An-Najah National University
Faculty of Graduate Studies

STRUCTURAL, ELECTRONIC, ELASTIC
AND MAGNETIC PROPERTIES OF THE
CeXO03(X=Cr, Ga) COMPOUNDS BY USING
FP-LAPW METHOD

By
Omar Rustum Mushref Kabi

Supervisor

Prof. Mohammed Abu-Jafar
Dr. Mahmoud Farout

This Thesis is submitted in Partial Fulfillment of the Requirements for the Degree
of Master of physics, Faculty of Graduate Studies, An-Najah National University,
Nablus, Palestine.

2022



STRUCTURAL, ELECTRONIC, ELASTIC
AND MAGNETIC PROPERTIES OF THE
CeX0s3(X=Cr, Ga) COMPOUNDS BY USING
FP-LAPW METHOD

By

Omar Rustum Mushref Kabi

This Thesis was Defended Successfully on 29/05/2022 and approved by

Prof. Mohammed Abu-Jafar

Supervisor Signature

Dr. Mahmoud Farout

Co-Supervisor Signature

Dr. Abdel-Rahman Abu-Lebdeh

External Examiner Signature

Prof. Mohammed Elsaid

Internal Examiner Signature



Dedication

| offer this work to my family who shared with me all the moments and helped me to
overcome all obstacles, to my mother who did everything for me, to my father - may
God have mercy on him - who was and still is with me in his spirit and in every step |
take in my life, to Professor Issam Al-Ashgar - May God have mercy on him - from

whom we learned the meanings of sincerity and morals before education.



Acknowledgments

First of all, I always thank God for making me pass this message successfully. 1 would
like to thank my doctors, teachers and supervisors, Prof. Dr. Mohammad Abu-Jafar, for
all he did for me to end this phase of help, discussion, guidance and encouragement. |
also thank my Co-supervisor, Dr. Mahmoud Farout for everything he did to help me
complete this project; from practice until the end of this work. | am proud that you are
my supervisors. | do not forget the faculty members for their constant assistance to me.



Declaration

I, the undersigned, declare that | submitted the thesis entitled:

STRUCTURAL, ELECTRONIC, ELASTIC AND
MAGNETIC PROPERTIES OF THE CeXO3(X=Cr,
Ga) COMPOUNDS BY USING FP-LAPW METHOD

| declare that the work provided in this thesis, unless otherwise referenced, is the

researcher’s own work, and has not been submitted elsewhere for any other degree or

qualification.
Student's Name: Omar Rustum Mushref Kabi
Signature:
Date: 29/05/2022



Table of contents

DBAICATION ...ttt b bbb i
ACKNOWIEAGMENES ...t te e sneeneanes v
DECIAIATION ... \
TabIE OF CONTENTS......coiieiie s VI
LISt OF TADIES ... VII
LISt OF FIQUIES ...ttt te et enre e e nneenrs VI
LiSt OF APPENAICES ...ttt bbb X
AADSTIACT ...t Xl
Chapter ONe: INFOUUCTION ........ouveieiiieiiteiti et 1
Chapter TWo: MethodolOgY .......ccouviiiiieieiiece e 4
2.1 The Open-Heimer ApProXimMatioN:......cuiii i ecciiee et ee et e s sre e e s sare e s ssareeessabreeessaneeeeas 4
2.2 Hartree and Hartree-FOck ApproXimation: .........cccueeeiciieeeeiiiieeeecireeeecireeeeeireeeessreeeseneeeeean 5
2.3 Density FUNCLIONAI TREOTY .....ooiiiieeeeee ettt e e e b e e senaeeeean 5
2.4 Single Particle Kohn-Sham EQUAtiON .........cccciiiiiiiiiie ettt s 6
2.5 The Exchange-Correlation FUNCLIONAl ........occiiiiiiiiiie et 8
2.6 Local Density ApproxXimation (LDA).........ccceeeiieeeieeeieeecieeesiteesreesteeestteesbeeesaveesreeesaeesareean 8
2.7 Generalized Gradient ApproXimation (GGA) .......cceeecieeiiiieeiieeciee et re e eare e svee s 8
2.8 The Modified Becke-Johnson (mBJ) potential .........c.ccocouiiieeiiiiieciiiee e e 9
2.9 Augmented Plane Wave (APW) METhod..........cooociiiiiiiiiiieeeiee ettt s 9
2.10 The Linearized Augmented Plane Wave (LAPW) Method..........ccccoveevieevcieeeciee e 10
2. 11 WIENZK COUE .ttt ettt sttt ettt st b ettt sae et s bt et e st e sbe et e sbeemee bt saeenseeneeanes 11
Chapter Three: Computational method............ccooeiiiiiiiiiii e 12
Chapter Four: Results and DIiSCUSSION ..........ccuciviirieiieieeiie et sre e e sneas 13
R (U Toi a0 =] oY o o 1= o =SSR 13
oy U =Yot d o] g Lol o] o o =Y f [ SRR 19
AV Yo = o (ol o o oY= o =N 24
O Ty A ol o o o 1=y o [ R 26
Chapter 5: CONCIUSIONS......ccueeiiiieieite st 29
RETEIENCES. ...t 30
AAPPENTICES. ...ttt bbbt bbbt b et bbbt 34
5 SO PSRUPSR -

\



List of Tables

Table (1): Calculated lattice parameter, bulk modulus, pressure derivative of CeCrOs in

@ CUDIC SEIUCTUIE ...ttt be e nneas 14
Table (2): Calculated lattice parameter, bulk modulus, pressure derivative of CeCrOs in
OrthOrNOMDIC STIUCTUIE. ... e nreas 15
Table (3): Calculated lattice parameter, bulk modulus, pressure derivative of CeGaOs in
@ CUDIC SEIUCTUIE. ..ttt et re e be e nneas 17
Table (4): Calculated lattice parameter, bulk modulus, pressure derivative of CeGaOs in
OrthOrNOMDIC SEIUCTUIE ..ottt 18
Table (5): Energy band gap (Eg) of CeCrO3z and CeGaOs compounds using PBE-GGA
INEENOUS. ...ttt bbbttt bbb b r e e e 20
Table (6): The total magnetic moment for Cubic and Orthorhombic CeCrO3z compound
USING PBE-GGA MELNOU. .......oiiiiiicic ettt nne s 25
Table (7): The total magnetic moment for Cubic and Orthorhombic CeCrOs compounds
With MBJ-GGA POLENLIAL. .....c.oeoieiieiee e e 25
Table (8): The total magnetic moment for Cubic and Orthorhombic CeGaO3
compounds by using PBE-GGA MEthod ..........ccccoiiiiiiiiiiieesece e 26
Table (9): The total magnetic moment for Cubic and Orthorhombic CeGaO3
compounds with mBJ-GGA potential...........coeivriieieiieiiee e 26
Table (10): Calculated elastic constants of CeCrO3z and CeGaO3 in the cubic structure
....................................................................................................................................... 28
Table (11): Calculated elastic constants of CeCrO3z and CeGaOs in the orthorhombic
SETUCTUTE ..ttt ekttt b et ekt et e e s b e e e st et e e e be e nnneenbeennne s 34

VI



List of Figures

Figure (1): Ideal cubic perovskite structure (ABO3).......cccccveieiieiiie e 2
Figure (2): Flow chart for the nth iteration in the self-consistent procedure to solve
Hartree-Fock or Kohn-Sham eqUatioNS. ...........cocveiiiieiice e 7
Figure (3): scheme of Augmented Plane Wave. .........cccoeiieiiieniieneee e, 10
Figure (4): Equation of state of cubic perovskite of CeCrO3 PBE-GGA methods,
(S22 T OO 14
Figure (5): Equation of state of orthorhombic perovskite of CeCrO3 PBE-GGA
MELNOAS, (B VS V). ittt sr e nne e 15
Figure (6): The relationship between Equation of state of the Cubic and orthorhombic
perovskite of CeCrO3 PBE-GGA Methods, (E VS V). ..o 16
Figure (7): Equation of state of cubic perovskite of CeCrO3 PBE-GGA methods,
(3723 PO 17
Figure. (8): Equation of state of orthorhombic perovskite of CeGaO3 PBE-GGA
METNOUS, (B VS V) 1ttt 18
Figure (9): The relationship between Equation of state of the Cubic and orthorhombic
perovskite of CeGaO3 PBE-GGA methods, (E VS V). ..o 19
Figure (10): The Calculated spin polarized (a) up (b) down band structures for cubic
CeCrO3 compound USing PBE-GGA. ........cccoiiiiiieieie et 21
Figure (11): The Calculated spin polarized (a) up (b) down band structures for cubic
CeCrO3 compound with mBJ-GGA potential............cccoceviiiiiiiiiniiciee 35
Figure (12): The Calculated spin polarized (a) up (b) down band structures for
orthorhombic CeCrO3 compound using PBE-GGA ..o, 36
Figure (13): The Calculated spin polarized (a) up (b) down band structures for
orthorhombic CeCrO3 compound with mBJ-GGA potential............cccccveririniniennn, 37
Figure (14): The Calculated spin polarized (a) up (b) down band structures for cubic
CeGa03 compound uSiNg PBE-GGA. ..ot 38
Figure (15): The Calculated spin polarized (a) up (b) down band structures for cubic
CeGa03 compound with mBJ-GGA potential. ...........ccoovreriiiiiiienceee 39
Figure (16): The Calculated spin polarized (a) up (b) down band structures for
orthorhombic CeGaO3 compound using PBE-GGA...........cccovriiinenc e, 40
Figure (17): The Calculated spin polarized (a) up (b) down band structures for
orthorhombic CeGaO3 compound with mBJ-GGA potential. ............cccoooeiiniiininnnn, 41
Figure (18): Total and partial density of state of spin up for (a) CeCrO3, (b) Ce, () Cr
and (d) O of cubic CeCrO3 compound by using PBE-GGA method.............ccccccvenen. 42
Figure (19): Total and partial density of state of spin down for (a) CeCrO3, (b) Ce, ()
Crand (d) O of cubic CeCrO3 compound by using PBE-GGA method....................... 43
Figure (20): Total and partial density of state of spin up for (a) CeCrO3, (b) Ce, (c) Cr
and (d) O of cubic CeCrO3 compound with mBJ-GGA potential. ............cc.ccovvevvennnnn 44

Vil



Figure (21): Total and partial density of state of spin down for (a) CeCrO3, (b) Ce, (¢)
Cr and (d) O of cubic CeCrO3 compound with mBJ-GGA potential. ...........ccccovrneneen. 45

Figure (22): Total and partial density of state of spin up for (a) CeCrO3, (b) Ce, (c) Cr
and (d) O of orthorhombic CeCrO3 compound by using PBE-GGA...........cc.ccccueruenen. 46

Figure (23): Total and partial density of state of spin down for (a) CeCrO3, (b) Ce, (c)
Cr and (d)O of orthorhombic CeCrO3 compound by using PBE-GGA............ccccccueneen. 47

Figure (24): Total and partial density of state of spin up for (a) CeCrO3, (b) Ce, (c) Cr
and (d) O of orthorhombic CeCrO3 compound with mBJ-GGA potential. .................. 48

Figure (25): Total and partial density of state of spin down for (a) CeCrO3, (b) Ce, (c)
Cr and (d) O of orthorhombic CeCrO3 compound with mBJ-GGA potential. ............. 49

Figure (26): Total and partial density of state of spin up for (a) CeGa03, (b) Ce, (c) Ga
and (d) O of cubic CeGaO3 compound by using PBE-GGA method. ...........cccccvenennen. 50

Figure (27): Total and partial density of state of spin down for (a) CeGaO3, (b) Ce, (c)
Ga and (d) O of cubic CeGaO3 compound by using PBE-GGA method...................... 51

Figure (28): Total and partial density of state of spin up for (a) CeGaO3, (b) Ga, (c) Cr
and (d) O of cubic CeGaO3 compound with mBJ-GGA potential..........c..ccccoevvrnrnen. 52

Figure. (29): Total and partial density of state of spin down for (a) CeGaO3, (b) Ga, (c)
Cr and (d) O of cubic CeGaO3 compound with mBJ-GGA potential............ccccceevrnen. 53

Figure (30): Total and partial density of state of spin up for (a) CeGa03, (b) Ce, (c) Ga
and (d) O of orthorhombic CeGaO3 compound by using PBE-GGA. ..........c.ccccueueneen. 54

Figure (31): Total and partial density of state of spin down for (a) CeGaO3, (b) Ce, (c)
Ga and (d) O of orthorhombic CeGaO3 compound by using PBE-GGA. .................... 55

Figure (32): Total and partial density of state of spin up for (a) CeGa03, (b) Ce, (c) Ga
and (d) O of orthorhombic CeGaO3 compound with mBJ-GGA potential................... 56

Figure (33): Total and partial density of state of spin down for (a) CeGaO3, (b) Ce, (¢)
Ga and (d) O of orthorhombic CeGaO3 compound with mBJ-GGA potential.............. 57



Appendix (A): Tables ..

Appendix (B): Figures

List of Appendices



STRUCTURAL, ELECTRONIC, ELASTIC AND MAGNETIC PROPERTIES
OF THE CeXOs3(X=Cr, Ga) COMPOUNDS BY USING FP-LAPW METHOD

By
Omar Rustum Mushref Kabi
Supervisor
Prof. Mohammed Abu-Jafar
Dr. Mahmoud Farout

Abstract

Background: the full potential linearized augmented plane wave (FP-LAPW) method
was used to calculate the structural, electronic, magnetic and elastic properties of cubic
and orthorhombic perovskite compounds CeCrOs, CeGaOs.

Objectives: the FP-LAPW method solves structural parameters (lattice parameters,
bulk modulus, and first pressure derivatives of bulk modulus) by solving the Kohn-

Sham equations for the total energy of many electron-systems.

Methodology: the structural parameters and the consequent electronic, magnetic and
elastic properties were calculated using the generalized gradient approximation (GGA)

that determines the density and density gradient.

Results: by examining the energy band gap of these compounds using the modified
Becki-Johnson potential (mBJ), we show that the compound CeCrOz behaves as a half-
metallic behavior in the cubic structure and also half-metallic in orthorhombic
structure, and that the CeGaOs compound behaves as a semiconductor in cubic
structure and it was found that it is a semiconductor in a spin-up state and an insulator
in a spin-down state in orthorhombic structure. At the same point, the total magnetic
moments were examined, and they were in good agreement with the experimental and
theoretical results for these perovskite compounds. The electronic properties of these
compounds, which are band structure and density of state, were also calculated. Finally,
the elastic properties of these perovskite compounds were studied.

Keywords: FP-LAPW study, perovskite, Half-metallic ferromagnetic, Structural

properties, Electronic properties, Magnetic properties, Elastic properties.
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Chapter One

Introduction

Perovskite is named after the discovery of these materials in 1792 by Lev Perevsky
(1792-1856) M. It is a black or brown mineral with the chemical formula CaTiO3 and
the name of this mineral is calcium titanium oxide discovered by Gustav Rose in the
mountains of Russia. In 1926, its crystal was first described 2! and published for the
first time in 19458,

Perovskite compounds have a major formula, ABXs. A and B are cations of different
masses, where A is greater than B . X is often to be oxygen or possibly other large
ions such as nitrides, sulfides, and halides. It is known that many oxide compounds

belong to few homogeneous chains based on perovskite B,

In its ideal form, perovskite oxides are cuboidal or somewhat cuboidal in structure like
other transition metal oxides that have the same formula (ABO3). At low temperatures,
some phase change may occur. Because of their exceptional crystal structures and
simple in their electrical and ferroelectric properties, oxides of compounds have a wide

potential for many uses.

Perovskite materials are of three types, the first type has local electrons, the second
contains undefined energy band electrons, and the third state is transitional between
these two types E1. Types of perovskite structures exist in many forms including ABO3z-

perovskite and the most abundant in nature is MgSiO3 and FeSiOa.

Scientists have studied perovskite oxides in solid state physics because of the great
importance of these compounds in different topics of physics such as Materials science,

astrophysics, fusion, geophysics, particle accelerators, fission reactors 71,

The oxides are considered to be perovskite which has comprehensive properties such
as; The properties of ionic conductivity, insulator-to-metal transition and change of
solid states phenomena, superconductivity and metallic characters, and finally can be

applied in many fields of chemistry and physics €.

There are great alternatives to perovskite oxides that can accept one or both of the two

existing sites (A and B sites) and their original crystal structures © will be preserved.



Currently, perovskite ceramics have many applications such as transformers, sensors,

microwave screens 11 piezoelectric devices, ! and random-access memory drives*?l,

Perovskite is used in many modern applications because it has many useful properties
in electromechanical, image storage, surface acoustic wave signal, switching, filtering
and photochromic 31, Currently, perovskite halide enters into many fields, the most
important of which is the exploration of materials'? because it has great effectiveness

in solid-state solar energy.

The structure of perovskite is often cubic. It consists of A atoms that are at the corners
of the cube, B atoms are located in its center in a 6-fold coordination, and it is
surrounded by a solid of eight ions, while oxygen atoms are in the centers of the faces.

The A cation is in 12 times the cubic octahedral coordination as in Figure 1.

Figure. (1):
Ideal cubic perovskite structure (ABO3).
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Figure 1 shows a cubic perovskite, the A atom in one cell being a lanthanide ion or an
alkaline earth metal 1. In fact, A are cations that are 12 times coordinated by oxygen
anions and are present in the corners of the cube at position (0, 0, 0), while the oxygen
is located in the center of the face of the cubic lattice at position (Y2, Y%, 0), but there are
Inside oxygen. The octahedral cations are B tetravalent and their position is the center
of the body (%, %, %). This structure is a three-dimensional network imaged from the

angle associated with the angle BOg octahedron 51,

Perovskite contains a large number of compounds, its structure is very stable, it has a
variety of applications, and it also has different properties. The most important role of
octahedral BOg is in ferroelectricity and ferromagnetism. Material optimization comes
from the broad composition of solid solutions by controlling the geometry of the phase



transition and the control of the structure 161, Figure 1 also shows the single-cell

structure of a simple perovskite.

There may be several changes in the shape of the perfect cubic perovskite and this
result in the formation of hexagonal, orthorhombic, rhombohedral, and tetrahedral
shapes. In general, to form a perovskite, we have to meet two requirements which are

the requirements for ionic radii and electron neutrality (711281,

The (FP-LAPW) method will be used in this work to examine the following structural,
electronic, magnetic and finally elastic properties of the two perovskite compounds
CeCrOs, CeGaOs.



Chapter Two
Methodology

It is difficult for us to solve Schrodinger equation for the N-body system, equation (1),
SO we must use some approximations to deal with many body problems [9 20,

Schrodinger equation begins with the Hamiltonian operator given by:

i hzzN:VRj th: n Z Z ZeZZ L
24 M 2 " 4me, |R—r| 81‘[60 |r—r| 8me |R—R )

In this equation, the kinetic energy operator of the nucleus (T;,) is the first term, while

the second term is for electrons (T,). The last three terms in this equation are in the
following order; the electric attraction between the electrons and the nuclei (V,,), the

electric repulsion between electrons (V,.), and the electric repulsion between nuclei
(Van)-

This equation does not have an exact solution. Therefore, we must use some

approximations to simplify its solution, and these approximations are:
2.1 The Open-Heimer Approximation:

This approximation is used to simplify the interaction between nuclei and electrons
[21.22] |t assumes that the movement of the heavier nucleus adapts to the lighter
electrons and is in their instantaneous ground state 2%l at any time. This approximation
neglects the motion of the nuclei when comparing it with the electron because the
nuclei are heavy masses relative to electrons, therefore, have zero kinetic energy. This
means that the first term in Schrédinger equation can be neglected and the last term will
be considered as a constant [*°]. Therefore, equation (1) will be reduced to the following

form:
H=T,+V,,+V,, (2)

In this equation, Te is an abbreviation for the kinetic energy of electron gas, the

potential energy for electron-electron interactions is Vee, and finally Vex is the external

potential, which is V., = Vpy + Vo



2.2 Hartree and Hartree-Fock Approximation:

No two electrons can have the same set of quantum numbers. This is the Pauli
exclusion principle and this is what considered in the Hartree approximation 4. The
Hartree-Fock approximation assumes that the electrons are independent of each other,
so the Hamiltonian can be considered as N-one particle Hamiltonian. The wave

function of the electrons is given as follows:
V (1, 75,75...78) =111 ) Po(r2) Pa(73) ... IN(TW) €©)
In this equation, ¥n (rn) is a wave function of the N™ electron. Schrodinger equation is
given as:
(Ts + Vext + VH) ¥ (7 )= E ¥ (7) 4)

Ts is the Kinetic energy, Vex: is the external potential and Vy is the Hartree potential for

non-interacting electrons. We can write the Vy; equation as follows:

. —\ |2

V., =2 N W@ [Yap| ddridr;
H= ij purgpe
8meg |77

()

2.3 Density Functional Theory

The density functional theory was established in 1964 by the theories of Hohenberg and
Kohn. It can be said that the density functional theory replaces the electron wave
function of many objects with the electron density ?> 261 and this theory is more
powerful and modern than the Hartree-Fock approximation. DFT is used to solve the

many-body problem in a one-body problem.

The DFT theory is based on both Kohn and Hohenberg theories [°. The 3N
Schradinger equation can be reduced to 3 spatial coordinates by both theorems. The
first theory says that the density of the ground state (p,) will be produced by the
successful reduction of the energy function. While the second theory defines the
electron wave theory and thus determines all the ground state properties of an
electronic system by the ground state electron density 21, To solve the variance
problem to reduce the energy function E(p), the lagrangian application of indeterminate
multiples can be used. For this we will rewrite E(p) as the total Hartree energy plus

another unknown function called the exchange correlation function E,..(p).



E(p) = Ts(p) + Ec(p) + Ey(p) + E;i(p) + Exc(p) (6)

In this equation, we used the symbol Ts to refer to a single electronic Kkinetic energy,
and we refer to the Coulomb energy between nuclei and electrons with the symbol E,
while Eii(p) to denote the interaction between the nuclei, Exc is the exchange
correlation energy of an unknown part, and finally En is the Hartree potential energy

which is defined by the following equation:

Eq(p) =< [ d¥r d¥r 20000 )

|7 77|
Schradinger equation for one electron can be written as follows:
[Ts +Vext(r) +Vu(p(r)) +Vxe(p(r))] Pi(r) = & ®i(r) (8)

In this equation, ¢; is the single particle energy, ¢; is the electron wave function, Vy is
the Hartree potential, V,, is the coulomb potential and V. is the exchange-correlation

potential.
2.4 Single Particle Kohn-Sham Equation

We solve the Kohn-Sham equations of the ground state density, Eigen values and the

total energy for a multi-electron system using the LAPW method!*l.

It can be said that it undergoes two external potential; the first is due to the
nuclei V,,.[p], and the second is due to the exchange and correlation effect V,.[p],
which is an energy functional for a classical unreacted electron gas. Where the exact

ground-state density p(r) of an N-electron system is defined as:
p(®) = ZiL; di D di(@ = XL ldi(D)I (9)

where ¢;(¥) is a one-particle wave function, which is the N lowest-energy solution of

the Kohn- Sham equation. This equation can be written by:
Hksdi = €y (10)

The Kohn-Sham equation can be written in another form as follows:

Hp;(®) = [_%viz + Veff] o = €b; (11)



where H is the Hamiltonian operator, while Verr is the effective potential and it is the
sum of the external voltage, the exchange-correlation potential and the Hartree
potential and is given in equation (12):

> >, OE 8Exc > 2 (v > -
Vet () = Vo )+ 2080 S5l —y 3+ £ 10 ey i) (12)

!
8p 4Ty ¥ |T-T/|

We conclude from the previous equation that Vu and Vxc depend on the charge
density p(7), and can be calculated from ¢ ;. This means that we are dealing with self-
consistency problems: it shows us the original equation (Vu and Vxc in Hks), and it is
very difficult to write down the equation and solve it before knowing its solution. Some
starting density p, is guessed, and a Hamiltonian Hyg, can be constructed with it. The
Eigen value problem is solved, and ¢, can be determined from p,. Now p, can be used
to construct Hgg, which will yield p,, and so on. The procedure can be used until the

series converge and final density p, get out as shown in the flow chart in Figure (2).

Figure. (2):
Flow chart for the nt® iteration in the self-consistent procedure to solve Hartree-Fock or

Kohn-Sham equations.
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¥

L input: p (1)
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2.5 The Exchange-Correlation Functional

We do not yet know what the exchange-correlation functional is, although the Kohn-
Sham diagram was an accurate description and only one approximation was made,
which is the Born-Oppenheimer. Two approximations will be used to solve this
unknown part. These two approximations are: LDA (Local Density Approximation)

and GGA (Generalized Gradient Approximation) 141,
2.6 Local Density Approximation (LDA)

As mentioned earlier, the exchange-correlation function is not precisely known 28, we
can use the local density approximation to solve for exchange-correlation energy. The
two who applied the approximate LDA to the DFT are Kohn and Sham %1, The local
density approximation for the exchange correlation energy can be written as the

following equation:
Exd? = [ p(Pexclp(]dr (13)

where the &,.[p(r)] in equation (13) is defined as the exchange-correlation energy per
electron of a homogenous electron gas. The electron density is precisely p, (r) at each
point r. It is known that the LDA approximation will be valid when the electronic
density varies slowly with position by the term “local” indicating that there is no pg (r)
derivative in the expression for &..[p(T)] given by equation (13). If we look closely at
the exchange and correlation contributions separately, then we can compute the first
contribution analytically. Correlation energy, in turn, lacks analytic expression and is
represented as a complex function of po depending on the parameters whose values are

fitted using a precise simulation of the homogeneous electron gas energy.
ELPA = ELPA + ELPA (14)

The first term is the exchange energy which comes from the Pauli exclusion principle,
while the second term, called the correlation energy which comes from the interaction

of electrons with the same spin.
2.7 Generalized Gradient Approximation (GGA)

By including the first derivatives of the electronic density, the GGA approximation can

improve the LDA definition ! of the exchange-correlation energy. Regardless of the

8



homogeneity of the true charge density, LDA is used as the exchange energy density of
a regular electron gas. By including the electron density gradient in the function, the
generalized gradient is approximated taking care of such inhomogeneities. The charge
density and the charge density gradient are used by this approximation to solve for the

exchange-correlation energy as in equation (15).

ESE4 = [ p(Pexc|p(@), Vp ()] dF (15)
2.8 The Modified Becke-Johnson (mBJ) potential

It is a tool that is very important which is used in WIEN2k codel% because it improves
the band structure of materials, especially semiconductor materials, and is therefore
important in general agreement with the experiment. A direct optimization to obtain the
lattice parameter in a consistent manner is not possible due to the lack of an exchange
and correlation energy term from which to infer the mBJ-GGA potential. The deviation
in the experimental gap value can reach more than 20%. To calculate the band structure
and the resulting network parameter, this author suggested that the LDA, GGA
optimization procedure was previously used and this option is very important because
percentage differences in the lattice parameter can lead to relative deviations in the

expected band gap value.
2.9 Augmented Plane Wave (APW) Method

We can say that the APW method is to solve the Kohn-Sham equation %1, The free
electrons are described by plane waves in the region far from the nuclei, while they
behave just like a free atom in the region near the nucleus, therefore, it can be best
described by atomic-like functions. A single cell is divided into two types of regions in
the APW diagram as shown in Figure 3. i) non-overlapping spheres centered at the
atomic sites such a sphere is often called a muffin tin sphere. ii) An interstitial region;

the remaining space outside the spheres. APW, using the expansion of ¢,,, is defined

as.
1 .~ ==
\/—Vel(k“()'r ) Outside sphere
¢ E) = wi+k (16)
ZAlr’n ul(r', E)YL(#") , Inside sphere
ILm



where k is the wave vector inside the Brillion zone, K is the reciprocal lattice vectors,
V is the volume of the unit cell, r’is the position vector inside the sphere and finally uf

is the numerical solution to the radial Schrodinger equation at the energy e.

Figure. (3)
scheme of Augmented Plane Wave.
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2.10 The Linearized Augmented Plane Wave (LAPW) Method

We can also consider that the LAPW ¥ procedure is to solve the Kohn-Sham
equations for the total energy and ground state density and the Kohn-Sham eigenvalues
for many electrons system by presenting a set that fits most closely with the problem. It
was Anderson who proposed the LAPW diagram and he also proposed extending the

energy dependence of radial wave functions u(r’) into atomic spheres with the energy

out(r', E) _

derivative u*(r',E). In this scheme a linear combination of spherical

harmonics for radial functions is used. The spherical harmonic is denoted by Yim(r) and
u (r,Er) is used to solve the Schrédinger equation for the radial energy Ei and the
spherical part of the inner sphere of the sphere 4*(r’, E) is the energy derivative of uj

taken with the same energy E;.

Im Im

OE(F, E) = Z( aWHK ya By 4 p@RHKpar By Y YL () | Inside sphere  (17)
I,m
In the interstitial region a plane wave is used

- 1 .~ ==
qb%(?, E) = \/—Ve‘(k“()'r , Outside sphere (18)
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We can say that, in general, the LAPW method expands the potentials as follows:

{Z Vim (D) Y1m (8), inside sphere
V@ =8 (19)
L Vi elk T outside sphere
k
2.11 WIEN2k code

WIENZ2k code is written by two people, Blaha, Schwarz and their co-workers, the
WIEN2k code is a very successful implementation of the FP-LAPW method 34,

Density functional theory is used to make electronic calculations for the structure of

solids using WIEN2K program.

The solution of Kohn-Sham equations for density functional theory was developed by
Schwarz and Blaha at the Vienna University of Technology. Generalized gradient
approximation GGA or local density approximation LDA can be used in density
functional theory. The above represents the relativistic effects and the diagram of all

electrons.
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Chapter Three

Computational method

The calculations in this work were performed using the full potential linearized
augmented wave method in WIEN2K code. It was performed in two structures; one is
cubic and the other is orthorhombic within a Perdew-Burke-Ernzerhof of generalized
gradient approximation (PBE-GGA). In this work, we calculated the structural,
electronic, magnetic and elastic properties of CeCrOs and CeGaOs. Using a muffin-tin
sphere of radius RMT we determined the spherical harmonics around each nucleus 2.
And by means of lattice parameters, we determined the crystal structure of each of the
mentioned compounds. Using the Murnaghan equation B of state, the following
structural parameters were found: Lattice parameter, volume, Bulk modulus, first

derivative of pressure and energy.

In the first structural state, which is the cubic, for the first compound CeCrOs, the
muffin-tin radii (R,,) of Ce, Cr and O atoms are 2.5, 1.83 and 1.66 a.u., respectively
and for the compound CeGaOs, Ryt of Ce, Ga and O atoms are 2.5, 1.82 and 1.65 a.u.,
respectively. In the case of an orthorhombic structure, for the compound CeCrQOg, the
muffin-tin radii (R,,) of Ce, Cr and O atoms are 2.25, 1.9 and 1.72 a.u., respectively
and for the compound CeGaOs, Ry of Ce, Ga and O atoms are 2.16, 1.78 and 1.61
a.u., respectively. The cut-off energy to separate the core states from valence states is
set to be -9 Ry. Also, there are 35 special k-points in the irreducible Brillion zone with
grid 10x 10 x 10 (equivalent to 1000 k-points in the Full Brillion Zone) B4 are used to
obtain self-consistency for CeCrOz and CeGaOs compounds. Moreover, the number of
plane waves was restricted by Ky;4x Ry = 8 and the expansions of the wave functions

was set by [=10 inside the muffin-tin spheres.

When using the GGA approximation, the G max is set to 14 with cut-off [ max= 8 and 35k

points in the irreducible Brillion zone with grid 10 x 10 x10 meshes.

For the exchange-correlation potential we use PBE-GGA F°1. To improve the energy
band gap of CeCrOz and CeGaOs the modified Becki-Johnson potential (mBJ-GGA)

was used 361,
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Chapter Four

Results and Discussion

4.1 Structural properties

To calculate the structural properties; optimized lattice constant (a), bulk modulus (B),
its pressure derivative (B’), and minimum energy E,.The total energy (Ry) versus
volume (a.u®) graphs were fitted by using Murnaghan’s®”l. Murnaghan’s equation of
state (EOS) is given by:

vB\| /v

E(V) = Ey + ?{[(V)B /(B — 1)] + 1}— [BVo/(B' —1)] (20)

d%E

dE dP
Pressure, P= - — , Bulk modulus, B=-V —=V
av av av?2

Where B is the bulk modulus at the equilibrium volume, B’ is the pressure derivative of

the bulk modulus at the equilibrium volume and E is the minimum energy.

By minimizing the total energy, we have optimized the lattice parameters of these
compounds CeCrOsz and CeGaOs. By using the calculated optimized values of the
lattice parameter constants we have calculated the structural parameters (lattice
parameters, total energy bulk modulus and first pressure derivatives of bulk modulus)

of these compounds in a cubic and orthorhombic perovskite structure.

We can get the structural parameters (lattice parameters, total energy bulk modulus and
first pressure derivatives of bulk modulus) by plotting volume versus energy by the
Murnaghan equation of state P to estimate the ground state properties of these

compounds.

Initially in a cubic structure, Figure 4 shows the fitted total energy versus volume for

CeCrOz by using PBE-GGA approximation.

13



Figure. (4)
Equation of state of cubic perovskite of CeCrOs PBE-GGA methods, (E vs V)
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Table (1)
Calculated lattice parameter, bulk modulus, pressure derivative of CeCrO3s in a

cubic structure

Lattice parameter (A°) B, (GPa) B’
Structure Present Others Present Others Present
Cubic 3.8772 3.8771%1 182.2342 183.811%81 4.3081

In Table 1, the present results are in good agreement with other theoretical results [

for the lattice parameter and bulk modulus of cubic CeCrOs compound.

14



Figure. (5)
Equation of state of orthorhombic perovskite of CeCrOs; PBE-GGA methods, (E vs V).
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Table (2)
Calculated lattice parameter, bulk modulus, pressure derivative of CeCrOs in
orthorhombic structure.

Lattice parameter(A°) B, (Gpa) B’
Structure Present Others Present Others Present  Others
Orthorhombic  a=5.6227934  a=5.897B%1 1655768 169.171%°1 3.8973 4.86(

b=7.6759456  p=7.726[¢

c=5.3932411

c=5.158
Experimental a=5.4791
Results b=7.7334]
c=5.472[40

From Table 2, the present results are in good agreement with other theoretical and
experimental results, i.e., the Lattice parameter, the bulk modulus, or even for the
pressure derivative. The calculated constant lattice parameter (a) of orthorhombic
CeCrOs compound is overestimated the experimental lattice parameter with 2.5%
larger® while the calculated constants lattice parameter (b and c) are 0.74% and

1.46%, respectively smaller than the experimental valuell,
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Figure. (6)
The relationship between Equation of state of the Cubic and orthorhombic perovskite of
CeCrO; PBE-GGA methods, (E vs V)
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In the orthorhombic structure for CeCrOsz using PBE-GGA approximation, this
compound contains twenty atoms and the volume and energy in Figure 6 are divided by
the number 4 because the compound CeCrO3 in the case of the cubic structure contains
five atoms and we did this process to see which one has less energy than the other and
it shows us from figure 6 that the compound in the orthorhombic structure has lower
energy. The minimum energy of the compound is -20284.61275 Ry while for the cubic
structure its minimum energy is -20284.564522 Ry and this comparison is at the same
muffin-tin radii (Rwt) of the orthorhombic structure. Rmt of Ce, Cr and O atoms are

2.25,1.9and 1.72 a.u., respectively.

In a cubic structure, Figure 6 shows the fitted total energy versus volume for CeCrOs

by using PBE-GGA approximation.
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Figure. (7)
Equation of state of cubic perovskite of CeCrOs; PBE-GGA methods, (E vs V)
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Table (3)
Calculated lattice parameter, bulk modulus, pressure derivative of CeGaO3; in a

cubic structure.

Lattice parameter(A®) Bo(Gpa) B’
Structure Present Others Present Present
Cubic 3.8964 s 174.0224 3.0718

Table 3 shows the calculations of the lattice parameter, bulk modulus and pressure
derivative of a cubic CeGaOs compound using PBE-GGA. The optimized lattice

parameter, in particular is used to study the electronic, magnetic and elastic properties.
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Figure. (8)
Equation of state of orthorhombic perovskite of CeGaOs; PBE-GGA methods, (E vs V)
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Table (4)
Calculated lattice parameter, bulk modulus, pressure derivative of CeGaOs3; in

orthorhombic structure

Lattice parameter(A°®) B, (Gpa) B’
Structure Present Others Present Present
Orthorhombic a=5.7510644748 e 165.5768 3.8973

b=8.1253060458
€=5.6673073582

Experimental a=5.490M4 177144
Results b=7.74811
c=5.4851

In the CeGaOj3 orthorhombic structure, the experimental resultsi“Y slightly overestimate
the lattice parameter if we compare it with our present results and also the experimental
results Y of the bulk modulus are slightly overestimated compared to the present

results.
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Figure. (9)
The relationship between Equation of state of the Cubic and orthorhombic perovskite of
CeGa0; PBE-GGA methods, (E vs V).
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In the orthorhombic structure for CeGaOs by using PBE-GGA approximation, we also
say here, as we said about the CeCrOs compound, that in this structure this compound
contains twenty atoms and the volume and energy in Figure 9 have been divided by the
number 4 because the compound in the cubic structure case contains five atoms and we
have done this process to see which one is Less energy than the other. It is shown in
Figure 9 that the compound in the orthorhombic structure has less energy. The
minimum energy of the compound in this case is -22071.008655 Ry while in the case
of the cubic structure its minimum energy is -22070.970288 Ry and this comparison is
at the same muffin-tin radii (Rmt). Rmt of Ce, Ga and O atoms are 2.16, 1.78 and 1.61

a.u., respectively.
4.2 Electronic properties

A. Band Structure

In this section, we calculate the band structure in the Brillion-zone along the high
symmetry line for the two perovskite compounds CeCrOz and CeGaOs in the cubic and

orthorhombic structure at zero pressure and the Fermi level is set at zero eV.
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Table (5)
Energy band gap (Eg) of CeCrOs; and CeGaOs compounds using PBE-GGA

methods.
Materials ~ Structure  Spin Band gaptype Energy bandgap Eg-mBJ Other theoretical
(eV) Results
CeCrOs Cubic Up Metallic Metallic
Down Indirect M—T 3 M—X3.1 M 2.89¢8
Orthorhombic  Up Indirect ro.9 I3.013 I 0.9B%
Down Metallic Metallic
CeGaOs Cubic Up Indirect M 0.117 M 1.261
Down Indirect M 3.144 M 3.118
Orthorhombic  Up Metallic I' 1.346
Down Indirect 3.6 r4.s

Table 5 shows us the calculation of the band gap of the cubic structure and
orthorhombic of CeCrOz and CeGaOs using PBE-GGA and then we optimize the
results by mBJ-GGA potential and shows us that the present results are in great

agreement with the other theoretical results.

In the cubic perovskite of CeCrOs and using PBE-GGA the band structure of this
compound was calculated in both spin-up and spin-down states. We found that the spin
up results imply that it is metallic while in the case of spin down the valence band
maximum (VBM) we find that the compound occurs along the point symmetry line M
while conduction band minimum occurs along I -point symmetry line with energy gap

3 eV, as shown in Figure (10, a and b).
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Figure. (10)
The Calculated spin polarized (a) up (b) down band structures for cubic CeCrOz; compound
using PBE-GGA.
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But by using the modified Beke-Johnson potential (mBJ-GGA) we have improved the

calculations of the energy band gap for this compound. In the mBJ-GGA the energy
gap of CeCrOs compound in the case of spin-up remained metallic (as shown in Figure
11.a (see Appendix (B)) and in the case of spin-down the energy gap increased by a
very small percentage to become 3.1 eV, while the compound remained semiconductor
in this state, as shown in Figure (11.b) (see Appendix (B)). M. Rashid et alf*l
calculated the energy gap within the mBJ-GGA and found it to be 2.89 eV and this

value is in a good agreement with our calculations.
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In the orthorhombic perovskite of CeCrOs using PBE-GGA, the band structure for the
spin up was calculated, it is found that the conduction band minimum (CBM) is 0.3 eV
located at the I point. At the same time, the valence band maximum (VBM) is -0.6 eV
at the T point, which gives a direct band gap energy of 0.9 eV. A. Abbad et al *° used
FP-LAPW method to calculate the energy gap of CeCrOz compound in the
orthorhombic perovskite structure, and the same result appeared with them as well,
which is 0.9 eV, While the energy gap is metallic in the case of spin down of this
compound. So, this compound is half-metallic in PBE-GGA. In mBJ-GGA, the energy
gap increased by a large percentage to become 3.013 eV in the spin-up state, while in
the spin-down state the energy gap of CeCrOs remained metallic, so the compound in

this case is also half-metallic as shown in Figure 13 (see Appendix (B)).

Figure (14) (a and b) (in Appendix (B)) shows that the band structure of the spin up and
spin down of cubic perovskite of CeGaO3z compound has an indirect energy band gap
using PBE-GGA method. The indirect energy gap within PBE-GGA for the spin up and
spin down is 0.117 eV and 3.144 eV respectively, so the compound in this case is a
semiconductor. Also, Figure (15) (a and b) (in Appendix (B)) shows that the band
structure of the spin up and the spin down of cubic CeGaO3z compound has an indirect
energy band gap using mBJ-GGA method. The indirect energy gap mBJ-GGA was
found to be 1.261 eV, 3.118 eV respectively, so the compound also in this case is a

semiconductor, as shown in Table 5.

Figure (16) (a and b) (in Appendix (B)) shows that the band structure of orthorhombic
perovskite of CeGaO3 compound of the spin up is metallic while the spin down has an
indirect energy band gap using PBE-GGA method. The indirect energy gap within
PBE-GGA for the spin down is 3.6 eV, so the compound in this case is half-metallic.
Also, Figure (17) (a and b) (in Appendix (B)) shows that the band structure of the spin
up and the spin down of orthorhombic CeGaO3 compound has an indirect energy band
gap using mBJ-GGA method. The indirect energy gap mBJ-GGA was found to be
1.346 eV, 4.5 eV respectively, so the compound in this case for the spin up and spin

down is a semiconductor and an insulator respectively.

B. Density of state

This part of the chapter can be defined as a description of the ratio of states that the

system will occupy at each energy. Also, in this part the total and partial densities of
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states of CeCrO3 and CeGaOs in the cubic and orthorhombic structure by using PBE-

GGA were calculated.

Figure (18) (see Appendix (B)) shows a spin-up of the cubic compound CeCrOs using
PBE-GGA, the valence band coming mainly from Cr-d and with little contribution of
O-p, while the conduction band originates from Ce-f and little Cr-d. And Figure (19)
(see Appendix (B)), in the spin-down state, the valence band comes from O-p and with
a little contribution from Cr-d, while the conduction band originates from Ce-f and
Cr-d.

Figure (20) (in Appendix (B)) shows a spin-up of the cubic compound CeCrOz with
mBJ-GGA potential, the valence band coming mainly from Cr-d and with small
contribution of O-p, while the conduction band originates from Ce-f and little Cr-d.
Figure (21) (see Appendix (B)), in the spin-down state the valence band comes from O-
p and with a little contribution from Cr-d, while the conduction band originates from
Ce-f and Cr-d.

Figure (22) (in Appendix (B)) shows a spin-up of the orthorhombic compound CeCrO3
using PBE-GGA, the valence band coming mainly from Cr-d and with little
contribution of O-p, while the conduction band originates from Ce-f and little Cr-d.
Figure (23) (in Appendix (B)) shows that in the spin-down state the valence band
comes from O-p and with a little contribution from Cr-d, while the conduction band

originates from Ce-f and Cr-d.

Figure (24) (in Appendix (B)) shows a spin-up of the orthorhombic compound CeCrO3
with mBJ-GGA potential, the valence band coming mainly from Cr-d and with small
contribution of O-p, while, the conduction band originates from Ce-f and little Cr-d.
And in Figure (25) -(in Appendix (B)), the spin-down state shows that the valence band
comes from O-p and with a little contribution from Cr-d, while the conduction band
originates from Ce-f and Cr-d.

Figure (26) (in Appendix (B)) shows a spin-up of the cubic compound CeGaOs using
PBE-GGA, the valence band coming mainly from Ga-d and with little contribution of
Ce-p and O-p, while the conduction band originates from Ce-f and little O-p. And
Figure (27) (in Appendix (B)) , in the spin-down state the valence band comes from O-
p and Ga-d, while the conduction band originates from Ce-f and with small

contribution of O-p.
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Figure (28) (in Appendix (B)) shows a spin-up of the cubic compound CeGaOs with
mBJ-GGA potential, the valence band coming mainly from Ga-d and with small
contribution of Ce-p and O-p, while the conduction band originates from Ce-f and little
O-p and Ce-d. Figure (29) (in Appendix (B)) , in the spin-down state the valence band
comes from O-p and Ga-d with small contribution of Ce-p, while the conduction band

originates from Ce-f with small contribution of O-p and Ce-d.

Figure (30) (in Appendix (B)) shows a spin-up of the orthorhombic compound CeGaO3
using PBE-GGA, the valence band coming mainly from Ga-s, Ga-p and Ga-d and with
little contribution of O-p, while the conduction band originates from Ce-f and little Ga-
s and Ga-p. Figure (31) (see Appendix (B)) in the spin-down state the valence band
comes from O-p and with a little contribution from Ga-s, Ga-p and Ga-d, while the

conduction band originates from Ce-f and Ga-p and to a lesser extent in Ga-s.

Figure (32) (in Appendix (B)) shows a spin-up of the orthorhombic compound CeGaO3
with mBJ-GGA potential, the valence band coming mainly from Ga-d and with small
contribution of Ce-p and O-p. While the conduction band originates from Ce-f and little
Ce-d. And in Figure (33) (see Appendix (B)), the spin-down state the valence band
comes from Ga-d and with a little contribution from Ce-p and O-p, while the

conduction band originates from Ce-f and with small contribution of Ce-d and O-p.
4.3 Magnetic Properties

In this section, we calculated the total and partial magnetic moments of the cubic and
orthorhombic CeCrOs and CeGaOz compounds and compared them with other
theoretical results as shown in Tables 6 and 7 and it can be said from these results that
these two compounds are ferromagnetic compounds. From these tables it is clear that

our results agree very well with other theoretical results.
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Table (6)
The total magnetic moment for Cubic and Orthorhombic CeCrO3z compound using

PBE-GGA method.

Magnetic Moment (ug)

Compounds Total
Ce Cr ) @) Interstitial magnetic
moment
(M™") pp
Cubic
CeCrO3 Present 1.05679 2.33102 0.02807  -- 0.49577  3.96778
Orthorhom

bic CeCrO; Present -0.59622 2.20447 0.04245 0.04110 1.06095  7.99255

Theoretical
Result  -0.65G9 2259 003869 0.028(9) 1.2269 8(3%9)

Table (7)
The total magnetic moment for Cubic and Orthorhombic CeCrO3; compounds with

mBJ-GGA potential.

Magnetic Moment (ug)

Compounds Total
Ce Cr 0 0 Interstitial magnetic

moment

(Mtot)

) Up
Cubic Present ~ 0.98083 2.47995 0.07067 - 0.32724  4.00004
CeCrOs  Theoretical 0.9831C% 2.5283(® 0.0642C8 - - 400049

Result

Orthorhombic Present -0.89228 2.52829 0.04856 0.04712 0.88502 8.00025
CeCrOs

Tables 8 and 9 show that the total and partial magnetic moment for cubic and
orthorhombic CeGaOs compounds were calculated by using both PBE-GGA and mBJ-
GGA potentials. We found that the total magnetic moment values for CeGaOs ranged

from 1 to 4 up, which means that the compound is ferromagnetic in both cubic and

orthorhombic states.
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Table (8)
The total magnetic moment for Cubic and Orthorhombic CeGaOsz compounds by
using PBE-GGA method.

Magnetic Moment (uz)

Compounds i
Total magnetic
Ce Ga o) 0 Interstitial  moment (M®°%)
HUp
Cubic Present 0.98327 0.00116 -0.00799 -- 0.04083 1.00128
CeGaOs
Orthorhombic Present 0.94338 0.00096 -0.00575 -0.00732 0.30220 3.99799
CeGaOs
Table (9)

The total magnetic moment for Cubic and Orthorhombic CeGaO3z compounds with
mBJ-GGA potential.

Magnetic Moment (ug)

Compounds Total magnetic
Ce Ga 0 O Interstitial moment (M%)
HUB
Cubic Present 0.95565 -0.00009 0.01127 -- 0.01066 1.00001
CeGaOs

Orthorhombic Present 0.94104 -0.00008 0.00723 0.00693 0.15188 4.00003
CeGaOs

4.4 Elastic properties

In this section, we have calculated the elastic properties of CeCrOs and CeGaOz3 in the
cubic and orthorhombic crystal. These properties are volume modulus (B), shear
modulus (S), elastic constants (Cg), B/S ratio, Poisson’'s ratio, Young's modulus (Y) and

anisotropic factor (A). The standard mechanical stability for cubic crystal ist?!
C11>0,C44+2C1,>0,C1 —Cip >0and Cyy >0 (21)

Where C11 is the modulus for axial compression, Ci2 is the modulus for dilation on

compression and Cas is the shear modulus.

In this section we have calculated the elastic properties under zero pressure. From our
calculations in Table (10) for the two compounds CeCrO3z and CeGaO3 for the case of
cubic, it appears that the two compounds are stable.
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To calculate the volume modulus and shear modulus, we have used the Voigt
approximation®l and from the following equation we can calculate the Voigt shear

modulus Sy:

Sy = %(Cn — C12 + 3C44) (22)
And for the cubic structure, the Bulk modulus is given by:

B =2 (Ci1 +2C15) (23)

Young's modulus (Y) can be defined as the ratio of stress to strain and is given by the

following equations:

9BS,
T (S,+3B) (24)
Poisson's ratio and Anisotropic factor are defined by the following equations:
3B-2S,
T 2(3B+Sy) (25)
2C4q
T C11—Crz (26)

The hardness of materials is measured by the shear modulus and the bulk modulus*4l.
The nature of the material if it is ductile or brittle can be determined from the ratio B/S.
The material with a B/S ratio greater than 1.75 is a material that behaves in a ductile
nature, but if it is otherwise, the material behaves with a brittle nature®®. From our
calculations in Table (10), the B/S ratio of the two compounds CeCrO3z and CeGaO3
was 2.459, 2.421, respectively, so the two compounds in this case behave in a ductile

nature.

We use Poisson's ratio to get a good idea of the nature of bonding forces and from
another perspective to see how stable the material is. We can determine if the bonds in
compounds are ionic or covalent by calculating the value of the Poisson’s ratio of the
compound. If its value is greater than 0.25, the compound contains ionic bonds, while if
the value of Poisson's ratio is less than that, the bonds of the compound are covalent.
We have a Poisson's ratio value for the two compounds CeCrO3z and CeGaOsz which is
0.321 and 0.318 respectively, so the two compounds in this case have ionic bonds.
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To measure the degree of anisotropy of materials an important factor is the elastic
anisotropy [“61. When the value of A is unity, the material is considered isotropic, but if
its value is otherwise, the material is considered to have an elastic anisotropy 71, From
the current results that appear in Table (10), the compound CeCrOz which has a value

of 0.194 is anisotropic, while the compound CeGaOs which has a value of 0.999 is
isotropic.

Table (10)

Calculated elastic constants of CeCrO3s and CeGaOs in the cubic structure.

Materials  C;4 Ciz Cya B S B/S Y % A
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

CeCrOs 357.893 82968 26.680 174.609 70.993 2.459 187.559 0.321 0.194
CeGaOz 258.5404 120.8277 68.8503 166.732 68.85272 2.421 181.565 0.318 0.999

The standard mechanical stability for orthorhombic crystal is81 9]

(C11 + Ca2 — 2C12)>0, (C11 + Caz — 2C13)>0, (C22 + Ca3 - 2C23)>0, C11>0, C22>0, C33>0,
C44>0, Cs5>0, Ce6>0, (C11 + C22 + Cg3 + 2C12 +2Cy3 + 2C23)>0 (27)

Table (11) (in Appendix (A)) show the elastic constants for CeCrO3z and CeGaOs in
orthorhombic structure and from these results we found the two compounds are
mechanically unstable.
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Chapter 5

Conclusions

We studied the structural, electronic, magnetic and elastic properties of the two CeCrOs
and CeGaOs compounds in both cubic and orthorhombic structures using PBE-GGA
method. We demonstrated from the results and drawings that the two compounds are

in an orthorhombic structure of less energy than in a cubic structure.

In the electronic properties, CeCrOs was half-metallic in its cubic structure in the PBE-
GGA method. It is also half-metallic by using mBJ-GGA potential. In an orthorhombic
structure the compound appeared to be half-metallic using mBJ-GGA potential, which
means that the compound is of half-metallic nature.

CeGaOs in cubic structure is of semiconducting nature in PBE-GGA and we confirmed
that by mBJ-GGA potential. While, in an orthorhombic structure it is half-metallic
when using the PBE-GGA method, but when using mBJ-GGA potential it is found to

be a semiconductor in its spin-up state and an insulator in spin-down state.

Magnetic properties show that the two compounds in all cases are ferromagnetic. The
CeCrOz compound in the cubic and orthorhombic structures using the PBE-GGA
method have a total magnetic moment of 3.96778 g and 7.99255 ug, respectively. In
the case of mBJ-GGA potential, the total magnetic moment of the cubic and
orthorhombic structures is 4 ug and 8.00025 g, respectively. Whereas, the compound
CeGaOs in the cubic and orthorhombic structures using PBE-GGA method have a total
magnetic moment of 1.00128 uz and 3.99799 ug, respectively. In the case of mBJ-
GGA potential, the total magnetic moment of the cubic and orthorhombic structures for

this compound is 1 ugz and 4 ug, respectively.

In addition, we studied the elastic properties of both compounds in the cubic and
orthorhombic structure. In the cubic structure, the two compounds were mechanically
stable, and from the ratio B/S, we found that the two compounds have a ductile nature.
It was also shown by Poisson's ratio values that the two compounds have ionic bonds.
But anisotropic factor shows that the compound CeCrOs is elastic anisotropic and the
compound CeGaOzs is isotropic. In the orthorhombic structure, the two compounds are

found to be mechanically unstable.
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Appendices

Appendice (A)
Tables
Table (11)

Calculated elastic constants of CeCrOs; and CeGaOs;

in the orthorhombic
structure.

Materials Ci1 Cyy Cs3 Cas Css Cos Cis Cis3 Cy3
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

CeCrOs 34.5 -59 -2181 194 866 713 -77.8 -118.6 -250.7

CeGa0s 169.5 12.3 -1105.7 -97.3 969 126.6 -13.3 -394 -25.7

34



Appendice (B)
Figures

Figure. (11)
The Calculated spin polarized (a) up (b) down band structures for cubic CeCrOz; compound
with mBJ-GGA potential.
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Figure. (12)

The Calculated spin polarized (a) up (b) down band structures for orthorhombic

compound using PBE-GGA.
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Figure. (13)
The Calculated spin polarized (a) up (b) down band structures for orthorhombic CeCrOs
compound with mBJ-GGA potential.
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Figure. (14)
The Calculated spin polarized (a) up (b) down band structures for cubic CeGaO3z; compound
using PBE-GGA.
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Figure. (15)
The Calculated spin polarized (a) up (b) down band structures for cubic CeGaO3z; compound
with mBJ-GGA potential.
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Figure. (16)
The Calculated spin polarized (a) up (b) down band structures for orthorhombic CeGaOs3
compound using PBE-GGA.
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Figure. (17)
The Calculated spin polarized (a) up (b) down band structures for orthorhombic CeGaOs
compound with mBJ-GGA potential.
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Figure. (18)

Total and partial density of state of spin up for (a) CeCrOs, (b) Ce, ( ¢) Cr and (d) O of cubic

CeCrO; compound by using PBE-GGA method.
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Figure. (19)
Total and partial density of state of spin down for (a) CeCrQOg, (b) Ce, (c) Cr and (d) O of
cubic CeCrO3z; compound by using PBE-GGA method.
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Figure. (20)

Total and partial density of state of spin up for (a) CeCrOs, (b) Ce, ( ¢) Cr and (d) O of cubic

CeCrO; compound with mBJ-GGA potential.
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Figure. (21)

Total and partial density of state of spin down for (a) CeCrOs, (b) Ce, ( ¢) Cr and (d) O of

cubic CeCrO3; compound with mBJ-GGA potential.
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Figure. (22)

Total and partial density of state of spin up for (a) CeCrOgs, (b) Ce, (c) Cr and (d) O of

orthorhombic CeCrO3; compound by using PBE-GGA.
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Figure. (23)

Total and partial density of state of spin down for (a) CeCrOs, (b) Ce, (c) Cr and (d)O of
orthorhombic CeCrO3; compound by using PBE-GGA.
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Figure. (24)
Total and partial density of state of spin up for (a) CeCrOs, (b) Ce , (c) Cr and (d) O of
orthorhombic CeCrOs; compound with mBJ-GGA potential.
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Figure. (25)
Total and partial density of state of spin down for (a) CeCrOs, (b) Ce, (c) Cr and (d) O of
orthorhombic CeCrO3; compound with mBJ-GGA potential.
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Figure. (26)

Total and partial density of state of spin up for (a) CeGaOs, (b) Ce, (c) Ga and (d) O of cubic

CeGa0; compound by using PBE-GGA method.
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Figure. (27)

Total and partial density of state of spin down for (a) CeGaOs, (b) Ce, (c) Ga and (d) O of

cubic CeGaOs; compound by using PBE-GGA method.
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Figure. (28)
Total and partial density of state of spin up for (a) CeGaOs, (b) Ga, (c) Cr and (d) O of cubic
CeGa0; compound with mBJ-GGA potential.
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Figure. (29)

Total and partial density of state of spin down for (a) CeGaOs, (b) Ga, (c) Cr and (d) O of

cubic CeGaO3; compound with mBJ-GGA potential.
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Figure (30)
Total and partial density of state of spin up for (a) CeGaOs, (b) Ce, (c) Ga and (d) O of
orthorhombic CeGaO3; compound by using PBE-GGA.
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Figure (31)
Total and partial density of state of spin down for (a) CeGaOs, (b) Ce, (c) Ga and (d) O of
orthorhombic CeGaO3; compound by using PBE-GGA.
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Figure (32)

Total and partial density of state of spin up for (a) CeGaOs, (b) Ce, (c) Ga and (d) O of

orthorhombic CeGaOs; compound with mBJ-GGA potential.
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Figure (33)

Total and partial density of state of spin down for (a) CeGaOs, (b) Ce, (¢) Ga and (d) O of

orthorhombic CeGaOs; compound with mBJ-GGA potential.
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