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IX 

Computational Techniques for Solving Linear Parabolic Partial 

Differential Equation 

By 

Sameer Mahmoud Musleh 

Supervisor 

Prof. Naji Qatanani 

Abstract 

Parabolic partial differential equations appear in various fields of science 

and engineering. These involve heat conduction, particle diffusion and 

ocean propagation. The most common example of such equation is the heat 

equation.  

Physical problems involving parabolic equations are hard to solve 

analytically, instead, they can be solved numerically using computational 

methods. 

In this work, initial boundary value problems involving heat diffusion 

phenomenon will be solved. This will be carried out using the finite 

difference and finite element methods.  

The discretizing approach transforms the initial boundary value problem 

into a linear system of   algebraic equations. Consequently, we use some 

iterative techniques such as, the Jacobi Method, the Gauss-Seidel Method, 

the Successive over relaxation (SOR) Method and the Conjugate Gradient 

Method to solve the resulted linear system. Some numerical test cases will 

be solved using the proposed methods.  

Numerical results show clearly that the finite difference method is more 

effective than the finite element method for regular domains. Moreover, the 

results show that the conjugate gradient method gives the most effective 

results amongst the other iterative schemes.  
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Introduction 

Partial differential equations play a very important role in science, 

technology and used to describe a wide variety of time dependent 

phenomena. These include: heat conduction, particle diffusion, ocean 

acoustic propagation and pricing of derivatives investment. 

At the heart of many engineering and scientific analysis is the solution of 

differential equations, both ordinary and partial differential equations 

(PDEs). The solution of the later types of equation can be very challenging, 

depending on the type of equation, the number of independent variables, 

the boundary and initial conditions and other factors. A variety of broadly 

applicable methods have been developed to solve such problems. Among 

the deterministic methods for solving differential equations, are the finite 

element method and the finite difference method [7, 5]. These methods 

appear in certain classification of problems for reasons that are deeply 

rooted in mathematical foundation of each method. Although trends are 

slowly changing, the finite element method has been traditionally used for 

solving problems in solid mechanics. While the finite difference method 

traditionally has been used to solve problems involving fluid flow and heat 

transfer problems [7, 31].           

 The finite difference method is one of the oldest and most popular method 

for solving partial differential equations. This method is based on the 

application of Taylor expansion used to approximate the solution of partial 

differential equations [31, 34]. 
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For time dependent problems, considerable progress in finite difference 

method occurred during the period that followed the end of the Second 

World   War. When the large scale practical applications became possible 

with the aid of computers, a major role was played by the work of Van 

Neumann that was partly mentioned in O. Brien Hyman and Kaplan studies 

in (1951) [31]. As far as parabolic differential equations are concerned, 

they were highlighted in the early paper done by John in (1951) that 

included this theory. For initial boundary value problems, implicit methods 

were established in this period, for example Crale and Nicolson in (1947). 

The finite difference theory for general initial boundary value problems and 

parabolic problems then, had an intense period of development during the 

50s and the 60s, when the concept of stability was explored in Lax 

equivalence theorem and the Kreiss matrix lemma, and further major 

contributions made by Douglas Lees, Samarskii, Widlund and others 

[31,5].  

On the other hand, the finite element method was understood to be used as 

an approximation for solving partial differential equations utilizing a 

vartiational principle and piecewise polynomial approximation. G. Leibnitz 

(1646-1716) in 1696 was the first author to introduce the finite element 

method. At the same time L. Euler (1707-1783) introduced the vartiational 

methods with the approximation approach being essentially the main tool 

employed for derivation of Euler equation [4]. 
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The finite difference and finite element methods are now two universally 

approaches use to approximate linear and nonlinear differential equations 

governing mathematical and engineering problems [5,31]. Finite difference 

method is simple to formulate and can readily be extended to approximate 

two- or three-dimensional problems. In addition, it is easy to learn, apply 

and has the flexibility in dealing with problems involving regular geometry. 

The finite element method has the flexibility in dealing with problems 

involving irregular geometry. However, with the evolving of numerical 

grid generation technique, the finite difference method now possesses the 

geometrical flexibility of finite element method while maintaining the 

simplicity of the conventional finite difference technique [23].  

In the modern era several researchers and authors deal with parabolic 

partial differential equations and its applications in several fields. Those 

researchers are: R. Bueckkine, C. Camacho and G. Fabbri worked in 

economics fields [6]. While F. Abdelnour, H. Voss and A. Raj worked in 

the field of neuroscience [1]. Other researchers: E. Ostertagova, O. 

Ostertag and J. Bocko worked in mechanics field [26]. In addition, N. 

Qatanani worked in the field of heat equation with non-local radiation 

terms [27].  

This thesis is organized as follows: Chapter 1 contains the basic elements 

and some preliminaries related to second order partial differential 

equations. In chapter 2 details of finite difference and finite element 

methods for homogeneous heat equation, with respect to different types of 
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boundary conditions are presented. Chapter 3 presents some iterative 

methods namely: the Jacobi, the Gauss-Seidle, the successive over 

relaxation (SOR) and the Conjugate Gradient methods used for solving 

linear systems. These systems resulted upon using the finite difference and 

finite element methods. Chapter 4 contains some numerical examples, 

comparisons and results.  
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Chapter One 

Mathematical Preliminaries 
 

In this chapter we present some basic definitions and classification of 

second order linear partial differential equations 

1.1 Second Order Linear Partial Differential Equation and their 

Classification 

A second order linear partial differential equation in two variables       

has the general form: 

                                                                 

where the coefficients A, B, C, D, E, F and G can either be constants or 

functions of variables   and  . 

 Equation (1.1) can be classified into three types, depending on the 

discriminant        as follows:  

1- Hyperbolic 

Equation (1.1) is called hyperbolic if the discriminant is positive             

(i.e.          ). For example, wave equation. 

2- Elliptic 

Equation (1.1) is called elliptic if the discriminant is negative         

(i.e.         ). For example, Laplace’s equation. 
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3- Parabolic 

Equation (1.1) is called parabolic if the discriminant is equal zero   

(i.e.         ). For example, heat equation. 

In this thesis, we will investigate the linear parabolic partial differential 

equation with respect to three boundary conditions. These conditions are: 

1- Dirichlet Boundary Conditions 

The condition where the value of the unknown function is specified on the 

boundary,        on    , with   being a prescribed continuous function 

on   (Boundaries). 

2- Neumann Boundary Conditions 

The normal derivative 
  

  
 satisfies the condition,  

  

  
   on B, where   is 

prescribed function continuous on   (Boundaries). 

The symbol 
  

  
 denotes the directional derivatives of u along the outward 

orthogonal to B. 

3- Robin’s Boundary Conditions (Mixed Boundary Conditions)  

These conditions contain the value of the unknown function and its 

orthogonal derivatives at the boundary of the domain [11].  

1.2 Existence of Solution to Heat Equation  

Consider the initial boundary value problem 

                                      
  

  
                                                   



7 

 

                                                                                          

where            ,      is bounded domain and      

Theorem 1:[35] 

Let      ,      ,      
 

    ̅   and          
 

    ̅  . Then the 

first initial boundary problem (1.2), (1.3) admits a unique solution          

         
 

    ̅  . 

 

Theorem 2: [35] 

Assume that   has the exterior ball property and there exist a sequence 

{  } with    smooth boundary such that  ̅       and     

approximate    uniformly. Let      ,      
 

    ̅   and   

       
 

    ̅  . Then the problem (1.2), (1.3) admits a unique solution 

         
 

    ̅      ̅    

 

Proof: 

Without loss of generality, we assume that    , otherwise we consider 

the equation for       the approximation problem of (1.2), (1.3). We 

first prove that the limit of the solution of the approximation problems 

satisfies equation (1.2) and then apply the barrier function technique to 

check that   at      equal zero. Here, we only point out the construction 

of the barrier function       . Let              then the barrier 

function        should have the following properties: 

i)           ,          for all    ̅  {     } 

ii)         ̅  , 
  

  
      in  ̅  
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Now for point         at the lateral boundary, we choose          

            and for the point         . Clearly the function 

defined possesses the above properties.  

For more details see [35]. 

1.3 Uniqueness of Solution for Linear Parabolic Partial 

Differential Equation  

To demonstrate uniqueness of solution for one dimensional heat equation 

with respect to Dirichlet or Neumann boundary conditions, Consider the 

following problem [15]:  

  =       in                 

with         at     and       

             and             ,      (Dirichlet) 

or  
       

  
       and 

       

  
       ,      (Neumann) 

Suppose that    and     are two solutions and consider           then 

  satisfies   

  =       in                 

with      at     and       

           and             ,      (Dirichlet) 

or  
       

  
   and 

       

  
   ,      (Neumann) 

Consider the function of time  
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∫          

 

 
  such that        and          . As        

which represents the energy of the function  .  

  

  
 ∫       

 

 
 ∫        

 

 
  (where   =     ) 

Integrating ∫        
 

 
 by parts, yields:  

[  
  

  
]
 

 

 ∫      
   

 

 

  ∫      
   

 

 

   

then                     

Since  
  

  
  . So             and    , that implies      . 
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Chapter Two 

Numerical Techniques 

Finite difference and finite element methods are numerical techniques that 

will be used to discretize the heat equation with respect to different types of 

boundary conditions.  

2.1 Parabolic Equation in One Space Dimension  

A linear parabolic partial differential equation takes the general form, 

         
 

  
                                                      

which is defined within some prescribed domain R of the       space as 

shown in Figure (2.1) with this domain, the functions        and        

are strictly positive and        is non-negative. 

We focus our attention on the finite difference method to discretize 

parabolic equation as a simplified form of equation (2.1), that is, the 

diffusion (heat) equation with constant coefficients              

          and                     [22], i.e. 

  =         ,                                                                (2.2) 



11 

 

 

Figure (2.1): Domain of Parabolic equation 

2.2 Finite Difference Method Principle  

The principle of finite difference method is one of numerical schemes that 

used to solve partial differential equations. This can be done by replacing 

the partial derivatives of dependent variables of the unknown function 

       with partial differential equations using finite difference 

approximation with       error. This error is called discretization error or 

truncation error. 

This procedure converts the domain R (where the independent variables are 

defined) to vertical and horizontal lines called grid lines. Their intersections 

are called grid points as shown in Figure (2.2). 

The replacement of partial derivatives by difference approximation formula 

depends on Taylor’s theorem.   

 Taylor’s theorem [21] 

Let      be an       times differentiable function on an open interval 

containing   and  . Then  
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where           
        

      
           

for some number   between   and   

2.3 Strategy of Discretization and Stability Considerations  

At this point, finite difference method will be used to discretize the 

diffusion equation  

                    =         ,        and     

The rectangular domain R in Figure (2.1) is converted into identical small 

rectangles by:  

         and              for               

where 

   
  

 
        

  

 
       

as shown in Figure (2.2). 
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Figure (2.2(: Discretize the domain of heat equation 

and then replacing partial derivatives    and     by the value of the 

unknown function        at each grid point i.e.  (     )  

To replace partial derivatives of unknown function using Taylor’s series, 

difference method is applied on t, and used on   and      to obtain  

                   

         

  
 

 (       )          

 
 

 

 

   (     )

   
                             

where     ϵ (       ). 

Also, by applying Taylor’s theorem in  , we get  

          

   
 

 (       )    (     )   (       )

  

 
  

  

   (     )

   
                                                                   

where    ϵ (         ). 
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Substituting (2.5) and (2.6) into (2.2) yields 

 (       )          

 
   *

 (       )    (     )   (       )

  
+

                                                                                                 

with truncation error 

    
    

  

   (     )

   
 

 

 

          

   
 

for simplicity, we use the notation      to approximate         , then 

equation (2.7) becomes 

           

 
   [

                   

  
]                                     

Solving (2.8) for       , then the finite difference method is called forward-

difference method as shown in Figure (2.3). We get, 

       (  
    

  
)     

   

  
(             )                             

for each                                

Then, we have  

            ,           ,…,            
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Figure (2.3): Forward-difference method 

Then we generate the next t-row by 

               

     (  
    

  
)     

   

  
(         ) 

     (  
    

  
)     

   

  
(         )                                              

       (  
    

  
)       

   

  
(           ) 

Now, we can use the      values to generate all       and so on [7,11]. 

The explicit nature of the difference method implies that the                  

            matrix associated with this system (2.10) can be written 

in tridiagonal form. 
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where   
   

  
  . 

So, the approximate solution is demonstrated by           , for          

          , with error          

Stability Considerations  

Suppose that error           
   

   
        

    
 is made in representing 

the initial data 

                            
  

(for any particular step, the choice of the initial step must be convenient). 

An error of A    propagates in     , because  

      (         )              

This process continues. At the n
th

 time step, the error in      due to      

equals       [7]. The forward difference method is consequently stable 

when these errors do not grow as   increase. But is true if and only if for 

initial error     , we have ‖      ‖  ‖    ‖ for any   and any natural 
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norm (see Definition 3.3). Hence, we must have ||  ||  , this condition 

requires that                . 

The forward difference method is stable if       . 

The eigenvalues of matrix A can be expressed as follow: 

            (
  

  
)                 

so, the condition for stability is reduced to determining whether   

               [         (
  

  
)  ]    

and this is simplifying to  

        (
  

  
)   

 

 
    for             

Stability requires that this inequality condition holds as    , the fact 

that  

   
   

    (
      

  
)     

that means, stability will occur if     
 

 
 , by definition    

   

  
, so 

this inequality requires that   and   must be chosen so that, 

   

   
 

 
  . 

If we use    and     , then the finite difference method is called backward 

finite difference method, as shown in Figure (2.4). 
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Figure (2.4): Backward-difference method 

When considering an implicit difference method that results from using the 

backward –difference quotient for           then it takes the form:  

         

  
 

 (     )            

 
 

 

 

          

   
                             

where     ϵ (       ). 

Substituting equation (2.5) and (2.6) into (2.11), yields: 

           

 
   [

                   

  
]                                         

with truncation error 

     
    

  

   (     )

   
 

 

 

          

   
 

 Solving equation (2.12) for       , we get: 

       (  
    

  
)     

   

  
(             )                                

for               and         
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 The same argument can be applied on boundaries using the knowledge that  

           , for               . This difference method has the 

following matrix representation  

 

where   
   

    

Therefore, the approximate solution is given by             , for        

       , with truncation error        [7,11]. 

Stability considerations  

The stability for backward-difference method can be illustrated by 

analyzing the eigenvalues of the matrix A. For the backward-difference 

method the eigenvalues are:  

            (
  

  
)                 

since    , so we have     , for all            . Since the 

eigenvalues of     are the reciprocals of those of A and the spectral radius 

          [7]. This implies that     is a convergent matrix. 
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An error      in the initial data produces an error            at n
th

 step of 

backward-difference method. Since     is convergent, then 

   
   

             

This means, the method is stable, regardless of the choice of   
   

  
. This 

implies that the backward-difference method is unconditionally stable [7]. 

2.4 Parabolic Partial Differential Equation Subject to Boundary 

Conditions 

Finding the solution for special case of heat equation depending on different 

types of boundary conditions, namely, Dirichlet, Neumann and Robin’s 

boundary conditions. Consequently, the unknown function must satisfy these 

conditions at the boundary.  

2.4.1 Heat Equation with Dirichlet Boundary Conditions 

The Dirichlet boundary conditions, obtained by the German mathematician 

Dirichlet, is also known as the boundary condition of the first order. In this 

type of boundary conditions, the value of dependent variable   is prescribed on 

the boundary. 

To derive the formula of finite difference approximation with Dirichlet 

boundary condition for special case of heat equation 

                                                                                            (2.14) 
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We consider three points    ,   and     which are located on x-axis 

with an equal distance   between them as shown in Figure (2.5). 

 

Figure (2.5): Three points    ,   and     which are located on x-axis 

Consider the points       ,       and         are located on t-axis, then 

the value of unknown function at these points are        ,      and        

respectively as shown in Figure (2.6) 

 

Figure (2.6): Three points    ,   and     which are located on t-axis 

Now, Taylor’s theorem is used to express       ,        in the form of 

Taylor expansion about the point   as follows: 

       =       +   
  

  
   + 

  

  
 
   

   
  + 

  

  
 
   

   
   + 

  

  
 
   

   
  + O(          (2.15) 

       =          
  

  
   + 

  

  
 
   

   
  - 

  

  
 
   

   
   + 

  

  
 
   

   
  + O(           (2.16) 

Adding (2.15) and (2.16) yields  
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Equation (2.17) is a finite difference approximation with error term       

of second order for  
   

   
  . 

Subtracting (2.15) and (2.16) yields 

  

  
   

             

  
                                                                                

Similarly, consider three points     ,   and     , which are located on t-

axis with an equal distance   between them using Taylor expansions to 

get         and        about the point j  

       =          
  

  
   + 

  

  
 
   

   
    

  

  
 
   

   
   + 

  

  
 
   

  
  + O(        (2.19) 

       =       +   
  

  
   + 

  

  
 
   

   
  + 

  

  
 
   

   
   + 

  

  
 
   

   
  + O(         (2.20) 

Subtracting equations (2.19) and (2.20) yields 

  
  

  
   

             

  
                                                                             

Substituting equations (2.17) and (2.21) into (2.14), we get  

  
             

  
   

                     

  
                                     

Solving equation (2.22) for     , we get  

        
 

 
[             ]  

  

    [             ]                                    

for                and            
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This is valid for any 5 points as shown in Figure (2.7). 

 

Figure (2.7): Combining x-axis and t-axis around the       point 

Assuming that Dirichlet conditions defined on the semi-rectangular domain  

      and    , as shown in Figure (2.8). 

                                         

Figure (2.8): Dirichlet boundary conditions defined on the rectangular domain 
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 Let                be given on all boundaries of the domain, so all 

points in boundary grid (black points) and corner points (red points) are 

known, and for corner points the following equations are [20, 30]: 

     
 

 
     

 

 
     

                                           
 

 
       

 

 
                              (2.24) 

2.4.2 Heat Equation with Neumann Boundary Conditions 

The Neumann boundary conditions, credited to the German mathematician 

Neumann, is also known as the boundary condition of the second kind. For 

this type of boundary conditions, the value of the gradient of the dependent 

variable normal to the boundary  
  

  
  is prescribed on the boundary.  

The Neumann boundary condition at the left boundary, for example, may 

be represented as:   

 
  

  
     

 
  

  
                                                                          (2.25) 

where      is the prescribed value of the derivatives. 

 By applying the second approximation on the approximate equation (2.21) 

using equation (2.18), the grid points       are located at imaginary 

boundary outside the domain towards the left. Here, the grid points fake 

coordinates become       as shown in Figure (2.9). 
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Figure (2.9): Neumann boundary condition defined on the left boundary 

Equation (2.23) is approximated using equation (2.16), at the line    . 

  

  
       

             

  
 

         

  
         

thus,  

                                                                                       (2.26) 

Using equation (2.23) at the point        

       
 

 
[         ]  

  

  
[             ]                                    (2.27) 

and putting equation (2.26) into (2.27) yields   

      [            ]  
  

  
[             ]                                (2.28) 

 For any two positive integers m and n, we use equation (2.24) for           

        and    , where the function        is specified [32]. As 
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Dirichlet condition is specified on the boundary, the value of      

{              },{        }, and {            } are known. 

Equation (2.24) is used to find the corner grid points. 

2.4.3 Heat Equation with Robin’s Boundary Condition 

This type of boundary condition, is a linear combination of the value of the 

dependent variable and its normal gradient specified at the boundary. This 

type of boundary condition is credited to the French mathematician 

Gustave Robin. It is also known as the boundary condition of the third 

kind, and sometimes referred to as the Robins boundary condition [7]. For 

one dimensional problem, the Robin boundary condition can be shown as: 

           
  

  
     

                                                                 (2.29) 

where  ,   and   are prescribed constants. To apply the boundary 

condition, it is first rewritten as follows:  

 
  

  
     

 

 
 

 

 
                                                                     (2.30) 

substituting equation (2.30) into equation (2.18) yields  

  
 

 
 

 

 
 (     )  

             

  
                                                                  

Rearrangement equation (2.31) we get  

            (
 

 
 

 

 
 (     ))                                                   (2.32) 

put equation (2.32) into equation (2.8) yields 
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*        (

 

 
 

 

 
 (     ))+  

  

  
[             ]          

     *      (
 

 
 

 

 
 (     ))+  

  

  
[             ]               (2.32) 

and then the same argument for Neumann boundary conditions.  

2.5 Finite Element Method 

The finite element method is a numerical tool that can be used to determine 

approximate solution to a large set of partial differential equations. 

The finite element method considers the solution region (irregular shape) 

comprises of many small, interconnected, sub-regions or elements and 

gives an approximate solution for the governing equations, i.e. the complex 

partial differential equations are reduced to either linear or nonlinear 

simultaneous equations. Thus, the finite element discretization procedure 

reduces the continuum problem, which has finite number of unknown, to 

one with a finite number of unknowns at specified element points referred 

to as nodes [3, 4]. Since the finite element method allows us to form the 

elements, or sub-regions, in arbitrary sense, a close representation of the 

boundaries of complicated domain is possible.  

2.5.1 The Principle of Finite Element Method  

The idea behind the finite element method is to divide the solution region 

into non-over lapping elements or sub-regions. 
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The finite element allows a variety of element shapes, for example, 

triangle, rectangle. Each element is formed by connecting a certain number 

of nodes as shown in Figure (2.10).  

 

Figure (2.10): Typical finite elements, nodes, edges 

2.5.2 Finite Element Method for Dirichlet Boundary Conditions 

The finite element method used to discretize the heat equation subject to 

Dirichlet boundary conditions as follows:  

            ,       

            ,               

                        

As illustrated in section (2.3), the solution region is divided into a finite 

number of elements and triangle elements and the collection of all elements 

are used to resemble the original region as closely possible as shown in 

Figure (2.11).  
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Figure (2.11): Rectangular domain with Dirichlet boundary conditions 

For example, the region showed in Figure (2.11), divided into 40 equal 

triangles. In this discretization, there are thirty global nodes, the blue nodes 

are known since they are located on the boundaries and interior (green) 

nodes are unknown. 

Assuming that   is the number of equal partitions of         located on 

the       . In our case      (from node 1 to node 2, and from node 2 

to node 3 and so on), and the length of each partition is 
 

 
 

 

 
 .  

Also, let   be the number of equal partitions of       located on t-axis. 

In our case    , (from node 1 to node 12, and node 12 to node 13 and so 

on), and the length of each partition is 
 

 
 

 

 
 . 
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The coordinate for each node can be determined with respect to partition as 

shown in Figure (2.12) as follows: 

 

Figure (2.12): Coordinate for each node in finite element method 

node 1:      , node 2:  
 

 
     , node 3:  

 

 
     , …, node 30:      . 

Now, when deriving governing equation, for a typical element we 

determine the coefficient matrix. For each element (triangle)  , we have 

nodes 1, 2 and 3 that must be assigned, so that global nodes associated with 

an element are traversed in a counter clockwise. If we take element 1 and 

locate each element coordinate as follows: 

the local node 1 is coordinate               
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the local node 2 is coordinate           
 

 
    

the local node 3 is coordinate            
 

 
  

as shown in Figure (2.13). 

 

Figure (2.13): The local node numbers are determined on nodes start form node 1, then node 2        

and finally with node 12 (in a counterclockwise) 

Similarly, the local node is determined for each element in the same way to 

find coefficient matrix [9, 18]. 

For each element   the following quantities are computed:  

                   

                                                                           (2.34) 
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where the subscripts refer to the local node number 1, 2 and 3 of element  . 

For example, in Figure (2.11), element (25) has global node 15, 16 and 22 

respectively.  

For each element    and    for          are computed to obtain     

element coefficient matrix by  

                              
  

 

  
                                       (2.35) 

where 

  
 

 
            

 The global coefficient matrix is assembled from the element’s coefficient 

matrices. Since there are 30 nodes, the global coefficient matrix will be a 

      matrix.  

The computation of one diagonal and off-diagonal entries illustrated in the 

following example, node 13, which corresponds to the        entry in the 

global coefficient matrix  , belongs to element 11, 12 and 21, since node 

13 is assigned local node number 3 in element 11 and 12, and local node 

number 1 in element 21, as shown in Figure (2.11), the corresponding 

global coefficient is  

           
    

     
    

     
    

 

For off-diagonal entry       , global link 10-15 corresponds to local link 1-

2 of element 14 and local link 1-3 of element 15, hence  
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 Define    to be the vector of unknown nodes (interior nodes) and    to be 

the vector of prescribed boundary values as shown in Figure (2.11). 

Define matrix     to be a matrix of unknown nodes obtained from the 

global coefficient matrix   and matrix     to be a matrix of unknown nodes 

with prescribed boundary values that are obtained from the global 

coefficient matrix. 

In our case,     is a       matrix since we have 12 interior nodes (green 

nodes) and     is       matrix since we have 12 interior nodes and 18 

boundary nodes (blue nodes). Also,    is a vector of size     . 

The vector    of unknown nodes can be computed by using: 

                                              
                                           (2.36) 

The vector    contains the approximation to the unknown nodes (interior 

nodes) [18, 13]. 

2.5.3 Finite Element Method for Neumann Boundary Conditions 

Consider the one-dimensional heat equation with Neumann boundary 

condition, that is   

        ,                         
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Weak formulation starts by multiplying the partial differential equation by 

test function            on both sides, then integrate the resulting 

equation over the domain [37]. We obtain the weak formulation:  

∫ ∫           ∫ ∫            

 

 

                                                

  

 

   

 

Integrating the right-hand side of equation (2.37) by part, we get  

∫ ∫           ∫          
 

  

 ∫ ∫            

 

 

                   

  

 

   

 

 Inserting the boundary condition in equation (3.38) yield 

∫ ∫          

 

   

 ∫                   
  

 ∫ ∫            

 

 

            

  

 

 we can express equation (2.37) as: 

            (      )                                                                                                         

where  (      )    ∫ ∫             
 

 
                      

  
    

Given a triangulation    and finite space               , with 

               , denote a set of basis function for    to seek the finite 

element solution of form:  
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       ∑          

 

   

                                                                                 

Substituting (2.40) into (2.39) to get  

(∑  
         

 

   

    )    (∑          

 

   

   )                           

and let             for           , to obtain the following linear 

system of ODEs: 

[

                
 
 

       

       
 

 

      

 
 

       
 
 

       

] [

  
    

  
    
 

  
    

]

 [

                 
 
 

        

       
 

 

       

 
 

       
 
 

        

] [

     
     

 
     

] 

The corresponding problem can be expressed as:  

 
  

  
                                                                                                

with initial condition             ,                

Using the forward finite difference approximation, we get 

   
       

  
                                                                                                 

Inserting (2.44) into (2.43) yields 
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Solving equation (2.45) with respect to     , we have  

                                                                                                  

2.5.4 Finite Element Method with Robin’s Boundary Conditions 

Consider the one-dimensional heat equation with Robin’s boundary 

conditions: 

{
        

                     
                                                           (2.46) 

where    and   are constants. 

We do same argument in previous section, by multiplying both sides of 

equation (2.46) by test function     , then integrating by parts and 

substitute the condition         
            

 
 in equation (2.39) yields: 

∫ ∫          

 

   

 ∫           
            

 
    

  

 ∫ ∫            

 

 

                                                               

  

 

The same procure in pervious section (2.5.3) to get the formula of finite 

element for heat equation with Robin’s boundary condition. 
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Chapter Three 

Iterative Methods for Solving Linear Systems 
 

In previous chapter, finite difference and finite element methods are used to 

discretize the partial differential equations. This discretization yields a 

system of linear equations which can be solved by different iterative 

schemes [10]. In this chapter we will use the Jacobi, the Gauss-Seidel, the 

Successive over Relaxation and the Conjugate Gradient methods to solve 

this linear system and discuss their convergence properties. 

For solving the       linear system         

                                                                                            (3.1) 

We start with an initial approximation      to the solution  , and then 

generate a sequence {    }   
  that converges to solution   . 

Most iterative methods involve a process of converting the system      

into an equivalent system: 

                                                                                        (3.2) 

where   is an     matrix and   is a column matrix.  

After selecting an initial approximation      , we generate a sequence of 

vectors {    }
   

 
  defined as [11]: 

                                                                              (3.3) 
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Four iterative methods: Jacobi method, Gauss-Seidle method, successive 

over relaxation (SOR) method and Gradient method, are to be considered. 

3.1 Jacobi Method 

The Jacobi method is the simplest iterative method for solving a (square) 

linear system. This method depends on two assumptions: the linear system 

       has a unique solution and the coefficient matrix   has no zeros on 

its main diagonal. If any of the diagonal entries are zero, then rows and 

columns must be interchanged to get a coefficient matrix that has nonzero 

entries in the main diagonal [7]. 

To derive a general formula of Jacobi method, consider the following   

    linear system  

                       

                       

                                                                                                          (3.4) 

                       

We can rewrite (3.4) in a matrix form:  

[

                   

                   

          
                 

] [

  

  

 
  

]   [

  

  

 
  

]                                             (3.5) 

where 
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   [

                   

                   

          
                 

],   [

  

  

 
  

] and   [

  

  

 
  

] 

 The equation (3.4) can be expressed in the form        as follows:  

  
   

 
    

   
  

     
 

   

   
  

     
   

   

   
  

     
 

  

   
 

  
   

 
    

   
  

     
 

   

   
  

     
   

   

   
  

     
 

  

   
 

                                                                                                    (3.6) 

  
   

 
    

   
  

     
 

   

   
  

     
   

     

   
    

     
 

  

   
 

The system (3.6) can be illustrated into matrix form  

[

  

  

 
  

]  

[
 
 
 
 
  

    

   
          

    

   
    

   
           

    

   

          
    

   

    

   
         ]

 
 
 
 
 

[

  

  

 
  

]  

[
 
 
 
 
 

  

   

  

   

 
  

   ]
 
 
 
 
 

                               (3.7) 

where 

 =

[
 
 
 
 
  

    

   
          

    

   
    

   
           

    

   

          
    

   

    

   
         ]

 
 
 
 
 

 ,   

[
 
 
 
 
 

  

   

  

   

 
  

   ]
 
 
 
 
 

 

Given initial approximation     , we generate the sequence of vectors 

{    }   
  by computing: 
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*∑       

     
 

   
   +             

                 and                                                               (3.8) 

Also, we can derive formula (3.7) by splitting a matrix   into its diagonal 

and off-diagonal parts. 

Let   be the diagonal matrix where entries are those of matrix  , let –   be 

strictly lower triangular matrix and –  be the strictly upper triangular part 

of matrix   [12, 33]. 

With this notation, matrix   is spilt into: 

                                                                                  (3.9) 

where  

  [

               
               
          
             

]     [

             
                

          
                 

] 

and  

   [

                   

                          

               
                 

] . 

 Substituting (3.9) into (3.1) yields 

                                                                                   (3.10) 

Equation (3.10) can be written as:  
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If    exists, then:  

                      

This result is the matrix form of the Jacobi scheme:  

                             

using                 and        , we obtain the Jacobi technique 

of the form: 

           
                    

So, 

  
    

 

   
*∑       

     
 

   
   +                       

 To find     approximation we must know       approximation for any 

    where    . Continuing this procedure, we obtain a sequence of 

approximations [29,10]. 

3.2 Gauss-Seidel Method 

This iterative method is used for solving a square linear system       

which is similar to the Jacobi method. For the Jacobi method, the values of 

  
   obtained in the     iteration remain unchanged until the entire         

(       iteration has been calculated. With the Gauss-Seidel method, we 

use the new values   
      reached. For example, once we have computed 

https://en.wikipedia.org/wiki/Jacobi_method
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     from the first equation, its value is then used in the second equation 

to obtain the new   
     and so on, this is the difference between the 

Jacobi and Gauss-Seidel methods [7]. 

To derive the general form of Gauss-Seidel method, consider the following 

    linear system:  

  
   

 
    

   
  

     
 

   

   
  

     
   

   

   
  

     
 

  

   
 

  
   

 
    

   
  

   
 

   

   
  

     
   

   

   
  

     
 

  

   
 

                                                                                                      (3.11) 

  
   

 
    

   
  

   
 

   

   
  

   
   

     

   
    

   
 

  

   
 

Given initial approximation     , we generate the sequence of vectors 

{    }   
  by computing: 

                            

In general, the Gauss-Seidel iterative method given by the sequence  

  
    

 

   
* ∑      

    ∑      
     

 

     

   

   
   +         

                and                                                               (3.12) 

Rearranging equation (3.10) yields  
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if        exists, then:  

                         

this result is the matrix form of the Gauss-Seidel scheme:  

                               

using               and              , we obtain the Gauss-

Seidel technique of the form [10,29]: 

                              . 

3.3 Successive Over Relaxation (SOR) Method  

To use successive over relaxation method, the coefficient matrix must be 

symmetric and positive definite. For any real positive number         is 

called the relaxation parameter. If        , then the method is called 

successive under relaxation. This method can be used to achieve 

convergence of systems that are not convergent by Gauss-Seidel method. 

On the other hand, if        , then the method is called successive over 

relaxation method. Here, accelerated convergence of a linear systems that 

are already convergent by Gauss-Seidel method. If     , we get Gauss-

Seidel method [28 ,29]. 

Gauss-Seidel method in (3.11), will be used to derive the general formula 

of successive over relaxation method. 

  
    

 

   
* ∑      

    ∑      
     

 

     

   

   
   +         
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               and          

 Define the difference  

                                    
   

   
     

                                       (3.13) 

Rearranging equation (3.13), we get   

                               
   

   
     

                                            (3.14) 

Multiplying     in (3.14) by relaxation parameter   yileds  

                             
   

   
     

                                             (3.15) 

Rearranging equation (3.15) to get  

  
   

   
     

     
   

   
     

  

                               
   

        
     

    
   

                        (3.16) 

Now, put (3.12) into (3.16) yields: 

  
   

        
     

 
 

   
* ∑      

    ∑      
     

 

     

   

   
   +   

                                 and                                  (3.17) 

 this formula is called (SOR) 

Also, to write (3.17) in the matrix form  

Since       multiply each side of (3.17) by     
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  * ∑      
    ∑      

     
 

     

   

   
   + 

     
   

           
     

  ∑      
     ∑      

     
 

     

   

   

     

     
   

   ∑      
   

   

   

           
     

  ∑      
     

 

     
     

 (           (         )                                    (3.18) 

if (        exist, multiply both sides of (3.18) by (        we get: 

              (         )                     (3.18) 

in (3.18) let            (         ) and        

        we get: 

                                                                                   (3.20) 

3.4 Conjugate Gradient Method  

The conjugate gradient method is an iterative method that is used to 

approximate the exact solution of the linear system     , where the 

coefficient matrix   must be symmetric and positive definite. 

We denote the initial guess   , and we may assume without loss of 

generality that     , otherwise be given. Starting with    we search for 

the solution and each iteration we need a metric to tell us whether we are 
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closer to the exact solution is absolute. The unique solution minimizes the 

quadratic function  

     
 

 
                 

And for simplicity, we will take the conjugate gradient method as 

algorithm [5,29]. 

Step 1: Start with initial guess    that may be considered 0 if otherwise is 

not given. 

Step 2: Calculate the residual vector      as follows:  

           

Step 3: Let the initial direction vector         , that is, the negative of the 

gradient of the quadratic function:  

     
 

 
           at         

we see that      will change in each iteration.  

Step 4: Compute the scalars   's using the formula:  

   
  

    

  
     

                  

Step 5: Compute the first iteration     using the formula:  

           

Step 6: Compute the residual vectors    's using the formula:  
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Step 7: Compute the scalars    's using the formula:  

    
    

      

  
    

                  

Step 8: Compute the direction vectors     's using the formula:  

                                 

Step 9: Compute the iterations    using the formula: 

                             

3.5 Convergence of Iterative Methods 

In this section, the general aim is to study the convergence for each 

previous iterative method, and then make a comparison between them. 

After that, we will conclude the fastest method that reached to the solution. 

In any computational problem, we’ll get high accuracy if the error becomes 

very small. In our iterative methods problem, the actual error   is the 

difference between the exact solution   and the approximate solution      . 

But we cannot compute its value because we do not know the exact 

solution. 

Instead, we will deal with the estimated error, which equals the difference 

between the approximate solution       and the next approximate 

solution         [7]. 
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Therefore, we can compute more iterations with less errors, and hence, we 

get high level of accuracy. 

Suppose   is the exact solution of the following linear system:  

            

This can be written in an equivalent form as:  

                           

where   is an     matrix and   is a column vector.  

The idea of the iterative methods is to generate a sequence of vectors 

{    }
   

 
that converges to the exact solution   of the linear system      

    . (Note: Each vector in the sequence is an approximation to the 

exact solution) [5].  

Before going through convergence of the iterative methods, we need some 

definitions: 

Definition 3.1 [7] 

An     matrix A is positive definite if A is symmetric matrix and 

       for any non-zero n-dimensional column vector C. 

Definition 3.2 [7] 

Let             be eigenvalues of the matrix      . Then the spectral 

radius      defined as:               {          }. 
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Definition 3.3 [7] 

The    and    norms for the vector   {          }  are defined by 

‖ ‖  (∑   
  

   )
 

   and ‖ ‖          {  }.    

3.5.1 Convergence of Jacobi and Gauss-Seidel Iterative Methods 

The following theorems hold for Jacobi and Gauss-Seidel iterative 

methods:  

Theorem 3.1 [29] 

For any initial approximation, a sequence of vectors {    }
   

 
 converges to 

the exact solution   if and only if the spectral radius of the square matrix 

        . (   is the matrix as in (3.2) form). 

Theorem 3.2 [29] 

If the coefficient matrix   for the linear system (3.1) is strictly diagonally 

dominant, then the sequence of vectors {    }
   

 
  generated by the Jacobi 

and Gauss-Seidel Iterative techniques converges to the unique solution of 

that system. 

Theorem 3.3 [7] 

If         (any norm of   ) then the sequence of vectors 

{    }
   

 
converges to a vector      for any initial approximation vector 

       . 

3.5.2 Convergence of SOR iterative Method 

Theorem 3.4 “Ostrowski-Reich” [7] 
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If the coefficient matrix   of the linear system (3.20) is a positive definite 

matrix and the relaxation parameter (factor)        , then the SOR 

method converges for any choice of initial approximation vector     . 

3.5.3 Convergence of Conjugate Gradient Method 

Theorem 3.5 [24] 

The sequence of vectors {    }
    

 
generated by the Conjugate Gradient 

method converges to the solution   of the square linear system        of 

  variables in at most   steps for any choice of initial approximation vector 

    . 

Proof:[24] 

Suppose   is the exact solution and     is the initial solution.  

The set of directional vectors are orthogonal so they are linearly 

independent. Therefore, they span the space    . Hence, we can write: 

                                  where    's     

Multiplying both sides of the last expression by   
  , we obtain 

  
             

                              

Simplify the above expression, we get 

  
      

      

     
         

         
             

       

but       ,           , and   
           . So, it becomes: 

  
          

     

Thus, 
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Now, we want to show that         where 

   
  

    

  
     

                  

                                

Multiply both sides of the last equation by  
   

  
       

                                 

              
       

                              

              
                       

The above can be written as: 

  
       

       

or  

  
  (     )    

Therefore, 

  
       

             
                 

                     
       

  (    )    
  (       ) 

                                 
 (      )    

                                 
           

      

     Now, put   
       

      in equation (3.21), then we get: 

     
  

    

  
    

   . 
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Chapter Four 

Numerical Results 

In this chapter, the finite difference and finite element methods are used to 

solve homogeneous and inhomogeneous one-dimensional heat equation 

subject to different types of boundary conditions: Dirichlet, Neumann and 

Robin’s. Moreover, a comparison is carried out between the 

aforementioned iterative methods. 

Example 4.1: Consider the one-dimensional heat equation   

                      

Subject to the initial condition          and boundary conditions        

          ,           . 

We seek to approximate the solution   by using the finite difference 

method. 

First, we start with a partition for the domain by divide x-axis into equal 

steps   
   

 
 

    

 
    , also we divide t-axis into equal steps         

     as shown in Figure (4.1). 

Now, we define the mesh points (     ) as follow: 
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For      ,                          

           ,                            

          ,                          

          ,                            

          ,                           

And for      ,                        

                   ,                        

                  ,                        

                  ,                        

These partitions are illustrated in Figure 4.1 

 

Figure (4.1): Discretization of the domain for example 4.1 
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The black points are known boundary points and the red points (interior) 

points are unknown which are to be approximate. 

 using the formula: 

                     (             )    

to approximate the interior points.  

For: 

          ,                    (         )                       

         ,                    (         )                          

         ,                    (         )                          

         ,                    (         )                          

         ,                    (         )                          

         ,                    (         )                          

         ,                    (         )                          

         ,                    (         )                          

         ,                    (         )                          

by put the initial and boundary conditions in equations 1to 9 and use the 

notation                                               

                              yields: 
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The above equations can be expressed in matrix form as: 

[
 
 
 
 
 
 
 
 

   
    

 
  
 
 
 
 
 

    
   

    
 

  
 
 
 
 

 
    
   
 
 

  
 
 
 

 
 
 

   
    

 
  
 
 

 
 
 

    
   

    
 

  
 

 
 
 
 

    
   
 
 

  

 
 
 
 
 
 

   
    

 

 
 
 
 
 
 

    
   

    

 
 
 
 
 
 
 

    
   ]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
  

  

  

  

  

  

  

  

  ]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
  
 
  
  
 
  
  
 
  ]

 
 
 
 
 
 
 
 

          (4.1) 

Using        we obtain the exact solution:  

                                                                      

We can also solve the linear system (4.1) by the following iterative 

techniques: 

Jacobi Method 

The Jacobi method given by the sequence  
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*∑       

     
 

   
   +            

                 and      

where n is the number of the unknown variables 

  
   

 
   

   
  

     
 

  

   
 

  
   

 
   

   
  

     
 

   

   
  

     
 

  
   

 
   

   
  

     
 

  

   
 

  
   

 
   

   
  

     
 

 

   
  

     
 

  

   
 

  
   

 
   

   
  

     
 

   

   
  

     
 

 

   
  

     
                                               

  
   

 
   

   
  

     
 

 

   
  

     
 

  

   
 

  
   

 
   

   
  

     
 

 

   
  

     
 

  

   
 

  
   

 
   

   
  

     
 

   

   
  

     
 

 

   
  

     
 

  
   

 
   

   
  

     
 

 

   
  

     
 

  

   
 

Consider the initial solution is                          , so we use the 

initial solution in system (4.2) to find the first iteration      
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The first iteration gives 

                                                  

Likewise, after 24 iterations we obtain the approximate solution: 

                                                                   

Number of iterations The error 

24                

The Matlab code for the Jacobi iterative method can be formed in 

Appendix A. 

Gauss-Seidel Method 

It is given by the sequence (3.11) 

  
    

 

   
* ∑      

    ∑      
     

 

     

   

   
   +         
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               and      

 where n is the number of the unknown variable. 

  
   

 
   

   
  

     
 

  

   
 

  
   

 
   

   
  

   
 

   

   
  

     
 

  
   

 
   

   
  

   
 

  

   
                                                                                       

  
   

 
   

   
  

     
 

 

   
  

   
 

  

   
 

  
   

 
   

   
  

     
 

   

   
  

   
 

 

   
  

   
  

  
   

 
   

   
  

   
 

 

   
  

   
 

  

   
 

  
   

 
   

   
  

     
 

 

   
  

   
 

  

   
 

  
   

 
   

   
  

     
 

   

   
  

   
 

 

   
  

   
 

  
   

 
   

   
  

   
 

 

   
  

   
 

  

   
 

Choose the initial solution as                          , then we find the 

first iteration      as: 
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 The first iteration gives 

                                                                   

Likewise, after 24 iterations we obtain the approximate solution: 

                                                                   

Number of iterations The error 

24                 

The Matlab code for the Gauss-Seidel iterative method can be formed in 

Appendix B. 

Successive Over Relaxation (SOR) Method  

The SOR method is given by the sequence (3.16) 

  
   

        
     

 
 

   
* ∑      

    ∑      
     

 

     

   

   
   +   
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                                    ,           and                 

Here we will choose the relaxation factor      . 

The Gauss-Seidel equations are: 

  
   

 
   

   
  

     
 

  

   
 

  
   

 
   

   
  

   
 

   

   
  

     
 

  
   

 
   

   
  

   
 

  

   
 

  
   

 
   

   
  

     
 

 

   
  

   
 

  

   
 

  
   

 
   

   
  

     
 

   

   
  

   
 

 

   
  

   
 

  
   

 
   

   
  

   
 

 

   
  

   
 

  

   
 

  
   

 
   

   
  

     
 

 

   
  

   
 

  

   
 

  
   

 
   

   
  

     
 

   

   
  

   
 

 

   
  

   
 

  
   

 
   

   
  

   
 

 

   
  

   
 

  

   
 

Now, the SOR equations with       are:  

  
   

          
     

    [
   

   
  

     
 

  

   
] 

  
   

          
     

    [
   

   
  

   
 

   

   
  

     
] 
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] 
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    [
   

   
  

     
 

 

   
  

   
 

  

   
] 
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] 
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]                      
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] 
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] 

  
   

          
     

    [
   

   
  

   
 

 

   
  

   
 

  

   
] 

Select the initial solution as                          , then we obtain  

  
   

          
   

    [
   

   
  

   
 

  

   
]      [

  

   
]         
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]     [

   

   
       ]
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]     [

          

   
 

  

   
]
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]
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]         
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]
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]        
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]

    [
         

   
 

        

   
 

  

   
]          

  
   

          
   

    [
   

   
  

   
 

 

   
  

   
 

  

   
]

    [
       

   
 

  

   
]          

  
   

          
   

    [
   

   
  

   
 

   

   
  

   
 

 

   
  

   
]

    [
           

   
 

     

   
]          

  
   

          
   

    [
   

   
  

   
 

 

   
  

   
 

  

   
]

    [
           

   
 

       

   
 

  

   
]         

The first iteration      is: 

    

                                                                          

Likewise, after 22 iterations we obtain the approximate solution: 

                                                                   

Number of iterations The error 

22                

The Matlab code for the SOR iterative method can be formed in Appendix 

C. 

Conjugate Gradient Method 

This algorithm can be implemented as follows: 
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Step1 Start with initial guess                         

Step2 Calculate the residual vector    as follows: 

         

 

   

[
 
 
 
 
 
 
 
 
  
 
  
  
 
  
  
 
  ]

 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 

   
    

 
  
 
 
 
 
 

    
   

    
 

  
 
 
 
 

 
    
   
 
 

  
 
 
 

 
 
 

   
    

 
  
 
 

 
 
 

    
   

    
 

  
 

 
 
 
 

    
   
 
 

  

 
 
 
 
 
 

   
    

 

 
 
 
 
 
 

    
   

    

 
 
 
 
 
 
 

    
   ]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ]
 
 
 
 
 
 
 
 

 

 

   

[
 
 
 
 
 
 
 
 
  
 
  
  
 
  
  
 
  ]

 
 
 
 
 
 
 
 

 

Step 3: Let the initial direction vector      . So  
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[
 
 
 
 
 
 
 
 
  
 
  
  
 
  
  
 
  ]

 
 
 
 
 
 
 
 

 

Step 4 compute the scalar      by formula 

   
  

   
  

    

 

 

for    ,    

   
  

   
  

    

 

  
                     

[
 
 
 
 
 
 
 
 
  
 
  
  
 
  
  
 
  ]

 
 
 
 
 
 
 
 

      

  
     

[
 
 
 
 
 
 
 
 
  
 
  
  
 
  
  
 
  ]
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[
 
 
 
 
 
 
 
 
  
 
  
  
 
  
  
 
  ]
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Thus 

   
    

    
        

Step5 Compute the first iteration    by the formula  

           

                                                       

the first approximation     

[
 
 
 
 
 
 
 
 
       

 
       
       

 
       
       

 
       ]

 
 
 
 
 
 
 
 

 

Likewise, after 10 iterations we obtain the approximate solution:  

  

[
 
 
 
 
 
 
 
 
       
       
       
       
       
       
       
       
       ]

 
 
 
 
 
 
 
 

 

Number of iterations The error 

10                 
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Table 4.1: Comparison between the iterative methods for example 4.1 

Methods           

               u           

Jacobi Method Gauss-Seidel 

Method  

SOR Method  Conjugate 

Gradient  

   24.0487 24.0487 24.0487 24.0487 

   8.2192 8.21917 8.21917 8.21917 

   12.9376 12.9375 12.9375 12.9375 

   39.6609 39.6609 39.6609 39.6609 

   18.3524 18.3524 18.3524 18.3524 

   22.3770 22.3769 22.3769 22.3769 

   50.4851 50.4851 50.4851 50.4851 

   28.0307 28.0306 28.0306 28.0306 

   29.7718 29.7717 29.7717 29.7717 

Number 

of 

iterations 

24 24 22 10 

Error        

        

        

        

                       

        

The Matlab code for the conjugate gradient iterative method can be formed 

in Appendix D. 

Example 4.2: Consider the one-dimensional heat equation   

                              

with initial condition          and boundary conditions are 

          ,            and the upper boundary condition  

           to get rectangular domain  

We want to approximate the solution   by using finite element method. 

We will start with discretize the domain by finite element as shown in 

Figure (4.2). 
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Figure (4.2): Discretization of the Domain by Finite Element Method 

The region is divided into 32 equal triangular elements which are identified 

by encircled numbers 1 through 32 as indicated in Figure (4.4). In this 

discretization there are 25 global nodes. Now, we will write the coordinates 

for each node:  

Node 1:           node 2:           node 3:        , node 4:             

node 5:         , node 6:        , node 7:          , node 8:         

node 9:           , node 10:         , node 11:       , node 12:           

node 13: (5, 4), node 14: (7.5, 4), node 15: (10, 4), node 16: (10, 6)  

node 17: (7.5, 6), node 18: (5, 6), node 19: (2.5, 6), node 20: (0, 6) 
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node 21: (0, 8), node 22: (2.5, 8), node 23: (5, 8), node 24: (7.5, 8) and  

 node 25: (10, 8).         

For each element e, we will label the local node numbers 1, 2, and 3 of 

element e in a counterclockwise sense.  

Table 4.4 shows that for each element we write its global nodes and their 

local node numbers and coordinates.  

Table 4.2: The global nodes, local node numbers and the coordinates 

for each element 

Element # global 

nodes  

local node 

numbers 

The coordinates of each 

global node  

 

Element 1 1 1                     

2 2                       

10 3                   

Element 2 2 1                        

9 2                       

10 3                    

 … …. … 

Element 31 17 1        
                                       

16 2                      

24 3                       

Element 32 16 1        
                                      

25 2                      

24 3                      

Now, for each element   , the following quantities must be computed:  

For element 1:  

       –                                –         
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       –                                    –      

        –                                   –        

In similar manner, we compute    
    and        for each remaining element 

where          . 

We use equation (2.32) to write the entries of the 3 × 3 element coefficient 

matrix, let us take element 1 as an example: 

   
     

 

  
[         ], for      =1,2,3, where:  
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Thus, the 3 × 3 element coefficient matrix for element 1 is:  

     [

   
      

      
   

   
      

      
   

   
      

      
   

]  [
               
        

            
] 

In a similar manner, we find the 3 × 3 element coefficient matrix for 

elements 2, 3, 4, …, 32. 

     [
            
              

        
]       [

               
        

            
] 

     [
            
              

        
]       [

               
        

            
] 

     [
            
              

        
]       [

               
        

            
] 

     [
            
              

        
]       [

               
        

            
] 

      [
            
              

        
]        [

               
        

            
] 

      [
            
              

        
]        [

               
        

            
] 

      [
            
              

        
]        [

               
        

            
] 

      [
            
              

        
]        [

               
        

            
] 
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       [
               
        

            
]        [

            
              

        
] 

The global coefficient matrix   assembled from the element coefficient 

matrices. Since there are 25 nodes, the global coefficient matrix will be a 

       matrix. 

The one diagonal entries can be computed as follows:  

For example: 

        
          

        
       

       
         

        
       

       
         

        
       

       
       

        
        

         

                                 

          
           

For the off-diagonal entries, for example      , the global link 9−12 

corresponds to local link 1−3 of element 11 and local link 1−2 of element 

10 as shown in Figure (4.4) and hence 

         
        

           

We can compute the value of other off-diagonal entries in the same 

manner. We continue the process to obtain the global matrix. 
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Defining the vector     to be vector of unknowns (interior nodes) and 

vector    to be vector of prescribed boundary values (nodes that are 

located on the boundaries) as shown in table 4.3. 

Table 4.3: Represents vector of functions at the boundary 

Global node  Boundary conditions The value of global 

node 

1       on left and     at bottom 

boundaries  

The average of its 

boundary values 
     

 
    

2     on bottom boundary 0 

3     on bottom boundary 0 

4      on bottom boundary  0 

5      on bottom boundary and 

     at right boundary 

The average of its 

boundary values 
    

 
    

6      on right boundary 50 

10       on left boundary 100 

11       on left boundary 100 

15      on right boundary  50 

16      on right boundary     

20       on left boundary 100 

21       on left boundary and 

     on upper boundary  

The average of its 

boundary values 
      

 
      

22      on upper boundary 75 

23      on upper boundary 75 

24      on upper boundary 75 

25      on upper boundary and 

     at right boundary 

The average of its 

boundary values   

     

 
      

The vector    is: 
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  Now, we will define the matrix      to be the matrix of unknown nodes 

(interior nodes) and the matrix      to be the matrix of unknown nodes and 

prescribed boundary values. Both matrices      and      are obtained from 

global coefficient matrix    

    

[
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 ]
 
 
 
 
 
 
 
 

 

 the inverse of matrix     
  is: 

   
  

 

[
 
 
 
 
 
 
 
 
      
      
      
      
      
      
      
      
      

          
      
      
      
      
      
      
       
      

         
       
      
      
      
      
      
      
      

          
      
      
      
      
      
      
      
      

          
      
      
      
      
      
      
      
      

              
      
      
      
      
      
      
      
      

      
      
      
      
      
      
      
      
      

          
      
      
      
      
      
      
       
       

   

       
      
      
      
      
       
      
      
       ]

 
 
 
 
 
 
 
 

 

The vector    of unknown nodes can be found by using the formula:  
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[
 
 
 
 
 
 
 
 
      
      
      
       
       
       
       
       
       ]

 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
       
       
       
       
       
       
       
       
       ]

 
 
 
 
 
 
 
 

 

Example 4.3: Consider the one-dimensional heat equation   

                         

Subject to initial condition              and boundary conditions 

          ,         . 

Next, using the finite difference method, we start with make a partition for 

the domain by dividing x-axis into equal steps   
   

 
 

   

 
 

 

 
, also we 

dividing t-axis into equal steps         as shown in Figure (4.3). 

 Now, we define the mesh points (     ) as follow: 

                          

                             

For      ,                    
 

 
   

           ,                    
 

 
 

 

 
 

          ,                    
 

 
 

 

 
 

          ,                    
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And for      ,                           

                   ,                    
 

 
      

                  ,                    
 

 
     

These partitions will be illustrated in Figure 4.3 

 

Figure (4.3): Discretization of the domain for example 4. 3 

The black points are known boundary points and the red points (interior) 

points are unknown which are to be approximate. 

Using the formula: 

                     (             )               

to approximate the interior points. 

At the left boundary we will treat the boundary condition by generate ghost 

boundary     by: 



81 

 

          
          

  
   

We get  

                                                                                          (4.5) 

Now we back to equation                      (             ) 

and put    , yield: 

                     (          )                                               

Put equation (4.5) into equation (4.6) we get: 

                      (    )           

The equation (4.7) will used to the left boundary. 

We will start to find the interior points:  

If           ,                    (         )               

Replace      by using the equation (4.7) 

                    (    ) 

So       
 

    
     , put      into equation above yield: 

                   (     
 

    
    ) 

Simplifying this equation yield  
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If          ,                    (         )  

Also, by some calculation we get the second equation 

                                                                                        

  If          ,                    (         ) 

We do the same argument in first equation to find      and we get third 

equation 

                                                                          

If          ,                    (         ) 

In the same way we get the fourth equation  

                                                                                   

We will use the notation (                               ), so 

equations 1-4 becomes: 

                                

                                                                                       (4.8) 

                              

                                    

System (4.8) can be expressed as a linear system      
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[

     
     
      

 

     
   
 

  

 
 

     
     

 
 

     
   

] [

  

  

  

  

]  [

     
   
 
 

] 

Using        we obtain the exact solution   

  [

      
      
      
      

] 

We can also solve the linear system (4.8) by the following iterative 

techniques:  

Jacobi Method 

We write the Jacobi equations as: 

  
   

 
    

     
  

     
 

     

     
            

  
   

 
    

   
  

     
 

   

   
 

  
   

 
    

     
  

     
 

     

     
  

     
                                                             

  
   

 
    

   
  

     
 

 

   
  

     
 

Select the initial solution as                          , then we find the 

first iteration      as: 
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The first iteration      is: 

     [

       
       

 
 

] 

 Likewise, after 15 iterations we obtain the approximate solution: 

  [

        
        
        
        

] 

Number of iterations The error 

15                 

The Matlab code for the Jacobi iterative method can be formed in 

Appendix E. 

Gauss-Seidel Method 

We write the Gauss-Seidel equations as: 
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Choose the initial solution as                 , then we find the first 

iteration     as: 

    
   

 
    

     
  

   
 

     

     
 

     

     
          

  
   

 
    

   
  

   
 

   

   
 

             

   
 

   

   
          

  
   

 
    

     
  

   
 

     

     
  

   
  

              

     
          

  
   

 
    

   
  

   
 

 

   
  

   
 

             

   
 

        

   
          

The first iteration is  

     [

        
        
        
        

] 

Likewise, after 8 iterations we obtain the approximate solution: 

  [

        
        
        
        

] 

Number of iterations The error 

8                 

The Matlab code for the Gauss-Seidel iterative method can be formed in 

Appendix F. 
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Successive Over Relaxation (SOR) Method  

Writing the SOR equations by using Gauss-Seidel equations and use the 

relaxation factor       we get 

  
   

          
     

    [
    

     
  

     
 

     

     
] 

   
   

          
     

    [
    

   
  

   
 

   

   
]                                        

  
   

          
     

    [
    

     
  

     
 

     

     
  

   
] 

  
   

          
     

    [
    

   
  

   
 

 

   
  

   
] 

Select the initial solution as                 , then we find the first 

iteration      as: 

  
   

          
   

    [
    

     
  

   
 

     

     
]  

         

     
          

   
   

          
   

    [
    

   
  

   
 

   

   
]

    [
             

   
 

   

   
]           

  
   

          
   

    [
    

     
  

   
 

     

     
  

   
]

    [
              

     
]           

  
   

          
   

    [
    

   
  

   
 

 

   
  

   
]

    [
             

   
 

        

   
]           
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The first iteration      gives  

     [

        
        
        
        

] 

Likewise, after 6 iterations we obtain the approximate solution: 

  [

        
        
        
        

] 

Number of iterations The error 

6                 

The Matlab code for the SOR iterative method can be formed in Appendix 

G.  

Conjugate Gradient Method 

This algorithm can be implemented as follows: 

Step1 Start with initial guess               

Step2 Calculate the residual vector    as follows: 

         

   [

     
   
 
 

]  [

     
     
      

 

     
   
 

  

 
 

     
     

 
 

     
   

] [

 
 
 
 

] 
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   [

     
   
 
 

] 

Step 3: Let the initial direction vector      . So  

   [

     
   
 
 

] 

Step 4 compute the scalar      by formula 

   
  

   
  

    

 

for    ,    

   
  

   
  

    

 

  
                [

     
   
 
 

]           

  
                 [

     
     
      

 

     
   
 

  

 
 

     
     

 
 

     
   

] [

     
   
 
 

]

          

Thus, 

   
        

        
          

Step5 Compute the first iteration    by the formula  
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the first iteration     [

        
        

 
 

] 

Likewise, after 5 iterations we obtain the approximate solution: 

  [

        
        
        
        

] 

The Matlab code for the conjugate gradient iterative method can be formed 

in Appendix H. 

Table (4.4): Comparison between iterative methods in example 4.3 

     Methods 

                

Jacobi Method Gauss-Seidel 

Method  

SOR Method  Conjugate 

Gradient  

   0.622885 0.622885 0.622885 0.622885 

   0.410683 0.410683 0.410683 0.410683 

   0.469790 0.469790 0.469790 0.469790 

   0.327415 0.327415 0.327415 0.327415 

Number of 

iterations 

15 8 6 5 

Error                                                          

Example 4.4: Consider the one-dimensional heat equation   

                         

Subject to initial condition              and boundary conditions  

Number of iterations The error 

5                
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                ,         . 

Next, using the finite difference method, we start with make a partition for 

the domain by dividing x-axis into equal steps   
   

 
 

   

 
 

 

 
, also we 

dividing t-axis into equal steps         as shown in Figure (4.4). 

Now, we define the mesh points (     ) as follow: 

                          

                             

For      ,                    
 

 
   

           ,                    
 

 
 

 

 
 

          ,                    
 

 
 

 

 
 

          ,                    
 

 
   

And for      ,                           

                   ,                    
 

 
      

                  ,                    
 

 
     

These partitions will be illustrated in Figure 4.3 
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Figure (4.4): Discretization of the domain for example 4. 4 

The black points are known boundary points and the red points (interior) 

points are unknown which are to be approximate. 

To approximate the interior points, we use the formula: 

                     (             )               

At the left boundary we will treat the boundary condition by generate ghost 

boundary     by: 

          
          

  
         

We get  

                                                                                 (4.12) 

Now we back to equation                      (             ) 

and put    , yield: 
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                     (          )                                            

Putting equation (4.12) into equation (4.13) we get: 

                      (             )                                  

Equation (4.14) will used to the left boundary. 

If           ,                    (         )               

Replace      by using equation (4.14) 

                    (            ) 

So      
 

          
     , put      into equation above yield: 

                   (     
 

          
    ) 

Then we get fist equation 

                                                                                 

If          ,                    (         )  

Also, we get second equation 

                                                                                         

If          ,                    (         ) 

We do the same argument in first equation to find     , then we get third 

equation. 
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If          ,                    (         ) 

In the same way we get the fourth equation  

                                                                                   

We will use the notation (                               ), then 

equations 1-4 becomes: 

                                 

                                                                                        (4.15) 

                                

                      

System (4.15) can be expressed in a matrix form as follows: 

[

      
     

        
 

     
   
 

  

 
 

      
     

 
 

     
   

] [

  

  

  

  

]  [

     
   
 
 

] 

Using        we obtain the exact solution  

  [

      
      
      
      

] 

We can also solve the linear system (4.15) by the following iterative 

techniques:  
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Jacobi Method 

 We write the Jacobi equations as: 

  
    

    

      
  

      
      

      
           

  
   

 
    

   
  

     
 

   

   
                                                                                 

  
   

 
    

      
  

     
 

       

      
  

     
   

  
   

 
    

   
  

     
 

 

   
  

     
    

Choose the initial solution as                , then we find the first 

iteration      as: 

  
   

 
    

      
  

   
 

      

      
                   

  
   

 
    

   
  

   
 

    

   
            

  
   

 
    

      
  

   
 

       

      
  

   
    

  
   

 
    

   
  

   
   

 
 

   
  

   
     

The first iteration      is: 

     [

        
        

 
 

] 

Likewise, after 16 iterations we obtain the approximate solution: 
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  [

        
       
        
        

] 

Number of iterations The error 

16                

The Matlab code for the Jacobi iterative method can be formed in 

Appendix I. 

Gauss-Seidel Method 

We start with writing the Gauss-Seidel equations as: 

  
   

 
    

      
  

     
 

      

      
           

  
   

 
    

   
  

   
 

    

   
                                                                                     

  
   

 
    

      
  

     
 

       

      
  

   
   

  
   

 
    

   
  

   
 

 

   
  

   
   

Choose the initial solution as                 , then we obtain the first 

iteration      as: 
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The first iteration is  

     [

        
        
        
        

] 

Likewise, after 14 iterations we obtain the approximate solution: 

  [

        
        
        
        

] 

Number of iterations The error 

14                 

The Matlab code for the Gauss-Seidel iterative method can be formed in 

Appendix J. 

 Successive Over Relaxation (SOR) Method  

We start with writing the SOR equations by using Gauss-Seidel equations 

by using relaxation factor       we get  

  
   

          
     

    [
    

      
  

     
 

      

      
] 

  
   

          
     

    [
    

   
  

   
 

    

   
]                                        

  
   

          
     

    [
    

      
  

     
 

       

      
  

   
] 

  
   

          
     

    [
    

   
  

   
 

 

   
  

   
] 
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Choose the initial solution as                , then we obtain the first 

iteration      as: 

  
   

          
   

    [
    

      
  

   
 

      

      
]  

          

      
          

  
   

          
   

    [
    

   
  

   
 

    

   
]

     [
             

   
 

    

   
]          

  
   

          
   

    [
    

      
  

   
 

       

      
  

   
]

    [
                

      
]           

  
   

          
   

    [
    

   
  

   
 

 

   
  

   
]

    [
             

   
 

         

   
]           

The first iteration      is: 

   [

        
        
        
        

] 

Likewise, after 11 iterations we obtain the approximate solution:  

  [

        
        
        
        

] 

Number of iterations The error 

11                 

The Matlab code for the SOR iterative method can be formed in Appendix 

K. 
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Conjugate Gradient Method 

This algorithm can be implemented as follows: 

Step1 Start with initial guess               

Step2 Calculate the residual vector    as follows: 

         

   [

     
   
 
 

]  [

      
     

        
 

     
   
 

  

 
 

      
     

 
 

     
   

] [

 
 
 
 

] 

   [

     
   
 
 

] 

Step 3: Let the initial direction vector      . So  

   [

     
   
 
 

] 

Step 4 compute the scalar      by formula 

   
  

   
  

    

 

for    ,    

   
  

   
  

    

 

   
                [

     
   
 
 

]           
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                 [

      
     

        
 

     
   
 

  

 
 

      
     

 
 

     
   

] [

     
   
 
 

]

          

Thus  

   
        

        
          

Step5 Compute the first iteration    by the formula  

           

                                     

The first iteration is: 

    [

        
        

 
 

] 

Likewise, after 5 iterations we obtain the approximate solution: 

  [

        
        
        
        

] 

Number of iterations The error 

5                

The Matlab code for the conjugate gradient iterative method can be formed 

in Appendix L. 
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Table (4.5): Comparison between iterative methods in example 4.4 

    

Methods 

               

Jacobi Method Gauss-Seidel 

Method  

SOR Method  Conjugate 

Gradient  

   0.711121 0.711121 0.711121 0.711121 

   0.431581 0.431581 0.431581 0.431581 

   0.542364 0.542364 0.542364 0.542364 

   0.355602 0.355602 0.355602 0.355602 

Number 

of 

iterations 

16 14 11 5 

Error                                                       
        

Example 4.5: Consider the one-dimensional heat equation   

                                  

subject to initial condition              and boundary conditions 

          ,         . 

Next, using finite difference method, we start with make a partition for the 

domain by dividing x-axis into equal steps  
   

 
 

   

 
 

 

 
 , also we 

dividing t-axis into equal steps        as shown in Figure (4.5). 

 We define the mesh points (     ) as follow: 

                          

                             

For      ,                    
 

 
   

           ,                    
 

 
 

 

 
 

          ,                    
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          ,                    
 

 
   

And for      ,                           

                   ,                    
 

 
      

                  ,                    
 

 
     

 

Figure (4.5): Discretization of the domain for example 4. 5 

The black points are known boundary points and the red points (interior) 

points are unknown which are to be approximate. 

To approximate the interior points, we use the formula: 

               (     )  
   

  
(                   )               

We will start to find the interior points:  

If            ,                      
   

  (               )    

Inserting the boundary conditions in the previous equation yield  
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If            ,                      
   

  (               ) 

Inserting the boundary conditions in the previous equation yield 

                                                                                   

If         ,                     
   

  (               ) 

Inserting the boundary conditions in the previous equation yield 

                                                                     

If            ,                      
   

  (               ) 

Inserting the boundary conditions in the previous equation yield 

                                                                     

We will use the notation (                               ), then 

equations 1-4 becomes: 

                     

                     

                                                                                    

                            

System (4.19) can be expressed in matrix form as follows: 

[

   
     
  
 

     
   
 

  

 
 

   
     

 
 

     
   

] [

  

  

  

  

]  [

       
       

          

          

] 
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Using        we obtain the exact solution: 

  [

      
      
      
      

] 

We can also solve the linear system (4.19) by the following iterative 

techniques: 

Jacobi Method 

We write the Jacobi equations as: 

  
   

 
    

   
  

     
 

       

   
            

  
   

 
    

   
  

     
 

       

   
                                                                       

  
   

 
    

   
  

     
 

 

   
  

     
 

           

   
 

  
   

 
    

   
  

     
 

 

   
  

     
 

          

   
 

Choose the initial solution as                , then we find the first 

iteration      as: 
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The first iteration      is: 

     [

       
       

            

            

] 

Likewise, after 14 iterations we obtain the approximate solution:  

  [

       
       
       
       

] 

Number of iterations The error 

14                

The Matlab code for the Jacobi iterative method can be formed in 

Appendix E. 

Gauss-Seidel Method 

We start with writing the Gauss-Seidel equations as: 

  
   

 
    

   
  

     
 

       

   
            

  
   

 
    

   
  

   
 

       

   
                                                                           

  
   

 
    

   
  

     
 

 

   
  

   
 

           

   
 

  
   

 
    

   
  

   
 

 

   
  

   
 

          

   
 

Choose the initial solution as                 , then we find the first 

iteration      as: 
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The first iteration is: 

     [

       
       
       
       

] 

Likewise, after 8 iterations we obtain the approximate solution: 

  [

       
       
       
       

] 

Number of iterations The error 

8                

The Matlab code for the Gauss-Seidel iterative method can be formed in 

Appendix F. 

Successive Over Relaxation (SOR) Method  

We will start with writing the SOR equations by using Gauss-Seidel 

equations and use the relaxation factor      . We get: 

  
   

          
     

    [
    

   
  

     
 

       

   
] 
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    [
    

   
  

   
 

       

   
]                              

  
   

          
     

    *
    

   
  

     
 

 

   
  

   
 

           

   
+ 

  
   

          
     

    *
    

   
  

   
 

 

   
  

   
 

          

   
+ 

Choose the initial solution as                , then we find the first 

iteration      as: 

  
   

          
   

    [
    

   
  

   
 

       

   
]          

  
   

          
   

    [
    

   
  

   
 

       

   
]           

  
   

          
   

    *
    

   
  

   
 

 

   
  

   
 

           

   
+

         

  
   

          
   

    *
    

   
  

   
 

 

   
  

   
 

          

   
+

         

The first iteration      is: 

     [

       
       
       
       

] 

Likewise, after 6 iterations we obtain the approximate solution: 

  [

       
       
       
       

] 
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Number of iterations The error 

6                

The Matlab code for the SOR iterative method can be formed in Appendix 

G.  

Conjugate Gradient Method 

This algorithm can be implemented as follows: 

Step1 Start with initial guess               

Step2 Calculate the residual vector    as follows: 

         

   [

       
       

          

          

]  [

   
     
  
 

     
   
 

  

 
 

   
     

 
 

     
   

] [

 
 
 
 

] 

 

   [

       
       

          

          

] 

Step 3: Let the initial direction vector      . So  

   [

       
       

          

          

] 

Step 4 compute the scalar      by formula 
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for    ,    

   
  

   
  

    

 

  
    [              

     

    

     

    
]

[
 
 
 
 
 
       
       
     

    
     

    ]
 
 
 
 
 

         

  
    

 [              
     

    

     

    
] [

   
     
  
 

     
   
 

  

 
 

   
     

 
 

     
   

]

[
 
 
 
 
 
       
       
     

    
     

    ]
 
 
 
 
 

         

Thus 

   
       

       
         

Step5 Compute the first iteration    by the formula  

           

                    [

       
       

          

          

]   

The first iteration is 

    [

       
       
       
       

] 
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Likewise, after 5 iterations we obtain the approximate solution: 

  [

       
      
       
       

] 

Number of iterations The error 

5                  

The Matlab code for the conjugate gradient iterative method can be formed 

in Appendix H. 

 

4.1 Conclusion 

 In this thesis we have used two methods to solve homogeneous and 

inhomogeneous parabolic partial differential equation subject to Dirichlet, 

Neumann and Robin’s boundary conditions, these methods are finite 

difference method (FDM) and finite element method (FEM). 

The discretization process converts the initial boundary value problem into 

 -algebraic linear equations. This system has been solved by several 

iterative schemes. These are: Jacobi, Gauss-Seidel, Successive over 

Relaxation and conjugate gradient method. 

We observe that the finite difference method is very simple and efficient 

method for approximating the solution of initial boundary value problem 

when the domain has regular shape, while the finite element method is 

more efficient for irregular domain. Moreover, we clearly see that the 

conjugate gradient method is one of the most efficient and accurate method 
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in comparison with the other iterative techniques. It requires less number of 

iterations and least error. 
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Appendix A 
 

% Matlab code for Jacobi iterative method 

% Iterative Solutions of linear equations: Jacobi Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u . 

clc 

clear 

format long 

tic 

A=[1.8 -0.4 0 0 0 0 0 0 0;-0.4 1.8 -0.4 0 0 0 0 0 0;0 -0.4 1.8 0 0 0 0 0 0;-1 0 

0 1.8 -0.4 0 0 0 0;0 -1 0 -0.4 1.8 -0.4 0 0 0;0 0 -1 0 -0.4 1.8 0 0 0;0 0 0 -1 0 

0 1.8 -0.4 0;0 0 0 0 -1 0 -0.4 1.8 -0.4;0 0 0 0 0 -1 0 -0.4 1.8]; 

b=[40;0;20;40;0;20;40;0;20]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

k=0; 

 while err >1.0e-7 

    for i=1:4 

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    err= max(abs(un'-u)); 
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     k=k+1; 

M(k,:)=[un']; 

u=un'; 

end 

% show the cpu time 

toc  

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 

 

 

 

 

 

 

 

 

 

 

 

 



117 

 

Appendix B 
 

% Matlab code for Gauss-Seidel iterative method 

% Iterative Solutions of linear equations: Gauss-Seidel Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clc 

clear 

format long 

tic 

A=[1.8 -0.4 0 0 0 0 0 0 0;-0.4 1.8 -0.4 0 0 0 0 0 0;0 -0.4 1.8 0 0 0 0 0 0;-1 0 

0 1.8 -0.4 0 0 0 0;0 -1 0 -0.4 1.8 -0.4 0 0 0;0 0 -1 0 -0.4 1.8 0 0 0;0 0 0 -1 0 

0 1.8 -0.4 0;0 0 0 0 -1 0 -0.4 1.8 -0.4;0 0 0 0 0 -1 0 -0.4 1.8]; 

b=[40;0;20;40;0;20;40;0;20]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

 k=0; 

 while err >1.0e-7 

     u0=u; 
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 for i=1:4 

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end 

% 

 show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

K 
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Appendix C 

% Matlab code for SOR iterative method 

% Iterative Solutions of linear equations: SOR me Method 

% Linear system: A u = b  

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clear 

format long 

tic 

A=[1.8 -0.4 0 0 0 0 0 0 0;-0.4 1.8 -0.4 0 0 0 0 0 0;0 -0.4 1.8 0 0 0 0 0 0;-1 0 

0 1.8 -0.4 0 0 0 0;0 -1 0 -0.4 1.8 -0.4 0 0 0;0 0 -1 0 -0.4 1.8 0 0 0;0 0 0 -1 0 

0 1.8 -0.4 0;0 0 0 0 -1 0 -0.4 1.8 -0.4;0 0 0 0 0 -1 0 -0.4 1.8]; 

b=[40;0;20;40;0;20;40;0;20]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

w=1.02; 

err=1.0; 

k=0; 

 while err >1.0e-7 

     u0=u; 
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for i=1:4 

    u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i))); 

end 

 un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end  

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix D 

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter) 

% SOLVECG   Conjugate Gradients method. 

%    Input parameters:  

%           A : Symmetric, positive definite NxN matrix  

%           f : Right-hand side Nx1 column vector  

%           s : Nx1 start vector (the initial guess) 

%         tol : relative residual error tolerance for break 

%               condition  

%     maxiter : Maximum number of iterations to perform 

%    Output parameters: 

%           u : Nx1 solution vector 

%       niter : Number of iterations performed 

%        flag : 1 if convergence criteria specified by TOL could 

%               not be fulfilled within the specified maximum 

%               number of iterations, 0 otherwise (= iteration 

%               successful). 

tic 

A=[1.8 -0.4 0 0 0 0 0 0 0;-0.4 1.8 -0.4 0 0 0 0 0 0;0 -0.4 1.8 0 0 0 0 0 0;-1 0 

0 1.8 -0.4 0 0 0 0;0 -1 0 -0.4 1.8 -0.4 0 0 0;0 0 -1 0 -0.4 1.8 0 0 0;0 0 0 -1 0 

0 1.8 -0.4 0;0 0 0 0 -1 0 -0.4 1.8 -0.4;0 0 0 0 0 -1 0 -0.4 1.8]; 

f=[40;0;20;40;0;20;40;0;20]; 

err=1.0; 

format long  

s=[0;0;0;0;0;0;0;0;0]; 
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tol=0.0000001; 

maxiter =6; 

u = s;         % Set u_0 to the start vector s 

r = f - A*s;   % Compute first residuum 

p = r;          

rho = r'*r; 

niter = 0;     % Init counter for number of iterations 

flag = 0;      % Init break flag 

 % Compute norm of right-hand side to take relative residuum as 

% break condition. 

normf = norm(f); 

if normf < eps  % if the norm is very close to zero, take the 

                % absolute residuum instead as break condition 

                % ( norm(r) > tol ), since the relative 

                % residuum will not work (division by zero). 

  warning(['norm(f) is very close to zero, taking absolute residuum' ...  

                     ' as break condition.']); 

    normf = 1; 

end 

while (norm(r)/normf > tol)   % Test break condition 

    a = A*p; 

    alpha = rho/(a'*p); 

    u = u + alpha*p; 

    r = r - alpha*a; 
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    rho_new = r'*r; 

    p = r + rho_new/rho * p; 

    rho = rho_new; 

    niter = niter + 1; 

    if (niter == maxiter)         % if max. number of iterations 

        flag = 1;                   % is reached, break. 

        break 

    end 

end 

% show the cpu time 

toc 

u 

 err= max(abs(u-o)) 

niter 
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Appendix E 
 

% Matlab code for Jacobi iterative method 

% Iterative Solutions of linear equations: Jacobi Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u . 

clc 

clear 

format long 

tic 

A=[1.687 -0.45 0 0;-0.45 1.9 0 0;-1.112 0 1.788 -0.45;0 -1 -0.45 1.9]; 

b=[0.866;0.5;0;0]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

k=0; 

 while err >1.0e-7 

    for i=1:4 

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    err= max(abs(un'-u)); 

     k=k+1; 

M(k,:)=[un']; 



125 

 

u=un'; 

end 

% show the cpu time 

toc  

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix F 
 

% Matlab code for Gauss-Seidel iterative method 

% Iterative Solutions of linear equations: Gauss-Seidel Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clc 

clear 

format long 

tic 

A=[1.687 -0.45 0 0;-0.45 1.9 0 0;-1.112 0 1.788 -0.45;0 -1 -0.45 1.9]; 

b=[0.866;0.5;0;0]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

 k=0; 

 while err >1.0e-7 

     u0=u; 

    

 for i=1:4 

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    un=u'; 
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    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end 

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

K 
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Appendix G 

% Matlab code for SOR iterative method 

% Iterative Solutions of linear equations: SOR me Method 

% Linear system: A u = b  

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clear 

format long 

tic 

A=[1.687 -0.45 0 0;-0.45 1.9 0 0;-1.112 0 1.788 -0.45;0 -1 -0.45 1.9]; 

b=[0.866;0.5;0;0]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

w=1.02; 

err=1.0; 

k=0; 

 while err >1.0e-7 

     u0=u; 

for i=1:4 

    u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i))); 
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end 

 un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end  

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 

 

 

 

 

 

 

 

 

 



131 

 

Appendix H 

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter) 

% SOLVECG   Conjugate Gradients method. 

%    Input parameters:  

%           A : Symmetric, positive definite NxN matrix  

%           f : Right-hand side Nx1 column vector  

%           s : Nx1 start vector (the initial guess) 

%         tol : relative residual error tolerance for break 

%               condition  

%     maxiter : Maximum number of iterations to perform 

%    Output parameters: 

%           u : Nx1 solution vector 

%       niter : Number of iterations performed 

%        flag : 1 if convergence criteria specified by TOL could 

%               not be fulfilled within the specified maximum 

%               number of iterations, 0 otherwise (= iteration 

%               successful). 

tic 

A=[1.687 -0.45 0 0;-0.45 1.9 0 0;-1.112 0 1.788 -0.45;0 -1 -0.45 1.9]; 

b=[0.866;0.5;0;0]; 

err=1.0; 

format long  

s=[0;0;0;0]; 

tol=0.0000001; 

maxiter =6; 
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u = s;         % Set u_0 to the start vector s 

r = f - A*s;   % Compute first residuum 

p = r;          

rho = r'*r; 

niter = 0;     % Init counter for number of iterations 

flag = 0;      % Init break flag 

 % Compute norm of right-hand side to take relative residuum as 

% break condition. 

normf = norm(f); 

if normf < eps  % if the norm is very close to zero, take the 

                % absolute residuum instead as break condition 

                % ( norm(r) > tol ), since the relative 

                % residuum will not work (division by zero). 

  warning(['norm(f) is very close to zero, taking absolute residuum' ...  

                     ' as break condition.']); 

    normf = 1; 

end 

while (norm(r)/normf > tol)   % Test break condition 

    a = A*p; 

    alpha = rho/(a'*p); 

    u = u + alpha*p; 

    r = r - alpha*a; 

    rho_new = r'*r; 

    p = r + rho_new/rho * p; 
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    rho = rho_new; 

    niter = niter + 1; 

    if (niter == maxiter)         % if max. number of iterations 

        flag = 1;                   % is reached, break. 

        break 

    end 

end 

% show the cpu time 

toc 

u 

 err= max(abs(u-o)) 

niter 
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Appendix I 
 

% Matlab code for Jacobi iterative method 

% Iterative Solutions of linear equations: Jacobi Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u . 

clc 

clear 

format long 

tic 

A=[1.4909 -0.45 0 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9]; 

b=[0.866;0.5;0;0]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

k=0; 

 while err >1.0e-7 

    for i=1:4 

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    err= max(abs(un'-u)); 

     k=k+1; 

M(k,:)=[un']; 
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u=un'; 

end 

% show the cpu time 

toc  

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix J 
 

% Matlab code for Gauss-Seidel iterative method 

% Iterative Solutions of linear equations: Gauss-Seidel Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clc 

clear 

format long 

tic 

A=[1.4909 -0.45 0 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9]; 

b=[0.866;0.5;0;0]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

 k=0; 

 while err >1.0e-7 

     u0=u; 

    

 for i=1:4 

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    un=u'; 
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    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end 

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

K 
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Appendix K 

% Matlab code for SOR iterative method 

% Iterative Solutions of linear equations: SOR me Method 

% Linear system: A u = b  

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clear 

format long 

tic 

A=[1.4909 -0.45 0 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9]; 

b=[0.866;0.5;0;0]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

w=1.02; 

err=1.0; 

k=0; 

 while err >1.0e-7 

     u0=u; 

for i=1:4 

    u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i))); 
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end 

 un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end  

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix L 

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter) 

% SOLVECG   Conjugate Gradients method. 

%    Input parameters:  

%           A : Symmetric, positive definite NxN matrix  

%           f : Right-hand side Nx1 column vector  

%           s : Nx1 start vector (the initial guess) 

%         tol : relative residual error tolerance for break 

%               condition  

%     maxiter : Maximum number of iterations to perform 

%    Output parameters: 

%           u : Nx1 solution vector 

%       niter : Number of iterations performed 

%        flag : 1 if convergence criteria specified by TOL could 

%               not be fulfilled within the specified maximum 

%               number of iterations, 0 otherwise (= iteration 

%               successful). 

tic 

A=[1.4909 -0.45 0 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9]; 

f=[0.866;0.5;0;0]; 

err=1.0; 

format long  

s=[0;0;0;0]; 

tol=0.0000001; 

maxiter =6; 
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u = s;         % Set u_0 to the start vector s 

r = f - A*s;   % Compute first residuum 

p = r;          

rho = r'*r; 

niter = 0;     % Init counter for number of iterations 

flag = 0;      % Init break flag 

 % Compute norm of right-hand side to take relative residuum as 

% break condition. 

normf = norm(f); 

if normf < eps  % if the norm is very close to zero, take the 

                % absolute residuum instead as break condition 

                % ( norm(r) > tol ), since the relative 

                % residuum will not work (division by zero). 

  warning(['norm(f) is very close to zero, taking absolute residuum' ...  

                     ' as break condition.']); 

    normf = 1; 

end 

while (norm(r)/normf > tol)   % Test break condition 

    a = A*p; 

    alpha = rho/(a'*p); 

    u = u + alpha*p; 

    r = r - alpha*a; 

    rho_new = r'*r; 

    p = r + rho_new/rho * p; 
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    rho = rho_new; 

    niter = niter + 1; 

    if (niter == maxiter)         % if max. number of iterations 

        flag = 1;                   % is reached, break. 

        break 

    end 

end 

% show the cpu time 

toc 

u 

 err= max(abs(u-o)) 

niter 
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Appendix M 
 

% Matlab code for Jacobi iterative method 

% Iterative Solutions of linear equations: Jacobi Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u . 

clc 

clear 

format long 

tic 

A=[1.9 -0.45 0 0;-0.45 1.9 0 0;-1 0 1.9 -0.45;0 -1 -0.45 1.9]; 

b=[0.86683;0.51167;0.0016667;0.0033333]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

k=0; 

 while err >1.0e-7 

    for i=1:4 

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    err= max(abs(un'-u)); 

     k=k+1; 

M(k,:)=[un']; 
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u=un'; 

end 

% show the cpu time 

toc  

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix N 
 

% Matlab code for Gauss-Seidel iterative method 

% Iterative Solutions of linear equations: Gauss-Seidel Method 

% Linear system: A u = b 

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clc 

clear 

format long 

tic 

A=[1.9 -0.45 0 0;-0.45 1.9 0 0;-1 0 1.9 -0.45;0 -1 -0.45 1.9]; 

b=[0.86683;0.51167;0.0016667;0.0033333]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

 err=1.0; 

 k=0; 

 while err >1.0e-7 

     u0=u; 

    

 for i=1:4 

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i); 

    end 

    un=u'; 
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    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end 

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

K 

 

 

 

 

 

 

 

 

 

 

 

 



146 

 

Appendix O 

% Matlab code for SOR iterative method 

% Iterative Solutions of linear equations: SOR me Method 

% Linear system: A u = b  

% Coefficient matrix A, right-hand side vector b, unknown vector u. 

clear 

format long 

tic 

A=[1.9 -0.45 0 0;-0.45 1.9 0 0;-1 0 1.9 -0.45;0 -1 -0.45 1.9]; 

b=[0.86683;0.51167;0.0016667;0.0033333]; 

%show the exact solution 

inv(A)*b 

% Set initial value of u to zero column vector  

u=[0;0;0;0]; 

% Set the iteration number = k , so initial k equals 0 

% Set the stopping criteria such that err<1.0e-7 

% Show the M matrix 

% loop for iterations 

w=1.02; 

err=1.0; 

k=0; 

 while err >1.0e-7 

     u0=u; 

for i=1:4 

    u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i))); 
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end 

 un=u'; 

    err= max(abs(un'-u0)); 

    k=k+1; 

M(k,:)=[u']; 

end  

% show the cpu time 

toc 

% show the solutions 

M 

% show the error 

err 

% show the total iteration number 

k 
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Appendix P 

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter) 

% SOLVECG   Conjugate Gradients method. 

%    Input parameters:  

%           A : Symmetric, positive definite NxN matrix  

%           f : Right-hand side Nx1 column vector  

%           s : Nx1 start vector (the initial guess) 

%         tol : relative residual error tolerance for break 

%               condition  

%     maxiter : Maximum number of iterations to perform 

%    Output parameters: 

%           u : Nx1 solution vector 

%       niter : Number of iterations performed 

%        flag : 1 if convergence criteria specified by TOL could 

%               not be fulfilled within the specified maximum 

%               number of iterations, 0 otherwise (= iteration 

%               successful). 

Tic 

 

A=[1.9 -0.45 0 0;-0.45 1.9 0 0;-1 0 1.9 -0.45;0 -1 -0.45 1.9]; 

f=[0.86683;0.51167;0.0016667;0.0033333]; 

err=1.0; 

format long  

s=[0;0;0;0]; 

tol=0.0000001; 
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maxiter =6; 

u = s;         % Set u_0 to the start vector s 

r = f - A*s;   % Compute first residuum 

p = r;          

rho = r'*r; 

niter = 0;     % Init counter for number of iterations 

flag = 0;      % Init break flag 

 % Compute norm of right-hand side to take relative residuum as 

% break condition. 

normf = norm(f); 

if normf < eps  % if the norm is very close to zero, take the 

                % absolute residuum instead as break condition 

                % ( norm(r) > tol ), since the relative 

                % residuum will not work (division by zero). 

  warning(['norm(f) is very close to zero, taking absolute residuum' ...  

                     ' as break condition.']); 

    normf = 1; 

end 

while (norm(r)/normf > tol)   % Test break condition 

    a = A*p; 

    alpha = rho/(a'*p); 

    u = u + alpha*p; 

    r = r - alpha*a; 

    rho_new = r'*r; 
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    p = r + rho_new/rho * p; 

    rho = rho_new; 

    niter = niter + 1; 

    if (niter == maxiter)         % if max. number of iterations 

        flag = 1;                   % is reached, break. 

        break 

    end 

end 

% show the cpu time 

toc 

u 

 err= max(abs(u-o)) 

niter 
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 ب 

 

 المكافئة الخطية معادلة التفاضمية الجزئيةالطرق عددية لحل 
 أعداد

 سمير محمود مصمح
 اشراف

 أ.د. ناجي قطناني

 الممخص
من الظهاىخ الفيديائية والطبيعية تظيخ عمى شكل نساذج رياضية وتحجيجا تظيخ كسعادلات  كثيخا  

تفاضمية جدئية ترف طبيعة ىحه الظهاىخ. في ىحه الخسالة استخجمشا السعادلة التفاضمية الجدئية 
الخطية السكافئة من الجرجة الثانية بحيث يتم التخكيد عمى معادلة الحخارة كشسهذج لهصف تمك 

 لظهاىخ.ا
في الهاقع، فان معظم ىحه السدائل يرعب حميا بطخق تحميمية. بجلا من ذلك، يسكن ان تحل 

 عجديا باستخجام الاساليب الحدابية.
في ىحه الاطخوحة، معادلة الحخارة الستجاندة مع انهاع مختمفة من الذخوط الحجية تم حميا عجديا 
باستخجام طخيقة الفخوق السحجودة وطخيقة العشاصخ السحجودة لتقخيب الحل لسعادلة التفاضمية 

ادلات الجدئية السكافئة. وبيحا يتم تحهيل السعادلة الى شكل اخخ لمهصهل الى نظام خطي من السع
 يسكن حميا باستخجام طخق تكخارية، مثل: 

Jacobi, Gauss-Seidel, Successive Over Relaxation, Conjugate Gradient 

Methods 

 وعسل مقارنة بيشيم.
كفاءة  أكثخوججنا في ىحا البحث من خلال ما بيشتو الشتائج العجدية ان طخيقة الفخوق السحجودة ىي 

خطأ مسكن في حال كهن  وبأقللمحرهل عمى حل تقخيبي لمسعادلة  من طخيقة العشاصخ السحجودة
دقة لمسجالات السعقجة  أكثخالسجال ذو اشكال ىشجسية مشتظسة، وان طخيقة العشاصخ السحجودة 

تعطي الشتائج الاكثخ  Conjugate Gradientالطخيقة التكخارية  نلاحظ ان والغيخ مشتظسة. ايزا،
 دقة من بين الطخق التكخارية الاخخى. 

 


