , 

(ii)   is linearly independent. 
 

Definition 1.25: The dimension of a vector space , denoted , is 

the number of vectors in a basis of . 

Remark 1.15:  

(i) If , ,…,  form a basis for a vector space , then they must be 

nonzero distinct vectors. 

(ii) A vector space  over a finite field  can have many bases; but all bases 

contain the same number of elements, called . 
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Theorem 1.14: If , ,…,  form a basis for a vector space , then 

every vector in  can be written in one and only one way as a linear 

combination of the vectors in . 

Example 1.25: Consider the vector space  of all 3-tuples over GF(2). Let 

us form the following 3-tuples: , , . 

Then every 3-tuple ( ) in  can be expressed as a linear 

combination of   as follows: 

( )= . + . + .  

Therefore, , ,  span the vector space . 

We also see that , ,  are linearly independent. Hence, they form a 

basis for and the dimension of is 3. 

This set of vectors is called the standard basis for . 

Theorem 1.15: Let  be a vector space over  and , 

then  has  elements. 

Proof: 

(i) If , ,…,  is a basis for , then 

… .  

Since , there are exactly 2 choices for each . 

Hence,  has exactly  elements. 

Theorem 1.16: If , ,…,  is linearly independent then  is 

a dimensional subspace of .  

Corollary 1.2: Let  be an dimensional vector space, and let 

, ,…,  be a set of vectors in  then: 

(i) If  is linearly independent, then it is a basis for . 
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(ii) If  spans , then it is a basis for . 

Definition 1.26: Let  be two 

-tuples in  over  then: 

(i) We define the Euclidean inner product (also know as scalar product or 

dot product) of u and v as: 

     . 

(ii)  The two vectors u and v are said to be orthogonal if . 

(iii)  Let  be a nonempty subset of . The orthogonal complement of  

is defined to be: . 

Example 1.26: Let , ,  be vectors 

in  over  then:  
 
. Hence,  and  are orthogonal. 

Example 1.27: Let  over . To find 

. Let  then: 

 and  
Hence, we have . Since  and  can be either 0 or 1, we can 

conclude that . 
Theorem 1.17: Let  be a subspace of . Then: 

(i)  is a subspace of . 

(ii)  

(iii)  

Theorem 1.18: Let  be a dimensional subspace of . Then we have  
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. 

Remark 1.16: If  is an orthogonal complement of , then  is also an 

orthogonal complement of . Hence, we say that   and  are 

orthogonal complements. 

Remark 1.17: If  is a given  matrix, we associate the following four 

fundamental vector spaces with : the null space of , the row space of , 

the null space of  and the column space of . 

Remark 1.18: Recall that 

(a) The Null space of  

(b) The row space of  is the set of all linear combinations of the rows 

of  

Theorem 1.19: If  is a given  matrix, then: 

(i) The null space of  is the orthogonal complement of the row space 

of with  dim (row space) + dim (null space) . 

(ii) The null space of  is the orthogonal complement of the column space 

of dim (column space) + dim (null space of )  

Most information given in this chapter are from . 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


36 
 

Chapter 2 

Linear Block Codes 
2.1   Basic Concepts of Block Codes 

The data of output of the source encoder are represented by sequence of 

binary digits, zeros or ones. In block coding this sequence is segmented 

into message blocks  consisting of  digits each. 

There are a total of  distinct messages. The channel encoder, according 

to certain rules, transforms each input message into a word 

 with . 
 

Definition 2.1: Given the binary field , we define: 

(i) A binary word  of length  over  is an tuple 

 of binary digits .  

(ii) A binary block code of length  over  is a nonempty set  of 

binary words  of length  each. 

(iii) Each element  of  is called a codeword in . 

(iv) The size of , denoted by , is the number of codewords in . 
 

Example 2.1: Let . Then  is a binary block code of 

length  and size . 

A set of  distinct codewords  of length  each, over the binary field 

, is called a Binary Block Code . 
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2.2   Definitions & Properties of the Linear Block Codes 

We now introduce linear codes and discuss some of their elementary 

properties. 
 

Definition 2.2: A binary block code  of length  and  codewords 

is called linear if its  codewords form a -dimensional subspace of the 

vector space  of all -tuples over the field . 

It is clear, from the above definition, a linear combination of codewords in 

 is also a codeword in . 

   

Basic properties of a linear block code :  

(i) The zero word , is always a codeword. 

(ii)  If  is a codeword, then is also a codeword. 

(iii) A linear code is invariant under translation by a codeword. That is, if  

is a codeword in linear code , then . 

(iv) The dimension  of the linear code  is the dimension of  as a 

subspace of  over , i.e.,  
 

Example 2.2: Let . Then  is a linear block 

code often called the repetition code. 
 

Example 2.3: Let  

. Then  is a 

 linear block code. Since any linear combination of the codewords in 

 is also a codeword in . For instance, 
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Example 2.4: Find a basis for the linear block code  given in 

Example 2.3.  

To find a basis for , we use algorithm 1 of Appendix B as follows; 

 
The leading 1's in the REF are in 1, 2 & 3, then the original columns of  

corresponding to these leading columns form a basis for . Thus 

 is a basis of given code . 

 
2.3   The Generator Matrix  

Since a linear code  is -dimensional subspace of  then knowing 

a basis of it enables us to describe its codewords explicitly. In coding 

theory, a basis for a linear code  is often represented by a matrix , called 

a generator matrix. To obtain the generator matrix G for the linear  

code we choose any  linearly independent codewords  in  

and arrange them as rows of a  matrix. So, we have 
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                                         (2.1)  
where  for . 

Then each codeword  of  is a linear combination of the codewords . 

i.e.  where . 
 

Definition 2.3: A generator matrix  for a linear  code is a 

matrix whose  rows form a basis for  

By this definition, then  is the row space of  

Algorithm 1 of Appendix B can be used to find the generator matrix  of 

any linear  linear code . 

Example 2.5: The generator matrix for the linear code  given in 

Example 2.3 is 

, 

Note  is a basis of  as 

shown in example 2.4.  

2.4   Encoding Scheme 
If  is the message to be encoded, then the 

corresponding codeword  can be given as follows: 
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           (2.2) 
i.e.  is a codeword of  with coefficients . 

Remark 2.1: 

For each -tuple (message)  there corresponds one 

and only one codeword . So there are  distinct 

messages and corresponding  distinct codewords.     
 

Example 2.6: Let  

 be the set of messages to be encoded using the 

generator matrix  of the linear code  given in  

Example 2.3:  

Then the corresponding codewords are:  
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Remark 2.2: Since the rows of  generate the  linear code, the 

encoder has only to store the  rows of  and to form a linear combination 

of these rows with entries from the message. 

Definition 2.4: Let  be a message to be encoded. Then 

the corresponding codeword  in a linear code  

has a systematic structure, if it may be divided into two parts, the message 

part consisting of the  digits  and the redundant checking 

part which consists of  parity-check digits as shown in Figure 2 below 
 

Redundant Checking part 
n-k digits 

Message Part 
k digits 

Figure 2: Systematic Form of a Codeword 
 

Definition 2.5: A linear systematic block code is a linear code with the 

systematic structure of the codewords   

The encoder is called systematic. 

Using elementary row operations and/or column permutations for a linear 

systematic  code the generator matrix  can be written in the 

following form: 

                                                           (2.3) 
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where  is the  identity matrix and   is a  matrix which 

generates parity-check digits. 

We call this form of  the systematic form of a generator matrix . 

Now, let  be the message to be encoded using the 

systematic form of a generator matrix , then the corresponding codeword 

is: 

. 

And hence, the rightmost  digits of  are represent, the message digits 

 to be encoded: 

                                                                     (2.4) 

And the leftmost  digits of  represent the parity-check digits, which 

is linear sums of the message digits  

.                  (2.5) 

The  equations given by (2.5) are called parity-check equations of the 

code. 

Example 2.7: Consider the  given in example 2.3 with the generator 

matrix 

 

Using elementary row operations and/or column then the generator matrix 

 can be written as follows: 

. 
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Therefore, a linear systematic code  which is generated by  is 

completely specified by (2.4) and (2.5). To show this: 

Let  be a message to be encoded. The corresponding 

codeword is  

given by these equations: 
 

 
 

 
 

Thus, the corresponding codewords for the messages 

 given in 

Example 2.6 are shown in Table 6 below: 
 

Note that the code  generated by  is not necessarily the same code  that 

would be obtained by . But  is an equivalent code of  which is defined 

in the following definition: 
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Table 6: Linear Systematic block code with  
Message  Codeword  

 ) 

 ) 

 ) 

 ) 

 ) 

 ) 

 ) 

 ) 

 

Definition 2.6: Two codes  are equivalent if they can be formed 

by generator matrices , respectively, that are related by 

elementary row operations or column permutation. We call these matrices 

 equivalent generator matrices.  

2.5   The Parity-Check Matrix    

Another matrix associated with every linear block code is the parity-check 

matrix .  

By Theorem 1.19, the null space of  is orthogonal to the row space of . 

So we construct an  matrix  whose rows form a basis of the 

null space of  in this case . 

An tuple  is a codeword in the code generated by  if and only if 

. This matrix  is called a parity-check matrix of the code . 
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The  linear combinations of the rows of the matrix  form the dual 

code  of  which is defined as follows; 
 

Definition 2.7: Let  be a linear code in . The dual code  of  is 

the orthogonal complement of the subspace  of . 

Note that  is linear code with . 
 

Remark 2.3: The dual code  of  is spanned by the null space of the 

generator matrix  of . 

 

Example 2.8: Consider the linear block code  given in example 2.3 

with the generator matrix .  

To find the parity-check matrix  of , we find a basis of  which forms 

the rows of . To do this we use Algorithm 2 of appendix B as follows; 

Form the matrix  

 
                                         1    2   3    4   5                  

 
                                2    5  1    3   4 
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Therefore, . 

As a result, a parity-check matrix  for a linear code  is a 

generator matrix for its dual code  where 

 

 

For a linear systematic  code  the parity check matrix can be written 

in systematic form as the follows: 

    (2.6) 

Where  is the transpose of the matrix  in  . 
 

Theorem 2.1: For an  linear systematic block code  with generator 

matrix  and parity check matrix  we have . 

Proof: Consider  and 

.  

Now, we have  
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where  is modulo-2 addition.                                                                      

Note that the matrix  given in (2.6) is a parity-check matrix of an 

equivalent code , generated by  given in (2.3), of the linear code . 
 

Theorem 2.2: An  linear systematic block code  is completely 

specified by its parity-check matrix . 

Proof: Let  be the message to be encoded. Then the 

corresponding codeword would be 

 
Since  then we have; 

, 

  

                                      (2.7) 

 
   

These  parity-check equations can be give by this general equation: 

                                       (2.8) 

for .  

Rearranging equation (2.8) we obtain the same parity-check equations of 

(2.5). 
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2.6   Encoding Circuit for a Linear Systematic  Code 

In this section, we will introduce an  linear systematic codes via a 

direct descriptive approach by the implementation in (Figure 3). 

Given -data bits as the message , then the encoding 

circuit for an  linear systematic code can be implemented based on 

the equations of (2.4) and (2.5). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Encoding Circuit for a Linear Systematic  Code 
 

Here  denotes modulo-2 addition and        denotes connection if 

 and no connection if . 

Let  to be encoded then this message is shifted into 

the message register and simultaneously into the channel. As soon as the 

entire message has entered the message register, the  parity-check 
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digits are formed at the outputs of the  modulo-2 adders . These 

parity-check digits are then serialized and shifted into the channel. 
 

Example 2.9: The encoding circuit for a linear systematic  code 

given in (Example 2.7) is shown in (Figure 4), where the connection is 

based on the parity-check equations given in this example. 

 

 

 
,  

 

  Figure 4: Encoding Circuit For a Linear Systematic  Code 
 

Input 

 

To channel 

  

  

+ 

 

To channel 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


50 
 

Chapter 3 

Error Detection, Error Correction & Decoding Schemes 

A fundamental concept in secure communication of data is the ability to 

detect and correct the errors caused by the channel. In this chapter, we will 

introduce the general schemes/methods of linear codes decoding. 
 

3.1  Channel Model / Binary Symmetric Channel 

The channel is the medium over which the information is conveyed. 

Examples of channels are telephone lines, internet cables and phone 

channels, etc. These are channels in which information is conveyed 

between two distinct places or between two distinct times, for example, by 

writing information onto a computer disk, then retrieving it at later time.  
 

Definition 3.1: A communication channel consists of a finite channel 

alphabet  as well as a set of forward channel 

probabilities  received   sent), satisfying 

                                (3.1) 

See figure 5. 

Note that  received   sent) is the conditional probability that  is 

received, given that  is sent. 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


51 
 

 
Figure 5: A Communication Channel 

 

Definition 3.2: A communication channel is said to be memoryless if the 

outcome of any transmission is independent of the outcome of any previous 

transmission i.e. 

If  and  are words of length , then 

                        (3.2) 
 

Now, for purposes of analysis, channels are frequently characterized by 

mathematical models, which (it is hoped) are sufficiently accurate to be 

representative of the attributes of the actual channel.  

In this thesis we restrict our work on a particularly simple and practically 

important channel model, called the binary symmetric channel (BSC), 

defined as follows: 

Definition 3.3: A binary symmetric channel (BSC) is a memoryless 

channel which has channel alphabet  and channel probabilities 
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,      
. 

Figure 6 below shows a BSC with crossover probability p. 

 

 
Figure 6: Binary Symmetric Channel 

3.2   General Methods of Decoding Linear Codes over BSC 
In a communication channel we assume a codeword  is 

transmitted and suppose  is received at the output of the 

channel. If  is a valid codeword, we may conclude that there is no error in 

. Otherwise, we know that some errors have occurred and we need to find 

the correct codeword that was sent by using any of the following general 

methods of linear codes decoding: 

1. Maximum likelihood decoding,  

2. Nearest neighbor/Minimum distance decoding 

3. Syndrome decoding 

4. Standard array 

5. Syndrome decoding using truth table 

0  
1-p  

0 

1 1 
1-p  

P  
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These methods for finding the most likely codeword sent are known as 

decoding methods. 

Recall that the model of a data transmission system can be represented as 

follows in Figure 7.  
 

 
Figure 7: Simplified Model of a Code System 

 

We start with the maximum likelihood decoding, which coincides with the 

minimum distance decoding under some conditions which will be studied 

in the following two sections, then we consider more comprehensive 

methods. 
 

3.3   Maximum Likelihood Decoding 
Suppose the codewords  form the linear block code 

 and suppose a BSC with crossover probability  is used.  

Let a word  of length  be received when a codeword 

 is sent. Then, The maximum likelihood 

decoding (MLD) will conclude that  is the most likely codeword 

transmitted if  maximizes the forward channel probabilities i.e. 

                  (3.3) 

  

where .  

Message (u) Encoding (v)  BSC (r) 
(Error) 

Detecting & 
Correcting (v)   

Decoding (u) 
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Example 3.1: Let  be a linear block code. Let 

 is received when  is transmitted over a BSC with 

crossover probability  then we can try to find the more likely 

codeword sent for  by computing the forward channel probabilities: 

 
  

 , 
 

 

 . 
According to MLD; since the second probability is larger than the first, we 

can conclude that  is more likely to be the codeword sent. 

Now, There are two kinds of MLD: 

(i) Complete maximum likelihood decoding (CMLD). If a word  is 

received, find the most likely codeword transmitted. If there are more 

than one such codewords, select one of them arbitrarily. 

(ii) Incomplete maximum likelihood decoding (IMLD). If a word  is 

received, find the most likely codeword transmitted. If there are more 

than one such codewords, request a retransmission. 
In general; for a BSC with crossover probability  we have the 

following forward channel probability: 

 
                                                                                     (3.4) 
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where  is the number of places at which  and  differ.  

Since   , so this probability is larger for larger values of 

, i.e. for smaller values of . 

Hence, this probability is maximized by choosing a codeword  for which 

 is as small as possible. 

This value  leads us to another decoding method that is the nearest 

neighbor decoding or (minimum distance decoding).  
 

3.4   Nearest Neighbor Decoding/Minimum Distance Decoding 

In this section an important parameters of linear block codes called the 

hamming distance and hamming weight are introduced as well as the 

minimum distance decoding.  
 

Definition 3.4: Let  and be two 

binary words. The Hamming distance or simply (distance) from  to , 

denoted by  or , is defined to be the number of positions 

that the corresponding elements differ: 

,                                                  (3.5) 

where:  

 

Example 3.2: Let  and  be two 

codewords in the linear block  over . Then the hamming 

distance from  to  is; 

. 
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Theorem 3.1: Let ,  and  be words of length  over . Then we 

have: 

(i)   , 

(ii)   , 

(iii)  , 

(iv)   (Triangle inequality). 

Proof: The proof of  ,  and  is obvious from the definition of the 

Hamming distance. We just prove (iv).  

Use the definition of the hamming distance in (3.5). Therefore, we want to 

show the following: 

 
       (3.6) 

If  then  

.          

If  then . 

If . If . 

Otherwise, if  which is contradiction. 

Hence, , for some . 

Therefore, (3.6) is proved   is also proved.                                            █ 
Definition 3.5: Let  be a binary -tuple. The 

(Hamming) weight of , denoted by , is defined to be the number of 

nonzero components of ; that is,  

,                                                       (3.7) 
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where 0 is the zero word and   

Remark 3.1: The hamming weight of  can also be equivalently defined 

by; . 

Example 3.3: The hamming weight of  is 3. 

Lemma 3.1: If , then . 

Proof:    (since  is a vector space which is 

commutative group under addition. So for  there is additive inverse 

denoted by   s.t., )    

                          

.                                                                                                     █ 
 

Note that in binary codes negation is unnecessary. The following corollary 

is an immediate consequence of lemma 3.1. 
 

Corollary 3.1: If  be two binary tuples, then . 

Example 3.4: For   

 and . 
 

We now explain the minimum distance decoding; suppose the 

codewords  from a code  are being sent over a BSC. 

If a word  is received, the nearest neighbor decoding or (minimum 

distance decoding) will decode  to the codeword  that is the closest one 

to the received word . Such procedures can be realized by an exhaustive 
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search on the set of codewords which consists of comparing the received 

word with all codewords and choosing of the closest codeword. That is;   

.                                 (3.8) 

Just as for the case of maximum likelihood decoding, we can distinguish 

between complete and incomplete decoding for the nearest neighbor 

decoding. For a given received word , if two or more codewords satisfy 

(3.8), then the complete decoding arbitrarily selects one of them to be the 

most likely word sent, while the incomplete decoding requests for a 

retransmission. 
 

Theorem 3.2: For a BSC with crossover probability , the maximum 

likelihood decoding is the same as the nearest neighbour decoding. 

Proof: Let  denote the code in use and let  denote the received 

word (of length ). Then for any codeword , and for any , using 

MLD we have 

                        (3.9) 

Since   , so the probability in (3.9) is larger for larger 

values of , i.e. for smaller values of . Hence, it is the same 

as the nearest neighbor decoding.                                                                         █ 
 

Remark 3.2: In this thesis we will assume that all communication channels 
are binary channels having crossover probabilities . Consequently, we 

can use the minimum distance decoding to perform MLD. 
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Example 3.5: Recall that in example 3.1 we use MLD, let us use the 

minimum distance decoding for the same example. 

, , by using nearest 

neighbor decoding, we decode  to . The IMLD table for  is as 

shown in Table 7, where '_' means that retransmission is sought. 
 

Table 7: IMLD Table for . 
Received    Decode to 

 0 2  
 1 3  
 1 1 _ 

 1 1 _ 

 2 2 _ 

 2 0  
 2 2 _ 

 3 1  
 

Now, we introduce two parameters of linear block code  the 

(Minimum) distance of  and the minimum weight of .  
 

Definition 3.6: For a code  containing at least two codewords, the 

(minimum) distance of , denoted by  or , is 

. 
 

Corollary 3.2: According to lemma 3.1, the (minimum) distance of a 

binary block code  is;  

                           (3.10) 
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Remark 3.3: We can denote a code  using the parameters 

 as  code, where the length of code  is , 

dimension of the code  is  and  is the distance of the code . 
 

Example 3.6: Let  

be an  linear code. The minimum distance of  is . 

Since , , 

 , 

, .  

Hence,  is a binary linear  code. 
 

Definition 3.7: The parameter  is called 

the minimum weight of the linear code .   
 

Theorem 3.3: The minimum distance of a linear block code  is equal to 

the minimum weight of its nonzero codewords. 

Proof:  

                      

Since  is a linear code, so the sum of two vectors  is also a codeword  

 in  .                                                        █ 

 

In (Example 3.6)  

                                             

 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


61 
 

Next, we prove a number of theorems that relate the weight structure of a 

linear block code to its parity-check matrix. 
 

Theorem 3.4: A linear block code  which has  as parity-check 

matrix, contains a nonzero codeword  of hamming weight  if and only if 

there exist  columns of  s.t. the vector sum of these  columns is equal to 

the zero word. 

Proof:  Let  be the parity-check matrix for a 

linear code  and let  be a nonzero codeword in 

 s.t.,  has  nonzero components say , ,…,  where 

. 

Now, since  is a codeword in  

                                                                  

                                                                + +…+  

                                               

(  Suppose that  are  columns of  s.t. 

                                                                        (3.11) 

Consider an -tuple  whose nonzero components are 

, ,…, . We want to show that . 

Consider the product  

+ +…+  

 
. From (3.11) 

.                                                                                                             █ 
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Corollary 3.3: Let  be a linear block code with parity-check matrix . If 

no  or fewer columns of  add to , the code has minimum 

weight at least . 
 

Corollary 3.4: Let  be a linear block code with parity-check matrix . 

The minimum weight or (Minimum distance) of  is equal to the smallest 

number of columns of  that sum to . 
 

Example 3.7: Let  

be  linear code with the corresponding parity-check matrix 

.  

We see that all columns are nonzero and that no two of them are equals. 

Therefore, no two or fewer columns sum to 0. Hence, the minimum weight 

of  is at least 3. 

Note that, the zeroth, first and fourth columns add up to zero, i.e., 

 
. 
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3.5   Syndrome & Error Detection/ Correction 

3.5.1   Syndrome & Error Detection 

Consider an  linear code . Let  be a codeword 

that was transmitted over a noisy channel (BSC). Let  

be the received vector at the output of the channel. Because of the channel 

noise,  may be different from . Hence, the vector sum 

                                                                 (3.12)  

is an -tuple where . 

This -tuple is called an error vector or (Error pattern). The  in  are the 

transmission errors caused by the channel noise. 
 

Definition 3.8: Let  be an  linear code with parity-check 

matrix . Then for a received word , the syndrome of , denoted by  

or (  is: 

                                                       (3.13)    

Or  

Note that  is a linear map  

Remark 3.4: 

(i)   is a codeword and the receiver accepts  as the 

transmitted codeword. 

(ii) When , we know that the received word  and the presence 

of errors has been detected. 
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Definition 3.9: An error pattern  is called an undetectable error pattern if 

it is identical to a codeword. 

When a codeword  is transmitted over a noisy channel, and undetectable 

error pattern  occurred to the transmitted codeword  then, the received 

word  will be , which is also a codeword since it’s the sum of 

two codewords. Thus, the syndrome of  will be zero. 

In this case, the decoder accepts  as the transmitted codeword and thus 

commits an incorrect decoding, and we say that the decoder makes a 

decoding error. 
 

Now, let  be a parity-check matrix in a systematic form of an  linear 

code. Then based on (3.13), the syndrome digits are as follows; 

 

          

 Syndrome digits are; 

 
                              (3.14) 
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Note that, the syndrome digits given in (3.14) can be formed by a circuit 

similar to an encoding circuit as follows: 

Figure 8: Syndrome Circuit for a Linear Systematic  Code 

 

Example 3.8: Consider the  linear code whose parity-check matrix 

 in systematic form given in example 3.7.  

Let  be the received word. Then its syndrome is given 

by: 
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 Syndrome digits are; 

 

 

 

The syndrome circuit for this code is shown in figure 9. 
 

Figure 9: Syndrome Circuit for the  Code 
 

3.5.2   Syndrome & Error Correction  

Theorem 3.5: The syndrome  of a received vector  depends 

only on the error pattern , and not on the transmitted codeword . 

Proof: Since  

     

+ 

 

+ + 
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Then by (3.13) we have; 

 
But,  then                                                          (3.15) 

So the syndrome of  doesn't depend on                                                   █ 

We now use the syndrome for error correction; let  be a parity-check 

matrix in a systematic form of an  linear code . Then the syndrome 

digits of the received word  can be formed as follows; 

 

 
  

                             (3.16) 

       

      

The system above (3.16) of linear equations can be solved for the digits of 

an error pattern  by the following procedure for error 

correction which is using (3.14, 3.16). 

1. Compute the syndrome  of the received word 

 using (3.14) 

2. Solve the system of the equations in (3.16) for . 
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Note that the system (3.16) is an  of linear equations, and 

so, it doesn't have a unique solution.   

3. Compute the decoded word : 

 
Theorem 3.6: The  linear equations of (3.16) do not have a unique 

solution but have  solutions. 

In other words, there are  error patterns that result in the same syndrome, 

and the true error pattern  is just one of them.   
 

Theorem 3.7: For the BSC, the most probable error pattern  is the one 

that has the smallest number of nonzero digits. 
 

Example 3.9: Again, we consider the code  with the parity-check 

matrix . Let  be the transmitted 

codeword over BSC and  be the received vector. 

The problem is to find the digits of an error pattern . 

1. Compute the syndrome  of  using (3.14) 

       

2. Solve the system (3.16) for  with  as 
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      There are  error patterns that satisfy the above system depending             

      on  they are: 

     . 

      Now, since the channel is BSC, Then the most probable error pattern    

      that satisfies the system above is  which has the    

      smallest number of nonzero digits.  

3. The receiver decodes the received word  into the 

following codeword ; 

     . 

     We see that the receiver has made a correct decoding. 
 

Later we show that the  linear code considered in this example is 

capable of correcting any single error over a span of five digits; that is, if a 

codeword is transmitted and if and only if one digit is changed by the 

channel noise, the receiver will be able to determine the true error vector 

and to perform a correct decoding.  
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3.6   Error-Detecting & Error-Correcting Capabilities of                             

Block Codes 

3.6.1   Error-Detecting Capabilities of Block Codes 

Definition 3.10: Let  be a positive integer. A code  is 

error detecting if, whenever a codeword incurs at least one and at most   

 errors, the resulting word is not a codeword. 

Definition 3.11: A code  is exactly error detecting if it is 

error detecting but not error detecting. 

Example 3.10: Consider the linear  code of Example 3.6.                 

. This code is             

a -error detecting since changing any codeword in one position does not 

result in another codeword. In other words, 

 needs to change 3-bits, 

 needs to change 5-bits, 

 needs to change 2-bits, 

 needs to change 2-bits, 

 needs to change 2-bits, 

 needs to change 3-bits 

In fact,  is exactly error  detecting. Since  is not a -error- 

detecting. Therefore, if two errors occur in the first and second digits of the 

codeword (0 0 1 1 1) we obtain the codeword (1 1 1 1 1). Hence, these two 

errors will not be detected. 

Lemma 3.2: A block code  with minimum distance  is capable of 

detecting all the error patterns of  or fewer errors.  
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Proof: If the minimum distance of a block code  is , any two distinct 

codewords of  differ in at least  places. For this code, no error pattern 

of  or fewer errors can change one codeword into another. 

Therefore, any error pattern of  or fewer errors will result in a 

received vector  that is not a codeword in .                                                   █ 
Lemma 3.3: A block code  with minimum distance  cannot detect all 

the error patterns of  errors. 

Proof: WLOG, suppose  are two codewords of  that are 

differ in  places. 

Now,  

. 

Let  be an error pattern of  errors which has 1's in the corresponding 

positions of the 1's of . Then  will be the zero codeword. 

Hence, this error will not be detected.                                                         █ 

The same argument applies to error patterns of more than  errors.         

Now, a cording to lemma 3.2 and lemma 3.3, we can conclude this 

theorem; 

Theorem 3.8: A code  with minimum distance  is an exactly 

-error detecting code. 

Proof: Suppose  has minimum distance . By lemma 3.2  is capable 

of detecting all error patterns of  or fewer errors. 

By lemma 3.3  cannot detect all the error patterns of  errors. So, it is 

an exactly -error detecting code.                                          █ 

For instance, Example 3.10 is an exactly -error detecting code.  
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Even though a linear code with minimum distance  guarantees 

detecting all the error patterns of  or fewer errors, it is also 

capable of detecting a large fraction of error patterns with  or more 

errors. For instance, consider again the  code given in Example 

3.10. Suppose that an error pattern of 2-errors occurs during the 

transmission of  then; 

 

 

 

 

 

 

 

 

 

 
 

Theorem 3.9: An  linear code is capable of detecting  error 

patterns of length . 

Proof: Among the  possible nonzero error patterns, there are  

undetectable error patterns that are identical to the  nonzero 

codewords. Hence, 

 detected errors            █ 
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Remark 3.5: 

(i)   If an error pattern is not undetectable error pattern, the received     

vector will not be a codeword. Hence, the syndrome will not be zero. In 

this case, error will be detected. 

(ii) There are exactly  error patterns are detectable error patterns. 

(iii)  For large ,  is in general much smaller than . Therefore, only a 

small fraction of error patterns pass through the decoder without being 

detected. 

(iv)  The random-error-detecting capability of a block code with minimum 

distance  is . 
 

3.6.2   Error-Correcting Capabilities of Block Codes 

If a block code  with minimum distance  is used for random-error 

correction, one would like to know how many errors that the code is able to 

correct. 
 

Theorem 3.10: A block code with minimum distance  guarantees 

correcting all the error patterns of  or fewer errors. The 

parameter  is called the random-error-correcting capability of the code. 

( ) where  denotes greatest integer 

function. 

Proof: Let  be the minimum distance of a block code . 

Since  is either odd or even let  be a positive integer s.t. 

                                                                       (3.17)       
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Now, let  be the transmitted codeword and  be the received word. Let  

be any other codeword in . Then, by the triangle inequality and hamming 

distance:                                                    (3.18)        

Suppose that an error pattern of  errors occurs during the transmission of  

i.e. . Since  are codewords in , we have 

. But  (By 3.17) 

Then  

     

Case 1: If  

 
                                                                             (3.19) 

Case 2: If  (add  in to both sides) 

                           

                           

                                                                            (3.20) 

The inequality in (3.19) and (3.20) says that if an error pattern of  or fewer 

errors occurs, the received word  is closer by the minimum  distance 

decoding to the transmitted codeword  than other codeword  in . Based 

on the MLD this means that the conditional probability  is greater 

than  for . So  is decoded into , which is the actual 

transmitted codeword. 

On the other hand, the code is not capable of correcting all the error 
patterns which contains more than  errors. 
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i.e. there is at least one case where an error pattern contains more than  

errors results in a received word  which is closer to an incorrect codeword 

say  than to the actual transmitted codeword . To see this consider the 

following case: 

Consider  be   

linear code. Choose   where 

 and the random-error-correcting capability of the code 

 is . 

Suppose that  is transmitted and is corrupted by the error 

pattern . Then the received word is  

 
                                                          (3.21) 

Let  s.t.  where  be two error 

patterns that satisfy the following conditions: 

(i)  

 
(ii)  don't have nonzero components 

in common places. 

Obviously, from (i) and by using  

 
                                                          (3.22) 

Combining (3.21) and (3.22), we obtain the following: 

 and . 

So  must be decoded into , not v and the error will not be corrected. 
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3.7   Standard Array for Linear Codes  

Let us now consider another method of decoding linear block codes that 

uses MLD or the minimum distance decoding. 

Recall that  is the set of codewords that is a subset of 

the set of all -tuples . 

In this decoding scheme  is evenly partition into  disjoint subsets 

, s.t. each  contains exactly one codeword (say ). 

Now, we build the  as follows: 

Step 1: Start each  with an element  of , e.g.  
                                                                  

                                                     

 

Step 2: Choose an -tuple  of minimum weight. Then the 

second element in each  is  
                                                                               

                                                                  

                                                            

Note that the element  is called a coset leader. 

 

Step 3: We repeat step 2 by choosing  (coset leader) where 

 of minimum weight from the remaining -tuples that 

were not included in any  up to the previous step 
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Remark 3.6: The above - tuples can be arranged as entries of  

matrix  s.t.: . 





















++++

++++
=

−−−−

×−

kkniknknkn

ki

ki

kkn

veveveve

veveveve
vvvv

M

2222212

2222212

221

22

LL

MMMMMM

LL

LL

 

 

Remarks 3.7:  

(i) The entries of the  column of  represent the subset 

 .                                      (3.23) 

(ii)  The entries of the first row of  represent the code . 

(iii)  The  row of  is called the  coset and the first entry of this row is     

  a coset leader . 

(iv)  Each -tuple of  appears only once in  and hence  containing all 

-tuples. 

(v)  The standard array built is not a unique. 

(vi)  Each  coset consists of -tuples of the form 

 . 

(vii) Each column consists of  -tuples with the topmost one as a    

   codeword in . 
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Example 3.11: Consider this linear code 

. The standard 

array for  shown as follows: 

10101011000101110010
10011010100110110100
00110111111100000001
00101111001101100010
00011110101110100100
01111101101000101000
10111011100100110000

00111111101100100000

4838288

4737277

4636266

4535255

4434244

4333233

4232222

4321

4321

=+=+=+=
=+=+=+=
=+=+=+=
=+=+=+=
=+=+=+=
=+=+=+=
=+=+=+=

====

vevevee
vevevee
vevevee
vevevee
vevevee
vevevee
vevevee

vvvv

DDDD

 

Figure 10: Standard Array for the  Linear Code. 
 

Theorem 3.11: The sum of any two words in the same row of the standard 

array is a codeword in . 

Proof: Suppose that  be two -tuples in the  row where 

  and  is the word with minimal weight in the  row. 

Then  since  is linear.                     █ 
 

Theorem 3.12: 

(i) No two tuples in the same row of a standard array are identical. 

Proof: Suppose two tuples in the  row are identical, say 

 with . This means that , which is a 

contradiction since  row contains distinct codewords .     █ 
 

(ii) Every tuple appears in one and only one row. 
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Proof: Suppose that an -tuple  appears in both  row and the  row 

with . So  for some . 

Then . But  are two 

codewords in the linear code , so  is again a codeword in , say . 

Then . This implies that the -tuple  is in the  row of the 

array, which contradicts the construction rule of the array that , the first 

element of the  row, should be unused in any previous row. Therefore, 

no -tuple can appear in more than one row of the array                                █      
 

From the previous theorem we can conclude this corollary; 

Corollary 3.5:  

(i) There are  disjoint columns in the standard array. 

(ii) Every word appears exactly once in the standard array.  

Theorem 3.13:  

(i) Each row in the standard array consists of  distinct elements. 

Proof: Clearly, each row consists of the  -tuples since the first row 

containing  codewords by (Theorem 3.12 (i)) no two -tuples in the 

same row of a standard array are identical.                                                  █ 
 

(ii)  There are  disjoint rows in the standard array. 

Proof: Since there are  tuples over  and the are  partitioned  

into  disjoint columns so we have,  disjoint rows in the 

standard array.                                                █ 
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Fact 3.1: Any element in a coset can be used as its coset leader. This does 

not change the elements of the coset; it simply permutes them. 
 

We now, explain the standard array decoding:  

Let us use the  disjoint columns  of the standard 

array for decoding the code .   

Suppose that the codeword  is transmitted over the BSC. From (3.23) if 

the error pattern  caused by channel was a coset leader, the received word 

 will be . So  will be decoded correctly into the 

transmitted codeword . 

On the other hand, if the error pattern caused by the channel is not a coset 

leader, an erroneous decoding will result as in the following example: 

Let  be an error pattern caused by the channel and lie in the  coset and 

under the codeword . Then  and the received word is 

. 

Thus, the received word . So it is decoded into , which is not the 

transmitted codeword . So an erroneous decoding will result.      
 

Result: Every  linear code is capable of correcting  different 

error patterns which are denoted by the coset leaders. For this reason, the 

 coset leaders (including the zero codeword) are called the correctable 

error patterns. 
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Theorem 3.14: Given an  linear code  with minimum distance 

, no two tuples of weight  or less can be in the same 

coset of . 

Proof: Let  be a linear code with minimum distance and minimum 

weight . Let  and  be two tuples of weight  or less which are in 

the same coset 

 
then  must be a nonzero codeword in , where the weight of  is: 

, 

But this is impossible since . Therefore, no two 

tuples of weight  or less can be in the same coset of .                        
  

Corollary 3.6: All -tuples of weight  or less can be used as coset leaders. 
 

Theorem 3.15: If each coset leader is chosen to have minimum weight in 

its coset, the decoding based on the standard array is the minimum distance 

decoding or the MLD.   

Proof: Let  be the received word. Suppose that  is found in the  

column  and  coset of the standard array. Then  is decoded into the 

codeword . Since , the distance between  and  is 

                               (3.24)             

Now, consider the distance between  and any codeword, say , 

, 
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Since  and  are two different codewords in the linear code, then the 

sum  is again codeword, say . Thus,  

                                                                           (3.25)  

Since  and  are in the same coset, then by assumption,  

 by (3.16 and 3.17)           (3.26) 

So the result (3.26) says that the received word is decoded into a closet 

codeword.                                                                                                     █ 
 

Theorem 3.16: If all the -tuples of weight  or less are used as 

coset leaders of the standard array for the linear code  then 

there is at least one -tuple of weight  that cannot be used as a coset 

leader. 

Proof: Let  be a minimum weight codeword of , that is . 

Let  and  be two tuples which satisfy the following two conditions: 

(i) , 

(ii)  and  do not have nonzero components in common places. 

It follows from the definition that  since its sum is a codeword and 

. 

Suppose we choose  s.t., . Since , 

we have;  

, 

Now, if  is used as a coset leader, then  cannot be a coset leader.            █ 
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Corollary 3.7: An  linear code  is capable of correcting all 

the error patterns of  or fewer errors, but it is not capable of correcting all 

the error patterns of weight . 

Hence, we say that the code is exactly error correcting 
 

Example 3.12: Consider example 3.11 where the vector  

is the transmitted codeword from  and the received word is 

, which lies in column  whose coset leader 

. So  is correctable error pattern. 

Other wise, consider the transmitted codeword is  and the 

received word is , then the error vector is 

, which is not coset leader in the standard array 

for the  linear code. So  is uncorrectable error pattern. To show this; 

, which is 

not the transmitted codeword . So an erroneous decoding will result. 

The minimum distance for the above code is 3. Thus, the code guaranteed 

to correct all error patterns of single errors since the random error 

correcting capability of the code is  
  

and the random error detecting capability is  
 

Note from the standard array of Example 3.11 not all  error 

patterns of weight two are correctable. You can select arbitrary only two of 

them. Because of the code  is capable of correcting  (Including 
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the zero word ) different coset leaders where five of them are 

error patterns of single errors. 

Hence, the decoder in (Example 3.11) is capable of correcting all errors of 

weight ;  

 

 

and two different error patterns of weight 2; 

 

Theorem 3.17:  

(i) All the -tuples of a coset have the same -tuple syndrome.  

(ii) The syndromes for different cosets are different. 

Proof: Let  be the parity check matrix of the given  linear code .  

(i) Consider the coset whose coset leader is  and let  be a word in 

that coset then   for some . The syndrome of  is; 

,                 

. The equality above says that the syndrome of any word in 

a coset is equal to the syndrome of the coset leader. Therefore, all the 

word of a coset have the same syndrome.                                                   █ 

(ii) Let  be the coset leaders of the  different cosets, 

respectively, where . Suppose that the syndrome of these two 

cosets are equal then;  

say . Thus  in the  coset, thus  

in the  cosets, which 
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 contradicts Theorem 3.7 that states every tuple appears in one and only 

one coset in the standard array.                                                   █ 

Corollary 3.8: There is a one-to-one correspondence between a coset and 

an  tuple syndrome. Or, there is a one-to-one correspondence 

between a coset leader (a correctable error pattern) and a syndrome.    
 

3.8   Syndrome Decoding 

In this section we will discuss a scheme for decoding linear block codes, 

that uses a one-to-one correspondence between a coset leader and a 

syndrome. So we can form a decoding table, which is much simpler to use 

than a standard array. The table consists of  coset leaders (the 

correctable error patterns) and their corresponding syndromes. 

So the exhaustive search algorithm on the set of  syndromes of 

correctable error patterns can be relised if we have a decoding table, in 

which syndromes correspond to coset leaders. 

The decoding of a received word consists of three main steps: 

(i) Calculation of the syndrome  of the received word ;  

 
(ii)  Search the decoding-table for the coset leader  that corresponds to 

the     

  syndrome .  

(iii) Decode the received word  into the codeword . 

The decoding scheme described above is called the syndrome decoding or 

table-lookup decoding.     
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Example 3.13: Consider  

 with the parity-check matrix . 

The correctable error patterns and their corresponding syndromes are 

shown in the following decoding table. Table 8 was constructed from 

standard array for the  linear code given in Example 3.11. 
 

Table 8: Decoding Table for an  Linear Code 
Syndrome  Coset leader  

(0 0 0) (0 0 0 0 0) 
(1 0 0) (1 0 0 0 0) 
(0 1 0) (0 1 0 0 0) 
(0 0 1) (0 0 1 0 0) 
(1 1 1) (0 0 0 1 0) 
(1 1 0) (0 0 0 0 1) 
(1 0 1) (1 0 1 0 0) 
(0 1 1) (1 0 0 1 0) 

 

Suppose that the codeword  is transmitted and                  

 is received. The decoding of a received word , we use the 

three steps of syndrome decoding; 

(i) the syndrome of , is ; 

(ii) from (Table 8) the coset leader is , 

(iii) decode the received word  into the codeword 

 

In that example the decoding is correct since the error pattern caused by the 

channel is a coset leader. Therefore, the decoding is correct if and only if 
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the error pattern caused by the channel is a coset leader. Otherwise we say 

a decoding error is committed. 

3.9   Decoding Circuits Using Combinational Logic Circuits  
Recall the table-lookup decoding of an  linear code from the above 

section. In this section the table-lookup decoding will be implemented. 

The decoding table regarded as the truth table of  switching functions:  

, 

                                                                                                              (3.27) 

. 

Where  are the syndrome digits, which are regarded as 

switching variables, and  are the estimated error digits. 

Now, when these  switching functions are derived and simplified,                      

a combinational logic circuit with the  syndrome digits as inputs and 

the estimated error digits as outputs can be realized. 

The general decoder for an  linear code based on the table-lookup 

scheme is shown in Figure 11 which depends primarily on the complexity 

of the combinational logic circuit (error-pattern-detecting circuit). 

 
Figure 11: General Decoder for a Linear Block Code. 
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Example 3.12: Again consider the linear code  give in Example 

3.13. The syndrome circuit for this code is shown in Figure 12. From Table 

8 we form the following truth table. 
 
Table 9: Truth Table for the Error digits of the Correctable Error patterns 

of the  linear code 

        
0 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 0 
0 1 0 0 1 0 0 0 
0 0 1 0 0 1 0 0 
1 1 1 0 0 0 1 0 
1 1 0 0 0 0 0 1 
1 0 1 1 0 1 0 0 
0 1 1 1 0 0 1 0 

The switching expressions for the five error digits are 

, 

 

 

 

 
Where  denotes the logic-AND operation,  denotes the logic-OR 

operation and  denotes the logic-COMPLEMENT of . These five 

switching expressions can be realized by seven 3-input AND gates. The 

circuit of this decoder is shown in Figure 12. 
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Figure 12: Decoding Circuit for the Code  

Received 
word      

+ + + 

   

     

+ + + + +      
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Chapter 4 

Binary Hamming Codes 

4.1   Construction of Binary Hamming Codes 

Hamming codes are the first important class of linear error-correcting 

codes named after its inventor, Richard W. Hamming (1950) who asserted 

by proper encoding of information, errors induced by a noisy channel or 

storage medium can be reduced to any desired level without sacrificing the 

rate of information transmission or storage. We discuss the binary 

Hamming codes with their shortened and extended versions that are 

defined over . These Hamming codes have been widely used for 

error control in digital communication and data storage. They have 

interesting properties that make encoding and decoding operations easier. 
 

In this section we introduce Hamming codes as linear block codes that are 

capable of correcting any single error over the span of the code block 

length. 

Suppose the linear code  has an  matrix  as the parity 

check matrix and that the syndrome of the received word  is given by 

. Then the decoder must attempt to find a minimum weight  

which solves the equation   

. 

Write  and , 

where  and each  is an  

dimensional column vector over , then  
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. 

In other words, the syndrome may be interpreted as the vector sum of those 

columns of the  matrix corresponding to the positions of the errors.  
 

Now, consider all error words of weight one are to have distinct 

syndromes, and then it is evidently necessary and sufficient that all 

columns of the  matrix must be distinct. 

For if  say  then  if  then  now, if 

 then  for .   

In other words, the parity-check matrix  of this code consists of all the 

nonzero -tuples as its columns. Thus, there are  

possible columns. 
 

The code resulting from above is called a Binary Hamming code of length 

 and  where . 
 

Definition 4.1: For any integer  there is a Hamming code, Ham , 

of length  with  parity bits and  information bits.  

Using a binary  parity check matrix  whose columns are all of the -

dimensional binary vectors different from zero, the Hamming code is 

defined as follows: 

Ham  
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Table 10:  Parameters for Some Hamming Codes 
M Hamming Code 
3 (7, 4) 
4 (15, 11)  
5 (31, 26) 
6 (63, 57) 
7 (127, 120) 

 

Theorem 4.1: The minimum distance of a Hamming code is at least . 

Proof: If Ham  contained a codeword  of weight 1, then  would have 

1 in the  position and zero in all other positions. 

Since , then  column of  must be zero. This is a 

contradiction of the definition of . So Ham  has a minimum weight of 

at least 2. 

If Ham  contained a codeword  of weight 2, then  would have 1 in 

the  and  positions and zero in all other positions. Again, since 

, then  are not distinct. This is a contradiction. 

So Ham  has a minimum weight of at least 3. 

Then . Since  in linear codes, then , 

therefore the minimum distance of Hamming code is at least .                  
 

 

Theorem 4.2: The minimum distance of a Hamming code is exactly 3. 

Proof: Let  be a Hamming code with parity-check matrix . Let 

us express the parity-check matrix  in the following form: 

, where each  represents the  column of 

. Since the columns of  are nonzero and distinct, no two columns add to 
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zero. It follows from corollary 3.3 that the minimum distance of                    

a Hamming code is at least 3. Since  consists of all the nonzero -tuples 

as its columns, the vector sum of any two columns, say  and  , must 

also be a column in , say  i.e. . Thus, 

 (In modulo 2-addition) 

It follows from (Corollary 3.4) that the minimum distance of a Hamming 

code is exactly 3.                                                                                           
 

Corollary 4.1: The Hamming code is capable of correcting all the error 

patterns of weight one and is capabe of detecting all 2 or fewer errors. 

Proof: Use lemma 3.2 and theorem 3.10 with  to show this 

corollary as follows; 
. So the Hamming code is capable of correcting 

all the error patterns of weight one.  

And . Thus it is also has the capability of detecting 

all 2 or fewer errors.                                                                                      
 

Result For any positive integer , there exists a Hamming code  

 with the following parameters: 

Code length:  

Number of information symbols:  

Number of parity-check symbols:  

Random-error-correcting capability: . 
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4.2   The Generator and the Parity Check matrices of Binary     
        Hamming Codes Ham  

The Hamming code is a linear block code so we use (2.3) and (2.6) to 

construct the parity-check matrix  and the generator matrix  in the 

systematic form for this Hamming code. Rewrite (2.3) and (2.6) as follows: 

       (4.1) 

 

           (4.2) 

The parameters of Hamming code are: 

, then the parity-check matrix  of 

a Hamming code is constructed by listing all non zero -dimensional 

distinct columns. 

Thus the systematic form of  is a matrix whose right side is all of the 

nonzero -tuples of weight > 1 in any order. The left side is just the 

identity matrix . 

(4.3) 

Where  is an  identity matrix and the submatrix  consists of 

 columns which are the tuples of weight 2 or more. 
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So the generator matrix  can be obtained from  by taking the transpose 

of the left hand side of  with the identity  identity matrix on the left 

hand side. 

                                                                       (4.4) 


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Note that if the parity check matrix  is not in a systematic form then by 

row operations or column permutations you can reorder the columns of  

to obtain the systematic form of  which is resulting in an equivalent code.  

Example 4.1: For  consider the matrix 

                                          (4.5) 

                              1   2    3    4   5    6    7   8    9  10  11  12  13  14  15 

This can be considered a parity check matrix for a  Hamming code. 

Clearly  is not in a systematic form. By reordering the columns of  as: 

1, 2, 4, 8, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15 we obtain; 

 

 
                                                 1      2      4      8      3     5     6      7      9     10   11   12    13    14   15 
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Example 4.2: For  there is a Hamming code , of length 

, and  with 

. 

Consider  

Then  

                                 

                                     

                                     

The solution vector;  

. So there are 

 codewords that satisfy the equations above depending on the four 

free variables 

 

.  

Now  

(0011001),(0110011),(0010110),(0101010),(1111111),(1101001), 

(0111100),(1011010),(1110000),(1001100),(1100110),(1010101)}. 

is a  linear block code. One can easily check that the sum of any two 

codewords in this code is also a codeword. 
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The generator matrix  can be obtained from algorithm 1 in appendix B as 

follows: 

 
Clearly, the matrices  and  are not in the systematic form, so the 

systematic form of a generator matrix  can be obtained by row operations 

and/or column permutations as follows; . 

And hence, the parity-check matrix  using (4.3, 4.4) becomes; 

,  

which gives a different set of Hamming codewords and thus a different (7, 

4) binary Hamming code. To find the code , we find the nullspace 

of  H, i.,e, the set of all 7-tuples , …,  such that 

.   

By computing the nullspace of H, we obtain 

(1000111),(1011001),(

0101011), 

(0011110),(1110010),(1111111), ( 1100001),(1101100),(1001010), 

(0111000),(1010100),(0100110), (0001101)}. 
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Clearly,  of this code consists of all nonzero distinct columns of length 

. 

Now apply (Corollary 3.4) to the problem of determining . Clearly 

, since the columns of  are nonzero and distinct. However, 

there are many subsets of three columns of , summing to 0, for example, 

. Thus , and so the error-correcting 

capability of  is .  That is, it is capable of 

correcting all error patterns of weight 1 or fewer.    
 

4.3   Hamming Encoding 
Let  be the length of the encode message. Let  be the length of message 

to be encoded. Therefore  is the length of error checking digits. 

Since Hamming codes are linear block codes, then the encoding operation 

can be described in terms of a  generator matrix  
 

where the codewords are obtained as linear combination of the rows of  

That is, the Hamming code is the row space of . 

 

Hence, for a message  we have the codeword 

 which is given by: 

,                                                   (4.6)  

where  is redundant checking part of a codeword , and  is the 

message part of . 
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Example 4.3: Consider  

 

(1000111),(1011001),(0101011),(0011110),(1110010),(1111111), 

(1100001),(1101100),(1001010),(0111000),(1010100),(0100110), 

(0001101)}.  

With the generator matrix: 

. 

Let  

be message set to be encoded, then its  corresponding 

codewords, according to (4.6), are shown in (Table 11) where . 
 

Table 11: A  Hamming Code 
Message  Codeword ( ) 

(0000) (0000000) 
(0011) (0010011) 
(0101) (0110101) 
(0111) (1000111) 
(1001) (1011001) 
(1011) (0101011) 
(1110) (0011110) 
(0010) (1110010) 
(1111) (1111111) 
(0001) (1100001) 
(1100) (1101100) 
(1010) (1001010) 
(1000) (0111000) 
(0100) (1010100) 
(0110) (0100110) 
(1101) (0001101) 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


100 
 

Now, the weight distribution of a Hamming code of length  is 

shown in the following definition;  

 

Theorem 4.3: The number of codewords of weight , , of a Hamming 

code is simply the coefficient of  in the expansion of the following 

polynomial; 
                                      (4.7)     

This equation is the weight enumerator for the Hamming codes. 
 

Example 4.4: The weight enumerator for the  Hamming code which 

is given in example 4.3 is: 
. 

Hence, the weight distribution is 

 and . 

One can easily check that distribution from table 11. 
 

We now consider the following algorithm that is used to encode 

Hamming codes: 

(i) All bit positions that are powers of two are used as parity bits. (Positions 

1, 2, 4, 8, 16, 32, 64, etc). 

(ii)  All other bit positions are for the data to be encoded.  

(Positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc). 
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(iii) Each parity bit calculates the parity for some of the bits in the code 

word. The position of the parity bit determines the sequence of bits that 

it alternately checks and skips. 

§ Position 1 (n=1): skip 0 bit (0=n−1), check 1 bit (n), skip 1 bit (n), check 

1 bit (n), skip 1 bit (n), etc. (1,3,5,7,9,11,13,15,...) 

§ Position 2 (n=2): skip 1 bit (1=n−1), check 2 bits (n), skip 2 bits (n), 

check 2 bits (n), skip 2 bits (n), etc. (2,3,6,7,10,11,14,15,...) 

§ Position 4 (n=4): skip 3 bits (3=n−1), check 4 bits (n), skip 4 bits (n), 

check 4 bits (n), skip 4 bits (n), etc. (4,5,6,7,12,13,14,15,20,21,22,…)  

§ Position 8 (n=8): skip 7 bits (7=n−1), check 8 bits (n), skip 8 bits (n), 

check 8 bits (n), skip 8 bits (n), etc. (8-15,24-31,40-47,...)  

§ Position 16 (n=16): skip 15 bits (15=n−1), check 16 bits (n), skip 16 bits 

(n), check 16 bits (n), skip 16 bits (n), etc. (16-31,48-63,...)  

§ Position 32 (n=32): skip 31 bits (31=n−1), check 32 bits (n), skip 32 bits 

(n), check 32 bits (n), skip 32 bits (n), etc. (32-63,96-127,...)  

§ General rule for position n: skip n−1 bits, check n bits, skip n bits, check 

n bits...  

§ And so on. 

This general rule can be shown visually by the following table, which use  

to signify data bits and  to signify parity bits. 
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…
 
 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit position 

               Encoded data bits 

X X X X X X X  X X X  X   
Data word 

(without parity) 

X  X  X  X  X  X  X  X P1 

 

Parity bit 

coverage X X   X X   X X   X X  P2 

X X X X     X X X X    P3 

X X X X X X X X        P4 

                

X X X X X X X X X X X X X X X 

 

Data word (with 

parity) 

In other words, in a Hamming Code, parity bit  is used to hold the parity 

bit for all bits in the code whose locations have a binary representation with 

a 1 in position .  

Consider the table of four-bit binary numbers and their decimal equivalent 

positions shown in Table 12. 
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Table 12: Four-bit Numbers 

    Position 
0 0 0 1 1 
0 0 1 0 2 
0 0 1 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 7 
1 0 0 0 8 
1 0 0 1 9 
1 0 1 0 10 
1 0 1 1 11 
1 1 0 0 12 
1 1 0 1 13 
1 1 1 0 14 
1 1 1 1 15 

Now, since the numbers 1, 3, 5, 7, 9, 11, 13, 15, etc, have all  in position 

0 in their binary representations, then  is used to store the parity 

information for each of the bits in these locations. In other words,  is 

used to store parity information on itself and on message bits 

, etc.  

The numbers 2, 3, 6, 7, 10, 11, 14, 15, etc, have all  in position 1 in their 

binary representations, then  is used to store the parity information for 

each of the bits in these locations. In other words,  is used to store parity 

information on itself and on message bits , etc. 

The numbers 4, 5, 6, 7, 12, 13, 14, 15, etc, have all  in position 2 in their 

binary representations, then  is used to store the parity information for 

each of the bits in these locations. In other words,  is used to store parity 

information on itself and on message bits , etc. 
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And the numbers 8, 9, 10, 11, 12, 13, 14, 15, etc, have all  in position 1 

in their binary representations, then  is used to store the parity 

information for each of the bits in these locations. In other words,  is 

used to store parity information on itself and on message bits 

, etc. 
 

After the data bits are inserted into their appropriate positions, the parity 

bits calculated in each case using an even parity operation which is defined 

in the following definition. 
 

Definition 4.2: An even parity operation make the total number of  in a 

specific group of bit positions even. 

For instance, since  is a parity bit for the bits , 

then if we have an odd number of 1's then  else setting it to 0.  

 

The calculation of an even parity can be done by applying the                

exclusive-or operation, denoted XOR or . 
 

Table 13: Exclusive-or Operation (XOR/ ) 

  
 0 

 1 

 1 

 0 

Remark 4.1: In the above insert the bits of a message from left to right to 

preserve on the binary representation of each value. 
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Here is an example of how this process works. 

Example 4.5: For  consider the message  

"1 0 1 0 1 1 0 1  0  1  1" 

1  2  3  4   5  6  7  8    9   10  11 

to be encoded then we have a  15-bit Hamming code with 4 

bits and 11 information bits. 

Firstly the 11-data bits are inserted into positions:  

3, 5, 6, 7, 9, 10, 11, 12, 13, 14 and 15. 

                            "1  0  1  0  1   1     0   1     0     1        1" 

And the remaining positions 1, 2, 4 and 8 (which are power of 2) are used 

to store parity bits which are calculated in each case using an even parity. 

See the table below. 

 

Parity 

bit 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  Bit position 

                

Encoded data 
bits 

 1 1 0 1 0 1 1  0 1 0  1   
Data word 
(without 
parity) 

1 1  0  0  1  0  0  1   P1 

 

 
 

Parity bit 
coverage 

1 1 1   0 1   0 1   1   P2 

0 1 1 0 1     0 1 0     P3 

1 1 1 0 1 0 1 1         P4 

 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 

 

Data word 
(with parity) 
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We write the output codeword from left to right using  as the first bit 

from the left to the output codeword. Hence, the encoded codeword that 

would be sent is "1 1 1 0 0 1 0 1 1 1 0 1 0 1 1". 

Note that, this example can be computed by placing the message-bits in the 

following simple table: 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Bit 

position 

 ؟ ؟ 1 ؟ 0 1 0 ؟ 1 1 0 1 0 1 1
Message 

bits 

 

We now, after placing the data in the last table we find that in positions 3, 

6, 9, 10, 12, 14 and 15 we have a "1". Using table 12 we obtain the binary 

representation for each of these values.  

We then exclusive OR the resulting values (XOR: it sets the output to 1 if 

we have an odd number of 1's else setting it to 0). The results of this 

activity are shown below: 
 

                                               
                                              0               0             1               1           3 
                                              0               1             1               0           6 
                                              1               0             0               1           9 
                                              1               0             1               0          10 
                                              1               1             0               0          12 
                                              1               1             1               0          14 
                                              1               1             1               1          15 
                        
 

The parity bits are then put in the proper locations in the above table. Thus 

the following end result: 
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Bit 

position 

1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 
Message 

bits 

 

Thus "1 1 1 0 0 1 0 1 1 1 0 1 0 1 1" is the encoded codeword that would be 

sent.  
 

4.4   Hamming Decoding 

4.4.1   Syndrome & Error Detection/Correction 

Suppose that a codeword  is transmitted over BSC and the received word 

is     (  is an error pattern) 

Recall that we can decode the received word  of the  linear code 

using property of a parity-check matrix  of that linear code which is given 

in (Section 2.5) as follows; 

                                                                       (4.8)     
 

We now use that property (4.8) of  as the decoding step, by compute the 

syndrome 

 
Therefore, the syndrome depends only on the error pattern  and not on the 

transmitted codeword . 

Now, since a Hamming code is capable of correcting only a single error, 

suppose that  consists of zero in all positions except 1 at the  position; 

 

Where the 1 is equal to . (That is, the error is in the  position). 
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Note that, an error pattern  which consists of zero in all positions except at  

 position can be denoted by . Hence, .  

Let us express the parity-check matrix  in the following form: 

, where  represents the  column of . 

Then the syndrome is: 

 

                                                 

, the  column of .     

Hence, the syndrome directly identifies the error location as  position. 

The decoding algorithm is shown as the following: 
 

Remark 4.2: The following algorithm fails if more than one error occurs. 

Algorithm:  

(i)  Compute the syndrome for the received binary word , , 

(ii)  If , then the decoded codeword is , and output , 

(iii) Otherwise, the syndrome will be equal to a unique column of  say  

denote the column of  which is equal to  ( ). Hence, there is 

an error in position  of . Add 1 (modulo-2) to the  coordinate of , 

and output the result as .   
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Example 4.6: Suppose that the message  is encoded to the 

codeword  which is given in example 4.3. 

If the word  is received, when  is transmitted over 

BSC, then the decoding algorithm proceeds as follows: 

Consider the parity-check matrix of  

 

Then; 

(i) , 

(ii) This syndrome corresponds to column 6 of . Therefore, the decoded 

value of  is; 

 
Then the transmitted codeword is , which is  

corresponds to the message is (1110), since the generator is systematic.   
 

Note that the above algorithm is special case of the algorithm given in 

section 3.5.2. To see this; 

4.  
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5.  

  

                                                                        (4.9) 

            

Then we solve the system (4.9). The solution vector is  

. 
 

Free variable 
 

Error pattern 
 

0  0  0  0 (1 1 1 0 0 0 0)  
0  1  0  0 (0 1 0 0 1 0 0) 
0  0  1  0 (0 0 0 0 0 1 0) 
0  0  0  1 (0 0 1 0 0 0 1) 
1  0  0  0 (1 0 0 1 0 0 0) 

 

But assuming the error pattern  consists of zero in all positions except 

at a single position, so the unique solution for that system (4.9) is 

. Which is the sixth column of . 

6. Compute the decoded vector ; 
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4.4.2   Standard Array for Hamming Codes 
Recall from Theorem 3.14 for an  linear code  with minimum 

distance  all the tuples of weight  or less can be used 

as coset leaders of a standard array of . 

So, if we form the standard array for a  Hamming 

code, then all the tuples of weight 1 can be used as coset 

leaders. Because The Hamming code is a linear single error-correcting code 
. 

The number of -tuples of weight 1 is . Since  in 

the Hamming codes, the code has  cosets (Including the word zero). 

Thus, the zero word and the tuples of weight 1 form all the 

coset leaders of the standard array for a  

Hamming code. 

This says that a Hamming code corrects only the error patterns of single 

error and no others. 

This means that the Hamming codes belong to an extremely exclusive class 

of codes, the perfect codes which is defined as the following; 
 

Definition 4.3: A -error-correcting code is called a perfect code if its 

standard array has al the error patterns of  or fewer errors and no others as 

coset leaders. 
 

Remark 4.3: Hamming codes form a class of single-error-correcting 

perfect codes. The only other binary linear perfect codes are the repetition 
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codes and the  Golay code (see the reference 12 for more 

information about these two linear perfect codes). 

Example 4.7: The standard array for  given in table 4.2 which 

consists of 16 columns and 8 rows, its first row consists of  

codeword, shown in Figure 13 below. 

 

00011000100111...011010000100100000001
00011110100100...011011100100010000010
00010010100010...011000100101110000100
00001010101110...011110100110110001000
00111010110110...010010100000110010000
01011010000110...001010101100110100000
10011011100110...111010110100111000000
00011010100110...011010100100110000000

 

Figure 13: Standard Array for . 
 

Suppose that the codeword  is transmitted and 

 is received word. For decoding , we use figure 13 as 

follows; 

Since  in the third column and second row of the standard array, then           

 is the sum of the coset leader  and the codeword              

. Hence, 

, which is the transmitted 

codeword. 
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4.4.3   Syndrome Decoding (Table-Lookup Decoding) 

Decoding of Hamming codes can be accomplished easily with the table-

lookup decoding described in section 3.8, which is much simpler to use 

than a standard array. 

For instance, the standard array of the  Hamming code ( ) 

given in Figure 13 can be represented by a decoding table consisting of 

only 2 columns instead of 16. To see this, study the following example.  
 

Example 4.8: Consider the  Hamming code given in table 11, that 

have the parity-check matrix 

 
Then the zero word and the -tuples of weight 1 form all the coset leaders 

of the standard array for a  Hamming code. 

Thus, the correctable error patterns and their corresponding syndromes are 

given as follows: 
 

Table 14: Decoding Table for  a  Hamming Code 
Coset leader 

  
Syndrome  

 
(0000000) (000) 
(1000000) (100) 
(0100000) (010) 
(0010000) (001) 
(0001000) (011) 
(0000100) (101) 
(0000010) (111) 
(0000001) (110) 
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As in Section 3.9, the table-lookup decoding of this (7, 4, 3) Hamming 

code may can be implemented as follow.  

From the decoding table we form the truth table of seven switching 

functions expressions for the seven error digits. These functions are: 

                    

                           

                                               

 
Table 15: Truth Table for the Error Digits of the Correctable Error Patterns 

of the (7, 4, 3) Hamming Code 
         Syndrome                Correctable error pattern (Coset leader) 

          
0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 0 0 0 
0 1 0 0 1 0 0 0 0 0 
0 0 1 0 0 1 0 0 0 0 
0 1 1 0 0 0 1 0 0 0 
1 0 1 0 0 0 0 1 0 0 
1 1 1 0 0 0 0 0 1 0 
1 1 0 0 0 0 0 0 0 1 

The complete circuit of the decoder is shown in Figure 14. 

4.4.4   Checking of Parity Bits in Hamming Codes 

To complete the decoding operations for , the received side 

would re-compute the parity bits and compare them to the ones received 

(again using an XOR  even parity). If they were the same the result will 

be all  i.e., no error occurred. If a single bit was flipped the location of 

the flipped bit is determined using Table 12. 

Example 4.9 shows how this process works. 
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Figure 14: Decoding Circuit for the  Code 

 

Example 4.9: Let's say that the bit in position 14 was corrupted and turned 

from 1 to 0 during transmission the codeword 1 1 1 0 0 1 0 1 1 1 0 1 0 

1 1). The new data word (with parity bits) is now 1 1 1 0 0 1 0 1 1 1 0 

1 0 0 1). 

The receiving end would see the following encoded sequence: 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Bit 

position 

1 0 0 1 0 1 1 1 0 1 0 0 1 1 1 
Received 

data 
word 

 

Below is the re-calculation of the parity bits of    

using XOR  even parity in each case. 
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   0     0     1     1          3 
   0     1     1     0          6 
   1     0     0     1          9 

      1     0     1     0          10 
      1     1     0     0          12 
      1     1     1     1          15 

   
 

The re–calculated parity information is then compared to the parity 

information sent/received as follows: 

 
                                              

                    1     0     1     1      sent/received  
                      0     1     0     1     new calculated 

  
 

The final step is to evaluate the integer value of the parity bits 
 

     Parity bit 

 1 1 1 0 Binary 

 1*  1*  1*  0*  decimal 
 

Flipping the  bit changes (1 1 1 0 0 1 0 1 1 1 0 1 0 0 1) back into (1 1 1 

0 0 1 0 1 1 1 0 1 0 1 1). Removing the parity check bits gives the original 

data message =(1 0 1 0 1 1 0 1 0 1 1). 

All these steps can be shown as follows: 
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Parity 

bit 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit position 

                
 

 1 0 0 1 0 1 1 1 0 1 0 0 1 1 1 

Received data 
word 

0 1  0  0  1  0  0  1  1  

1 1 0   0 1   0 1   1 1   

1 1 0 0 1     0 1 0 0     

1 1 0 0 1 0 1 1 1         

4.5   Shortened Hamming Codes 

The Hamming  can easily be shortened by 

deleting any  columns from the parity-check matrix  of a 

Hamming code. This deletion results in an  matrix 

. Now, using  as a parity-check matrix, we obtain a shortened 

Hamming code with the following parameters: 

Code length:  

Number of information symbols:  

Number of parity-check symbols:  

Minimum distance:  
 

Theorem 4.4: The minimum distance of a shortened  Hamming 

code is at least 3. 

Proof: Consider the parity-check matrix of a  Hamming code is a 

 matrix , which consists of all the nonzero distinct columns. 
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If we delete any  columns from  then this deletion results in a 

 matrix , which is used as a parity-check matrix of a 

shortened Hamming code. Clearly, the matrix  consists of nonzero and 

distinct columns, hence the minimum distance of a shortened  

Hamming code is at least 3. 

Now, we want to show that the minimum distance may be not exactly 3. 

Let  and  any two columns of , consider 

 
Case 1: if , 

Case 2: if . So the 

minimum distance of a shortened  Hamming code is at least 3.       
  

Example 4.10: 

Consider the parity-check matrix  of the  

Hamming code is in systematic form; 

 
If we delete from the submatrix  all the columns of even weight, we 

obtain an  matrix , 

where  consists of  columns of odd weight. Since all the 

columns of  have an odd weight, the sum of any two columns say  and 

 results in a column say  have even weight, that is 

   (since  consists of all columns of odd weight) 

Thus no three columns in  adds to zero. However, for a column  of 

weight 3 in , ther exists three columns  and  in  such that  
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. 

So, the shortened Hamming code with  as a parity-check matrix has 

minimum distance exactly 4 by corollary 3.4. 
 

Theorem 4.5: The distance 4 shortened Hamming code can be used for 

correcting all error patterns of single error and simultaneously detecting all 

error patterns of triple errors or fewer. 

Proof: By lemma 3.2 and theorem 3.10.                                                      

 

Decoding of the Distance 4 Shortened Hamming Code 

Let  be the received word when 

 transmitted codeword. 

If a single error occurs in the  position of  i.e., 

                

Thus, the syndrome of  

, where  consists of all columns of weight odd. 

The result syndrome is nonzero and it contains an odd number of 1's. 

However, when double errors occur, i.e., 

 

The syndrome is also nonzero, but it contains even number of 1's. Since 

. 

We now, based on these facts, decoding can be accomplished in the 

following manner: 

(i)  If , then we assume that no error occurred, 
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(ii)  If  and it contains odd number of 1's, we assume that a single 

error occurred. The error pattern of a single error that corresponds to  is 

added to the received word for error correction. 

(iii)  If  and it contains even number of 1's, an uncorrectable error 

pattern has been detected. 

4.6   Extended Hamming Codes 

4.6.1   Construction of Extended Hamming Codes   

The Hamming , , can be easily extended by adding an 

extra parity bit to each of its codeword to obtain an -code called 

an extended Hamming code,   

The extended code may have stronger error detection capability as we will 

see in the later section. 

The following definition generates the extended Hamming code, 

, given a Hamming code . 
  
We can extend the Hamming code  by extending each codeword 

of  by one position. This is done by adding a new parity check bit, 

 to the codeword, such that the weight of the codeword is even. 

Then the resulting is an extended Hamming code . 

This new parity check bit,  is sometimes called a parity check digit.  

For instance, if  

   is even. 
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Example 4.11:  based on the Hamming code , given in 

(Table 11) is shown in the following table. 

 
                             Table 16:    

  
(0000000) (00000000) 
(0010011) (10010011) 
(0110101) (00110101) 
(1000111) (01000111) 
(1011001) (01011001) 
(0101011) (00101011) 
(0011110) (00011110) 
(1110010) (01110010) 
(1111111) (11111111) 
(1100001) (11100001) 
(1101100) (01101100) 
(1001010) (11001010) 
(0111000) (10111000) 
(1010100) (11010100) 
(0100110) (10100110) 
(0001101) (10001101) 

 

Theorem 4.6: An extended Hamming code  of an  

Hamming code, , is an  linear code. 

Where ,  & the numbers 3 

and 4 are the minimum distance of , respectively. 

Proof: 

From the definition of extended hamming code the parity check will be 

added by one bit, so the new length is . 

The length of message doesn't change because the new bit is added as a 

parity check not information bit, so the number of information bits still .     
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In order to show that  is a linear, Let  and  

s.t.,  and  are the corresponding codewords of . The vector 

 will be identical to  in the last  positions. 

If  has odd weight then we can, without loss of generality, assume 

that  has odd weight and  has even weight. Thus the first entry of  is 

1 and the first entry of  is 0. It follows that the first entry of  

must be 1. Therefore  is even. 

Since , then .  
 

If  has even weight, then  and  must be either even or both odd. 

In either case, their first positions have the same entry which is 0, because 

of 0 + 0 = 0 and 1 + 1 = 0. Therefore  is even. 

Since , then .  
 

We now show that the minimum distance of   is 4. 

Since minimum weight of  is 3, suppose  for some 

Hamming codewords . Then one of  or  has even parity and the 

other has parity odd, say  has even parity. Suppose are the 

extended Hamming codewords obtained by adding check digits  to 

, respectively. Then  since  has even parity and  

since  has odd parity.  

So, .                               
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Definition 4.4: The parity check  of  is obtained by the parity 

check matrix  of  by adding a zero column on the left, and a row 

of all 1's on the bottom as follow: 

 
 

4.6.2   Error-Detecting & Error-Correcting Capabilities of Extended 

Hamming Codes 

Corollary 4.2: For , we can detect up to 3 errors but still can 

only correct a single error. 

Proof: Since the distance of  is 4, then we have the following; 

The random-error-detecting capability of =  

The random-error-correcting capability of = .    
 

Let  be check matrix of  and  be 

check matrix for an extended Hamming code, .  

If  be transmitted codeword and            

 be a received word with only one error. Then using the 

syndrome we can detect/correct that error. 

First, if the error occurred in the last  bits. 
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Computing the syndrome of  where the first column of ,  denotes 

by . 

 
                                     

                                          

                                          

                                          

                                                                         (4.10) 

But the syndrome of the corresponding codeword of , say  is;  

 
Since there is an error in one of bits of . 

So (4.10) will be as follows; 

 
The last row of the syndrome  will be 1, i.e.  

Since  is an even number, but there is an error in one bit of . 

Hence,  will be an odd number. 

So,                                                                           (4.11) 

Clearly from (4.11) that the syndrome matches a column of . 

Hence, there is an error in position  of . Add 1 (modulo-2) to the  

coordinate of .      
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Second, Suppose now that only the parity bit is in error. Then  will be 

zero, so and this matches the first column of . 

Thus, we can assume 1 error has occurred and switch the bit of the word 

corresponding to that column. 

Now suppose 2 errors have occurred. Wherever they occur the parity of the 

entire word will be correct, thus the syndrome will have a 0 in the last row 

and will not be a column of the check matrix. But the syndrome will not be 

zero since codewords of the extended Hamming code have minimum 

distance 4. Thus a nonzero, non-column syndrome indicates 2 errors.  
 

Example 4.12: Consider the (7, 4) Hamming code given in table 11, with 

the check matrix . 

Then   

is the parity check matrix of an extended Hamming code, . 

If  be a received word then: 

 
Hence, there is an error in position 2 of . Add 1 to the  coordinate of  

so, . 
 

If  be a received word then: 
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Hence, there is an error in position 0 of . Add 1 to the  coordinate of  

so, . 
 

If  be a received word then: 

 

Thus the syndrome will have a 0 in the last row and will not be a column of 

the check matrix. Thus a nonzero, non-column syndrome indicates 2 errors.      
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Chapter 5 

Cyclic codes 

Cyclic codes form an important subclass of linear block codes and 

were first studied by Prange in 1957. These codes are popular for two main 

reasons: first, they are very effective for error detection/correction and 

second, they possess many algebraic properties that simplify the encoding 

and the decoding implementations. 

 

5.1   Description of Cyclic Codes 
If the components of an -tuple  are cyclically shifted 

one place to the right, we obtain another -tuple, 

, 

which is called a cyclic shift of .  

Clearly, the cyclic shift of  is obtained by moving the right most digit 

 of  to the left most digit and moving every other digit 

 one position to the right.    

If the components of  are cyclically shifted  places to the right, the 

resultant -tuple would be 

                   .                (5.1) 
 

Remark 5.1: Cyclically shifting  -places to the right is equivalent to 

cyclically shifting  -places to the left. 
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Definition 5.1: An  linear code  is called cyclic if any cyclic shift of 

a codeword in  is also a codeword in  i.e. whenever , 

then so is .   
 

Example 5.1: Consider the following  linear code ; 

 

 
. 

One can easily check that the cyclic shift of a codeword in  is also a 

codeword in . For instance, let , then: 

. 

Hence, the code  is a cyclic. 
 

Remark 5.2: The pair  is not arbitrary chosen.  

We show later in section (5.3) that  is the degree of the polynomial 

that generates the cyclic code .   
    

5.2   Algebraic Property of Cyclic Codes 

In this section we prove an important algebraic property of cyclic codes 

which simplifies the encoding and syndrome computation. 

Recall the polynomial representation 

                                            (5.2) 

of the -tuple  as defined in Section 1.8.. 

Each codeword corresponds to a polynomial of degree . 

We shall call the polynomial  the code polynomial of . 
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  Remark 5.3: The correspondence between the codeword  and the 
polynomial  is one-to-one. So from now on, we will use the terms 
"codeword" and "code polynomial" interchangeably. 

Example 5.2: The polynomial representation of the  cyclic code  of 

Example 5.1 is given in following table: 
Table 17: The Polynomial Representation of the  Cyclic Code 

Codeword   Code polynomial  
(0000000) 0 
(1101000)  
(0110100)  
(1011100)  
(0011010)  
(1110010)  
(0101110)  
(1000110)  
(0001101)  
(1100101)  
(0111001)  
(1010001)  
(0010111)  
(1111111)  
(0100011)  
(1001011)  

Clearly, each codeword in (Table 17) corresponds to a polynomial of 

degree . The nonzero code polynomial of minimum degree in this 

cyclic code is  and it's of degree 3. 

The code polynomial that corresponds to the codeword                             

 is 

 
                                                       (5.3) 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


130 
 

The following theorem shows an interesting algebraic relationship between 

 and . 
 

Theorem 5.1: In the cyclic  code, the code polynomial  is 

simply the remainder resulting from dividing the polynomial  by 

. 

Proof: Consider the codeword  in the 

cyclic code . 

The code polynomial that corresponds to that codeword  is 

.       

Now, if the components of that  are cyclically shifted -places to the right, 

then the corresponding codeword will be 

. 

The code polynomial that corresponds to the code word  is given in 

(5.3). 

Now, multiplying  by , we obtain 

.  

               

                             (5.4) 

where .                                  (5.5) 

Since  modulo 2-addition and by (5.3), 

 
                                                                     (5.6) 
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Then the code polynomial  is simply the remainder resulting from 

dividing the polynomial  by .                                                
 

5.3   The Generator Polynomial and its Algebraic Properties 

In this section, we prove number of important algebraic properties of the 

polynomial called the generator of the code.   
 

Property 1: The nonzero code polynomial of minimum degree in a cyclic 

code  is unique. 

Proof: Suppose that  is a non zero 

code polynomial of minimum degree . 

Suppose  is not unique. 

Then there exists another code polynomial of degree , say 

.  

Since  is linear, 

  is 

also a code polynomial which has degree less than .  

If , then  is a nonzero code polynomial 

with degree less than the minimum degree , a contradiction to the 

minimally of . Thus . This implies that . 

Hence,  is unique.                                                                                          

From now on, we use  as the 

unique non zero polynomial of minimum degree in . 
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Property 2: The constant term  must be equal to 1. 

Proof: Suppose that . Then 

. 

By shifting  cyclically  places to the right (or one place to the 

left), we obtain nonzero code polynomial, 

                          

which has a degree , a contradiction to the minimally of . Thus 

.                                                                                                          
 

Example 5.3: Consider the  cyclic code given in table 17. The unique 

nonzero code polynomial with minimum degree is: 

. 

Moreover, we treat the coefficients of  as the components of a 

codeword . 
 

Theorem 5.2: The cyclic -shifts of the minimal degree code 

polynomial , given by; 

                                                  

(5.7) 

are all code polynomials in . Moreover, all linear combinations of (5.7) 

are also code polynomials. 

Proof: Consider the polynomials , which 

have degrees , respectively. 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


133 
 

Since , then by replacing  by  in 

(5.5 and 5.6) we obtain the following:  

 

 
                                                                                                                (5.8)                                          

 
                      

That is, (5.8) are cyclic shifts of the code polynomial  in an  

cyclic code .  

Using definition 5.1 of the cyclic code, then (5.7) are also code 

polynomials in . 

Now, since  is linear code, then all linear combinations of (5.7), 

 
are also code polynomials where  or 1.                                             
 

Example 5.4: Consider the cyclic  code given in table 17 with 

 where the corresponding codeword is                       

. Then the following polynomials are cyclic shifts 

of  and also code polynomials in ; 
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Moreover, all linear combinations of  are 

code polynomials in ; 

 

 

 

 

 

 

  
 

                                            

 

 
                                                           

The example above showed that g(x) generates the cyclic code  

given in (Table 17). Hence we call it the generator polynomial of .   
 

Definition 5.2: The generator polynomial of a cyclic code  is the unique 

non zero polynomial of minimal degree  in  and is denoted by 

.   
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Property 3: A binary polynomial of degree  is a code polynomial 

if and only if it is a multiple of . 

Proof:  Let  be a binary polynomial of degree  or less. 

Suppose that  is a multiple of . Then 

 
         . 

Since  is a linear combination of the code polynomials, 

, 

then  is a code polynomial in . 

 

 Now, let  be a code polynomial in . 

Dividing  by , we obtain 

, 

where either  is identical to zero or the degree of  is less than the 

degree of . 

Rearranging the equation above, we have 

, 

It follows from the first part that  is a code polynomial. 

Since both  and  are code polynomials in linear code, then 

 must also be a code polynomial. 

If , then  is a nonzero code polynomial whose degree is less 

than the degree of .  

This contradicts the assumption that  is the unique nonzero code 

polynomial of minimum degree. Thus,  must be identical to zero. 
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Hence, . This proves that a code polynomial is a 

multiple of .                                                                                               
 

Lemma 5.1: There are  distinct code polynomials of degree  

in .  

Proof : Suppose  is a code polynomial of degree . Then by 

(Property 3)  is a multiple of  and 

can be written as 

 for some 

polynomial .  

Since , then there are a total of  distinct polynomials of 

degree . 

Thus, the number of polynomials of degree  is also .              
 

Note that, the  polynomials given in lemma 5.1 form all code 

polynomials of the  cyclic code . 
 

Property 4: The degree of the generator polynomial of an  cyclic 

code is . 

Proof: Let  be the generator polynomial of a linear 

cyclic code , then from (Chapter 2) a linear  code has  

distinct codewords. from (Lemma 5.1) there are  distinct code 

polynomials. 

Now, by one to one corresponding of the codeword and code polynomial 

we have;                                        
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At this point, a natural question is how to select a generator polynomial 

 which generates the  cyclic code . 
 

Theorem 5.3: The generator polynomial  of an  cyclic code is a 

factor of . 

Proof: Multiplying  by  results in a polynomial  of degree 

 since  is a polynomial of degree . Dividing  by 

, then we obtain the following equation from (5.6) 

 
where the code polynomial  is the remainder and it is obtained by 

shifting  to the right cyclically  times. 

But . Hence,  

                                                                (5.8) 

Now, using (Property 3)  is a multiple of , say 

 

From (5.8) we obtain  

 
                              

Thus,  is a factor of .                                                                  
 

Definition 5.3: Let  be a fixed polynomial over . Two 

polynomials  are said to be congruent modulo , written 

 
if  is divisible by  
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Corollary 5.3:  

Proof: By (Theorem 5.3)  for some  of degree .  

.             
 

Theorem 5.4: If  is a polynomial of degree  that divides , 

then  generates an  cyclic code. 

Proof: Let  be a polynomial of degree  that divides  then 

, for some  of degree . Consider the  

polynomials , which all have degree .             

A linear combination of these  polynomials is  

 
          

is also a polynomial of degree  and is a multiple of . 

There are a total of  such polynomials and they form an  linear 

code . 

Now, we show this  linear code is cyclic. 

Let  be a code polynomial in this code. 

To complete this proof we must show the cyclic shift of  is also a code 

polynomial in   

Multiplying  by , we obtain  

 
             

                                                                      (5.9) 

Rearranging the equation (5.9) we have 
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                         (5.10) 

Equation (5.10) show that  is a multiple of . 

But  is a polynomial of degree , so it is can be written as follows; 

 

Thus, (5.10) will be written as follows; 

 
       

 

                                                                           (5.11) 

The last equation (5.11) showed the cyclic shift  of  is a linear 

combination of . Hence,  is also a code 

polynomial and the linear code generated by  is 

an  cyclic code.                                                                                              
 

Note that, theorem 5.4 actually says that any factor  of  with 

degree  generates an  cyclic code , by taking all linear 

combination of . In other words, the  code 

polynomials  span . 

i.e.,     
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Example 5.5: The generator polynomial  of the (7, 4) cyclic code is a 

factor of  and it is a polynomial of degree 3. 

The polynomial  can be factored as follows: 

. 

There are two factors of degree 3 each generates a (7, 4) cyclic code. 

If , then from above we can design (7, 4) cyclic code  

where                                           (5.12 ) 

In fact, (5.12) generates the same cyclic code given in Example 5.1.  

If , then the cyclic code consists of 
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Note that, in the above example we can find a (7, 3) cyclic code generated 

by the generator polynomial 

 in the same way.  
 

5.4   The Generating Matrix, the Check Polynomial and the   

        Parity Check Matrix for Cyclic Codes 

5.4.1   The Generator Matrix 

Recall that the  code polynomials  span an 

 cyclic code  with generator polynomial 

. Then, if the -tuples corresponding 

to these  code polynomials are used as the rows of an  matrix, we 

obtain the following generator matrix for : 























=

−

−

−

−

kn

kn

kn

kn

gggg

gggg
gggg

gggg

G

.....0...00

0..0.....00
0..00.....0
0..000.....

210

210

210

210

MM

 

Note that, all rows of  are linearly independent. So, 

 form the basis for . 
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Example 5.6: Design all cyclic codes of length 4 using the generator 

polynomial and generator matrix for each cyclic code. 

Factorization of  over  has the form 

 
 

Table 18: All Cyclic Codes of Length 4 
Generator polynomial  Generator matrix  

1  
 

 
 

 
  

  
 

Note that, . 
 

5.4.2   Check Polynomials  

Let  be a cyclic  code with the generator polynomial  (of 

degree , then                                               (5.13)        

where the polynomial  has the degree  and is of the following form: 

 

with .  

We call  the check polynomial of  or the parity polynomial of . 

The check polynomial will be used to determine if the received word is a 

codeword in the cyclic code  as follows; 
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Theorem 5.5: Let  be a cyclic code with a generator polynomial 

 and check polynomial . Then  if and only if 

. 

Proof:  Suppose                           (5.14) 

for some . 

Multiply both sides of (5.14) by  then we obtain 

 
 Suppose . To show that , we 

must show  is a multiple of  by (Property 3 of ). 

Consider . 

where  are the quotient and remainder polynomials, 

respectively.   

Multiply both sides of the above equation by  then we obtain 

 
But  

by (5.13) 

 or  but , so 

. Therefore  is a multiple of .                        
 

Remark 5.4: The check polynomial of the cyclic code  generated 

by  is . 

Proof: From (5.13).  
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Example 5.7: Consider the (7, 4) cyclic code generated by 

 with the parity check polynomial 

. 

Then the polynomial  is a code polynomial of  if and 

only if . 

 Since                                                                      

                    

and 
xxx

xx
xx

xx
xxxx

xx
xxxxxxx

++

+

+

+

+

+++

+

++++++

23

8

8

29

289

310

2389107

00

1

 
Thus  is a code polynomial of . 
 5.4.3   Parity Check Matrices 

In this section we will use the check polynomial  of the cyclic code  

to generates the dual code . 
                        

Theorem 5.6: Suppose  is a cyclic  code with the check polynomial 

, then 

(i) The parity check matrix for  is 



















=

−

0

01

01

000

00
00

hh

hhh
hhh

H

k

k

kk

LL

LM

LL

LL
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(ii) The polynomial  

                               (5.15) 

generates an  cyclic code . 

Note: the polynomial  is defined as the reciprocal of  

Proof:  

(i) We show that any codeword  in  is orthogonal to 

every row of . 

Let  be a code polynomial in . Then 

 for some polynomial  of degree . 

Multiplying  by , we obtain 

 

 
                                                                                  (5.16)    

  

Clearly the powers  do not appear in (5.16). If we expand 

the product  on the left-hand side of (5.16), the coefficients of 

 must be equal to zero, i.e. 

 

 
                                                                                                              (5.17) 

 

The system (5.17) can be represent as follows 
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

















=





































−

−

0

0
0

000

00
00

1

1

0

0

01

01

MM

LL

LM

LL

LL

nk

k

kk

v

v
v

hh

hhh
hhh

 

It follows from (5.17) that any codeword  is 

orthogonal to the word  and to the any cyclic 

shift of , i.e. any codeword  is orthogonal to every row of . 

Therefore,  is a parity-check matrix of the cyclic code .                            
 

Proof (ii): To show that  is an  cyclic code generated by the 

polynomial , it is sufficient to show that 

 is a factor of . 

Observe that from (5.13) 

                                                                               (5.18) 

Now, if we substituted  in (5.18), then we obtain 

                                             (5.19) 

Multiplying both sides of (5.19) by  

                (5.20) 

Rewrite (5.20) using  in the left hand side of (5.20) 

                    

But  so we have the following 

           

Therefore  is indeed a factor of  and hence, the polynomial 

 generates an  cyclic code .                                              
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Note that the row space of  is the dual  of . 

Moreover, since the parity check matrix  is obtained from the polynomial 

, we call  the parity polynomial of . Hence, a cyclic code is also 

specified by its parity polynomial. 
 

Definition 5.4: In an  cyclic code  the minimum distance (The 

minimum weight) of the dual code  is the degree of the polynomial 

. 
 

Example 5.8: Consider the (7,4) cyclic code given in table 17 with 

generator polynomial  and generator matrix  

. 

Then the parity polynomial  is 

 
and hence, the reciprocal of  is 

  

                                         

The parity check matrix  of  is 
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Now, The dual code  of , which is generated by 

 consists of 

 

 

 

 

 

 

 

 
Clearly, the minimum distance (minimum weight) of  is 4, which is the 

degree of the polynomial . 
 

The parity check matrix  can be used to check the codewords of the cyclic 

code  as in the following theorem: 
 

Theorem 5.8:  is a codeword in a cyclic code  if and only if 

. 

This can be expressed as 

0

000

00
00

1

1

0

0

01

01

=





































−

−

nk

k

kk

r

r
r

hh

hhh
hhh

M

LL

LM

LL

LL

 

Proof: It follows from theorem 5.6 (i) that any codeword 

 in  is orthogonal to every row of .                   
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5.4.4   Systematic Form of  

The generator matrix in systematic form can also be formed easily using 

these three steps: 

Consider  is the cyclic code with the generator polynomial . 

First: Dividing  by the generator polynomial  for                       

, we obtain 

                               ,                                (5.21)               

where  is the remainder with the following form: 

                                         

Second: Rearranging (5.21), for , we obtain the following  

                                                                (5.22) 

Since the R.H.S. of (5.22) is a multiple of  for , then 

the L.H.S.  is a code polynomial  in . 

Third: Arranging the  coefficients of the left hand side of (5.22) as rows 

of a  matrix as follows 























=

−−−−−−

−−

−−

−−

1000

0100
0010
0001

1,12,11,10,1

1,2222120

1,1121110

1,0020100

*

LL

MMMMMMMM

L

LL

LL

knkkkk

kn

kn

kn

bbbb

bbbb
bbbb
bbbb

G =  

which is the generator matrix of  in the systematic form. Since the rows of 

 span the row space of it, where any linear combination of these rows is 

again codeword in the row space. 

 is also a codeword, where  is  row in . 

 codewords. 
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But  is spanned by the row space of . 

Moreover, the rows of  are linearly independent. 

 generates .        
 

The corresponding parity check matrix for  is the following  

matrix;      

           






















=

−−−−−−−−−

−

−

−

1,11,21,11,0

2,1221202

1,1211101

0,1201000

1000

0100
0010
0001

knkknknkn

k

k

k

bbbb

bbbb
bbbb
bbbb

LL

MMMMMMM

L

LL

LL

 
 

Example 5.9: Again, let us consider the (7, 4) cyclic code given in table 17 

which is generated by . 

Clearly, the generator matrix  and the parity check matrix  of  given in 

example 5.8 are not in systematic form so; 

Dividing  by , we have 

 

 

 
. 

Rearranging the equations above using (5.24), we obtain the following four 

code polynomials:              
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Arranging the coefficients of these four code polynomials as rows of the 

 matrix 

 
which is the generator matrix of  in systematic form. 

The corresponding parity check matrix for  is 

 
 

Important fact: The above algorithm can be made easier when it uses the 

power representation for the elements of  given in section 1.8. 

Given  as a primitive polynomial which has a 

zero in  at the primitive element , and thus all codewords  

satisfy . 

 That is  

                                        (5.23) 

And the parity check matrix  
 

For example: The above generator matrix  given in example 5.9 can be 

formed in another way using (5.23). 

Since the polynomial  is a primitive polynomial which 

has a zero in  at  
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where  are the remainders when we divide  

by , respectively. 

Arranging the coefficients of these four polynomials 

 as rows of the  matrix 

 
which is the generator matrix of  in systematic form. 

& .  

 

5.5   Encoding Operations 

5.5.1   Nonsystematic Encoding 

In an  cyclic code, every code polynomial  can be expressed as a 

multiple the message  and  

where the degree of  is . 

                                                                                 (5.24) 
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         . 

          

Using the vectors the code polynomial  given in (5.24) can be 

expressed as follows;      

   

     (5.25) 

   

where  correspond to the , respectively.     
 

Therefore, an  cyclic code is completely specified by its generator 

polynomial . 

 

Remark 5.5: The degree of  is equal to the number of parity-check 

digits  of the code. 
 

Example 5.10: Consider the cyclic code  generated by 

, where message set is  

 

. 

Using (5.24), the corresponding encoded messages are given in the 

following table. 
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Table 19: The Cyclic Code  Generated by  
Messages 

 
Message 

polynomials  
Code polynomials 

 
(By 5.24) 

Codewords 
 

(By 5.25) 
(0000) 0 0=0.  (0000000) 
(1000) 1  (1101000) 
(0100)   (0110100) 
(1100)   (1011100) 
(0010)   (0011010) 
(1010)   (1110010) 
(0110)   (0101110) 
(1110)   (1000110) 
(0001)   (0001101) 
(1001)   (1100101) 
(0101)   (0111001) 
(1101)   (1010001) 
(0011)   (0010111) 
(1011)   (1111111) 
(0111)   (0100011) 
(1111)   (1001011) 
 

5.5.2   Systematic Encoding 

In systematic encoding the codeword  is divided into two parts: 

the message part and the redundant checking part. The message part 

consists of the  message digits  and the redundant checking part consists 

of  parity-check digits. 

Encoding in systematic form consists of three steps: 

Consider the message vector  and the corresponding message polynomial 

. 

. 
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Step 1: Shift  to the right  positions by multiplying  by  to 

obtain a polynomial of degree . 

                            (5.26) 

Observe that the vector corresponding to (5.26) is 

 
Step 2: Dividing  by the generator polynomial  to obtain the 

remainder  (the parity-check digits). 

                                                          (5.27) 

Where  and  are the quotient and the remainder, respectively.  

Since the degree of  is , the degree of  must be  or 

less, that is, 

 
Step 3: Obtain the code polynomial  by adding  to  as 

follows 

  

                               

                                                      

which corresponds to the codeword 

. 
 

Recall that the division by the generator polynomial  of the above 

algorithm becomes easier when it is use the power representation of the 

elements of . 

For  if  

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


156 
 

                                        (5.28) 

Example 5.12: The systematic form of the 16 codewords in the (7, 4) 

cyclic code which is given in (Table 19) are listed in the following table. 

For the message polynomial  there is 

 s.t.  is a codeword in .  
 

Table 20: The (7,4) Cyclic Code Generated by  in 
Systematic form 

Message 
 

Message 
polynomial  

Codeword 
 

Code polynomial 
 

(0000) 0 (0000000) 0 
(1000) 1 (1101000)  
(0100)  (0110100)  
(1100)  (1011100)  
(0010)  (1110010)  
(1010)  (0011010)  
(0110)  (1000110)  
(1110)  (0101110)  
(0001)  (1010001)  
(1001)  (0111001)  
(0101)  (1100101)  
(1101)  (0001101)  
(0011)  (0100011)  
(1011)  (1001011)  
(0111)  (0010111)  
(1111)  (1111111)  
 

For instance, let  be the message to 

be encoded.  

Step 1; Multiplying  by ; 
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Step 2; Dividing  by the generator polynomial . 
 

1

100

1

1

23

3

3

24

234

235

45

346

3563
+++

++

++

+

++

++

++

+

++

++++
xxx

xx
xx

xxx
xxx

xxx
xx

xxx
xxxxx

 

We obtain the remainder . Thus, the code polynomial is  

 
 

. 

Note that, if  then  

For instance, if  then  

.  

if  then 

 

.  

Etc. 
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5.6   Shift-Register Encoders for Cyclic Codes 

In this section we present circuits for performing the encoding operation by 

presenting circuits for computing polynomial multiplication and division. 

Hence, we shall show that every cyclic code can be encoded with a simple 

finite-state machine called a shift-register encoder.  

To define the shift register we want to the following definition; 
 

Definition 5.5: A D flip-flop is a one-bit memory storage in the field 

. 
 

 
                                          Figure 15: Flip-Flop  
 

External clock: Not pictured in our simplified circuit diagrams, but an 

important part of them, which generates a timing signal ("tick") every  

seconds.  

When the clock ticks, the content of each flip-flop is shifted out of the flip-

flop in the direction of the arrow, through the circuit to the next flip-flop. 

The signal then stops until the next tick. 
 

Adder: The symbol of adder has two inputs and one output, which is 

computed as the sum of the inputs (modulo 2-addition). 
 

 

  

 

+ Out put 
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Multiplication: The symbol of multiplication has one input and one 

output, where the output is the multiplication of the input and the number 

 which is stored in this symbol (either 1 or 0), where 0 represented by no 

connection and 1 by a connection. 
 

 

 

Definition 5.6: A shift-register is a chain of  D flip-flops connected 

to each other, where the output from one flip-flop becomes the input of the 

next flip-flop.  
    

 
Figure 16: Shift Register 

 

All the flip-flops are driven by a common clock, and all are set or reset 

simultaneously. 
 

5.6.1   Nonsystematic Encoder 

Recall that for an  cyclic code  the code polynomial  

corresponding to the message  is obtained by the encoding operation 

of polynomial multiplication: 

. 

It turns out that polynomial multiplication is easy to implement using the 

shift register encoder, and we shall now make a brief study of this subject 

using the following example. 

    

 Out put 
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Example 5.13: Consider a generator polynomial for a (7, 4) binary cyclic 

code of is . 

Then the corresponding shift-register encoder of the polynomial 

multiplication  

 
                  (5.29)               

is shown in figure 17. 
 

Figure 17: Nonsystematic Encoder for (7, 4) Cyclic Code with Generator 
Polynomial . 

 

Hear we have 3 flip-flops since . 

Now let's understand why the circuit of (Figure 17) can be used for 

polynomial multiplication in (5.29). 

First: The flip-flops of figure 17 are initially filled with 0's, 

Second: Input the sequence  (First-element first) followed by 

 0's 

 

one bit every tick to the shift register via the input arrow.  

Let us now study the behavior of the circuit at each tick of the clock: 

Input 
 

 

+ + Output 

 

  
  

+ 
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Tick 0:   input  

Shift registers contents:  

Output  

Tick 1:   input  

Shift registers contents:  

Output  

Tick 2:   input  

Shift registers contents:  

Output  

Tick 3:   input  

Shift registers contents:  

Output  

Tick 4:  input  

Shift registers contents:  

Output  

Tick 5:   input  

Shift registers contents:  

Output  

Tick 6:   input  

Shift registers contents:  

Output  

Hence, the output sequence will be , where the  

are defined by equations above. 
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Now let  be the generator polynomial of  given 

in (Table 19). Consider the information bits are (1 0 1 1) then the 

nonsystematic encoder is shown as follows: 
 

 
Figure 18: Nonsystematic Encoder for the (7, 4) Cyclic Code with 

Generator Polynomial . 
 

First: The flip-flops of figure 18 are initially filled with 0's, 

Second: Input the sequence  followed by  0's  

 

one bit every tick to the shift register via the input arrow.  

Let us now study the behavior of the circuit at each tick of the clock: 

Tick 0:   input  

Shift registers contents:  

Output  

Tick 1:   input  

Shift registers contents:  

Output  

Tick 2:   input  

Shift registers contents:  

Input 
 

 

+ + 

  

Output 
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Output  

Tick 3:   input  

Shift registers contents:  

Output  

Tick 4:  input  

Shift registers contents:  

Output  

Tick 5:   input  

Shift registers contents:  

Output  

Tick 6:   input  

Shift registers contents:  

Output  

Hence, the corresponding codeword will be . 

 

5.6.2   Systematic Encoder 

The encoder of Figure 17 could be simpler, but it is unfortunately not 

systematic encoder. 

However, the idea to design a systematic shift-register encoder for the 

previous cyclic code is to use the result of section 5.5.2, which says that if 

 is an information polynomial, then 

                                                (5.30) 
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is a systematic encoding rule for a cyclic code with generator polynomial 

, where  is the remainder polynomial dividing  by 

. 

The following figure shows the encoding circuit for an (7, 4) cyclic code 

with generator polynomial .  

 

 
 

 

 

 
Figure 19: Systematic Shift-Register Encoder for a (7, 4) Cyclic Code with 

 
 

In this circuit the flip-flops store the  parity check digits  

(the coefficients of ) at the last tick. 

 

Note that the right-most symbol of the word is the first symbol to enter the 

encoder. The gate is turned on until all the information digits have been 

shifted into the circuit 
 

The encoder operation is carried out as follows:  

Step 1: Reset the coefficients of the flip-flops, i.e.  

Step 2: The behavior of the circuit at each tick of the clock: 

Note that the input to the gate in  stage is:  
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where  is the stored digit of the second flip-flop in the  stage.     

Tick 0:   Input to the channel:  

Input to the gate:  

Shift registers contents:  

Tick 1:   Input to the channel:   

Input to the gate:  

Shift registers contents: 

 
               

Tick 2:  Input to the channel:   

Input to the gate:   

Shift registers contents: 

 

 

 
Tick 3:   Input to the channel:  

Input to the gate: 

 

Shift registers contents: 
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Step 3: Break the feedback connection by turning off the gate.               

Step 4: Shift the parity-check out and send them into the channel. 

The parity-check digits  and  are the contents of 

the shift register in tick 3. In this case, 

 
 

 
 

 
 

Hence, the output sequence to the channel will be . 

 

Now let  be the generator polynomial of  given 

in table 20. Consider the information bits are ( ) then the 

systematic encoder is shown as follows: 
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Figure 20: Systematic Shift-Register Encoder for the (7, 4) Cyclic Code 

with  
 

Step 1: Reset all the flip-flops. 

Step 2:  

Tick 0:   Input to the channel:  

    Input to the gate:  

     Shift registers contents:  

Tick 1:   Input to the channel:   

               Input to the gate:  

               Shift registers contents:  
               

Tick 2:  Input to the channel:   

               Input to the gate:   

               Shift registers contents:                

Tick 3:   Input to the channel:  

              Input to the gate:  

              Shift registers contents: 
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Step 3: Break the feedback connection by turning off the gate.               

Step 4: Shift the parity-check out and send them into the channel. 

The parity-check digits  and  are the contents of 

the shift register in tick 3. In this case, 

 

 

 

For example, if the information bits are (1  0  1  1), the corresponding 

codeword will be (1 0 0 1 0 1 1).  
 

5.7   Cyclic Codes Decoding 

Decoding of cyclic codes consists of the same three steps as for decoding 

linear codes: 

1. Syndrome computation, 

2. Association of the syndrome to an error pattern, 

3. Error correction. 
 

Recall from Chapter 3 for any linear code, we can form a standard array, or 

we can use the reduced standard array using syndromes. For cyclic codes it 

is possible to exploit the cyclic structure of the code to decrease the 

memory requirements. 

First we must determine if the received word  is a codeword in  or not 

using (Theorem 5.5) which is say that an  if and only if 
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If  we determine the closest codeword in  using the 

syndrome of  as follows: 

Since every valid received code polynomial  must be a multiple of the 

generator polynomial  of , then when we divide  by  the 

remainder is zero exactly when  is a codeword, i.e. 

 

Thus we can employ the division algorithm to obtain a syndrome as 

follows: 

 
where  is the quotient and  is the remainder polynomial having 

degree less than the degree of : 

 

Thus, to compute the syndrome we can use a circuit such as that in the 

figure 19 as we will see after the following useful result about cyclic codes 

and syndromes. 
 

Theorem 5.8: Let  be the syndrome of a received polynomial 

. Let  be the polynomial obtained 

by cyclically right-shifting  and let  denote its syndrome. Then  

 is the remainder obtained when dividing  by . 

Proof: With  the cyclic shift  is 

, 

which can be written as  

                                                          (5.31) 
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It follows from (Theorem 5.1).  

Rearranging (5.31), we have 

                                                          (5.32) 

Dividing both sides of (5.32) by  and using the fact that 

 and , we obtain 

        (5.33)    

Where  is the remainder resulting from dividing  by , 

which is the syndrome of . 

Rearranging (5.33), we obtain the following relationship between  

and : 

                      (5.34) 

Thus  is the remainder from dividing  by   

Hence,  is the syndrome of .                                                   
 

By induction, the syndrome  that corresponds to cyclically shifting 

  times to produce  is the remainder of  when divided by 

.   
 

Example 5.14: For the (7, 4) cyclic code with generator 

, let  be the received word. The 

syndrome of  can be computed from dividing 

 by  

If  

Then  
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  The remainder is the syndrome of  

 is the syndrome. 

Then the cyclic shifts of  and their corresponding syndromes are 

shown in the following table: 
 

Table 21: Corresponding Syndromes of the Cyclic Shifts of  
Polynomial Syndrome 

  
  
  
  
  
  
  

 

 

The syndrome computation can be accomplished with a division circuit as 

shown in the following figure: 

 

 
Figure 21: Syndrome Circuit for the (7, 4) Cyclic Code Generated by 

 

Gate 1 

Gate 2 
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This circuit consists of  stage and it is shifting the received word 

 from the right end.  

The behavior of the circuit at each tick of the clock is; 

Note that the received polynomial is shifted into the register  with all stages 

initially set to 0. 

Tick 0:   Input to the gate 1:  

     Shift registers contents:  

              Input to the gate 2: 0 

Tick 1:   Input to the gate 1:  

               Shift registers contents:  

              Input to the gate 2: 0 

Tick 2:  Input to the gate 1:   

               Shift registers contents:  

              Input to the gate 2:  

Tick 3:   Input to the gate 1:  

              Shift registers contents:  

              Input to the gate 2:  

Tick 4:   Input to the gate 1:  

               Shift register contents:  

              Input to the gate 2:  

Tick 5:   Input to the gage 1:  

               Shift register content:  

               

               Input to the gate 2:  
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Tick 6:   Input to the gate 1:  

               Shift register content: 

               

As soon as the entire  has been shifted into the register, break the 

feedback connection by turning off gate 1 where the syndrome 

 in its registers in tick 6. In this case, 

. 

For example, if the received word is , the corresponding 

syndrome will be (1  0  1).  
 

Now after the gate 1 is closed the system will be shifted 6 or more times. 

The registers contain successively the syndromes  corresponding to 

the cyclically shifted polynomials , which is showed in (Table 5.21).  

That operations can be shown in the following steps: 

Tick 7:   Input to the gate 2:  

              Output: the contents of the shift register: 

             

Tick 8:   Input to the gate 2:  

              Output: the contents of the shift register: 

             

Tick 9:   Input to the gate 2:  

              Output: the contents of the shift register: 

             

Tick 10:   Input to the gate 2:  
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              Output: the contents of the shift register: 

             

Tick 11:   Input to the gate 2:  

              Output: the contents of the shift register: 

             

Tick 12:   Input to the gate 2:  

              Output: the contents of the shift register: 

             
 

For instance, the following table shown how we can computing the 

syndrome and its cyclic shifts for . 

Table 22: Computing the Syndrome and its Cyclic Shifts 

Clock           Input         Registers    syndrome 

Initial:                           0    0    0 

   1                    1           1    0    0 

   2                    1           1    1    0 

   3                    1           1    1    1 

   4                    0           1    0    1 

   5                    1           0    0    0 

   6                    1           1    0    0 

   7                    0           0    1    0 

…………………….(turn off gate) 

   8                                 0    0    1                         

   9                                 1    1    0                 
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  10                                0    1    1                 

  11 1    1    1                

  12        1    0    1                

  13                                  1    0    0                    
 

Now, Let  be the received polynomial with the syndrome , i.e. 

                                                                      (5.35) 

and let  be the error pattern. Then the 

transmitted codeword  is: 

                                                                              (5.36) 

Since  is a multiple of the generator polynomial , i.e. 

, combining (5.35) and (5.36), we have the following 

relationship between the error pattern and the syndrome: 

                                                       (5.37) 

This shows that the syndrome is equal to the remainder resulting from 

dividing  by . 

However, the error pattern  is unknown to the decoder. Therefore, the 

decoder has to estimate  based on the syndrome . If  is a coset 

leader in the standard array and if table-lookup decoding is used,  can 

be correctly determined from the syndrome. 

From (5.37), we see that  is identical to zero if and only if either 

 or it is identical to a codeword, in other words if  is an 

undetectable error patterns. 
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Remark 5.6: The minimum distance of the cyclic code  is equal to 

the minimum weight of  which is equal to the degree of the 

minimum polynomial  of  that is .      
 

Remark 5.7: The cyclic code  is capable of correcting up to 

 errors made by channel.  

 

Example 5.15: Consider again the decoder for the cyclic code with 

generator polynomial . The following table-lookup 

decoding shows the error vectors and their corresponding syndrome vectors 

and polynomials. The code has  cosets and, therefore, there 

are eight correctable error patterns (including the zero word). Since the 

minimum distance of the code is 3, it is capable of correcting all the error 

patterns of weight 1 or 0. Hence, all the 7-tuples of weight 1 or 0 can be 
used as coset leaders. There are  coset leaders, which is 

shown in the following table.  
 
Table 23: Decoding Table for the (7, 4) Cyclic Code generated by 

 
Syndrome 

   
Syndrome polynomial 

 
Error 

  
Error polynomial  

000 0 0000000 0 
100 1 1000000 1 
010  0100000  
001  0010000  
110  0001000  
011  0000100  
111  0000010  
101  0000001  
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Let  be the received word. The syndrome of  

showed in previous example where , then from this table we 

recognize that the received polynomial  has an error in the second bit. 

Thus the transmitted codeword is: 

. 
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Appendix A 

1. An Elementary Row Operation 
Let  be a matrix over ; an elementary row operation performed on 

 is any one of the following three operations: 

(i) Interchanging two rows, 

(ii) Multiplying a row by a nonzero scalar, 

(iii) Replacing a row by its sum with the scalar multiple of another row. 
 

2. Reduced Row Echelon Form (RREF) 
An  matrix is said to be in reduced row echelon form (RREF) when it 

satisfies the following properties: 

(i) All rows consisting entirely of zeros, if any, are at the bottom of the 

matrix. 

(ii) Reading from left to right, the first nonzero entry in each row that does 

not consist entirely of zeros is a , called the leading entry of its row. 

(iii) If rows  and  are two successive rows that do not consist entirely 

of zeros, then the leading entry of row  is to the right of the 

leading entry of row . 

(iv) If a column contains a leading entry of some row, then all other entries 

in that column are zero. 
    

3. Solutions of Linear Systems of Equations 

A linear system of the form  
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                                                                                                             (eq. 1) 

 

is called a homogeneous system. We can also write (eq. 1) in matrix form 

as                                                                                           

Where:     and    

The augmented matrix of this system, 

 

 Using reduced row echelon form (RREF) The solution is: 

 

To the homogeneous system (eq. 2) is called the trivial solution. A solution 

 to a homogeneous system in which not all the are zero is 

called a nontrivial solution. 

4. Linearly Dependent & Linearly Independent 
The procedure to determine if the vectors , ,…,  are linearly 

dependent or linearly independent is as follows: 

Step 1: Form Equation,  

+ +…+ = 0,                                                                       (eq. 3) 

which leads to a homogeneous system. 

Step 2: Construct the augmented matrix associated with the homogeneous 

system of (eq. 1). And transform it to reduced row echelon form. 
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Step 3: If the homogeneous system has only the trivial solution, then the 

given vectors are linearly independent; if it has a nontrivial solution, then 

the vectors are linearly dependent. 
 

5. Basis  
Let =  { , ,…, } be a set of nonzero vectors in a vector space  .  

The procedure for finding a subset of S that is a basis for span is as 

follows: 

Step 1: Form (e.q. 1),  

+ +…+ = 0, 

which leads to a homogeneous system. 

Step 2: Construct the augmented matrix associated with the homogeneous 

system of equation (1). And transform it to reduced row echelon form. 

Step 3: The vectors corresponding to the columns containing the leading 

 form a basis for span .   
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Appendix B  

Algorithm (1) 
Input: A nonempty subset  of . 

Output: A basis for , the linear code generated by a non empty 

set . 

Description: Form the matrix  whose columns are the nonzero codewords 

in . 

Use elementary row operations to put  in REF and locate the leading 

columns in the REF. Then the original columns of  corresponding to these 

leading columns form a basis  for . 
 

Algorithm (2) 
Input: A nonempty subset  of . 

Output: A basis for the dual code , where . 

Description: Form the  matrix  whose rows are all codewords in . 

Use elementary row operations to place  in RREF. Let  be the   

submatrix of  consisting of all the nonzero rows of the RREF:   

(Here,  denotes the  zero submatrix). 

The matrix  contains  leading columns. Permute the columns of  to 

form  where  denotes the  identity matrix. Form 

a matrix  as follows:  where  denotes the transpose of 

. Apply the inverse of the permutation applied to the columns of  to the 

columns of  to form . Then the rows of  form a basis for . 
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  اكتشاف الأخطاء وتصحيحها باستخدام شيفرات هامنج والشيفرات الحلقية
  إعداد

  راهيمإبٍ إبراهيمنعم هاشم 
  إشرافا

  عمران" محمد عثمان. "د
  الملخص

 

لى شيفرات إثنائية  اتصاليفية تشفير الرسائل القادمة من المرسل عبر قنوات تناقش الرسالة ك

  .جماعية خطية مبنية على نظام شيفرات هامنج والشيفرات الحلقية

ثم التحقق من مدى صحة الشيفرات المستلمة من قبل المستلم والبحث عن كيفية لتصحيح 

  .الناجمة عن قنوات الاتصال) ن وجدتإ(الأخطاء 

  . لى الشكل الذي أرسلت عليه من قبل المرسلإعادتها إا فك تلك الشيفرات المعدلة ووأخير

  

  

  

  

 

 

 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com



