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STRUCTURAL, ELECTRONIC, ELASTIC AND MAGNETIC PROPERTIES 

OF THE CeXO3(X=Cr, Ga) COMPOUNDS BY USING FP-LAPW METHOD 
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Abstract 

Background: the full potential linearized augmented plane wave (FP-LAPW) method 

was used to calculate the structural, electronic, magnetic and elastic properties of cubic 

and orthorhombic perovskite compounds CeCrO3, CeGaO3.  

Objectives: the FP-LAPW method solves structural parameters (lattice parameters, 

bulk modulus, and first pressure derivatives of bulk modulus) by solving the Kohn-

Sham equations for the total energy of many electron-systems.  

Methodology: the structural parameters and the consequent electronic, magnetic and 

elastic properties were calculated using the generalized gradient approximation (GGA) 

that determines the density and density gradient.  

Results: by examining the energy band gap of these compounds using the modified 

Becki-Johnson potential (mBJ), we show that the compound CeCrO3 behaves as a half-

metallic behavior in the cubic structure and also half-metallic in orthorhombic 

structure, and that the CeGaO3 compound behaves as a semiconductor in cubic 

structure and it was found that it is a semiconductor in a spin-up state and an insulator 

in a spin-down state in orthorhombic structure. At the same point, the total magnetic 

moments were examined, and they were in good agreement with the experimental and 

theoretical results for these perovskite compounds. The electronic properties of these 

compounds, which are band structure and density of state, were also calculated. Finally, 

the elastic properties of these perovskite compounds were studied. 

Keywords: FP-LAPW study, perovskite, Half-metallic ferromagnetic, Structural 

properties, Electronic properties, Magnetic properties, Elastic properties. 



 

Chapter One 

Introduction           

Perovskite is named after the discovery of these materials in 1792 by Lev Perevsky 

(1792-1856) [1].  It is a black or brown mineral with the chemical formula CaTiO3 and 

the name of this mineral is calcium titanium oxide discovered by Gustav Rose in the 

mountains of Russia.  In 1926, its crystal was first described [2] and published for the 

first time in 1945[3].  

Perovskite compounds have a major formula, ABX3. A and B are cations of different 

masses, where A is greater than B [4]. X is often to be oxygen or possibly other large 

ions such as nitrides, sulfides, and halides. It is known that many oxide compounds 

belong to few homogeneous chains based on perovskite [5]. 

In its ideal form, perovskite oxides are cuboidal or somewhat cuboidal in structure like 

other transition metal oxides that have the same formula (ABO3). At low temperatures, 

some phase change may occur. Because of their exceptional crystal structures and 

simple in their electrical and ferroelectric properties, oxides of compounds have a wide 

potential for many uses. 

Perovskite materials are of three types, the first type has local electrons, the second 

contains undefined energy band electrons, and the third state is transitional between 

these two types [3]. Types of perovskite structures exist in many forms including ABO3-

perovskite and the most abundant in nature is MgSiO3 and FeSiO3. 

Scientists have studied perovskite oxides in solid state physics because of the great 

importance of these compounds in different topics of physics such as Materials science, 

astrophysics, fusion, geophysics, particle accelerators, fission reactors [6,7].  

The oxides are considered to be perovskite which has comprehensive properties such 

as; The properties of ionic conductivity, insulator-to-metal transition and change of 

solid states phenomena, superconductivity and metallic characters, and finally can be 

applied in many fields of chemistry and physics [8]. 

There are great alternatives to perovskite oxides that can accept one or both of the two 

existing sites (A and B sites) and their original crystal structures [9] will be preserved. 
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Currently, perovskite ceramics have many applications such as transformers, sensors, 

microwave screens [10], piezoelectric devices, [11] and random-access memory drives[12]. 

Perovskite is used in many modern applications because it has many useful properties 

in electromechanical, image storage, surface acoustic wave signal, switching, filtering 

and photochromic [13]. Currently, perovskite halide enters into many fields, the most 

important of which is the exploration of materials[12] because it has great effectiveness 

in solid-state solar energy. 

The structure of perovskite is often cubic. It consists of A atoms that are at the corners 

of the cube, B atoms are located in its center in a 6-fold coordination, and it is 

surrounded by a solid of eight ions, while oxygen atoms are in the centers of the faces. 

The A cation is in 12 times the cubic octahedral coordination as in Figure 1. 

Figure. (1): 

Ideal cubic perovskite structure (ABO3).   

                          

Figure 1 shows a cubic perovskite, the A atom in one cell being a lanthanide ion or an 

alkaline earth metal [14]. In fact, A are cations that are 12 times coordinated by oxygen 

anions and are present in the corners of the cube at position (0, 0, 0), while the oxygen 

is located in the center of the face of the cubic lattice at position (½, ½, 0), but there are 

Inside oxygen. The octahedral cations are B tetravalent and their position is the center 

of the body (½, ½, ½). This structure is a three-dimensional network imaged from the 

angle associated with the angle BO6 octahedron [15]. 

Perovskite contains a large number of compounds, its structure is very stable, it has a 

variety of applications, and it also has different properties. The most important role of 

octahedral BO6 is in ferroelectricity and ferromagnetism. Material optimization comes 

from the broad composition of solid solutions by controlling the geometry of the phase 
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transition and the control of the structure [16]. Figure 1 also shows the single-cell 

structure of a simple perovskite. 

There may be several changes in the shape of the perfect cubic perovskite and this 

result in the formation of hexagonal, orthorhombic, rhombohedral, and tetrahedral 

shapes. In general, to form a perovskite, we have to meet two requirements which are 

the requirements for ionic radii and electron neutrality [17] [18]. 

The (FP-LAPW) method will be used in this work to examine the following structural, 

electronic, magnetic and finally elastic properties of the two perovskite compounds 

CeCrO3, CeGaO3. 
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Chapter Two 
Methodology 

It is difficult for us to solve Schrödinger equation for the N-body system, equation (1), 

so we must use some approximations to deal with many body problems [19, 20]. 

Schrödinger equation begins with the Hamiltonian operator given by: 

𝑯̂ = −
ħ𝟐

𝟐
∑

𝜵𝟐𝑹𝒊⃗⃗⃗⃗ 

𝑴𝒊

𝑵

𝒊=𝟏

− 
ħ𝟐

𝟐
∑

𝜵𝟐𝒓𝒊⃗⃗  ⃗

𝒎𝒆

𝑵

𝒊=𝟏

−
𝟏

𝟒𝝅𝝐𝟎
∑

𝒆𝟐 𝒁𝒊

|𝑹𝒊⃗⃗⃗⃗ − 𝒓𝒋⃗⃗  ⃗|

𝑵

𝒊𝒋

+
𝟏

𝟖𝝅𝝐𝟎
∑

𝒆𝟐

|𝒓𝒊⃗⃗  ⃗ −  𝒓⃗ 𝒋|

𝑵

𝒊≠𝒋

+
𝟏

𝟖𝝅𝝐𝟎
∑

𝒆𝟐𝒁𝒊  𝒁𝒋

|𝑹𝒊⃗⃗⃗⃗ − 𝑹𝒋⃗⃗⃗⃗ |

𝑵

𝒊≠𝒋

               (𝟏) 

In this equation, the kinetic energy operator of the nucleus (𝑇𝑛) is the first term, while 

the second term is for electrons (𝑇𝑒). The last three terms in this equation are in the 

following order; the electric attraction between the electrons and the nuclei (𝑉𝑒𝑛), the 

electric repulsion between electrons (𝑉𝑒𝑒), and the electric repulsion between nuclei 

(𝑉𝑛𝑛). 

This equation does not have an exact solution. Therefore, we must use some 

approximations to simplify its solution, and these approximations are: 

2.1 The Open-Heimer Approximation: 

This approximation is used to simplify the interaction between nuclei and electrons 

[21,22]. It assumes that the movement of the heavier nucleus adapts to the lighter 

electrons and is in their instantaneous ground state [23] at any time. This approximation 

neglects the motion of the nuclei when comparing it with the electron because the 

nuclei are heavy masses relative to electrons, therefore, have zero kinetic energy. This 

means that the first term in Schrödinger equation can be neglected and the last term will 

be considered as a constant [19]. Therefore, equation (1) will be reduced to the following 

form: 

                                       𝐻 =  𝑇𝑒 + 𝑉𝑒𝑒 + 𝑉𝑒𝑥𝑡                                                               (2) 

In this equation, Te is an abbreviation for the kinetic energy of electron gas, the 

potential energy for electron-electron interactions is Vee, and finally Vext is the external 

potential, which is 𝑉𝑒𝑥𝑡 =  𝑉𝑛𝑛 + 𝑉𝑒𝑛 
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2.2 Hartree and Hartree-Fock Approximation: 

No two electrons can have the same set of quantum numbers. This is the Pauli 

exclusion principle and this is what considered in the Hartree approximation [24]. The 

Hartree-Fock approximation assumes that the electrons are independent of each other, 

so the Hamiltonian can be considered as N-one particle Hamiltonian. The wave 

function of the electrons is given as follows: 

                                  Ψ (𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗, 𝑟3⃗⃗  ⃗….𝑟𝑁⃗⃗⃗⃗ ) =Ψ1(𝑟1⃗⃗⃗   )Ψ2(𝑟2⃗⃗  ⃗)Ψ3(𝑟3⃗⃗  ⃗)…. ΨN(𝑟𝑁⃗⃗⃗⃗ )                      (3) 

In this equation, ΨN (rN) is a wave function of the Nth electron. Schrodinger equation is 

given as: 

                                                (Ts + Vext  + VH) Ψ (𝑟  )= E Ψ (𝑟 )                                (4) 

Ts is the kinetic energy, Vext is the external potential and 𝐕𝐇 is the Hartree potential for 

non-interacting electrons. We can write the 𝐕𝐇 equation as follows: 

                                               𝑉𝐻 =
1

8𝜋𝜀0
∑

|𝜓(𝑟𝑖⃗⃗⃗  )|
2|𝜓(𝑟𝑗⃗⃗  ⃗)|

2
𝑑3𝑟𝑖𝑑

3𝑟𝑗

|𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗|

𝑁
𝑖𝑗                                   (5) 

2.3 Density Functional Theory 

The density functional theory was established in 1964 by the theories of Hohenberg and 

Kohn. It can be said that the density functional theory replaces the electron wave 

function of many objects with the electron density [25, 26] and this theory is more 

powerful and modern than the Hartree-Fock approximation. DFT is used to solve the 

many-body problem in a one-body problem. 

The DFT theory is based on both Kohn and Hohenberg theories [19]. The 3N 

Schrödinger equation can be reduced to 3 spatial coordinates by both theorems. The 

first theory says that the density of the ground state (𝜌0) will be produced by the 

successful reduction of the energy function. While the second theory defines the 

electron wave theory and thus determines all the ground state properties of an 

electronic system by the ground state electron density [27]. To solve the variance 

problem to reduce the energy function E(ρ), the lagrangian application of indeterminate 

multiples can be used. For this we will rewrite E(ρ) as the total Hartree energy plus 

another unknown function called the exchange correlation function 𝑬𝒙𝒄(𝝆).  
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                                  𝐸(𝜌) =  𝑇𝑠(𝜌) + 𝐸𝑐(𝜌) + 𝐸𝐻(𝜌) + 𝐸𝑖𝑖(𝜌) + 𝐸𝑥𝑐(𝜌)                    (6)  

In this equation, we used the symbol Ts to refer to a single electronic kinetic energy, 

and we refer to the Coulomb energy between nuclei and electrons with the symbol Ec, 

while Eii(𝛒) to denote the interaction between the nuclei, Exc is the exchange 

correlation energy of an unknown part, and finally EH is the Hartree potential energy 

which is defined by the following equation: 

                                                   EH(ρ) =
e2

2
 ∫ d3 r d3r′  

ρ(𝑟 )ρ(𝑟′⃗⃗  ⃗)

|𝑟 − 𝑟′⃗⃗  ⃗|
                                  (7) 

Schrödinger equation for one electron can be written as follows: 

                          [Ts +Vext(r) +VH(ρ(r)) +VXC(ρ(r))] Фi(r) = εi Фi(r)                              (8)   

In this equation, 𝜀𝑖 is the single particle energy, 𝜑𝑖 is the electron wave function, 𝑉𝐻 is 

the Hartree potential, 𝑉𝑒𝑥𝑡 is the coulomb potential and 𝑉𝑋𝐶 is the exchange-correlation 

potential. 

2.4 Single Particle Kohn-Sham Equation 

We solve the Kohn-Sham equations of the ground state density, Eigen values and the 

total energy for a multi-electron system using the LAPW method[19]. 

It can be said that it undergoes two external potential; the first is due to the 

nuclei  𝑉̂𝑒𝑥𝑡[𝜌], and the second is due to the exchange and correlation effect 𝑉̂𝑥𝑐[𝜌], 

which is an energy functional for a classical unreacted electron gas. Where the exact 

ground-state density ρ(r) of an N-electron system is defined as: 

                                  ρ(r )  =  ∑ ϕi
∗(r )ϕi(r )

N
i=1 = ∑ |ϕi(r )|

2𝑁
𝑖=1                                (9) 

where ϕi(r ) is a one-particle wave function, which is the N lowest-energy solution of 

the Kohn- Sham equation. This equation can be written by: 

                                                    ĤKSϕi  =  ϵiϕi                                                          (10) 

The Kohn-Sham equation can be written in another form as follows: 

                                              Ĥϕi(r ) =  [−
ℏ2

2me
∇⃗⃗ i
2 +   Veff] ϕi = ϵiϕ i                     (11) 



7 

where 𝐻̂ is the Hamiltonian operator, while Veff is the effective potential and it is the 

sum of the external voltage, the exchange-correlation potential and the Hartree 

potential and is given in equation (12): 

Veff(r ) = Vext(r ) +
δEH[ρ]

δρ
+
δExc[ρ]

δρ
 = Vext(r ) +

e2

4πϵ0
∫
ρ(r′⃗⃗  ⃗)

|r⃗ −r⃗ ′|
dr ′ + Vxc(r )                   (12) 

We conclude from the previous equation that VH and VXC depend on the charge 

density 𝜌(𝑟), and can be calculated from 𝛟 𝐢. This means that we are dealing with self-

consistency problems: it shows us the original equation (VH and Vxc in Hks), and it is 

very difficult to write down the equation and solve it before knowing its solution. Some 

starting density 𝜌0 is guessed, and a Hamiltonian 𝐻𝐾𝑆1 can be constructed with it. The 

Eigen value problem is solved, and ϕ1 can be determined from 𝜌1. Now 𝜌1 can be used 

to construct 𝐻𝐾𝑆2 which will yield 𝜌2, and so on. The procedure can be used until the 

series converge and final density 𝜌𝑓  get out as shown in the flow chart in Figure (2). 

Figure. (2):  

Flow chart for the 𝒏𝒕𝒉 iteration in the self-consistent procedure to solve Hartree-Fock or 

Kohn-Sham equations. 
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2.5 The Exchange-Correlation Functional 

We do not yet know what the exchange-correlation functional is, although the Kohn-

Sham diagram was an accurate description and only one approximation was made, 

which is the Born-Oppenheimer. Two approximations will be used to solve this 

unknown part. These two approximations are: LDA (Local Density Approximation) 

and GGA (Generalized Gradient Approximation) [19]. 

2.6 Local Density Approximation (LDA)  

As mentioned earlier, the exchange-correlation function is not precisely known [28]. We 

can use the local density approximation to solve for exchange-correlation energy. The 

two who applied the approximate LDA to the DFT are Kohn and Sham [29]. The local 

density approximation for the exchange correlation energy can be written as the 

following equation: 

                                            𝐸𝑥𝑐
𝐿𝐷𝐴 = ∫ 𝜌(𝑟)𝜀𝑥𝑐[𝜌(𝑟)] 𝑑𝑟                                            (13) 

where the  εxc[ρ(r⃑)] in equation (13) is defined as the exchange-correlation energy per 

electron of a homogenous electron gas. The electron density is precisely ρ0 (r) at each 

point r. It is known that the LDA approximation will be valid when the electronic 

density varies slowly with position by the term “local” indicating that there is no ρ0 (r) 

derivative in the expression for  εxc[ρ(r⃑)] given by equation (13). If we look closely at 

the exchange and correlation contributions separately, then we can compute the first 

contribution analytically. Correlation energy, in turn, lacks analytic expression and is 

represented as a complex function of ρo depending on the parameters whose values are 

fitted using a precise simulation of the homogeneous electron gas energy. 

                                             Exc
LDA =  Ex

LDA + Ec
LDA                                                   (14) 

The first term is the exchange energy which comes from the Pauli exclusion principle, 

while the second term, called the correlation energy which comes from the interaction 

of electrons with the same spin. 

2.7 Generalized Gradient Approximation (GGA) 

By including the first derivatives of the electronic density, the GGA approximation can 

improve the LDA definition [19] of the exchange-correlation energy. Regardless of the 
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homogeneity of the true charge density, LDA is used as the exchange energy density of 

a regular electron gas. By including the electron density gradient in the function, the 

generalized gradient is approximated taking care of such inhomogeneities. The charge 

density and the charge density gradient are used by this approximation to solve for the 

exchange-correlation energy as in equation (15). 

                                       𝐸𝑥𝑐
𝐺𝐺𝐴 = ∫𝜌(𝑟)𝜀𝑥𝑐[𝜌(𝑟), 𝛻⃑⃗𝜌(𝑟)] 𝑑𝑟                                         (15) 

2.8 The Modified Becke-Johnson (mBJ) potential 

It is a tool that is very important which is used in WIEN2k code[30]  because it improves 

the band structure of materials, especially semiconductor materials, and is therefore 

important in general agreement with the experiment. A direct optimization to obtain the 

lattice parameter in a consistent manner is not possible due to the lack of an exchange 

and correlation energy term from which to infer the mBJ-GGA potential. The deviation 

in the experimental gap value can reach more than 20%. To calculate the band structure 

and the resulting network parameter, this author suggested that the LDA, GGA 

optimization procedure was previously used and this option is very important because 

percentage differences in the lattice parameter can lead to relative deviations in the 

expected band gap value. 

2.9 Augmented Plane Wave (APW) Method 

We can say that the APW method is to solve the Kohn-Sham equation [19]. The free 

electrons are described by plane waves in the region far from the nuclei, while they 

behave just like a free atom in the region near the nucleus, therefore, it can be best 

described by atomic-like functions. A single cell is divided into two types of regions in 

the APW diagram as shown in Figure 3. i) non-overlapping spheres centered at the 

atomic sites such a sphere is often called a muffin tin sphere.  ii) An interstitial region; 

the remaining space outside the spheres. APW, using the expansion of 𝜑𝑛, is defined 

as: 

𝜙
𝐾⃑⃗⃗
𝑘⃑⃗(𝑟, 𝐸) =   

{
 
 

 
 
1

√𝑉
𝑒𝑖(𝑘⃑⃗+𝐾⃑⃗⃗).𝑟     ,                       𝑂𝑢𝑡𝑠𝑖𝑑𝑒  𝑠𝑝ℎ𝑒𝑟𝑒     

∑𝐴𝑙𝑚
𝛼,𝑘⃑⃗+𝐾⃑⃗⃗

𝑙,𝑚

𝑢𝑙
𝛼(𝑟′, 𝐸)𝑌𝑚

𝑙 (𝑟̂′)     ,     𝐼𝑛𝑠𝑖𝑑𝑒 𝑠𝑝ℎ𝑒𝑟𝑒
                                  ( 16) 
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where 𝑘⃑⃗ is the wave vector inside the Brillion zone, 𝐾⃑⃗⃗ is the reciprocal lattice vectors, 

V is the volume of the unit cell, 𝑟´is the position vector inside the sphere and finally 𝑢𝑙
𝛼 

is the numerical solution to the radial Schrodinger equation at the energy ε. 

Figure. (3) 

scheme of Augmented Plane Wave. 

 

2.10 The Linearized Augmented Plane Wave (LAPW) Method 

We can also consider that the LAPW [19] procedure is to solve the Kohn-Sham 

equations for the total energy and ground state density and the Kohn-Sham eigenvalues 

for many electrons system by presenting a set that fits most closely with the problem. It 

was Anderson who proposed the LAPW diagram and he also proposed extending the 

energy dependence of radial wave functions u(r′) into atomic spheres with the energy 

derivative 
𝜕𝑢𝛼(𝑟′,   𝐸)

𝜕𝐸
=  𝑢̇𝛼(𝑟′, 𝐸). In this scheme a linear combination of spherical 

harmonics for radial functions is used. The spherical harmonic is denoted by Ylm(r) and 

ul (r,El) is used to solve the Schrödinger equation for the radial energy El and the 

spherical part of the inner sphere of the sphere  𝑢̇𝛼(𝑟′, 𝐸) is the energy derivative of ul 

taken with the same energy El. 

ϕ
K⃗⃑⃗
k⃗⃑⃗(r⃑, E) =∑( alm

α,k⃗⃑⃗+K⃗⃑⃗

l,m

ul
α(r′, E) + blm

α,k⃑⃗⃗+K⃗⃑⃗u̇l
α(r′, E) ) Ym

l (r̂′) ,   Inside sphere           (17) 

In the interstitial region a plane wave is used  

𝜙
𝐾⃑⃗⃗
𝑘⃑⃗(𝑟, 𝐸) =

1

√𝑉
𝑒𝑖(𝑘⃑⃗+𝐾⃑⃗⃗).𝑟 ,                Outside sphere                                                         (18) 
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We can say that, in general, the LAPW method expands the potentials as follows: 

V(r⃑)  =  

{
 
 

 
 ∑Vlm(r)Ylm(r̂),                     inside sphere

lm

∑Vk⃗⃑⃗
k⃗⃑⃗

eik⃗⃑⃗ .r⃑⃗ ,                            outside sphere
                                                   (19) 

2.11 WIEN2k code 

WIEN2k code is written by two people, Blaha, Schwarz and their co-workers, the 

WIEN2k code is a very successful implementation of the FP-LAPW method [31]. 

Density functional theory is used to make electronic calculations for the structure of 

solids using WIEN2k program. 

The solution of Kohn-Sham equations for density functional theory was developed by 

Schwarz and Blaha at the Vienna University of Technology. Generalized gradient 

approximation GGA or local density approximation LDA can be used in density 

functional theory. The above represents the relativistic effects and the diagram of all 

electrons. 
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Chapter Three 

Computational method 

The calculations in this work were performed using the full potential linearized 

augmented wave method in WIEN2k code. It was performed in two structures; one is 

cubic and the other is orthorhombic within a Perdew-Burke-Ernzerhof of generalized 

gradient approximation (PBE-GGA). In this work, we calculated the structural, 

electronic, magnetic and elastic properties of CeCrO3 and CeGaO3. Using a muffin-tin 

sphere of radius RMT we determined the spherical harmonics around each nucleus [32]. 

And by means of lattice parameters, we determined the crystal structure of each of the 

mentioned compounds. Using the Murnaghan equation [33] of state, the following 

structural parameters were found: Lattice parameter, volume, Bulk modulus, first 

derivative of pressure and energy. 

In the first structural state, which is the cubic, for the first compound CeCrO3, the 

muffin-tin radii (𝑅𝑀𝑇) of Ce, Cr and O atoms are 2.5, 1.83 and 1.66 a.u., respectively 

and for the compound CeGaO3, RMT of Ce, Ga and O atoms are 2.5, 1.82 and 1.65 a.u., 

respectively. In the case of an orthorhombic structure, for the compound CeCrO3, the 

muffin-tin radii (𝑅𝑀𝑇) of Ce, Cr and O atoms are 2.25, 1.9 and 1.72 a.u., respectively 

and for the compound CeGaO3, RMT of Ce, Ga and O atoms are 2.16, 1.78 and 1.61 

a.u., respectively. The cut-off energy to separate the core states from valence states is 

set to be -9 Ry. Also, there are 35 special k-points in the irreducible Brillion zone with 

grid 10× 10 × 10 (equivalent to 1000 k-points in the Full Brillion Zone) [34] are used to 

obtain self-consistency for CeCrO3 and CeGaO3 compounds. Moreover, the number of 

plane waves was restricted by 𝐾𝑀𝐴𝑋 𝑅𝑀𝑇 = 8 and the expansions of the wave functions 

was set by 𝑙=10 inside the muffin-tin spheres. 

When using the GGA approximation, the G max is set to 14 with cut-off 𝑙 max= 8 and 35k 

points in the irreducible Brillion zone with grid 10 x 10 x10 meshes. 

For the exchange-correlation potential we use PBE-GGA [35]. To improve the energy 

band gap of CeCrO3 and CeGaO3 the modified Becki-Johnson potential (mBJ-GGA) 

was used [36]. 
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Chapter Four 

 Results and Discussion 

4.1 Structural properties 

To calculate the structural properties; optimized lattice constant (a), bulk modulus (B), 

its pressure derivative (B’), and minimum energy 𝐸0 . The total energy (Ry) versus 

volume (a.u3) graphs were fitted by using Murnaghan’s[37]. Murnaghan’s equation of 

state (EOS) is given by: 

             𝐸(𝑉) =  𝐸0 + 𝑉 𝐵𝐵′ {[(
𝑉0

𝑉
)
𝐵′

/(𝐵′ − 1)] + 1} − [𝐵𝑉0/(𝐵
′ − 1)]             (20)                

Pressure, P= - 
𝑑𝐸

  𝑑𝑉
 , Bulk modulus, B= - V 

𝑑𝑃

𝑑𝑉
 = V 

𝑑2𝐸

𝑑𝑉2
  

Where B is the bulk modulus at the equilibrium volume, B’ is the pressure derivative of 

the bulk modulus at the equilibrium volume and 𝐸0 is the minimum energy. 

By minimizing the total energy, we have optimized the lattice parameters of these 

compounds CeCrO3 and CeGaO3. By using the calculated optimized values of the 

lattice parameter constants we have calculated the structural parameters (lattice 

parameters, total energy bulk modulus and first pressure derivatives of bulk modulus) 

of these compounds in a cubic and orthorhombic perovskite structure. 

We can get the structural parameters (lattice parameters, total energy bulk modulus and 

first pressure derivatives of bulk modulus) by plotting volume versus energy by the 

Murnaghan equation of state [37] to estimate the ground state properties of these 

compounds. 

Initially in a cubic structure, Figure 4 shows the fitted total energy versus volume for 

CeCrO3 by using PBE-GGA approximation. 
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Figure. (4) 

Equation of state of cubic perovskite of CeCrO3 PBE-GGA methods, )E vs V) 

 
 
Table (1) 

Calculated lattice parameter, bulk modulus, pressure derivative of CeCrO 3 in a 

cubic structure 

 Lattice parameter (A°) Bo (GPa) B’ 

Structure Present Others Present Others Present 

Cubic 3.8772 3.877[38] 182.2342       183.81[38] 4.3081 

In Table 1, the present results are in good agreement with other theoretical results [39] 

for the lattice parameter and bulk modulus of cubic CeCrO3 compound. 
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Figure. (5) 

Equation of state of orthorhombic perovskite of CeCrO3 PBE-GGA methods, (E vs V). 

 

Table (2) 

Calculated lattice parameter, bulk modulus, pressure derivative of CeCrO 3 in 

orthorhombic structure. 

 Lattice parameter(A°) Bo (Gpa) B’ 

Structure Present Others Present          Others Present     Others 

Orthorhombic a=5.6227934 

b=7.6759456 

c=5.3932411 

a=5.897[39] 

b=7.726[39[ 

c=5.158[39] 

165.5768       169.17[39] 3.8973      4.86[39] 

Experimental 

Results 

a=5.479[40] 

b=7.733[40] 

c=5.472[40] 

…. …. 

From Table 2, the present results are in good agreement with other theoretical and 

experimental results, i.e., the Lattice parameter, the bulk modulus, or even for the 

pressure derivative. The calculated constant lattice parameter (a) of orthorhombic 

CeCrO3 compound is overestimated the experimental lattice parameter with 2.5% 

larger[40], while the calculated constants lattice parameter (b and c) are 0.74% and 

1.46%, respectively smaller than the experimental value[40]. 
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Figure. (6) 

The relationship between Equation of state of the Cubic and orthorhombic perovskite of 

CeCrO3 PBE-GGA methods, (E vs V) 

 

In the orthorhombic structure for CeCrO3 using PBE-GGA approximation, this 

compound contains twenty atoms and the volume and energy in Figure 6 are divided by 

the number 4 because the compound CeCrO3 in the case of the cubic structure contains 

five atoms and we did this process to see which one has less energy than the other and 

it shows us from figure 6 that the compound in the orthorhombic structure has lower 

energy. The minimum energy of the compound is -20284.61275 Ry while for the cubic 

structure its minimum energy is -20284.564522 Ry and this comparison is at the same 

muffin-tin radii (RMT) of the orthorhombic structure. RMT of Ce, Cr and O atoms are 

2.25, 1.9 and 1.72 a.u., respectively. 

In a cubic structure, Figure 6 shows the fitted total energy versus volume for CeCrO3 

by using PBE-GGA approximation. 
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Figure. (7) 

Equation of state of cubic perovskite of CeCrO3 PBE-GGA methods, (E vs V) 

 

Table (3) 

Calculated lattice parameter, bulk modulus, pressure derivative of CeGaO 3 in a 

cubic structure. 

 Lattice parameter(A°) Bo(Gpa) B’ 

Structure Present Others Present Present 

Cubic 3.8964 ….. 174.0224 3.0718 

Table 3 shows the calculations of the lattice parameter, bulk modulus and pressure 

derivative of a cubic CeGaO3 compound using PBE-GGA. The optimized lattice 

parameter, in particular is used to study the electronic, magnetic and elastic properties. 
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Figure. (8) 

Equation of state of orthorhombic perovskite of CeGaO3 PBE-GGA methods, (E vs V) 

 

Table (4) 

Calculated lattice parameter, bulk modulus, pressure derivative of CeGaO 3 in 

orthorhombic structure 
 Lattice parameter(A°) Bo (Gpa) B’ 

Structure Present Others Present Present 

Orthorhombic a=5.7510644748 

b=8.1253060458 

c=5.6673073582 

…... 

 

165.5768 

 

3.8973 

Experimental 

Results 

a=5.490[41] 

b=7.748[41] 

c=5.485[41] 

177[41] …. 

In the CeGaO3 orthorhombic structure, the experimental results[41] slightly overestimate 

the lattice parameter if we compare it with our present results and also the experimental 

results [41] of the bulk modulus are slightly overestimated compared to the present 

results. 
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Figure. (9) 
The relationship between Equation of state of the Cubic and orthorhombic perovskite of 

CeGaO3 PBE-GGA methods, (E vs V). 

 
In the orthorhombic structure for CeGaO3 by using PBE-GGA approximation, we also 

say here, as we said about the CeCrO3 compound, that in this structure this compound 

contains twenty atoms and the volume and energy in Figure 9 have been divided by the 

number 4 because the compound in the cubic structure case contains five atoms and we 

have done this process to see which one is Less energy than the other. It is shown in 

Figure 9 that the compound in the orthorhombic structure has less energy. The 

minimum energy of the compound in this case is -22071.008655 Ry while in the case 

of the cubic structure its minimum energy is -22070.970288 Ry and this comparison is 

at the same muffin-tin radii (RMT). RMT of Ce, Ga and O atoms are 2.16, 1.78 and 1.61 

a.u., respectively. 

4.2 Electronic properties 

A. Band Structure 

In this section, we calculate the band structure in the Brillion-zone along the high 

symmetry line for the two perovskite compounds CeCrO3 and CeGaO3 in the cubic and 

orthorhombic structure at zero pressure and the Fermi level is set at zero eV. 
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Table (5) 

Energy band gap (Eg) of CeCrO3 and CeGaO3  compounds using PBE-GGA 

methods. 

Materials Structure Spin Band gap type Energy band gap 
(eV) 

Eg-mBJ Other theoretical 

Results 

CeCrO3 Cubic Up …. Metallic Metallic  

  Down Indirect M→Г 3 M→X3.1 M 2.89[38] 
 Orthorhombic Up Indirect Г 0.9 Г 3.013 Г 0.9[39] 

  Down ….. Metallic Metallic  

CeGaO3 Cubic Up Indirect M 0.117 M 1.261  

  Down Indirect M 3.144 M 3.118  

 Orthorhombic Up …. Metallic Г 1.346  

  Down Indirect Г 3.6 Г 4.5  

Table 5 shows us the calculation of the band gap of the cubic structure and 

orthorhombic of CeCrO3 and CeGaO3 using PBE-GGA and then we optimize the 

results by mBJ-GGA potential and shows us that the present results are in great 

agreement with the other theoretical results. 

In the cubic perovskite of CeCrO3 and using PBE-GGA the band structure of this 

compound was calculated in both spin-up and spin-down states. We found that the spin 

up results imply that it is metallic while in the case of spin down the valence band 

maximum (VBM) we find that the compound occurs along the point symmetry line M 

while conduction band minimum occurs along Г -point symmetry line with energy gap 

3 eV, as shown in Figure (10, a and b).  

  



21 

Figure. (10)  
The Calculated spin polarized (a) up (b) down band structures for cubic CeCrO3 compound 

using PBE-GGA. 

 
(a) 

 
(b) 

But by using the modified Beke-Johnson potential (mBJ-GGA) we have improved the 

calculations of the energy band gap for this compound. In the mBJ-GGA the energy 

gap of CeCrO3 compound in the case of spin-up remained metallic (as shown in Figure 

11.a (see Appendix (B)) and in the case of spin-down the energy gap increased by a 

very small percentage to become 3.1 eV, while the compound remained semiconductor 

in this state, as shown in Figure (11.b) (see Appendix (B)). M. Rashid et al[38] 

calculated the energy gap within the mBJ-GGA and found it to be 2.89 eV and this 

value is in a good agreement with our calculations. 



22 

In the orthorhombic perovskite of CeCrO3 using PBE-GGA, the band structure for the 

spin up was calculated, it is found that the conduction band minimum (CBM) is 0.3 eV 

located at the Г point. At the same time, the valence band maximum (VBM) is -0.6 eV 

at the Г point, which gives a direct band gap energy of 0.9 eV.  A. Abbad et al [39] used 

FP-LAPW method to calculate the energy gap of CeCrO3 compound in the 

orthorhombic perovskite structure, and the same result appeared with them as well, 

which is 0.9 eV, While the energy gap is metallic in the case of spin down of this 

compound. So, this compound is half-metallic in PBE-GGA.  In mBJ-GGA, the energy 

gap increased by a large percentage to become 3.013 eV in the spin-up state, while in 

the spin-down state the energy gap of CeCrO3 remained metallic, so the compound in 

this case is also half-metallic as shown in Figure 13 )see Appendix (B)).     

Figure (14) (a and b) )in Appendix (B)) shows that the band structure of the spin up and 

spin down of cubic perovskite of CeGaO3 compound has an indirect energy band gap 

using PBE-GGA method. The indirect energy gap within PBE-GGA for the spin up and 

spin down is 0.117 eV and 3.144 eV respectively, so the compound in this case is a 

semiconductor. Also, Figure (15) (a and b) )in Appendix (B)) shows that the band 

structure of the spin up and the spin down of cubic CeGaO3 compound has an indirect 

energy band gap using mBJ-GGA method. The indirect energy gap mBJ-GGA was 

found to be 1.261 eV, 3.118 eV respectively, so the compound also in this case is a 

semiconductor, as shown in Table 5. 

Figure (16) (a and b) )in Appendix (B)) shows that the band structure of orthorhombic 

perovskite of CeGaO3 compound of the spin up is metallic while the spin down has an 

indirect energy band gap using PBE-GGA method. The indirect energy gap within 

PBE-GGA for the spin down is 3.6 eV, so the compound in this case is half-metallic. 

Also, Figure (17) (a and b) )in Appendix (B)) shows that the band structure of the spin 

up and the spin down of orthorhombic CeGaO3 compound has an indirect energy band 

gap using mBJ-GGA method. The indirect energy gap mBJ-GGA was found to be 

1.346 eV, 4.5 eV respectively, so the compound in this case for the spin up and spin 

down is a semiconductor and an insulator respectively.     

B. Density of state 

This part of the chapter can be defined as a description of the ratio of states that the 

system will occupy at each energy. Also, in this part the total and partial densities of 
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states of CeCrO3 and CeGaO3 in the cubic and orthorhombic structure by using PBE-

GGA were calculated. 

Figure (18) )see Appendix (B)) shows a spin-up of the cubic compound CeCrO3 using 

PBE-GGA, the valence band coming mainly from Cr-d and with little contribution of 

O-p, while the conduction band originates from Ce-f and little Cr-d. And Figure (19)               

)see Appendix (B)), in the spin-down state, the valence band comes from O-p and with 

a little contribution from Cr-d, while the conduction band originates from Ce-f and    

Cr-d. 

Figure (20) )in Appendix (B)) shows a spin-up of the cubic compound CeCrO3 with 

mBJ-GGA potential, the valence band coming mainly from Cr-d and with small 

contribution of O-p, while the conduction band originates from Ce-f and little Cr-d. 

Figure (21) )see Appendix (B)), in the spin-down state the valence band comes from O-

p and with a little contribution from Cr-d, while the conduction band originates from 

Ce-f and Cr-d. 

Figure (22) )in Appendix (B)) shows a spin-up of the orthorhombic compound CeCrO3 

using PBE-GGA, the valence band coming mainly from Cr-d and with little 

contribution of O-p, while the conduction band originates from Ce-f and little Cr-d. 

Figure (23) )in Appendix (B)) shows that in the spin-down state the valence band 

comes from O-p and with a little contribution from Cr-d, while the conduction band 

originates from Ce-f and Cr-d. 

Figure (24) )in Appendix (B)) shows a spin-up of the orthorhombic compound CeCrO3 

with mBJ-GGA potential, the valence band coming mainly from Cr-d and with small 

contribution of O-p, while, the conduction band originates from Ce-f and little Cr-d. 

And in Figure (25) -)in Appendix (B)), the spin-down state shows that the valence band 

comes from O-p and with a little contribution from Cr-d, while the conduction band 

originates from Ce-f and Cr-d.  

Figure (26) )in Appendix (B)) shows a spin-up of the cubic compound CeGaO3 using 

PBE-GGA, the valence band coming mainly from Ga-d and with little contribution of 

Ce-p and O-p, while the conduction band originates from Ce-f and little O-p. And 

Figure (27) )in Appendix (B)) , in the spin-down state the valence band comes from O-

p and Ga-d, while the conduction band originates from Ce-f and with small 

contribution of O-p. 
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Figure (28) )in Appendix (B)) shows a spin-up of the cubic compound CeGaO3 with 

mBJ-GGA potential, the valence band coming mainly from Ga-d and with small 

contribution of Ce-p and O-p, while the conduction band originates from Ce-f and little 

O-p and Ce-d. Figure (29) )in Appendix (B)) , in the spin-down state the valence band 

comes from O-p and Ga-d with small contribution of Ce-p, while the conduction band 

originates from Ce-f with small contribution of O-p and Ce-d. 

Figure (30) )in Appendix (B)) shows a spin-up of the orthorhombic compound CeGaO3 

using PBE-GGA, the valence band coming mainly from Ga-s, Ga-p and Ga-d and with 

little contribution of O-p, while the conduction band originates from Ce-f and little Ga-

s and Ga-p. Figure (31) )see Appendix (B)) in the spin-down state the valence band 

comes from O-p and with a little contribution from Ga-s, Ga-p and Ga-d, while the 

conduction band originates from Ce-f and Ga-p and to a lesser extent in Ga-s. 

Figure (32) )in Appendix (B)) shows a spin-up of the orthorhombic compound CeGaO3 

with mBJ-GGA potential, the valence band coming mainly from Ga-d and with small 

contribution of Ce-p and O-p. While the conduction band originates from Ce-f and little 

Ce-d. And in Figure (33) )see Appendix (B)), the spin-down state the valence band 

comes from Ga-d and with a little contribution from Ce-p and O-p, while the 

conduction band originates from Ce-f and with small contribution of Ce-d and O-p. 

4.3 Magnetic Properties 

In this section, we calculated the total and partial magnetic moments of the cubic and 

orthorhombic CeCrO3 and CeGaO3 compounds and compared them with other 

theoretical results as shown in Tables 6 and 7 and it can be said from these results that 

these two compounds are ferromagnetic compounds. From these tables it is clear that 

our results agree very well with other theoretical results. 
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Table (6) 

The total magnetic moment for Cubic and Orthorhombic CeCrO 3 compound using 

PBE-GGA method. 

 

Compounds 

 

Magnetic Moment (𝜇𝐵) 
 

Ce 

 

Cr 

 

O 

 

O 

 

Interstitial 

Total 

magnetic 

moment 

(𝑀𝑡𝑜𝑡) 𝜇𝐵 

Cubic 

CeCrO3 Present 1.05679 2.33102 0.02807 -- 0.49577 3.96778 

Orthorhom

bic CeCrO3 Present -0.59622 2.20447 0.04245 0.04110 1.06095 7.99255 

Theoretical 

Result -0.65(39) 2.25(39) 0.038(39) 0.028(39) 1.22(39) 8(39) 

Table (7) 

The total magnetic moment for Cubic and Orthorhombic CeCrO3 compounds with 

mBJ-GGA potential. 

 

Compounds 

 

Magnetic Moment (𝜇𝐵) 
 

Ce 

 

Cr 

 

O 

 

O 

 

Interstitial 

Total 

magnetic 

moment 

(𝑀𝑡𝑜𝑡) 
𝜇𝐵 

Cubic 

CeCrO3 

Present 0.98083 2.47995 0.07067 -- 0.32724 4.00004 

Theoretical 

Result 

0.9831(38) 2.5283(38) 0.0642(38) -- -- 4.0004(38) 

Orthorhombic 

CeCrO3 

Present -0.89228 2.52829 0.04856 0.04712 0.88502 8.00025 

Tables 8 and 9 show that the total and partial magnetic moment for cubic and 

orthorhombic CeGaO3 compounds were calculated by using both PBE-GGA and mBJ-

GGA potentials. We found that the total magnetic moment values for CeGaO3 ranged 

from 1 to 4 𝜇𝐵, which means that the compound is ferromagnetic in both cubic and 

orthorhombic states. 
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Table (8) 

The total magnetic moment for Cubic and Orthorhombic  CeGaO3 compounds by 

using PBE-GGA method. 

 

Compounds 

 

Magnetic Moment (𝜇𝐵) 

 

Ce 

 

Ga 

 

O 

 

O 

 

Interstitial 

Total magnetic 

moment (𝑀𝑡𝑜𝑡) 
𝜇𝐵 

Cubic 

CeGaO3 

Present 0.98327 0.00116 -0.00799 -- 0.04083 1.00128 

Orthorhombic 

CeGaO3 

Present 0.94338 0.00096 -0.00575 -0.00732 0.30220 3.99799 

Table (9) 

The total magnetic moment for Cubic and Orthorhombic CeGaO3 compounds with 

mBJ-GGA potential. 

 

Compounds 

 

Magnetic Moment (𝜇𝐵) 
 

Ce 

 

Ga 

 

O 

 

O 

 

Interstitial 

Total magnetic 

moment (𝑀𝑡𝑜𝑡) 
𝜇𝐵 

Cubic 

CeGaO3 

Present 0.95565 -0.00009 0.01127 -- 0.01066 1.00001 

Orthorhombic 

CeGaO3 

Present 0.94104 -0.00008 0.00723 0.00693 0.15188 4.00003 

4.4 Elastic properties 

In this section, we have calculated the elastic properties of CeCrO3 and CeGaO3 in the 

cubic and orthorhombic crystal. These properties are volume modulus (B), shear 

modulus (S), elastic constants (CB), B/S ratio, Poisson's ratio, Young's modulus (Y) and 

anisotropic factor (A). The standard mechanical stability for cubic crystal is[42] 

                 𝐶11 > 0, 𝐶11 + 2𝐶12 > 0, 𝐶11 − 𝐶12 > 0 and 𝐶44 > 0                      (21) 

Where C11 is the modulus for axial compression, C12 is the modulus for dilation on 

compression and C44 is the shear modulus. 

In this section we have calculated the elastic properties under zero pressure. From our 

calculations in Table (10) for the two compounds CeCrO3 and CeGaO3 for the case of 

cubic, it appears that the two compounds are stable. 
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To calculate the volume modulus and shear modulus, we have used the Voigt 

approximation[43] and from the following equation we can calculate the Voigt shear 

modulus Sv: 

                                      𝑆𝑣 =
1

5
(𝐶11 − 𝐶12 + 3𝐶44)                                                     (22) 

And for the cubic structure, the Bulk modulus is given by: 

                                      𝐵 =
1

3
(𝐶11 + 2𝐶12)                                                                (23) 

Young's modulus (Y) can be defined as the ratio of stress to strain and is given by the 

following equations: 

                                         𝑌 =
9𝐵𝑆𝑣

(𝑆𝑣+3𝐵)
                                                                          (24) 

Poisson's ratio and Anisotropic factor are defined by the following equations: 

                                          𝑣 =
3𝐵−2𝑆𝑣

2(3𝐵+𝑆𝑣)
                                                                        (25) 

                                            𝐴 =
2𝐶44

𝐶11−𝐶12
                                                                       (26) 

The hardness of materials is measured by the shear modulus and the bulk modulus[44]. 

The nature of the material if it is ductile or brittle can be determined from the ratio B/S. 

The material with a B/S ratio greater than 1.75 is a material that behaves in a ductile 

nature, but if it is otherwise, the material behaves with a brittle nature[45]. From our 

calculations in Table (10), the B/S ratio of the two compounds CeCrO3 and CeGaO3 

was 2.459, 2.421, respectively, so the two compounds in this case behave in a ductile 

nature. 

We use Poisson's ratio to get a good idea of the nature of bonding forces and from 

another perspective to see how stable the material is. We can determine if the bonds in 

compounds are ionic or covalent by calculating the value of the Poisson's ratio of the 

compound. If its value is greater than 0.25, the compound contains ionic bonds, while if 

the value of Poisson's ratio is less than that, the bonds of the compound are covalent. 

We have a Poisson's ratio value for the two compounds CeCrO3 and CeGaO3 which is 

0.321 and 0.318 respectively, so the two compounds in this case have ionic bonds. 
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To measure the degree of anisotropy of materials an important factor is the elastic 

anisotropy [46]. When the value of A is unity, the material is considered isotropic, but if 

its value is otherwise, the material is considered to have an elastic anisotropy [47]. From 

the current results that appear in Table (10), the compound CeCrO3 which has a value 

of 0.194 is anisotropic, while the compound CeGaO3 which has a value of 0.999 is 

isotropic. 

Table (10) 

Calculated elastic constants of CeCrO 3 and CeGaO3  in the cubic structure. 

Materials 𝐶11 
(GPa) 

𝐶12 
(GPa) 

𝐶44 
(GPa) 

B 

(GPa) 

S 

(GPa) 
B/S 

 

Y 

(GPa) 
𝑣 A 

CeCrO3 357.893 82.968 26.680 174.609 70.993 2.459 187.559 0.321 0.194 

CeGaO3 258.5404 120.8277 68.8503 166.732 68.85272 2.421 181.565 0.318 0.999 

The standard mechanical stability for orthorhombic crystal is[48] [49] 

(C11 + C22 – 2C12)>0, (C11 + C33 – 2C13)>0, (C22 + C33 - 2C23)>0, C11>0, C22>0, C33>0, 

C44>0, C55>0, C66>0, (C11 + C22 + C33 + 2C12 +2C13 + 2C23)>0                                  (27) 

Table (11) (in Appendix (A)) show the elastic constants for CeCrO3 and CeGaO3 in 

orthorhombic structure and from these results we found the two compounds are 

mechanically unstable. 
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Chapter 5 
Conclusions 

We studied the structural, electronic, magnetic and elastic properties of the two CeCrO3 

and CeGaO3 compounds in both cubic and orthorhombic structures using PBE-GGA 

method.  We demonstrated from the results and drawings that the two compounds are 

in an orthorhombic structure of less energy than in a cubic structure.  

In the electronic properties, CeCrO3 was half-metallic in its cubic structure in the PBE-

GGA method. It is also half-metallic by using mBJ-GGA potential. In an orthorhombic 

structure the compound appeared to be half-metallic using mBJ-GGA potential, which 

means that the compound is of half-metallic nature.  

CeGaO3 in cubic structure is of semiconducting nature in PBE-GGA and we confirmed 

that by mBJ-GGA potential. While, in an orthorhombic structure it is half-metallic 

when using the PBE-GGA method, but when using mBJ-GGA potential it is found to 

be a semiconductor in its spin-up state and an insulator in spin-down state. 

Magnetic properties show that the two compounds in all cases are ferromagnetic. The 

CeCrO3 compound in the cubic and orthorhombic structures using the PBE-GGA 

method have a total magnetic moment of 3.96778 𝜇𝐵 and 7.99255 𝜇𝐵, respectively. In 

the case of mBJ-GGA potential, the total magnetic moment of the cubic and 

orthorhombic structures is 4 𝜇𝐵 and 8.00025 𝜇𝐵, respectively. Whereas, the compound 

CeGaO3 in the cubic and orthorhombic structures using PBE-GGA method have a total 

magnetic moment of 1.00128 𝜇𝐵 and 3.99799 𝜇𝐵, respectively. In the case of mBJ-

GGA potential, the total magnetic moment of the cubic and orthorhombic structures for 

this compound is 1 𝜇𝐵 and 4 𝜇𝐵, respectively. 

In addition, we studied the elastic properties of both compounds in the cubic and 

orthorhombic structure. In the cubic structure, the two compounds were mechanically 

stable, and from the ratio B/S, we found that the two compounds have a ductile nature. 

It was also shown by Poisson's ratio values that the two compounds have ionic bonds. 

But anisotropic factor shows that the compound CeCrO3 is elastic anisotropic and the 

compound CeGaO3 is isotropic. In the orthorhombic structure, the two compounds are 

found to be mechanically unstable.  
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Appendices 

Appendice (A) 

Tables 

Table (11) 

Calculated elastic constants of CeCrO 3 and CeGaO3 in the orthorhombic 

structure. 

Materials 𝐶11 
(GPa) 

𝐶22 
(GPa) 

𝐶33 
(GPa) 

𝐶44 
(GPa) 

𝐶55 
(GPa) 

𝐶66 
(GPa) 

𝐶12 
(GPa) 

𝐶13 
(GPa) 

𝐶23 
(GPa) 

CeCrO3 34.5 -5.9 -218.1 19.4 86.6 71.3 -77.8 -118.6 -250.7 

CeGaO3 169.5 12.3 -1105.7 -97.3 96.9 126.6 -13.3 -39.4 -25.7 

 

  



35 

Appendice (B) 

Figures 

Figure. (11) 
The Calculated spin polarized (a) up (b) down band structures for cubic CeCrO3 compound 

with mBJ-GGA potential. 

 
(a) 

 
(b) 
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Figure. (12) 
The Calculated spin polarized (a) up (b) down band structures for orthorhombic   CeCrO3 

compound using PBE-GGA. 

 
(a) 

 
(b) 
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Figure. (13) 
The Calculated spin polarized (a) up (b) down band structures for orthorhombic CeCrO3 

compound with mBJ-GGA potential. 

 
(a) 

 
(b) 
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Figure. (14) 
The Calculated spin polarized (a) up (b) down band structures for cubic CeGaO3 compound 

using PBE-GGA. 

 
(a) 

 
(b) 
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Figure. (15) 
The Calculated spin polarized (a) up (b) down band structures for cubic CeGaO3 compound 

with mBJ-GGA potential. 

 
(a) 

 
(b) 
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Figure. (16) 
The Calculated spin polarized (a) up (b) down band structures for orthorhombic CeGaO3 

compound using PBE-GGA. 

 
(a) 

 
(b) 
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Figure. (17) 
The Calculated spin polarized (a) up (b) down band structures for orthorhombic CeGaO3 

compound with mBJ-GGA potential. 

 
(a) 

 
(b) 
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Figure. (18)  

Total and partial density of state of spin up for (a) CeCrO3, (b) Ce , ( c) Cr and (d) O of cubic 

CeCrO3 compound by using PBE-GGA method. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure. (12) 

Total and partial density of state of spin down for (a) CeCrO3, (b) Ce , ( c) Cr and (d) O of 

cubic CeCrO3 compound by using PBE-GGA method. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure. (20) 

Total and partial density of state of spin up for (a) CeCrO3, (b) Ce , ( c) Cr and (d) O of cubic 

CeCrO3 compound with mBJ-GGA potential. 

 

(a) 
 

(b) 

 

(c) 

 

(d) 
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Figure. (21) 

Total and partial density of state of spin down for (a) CeCrO3, (b) Ce , ( c) Cr and (d) O of 

cubic CeCrO3 compound with mBJ-GGA potential. 

 

(a) 

 

(b)  

 

(c) 

 

(d) 
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Figure. (22)  

Total and partial density of state of spin up for (a) CeCrO3, (b) Ce, (c) Cr and (d) O of 

orthorhombic CeCrO3 compound by using PBE-GGA. 

 

(a) 
 

(b) 

 

(c) 

 

(d) 
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Figure. (23) 

Total and partial density of state of spin down for (a) CeCrO3, (b) Ce, (c) Cr and (d)O of 
orthorhombic CeCrO3 compound by using PBE-GGA. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure. (24) 
Total and partial density of state of spin up for (a) CeCrO3, (b) Ce , (c) Cr and (d) O of 

orthorhombic CeCrO3 compound with mBJ-GGA potential. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure. (25) 

Total and partial density of state of spin down for (a) CeCrO3, (b) Ce, (c) Cr and (d) O of 

orthorhombic CeCrO3 compound with mBJ-GGA potential. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure. (26) 
Total and partial density of state of spin up for (a) CeGaO3, (b) Ce, (c) Ga and (d) O of cubic 

CeGaO3 compound by using PBE-GGA method. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure. (27) 
Total and partial density of state of spin down for (a) CeGaO3, (b) Ce, (c) Ga and (d) O of 

cubic CeGaO3 compound by using PBE-GGA method. 

 

(a) 
 

(b) 

 

(c) 

 

(d) 
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Figure. (28) 
Total and partial density of state of spin up for (a) CeGaO3, (b) Ga, (c) Cr and (d) O of cubic 

CeGaO3 compound with mBJ-GGA potential. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure. (29) 
Total and partial density of state of spin down for (a) CeGaO3, (b) Ga, (c) Cr and (d) O of 

cubic CeGaO3 compound with mBJ-GGA potential. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure (30) 
Total and partial density of state of spin up for (a) CeGaO3, (b) Ce, (c) Ga and (d) O of 

orthorhombic CeGaO3 compound by using PBE-GGA. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure (31) 
Total and partial density of state of spin down for (a) CeGaO3, (b) Ce, (c) Ga and (d) O of 

orthorhombic CeGaO3 compound by using PBE-GGA. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure (32)  
Total and partial density of state of spin up for (a) CeGaO3, (b) Ce, (c) Ga and (d) O of 

orthorhombic CeGaO3 compound with mBJ-GGA potential. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure (33) 
Total and partial density of state of spin down for (a) CeGaO3, (b) Ce , ( c) Ga and (d) O of 

orthorhombic CeGaO3 compound with mBJ-GGA potential. 
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 الملخص

لبيروفسكايت المكعب اتم فحص الخصائص التركيبية والالكترونية والمغناطيسية والمرونية لمركبات 

( والجهد التام المزيد ذو الموجات DFTنظرية الكثافة الوظيفية ) عن طريق استخدام جهد والمعيني القائم

برنامج  بواسطة (PBE-GGAيب التدريجي المعمم )( والتقر FP-LAPWالمستوية الخطية )

WIEN2k. 

( ومشتقة Bمعامل الصلابة ) (a( لحساب ثابت الشبكة )GGAتم استخدام التقريب التدريجي المعمم )

 تم استخدام نظام بيكي جونسون لتحسين فجوة الطاقة.قد ( و ʹBمعامل الصلابة بالنسبة للضغط )

 من أهم نتائج هذه الدراسة:

يمتلك خاصية  3CeGaO وأن المركب معدنيةنصف خاصية متلك ي 3CeCrO ن المركبتبين أ .1

 شبه موصل هذا في حالة المركبات مكعبة الشكل.

معدنية  ة نصفمتلك خاصيي 3CeCrO تبين أن المركب، المركبات معينية قائمة في حالة كان شكل .2

 به موصل في حالة المغزلي لأعلى أما في حالة المغزلييمتلك خاصية ش 3CeGaO وأن المركب

 لأسفل فهو عازل.

لها خواص  المعيني القائمكلا الشكلين المكعب و في  3CeGaOو 3CeCrOركبات أن الم وجد .3

 مغناطيسية.



 ج

 النتائج العملية والنظرية الأخرى.بشكل كبير مع النتائج التي وجدناها  وافقتت .4

ا مفي حالة الشكل مكعب له 3CeGaOو 3CeCrO ن أن المركباتلخواص المرونية تبيمن خلال ا .5

 مستقرة ميكانيكياً.طبيعة 

 لها روابط كيميائية أيونية. في حالة الشكل مكعب 3CeGaOو 3CeCrO  أن المركبات اتضح .6

 قابلة للطرق والسحب. في حالة الشكل مكعب 3CeGaOو 3CeCrO  المركبات تبين أن .7

كايت المكعب، البيروفسكايت المعيني القائم، خاصية نصف معدنية، البيروفس الكلمات المفتاحية:

 خصائص تركيبية، خصائص إلكترونية، خصائص مغناطيسية، خصائص مرونية.


