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Abstract 

In this work full-potential linearized augmented plane wave method 

(FP-LAPW) within the density functional theory (DFT) and within 

generalized gradient approximation (GGA) are used to investigate, 

electronic band structure, structural properties and thermodynamic 

properties  of III (In, B, Ga) - V (N, P ) compounds and their ternary alloys 

of BNxP1-x, GaxB1-xN, BxIn1-xN in zinc blende structure. 

The present DFT-GGA calculations have shown direct band gap 

energy in zinc-blende phase for InN, GaN, and indirect band gap energy 

for BN and BP.  Here, the conduction band minima of both InN and GaN 

are located at 

 

point, while that of BN is at  a position lying along X 

direction and BP at min . 

In our work we have found that the band gap engineering of BNxP1-

x, GaxB1-xN, BxIn1-xN alloys have been studied for range of constituents (x= 

0.25, 0.50, 0.75). The downward band gap bowing seems the largest in 

GaxB1-xN alloy comparable with the other alloys considered in this work. 

Even for a small amount of contents (x), adecrease of the electronic 

effective mass around 

 

point appears for  BNxP1-x, GaxB1-xN, BxIn1-xN 

alloys manifesting itself by an increase of the band curvature . 
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The calculated cross over from indirect to direct band gap of ternary 

alloys has been found to be consistent with the experimental 

measurements. 

At last, the determinations of the band gaps of alloys as a function of 

contents, the concentration range of constituents leading to metallic 

character of the alloys, the change of the electronic effective mass around 

( ) as a function of the cross over from indirect to direct band gap of the 

alloys which are direct on one end, indirect on the other end are main 

achievements in this work. 

We have found also that  the optimize volume and the thermo- 

dynamic properties were different with different concentrations of the 

component of their ternary alloys above and we have also analyzed the 

relative stability, the bulk modulus, and the minimized energy of these 

ternary compounds.   



CHAPTER ONE 

INTRODUCTION 

           semiconductors can be grown with varying compositions. Also the 

quality of materials was improved which increases the possibility of 

applications. The III nitride (GaN, BN, InN) and BP semiconductors are 

potentially useful at high frequency, microwave and short-wave-length. 

InN, and GaN are used for high speed hetero junction transistors [1] 

and low cost solar cells with high efficiency [2]. They are also increasingly 

used for visible light emitting diodes (LEDs) [3, 4] and laser diodes (LDs) 

[5-8], for the amber, green, blue and UV regions of the spectrum. Also as 

basis for high power, high temperature electronic devices [9, 10]. 

It is well known that InN has the smallest energy gap of any of the 

III-V binary materials used, which makes it an interesting narrow gap 

semiconductor, from the point of view of optical spectroscopy and 

optoelectronic applications [11]. This property often allows the fabrication 

of infrared imaging systems, free space communications, and gas phase 

detection systems [12,13]. BN has a largest  electronic band gap a mong 

III-V compounds which has a particular importance for optoelectronic 

devices. Optoelectronic devices can be designed so that to cover a wide 

spectral range.  
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In our work DFT was used to calculate energy gap of the ternary 

alloys BNxP1-x, GaxB1-xN, and BxIn1-xN, and the physical properties of these 

alloys. 

The ternary alloys of GaxB1-xN, BxIn1-xN , and BNxP1-x are the 

potential materials for room temperature infrared detectors, gas sensors and 

lasers operating in near infrared (0.9-1.3 µm), mid - infrared (2-5 µm) and 

far infrared ( 8- 12 µm) regions[14 23]. Also they have applications as a 

cladding layer or an active layer for light emitting diodes LEDs and laser 

diodes LDs emitting an extremely wide spectral region covering from deep 

ultraviolet (UV) to infrared [24] and as a potential material for thermo 

electric power devices [25], solar cells with high efficiency [26], buffer 

layer for multiple quantum lasers [27] . 

The theoretical methods which can be used to study the properties of 

exotic semiconductors for this can be classified according to the input data: 

     First principles calculation (ab-initio calculations). In these kinds of 

calculations only the atomic number and the number of the atoms are used 

as an input for the calculations. Full potential linearized augmented plane 

wave (FP-LAPW) method based on (DFT) within (LDA) [28, 29] or 

(GGA) [28 30], and Hatree- Fock [31] method are used as first principle 

calculation methods in the literature. 

    Empirical methods: These kinds of calculational methods needs 

interaction energy parameters which are externally obtained from either 
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experimental measurements or the first principles calculation results. The 

pk . [32, 33], empirical pseudo potential (EPP) [34] and empirical tight 

binding (ETB) [35, 36] are used as empirical methods in the literature. 

In the present work, FP-LAPW method within GGA is applied on 

InN, GaN, BP and BN compounds and their ternary alloys to find out the 

electronic band structure for these materials. Because of the time 

consuming problem in the first principle calculations of alloys, DFT 

method is mainly used in the present work to study the band bowing of 

BNxP1-x, GaxB1-xN, and BxIn1-xN alloys.  

This thesis is organized as follows: In chapter 2, the calculation 

methods used in this work are explained and formulated. In chapter 3 the 

electronic band structure for InN, GaN, BP and BN has been studied, 

respectively. In chapter 4 the band gap bowing BNxP1-x, GaxB1-xN, and 

BxIn1-xN alloys has been studied respectively. Finally, the results will be 

discussed and conclusions will be drawn.        
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CHAPTER TWO 

THEORY OF CALCULATION 

2-1 Introduction:                                                                                    

Nowadays atomistic and electronic structure calculations have 

become very important in the fields of physics and chemistry than the past 

decade, especially with the high-performance computers. If we need to 

know the atomic structure of the material, electronic properties and how 

can we modify the bonding between atoms or the material chemical content 

to create new materials with  properties different from original properties of 

the component. 

A number of methods can be used. It can be divided into two classes: 

those that do not use any empirically or experimentally derived quantities 

called first principles methods, like density functional theory (DFT), while 

the latter methods are called empirical or semi-empirical, like empirical 

tight binding (ETB). The first principle methods are  useful in predicting 

the properties of new materials such as the calculation of the energy levels 

of electrons in solids, which used to know  the energy bands, which is the 

central theoretical problem of solid state physics. Knowledge of these 

energies, and electron wave function is required for any calculation of more 

directly observable properties including electrical and thermal 

conductivities, optical dielectric function, vibration spectra and so on. 

In the present work, the energy band structure of compounds, such    

as InN, BN, BP, GaN and their ternary alloys BNxP1-x, GaxB1-xN, and BxIn1-
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xN has been obtained by the combination of first principle calculations 

based on density functional theory.  

The theory of the calculation considered in this work has been 

outlined in the following section 

2.2 Density Functional Theory as a way to solve the quantum many 

body problem 

A solid is a collection of heavy, positively charged particles (nuclei), 

If the structure is composed of N nuclei and each has Z electrons, then it 

has N (nuclei) + Z N (electrons) electromagnetically interacting particles. 

This is known as a many-body problem, and because these particles are so 

light compared with classical scale, it is a quantum many body problem. In 

principle, to study the materials and their properties, the theorist has to 

solve the time independent Schr dinger equation.

 

                                                                          (2.1)                                                          

where 

                    H =Tn + Te + Ven + Vee +Vnn                                    (2.2)                                        
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Here , is the wave function of all participating particles and H is the exact 

many-particle Hamiltonian for this system. The first term in equation  (2.3) 
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is the kinetic energy operator for the nuclei (Tn), the second for the 

electrons (Te). The third term corresponds to Coulomb electron-nuclear 

attraction (Ven), the forth term for electron-electron repulsion (Vee) and the 

final term for nuclear-nuclear repulsion (Vnn), respectively Mi is the mass 

of the nucleus at Ri, me is the mass of the electron at ri. In order to find 

acceptable approximate eigenstates (acceptable solution to Schr dinger 

equation (2.1)), three approximations at different levels can be used. 

These approximations make the calculations easy to transform the  

many body problem to one body problem. 

2.2.1 Level 1: The Born-Oppenheimer approximation (BO) 

One of the most important approximations in material science. The 

special idea of the approximation is that the nuclei are much heavier and 

much slower than the electrons. We can hence` freeze' them at fixed 

positions and assume the electrons to be in instantaneous equilibrium with 

them. This mean that only the electrons are kept as players in this many 

body problems while nuclei are deprived from this status, and reduced to  a 

given source of positive charge; they become external to the electron 

cloud.  

The application of this approximation; left the problem with a 

collection of ZN interacting negative particles, moving in the (now external 

or given) potential of the nuclei. So the consequences of the Born-

Oppenheimer approximation of the Hamiltonian the nuclei do not move 
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any more, their kinetic energy is zero and the first term in equation (2.2) 

disappears and the last term reduces to a constant. Therefore the many body 

problem is left with the kinetic energy of the electron gas, the potential 

energy due to electron- electron interactions and the potential energy of the 

electrons in the (now external) potential of the nuclei. The new many body 

Hamiltonian is written formally as  

ji ji

i

ji jii e

ri

rR

Ze

rr

e

m oo ,

2222

4

1

8

1

2
                                             

 Or 

         H = Te   +  V ee  +  V ext                                                 (2.4)                                                                         

2.2.2 Level 2: Density Functional theory (DFT) 

The quantum many body problem obtained after the first level 

approximation (Born-Oppenheimer) is much simpler than the original one, 

but still difficult to solve. To reduce equation 2.4 to an approximate but 

acceptable form the Hartree-Fock method (HF) is needed.  In this 

approximation [37], the solution of many-electron Hamiltonian is 

transformed to solve one-electron Hamiltonian by  assuming the electrons 

are independent from each other. By this assumption the total wave 

function for the electrons is written as                                                                                            

N

i

iN rrrr .,........., 21                                   (2.5)   

Where( ) is the electron wave function. Using this definition           
2N

i

i rr                                                           (2.6)          
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Where ( (r)) is the electron density 

The total Hamiltonian can be written   

i j ji
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Or  

              H= T0 + VH( )                                                             (2.7) 

The Schr dinger equation becomes non-linear and requires for the  

Self consistency procedure. 

            [ To +VH( ) ] =   EH                                                  (2.8) 

Here,T0 is the functional for the kinetic energy of a non-interacting electron 

gas, VH stands for the electron effective potential and EH is the functional 

of electron energy using Hartree approximation. In order to solve an 

equation of this type, one starts with some trivial solution (o) (normally 

atomic orbital wave function is used) which  

is used to construct the potential. 

Solving the nonlinear Schr dinger equation (2.8) with this potential, one 

can obtain a new solution  (1) which is used in turn to build a new  

potential. This procedure is repeated until the ground state  (i) and the 
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corresponding energy E do not deviate appreciably from those in the 

previous step.      

Hartree product wave functions suffer from several major flaws that 

serve to make them physically unrealistic: 

    

 

Hartree products do not satisfy the Pauli anti symmetry principle this 

means  that the sign of any many-electron wave function must be anti 

symmetric with respect to the interchange of the coordinates, both space 

and spin, of any two electrons. The anti symmetry principle is a postulate 

of quantum mechanics. The Pauli principle prevents two electrons with the 

same spin from occupying the same spatial orbital. 

     Hartree product force a particular electron to occupy a given spin 

orbital despite the fact that electrons are indistinguishable from one 

another. Lastly, because the Hartree product wave function is constructed 

on the assumption that the electrons are non-interacting, there exists a non-

zero probability of finding two electrons occupying the exact same point in 

space.  

       Later this wave function is modified to include the spin of the electron 

by the Hartree-Fock approximation [38]. This approximation is an 

extension of the above Hartree approximation, to include the permutation 

symmetry of the wave function which leads to the exchange interaction. 

Exchange is due to the Pauli exclusion principle, which states that the total 

wave function for the system must be anti symmetric under particle 

exchange.   
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This means that when two arguments are swapped the wave function  

changes sign as follows: 

(r1,r2,ri,rj, rN) = - (r1,r2, rj ,ri, rN)                      (2.9)                                                                                            

  

Where ri includes coordinates of position and spin. Therefore no two 

electrons can have the same set of quantum numbers, and electrons with the 

same spin cannot occupy the same state simultaneously. 

      As a result of the anti symmetry wave function, eq (2.8) can be written 

as 

            EHF = To + VH                                                              (2.10)                                                    

EHF is the functional electron energy using Hartree-Fock  

approximation, To is the functional for the kinetic energy of a non- 

interacting electron gas and VH stands for the electron effective potential. 

The solution steps of eq.(2.10) are the same as they are defined for Hartree 

eq.(2.7). Hartree-Fock approximation performs very well for atoms and 

molecules, and therefore used a lot in quantum chemistry. For solids it is 

less accurate, however. In the present work, the electronic band structure of 

compounds and ternary alloys has been studied by DFT which is more 

modern and probably more powerful compared to HF approximation. 

Density Functional Theory formally established in 1964 by two theorems 

due to Hohenberg and Kohn [39].  



 
11

2.2.3 The theorems of Hohenberg and Kohn 

The traditional formulation of the two theorems of Hohenberg and 

Kohn is as follows: 

   First theorem: their is one-to-one correspondence between ground-

state density of a many-electron system (atom, molecule, solid) and the 

external potential Vext. An immediate consequence is that the ground-state 

expectation value of any observable quantity,  

 is a unique functional of the exact ground-state electron density  

          
)(OO

                                           (2.11)                                                                                       

From this wave function, the corresponding electron density is easily 

found. 

Second theorem: For O being the Hamiltonian  H, the ground- state total 

energy functional is of the form                      

            extVext VVTE                              (2.12)   

or                                                                                                                               

           drrVrFE
extVext

HK                      (2.13)                                                    

Where the Hohenberg-Kohn density functional FHK[ ] is universal 

for any many-electron system.  
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EVext [ ] reaches its minimal value  for the ground state density 

corresponding to Vext. 

Now its important to discuss the meaning of the following keywords. 

     

 

First, the Invariability: It is obvious that a given many electron 

system has a unique external potential, which by the Hamiltonian 2.1 and 

the Schr dinger equation yields a unique ground-state many particle wave 

function. From this wave function, the corresponding electron density is 

easily found. An external potential hence leads to a unique ground-state 

density corresponding to it.  But it looks like the density contains less 

information than the wave function. If this would be true, it would not be 

possible to find a unique external potential if only a ground-state density is 

given.   

The first theorem of Hohenberg and Kohn tells exactly that this is 

possible.   

The density contains as much information as the wave function does 

(i.e. every thing you could possibly know about an atom, molecule or 

solid). All observable quantities can be written as functional of the density. 

 Universality (the universality of FHK[ ]): Eq. 2.13 is easily  

written down by using the density operator, and supposing the ground-state 

density is known, the contribution to the total energy from the external 

potential can be exactly calculated.  
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An explicit expression for the Hohenberg-Kohn functional, FHK, is 

not known. But anyway, because FHK does not contain information on the 

nuclei and their position, it is a universal functional for any many- electron 

system.  

This means that in principle an expression for FHK[ ] exists which 

can be used for every atom, molecule or solid which can be imagined. 

  variation access: the second theorem makes it possible to use the 

variation principle of Rayleigh-Ritz in order to find the ground-state 

density. Out of the infinite number of possible densities, the one which 

minimizes E Vext [ ] is the ground-state density corresponding to the 

external potential Vext( r ). Of course, this can be done only if (an 

approximation to) FHK [ ] is known. But having found , all knowledge 

about the system is known. When it is evaluated for the  density 

corresponding to the particular Vext for this solid, it gives the ground state 

energy. When it is evaluated for any other density however, the resulting 

number has no physical meaning.  

The practical procedure to obtain the ground state density of DFT 

was satisfied by Kohn and Sham equation published in 1965 [40]. In Kohn 

Sham equation, the correlation energy (V c ): is  this part of the total energy 

which is present in the exact solution, but absent in the Hartree-Fock 

solution. 
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The total energy functional Ee corresponding to the exact 

Hamiltonian 

               Ee  =  T  +  V                                                  (2.14)                                                        

and EHF [ ]corresponding to the Hartree-Fock Hamiltonian   

              EHF  =  To  +  (VH + V x)                                        (2.15) 

Here T is the exact kinetic energy and V electron-electron potential 

energy functionals,  To is the functional for the kinetic energy of a non 

interacting electron gas, VH stands for the Hartree contribution and Vx for 

the exchange contribution. By subtracting equation (2.15) from equation 

(2.14), the functional for the correlation contribution appears to be 

                      V c  =   T  -  To                                               (2.16) 

The exchange contribution to the total energy is defined as the part 

which is present in the Hartree-Fock solution, but absent in the Hartree 

solution.   

The Hartree functional given by 

                        EH = To  + VH                                                 (2.17) 

It can be defined as 

                         Vx = V - VH                                                   (2.18) 



 
15

With this knowledge, we can rewrite the Hohenberg-Kohn functional 

in  the following way 

                   FHK = T + V + To  To                                         (2.19) 

                          = To + V + (T - To)                                       (2.20)                                                                       

Where from equation (2.16) T-To = Vc                                      

                  FHK = To + V + V c + VH - VH                                (2.21)                                                     

 

                       = To + VH   + V c + (V - VH)                            (2.22)   

Where from equation (2.18) V - VH = Vx                  

                   FHK = To + VH + (V x + V c)                                 (2.23)   

Here (Vxc) is the exchange-correlation energy functional which we 

don t know it formally, as it contains the difficult exchange and correlation 

contributions only. If we assume for a while that we do know Vxc, we can 

write explicitly the energy functional: 

      E Vext[ ] = T0[ ] + VH [ ] + V xc [ ] + Vext [ ]                 (2.24)                         

One could use now the second Hohenberg-Kohn theorem to find the 

ground state density, but  instead, one can interpret the above expression 

also as the energy functional of a non-interacting classical electron gas, 

subject to two external potentials: one due to the nuclei, and one due to 

exchange and correlation effects. The corresponding Hamiltonian (called 

the Kohn-Sham Hamiltonian) is 
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KS=To+ VH+ V xc +V ext                                                 (2.25)  

Or                                                       

        extxc
i

i

o
i

e
KS VVdr

rr

re

m 42

2
2

2

                    (2.26 )                            

Where, the exchange-correlation potential is given by the functional  

derivative      

                        
xc

xc
V

V                                                (2.27)                                                                                                                                     

2.2.4 The Kohn-Sham equations: 

The theorem of Kohn and Sham can  be formulated as follows: The 

exact ground-state density  ( r ) of an N-electron system is 

(r) = 
N

i 1
i(r) i(r)                      (2.28) 

Where, the single-particle wave functions i( r ) are the N lowest- 

energy Solutions of the Kohn-Sham equation 

iiiKS                         (2.29) 

And now, we did won a lot. To find the ground-state density, we 

don t need to use the second Hohenberg-Kohn theorem any more, but we 

can rely on solving the familiar Schr dinger (like non interacting single 

particle) equations. But be aware that the single-particle wave functions, i 

(r), are not the wave functions of electrons, they describe mathematical 
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quasi-particles, without a direct physical meaning. Only the overall density 

of these quasi- particles is used to be equal to the true electron density. 

Also the single particle energies, Ei are not single-electron energies. Both 

the Hartree operator VH and the exchange-correlation operator Vxc depend 

on the density  (r ), which in turn depends on the  i(r ) which are being 

searched.  

Some starting density  (o) is guessed, and a Hamiltonian HKS1 is 

constructed with it. The eigenvalue problem is solved, and results in a set 

of i from which a density 1 can be derived. Most probably o will differ 

from 1. Now 1 is used to construct HKS2, which will yield a 2, etc. The 

procedure can be set up in such a way that this series will converge to a 

density f which generates a HKSf which yields as solution again f, this 

final density is then consistent with the Hamiltonian.  

2.2.5 The exchange-correlation functional: 

The Kohn-Sham scheme described above was exact: apart from the 

preceding Born-Oppenheimer approximation, no other approximations  

were made. But we neglected so far the fact that we do not know the 

exchange-correlation functional. It is here that approximations enter this 

theory. 

A widely used approximation called the Local Density 

Approximation (LDA) is to postulate that the exchange-correlation 

functional has the following form 
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                   drrr xc
LDA
xc                            (2.30)                                                                                                                                         

This postulate is somehow reasonable; it means that the exchange-

correlation energy due to a particular density  ( r ) could be found by 

dividing the material in infinitesimally small volumes with a constant 

density. 

Each such volume contributes to the total exchange correlation 

energy by an amount equal to the exchange correlation energy of an 

identical volume filled with a homogeneous electron gas, which has the 

same overall density as the original material has in this volume.  

A next logical step to improve on LDA is to make the exchange-

correlation contribution of every infinitesimal volume not only dependent 

on the local density in that volume, but also on the density in the 

neighboring volumes. In other words, the gradient of the density will play a 

role. This approximation is therefore called the Generalized Gradient 

Approximation (GGA). There is only one LDA exchange-correlation 

functional, because there is a unique definition for exchange-correlation. 

But therefore several versions of GGA exist. Moreover, in practice one 

often fits a GGA-functional with free parameters to a large set of 

experimental data on atoms and molecules. 

The best values of these parameters are fixed , and the functional is 

ready to be used routinely in solids. Therefore such a GGA-calculation is 

strictly in calculation. Nevertheless, there exist GGA s that are parameter 

free.   
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2.2.6 Level 3: Solving the equations 

Solving an infinite set of one-electron equations of the following 

type: 

rrVVrd
rr

re

m mmmextm
e

)
42

(
2

2
2

                  (2.31)                                                                                                                          

Here, m is an integer number that counts the members of the set, the 

term )
42

(
2

2
2

extm
e

VVrd
rr

re

m
was called Hsp the single-particle 

Hamiltonian. For HF, V  is the exchange operator. 

The m are true one-electron or single particle orbital for HF. 

Exchange is treated exactly, but correlation effects are not included at all. 

For DFT, V

 

is the exchange-correlation operator, in the local spin density 

approximation (LSDA), GGA or another  approximation. Exchange and 

correlation are both treated, but approximately. The m are mathematical 

single-particle orbital. 

The similarity between the Hartree-Fock and Kohn-Sham equations 

means that the same mathematical techniques can be used to solve them.   
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CHAPTER THREE 

THE RESULTS AND DISCUSION OF InN, GaN, BN AND 
BP COMPOUNDS 

3.1 Introduction 

Recently there has been increasing interest to study wide band gap 

semiconductors. There are several reasons for this interest: these materials 

are required for high temperature applications and for photoelectronic 

applications in the short  wave length range of the visible spectrum and near 

UV.   

III-V compounds such as  Boron, gallium with nitrogen have wide 

band gap. The reason for the wide band gap of these materials are due to 

the strong covalent interaction. Their bonding is manifested in their high 

cohesive energies, strong elastic constant, and the hardness's. This makes 

them useful for reinforcement in metal- ceramic and ceramic- ceramic 

composites. 

The narrow band gap compounds such as Indium with Nitrogenand 

Boron with phosphor have also attract researchers to study because of its 

optical and high temperature device applications. The physical properties 

of InN have attracted considerable research interest because of its transport 

properties such as high electron mobility and saturation velocity making 

InN a promising candidate for use in high-speed devices. In addition, InN 

and GaN alloys and hetero structures will enable unique optoelectronic 

devices, operating from near infrared to ultraviolet wavelength. However, 

the range of device applications strongly depends on the material 
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properties, quality, and on the extent to which indium-rich alloys and 

hetero structures can be formed.          

Among these InN is used for the fabrication of high speed hetero-

junction transistors [1] and low cost solar cells with high efficiency [2] 

because of a highly potential material. Pure InN was predicted to have the 

lowest effective mass for electrons in all the III-nitride semiconductors [1] 

which lead to high mobility.  

Recently, several groups have grown high quality hexagonal (w-InN) 

and zinc-blende (c-InN ) structural InN films by modern growth  

techniques, such as metal organic chemical vapor deposition (MOVP E) 

and plasma-assisted molecular beam epitaxy (MBE) [41-46]. The w-InN 

and c-InN films have been mostly grown on sapphire. The LDA 

calculations that employed the pseudopotential (PP) method produced 

negative band gaps ranging from -0.18 to -0.40 eV [47- 52]. The GGA 

within the (PP) led to a gap value of -0.55eV [49].  The recent experiment 

works on c-InN have mainly focused on the characterization of the films 

[43-46]. The band gap energy of c-InN films has not been reported 

experimentally according to our knowledge, but it has been found around 

0.44 - 0.74 eV by the results of ab-initio-calculations [53,54]. These newly 

reported values of w-InN and c-InN are compatible with the wavelength of 

the optical fiber. Therefore, the w-InN and c-InN films will have very 

important potential to fabricate high speed laser diodes (LDs) and 

photodiodes (PDs) in the optical communication systems. 
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The other compound of N, GaN it is used for microelectronic and 

optoelectronic applications. In GaN multi-quantum well light emitting 

diodes (LEDs) within tin oxide as widow layers were fabricated with the 

band gap of 3.1 - 3.5 eV is a very useful material for a large range of 

applications, such as emitters and detectors for visible and UV light, for 

high frequency, high temperature and power devices  [6, 55-57]. The stable 

GaN has been grown in hexagonal (wurtzite phase) structure. However, the 

production of GaN thin films of cubic (c) ( zinc-blende phase) crystals has 

been satisfied by the recent progress in crystal growth techniques.  

Recently, the high quality pure c-GaN epilayers have been 

successfully grown on by gas phase and plasma assisted molecular beam 

epitaxy (MBE) [58-69] and metal organic chemical vapor deposition 

(MOCVD) [66,68]. 

The interest in c-GaN has been growing recently. Because the c-GaN 

has some attractive advantages for device applications such as higher 

electron drift velocity [67] and lower band gap energy than w-GaN [53-

64,66]. The band gap of c-GaN was calculated to be 1.6 eV  by 

pseudopotential Gaussian basis (LDA/PP-GB) [70], 1.89 eV by 

pseudopotential plane-wave (LDA/PPPW) [71], 1.28 eV by GGA/PPPW 

[72] and 2 eV by all-electron (LDA/AE) [73].  

In the literature, there are large theoretical efforts to describe the 

structural and electronic properties of c-GaN [62, 74- 88]. The direct band 

gap values by density functional theory (DFT) within local density 
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approximation (LDA) were found to be smaller than the measured values; 

the differences are approximately 1.5 eV. In both DFT-linear muffin thin 

orbital (LMTO) and DFT full potential linear augmented plane wave (FP-

LAPW) generalized gradient approximation (GGA) calculations, the band 

gap values were found around 2.4 eV [74,79]. The empirical pseudo 

potential band structure calculations for c-GaN have predicted the room 

temperature band gap values which are 0.3 -0.1 eV less than that of w-GaN 

[75, 77]. 

There is a considerable interest to study the properties of zinc-blende 

BN because it has useful physical properties like extreme hardness, high 

melting points, interesting dielectric and thermal characteristics. Because it 

has high resistively (108 -m), high thermal conductivity (1300W/m-c) and 

wide band gap (~6eV). Both n- type and p- type of c-BN makes this 

compound important in the manufacture of electronic devices [89-91]. 

BN is known to be a very hard material and the only report of its 

bulk modulus ( 465±50 GPa) [92] is an inter polar based on empirical 

relation for the elastic constant for zinc blende structure. This value is 

larger than the accepted value for diamond (442GPa) [93, 94], but in 

agreement with the value of 367 GPa [95]. 

In a recent work, c-BN has been reported to be an ideal substrate for 

the fabrication of high temperature UV and blue light emitting diodes 

(LEDs) [89, 96, 97] and laser diodes (LDs) [98]. In the literature, c- BN 

single crystals have been generally synthesized by a temperature gradient 
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method under high pressure and high temperature conditions using a proper 

purified solvent system [99, 100]. On the other hand, c-BN thin films in 

high quality required for the electronic devices have been grown in a recent 

work [101] by plasma-enhanced chemical vapor deposition (PECVD) 

technique.  

The wide band gap of c-BN was measured to be approximately 6.2 

eV by the optical absorption edge [102], the resonant soft x-ray emission 

and total photon yield spectra[99], and cathode luminescence spectra 

measurements, these quantities were measured with experimental side. In 

the theoretical side, the lattice constant of c-BN has been calculated to be in 

the range of 3.575-3.649 A  by the first principles [103- 110] and molecular 

dynamics (MD) [109] calculations. In the same theoretical works [103-107, 

109], the bulk modulus for BN was measured to be (365 -397GPa). In the 

literature, the first principles electronic band structure calculations within 

either local density approximation (LDA) or both LDA and generalized 

gradient approximation (GGA) or both LDA and Greens functions (GW ) 

approximations have given the indirect band gap of c-BN in the range of 

4.19-6.3 eV [103, 104, 107, 110-115].  

The last compound of the present work, cubic boron phosphide (c-

BP) has also technological importance in the manufacture of electronic 

devices operating at high temperatures, InP/BP and BP/Si hetero junction 

bipolar transistors [116] 
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Because, single crystal BP has high thermal conductivity comparable 

to that of  BN [117]. Furthermore, because of its low reflectivity [118] and 

it's band gap ~2 eV [119, 120], BP have been utilized as a window layer 

provided in p-n junction solar cell [121] for transmitting sun light. In the 

literature, the structural properties of c-BP have been determined by the 

experimental lattice constant equal  4.54 A [122, 123], bulk modulus of 

152-267GPa [122, 124, 125],  and the cohesive energy of 10.24eV/atom 

pair [103] estimated by the experimental heat of formation and heat of 

atomization energies of B and P. The DFT calculations either by pseudo 

potential plane wave (PPPW) [103, 104, 126-128] and full potential plane 

wave (FPPW)  [107, 113, 129] or linear muffin thin orbital (LMTO) [126, 

130], and linear combination of atomic orbital (LCAO) [126, 130, 131]  

methods within either LDA and GGA have given the lattice constant of c-

BP close to the experimental value. The difference is only 0.29-1.43%.   

It was reported that the calculated lattice constant of c-BP is 

becoming very close to its experimental value when both LDA and GGA, s 

are utilized in total energy minimization calculations [113, 129, 131]. The 

bulk modulus of c-BP calculated by the first principles methods given 

above [103, 104, 113, 126-131] are in the narrow range of 160-176GPa. 

The cohesive energy of c-BP is overestimated 11.45eV/atom pair in DFT 

calculations [130]. In the literature, the first principles electronic band 

structure calculations within either LDA or both LDA and GW 

approximations have given the indirect gap of c-BP along the  line 

min15
v [103, 104, 107, 112, 126, 128- 131]. The indirect gap values 
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reported in these works are all underestimated. The other values calculated 

1.252 eV [115] , 1.9 eV (113), and 1.1 eV [132] scheme are in better 

agreement with the present calculations . 

The electronic band structures of InN, GaN, BP and BN have been 

calculated by DFT. The results were discussed in the following sections.  

3.2 The results  

3. 2.1 InN 

The zinc-blende structure of InN is characterized by the lattice 

constant, a. At the first stage of the work, the equilibrium value of a is 

determined by calculating total energy of InN by FP-LAPW for a set of 

volumes and fitting these to the Murnaghan equation [133]. We have 

adopted the value of 0.95 °A for In and 0.79 °A for N as the muffin-tin 

radius MT. The electronic configuration of InN is In: Kr (4d10 5s2 5p1 ) and 

N: He (2s2 2p3 ). In the calculations, the electrons of In is (1s2 2s2 2p6 3s2 

3p6 3d10 4s2 4p2 4d10 ) are defined as the core electrons and distinguished 

from the valence electrons of In in (5s2 5p1).  

The present lattice constant of InN 5.056 °A is found to be very close 

to the lattice constant values of 5.07  A [44]; it is only 0.28% smaller than 

this value, and it is only 0.77% greater than other results 5.017 [134]. On 

the other hand the present lattice constant is also close to the lattice 

constant values of 4.986 °A [135], 4.968 [136], 4.964 [137], 4.98  [55], and 

4.97 °A [86] calculated by DFT-GGA. The present lattice constant is 
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approximately 2.09% greater than the other value of 4.95 °A calculated 

(LMTO) [98].          

At the second stage of the work, the FP-LAPW method within the 

Frame work of the DFT-GGA has been employed to calculate the band 

structure of InN. Since, this work is planned to be extended to the bowing 

parameter calculations of alloys correspond to InN in the near future, we 

have focused mainly on the energy gaps at high symmetry points. It is 

found that, the band gap of InN is direct in zinc-blende phase, furthermore, 

the energy bands is in agreement with the results of previous reports [49]. 

The present band edge at  point is non parabolic as it was reported in 

these works. Since we are unaware of reports of experimental 

investigations of the electronic properties of c-InN, we couldn t compare 

the present band gap values with the experimental results. But, the present 

band gap at  point g is found to be close -0.516 eV with respect to the 

values -0.48 eV it is only 6.98% smaller than the above magnitude given by 

ETB [130]. The similar negative and positive direct band gap energies were 

reported before in the literature.  
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Table (3.1): The theoretical and experimental lattice constant values in 
°A for InN, GaN, BN, and BP in zinc blende phase.  

Compound               theoretical         
           a ( A )                    

   Experimental  
       a ( A)               

InN               
    

5.056 A , 4.95a, b, c 

(4.97,5.05) d, ( 5.109,4.932)e        

4.929f   4.953g , 5.004 h , 
4.974 i , 5.01j,  4.983k  ,   

5.06l ,  5.017m          

  4.92 n, 5.03o ,   (4.964, 
  5.067) p    ,  4.968 q                                      

4.986 r, 4.97 s  

4. 98t         

GaN               4.562 A  4.433 u,  
(4.45 ,4.56) v                   
 (4.518 ,4.59)h                  
(4.423, 4.462, 4.45) w                 
4.55x ,4.5552 y ,4.49 z   

    4.461a                           

4.5b ,4.49c

  

4.530d       

BN                        3.631A, 3.591e", 3.6006f"                                                                                     

3.623g" , 3.649h"                          
      

3.626i" , 3.606j"                       

      3.575k"                                                                    

3.615r"                   

BP                       4.559A
, 4.558 j" ,4.474k"                 

4.546j" , 4.551 i"                        

  

4.475l" 4.51m"                   
4.554n",   4.501o"                                                        

4.543±0.01p"                     

4.538q"                     

A  present work, a Ref. [84], b Ref. [54], c Ref. [53], d Ref. [85], e Ref. 

[138], f Ref. [139],g Ref.140 in Ref. [138], h Ref. [86], i Ref. [141],  

j Ref. [142], k Ref. [143], l Ref. [144],m Ref. [75], n Ref. [145], o Ref. [146], 

p Ref. [147], q Ref. [136], r Ref. [135],  s Ref.[44], t Ref. [134],  

u Ref. [84],  v Ref. [85], w Ref. [77], x Ref. [78], y Ref. [87], z Ref. 

 [80], a  Ref. [83], b Ref. [68], c Ref. [60] , d Ref. [148] ,   
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e

 
Ref.[105], f

 
Ref.[106], g

 
Ref. [107, 109], h" Ref. [108], i" Ref.  [113],  j" 

Ref.  [103], k" Ref.  [104], l" Ref.  [127, 128], m" Ref.  [126, 130], n" Ref.  

[131], o" Ref.  [129], p" Ref. [122],  q" Ref.  [123], r" Ref.  [149].  

         In the following step of the present work, the energy parameters of  

DFT have been derived for c- InN Figure 3.1 

 

Figure (3.1): The energy band structure of c-InN by FP-LAPW  
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Table (3.2): A summary of the important features, energy gaps and 
valance bandwidths of the present DFT band structure for c-InN 
compared to other experimental and theoretical calculation results. All 
energies are in eV.  

DFT-
GGA 
Our work 

LDA- 
PP 

GGA- 
PP 

LDA- 
FP- 
LAPW 

ETB 

CV
115

 

-0.517 a (-0.18- 
-0.40) b 

-0.55 c 

0.43 d 
-0.48 e 

-0.40 f 
-0.48 g 

a present work, b Ref. [47-52], c Ref. [49], d Ref. [47],e Ref. [130], 

f Ref. [150],g Ref. [151] 

The band structure of c-InN recalculated by DFT-GGA is shown in 

Fig. 3.1. The important features of the band structure at high symmetry 

points are listed in table 3.2. In view of Fig. 3.1. The present direct gap of 

DFT- GGA ( g ) of c-InN is approximately given a similar value 

calculated by GGA-PP [49] and ETB [151]  

3.2.2 c-GaN 

The zinc-blend structure of GaN is characterized by the lattice 

constant, a. The equilibrium value of a is determined by calculating the 

total energy of c-GaN using FP-LAPW for a set of volumes and fitting 

these to the Murnaghan equation [133]. We have adopted the value of 

1.164 °A for Ga and 0.79 °A for N as the MT radii. The electronic 

configuration of GaN is Ga: Ar (3d10 4s2 4p1 ) and N : He (2s2 2p3 ). In the 

calculations, the electrons of Ga in (1s2 2s2 2p6 3s2 3p6 ) are defined as the 

core electrons and distinguished from the valence electrons of Ga in (3d10 

4s2 4p1). Similarly, the inner valence electrons of N in (1s2 2p3) are 
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distinguished from the valence electrons of N in (2s2 2p3 ) shell. The 

equilibrium lattice constant of c-GaN is calculated to be 4.562 °A. The 

present lattice constant is given in table 3.1 together with the experimental 

and other calculated lattice constant values of c-GaN presented in the 

literature. The present value of lattice constant for c-GaN is found to be 

very close to the result of 4.53 °A [61] measured by X-ray diffraction. The 

present value of a is only (1.4, 1.6) % greater than other experimental 

results, 4.5 [68] and 4.49 °A [60], they are measured by X-ray diffraction 

and optical absorption measurements, respectively. On the other hand, the 

lattice constant of c-GaN used in the present work is also very close to the 

values of 4.56 [85], 4.55 [78], 4.552 [87] and 4.59 [86] calculated by 

pseudo potential with self interaction correction (PP-SIC), DFT/FP-LAPW-

GGA with quasi particle correction, DFT/FP-LAPW-LDA, and 

DFT/PPPW-GGA, respectively. The discrepancy between the present 

lattice constant and the one 4.518 °A calculated by DFT/PPPW-LDA is 

only 0.96%. The present lattice constant of c-GaN is greater than the values 

calculated by FHI96MD, CASTEP, VASP codes [77], zero temperature 

Green s function formalism [80], non-corrected PP [85], self consistent 

linear muffin tin orbital (SCLMTO) [84], and FP-APW-local orbital 

methods [83]. 

We have employed DFT/FP-LAPW-GGA method in the band 

structure calculations of c-GaN. It is found that the band gap of GaN is 

direct in zinc-blend phase, furthermore, the band structure is in close 

agreement with the PPPW results of previous reports [71]. The present 
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DFT calculations within GGA do not give any new feature on the band 

structure of DFT-LDA, only the present ( g ) 1.494 eV of c-GaN is slightly 

smaller than the previously reported values of DFT-LDA [72]. This is a 

widely accepted result that the  (DFT-GGA)  or (LDA) electronic band 

structure are qualitatively in good agreement with the experiments in 

ordering of the energy levels and the shape of the bands, but whose band 

gap values are always smaller than the experimental data. 

The important features of  the band structure at high symmetry points 

are listed in Table 3.3. As it is observed in Fig. 3.2, the valence band 

structure of c-GaN by DFT-GGA gave the result which was close to direct 

band gap by DFT - QP [86] and EPP [85, 87], but the present value  is only 

(7.09) %smaller than PP 

 

GB [70].  
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Figure (3.2): The energy band structure of c-GaN by FP-LAPW by DFT-GGA  

Table (3.3): A summary of the important features, energy gaps and 
valance bandwidths of the present DFT band structure for c-GaN 
compared to other experimental and theoretical calculation results. All 
energies are in eV.  

DFT- 
GGA 

DFT- 

 

LDA 
AE DFT- 

QP 
PP- 
GP 

PPPW EPP 

Eg(eV)

 

CV
115

 

1.494 
a 

1.9 b 

1.8 c 
2 d 1.6 e 1.6 f 1.28 g 1.6 h 

1.72 i 
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a present work, b  Ref. [82], c Ref. [74], d Ref. [73], e Ref. [86], f Ref. [70], g 

Ref.[72], h Ref. [85], i Ref. [87].  

3.2.3 c- BN  

The zinc-blende structure of BN is characterized by the lattice 

constant, a. The equilibrium value of a is determined by calculating the 

total energy of c-BN using FP-LAPW for a set of volumes and fitting these 

to the Murnaghan equation [133]. We have adopted the value of 0.85 °A 

for B and 0.79°A for N as the MT radii. The electronic configuration of BN 

is B, He :(2s2 2p1) and N : He  

(2s2 2p3). In the calculations, the electrons of B in (1s2) are defined as the 

core electrons and distinguished from the valence electrons of B in ( 2s2 

2p1). Similarly, the inner valence band electrons of N in (1s2) are 

distinguished from the valence band electrons of N in (2s2 2p3 ) shell. The 

equilibrium lattice constant of c-BN is calculated to be 3.631°A. The 

present lattice constant is given in Table 3.1 together with the experimental 

and other calculated lattice constant values of c-BN presented in the 

literature. The present value of a is only (1.5 ,0.14)% greater than other 

results, 3.575 [104] and 3.626°A [113]. On the other hand, the lattice 

constant used in this work of c-BN is also very close to other values 3.588, 

3.631, 3.625, 3.746 A calculated by LDA, PBE-GGA, PW-EV-GGA, and 

EV-GGA respectively.   
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We have employed DFT/FP-LAPW-GGA method in the band 

structure calculations of c-BN. Table. 3.4 gives the important features of 

the present and previously reported band structures for c-BN at high 

symmetry points, it is only (3.5) % greater than other value calculated by 

PWG [152]. 

Table (3.4) A summary of the important features, energy gaps and 
valance bandwidths of the present DFT band structure for c-BN 
compared to other experimental and theoretical calculation results. All 
energies are in eV. 

Eg in eV DFT-GGA 
a 

OPW b PWG c APWd 

cv X 115

 

    4.459      3    4.3 7.2 

a present calculation, b OPW [153] , c PWG [152] , , d APW [154]. 

The band structure of c-BN using DFT-GGA is shown in Fig. 3.3. 

The important features of the band structure at high symmetry points are 

listed in Table 3.4. As it is observed in Fig. 3.3, the valence band structure 

of c-BN by DFT-GGA gave approximately the similar result which was 

obtained using PWG [152], and only the present Eg 4.459 eV of c-BN is 

slightly greater than the previously reported values of orthogonalized-plane 

wave OPW [153] and plane-wave-gaussian PWG [152]. But the present 

fundamental band gap of c-BN is still smaller than the experimental value 

reported by Augmented plane wave APW [154]. 

The present DFT calculations within GGA do not give any new 

feature on the band structure of DFT-LDA. This is an accepted result that 

the DFT-GGA electronic band structure are qualitatively in good 
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agreement with the experiments in what concerns the energy levels and the 

shape of the bands. The energy band structure of c-BN by DFT/FP-LAPW-

GGA is shown in Fig 3.3  

   

 

Fig (3.3) band structure of c-BN by DFT/FP-LAPW-GGA  

3.2.4 c-BP   

The zinc-blende structure of BP is characterized by the lattice 

constant, a. The equilibrium value of a is determined by calculating the 
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total energy of c-BP using FP-LAPW for a set of volumes and fitting these 

to the Murnaghan equation [133]. We have adopted the value of 0.79 °A 

for B and 0.95 °A for P as the MT radii. The electronic configuration of  B: 

He (2s2 2p1) and P: Ne ( 3s2 3p3). In the calculations, the electrons of P is 

(1s2 2s2 2p6) are defined as the core electrons and distinguished from the 

valence electrons of P in (3s2 3p3). Similarly, the inner shell the 

experimental and other calculated lattice constant values of BP presented in 

the literature. 

The present lattice constant of BP 4.559 °A is found to be close to 

other results 4.554 ref. [131] by this calculation; it is only greater than the 

other theoretical results 4.474°A ref. [104], 4.546°A ref. [103], 4.551°A 

ref.  [113], 4.538 °A ref. [123], 4.475°A ref. [128,127], and 4.51°A ref. 

[126, 130] as shown in table 3.1.  

At the second stage of the work, the FP-LAPW method within the 

frame work of the DFT has been employed to calculate the band structure 

of BP. Since, this work is planned to be extended to the bowing parameter 

calculations of alloys corresponds to BP in the near future, we have focused 

mainly on the energy gaps at high symmetry points as shown in table 3.5. It 

is found that, band gap of BP is 1.259 eV in indirect - min in zinc-blend 

phase, furthermore, this energy bands Eg at - min point (1.259 eV) is 

(42%) smaller than the theoretical results of previous reports using EPM 

[155], Semi-ab-initio approach [156], and optical absorption [157] 

calculated by indirect way.  
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Table (3.5): A summary of the important features, energy gaps and 
valance bandwidths of the present DFT band structure for c-BP  

Reference  Indirect energy gap eV      
      a         1.259            min15

v                    

      b           2.2              
cv X 115

 

      c            2               
cv L 115     

      d            2               
cv X 115

 

a present calculation  ,b EPM (155) ,c semi-ab-initio approach (156) ,  d 

optical absorption (157). 

   
Fig (3.4) : The energy band structure  of c-BP by FP-LAPW 
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CHAPTER FURE  

THE ELECTRONIC BAND STRUCTURE OF  

BNxP1-x, GaxB1-xN, AND BxIn1-xN ALLOYS 

4.1 Introduction                                                                                                                  

 

A new class of semiconductor alloys in which one of the constituent 

elements is replaced by an element with highly dissimilar properties has 

been discovered recently. These new ternary semiconductor alloys exhibit a 

range of unexpected characteristics. Particularly, we have aimed to 

combine c-BN and c-BP compounds, c-BN to c-GaN, and c-BN to InN 

having different structural and electronic properties in order to obtain new 

materials BNxP1-x , GaxB1-x N and BxIn1-x N ternary alloys, with 

intermediate properties. Therefore these ternary alloys are  potential 

materials for room temperature infrared detectors gas sensors and lasers. 

In this work the electronic structure of BNxP1-x, GaxB 1-x N and BxIn1-

x N ternary alloys has been calculated using DFT within GGA method. In 

these calculations, the ternary alloys were defined by only specific 

concentrations of N ,Ga, In, and B. The calculations have been performed 

on alloys to introduce the band gaps and lattice constants of the  bowing 

corresponds to the total range of nitrogen, boron, and gallium 

concentrations(x) with small increments disregarding the so long 

computational time. 

At the first stage of the work, the total energy of each alloy is 

calculated for diffrent volumes at each concentration. The total energy of 
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the unitcell at each volume is fitted to Murnaghan equation [133]. The 

volume with minimum energy is considered as where the equilibrium 

volume. The Bulk moduli and its derivative are also calculated from 

Murnaghan equation [133]. 

After that, the calculated values of the lattice parameters were used 

to calculate the band structure for the alloys. 

The last stage, the energy gap and cohesive energy per/ atom pair 

were calculated.  

The calculated lattice constant and energy gap of the alloys were 

fitted to the following equations  

xxbxaxaa ACABCAB xx
11

1 

xxbxExEE
ACABxCxAB ggg 11

1 

        The results of the alloys considered in this work are discussed in the 

following sections. 

4.2 Electronic structure of alloys 

4.2.1 BNxP1-x  

In III-V semiconductors, the replacement of a few percent of the 

group V element by small, highly electronegative and isoelectronic 

nitrogen atoms results in a drastic reduction of the fundamental band gap. 

This effect of N has been confirmed experimentally.  
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The bowing parameter (b) of the band gap of BNxP1-x  alloy has been 

performed by FP-LAPW implemented in WIEN2k code  [160] . The 

BNxP1-x alloys have been modeled with ordered structures of 

8atoms/unitcell. The calculation have been done for different composition 

of nitrogen (x) changing in the total range (0<x<1). The equilibrium lattice 

constant of the alloys have been obtained by minimizing the total energy 

with respect to the volume of the unit cell. The lattice constant, bulk 

modulus, first order pressure derivative of bulk modulus, total energy/cell, 

cohesive energy/ atom-pair, and band gap of the BNxP1-x alloys have been 

calculated using the equilibrium lattice constants and tabulated in table 4.1. 

The variation of the lattice constant, and energy gap of the alloys 

have been plotted as afunction of nitrogen concentration as shown in Figs. 

(4.1, 4.2 ) respectively. In the same figures, the variation of the 

corresponding values calculated by linear concentration dependence rule 

[161] has been also shown, for comparison. 

The equilibrium lattice constants of the BNxP1-x alloys have been 

found to be deviated from the corresponding values of the linear 

concentration rule with a downward bowing parameters of 0.464  A 

Fig.4.1.  

In the present work it is found that, the BNxP1-x alloys are all direct 

gap materials. The minimum energy gap between the conduction and 

valence band of BP is shifted to  point from 

 

min by addition of nitrogen 

atoms. Fig. 4.2 shows that, the band gap of BP is decreased more than 1eV 

by added nitrogen concentration of 0.25. The band gap bowing parameter 

of the alloys has been calculated to be 9.924eV by fitting the values to a 
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polynomial function. In the present work, the overall band gap bowing 

parameter of the BNxP1-x alloys has been also calculated by the equations of 

Bernard and Zunger [161] for x = 0.5. Since the compositional effect on the 

bowing is considered to be small, the band gap bowing equations of  

Bernard and Zunger have been defined by only the contribution of the 

volume deformation (bVD), charge transfer(bCT) and the structural 

relaxation (bSR) of the alloys as follows  

b= bVD + bCT + bSR, 

bVD = 2[EBN (aBN)  EBN (a) + EBP (aBP) EBP(a)], 

bCT   = 2[EBN (a) + EBP(a) 

 

2EBNP(a)], 

bSR  = 4[EBNP(a) - EBNP(aeq)] 

Here aBN, aBP, and aeq, are the equilibrium lattice constants of  BN, 

BP,  BN0.5P0.5 alloys, respectively. The lattice constant (a) is calculated by 

linear composition dependence [161] for the alloys. In the equations, the 

correspondence lattice constant is used to calculate the energy gap Eg for 

the compounds and alloys. The band gap bowing parameter of the BNxP1-x  

alloys is obtained to be 9.924 eV from the above equations and its equal to 

9.921 eV using DFT-GGA ref [162]. Therefore the band gap bowing is 

mainly originated from the charge transfer in the alloys due to the large 

electro-negativity deference between N and P atoms. The ignorable 

contribution of the structural relaxation to the bowing parameter shows the 

structure model of the atoms which consest the alloys is not necessary. The 

contribution of the volume deformation due to the mismatching of the 
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lattice constants of BN and BP is not as big as that of the charge transfer, 

but it is still important.  

Table 4.1 also show the variation of average direct energy gaps as a 

function of N concentration x in comparison with other energy bands given 

by PW-EV-GGA method [163] and DFT-GGA method [162]. In view of 

table 4.1 we note that the overall bowing for  point transition is small and 

downward (direct band gap). Similarly, bowing for X point transition is 

downward. The present values of gE calculated within DFT-GGA are in 

good agreement with the corresponding values of gE calculated within 

DFT-GGA [162] for BNxP1-x. For example the present calculated values of 

gE are 0.052eV, 0.388 eV, 1.932 eV and its equal to 0.062eV, 0.376 eV, 

1.934 eV within DFT-GGA [162]  by persentage error (19%, 3%, and 

0.1%) at x= 0.25, 0.50, 0.75 respectively. 

Table (4. 1) the minimized energy Eo, the bulk modulus B in GPa, the 
theoretical lattice constants A a ( A), and the energy band gap Eg in eV 
using zinc blende phase at x=0.25, 0.50 and 0.75 for   BNxP1-x                                          

X 0.25 0.5 0.75 
a ( A) 4.403 a, 4.403 b 

4.4 c 
3.211 a, 4.214 b 

4.21 c  
3.961 a, 3.960 b 

3.96 c 

B(Gpa) 178.450 a  

178.47 b 

182 c  

213.636 a 

176.907 b 

2.09 c 

264.812 a 

263.872 b  

2.61 c 

B

 

3.715 a 

3.857 b 
3.380 a 

2.489 b 
3.534 a 

3.914 b 

Eo (eV) -2360.995 a 

-2360.996 b 
-1786.261 a 

-1786.256 b 
-1211.724 a 

-1211.724 b 

Eg (eV) 0.052 a 

0.737 b 

0.062 c 

0.088 a 

1.112 b 

0.376 c 

1.932 a 

2.696 b 

1.934 c 

Coh. E/ 
atom eV 

5.316 5.440 5.899 



 
44

a Present work  (DFT-GGA), b (PW-EV-GGA) ref (163 ), c DFT-

GGA[162].                                                                                            
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Figure (4.1) Concentration dependence of the lattice constants calculated within 
DFT-GGA (dotted line) and Vegard,s linear rule(solid line) for BN1-xPX .      
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Figure (4.2)   Concentration dependence of the band gap energies calculated 
within(DFT-GGA) (dotted line) and Vegard,s linear rule(solid line)  for BN1-xPX   

4.2.2 GaxB1-x N 

The electronic band structure and lattice constant of GaxB1-x N alloy 

with the galium compensating Boron by x= 0.25, 0.5, and 0.75 have been  

studied in the literature, because of its application in heterostructure system 

Furthermore, the energy band gap variation of GaxB1-x N at  symmetry 

point has been also for the full range of the galium concentration 

theoretically. 
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The bowing parameter of the band gap and lattice constant of GaxB1-

x N alloys have been performed by (FP-LAPW) implemented in WIEN2k 

code [160].                 

The GaxB1-x N alloys have been modeled with ordered structures of 8 

atom/unit cell. The calculation have been done for different composition of 

galium (x) changing in the total range (0<x<1). The equilibrium lattice 

constant of the alloys have been calculated by minimizing the total energy 

with respect to the volume of the unit cell. The lattice constant, bulk 

modulus, first order pressure derivative of bulk modulus, total energy/cell, 

cohesive energy/ atom-pair, and band gap of the GaxB1-x N alloys have been 

calculated by the equilibrium lattice constants and tabulated in table 4.2. 

The variation of the lattice constant, and energy gap of the alloys have been 

plotted with respect to the compositions of galium in Figs.(4.3, 4.4).  

The equilibrium lattice constants of the GaxB1-x N alloys have been 

found to be deviated from the corresponding values of the Vegard,s formula 

with a downward bowing parameters of 0.399  A Fig. 4.3.   

In the present work it is found that, the GaxB1-x N alloys are all direct 

gap materials. The minimum energy gap between the conduction and 

valence band of BN is shifted by addition of Ga atoms. Fig. 4.4 shows that, 

the band gap of BN is decreased while added galium concentration of 0.25. 

The band gap bowing parameter of the alloys has been calculated to be 

0.841eV by fitting the values to a polynomial function. In the present work, 

the overall band gap bowing parameter of the GaxB1-x N alloys has been 
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also calculated by the equations of Bernard and Zunger [161] for x=0.5. 

Since the compositional effect on the bowing is considered to be small, the 

band gap bowing equations of  Bernard and Zunger have been defined by 

only the contribution of the volume deformation (bVD), charge transfer 

(bCT) and the structural relaxation (bSR) of the alloys as follows  

b= bVD + bCT + bSR, 

bVD = 2[EGaN (aGaN)  EGaN (a) + EBN (aBN) EBN(a)],  

bCT   = 2[EGaN (a) + EBN(a) 

 

2EGaBN(a)],   

bSR  = 4[EGaBN(a)  EGaBN(aeq)] 

Here aGaN, aBN, and aeq, are the equilibrium lattice constants of  BN, 

GaN, Ga0.5B0.5N  alloys, respectively. The lattice constant (a) is calculated 

by linear composition dependence [161] for the alloys. In the equations, the 

correspondence lattice constant is used to calculate the energy gap Eg for 

the compounds and alloys. The band gap bowing parameter of the GaxB1-x 

N alloys is obtained to be 0.841eV from the above equations. Therefore the 

band gap bowing is mainly originated  from the charge transfer in the alloys 

due to the large electro- negativity deference between Ga and B atoms. The 

ignorable contribution of the structural relaxation to the bowing parameter 

shows the definition of the alloys in the disordered structure model of the 

atoms is not necessary. The contribution of the volume deformation due to 

the mismatching of the lattice constants of BN and GaN is not as big as that 

of the charge transfer, but it is still important.  
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Table (4.2) the minimized energy, the bulk modulus in GPa, the  
theoretical lattice constants in  A, and the energy band gap in eV for 
GaxB1-x N in zinc blende phase at x=0.25, 0.50, and 0.75 respectively:  

X 0.25 0.5 0.75 
a.   ( A)       3.956 4.196 4.386 
B    (Gpa)     290.524 231.58 197.497 
B

 

4.409 4.302 5.391 
Eo ( eV)       -4475.596 -8313.986 -12152.558 
Eg ( eV)       

    

cv
115

 

Coh. E/atom (eV)  

3.77   

5.643  

3.334   

4.896  

2.302   

4.456 
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Figure (4.3)   Concentration dependence of the lattice constants calculated within 
(DFT-GGA) (dotted line) and Vegard,s linear rule(solid line)  for GaxB1-x N 



 
49

1.4

1.9

2.4

2.9

3.4

3.9

4.4

0.00 0.20 0.40 0.60 0.80 1.00

X

E
n

er
g

y 
g

ap
 e

V
 

Figure (4.4) Concentration dependence of the band gap energies calculated within 
(DFT-GGA) (dotted line) and Vegard,s linear rule(solid line)  for GaxB1-x N 

4.2.3 BxIn1-x N 

The electronic band structure and lattice constant of BxIn1-x Nalloy 

with the boron concentration of 0.25, 0.5, and 0.75 have been studied in the 

literature, because of its application in hetero- structure system. 

Furthermore, the energy band gap variation of BxIn1-x N at  symmetry 

point has also been for the ubove range of the boron concentration. 

The bowing parameter of the band gap and lattice Constant of BxIn1-x 

alloys have been performed by (FP-LAPW) implemented in WIEN2k code 

[160]. 
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The BxIn1-x N alloys have been modeled with ordered structures of   

8 atom/unit cell. The calculation have been done for different composition 

of boron (x) changing in the total range (0<x<1). The equilibrium lattice 

constant of the alloys have been calculated by minimizing the total energy 

with respect to the volume of the unit cell. The lattice constant, bulk 

modulus, first order pressure derivative of bulk modulus, total energy/cell, 

cohesive energy/atom-pair, and band gap of the BxIn1-x N alloys have been 

calculated by the equilibrium lattice constants and tabulated in table 4.3. 

The variation of the lattice constant, and energy gap of the alloys have been 

plotted with respect to the concentration of boron in Figs. (4.5, 4.6).  

The equilibrium lattice constants of the BxIn1-x N alloys have been 

found to be deviated from the corresponding values of the Vegard,s formula 

with a downward bowing parameters of 0.971 A Fig.4.5.   

In the present work it is found that, the BxIn1-x N alloys are all direct 

gap materials. The minimum energy gap between the conduction and 

valence band of BN is shifted by addition of In atoms. Fig. 4.6 shows that, 

the band gap of InN is decreased while added boron concentration of 0.25. 

The band gap bowing parameter of the alloys has been calculated to be 

0.84eV by fitting the values to a polynomial function. In the present work, 

the overall band gap bowing parameter of the BxIn1-x N alloys has been also 

calculated by the equations of Bernard and Zunger [161] for x=0.5. Since 

the compositional effect on the bowing is considered to be small, the band 

gap bowing equations of  Bernard and Zunger have been defined by only 
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the contribution of the volume deformation (bVD), charge transfer (bCT) and 

the structural relaxation (bSR) of the alloys as follows  

b= bVD + bCT + bSR, 

bVD = 2[EBN (aBN)  EBN (a) + EInN (aInN) EInN(a)],  

bCT   = 2[EBN (a) + EInN(a) 

 

2EBInN(a)],   

bSR  = 4[EBInN(a)  EBInN(aeq)] 

Here aInN, aBN, and aeq, are the equilibrium lattice constants of  InN ,  

BN, B0.5In0.5 N alloys, respectively. The lattice constant (a) is calculated by 

Vegard,s rule [161] for the alloys. In the equations, the correspondence 

lattice constant is used to calculate the energy gap Eg for the compounds 

and alloys. The band gap bowing parameter of the BxIn1-x N alloys is 

obtained to be 3.724eV from the above equations. Therefore the band gap 

bowing is mainly originated from the charge transfer in the alloys due to 

the large electro-negativity deference between In and B atoms. The 

ignorable contribution of the structural relaxation to the bowing parameter 

shows the definition of the alloys in the disordered structure model of the 

atoms is not necessary. The contribution of the volume deformation due to 

the mismatching of the lattice constant of BN and InN is not as big as that 

of the charge transfer, but it is still important.    
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Table (4. 3): The minimized energy Eo in (eV), the bulk modulus B in 
(Gpa), the theoretical lattice constants in  A, and the energy band gap

 
Eg in (eV) for BxIn1-x N in zinc blende phase at x=0.25, 0.50, and 0.75 
respectively.                                                             

0.75           

 
0.5         

 
0.25          

 
X        

 

4.8395         

 

4.585        

 

4.213        

 

            a.(  A) 

 

173.169       

 

189.6385     

 

173.169    

 

B(Gpa)       

 

5.0                    

 

1.5675       

 

5                             B

 

-35787.029  

 

24700.034-

 

-35787.029  

 

     (eV)       Eo

  

     0.001         

    

3.223        

  

      
      0.772  

  

      

    

3.621       

    

   3.316      

    

      
   4.572     

 

Eg  (eV)        
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Figure (4.5) Concentration dependence of the lattice constants calculated within 
(DFT-GGA) (dotted line) and Vegard's linear rule for BxIn1-x N         
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Figure (4.6): The energy band structure of B0.25In0.75N by FP-LAPW 
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Figure (4.7) Concentration dependence of the band gap energies calculated within 
(DFT-GGA) (dotted line) and Vegard's linear rule for BxIn1-x N   
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CHAPTER FIVE  

CONCLUSIONS 

In the present work, FP-LAPW method has been employed to study 

the structural and electronic properties of BN, BP, InN, and 

GaNcompounds and their ternary alloys. The equilibrium lattice constant, 

bulk modulus, first-order pressure derivatives of the bulk moduli and the 

energy gaps of the compounds at different momentum points have been 

calculated by generalized gradient approximation of density functional 

theory DFT- GGA.  

The III-V compounds have been considered in zinc-blend phase 

defined by their equilibrium lattice constants obtained from the present 

calculations of total energy minimization. The lattice constants of  InN, 

BN, BP and GaN compounds have been calculated within a small 

discrepancy compared to the experimental average values for BN  BP,  

GaN and InN as discussed before in chapter three. The present DFT-GGA 

calculations have shown direct band gap structures in zinc-blend phase for 

InN and GaN, and indirect band gap for BP and BN. However the 

conduction band minima of all the above compounds located at -  

symmetry point, - min, and - X respectively . The energy gaps by the 

present DFT-GGA calculations for the above cited compounds at high 

symmetry points is a widely accepted result in the literature for GaN with 

DFT-quasi particle (QP) Ref. [86] and non local EPM calculations is 

accepted to the present calculation for BN. Due to the lack of experimental 
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results, the calculated direct band gap value of InN has been attempted to 

improve considering the gap value supplied by corrected DFT-GGA 

calculations given in the literature. 

An important part of this work consists of GGA-DFT calculations in 

which we have been calculated the structural and electronic band of BNxP1-

x, GaxB1-x N and BxIn1-x N ternary alloys. The variation of the lattice 

constant, bulk modulus, and the minimum energy band gap of the BNxP1-x , 

GaxB1-x N, and BxIn1-x N alloys have been analyzed as a function of the 

nitrogen, gallium, and boron concentrations respectively  in the total range 

with small increments. The large bowing parameter of the lattice constant 

of the alloys calculated in this work is due to the large matching between 

the lattice constant of BN and BP compounds for BNxP1-x, BN and GaN 

compounds for GaxB1-x N , and BN with InN for BxIn1-x N. Similarly, the 

large mismatching of both bulk modules and indirect band gaps BN with 

BP, or InN, and or GaN causes a large bowing parameter for the bulk 

modules and the band gap engineering of the alloys. On the other hand, the 

large bowing parameters calculated in this work showed the invalidity of 

Vegard's linear rule in the definition of lattice constant, bulk modulus, and 

minimum energy gap of the BNxP1-x, GaxB1-x N and BxIn1-x N ternary 

alloys. In the present work, the effect of the charge transfer on the large 

band gap engineering of the considered alloys is found to be dominant in 

the Bernard and Zunger's formalism. The DFT energy parameters of BP, 

BN, InN, and GaN obtained from the present calculations have been tested 

by recalculating the energy band structure of the compounds. The band gap 
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and the valence bandwidth values of c-InN by DFT are found to be very 

small comparing with the other values  given in table 3.2 .  

The good agreement between the present and average equilibrium 

lattice constant values of c-InN might have acontribution to obtain good 

band gap energies. In the present DFT calculations, the direct band gap of 

GaN is found to be less than  the value of the band gap calculated by the 

same approximation. A small discrepancy is also found between the present 

and reported valence band width values of BP. But DFT calculations of 

InN of the direct band gap is (-0.516 eV) [ with respect to the smallest 

discrepancy (0.033 eV)  (0.0.036 eV) belongs to a theoretical result 

reported before by GGA- PP [49], ETB [151], and EPP as shown in 

table3.2. The DFT energy parameters of GaN and BN  calculations have 

been also tested by recalculating the energy band structure of the 

compounds. Since the present DFT equations are formulated only at  

points , then the first optical transition of the ternary and quaternary alloys 

of the semiconductor compounds was generally defined at either  point. 

Since the present DFT energy parameters successfully reproduce the band 

structures of the compounds at  -  symmetry points, they are considered 

reliable for the band gap bowing calculations of the BNxP1-x  ,GaxB1-x N , 

and BxIn1-x N. The calculated fundamental band gap values of BNxP1-x  

ternary alloys for different concentration of N, have been studied and 

compared with other approximations as shown in chapter four. According 

to the knowledge of authors, this is the first study that calculates the band 
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structure of bulk BxIn1-x N and GaxB1-x N alloy for complete range of 

contents. 

In the present work, the band structure of BNxP1-x , GaxB1-xN, and 

BxIn1-xN. have been calculated and the variation of gE has been 

investigated with respect to the N, Ga , and In concentration x. The present 

bowing for  point transitions is found to be downward for all BNxP1-x , 

GaxB1-xN, and BxIn1-xN. alloys. But, the numerical value of the bowing 

parameter for gE alloys is not constant in the literature. The difference 

between the calculated bowing parameters of gE for the same alloys might 

be originated from both different energy gaps and lattice constant values of 

the compounds.                                               
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