An-Najah National University

Faculty of Graduate Studies

Computational Techniques for
Solving Linear Parabolic Partial
Differential Equation

By

Sameer Mahmoud Musleh

Supervisor

Prof. Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Mathematics, Faculty of Graduate Studies,
An-Najah National University, Nablus-Palestine.

2019

Computational Techniques for Solving Linear
Parabolic Partial Differential Equation

By

Sameer Mahmoud Musleh

This thesis was defended successfully on 24/ 3/2019and approved by:

Defense Committee Members Signature

1. Prof. Dr. Naji Qatanani /Supervisor

2. Dr. Saed Mallak /External Examiner ﬁ@'

3. Dr. Adnan Daraghmeh /Internal Examiner i ——

Dedication

| dedicate my work to all my family members, to my parents, my wife, my
sisters and my brothers who encourage me to learn, grow and develop and

who have been a source of encouragement and inspiration to me.

v

Acknowledgement

In the beginning, | am grateful to the God to complete this thesis. | wish to
express my sincere thanks to Prof. Dr. Naji Qatanani for providing me with
all the necessary facilities for research and | am thankful and indebted to
him for sharing expertise, sincere and valuable guidance and

encouragement extended to me.

My thanks also to internal examiner Dr. Adnan Daraghmeh and my

external examiner Dr. Saed Mallak.

| take the opportunity to express gratitude to all my family members for

their help and support.

| also thank my parents, my wife and my daughter for their encouragement,

support and attention.

\Y

BUCY

tlsie Jaad Al ALyl e slia) gdsall

Computational Techniques for Solving Linear Parabolic Partial

Differential Equation

all HLEY) i Lo ey palall saga 215 o Ll Al oda e ciladl L ol il
Quj\whjdg\d#&weﬁ:\éL@.\A@;Eg\j\cdsszﬁuj\b&ubcww:\;

(A Ay gl daalal dsnge ()) A) e

Declaration

The work provided in this thesis, unless otherwise referenced, is the
researcher’s own work, and has not been submitted elsewhere for any other

degree or qualification.

Student’s name: sl acdd

Signature: s 08 sl

Date: P

VI
Table of Contents

No Contents Pages
Dedication i
Acknowledgement Vv
Declaration VvV
Abstract IX
Introduction 1

Chapter One: Mathematical Preliminaries 5

1.1 Second Order Linear Partial Differential Equation and 5
their Classification

1.2 Existence of Solution to Heat Equation 6

1.3 Uniqueness of Solution for Linear Parabolic Partial 8
Differential Equation

Chapter Two: Numerical Techniques 10

2.1 Parabolic Equation in One Space Dimension 10

2.2 Finite Difference Method Principle 11

2.3 | Strategy of Discretization and Stability Considerations 12

2.4 Parabolic Partial Differential Equation Subject to 20
Boundary Conditions

2.4.1 | Heat Equation with Dirichlet Boundary Conditions 20
2.4.2 | Heat Equation with Neumann Boundary Conditions 24
2.4.3 | Heat Equation with Robin’s Boundary Condition 26

2.5 Finite Element Method 27
2.5.1 | The Principle of Finite Element Method 27
2.5.2 | Finite Element Method for Dirichlet Boundary 28

Conditions

2.5.3 | Finite Element Method for Neumann Boundary | 33

Vil

Conditions
2.5.4 |Finite FElement Method with Robin’s Boundary 36

Conditions
Chapter Three: Iterative Methods for Solving 37

Linear Systems
3.1 | Jacobi Method 38
3.2 | Gauss-Seidel Method 41
3.3 | Successive Over Relaxation (SOR) Method 43
3.4 | Conjugate Gradient Method 45
3.5 | Convergence of Iterative Methods 47
3.5.1 | Convergence of Jacobi and Gauss-Seidel Iterative 49
Methods

3.5.2 | Convergence of SOR iterative Method 49
3.5.3 | Convergence of Conjugate Gradient Method 50
Chapter Four: Numerical Results 52
4.1 Conclusion 109
References 110
Appendix A 115
Appendix B 117
Appendix C 119
Appendix D 121
Appendix E 124
Appendix F 126
Appendix G 128
Appendix H 130
Appendix | 133
Appendix J 135

Vil

Appendix K 137
Appendix L 139
Appendix M 142
Appendix N 144
Appendix O 146
Appendix P 148

oailall

IX
Computational Techniques for Solving Linear Parabolic Partial
Differential Equation
By
Sameer Mahmoud Musleh
Supervisor
Prof. Naji Qatanani

Abstract

Parabolic partial differential equations appear in various fields of science
and engineering. These involve heat conduction, particle diffusion and
ocean propagation. The most common example of such equation is the heat
equation.

Physical problems involving parabolic equations are hard to solve
analytically, instead, they can be solved numerically using computational
methods.

In this work, initial boundary value problems involving heat diffusion
phenomenon will be solved. This will be carried out using the finite
difference and finite element methods.

The discretizing approach transforms the initial boundary value problem
into a linear system of n algebraic equations. Consequently, we use some
iterative techniques such as, the Jacobi Method, the Gauss-Seidel Method,
the Successive over relaxation (SOR) Method and the Conjugate Gradient
Method to solve the resulted linear system. Some numerical test cases will
be solved using the proposed methods.

Numerical results show clearly that the finite difference method is more
effective than the finite element method for regular domains. Moreover, the
results show that the conjugate gradient method gives the most effective

results amongst the other iterative schemes.

Introduction

Partial differential equations play a very important role in science,
technology and used to describe a wide variety of time dependent
phenomena. These include: heat conduction, particle diffusion, ocean

acoustic propagation and pricing of derivatives investment.

At the heart of many engineering and scientific analysis is the solution of
differential equations, both ordinary and partial differential equations
(PDEs). The solution of the later types of equation can be very challenging,
depending on the type of equation, the number of independent variables,
the boundary and initial conditions and other factors. A variety of broadly
applicable methods have been developed to solve such problems. Among
the deterministic methods for solving differential equations, are the finite
element method and the finite difference method [7, 5]. These methods
appear in certain classification of problems for reasons that are deeply
rooted in mathematical foundation of each method. Although trends are
slowly changing, the finite element method has been traditionally used for
solving problems in solid mechanics. While the finite difference method
traditionally has been used to solve problems involving fluid flow and heat

transfer problems [7, 31].

The finite difference method is one of the oldest and most popular method
for solving partial differential equations. This method is based on the
application of Taylor expansion used to approximate the solution of partial

differential equations [31, 34].

2
For time dependent problems, considerable progress in finite difference
method occurred during the period that followed the end of the Second
World War. When the large scale practical applications became possible
with the aid of computers, a major role was played by the work of Van
Neumann that was partly mentioned in O. Brien Hyman and Kaplan studies
in (1951) [31]. As far as parabolic differential equations are concerned,
they were highlighted in the early paper done by John in (1951) that
included this theory. For initial boundary value problems, implicit methods
were established in this period, for example Crale and Nicolson in (1947).
The finite difference theory for general initial boundary value problems and
parabolic problems then, had an intense period of development during the
50s and the 60s, when the concept of stability was explored in Lax
equivalence theorem and the Kreiss matrix lemma, and further major
contributions made by Douglas Lees, Samarskii, Widlund and others

[31,5].

On the other hand, the finite element method was understood to be used as
an approximation for solving partial differential equations utilizing a
vartiational principle and piecewise polynomial approximation. G. Leibnitz
(1646-1716) in 1696 was the first author to introduce the finite element
method. At the same time L. Euler (1707-1783) introduced the vartiational
methods with the approximation approach being essentially the main tool

employed for derivation of Euler equation [4].

3
The finite difference and finite element methods are now two universally
approaches use to approximate linear and nonlinear differential equations
governing mathematical and engineering problems [5,31]. Finite difference
method is simple to formulate and can readily be extended to approximate
two- or three-dimensional problems. In addition, it is easy to learn, apply
and has the flexibility in dealing with problems involving regular geometry.
The finite element method has the flexibility in dealing with problems
involving irregular geometry. However, with the evolving of numerical
grid generation technique, the finite difference method now possesses the
geometrical flexibility of finite element method while maintaining the

simplicity of the conventional finite difference technique [23].

In the modern era several researchers and authors deal with parabolic
partial differential equations and its applications in several fields. Those
researchers are: R. Bueckkine, C. Camacho and G. Fabbri worked in
economics fields [6]. While F. Abdelnour, H. Voss and A. Raj worked in
the field of neuroscience [1]. Other researchers: E. Ostertagova, O.
Ostertag and J. Bocko worked in mechanics field [26]. In addition, N.
Qatanani worked in the field of heat equation with non-local radiation

terms [27].

This thesis is organized as follows: Chapter 1 contains the basic elements
and some preliminaries related to second order partial differential
equations. In chapter 2 details of finite difference and finite element

methods for homogeneous heat equation, with respect to different types of

4
boundary conditions are presented. Chapter 3 presents some iterative
methods namely: the Jacobi, the Gauss-Seidle, the successive over
relaxation (SOR) and the Conjugate Gradient methods used for solving
linear systems. These systems resulted upon using the finite difference and
finite element methods. Chapter 4 contains some numerical examples,

comparisons and results.

5
Chapter One
Mathematical Preliminaries

In this chapter we present some basic definitions and classification of

second order linear partial differential equations

1.1 Second Order Linear Partial Differential Equation and their

Classification

A second order linear partial differential equation in two variables (x,y)

has the general form:
Auy, + Buy, + Cuy, + Du, + Eu, + Fu=G(x,y) (1.1)

where the coefficients A, B, C, D, E, F and G can either be constants or

functions of variables x and y.

Equation (1.1) can be classified into three types, depending on the

discriminant B% — 4AC as follows:
1- Hyperbolic

Equation (1.1) is called hyperbolic if the discriminant is positive

(i.e. B2 —4AC > 0). For example, wave equation.
2- Elliptic

Equation (1.1) is called elliptic if the discriminant is negative

(i.e. B2 — 4AC < 0). For example, Laplace’s equation.

3- Parabolic

Equation (1.1) is called parabolic if the discriminant is equal zero

(i.e. B2 — 4AC = 0). For example, heat equation.

In this thesis, we will investigate the linear parabolic partial differential

equation with respect to three boundary conditions. These conditions are:
1- Dirichlet Boundary Conditions

The condition where the value of the unknown function is specified on the
boundary, u=g on B, with g being a prescribed continuous function

on B (Boundaries).

2- Neumann Boundary Conditions

The normal derivative Z—Z satisfies the condition, g—” = g on B, where g is

n

prescribed function continuous on B (Boundaries).
The symbol Z—Z denotes the directional derivatives of u along the outward
orthogonal to B.

3- Robin’s Boundary Conditions (Mixed Boundary Conditions)

These conditions contain the value of the unknown function and its

orthogonal derivatives at the boundary of the domain [11].

1.2 Existence of Solution to Heat Equation

Consider the initial boundary value problem

N du=f(x0), (6b)€Qr (12)

7
u(x, t) = QD(X, t), (xr t) € aTQT (13)

where Qr = Q x (0,T), Q € R™is bounded domainand T > 0.
Theorem 1:[35]
LetdN eC®, 0<a<1,fE€ c%2 (Q;) and ¢ € crrelt; (Q7). Then the
first initial boundary problem (1.2), (1.3) admits a unique solution

= CZ+(X,1+E (QT).

Theorem 2: [35]

Assume that Q has the exterior ball property and there exist a sequence
{Q,} with C® smooth boundary such that Q, c Q,; and 09Q,
approximate Q1 uniformly. Let 0<a <1, fE€ C“'% (Q7) and ¢ €
cPrelt; (Q7). Then the problem (1.2), (1.3) admits a unique solution

€ C*ME (Qp) n C(Qy).

Proof:

Without loss of generality, we assume that ¢ = 0, otherwise we consider
the equation for w = u — ¢ the approximation problem of (1.2), (1.3). We
first prove that the limit of the solution of the approximation problems
satisfies equation (1.2) and then apply the barrier function technique to
check that u at d;Q; equal zero. Here, we only point out the construction
of the barrier function w(x,t). Let (x°t,) € 0;:Qr then the barrier
function w(x, t) should have the following properties:

i) wx%¢ty) =0, w(x,t)>0forall x € Qr\{x° t,}
i) wec2 (@), 2 - Aw=1inQy

8
Now for point (x%¢t,) at the lateral boundary, we choose

w(x,t) = w(x) and for the point (x° 0) =t¢t. Clearly the function
defined possesses the above properties.

For more details see [35].

1.3 Uniqueness of Solution for Linear Parabolic Partial

Differential Equation

To demonstrate uniqueness of solution for one dimensional heat equation
with respect to Dirichlet or Neumann boundary conditions, Consider the

following problem [15]:

U= Uy, IN 0<x<Landt>0

with u=f(x)att=0and0 <x <L

u(0,t) = go(t) and (L, t) = g, (t), vVt > 0 (Dirichlet)
ou(0t) ou(Lt)

or ——= go(t) and = g.(t) , vt > 0 (Neumann)

Suppose that u; and u, are two solutions and consider w = u; — u, then

w satisfies
We=Wy, IN 0<x<Landt>0
with w=0att=0and0<x <L

w(0,t) =0 and w(L,t) =0,Vt > 0 (Dirichlet)

ow(0,t) ow(L,t)
= 0 and -

=0, Vvt > 0 (Neumann)

Consider the function of time

9
I(t) = %fOL w2 (x, t)dx suchthat I(0) = 0and I(t) > 0,Vt. As (w? > 0)

which represents the energy of the function w.

% = fOLW wedx = fOLW Wy, dx (Where w,=w,,)

Integrating fOL w W, dx by parts, yields:

L L L
aw
[W — —J (wy)?%dx = —J (w,)?dx < 0
dox o
0 0

then0 < I(t) <1(0) =0,vt > 0.

Since % <0.S0I(t) =0,vt > 0andw = 0, that implies u; = u,.

10
Chapter Two
Numerical Techniques

Finite difference and finite element methods are numerical techniques that
will be used to discretize the heat equation with respect to different types of

boundary conditions.
2.1 Parabolic Equation in One Space Dimension

A linear parabolic partial differential equation takes the general form,

o(x,)u; = % (a(x,)u,) + b(x, t)u, + c(x, t)u (2.1)

which is defined within some prescribed domain R of the (x,t) space as
shown in Figure (2.1) with this domain, the functions o(x,t) and a(x,t)

are strictly positive and c(x, t) is non-negative.

We focus our attention on the finite difference method to discretize
parabolic equation as a simplified form of equation (2.1), that is, the
diffusion (heat) equation with constant coefficients (o(x,t) =1

a(x,t) =a?and b(x,t) = c(x,t) =0)[22],i.e.

U= a’u,,0<x<Landt=0 (2.2)

11

-

Boundary condition
Boundary condition

initial condition X

Figure (2.1): Domain of Parabolic equation

2.2 Finite Difference Method Principle

The principle of finite difference method is one of numerical schemes that
used to solve partial differential equations. This can be done by replacing
the partial derivatives of dependent variables of the unknown function
u(x,t) with partial differential equations using finite difference
approximation with 0(h?) error. This error is called discretization error or

truncation error.

This procedure converts the domain R (where the independent variables are
defined) to vertical and horizontal lines called grid lines. Their intersections

are called grid points as shown in Figure (2.2).

The replacement of partial derivatives by difference approximation formula

depends on Taylor’s theorem.
Taylor’s theorem [21]

Let f(x) be an (n + 1) times differentiable function on an open interval

containing a and x. Then

12

f(x) = f(a) +f’(a)$+f”(a)% T +f(”)(a)%+
En(x) 2.3)
where E,(x) = (x(ni)l)' £ ()

for some number ¢ between a and x

2.3 Strategy of Discretization and Stability Considerations

At this point, finite difference method will be used to discretize the

diffusion equation
U= a? Uy, 0<x<Landt =0

The rectangular domain R in Figure (2.1) is converted into identical small

rectangles by:

x;=hi and ¢, =kj for 0<i<n,j=0

as shown in Figure (2.2).

13

L
gndp—om::\
e
e lenes
t, /
I-1.
Xg X3 Xo X;_ 94 x,=1L X

Figure (2.2): Discretize the domain of heat equation

and then replacing partial derivatives u,and u,, by the value of the

unknown function u(x, t) at each grid point i.e. u(x;, ¢;).

To replace partial derivatives of unknown function using Taylor’s series,

difference method is applied on t, and used on t;and ¢;..; to obtain

au<xi, t]) _ U(xl', t] + k) - U(xl', t]) k aZU(xi,[.lj)

2.
ot k 2 0t (25)
where u; € (t;, tjtq).
Also, by applying Taylor’s theorem in x, we get
?u(xyty) u(x; + b t;) — 2u(x;, ;) + u(x; — ht;)
ax2 h2
h2 0*u(é&;, t;
12 ox*

where &; € (X1, Xj41)-

14

Substituting (2.5) and (2.6) into (2.2) yields

U(Xi, t] + k) - u(xl-, t]) 2 u(xl- + h, t]) - ZU,(Xi, t]) + u(xl- - h, t])
—a
k h?

=0 2.7)

with truncation error

T.. = a?h? 0*u(é, tj) B Eazu(xi,,uj)
V12 dx* 2 Ot2

for simplicity, we use the notation u;; to approximate u(x;t;), then

equation (2.7) becomes

Uijrr —Uj o [ui+1,j — 2 i) 2.8)

k h?

Solving (2.8) for u; ;. 1, then the finite difference method is called forward-

difference method as shown in Figure (2.3). We get,
2a%k a’k
Upjrr =(1— Tz)Wt F(uiﬂ,j + Ui) (2.9)

foreachi =1,2,3,...,n—1and j =1,2,3,...
Then, we have

Ugo = f(X0), U0 = f(X1)see05 Uno = f(xn)

15

] .
[]

tJ"’fLI 0 °
& b l] ' *
* .

s °

1

Figure (2.3): Forward-difference method
Then we generate the next t-row by
Up1 = u(O, tl) =0
2a%k a’k
U, =|1- “hz | Ho + W (g0 + o)

2a%k a’k
uz’l = 1 - 7 uZ,O + ? (u3,0 + uljo) (2.10)

2a%k a’k
Up_11=(1— hZ Up—10 T Tz (un,o + un—Z,O)

Now, we can use the u; ; values to generate all u;, and so on [7,11].

The explicit nature of the difference method implies that the
(n—1) X (n — 1) matrix associated with this system (2.10) can be written

in tridiagonal form.

M_"3 PN = = = - D = = = - -
[1-24 A 0. I:II
- - S
A 1-24 A \
Y
|:| e s ~ . |
- ., A
| N |
- " ™ . - |
| LN ~ N . |
. \x |
A= | ‘\\ W O NN
- - . -, . !
| NN ~ . S !
1 ", A ™ - \\I
| ™ \ . 0
" - .
I . W N
1 . A
R
[0 - - — — - — — . 0 A 1-24
2
a‘k
where A = — .
hZ

So, the approximate solution is demonstrated by u() = Au/~1, for

j=123,..,witherror 0(k + h?).
Stability Considerations

Suppose that error e©® = (e, e, .. e© _)tis made in representing

the initial data

u® = (f (1), f (x2), oo, f (1))

(for any particular step, the choice of the initial step must be convenient).

An error of Ae(®propagates in u™, because
u® = A(u® + @) = 4u©® + 4@

This process continues. At the n™ time step, the error in u™ due to e(®
equals A"e@[7]. The forward difference method is consequently stable

when these errors do not grow as n increase. But is true if and only if for

initial error e, we have ||A"e©|| < ||e®®]|| for any n and any natural

17
norm (see Definition 3.3). Hence, we must have [|A™||< 1, this condition

requires that p(A™) = (p(A))" < 1.
The forward difference method is stable if p(A4) < 1.
The eigenvalues of matrix A can be expressed as follow:

i
o= 1 —4A<sin(%))2 iz 12...m-1

so, the condition for stability is reduced to determining whether
I
p(A) = max;<j<n-1 [1 — 4 A (sin (%))2] <1
and this is simplifying to
. i 2 1 .
0 Sl(sm(g)) < 3 fori=12,..,n—1

Stability requires that this inequality condition holds as n — oo, the fact

that

that means, stability will occur if 0 < A S% , by definition ; 5 = @’k 5o

h2

this inequality requires that h and k must be chosen so that,

2
k
28 <
hZ

N | =

If we use t; and t;_q, then the finite difference method is called backward

finite difference method, as shown in Figure (2.4).

18

Figure (2.4): Backward-difference method

When considering an implicit difference method that results from using the

backward —difference quotient for u,(x;, t;) then it takes the form:

du(x;, t;) _ u(xi, tj) —u(x;, tji—q) ~ EaZu(xi,,uj)

2.11
ot k 2 0t? (211)
where u; € (t;_1,t)).
Substituting equation (2.5) and (2.6) into (2.11), yields:
Upj— Ujjq Uivr,j — 2Ui 5 + Uimg]
B a? [Tz] =0 (2.12)
with truncation error
o a?h? 0*u(é;, ;) _ Eazu(xi,,uj)
vyoooo12 0 ott 2 0t2
Solving equation (2.12) for u; ;_,, we get:
2a%k a’k
Ujr =1+ w2)Y + F(qu,j + g f) (2.13)

fori=1,23,..,n—1andj =1,2,...

19
The same argument can be applied on boundaries using the knowledge that

o = f(x;), for i=1,23,..,n—1. This difference method has the

following matrix representation

1424 -4 O0c-———-————- 0
- - A |
-4 1424 A \
- e 1
0 . \\ e !
'R“\ - -\\ - . .
| " " . ._\ A - I
| . . . N -
- .
A= ' . M- " -, . I
| - - -, N 1
| e -, . . A I
| - e, " Y s |
- - '\\ -
! N L
I . ‘\\ ", .
! ™ . o T
| 0 e o mia oo —0 -4 1+24]
2
a‘k
where A = —-
h2

Therefore, the approximate solution is given by uU=D = AuU), for

j = 1,2, ..., with truncation error 0(k + h?)[7,11].
Stability considerations

The stability for backward-difference method can be illustrated by
analyzing the eigenvalues of the matrix A. For the backward-difference

method the eigenvalues are:

LT
ai=1+47\(sin(%))2 , i=12,..,n—1

sinceA >0, so we have a; > 1, for all i =1,2,..,n—1. Since the
eigenvalues of A~1 are the reciprocals of those of A and the spectral radius

p(A~1) < 1[7]. This implies that A~1 is a convergent matrix.

20
An error e in the initial data produces an error (A~1)"e(® at n" step of

backward-difference method. Since A~ is convergent, then

lim (A" H)"e@ =0

n—-oo

2
This means, the method is stable, regardless of the choice of A = ah—zl"' This

implies that the backward-difference method is unconditionally stable [7].

2.4 Parabolic Partial Differential Equation Subject to Boundary

Conditions

Finding the solution for special case of heat equation depending on different
types of boundary conditions, namely, Dirichlet, Neumann and Robin’s
boundary conditions. Consequently, the unknown function must satisfy these

conditions at the boundary.
2.4.1 Heat Equation with Dirichlet Boundary Conditions

The Dirichlet boundary conditions, obtained by the German mathematician
Dirichlet, is also known as the boundary condition of the first order. In this
type of boundary conditions, the value of dependent variable u is prescribed on

the boundary.

To derive the formula of finite difference approximation with Dirichlet

boundary condition for special case of heat equation

U, = au,, (2.14)

21
We consider three pointsi — 1, i and i + 1 which are located on x-axis

with an equal distance h between them as shown in Figure (2.5).

h) h)]

o O

i—1 [i+1
Figure (2.5): Three points i + 1, i and i — 1 which are located on x-axis

Consider the points(i — 1,j), (i,j) and (i + 1,j) are located on t-axis, then

the value of unknown function at these points are u;_q;, u;; and u;,q

respectively as shown in Figure (2.6)

aj+1
k
{}j
k
j—1

Figure (2.6): Three points j + 1, j and j — 1 which are located on t-axis

Now, Taylor’s theorem is used to expressu;_;j, u;4q; in the form of

Taylor expansion about the point i as follows:

d h? 92 h3 93 h*
= i’j+ha—u.+——u-+——u- 4—a—u|+O(h5) (2.15)

Uivr,j = U xll 2! 9x2 |l 3! 6x3|

=, —h a_uli h? 9%u k% 9%u . h* ot ul + O(h5) (2.16)

u._ .
-1 ox 2' alel 3! 6x3 |l 4'

Adding (2.15) and (2.16) yields

%) 4 0(hS)

2
ui+1,j + ui—l,] zul] +h |l 12 x4 |l

22

0%u Winq i — 2Ui i +Ui_q
=0 W L4 0(h?) (2.17)

ox2 't h2

Equation (2.17) is a finite difference approximation with error term 0(h?)

of second order for — |l

Subtracting (2.15) and (2.16) yields

ou Uipr,j — Uj—1,j 5
i = o + 0(h?) (2.18)

Similarly, consider three points j — 1, j and j + 1, which are located on t-
axis with an equal distance k between them using Taylor expansions to
get u; ;_, and u; ;.4 about the point j

ou k2 0%u k3 93u k a u

R AT Tl T TR AT

¥ +0(hS) (2.19)

k2 9%u kau kau
2! atzl' 31 at3|' m at4|

0
Ujer = Uitk o]+ O(r®) (2:20)

Subtracting equations (2.19) and (2.20) yields

ou | ui,j+1 — U -
at " 2k

L+ 0o(h) (2.21)

Substituting equations (2.17) and (2.21) into (2.14), we get

Uijrr = Uij-1 o Yivt) ~ 2u;; Ui)

T = - + 0(h?) (2.22)

Solving equation (2.22) for u; ;, we get

2
Upj = %[uH'lJ +u;- 1]] 1ka? [ul]+1 ui,j—1] (2.23)

for i=2,34,...,n—1andj = 2,34, ...

23

This is valid for any 5 points as shown in Figure (2.7).

i+ 1)
G-Lp 1 G41)
(2. 7)

(- 1)

Figure (2.7): Combining x-axis and t-axis around the (i, j) point

Assuming that Dirichlet conditions defined on the semi-rectangular domain

1<i<nandj>=1,asshown in Figure (2.8).

4
L »
» L]
=2 - ® &
j=1 I
& » L J 8
i=1 n=L

Figure (2.8): Dirichlet boundary conditions defined on the rectangular domain

24

Let u(x,t) = g(x,t) be given on all boundaries of the domain, so all
points in boundary grid (black points) and corner points (red points) are
known, and for corner points the following equations are [20, 30]:

1 h

Uy = §u2,1 - 4u2,1

1 h
Uni = ZUn-11 — FUn2 (2.24)

2.4.2 Heat Equation with Neumann Boundary Conditions

The Neumann boundary conditions, credited to the German mathematician
Neumann, is also known as the boundary condition of the second kind. For

this type of boundary conditions, the value of the gradient of the dependent

variable normal to the boundary Z—Z Is prescribed on the boundary.

The Neumann boundary condition at the left boundary, for example, may
be represented as:

d d
—lx=xo = 5 li=1 = 9(©) (2.25)

where g(t) is the prescribed value of the derivatives.

By applying the second approximation on the approximate equation (2.21)
using equation (2.18), the grid points (1,j) are located at imaginary
boundary outside the domain towards the left. Here, the grid points fake

coordinates become (0, j) as shown in Figure (2.9).

25

&
[i+
®0)H ¢ * J
» -1
this line : :
contain all
fake point
i=1 i=2 I=n

Figure (2.9): Neumann boundary condition defined on the left boundary

Equation (2.23) is approximated using equation (2.16), at the line i = 1.

du Upprj — Uj—1,j Uz j — Ug
—_— " = i LA ’ LA 1' .
ox 10D 2k 2k 9(L.j)
thus,
Ugj = Uz + 2kg(1,)) (2.26)

Using equation (2.23) at the point (1,)

2
[uz,j + uo,j] Tk [u1,j+1 - ul,j—l] (2.27)

N |-

ul’j =
and putting equation (2.26) into (2.27) yields

. h?
uy; = [z +hg(LN] = o [ugjen — o] (2.28)

For any two positive integers m and n, we use equation (2.24) for

2<i<n-—1andj> 2, where the function g(1,j) is specified [32]. As

26
Dirichlet condition is specified on the boundary, the value of
{ui+i'j|2 <i<n-— 1},{ui,]-|2 S]}, and {ui,1|2 <i<n-— 1} are known.

Equation (2.24) is used to find the corner grid points.
2.4.3 Heat Equation with Robin’s Boundary Condition

This type of boundary condition, is a linear combination of the value of the
dependent variable and its normal gradient specified at the boundary. This
type of boundary condition is credited to the French mathematician
Gustave Robin. It is also known as the boundary condition of the third
kind, and sometimes referred to as the Robins boundary condition [7]. For

one dimensional problem, the Robin boundary condition can be shown as:
tu(xy, tj) + ﬂ “lx=x, =¥ (2.29)

wheret, B and y are prescribed constants. To apply the boundary

condition, it is first rewritten as follows:

0

ul Z
i=1 ﬁ

u(x, t;) (2.30)

™|~

substituting equation (2.30) into equation (2.18) yields

Ut41,j — Ur-1,j
ti) = 2.31
Rearrangement equation (2.31) we get
Y T
Ugj = Up; — 2h (E — Eu(xl, tj)> (2.32)

put equation (2.32) into equation (2.8) yields

27

ul’j = %!2”2] Zh <_ - _u(xl, t))] :—lk [ul’j+1 - ul’j_l]
ul,j = !uz'j - h (ﬁ B u(xl, t;))] 4k [ul'j_i_l - ul'j_l] (232)

and then the same argument for Neumann boundary conditions.
2.5 Finite Element Method

The finite element method is a numerical tool that can be used to determine

approximate solution to a large set of partial differential equations.

The finite element method considers the solution region (irregular shape)
comprises of many small, interconnected, sub-regions or elements and
gives an approximate solution for the governing equations, i.e. the complex
partial differential equations are reduced to either linear or nonlinear
simultaneous equations. Thus, the finite element discretization procedure
reduces the continuum problem, which has finite number of unknown, to
one with a finite number of unknowns at specified element points referred
to as nodes [3, 4]. Since the finite element method allows us to form the
elements, or sub-regions, in arbitrary sense, a close representation of the

boundaries of complicated domain is possible.
2.5.1 The Principle of Finite Element Method

The idea behind the finite element method is to divide the solution region

into non-over lapping elements or sub-regions.

28
The finite element allows a variety of element shapes, for example,

triangle, rectangle. Each element is formed by connecting a certain number

of nodes as shown in Figure (2.10).

1O desd'l -

Figure (2.10): Typical finite elements, nodes, edges
2.5.2 Finite Element Method for Dirichlet Boundary Conditions

The finite element method used to discretize the heat equation subject to

Dirichlet boundary conditions as follows:
U = Uy, 0Sx<L,0SELST
u(0,t) = hy(t), u(L,t) = hy(t)

u(x,0) = g(x)

As illustrated in section (2.3), the solution region is divided into a finite
number of elements and triangle elements and the collection of all elements

are used to resemble the original region as closely possible as shown in

Figure (2.11).

29

31 33 . |35 |37 |39,
OO 0O N @
23 S 22 g 21 gumy 20
22| .24 .26 28 | .30
21 >, |23 | 25 |27 . | 297,

Figure (2.11): Rectangular domain with Dirichlet boundary conditions

For example, the region showed in Figure (2.11), divided into 40 equal
triangles. In this discretization, there are thirty global nodes, the blue nodes
are known since they are located on the boundaries and interior (green)

nodes are unknown.

Assuming that h is the number of equal partitions of 0 < x < L located on

the x — axis. In our case h = 5 (from node 1 to node 2, and from node 2

to node 3 and so on), and the length of each partition is % = g :

Also, let k be the number of equal partitions of 0 < t < T located on t-axis.

In our case k = 4, (from node 1 to node 12, and node 12 to node 13 and so

on), and the length of each partition is % = % :

30
The coordinate for each node can be determined with respect to partition as

shown in Figure (2.12) as follows:

rER ©

Lo, T
(zx4,7>3)

Figure (2.12): Coordinate for each node in finite element method

node 1: (0, 0), node 2: (§ %X 1,0), node 3: (é %X 2,0),...,node 30: (L, T).

Now, when deriving governing equation, for a typical element we
determine the coefficient matrix. For each element (triangle) i, we have
nodes 1, 2 and 3 that must be assigned, so that global nodes associated with
an element are traversed in a counter clockwise. If we take element 1 and

locate each element coordinate as follows:

the local node 1 is coordinate (x;,t;) = (0,0)

31
the local node 2 is coordinate (x,,t,) = (é, 0)

the local node 3 is coordinate (x3,t3) = (0,2)

as shown in Figure (2.13).

Local node =

m;mt:e}ri v, the local node numbers are
K312

determined on nodss start
from node 1.then node 2 and
/ finally with node 12

S—— (1in a counterclockwise).
Local node Local node
number 1 number 2
{xyts) (Mxtz)

Figure (2.13): The local node numbers are determined on nodes start form node 1, then node 2

and finally with node 12 (in a counterclockwise)

Similarly, the local node is determined for each element in the same way to

find coefficient matrix [9, 18].
For each element e the following quantities are computed:
Qi =x3—x3,P, =t; — t3
Q=x1—x3,P, =t3— 13 (2.34)

Q3 =x,—x;,P3=t — ¢,

32
where the subscripts refer to the local node number 1, 2 and 3 of element i.
For example, in Figure (2.11), element (25) has global node 15, 16 and 22

respectively.

For each element P; and Q; for i = 1,2,3 are computed to obtain 3 x 3

element coefficient matrix by

1 ..
Cf = ;PP +QuQj], i,j = 1,23 (2.35)

where

A=

N =

[P2Q3 - PSQZ]

The global coefficient matrix is assembled from the element’s coefficient
matrices. Since there are 30 nodes, the global coefficient matrix will be a

30 x 30 matrix.

The computation of one diagonal and off-diagonal entries illustrated in the
following example, node 13, which corresponds to the C;3 43 entry in the
global coefficient matrix C, belongs to element 11, 12 and 21, since node
13 is assigned local node number 3 in element 11 and 12, and local node
number 1 in element 21, as shown in Figure (2.11), the corresponding

global coefficient is
11 12 21
Ciz1s = Ci5 +Cyn) + G5

For off-diagonal entry C,, ;5, global link 10-15 corresponds to local link 1-

2 of element 14 and local link 1-3 of element 15, hence

33
14 15
Ci015 = C1(,2) + C1(,3)

Define u, to be the vector of unknown nodes (interior nodes) and u; to be

the vector of prescribed boundary values as shown in Figure (2.11).

Define matrix C,, to be a matrix of unknown nodes obtained from the
global coefficient matrix C and matrix C,, to be a matrix of unknown nodes
with prescribed boundary values that are obtained from the global

coefficient matrix.

In our case, C,, isa 12 x 12 matrix since we have 12 interior nodes (green
nodes) and C, is 12 x 18 matrix since we have 12 interior nodes and 18

boundary nodes (blue nodes). Also, u, is a vector of size 18 x 1.
The vector u,. of unknown nodes can be computed by using:
U = —Cpr Crsls (2.36)

The vector u, contains the approximation to the unknown nodes (interior

nodes) [18, 13].
2.5.3 Finite Element Method for Neumann Boundary Conditions

Consider the one-dimensional heat equation with Neumann boundary

condition, that is
U — Uy =0, 0Zx<1L , t20

u(x,0) = h(x) 0 <x<l

34

u,(0,t) = g(t) t=>0

Weak formulation starts by multiplying the partial differential equation by
test function v(x) € H1(€) on both sides, then integrate the resulting

equation over the domain [37]. We obtain the weak formulation:
l l
ffutv(x)dxdtz j Juxxv(x)dxdt (2.37)
I, 0 In 0O

Integrating the right-hand side of equation (2.37) by part, we get

I-[Efutv(x)dxdt = Jln [, v ()] —IZ Ofuxxv(x)dxdt (3.38)

Inserting the boundary condition in equation (3.38) yield

l
jjutv(x)dxdt
Iy 0

|

n

l
u, (Dv() — g®)v(0) — J Juxxv(x)dxdt (3.39)
Iy 0

we can express equation (2.37) as:

(ug, v(x)) = —a(u, v(x)) v (x)eH () (2.40)
where a(u, v(x)) = fzn fol Uy, V(X)) dxdt

Given a triangulation T, and finite space v, € H1(Q) n C°(Q), with

¢;(x),i =1,2,3,..., denote a set of basis function for v, to seek the finite

element solution of form:

35
M

w0 =) 4O (241)

j=1

Substituting (2.40) into (2.39) to get

(Z u{(t)d)i(x)'vh) = —a (Z ui(t)¢i(x)ivh> (242)

Jj=1 j=1

and let v, (x) = ¢;(x) for i =1,2,3,... , to obtain the following linear

system of ODEs:

(¢1, 1) (@1, om) up ()]
e

(Dm, b)) = " (P, Dm) u,'\,,.(t)_
a1, ¢1) oo a (b1, du) [()
b, b) @l dan)| L (©)

The corresponding problem can be expressed as:
B du A =0 2.43
— + Au(t) = (243)

with initial condition u(x,0) = h(x), Vi=12,3,..

Using the forward finite difference approximation, we get

u —Uu
U, = ’<+1A—t’< (2.44)
Inserting (2.44) into (2.43) yields
u —Uu
B X4 Au, =0 (2.45)

At

36

Solving equation (2.45) with respect to uy, ;, we have
Ups1 = B™Y(B — AtA)uy, (2.46)
2.5.4 Finite Element Method with Robin’s Boundary Conditions

Consider the one-dimensional heat equation with Robin’s boundary

conditions:
Ut — Uy = 0
{au(l, 0) + Bu.(0,6) = g(t) (2.46)

where « and [are constants.

We do same argument in previous section, by multiplying both sides of

equation (2.46) by test function v(x), then integrating by parts and
__g@®)—au(lt)

substitute the condition u,.(0,t) = E— in equation (2.39) yields:
l
j j uv(x)dxdt
In 0
g(t) —au(l,t)
- [ww - v(0)
In p
l
— f fuxxv(x)dxdt (2.47)
Iy, 0

The same procure in pervious section (2.5.3) to get the formula of finite

element for heat equation with Robin’s boundary condition.

37

Chapter Three

Iterative Methods for Solving Linear Systems

In previous chapter, finite difference and finite element methods are used to
discretize the partial differential equations. This discretization yields a
system of linear equations which can be solved by different iterative
schemes [10]. In this chapter we will use the Jacobi, the Gauss-Seidel, the
Successive over Relaxation and the Conjugate Gradient methods to solve

this linear system and discuss their convergence properties.

For solving the n X n linear system
Ax=Db (3.1)

We start with an initial approximation x(© to the solution x, and then

generate a sequence {x(®)}5°_, that converges to solution x.

Most iterative methods involve a process of converting the system Ax = b

into an equivalent system:
x=Tx+c (3.2)
where T is an n X n matrix and ¢ is a column matrix.

After selecting an initial approximation x(®) | we generate a sequence of

vectors {x(")};;o defined as [11]:

xK) = Tx*k-D 4 ¢, k>1 (3.3)

38
Four iterative methods: Jacobi method, Gauss-Seidle method, successive

over relaxation (SOR) method and Gradient method, are to be considered.
3.1 Jacobi Method

The Jacobi method is the simplest iterative method for solving a (square)
linear system. This method depends on two assumptions: the linear system
Ax = b has a unique solution and the coefficient matrix A has no zeros on
its main diagonal. If any of the diagonal entries are zero, then rows and
columns must be interchanged to get a coefficient matrix that has nonzero

entries in the main diagonal [7].

To derive a general formula of Jacobi method, consider the following

n X n linear system
a11X1 + alzxz + o4 alnxn == bl

a21X1 + azzxz + -+ aann == b2

(3.4)
Ap1X1 + Xy + o+ appXx, = by,
We can rewrite (3.4) in a matrix form:
a11 alz aln x1 bl
Ap1 Az .. Aon | |X2| _ | b2 (3.5)
an1 ano Annl | Xn bn

where

a1 A A1n

A1 04z Aon
A= : [X=

anl anz ann

39

Xq b,
"2 and b = bf
Xn b,

The equation (3.4) can be expressed in the form x = Tx + ¢ as follows:

k —A12 (k-1 13 (k-1 a; k—1 by
a1 a1 a1 a1
k —Az1 (k-1 A3 (k-1 a, k—1 b,
xé)z—xf)——x,b(,)—---——”x,g)+—
az; Qaz; az; az;
(3.6)
k —An1 (k-1 An2 (k-1 Apn-1 (k-1 b
e e B P
ann ann ann ann
The system (3.6) can be illustrated into matrix form
[0 Z%am N
X1 a1 a1 |[X1 11
—(121 _aZn b2
Xy —21 0 —2n 1l x, =2
s | T P22 d22 o (3.7)
Xn _a-nl —0an2 0 Xn b_n
- Ann Ann - Ly
where
[0 2 Z%n b1 7
aiq aiq aia
—dyq 0 —dyn b_z
T=| az az2 |,C = |az;
“%n1 “9n2 0 ﬁ
- Qnn QAnn - Layn

Given initial approximation x(,

{xU9}%_, by computing:

we generate the sequence of vectors

40

1

n
x®) = — [Z _aijxj(k_l) + b;|,j #i,a; #0,
Qi j=1

for i=12,..,nand k € N* (3.8)

Also, we can derive formula (3.7) by splitting a matrix A into its diagonal

and off-diagonal parts.

Let D be the diagonal matrix where entries are those of matrix A, let - L be
strictly lower triangular matrix and - U be the strictly upper triangular part

of matrix A [12, 33].

With this notation, matrix A is spilt into:

A=D—-L-U (3.9)
where
a;, 0 .. 0 0 0 .. 0
D — (:) azz (:) ’L — _(:121 O .. (:)
O 0 ann _anl _anz 0
and
O —a12 —aln
0 0 0

Substituting (3.9) into (3.1) yields
D—-L-U)x=>b (3.10)

Equation (3.10) can be written as:

41

Dx = (L + U)x+ b
If D~ exists, then:
x =DYL + U)x+ Db
This result is the matrix form of the Jacobi scheme:

x® = p=1(L + U)x*V + D71p

using T; = D™'(L + U) and ¢; = D~'b, we obtain the Jacobi technique
of the form:

x®) = Tx*D + ¢, k=1
S0,

1 n

xi(k) = _[Z —Clinj(k_l) + bi ,j * i, a;; * O,l = 1,2, L n.
287, j=1

To find x®approximation we must know x*~Dapproximation for any

k =1 where k € N. Continuing this procedure, we obtain a sequence of

approximations [29,10].
3.2 Gauss-Seidel Method

This iterative method is used for solving a square linear systemAx = b
which is similar to the Jacobi method. For the Jacobi method, the values of
x;obtained in the k" iteration remain unchanged until the entire
(k + 1)t iteration has been calculated. With the Gauss-Seidel method, we

use the new values x; %+ reached. For example, once we have computed

https://en.wikipedia.org/wiki/Jacobi_method

42
x, %+ Dfrom the first equation, its value is then used in the second equation
to obtain the new x,**VYand so on, this is the difference between the

Jacobi and Gauss-Seidel methods [7].

To derive the general form of Gauss-Seidel method, consider the following

n X n linear system:

k) _ ~A2 (k-1) A3 (k-1) Ain (k-1) , D1
X, =——X, ——X3 — =Xy +—
a1 a1 aiq aiq
k) _ Q21 (k) @23 (k-1) Aon (k-1) b,
X, =——Xx; ——X — =X, + —
az2 azz az2 az2
(3.11)
k) _ "1 k) A2 (k) Ann-1 (k) by
Xp =——X] ——— Xy ———— X, t—
ann ann ann ann

Given initial approximation x(®), we generate the sequence of vectors

{x(9}%_. by computing:
xW = TxkD ¢ ¢, k>1

In general, the Gauss-Seidel iterative method given by the sequence

1 i—1 n
x) = — [— z aijx]'(k) - Z aijxj(k_l) + b;|,a; # 0,
a; j=1 j=i+1

for i=12,..,nand k € N* (3.12)
Rearranging equation (3.10) yields

(D—L)x = Ux+ b

43

if (D — L) texists, then:
x={D-L)tUx+ (D—-L)"'b
this result is the matrix form of the Gauss-Seidel scheme:
x®) = (D -L)"'ux* D+ (D-L)'h

using T, = (D —L)'U and ¢; = (D —L)~'b , we obtain the Gauss-

Seidel technique of the form [10,29]:

x0 = Tx®D 4o k>1,
3.3 Successive Over Relaxation (SOR) Method

To use successive over relaxation method, the coefficient matrix must be
symmetric and positive definite. For any real positive number w € (0,2) is
called the relaxation parameter. If w € (0,1), then the method is called
successive under relaxation. This method can be used to achieve
convergence of systems that are not convergent by Gauss-Seidel method.
On the other hand, if w € (1,2), then the method is called successive over
relaxation method. Here, accelerated convergence of a linear systems that
are already convergent by Gauss-Seidel method. If w = 1, we get Gauss-

Seidel method [28 ,29].

Gauss-Seidel method in (3.11), will be used to derive the general formula

of successive over relaxation method.

1 i-1 n
—z aijxj(k) - Z . aijxj(k_l) + bi y Aji * 0,
j=1 j=i+1

a;

44

for i=12,..,nand k € N*
Define the difference

Ax; = xi(k) — D (3.13)

l

Rearranging equation (3.13), we get

x) = xi(k_l) + Ax; (3.14)

l
Multiplying Ax; in (3.14) by relaxation parameter w yileds

xi(k) _ xi(k—l)

+ wAx; (3.15)

Rearranging equation (3.15) to get

(k—1)

+ w(xi(k) — xi(k_l))
xl.(k) =(1- w)xi(k_l) + a)xl.(k) (3.16)
Now, put (3.12) into (3.16) yields:

_ w i—-1 n
xl(k) = (1 — a))xl(k 2 + — [—z aijxj(k) — z aijxj(k_l) + bi
Qi j=1 j=i+1

fora; #0,i=1,2,..,nand k € N* (3.17)
this formula is called (SOR)
Also, to write (3.17) in the matrix form

Since a;; # 0 multiply each side of (3.17) by a;;

45

Kk -
a;x” = ay(1— w)xY

i—-1 n
+ w [—z ainj(k) — Z ainj(k_l) + bL]

k) (k1) e " K
a;x; = a; (1 — w)x;) z . a;jx® — w z a;jx; D
]:

j=it+1

+ (,l)bi
i-1
aiixi(k) + (J)Z Clijx]'(k)
j=1
n
= a;(1 - 0)x* Y —w Z a;jx; % + wb;
j=i+1
(D + wl)x® = ((1 - w)D + wU)x &V + wh; (3.18)
if (D + wL)~1 exist, multiply both sides of (3.18) by (D + wL)~! we get:
x® =D+ wl)((1—-w)D + wlU)x*V + (D + wL) b; (3.18)

in (318) let T,=(D+wl) ((1-w)D+wU) and c, =w(+

wL)™1b; we get:
x® =T, x*kD 4, (3.20)
3.4 Conjugate Gradient Method

The conjugate gradient method is an iterative method that is used to
approximate the exact solution of the linear system Ax = b, where the

coefficient matrix A must be symmetric and positive definite.

We denote the initial guess x,, and we may assume without loss of
generality that x = x,,, otherwise be given. Starting with x, we search for

the solution and each iteration we need a metric to tell us whether we are

46
closer to the exact solution is absolute. The unique solution minimizes the

quadratic function

fx) = %XTAX —b"x x€ER"

And for simplicity, we will take the conjugate gradient method as

algorithm [5,29].

Step 1: Start with initial guess x, that may be considered 0 if otherwise is

not given.
Step 2: Calculate the residual vector r, as follows:
ro = b - AXO

Step 3: Let the initial direction vector po, = 1y , that is, the negative of the

gradient of the quadratic function:

f(x) = %XTAX —bTx at x=xq.
we see that p, will change in each iteration.
Step 4: Compute the scalars a;'s using the formula:

ri Ty

a, = ,Vk=01,2,..,n—1.

PiA P
Step 5: Compute the first iteration x4 using the formula:
X1 = Xo T aoPo

Step 6: Compute the residual vectors r;, 's using the formula:

47

Yiy1 =T — akApk,Vk = 0,1,2, v, — 1.

Step 7: Compute the scalars Sy, 's using the formula:

T
_ Try1 Ti+1

Br = Vk=012,..,n—1.

rf T
Step 8: Compute the direction vectors p, 's using the formula:
Pr+1 =Trs1 + Bx Pr, Yk =0,1,2,...,n — 1.
Step 9: Compute the iterations x; using the formula:
X1 =X+ Pr,Vk=12,...,n—1.
3.5 Convergence of Iterative Methods

In this section, the general aim is to study the convergence for each
previous iterative method, and then make a comparison between them.
After that, we will conclude the fastest method that reached to the solution.
In any computational problem, we’ll get high accuracy if the error becomes
very small. In our iterative methods problem, the actual error e is the
difference between the exact solution x and the approximate solution x(® .
But we cannot compute its value because we do not know the exact

solution.

Instead, we will deal with the estimated error, which equals the difference
between the approximate solution x®) and the next approximate

solution x*+1) [7].

48
Therefore, we can compute more iterations with less errors, and hence, we

get high level of accuracy.
Suppose x is the exact solution of the following linear system:
AXx = b
This can be written in an equivalent form as:
x® = 7xk"D 4 ¢ k>1
where T is an n X n matrix and c is a column vector.

The idea of the iterative methods is to generate a sequence of vectors

{x0} " that converges to the exact solution x of the linear system

Ax = b. (Note: Each vector in the sequence is an approximation to the

exact solution) [5].

Before going through convergence of the iterative methods, we need some

definitions:
Definition 3.1 [7]

An n Xn matrix A is positive definite if A is symmetric matrix and

CTAC > 0 for any non-zero n-dimensional column vector C.
Definition 3.2 [7]

LetA,,1,, ..., 4, be eigenvalues of the matrix A,,. Then the spectral

radius p(A) defined as: p(A) = max;<j<p{Ai, A2, ., An}-

49

Definition 3.3 [7]

The I, and I, norms for the vector x = {x{, x,, ..., x,}* are defined by

1
x|l = (Z?ﬂxiz)z and [[x||e = max;<;<nix;}.
3.5.1 Convergence of Jacobi and Gauss-Seidel Iterative Methods

The following theorems hold for Jacobi and Gauss-Seidel iterative

methods:

Theorem 3.1 [29]

For any initial approximation, a sequence of vectors {x(")}:;O converges to

the exact solution x if and only if the spectral radius of the square matrix

T, p(T) < 1. (T is the matrix as in (3.2) form).
Theorem 3.2 [29]

If the coefficient matrix A for the linear system (3.1) is strictly diagonally

dominant, then the sequence of vectors {X(k)}:;o generated by the Jacobi

and Gauss-Seidel lterative technigues converges to the unique solution of

that system.

Theorem 3.3 [7]

If|IT||]<1(@any norm of T) then the sequence of vectors
{x(")}zo:oconverges to a vector x € R™ for any initial approximation vector
x® e R™,

3.5.2 Convergence of SOR iterative Method

Theorem 3.4 “Ostrowski-Reich” [7]

50
If the coefficient matrix A of the linear system (3.20) is a positive definite
matrix and the relaxation parameter (factor) w € (0,2), then the SOR

method converges for any choice of initial approximation vector x(®,
3.5.3 Convergence of Conjugate Gradient Method

Theorem 3.5 [24]

The sequence of vectors {x(")}:zo generated by the Conjugate Gradient

method converges to the solution x of the square linear system Ax = b of

n variables in at most n steps for any choice of initial approximation vector

x(0),

Proof:[24]
Suppose x is the exact solution and x(®is the initial solution.

The set of directional vectors are orthogonal so they are linearly
independent. Therefore, they span the space R™ . Hence, we can write:
x—x© = qypo + a;p1 + APz + * + Ap_1Pn_1, Where a; 's € R.

T

Multiplying both sides of the last expression by p;

pjA(x —x©) = plA(aypo + a1p1 + aP2 + - + ay_1Pn-1)

Simplify the above expression, we get

A, we obtain

pj Ax — pj Ax®
= aop[Apo + a1p] Ap1 + a,p; Apz + -+ an_1P] APn-1

buthb = Ax, ry = b — AXx(, and p]TApl- = 0,Vi # j. So, it becomes:

PjTo = ;D] AP
Thus,

51
T
_PjTo

a. =
p;j Ap;

J

Now, we want to show that a; = a; where

"iT Tj
a=—,vj=012,..,n—1.

' pjA p;
Xj =Xo t Qgpo + 1Py + Q2P + -+ Q;_1Pj1
Multiply both sides of the last equation byp]TA

pj AXj = PjA(Xo + aoPo + a1P1 + azP2 + -+ 4j_1Pj1)

= p] AXg + Pj A(aoPo + a1P1 + azP2 + -+ + @i_1Pj_1)

= pjAxo + 0

The above can be written as:

PjAX; — pjAxg = 0
or
p]TA(X] —_ Xo) = O
Therefore,

piro = pjA(x —x®) = pJA(x — x; + x; — x©)

pjTo = pjA(x —x;) + pjA(x; — x©)
= pj (Ax — Ax;) + 0
= pj (b — Ax;) = pj1;
Now, put pjro = pjr; in equation (3.21), then we get:

pjT
Pj Apj

(3.21)

52
Chapter Four
Numerical Results

In this chapter, the finite difference and finite element methods are used to
solve homogeneous and inhomogeneous one-dimensional heat equation
subject to different types of boundary conditions: Dirichlet, Neumann and
Robin’s. Moreover, a comparison is carried out between the

aforementioned iterative methods.

Example 4.1: Consider the one-dimensional heat equation

ur = 1.25u,,, 0<x<10,t=0

Subject to the initial condition u(x,0) =0 and boundary conditions

u(0,t) = 100, u(10,t) = 50.

We seek to approximate the solution u by using the finite difference

method.

First, we start with a partition for the domain by divide x-axis into equal
b—a 10-0

steps h = — == 2.5, also we divide t-axis into equal steps
k = 2 as shown in Figure (4.1).
Now, we define the mesh points (x;, ¢;) as follow:

x;=a+ih ,i=01234

t=c+jk ,j=0123

53

For i=0, Xo=0+0x25=0
i=1, x;=04+1%x25=25
i=2, X, =04+2%x25=5
i=3, x3=0+3%x25=75
i=4, x,=0+4x25=10

Andfor j =0, to=0+0x2=0

j=1, t;=04+1x2=2
j=2, t,=0+2%x2=4
j=3, ts=0+3x2=6

These partitions are illustrated in Figure 4.1

E L | t—a & T3
I Il
- -

. . . =
3 2" @ @] —_
S
~ =
* :
i) 2.5 5 7.5 10

u(x,0) =10

Figure (4.1): Discretization of the domain for example 4.1

54
The black points are known boundary points and the red points (interior)

points are unknown which are to be approximate.
using the formula:
ui,j_l = (1 + 2 ﬂ)ui,j + A (ui+1,j + ui_l'j)

to approximate the interior points.

For:

(=1j=1,u0=01A+2 D)u1 + 4 (u2,1 + uo,1) (D)
(i=2j=1)u0=042 Auy; + A(uz; +uy,) (2)
(=3j=1D,u30=(1+2 Duz; + 2 (u4,1 + u2,1) (3)
(=1j=2),uy1=(1+2 A)u, + A (uz,z + uo,z) (4)
(i=2j=2)up =142 Augy + A(uzz +uy,) (5)
(=3=2),u3;=(1+2 Duz, + 2 (u4'2 + uz'z) (6)
(=1j=3)u,=0+2 Dugzs+ A (uzs+ups) (7)
(i=2j=3)up, =142 Auyz+ A(uzz+uys) (8)
(i=3j=3)us; =042 Augz+ A(uys+uzs3) 9)

by put the initial and boundary conditions in equations 1to 9 and use the
nOtatlon (ul’l = U4, uz’l = Uy, u3,1 == u3,u1’2 = Uy, uZ’z = Usg, U3’2 =

u6 ,u1’3 = u7, u2,3 == u8, U,3’3 == U,g) yieIdS

55

1.8u; — 0.4u,40 (D
1.8u, — 0.4u; — 0.4u; =0 (2)
1.8u; — 0.4u, = 20 3)
1.8u, — 0.4ug —uy, = 40 (4)
1.8us — 0.4ug — 0.4uy, —u, =0 (5)
1.8ug — 0.4ug —uz; = 20 (6)
1.8u, — 0.4ug —u, = 40 (7)
1.8ug — 0.4uqg — 0.4u; —us =0 (8)
1.8uq — 0.4ug —ug = 20 (9

The above equations can be expressed in matrix form as:

r18-04 0 0 0 0 O O O qJr¥%7 1407

-0418-04 0 0 0 O O O [[U 0

0 0418 0 O O O O O |lUs 20

-1 0 0 18-04 0 0 0 O ||Us 40
-1 0 -0418-04 0 0 O ||Us|=|0 4.1)

-1 0 -0418 0 0 0 [[Us 20

0 -1 0 0 18-04 0 ([|Ur 40
0 0 -1 0 —0.418 —-0.4{|Us 0
0 0 0 -1 0 —0.41.8{Lusd 120

S O O OO
o O O O

Using u = A~1b we obtain the exact solution:
u = (24.049,8.2192,12.937,39.661,18.352,22.377,50.485,28.031,29.772)

We can also solve the linear system (4.1) by the following iterative

techniques:

Jacobi Method

The Jacobi method given by the sequence

56

1 n
x®) = — [Z _aijxj(k_l) +bi|,j #i,a; #0
Qi j=1

for i=12,..,nand k € N*

where n is the number of the unknown variables

40
(k—1)
uz + ﬁ

0.4
) _
17718

o _ 04 - N 04 -1

Y20 T g™ 1.8 3

ugk) _ %ugk—n + %

g = (1)—:;}112"_1) + r18u§k—1) 4 f_g

ugk) _ %ug«—l) n %uék—l) N %ué"‘”)
ugk) _ %ugk—n n rlgugk_l) 4 12_(:3

uy? = %ug"‘” + %ugk-w N %

0.4 0.4 1
(k) _ (k-1) (k-1) (k-1)
=18% tigWw Tighs

0.4 1 20
o _ 04 -, 1 k-1
184 Tig¥% " T1g

Consider the initial solution is u(® = (0,0,0,0,0,0,0,0,0)”, so we use the
initial solution in system (4.2) to find the first iteration u(%

0.4 40
) ©)
== = —9222
Ui =71g% T1g

0.4 0.4
ugl) = —uio) + _ugo) =

57
@ _ 04 o 20

—=11.11
1.8

0.4 1 40
W= 4 — 04— = 2222

“a 718 1.8 1.8
0.4 0.4 1
1 _ (0) (0) 0) _
u5 —ﬁ% +r8u5 +r8u2 =0
0.4 1 20
uél) = Eugo) + Eugo) + ﬁ =11.11
0.4 1 40
1 _ (0) (0) _
u7 —Eug +r8u3 +1_8_2222
0.4 0.4 1
1 _ (0) (0) 0) _
u8 —Eug +Eu7 +Eu5 =0
0.4 1 20
ugl) = r8ué0) + r8ugo) + 1_8 =11.11

The first iteration gives
u® =(22.22,0,11.11,22.22,0,11.11,22.22,0,11.11)7
Likewise, after 24 iterations we obtain the approximate solution:

u = (24.049,8.219,12.938,39.661,18.352,22.377,50.485,28.030,29.772)

Number of iterations The error
24 5.11493 x 107008

The Matlab code for the Jacobi iterative method can be formed in
Appendix A.

Gauss-Seidel Method

It is given by the sequence (3.11)

1 i—-1 n
x 0 = — !—z a;jx;%) — z a;jx; %V + b[,a; #0,
Qi j=1 j=i+1

58

for i=12,..,nand k € N*

where n is the number of the unknown variable.

0.4 40
200 _ 94 e
' =1g% T1g

0.4 0.4
ugk) (k) 4+ kD

18" 1843
0.4 20
k k
ug” = ﬁug : UET) (4:3)

0.4 1 40
k) _ (k D (k)
18 8 18 1. 8 * 1.8

0.4 0.4 1

w _ 04 - ®) *)
=1g4% tig% tTigh
0.4 1 20

w _ 04)

=18% Ti1g% t1g

00 _ 0% e 1o B0

188 18 18
0.4 0.4 1
0 _ 04 e 2 *)
“s T1g"™ T1g" T1g's
0.4 1 20
w _ 04)
Ug” =7gUs Tigh T1g

Choose the initial solution as u(® = (0,0,0,0,0,0,0,0,0)7, then we find the

first iteration u® as:

0.4 40
L)
2 = 2222
Ui =1g% T1g
0.4 0.4 4
@ _ &) ©) _
U, 18u1 +18u3 —18><2222 4.94
0.4 20 04 20
))
= T w494+ 22 = 12208
Us Y2187 18 t18

59

0.4 1 40 22.22 40
1) _ (0) (1)
= == 4-_
=18 T1g"n T1g~ 18 t1s_ o*%

0.4 0.4 1 494 0.4 X 34566
w _0% o e W
- — 10.426
=184 tig¥ tige "1t 13

0.4 1 20 12208 0.4 x10.426 20
™ &) @
=—ug’ + = + +
s 718" T18” 18 1.8 1.8

= 21.210

w _04 NONES 1 e 40 34566 40

— 41.425
U7 =1g% T1g® T1g= 18 T1s
0.4 0.4 1 10.426 0.4 X 41.425
@ _ 04 (o o) W
— @ = — 14.997
Ug' =1g% T1gh Tigls 18 ' 18
0.4 1 20 2021 04x14.997 20
6 e &
_ o4 _ = 25.671
Ug" =7gUs T1g% T18~ 18 T 18 18

The first iteration gives

u® = (22.22,4.94,12.208,34.566,10.426,20.12,41.425,14.997,25.671)T

Likewise, after 24 iterations we obtain the approximate solution:

u = (24.049,8.219,12.938,39.661,18.352,22.377,50.485,28.030,29.772)"

Number of iterations The error
24 5.114938 x 107008

The Matlab code for the Gauss-Seidel iterative method can be formed in

Appendix B.
Successive Over Relaxation (SOR) Method

The SOR method is given by the sequence (3.16)

_ w i-1 n
xl(k) = (1 — a))xi(k 2 + — !_z aijxj(k) — z aijxj(k_l) + bi
A j=1 j=i+1

60

fora; #0,i=1,2,..,nand k € N*
Here we will choose the relaxation factor w = 1.3.

The Gauss-Seidel equations are:

y00 = 0% ey | 40

177138 18
0.4 0.4

w _ %4 w LD

U =1gh Tighs
0.4 20

w _ 04 @y 20

us” =78% T1g

0.4 1 40
w _ 04 -1 L0, 40
=18% tig“ T1g

0.4 0.4 1
() _ (k 1) (k) (k)
=1g% Tigls Tigh

0.4 1 20
(k) _ 2% () MO Nk
“18"s T18™ T1s

0.4 1 40
G _ 2% ey 2 00 2D

Y7 =18 18 18
0.4 0.4 1

w _ 04 o ®) W)

u8 Eug +18u7 +18u5
0.4 1 20

w _ 04)

Up" =7g%s T1g% T1g

Now, the SOR equations with w = 1.3 are:

0.4 40
(k) (k-1) (k 1)
=(1-1.3 1.3|—
ul ()ul + 1 8 +-— 1 8
_ 0.4 0.4
ugk) =(1- 1.3)ugk D413 T 8u§k) +— 13 ugk 1)]
0.4 20
(k) _ (k—-1) (k)
u3 = (1 — 1.3)u3 + 1.3 _ﬁuz + E]

61

uz(;k) =(1- 1.3)ugk_1) +1.3 (1)2 (k=1) 118) 4 f(é
us(;k) =(1- 1.3)u§k_1) +1.3 gg (k-1) (1)2)

uék) =(1- 1.3)uék_1) +1.3 gg () 4 118 ugk) 4 f(;]
ugk) =(1- 1.3)u§k_1) +1.3 (1)2 (k=1) 118) 4 f(é
ul” = (1-13)ulM+13 ggug" 1) (1’;1 0

i = @12 13l gl f‘;]

s

(4.4)

e

Select the initial solution as u(® = (0,0,0,0,0,0,0,0,0)7, then we obtain

10.4 40 40
1) (0) (0)
=(1-1.3 1.3|— —| =1.3x |—| = 28.888
= Jug” + 13| +1g [1.8]
r0.4 0.4 0.4
1 _ (0) 1 (0)
u,’ =(1-13)u, +1.3 T gl] =13 [1_8 X 28.888]
= 8.3454
0.4 20 0.4 x 8.3454 20
1 _ (0) (1
uy’ = (1-13)uy +13[18 +18 1.3[13 +1.8
= 16.8553
0.4 1 40
1 _ (0) (0) (1)
u,” =(1-13)u, +13[18 +18u1 +18
B 13[1><28888_|_40] — 49757
o 1.8 1.8/ 7
0.4 0.4 1
(1) 0) (0) €Y} (€Y
=(1-1. 1.
(3ug’ + 3[18 +18u4 +18u2]
B [0.4 X 49.752 8.3454 _ 2040
B 1.8 1.8 | °

62

0.4 1 20
uY = (1- 13)u(0)+13[18 ug” + g +

13 [0.4 x 20.40 N 116.8553 N 207 225112
o 1.8 1.8 1.8] 77
0.4 1 40
L _ (0) (0) (1)
u,’ = (1-13)u, +13[18 +18u3 +18
13 16.8553 . 4071 648716
o 1.8 18] 7
0.4 0.4 1
1 _ (0) (0) (1) e
ug’ = (1—-1.3)ug +13[18 tTgW tigks]
13 [0.4 X 64.8216 s 20.407 23,4599
o 1.8 1.8 1 7
0.4 1 20
(1) (0) M (1)
=(1-13 1.3
U~ = (Jug ™ + [18 tigY% t1g
13 [0.4 X 33.4599 N 32. 5112 N 20] 47501
o 1.8 1.8 18] 7

The first iteration u@ is:

u®

= (28.888,8.3456,16.8554,49.7530,20.4005,32.5112,64.8216,33.4599,47.5910)7
Likewise, after 22 iterations we obtain the approximate solution:

u = (24.049,8.219,12.938,39.661,18.352,22.377,50.485,28.030,29.772)"

Number of iterations The error
22 8.64340 x 107008

The Matlab code for the SOR iterative method can be formed in Appendix
C.

Conjugate Gradient Method

This algorithm can be implemented as follows:

63

Step1 Start with initial guess u, = (0,0,0,0,0,0,0,0,0)T
Step2 Calculate the residual vector r, as follows:

T0=b—Au0

401 r18-04 0 0 O O O O O
0 -0418-04 0 0 0 O O O
20 0 -0418 0 0 O O O O
40 -1 0 0 18-04 0 0 O0 O
n={0|-{ 0 -1 0 -0418-04 0 0 O
20 0 0 -1 0 -0418 0 0 O
40 o o0 0 -1 0 0 18-04 0
0 o o0 0 O -1 0 -0418-0.4
204 O O O O O -1 0 —0418L

40
0
20
40

=10
20
40
0
[20-

Step 3: Let the initial direction vector p, = 1. SO

Cooococoo oo

64
40
0
20
40
Po=1|0
20
40
0
120

Step 4 compute the scalar a;,'s by formula

Tkt Tk
a;, =
“ pltcApk
fork = 0,
7‘0t To
a =
° P(t)Apo

rirg =040 0 20 40 0 20 40

4077r1.8-04 0 0 0
0||-0418-04 0 0
20 0 —0418 0 0

—0.

40 -1 0 0 18 4

piAp, =1 0 0 -1 0 —04 1.8 —0.4
200l 0 0 -1 0 —0418

40 O 0 0 -1 0
0 O 0 0 0 -1
2040 0 O O O

= 6800

401
0
20
40
0 20]| 0 |=6000
20
40
0
(20
0 0 0 O 7740
0O 0 0 O 0
0O 0 0 0 |20
0O 0 0 0 |40
0O 0 O 0
0O 0 0 (|20
0 1.8-04 0 {[|40
0 —0418—-04]]|0
-1 0 —-0.4 1.8 1L20

Thus

(4

65

6000

~ 6800

= 0.8823

Step5 Compute the first iteration u, by the formula

Uy = Ug + APy

u; = (0,0,0,0,0,0,0,0,0) + 0.8823(40,0,20,40,0,20,40,0,20)

the first approximation u; =

r35.29417

0

17.6471
35.2941

0

17.6471
35.2941

0

L17.6471-

Likewise, after 10 iterations we obtain the approximate solution:

24.04877
8.21917
12.9375
39.6609
18.3524
22.3769
50.4851
28.0306

L29.7717-

Number of iterations

The error

10

2.224057 x 107909

66

Table 4.1: Comparison between the iterative methods for example 4.1

thods | Jacobi Method | Gauss-Seidel SOR Method Conjugate
\M\ Method Gradient
Uy 24.0487 24.0487 24.0487 24.0487
U, 8.2192 8.21917 8.21917 8.21917
Usg 12.9376 12.9375 12.9375 12.9375
Uy 39.6609 39.6609 39.6609 39.6609
Usg 18.3524 18.3524 18.3524 18.3524
Ug 22.3770 22.3769 22.3769 22.3769
U, 50.4851 50.4851 50.4851 50.4851
Ug 28.0307 28.0306 28.0306 28.0306
Uqg 29.7718 29.7717 29.7717 29.7717
Number 24 24 22 10
of
iterations
Error 5.11493 5.114938 8.64340 x 107008 2.224057
x 107008 x 107008 x 107009

The Matlab code for the conjugate gradient iterative method can be formed
in Appendix D.

Example 4.2: Consider the one-dimensional heat equation
u, = 1.25u,,, 0<x<10,t=>0
with initial condition u(x, 0) = 0 and boundary conditions are

u(0,t) =100, u(10,t) =50 and the upper boundary condition

u(x,8) = 75 to get rectangular domain
We want to approximate the solution u by using finite element method.

We will start with discretize the domain by finite element as shown in

Figure (4.2).

67

u(0,t) =100
c
e
©
e
&
u(10,

Figure (4.2): Discretization of the Domain by Finite Element Method

The region is divided into 32 equal triangular elements which are identified
by encircled numbers 1 through 32 as indicated in Figure (4.4). In this
discretization there are 25 global nodes. Now, we will write the coordinates

for each node:
Node 1: (0,0), node 2: (2.5,0),node 3: (5,0),node 4: (7.5,0)
node 5: (10,0), node 6: (10,2), node 7: (7.5, 2), node 8: (5, 2)
node 9: (2.5,2), node 10: (0,2), node 11: (0,4), node 12:(2.5,4)
node 13: (5, 4), node 14: (7.5, 4), node 15: (10, 4), node 16: (10, 6)

node 17: (7.5, 6), node 18: (5, 6), node 19: (2.5, 6), node 20: (0, 6)

68

node 21: (0, 8), node 22: (2.5, 8), node 23: (5, 8), node 24: (7.5, 8) and
node 25: (10, 8).

For each element e, we will label the local node numbers 1, 2, and 3 of

element e in a counterclockwise sense.

Table 4.4 shows that for each element we write its global nodes and their

local node numbers and coordinates.

Table 4.2: The global nodes, local node numbers and the coordinates

for each element

Element # global | local node | The coordinates of each
nodes | numbers global node
Element 1 1 1 (x1,81) = (0,0)
2 2 (x,t) = (2.5,0)
10 3 (x3,t3) = (0,2)
Element 2 2 1 (x1,t1) = (2.5,0)
9 2 (x,t) = (2.5,2)
10 3 (x3,t3) = (0,2)
Element 31 17 1 (x1,t1)
= (75,6)
16 2 (x2,t3) = (10,6)
24 3 (x3,t3) = (75,8)
Element 32 16 1 (x1,t1)
= (10,6)
25 2 (xz,tz) = (10,8)
24 3 (x3,t3) = (7.5,8)

Now, for each element e;, the following quantities must be computed:

For element 1:

69

P=1t3-1t = 2 Q=x-x3=0
P3=t1—t2:0 Q3=x2—x1=2.5

In similar manner, we compute P;/s and Q;’s for each remaining element

wherei = 1,2,3.

We use equation (2.32) to write the entries of the 3 x 3 element coefficient

matrix, let us take element 1 as an example:

1 . 3
;™ = A |P:P; + Q;Q;], for i ,j =1,2,3, where:

]
1
A=5[PQs ~ P3Qy] =5[2x25-0x0] =3

1
—[2%x2+25x —2.5] = 1.025

C<U—34PP+QQ]
11 5 L1 1¢1l =
4.3 10

@ _ 1 1
C1z F[P1P2+Q1Qz] 10 —[-2%x24+0x%x—-25]=—
2
1 _ 1 1
Ci3 F [P1P; + Q,Q3] = 10 —[-2%x 0+ 2.5x%x—-2.5] = —-0.625
2
@ _ 1 1
€™ = 5[PoPy + Q2Qu] = 75 [2 X =2+ 0 x —2.5] = —0.4
2

1
—[2x2+0x0] =04

@ _ 1
Caz’ =[PP, + Q2Q;] = 10
"2

1
[2X0+0x%25]=0

o _ 1
€™ = 5 (PP + Q205 = 75
2

1
[0 X —2 + 2.5 X —2.5] = —0.625

@ _ L
Cn® = —5IPyPy + 050 = 15
2

(1) 1

5 (P3P, + Q5021 = 15

70

1
CssV = =[P3P; + Q3Q5] = E[O X 04 2.5 % 2.5] = 0.625
2

NN

Thus, the 3 x 3 element coefficient matrix for element 1 is:

611(1) C12(1) 613(1) 1.025 —-0.4 -0.625

c = C21(1) sz(l) C23(1) = —04 0.4 0
C €Y) C (1) C €Y) —0.625 0 0.625
31 32 33

In a similar manner, we find the 3 x 3 element coefficient matrix for

elements 2, 3, 4, ..., 32.

'0.625 —0.625 0] [1.025 —0.4 —0.625]
C® =10.625 1.025 -04|,C®=| -04 04 0
0 —04 0.4 —0.625 0 0.625 |
0.625 —0.625 0] [1.025 —0.4 —0.625T
C® =10.625 1.025 —-04|,C® =] —04 04 0
0 —04 04| —0.625 0 0.625 |
'0.625 —0.625 0] [1.025 —0.4 —0.625]
c® =10.625 1.025 -04|,CD=| -04 04 0
0 —04 0.4 —0.625 0 0.625 |
'0.625 —0.625 0] [1.025 —0.4 —0.625
C® =10.625 1.025 —-04|,C®=| —04 04 0
0 —04 0.4 |—0.625 0 0.625 |
0.625 —0.625 0] [1.025 —0.4 —0.625T
c% =10625 1.025 —-04|,cV=| —04 04 0
0 —04 04 | —0.625 0 0.625 |
'0.625 —0.625 0] [1.025 —04 —0.625]
C? =(0.625 1.025 —04|,C®® =| —04 04 0
0 —04 04] —0.625 0 0.625 |
0.625 —0.625 0] [1.025 —0.4 —0.625T
CO% =10.625 1.025 —04|,c™=| —04 04 0
0 —04 04| —0.625 0 0.625 |
'0.625 —0.625 0] [1.025 —04 —0.625]
c1® =(0.625 1.025 —04|,C=| —04 04 0
0 —04 04 —0.625 0 0.625 |

71
1.025 —0.4 —0.625 0.625 —0.625 0
cCGY = —04 04 0 [|,cG?=10.625 1.025 —04
—0.625 0 0.625 0 —04 04

The global coefficient matrix C assembled from the element coefficient
matrices. Since there are 25 nodes, the global coefficient matrix will be a

25 X 25 matrix.

The one diagonal entries can be computed as follows:
For example:

Ci1=C ™M =1.025

Crz = C ™M + €11 P +¢,® =205

Ciz = C® + 1™ +¢,® =205

Cr7 = Cp® + C337 + C35® + 2, + ¢, ™ + ¢, =41

Cps25 = C,%% = 1.025

For the off-diagonal entries, for example Cy,,, the global link 9-12
corresponds to local link 1-3 of element 11 and local link 1-2 of element

10 as shown in Figure (4.4) and hence
C9’12 == C13(11) + 612(10) = _1.25

We can compute the value of other off-diagonal entries in the same

manner. We continue the process to obtain the global matrix.

76

0 —-0625 0
-1.25
-1.25 0

0
-1.25 0

0

0
-0.4 2.05 —-04

r 1.025 —-0.4

0
0

0
0

0

0
0

0
—-0.4

—-0.4 2.05 —-0.4

0

0

—-0.4 2.05

0

0
0
-0.8
-0.8 4.1
0

—0.4 1.025 —0.625 0

0
0
0

0 —-0625 0
-1.25
-125 0

0
-125 0

0

-0.8
-08 4.1

—0.625 2.05

0
—1.25
-1.25 0

-1.25 0

0
0

0
0

0
0

0
0

-0.8

-0.8 4.1

0

0

0

-0.8

0

0
—0.625 0

0
0
-0.8

—-0.8 2.05 —-0.625 0
-0.8 4.1

0

0

—-0.625 0

0
-1.25

-125 0

-125 0

—-0.8 2.05 —-0.625 0

0
0

—-0.625 2.05 -0.8

0
-1.25

-1.25 0

-1.25 0

0
0

0
0

-0.8 4.1

0
0

0

0
0

0
-0.8

-0.8

-08 4.1

0

0

0

0

0

0
0.625

0
0
-0.8

-08 4.1

0
0
0

0

0

0

—0.625

0
-1.25
-125 0

-1.25 0

-0.8 2.05 —-0.625 0

0
0

-0.8
-0.8 4.1

—0.625 2.05

0
—-1.25

-1.25 0

-125 0

—-0.625 0

0
0

0
0

0
0

0
0

0
-0.8

-0.8

-08 4.1

0

0

0

0

0

0

0

0

0

0

0

0
0

—0.625 1.025 —-0.4

0
-1.25
-1.25 0

-1.25 0

—-0.625 0

-04 2.05 —-04

0
0

0

0
0

0
-0.4

—-0.4 2.05 —-04

0

—-0.4 2.05

0

0

0

—0.4 1.025

0

0

0

77
Defining the vector u, to be vector of unknowns (interior nodes) and

vector u,, to be vector of prescribed boundary values (nodes that are

located on the boundaries) as shown in table 4.3.

Table 4.3: Represents vector of functions at the boundary

Global node | Boundary conditions The value of global
node
1 u = 100 on left and u = 0 at bottom | The average of its
boundaries boundary values
100+0
> =50
2 u = 0 on bottom boundary 0
3 u = 0 on bottom boundary 0
4 u = 0 on bottom boundary 0
5 u= 0 on bottom boundary and | The average of its
u = 50 at right boundary boundary values
50+0
5= 25
6 u = 50 on right boundary 50
10 u = 100 on left boundary 100
11 u = 100 on left boundary 100
15 u = 50 on right boundary 50
16 u = 50 on right boundary 50
20 u = 100 on left boundary 100
21 u =100 on left boundary and|The average of its
u = 75 on upper boundary boundary values
100 + 75
> =87.5
22 u = 75 on upper boundary 75
23 u = 75 on upper boundary 75
24 u = 75 on upper boundary 75
25 u =75 on upper boundary and | The average of its
u = 50 at right boundary boundary values
50 + 75
> = 62.5

The vector u,, is:

u, = (50,0,0,0,25,50,100,100,50,50,100,87.5,75,75,75,62.5)T

78

Now, we will define the matrix C,,, to be the matrix of unknown nodes
(interior nodes) and the matrix C,,, to be the matrix of unknown nodes and
prescribed boundary values. Both matrices C,,, and C,,, are obtained from

global coefficient matrix C.

41 —-08 O 0 0 0 0 0 0 7
-08 41 -08 0 -—-125 0 0 0 0
0 -08 41 —-125 0 0 0 0 0
0 0 —-125 41 -08 O 0 0 —1.25
cw=| 0 -125 0 -08 41 -08 0 -125 O
—-125 0 0 0 -08 41 —-125 0 0
0 0 0 0 0 —-125 41 -08 0
0 0 0 0 —-125 0 -08 41 -08
L0 0 0 0 0 0 0 -08 4.1 -
0 0 0 —-1250-08 0 O O O 0O O 0 0 0
0 0 -125 0 00O O O O O 00 O 0 0 0
0-1.25 0 0O 00 -080 0 0 0O O 0 0 0
0 0 0 0o 00 O0-080 0 0O0 O 0 0 0
con =0 O 0 o 00 0 o0 O o0 O0O0UO 0 0 0
0 0 0 0o 00 0 O0-080 0O0O0 0 0 0
0 0 0 0o 00 0 O O0-08000 0 -1.250
0 0 0 o 0o 0 O O O 0O O0 —-125 0 O
0 0 0 0o 00 0 O O 0 -080-125 0 0 O

the inverse of matrix C,, 'is:

c. -1
W‘O.2941 0.0799 0.0223 0.0222 0.0595 0.1135 0.0401 0.0284 0.01237
0.0799 0.3164 0.0799 0.0595 0.1357 0.0595 0.0284 0.0524 0.0284
0.0223 0.0799 0.2941 0.1135 0.0595 0.0222 0.0123 0.0284 0.0401
0.0222 0.0595 0.1135 0.3342 0.1082 0.0346 0.0222 0.0595 0.1135
=10.0595 0.1357 0.0595 0.1082 0.3689 0.1082 0.0595 0.1357 0.0595
0.1135 0.0595 0.0222 0.0346 0.1082 0.3342 0.1135 0.1395 0.0222
0.0401 0.0284 0.0123 0.0222 0.0595 0.1135 0.2941 0.0595 0.0223
0.0284 0.0524 0.0284 0.0595 0.1357 0.0595 0.0799 0.3164 0.0799
L0.0123 0.0284 0.0401 0.1135 0.0595 0.0222 0.0223 0.0799. 0.2941-

The vector u,, of unknown nodes can be found by using the formula:

_ -1
Uy = _va Cvnun

79

rnode 77 130.02727
node 8 30.3578

node 9 45.6648

node 12 66.3515

U, = |node 13 51.1306
node 14 47.0603

node 17 59.6071

node 18 64.7670
lnode 191 175.2446

Example 4.3: Consider the one-dimensional heat equation

U = Uy, 0=5x<51,t20

Subject to initial condition u(x,0) = sinmx and boundary conditions

u,(0,t) =0,u(l1,t) = 0.

Next, using the finite difference method, we start with make a partition for

the domain by dividing x-axis into equal steps h = b%a = % = % also we

dividing t-axis into equal steps k = 0.05 as shown in Figure (4.3).
Now, we define the mesh points (x;, t;) as follow:
xX; =a+ih

,1=0,1,2,3

t=c+jk ,j=012

For i=0, X9 =0+0Xx=0
i=1, X, =0+1x=1

3 3

=2, x2=0+2><1=z

3 3

i=3, x3=0+3x:=1

80

Andfor j =0, to=04+0x0.05=0
j=1, t; = 0+1x2=0.05
j=2, t;=0+2x:=01

These partitions will be illustrated in Figure 4.3

0.1@ ® . 9
< o
n I
i oy
= i
=) 0.05® & &] ::
:H =]

. . -

o? 1/3 2/3 1

u(x,0) = sinmx

Figure (4.3): Discretization of the domain for example 4. 3

The black points are known boundary points and the red points (interior)

points are unknown which are to be approximate.
Using the formula:

Upjog = (142 Dy — A (Ugpq,j +uiy,j)
to approximate the interior points.

At the left boundary we will treat the boundary condition by generate ghost

boundary x_; by:

81
ul] _u_l'j _

ux(XOJ tn) =— oh
We get

ul’j = u_l,]- (45)

Now we back to equation u;;_; =(1+2 A)u;; — A (uHLj +ui_1,j)

and put i = 0, yield:

Upj—1 =1 +2 Auy; — 4 (ullj + u—l,j) (4.6)
Put equation (4.5) into equation (4.6) we get:

Upjor=1+2 Aug;— 2 (wy;) (4.7)

The equation (4.7) will used to the left boundary.

We will start to find the interior points:

f(i=1j=1),u0=0+2 Duy; — A(uzs +ug1)

Replace u, 4 by using the equation (4.7)

u0,0 == (1 + 2 ﬂ/)uo'l - 2 A (ul’l)

So ugq = :j’l uy 1, Put uy 4 into equation above yield:
2
ul’O == (1 + 2 /’L)ul’l - A uz'l + mul'l

Simplifying this equation yield

1.687u1’1 - 0.45u2’1 ES 0866 (1)

82

f(i=2j=1)u0=0+2 Duys — A(uzy +usq)
Also, by some calculation we get the second equation
1.9u, ; — 0.45u; ; = 0.5 (2)
f(i=1=2)u, =042 ADuy; — A(uzz +upyz)

We do the same argument in first equation to find u,, and we get third

equation

1.788u, , — 0.45u,, — 1.112u;; = 0 (3)
f(i=2j=2)u;;=1+2 Duyy— A(ugy+us2)
In the same way we get the fourth equation

1.9u;, — 045Uy, —up; =0 (4)

We Wl” use the nOtatlon (ul’l = Uy, ul’z == U3,uZ’1 == uz,uz’z = u4), SO

equations 1-4 becomes:

1.687u; — 0.45u, = 0.866

1.9u, — 0.45u; = 0.5 (4.8)
1.788u; — 0.45u, — 1.112u, = 0

1.9u, — 0.45u3; —u, =0

System (4.8) can be expressed as a linear system Au = b

83
1.687 —0.45 0 0 Uy 0.866

—045 19 0 0 |[[uz|_]| 05
~1.112 0 1.788-0.45][us 0
0 -1 -045 19 |lu 0

Using u = A~1b we obtain the exact solution

0.6229
_lo.4107
~ |0.4698

0.3274

We can also solve the linear system (4.8) by the following iterative

techniques:
Jacobi Method

We write the Jacobi equations as:

0.45 0.866
o _ (k=1)
Ui' =Tes72 T1es7
19 ¢ 19

4
~1.788 Ya 1.788 788 (4.9)

0.45 1
k) _ u(k 1) +— gk 1)
1.9 1.9
Select the initial solution as u(® = (0,0,0,0,0,0,0,0,0)7, then we find the
first iteration u™ as:

@ _ 045 o) 0866 _ 0.866

t "~ 1.687 1.687 2 1.687 - 1.687 = 051333
0.45 0.5 0.5
1 _ (0) _
Uy’ = 15 —Uu; + = 19 —1.9 0.26315

84
@ _ 0.45 (0) 4 1.112)

=0
Ys' =71788" T1788™1
0.45 1
@ _ @, 1 ©_
Uy =7g U tTigh
The first iteration u® is:
0.51333
L _ 026315
0
0

Likewise, after 15 iterations we obtain the approximate solution:

0.622885
_10.410683
~10.469790
0.327415
Number of iterations The error
15 5.254187 x 107008

The Matlab code for the Jacobi iterative method can be formed in

Appendix E.
Gauss-Seidel Method

We write the Gauss-Seidel equations as:
0.45 0.866

() _ (k-1)

T 16872 T1es7

U =79 T1g
0.45 1.112
() _ (k—-1) (k)
s = 717g8"e 1.788" (4.10)

0.45 1
k) _ x) (k)
=19 Tig

85
Choose the initial solution as u(® = (0,0,0,0,)7, then we find the first
iteration uMas:

() _ 045) 0866 0866 ...
“1"77687"2 T1687 1687

@ 045) 05 045x0513337 0.5

Y2 "9 T197 19 + g = 0384737
0.45 1.112 1.112 X 0.513337
@ _ © (1) _ _
U3 =717gg% T17gg™ 1.788 0.319256

0.45 1 0.45 x 0.319256 0.384737
W _ 2wy 2o

1ok = 19 + 19 = 0.278106

The first iteration is

0.513337

1 _ |0.384737
u =

0.319256

0.278106

Likewise, after 8 iterations we obtain the approximate solution:

0.622885
~10.410683
~10.469790
0.327415
Number of iterations The error
8 4.405655 x 107908

The Matlab code for the Gauss-Seidel iterative method can be formed in

Appendix F.

86

Successive Over Relaxation (SOR) Method

Writing the SOR equations by using Gauss-Seidel equations and use the

relaxation factor w = 1.3 we get

u® = (1 - 130 4 13[4 2500

4 = (-1 113 [543] (411)
ugk) =(1-1 3)u(k V413 1074858 gk 1) %ugk)]

ul? =1 -13)ufY +13 01495 () 4 1?9 ug")]

Select the initial solution as u(® = (0,0,0,0)7, then we find the first

iteration u™ as;

045 o 0.866] 1.3x0.866

W _ ©
wo=0=-13)u " +13 [1 6872 t 1687 1.687

= 0.667338

0.45 0.5
) _ 1 _ (0) (1)
u,”=(1-13)u, +1.3 [15 + T 9]

13 [0.45 x 0.667338 N 0.5
o 1.9 1.9

] = 0.547575

0.45 1.112
ul? = (1-13)ul” + 1.3 [ul? + —— (1)]

1788 T17g8™s
~ [1.112 X 0.667338] 0539543
N 1.788 -

0.45 1
ul = (1-1.3)%u + 13[19 W+ 1—9u§”]

[0.45 %X 0.539543 N 0.547575
1.9 1.9

] = 0.540779

87
The first iteration u™ gives

0.667338
@) _ |0.547575
0.539543
0.540779

Likewise, after 6 iterations we obtain the approximate solution:

0.622885
~10.410683
~10.469790
0.327415
Number of iterations The error
6 8.037576 x 107008

The Matlab code for the SOR iterative method can be formed in Appendix
G.

Conjugate Gradient Method

This algorithm can be implemented as follows:
Stepl Start with initial guess u, = (0,0,0,0)T
Step2 Calculate the residual vector r, as follows:

1"0=b—Au0

0.866 1.687 —0.45 0 0 0
.| 05 |_[-045 19 0 0 0
0 0 —1.112 0 1.788-0.45|]0

0

0 0 -1 —0.45 19

88
0.866

Step 3: Let the initial direction vector p, = 1. SO

0.866

_| os
Po 0

0

Step 4 compute the scalar a;,'s by formula

rin
a;, =
“ pltcApk
fork = 0,
7”otro
a =
° P(t)Apo
0.866
rgro = [0.866 0.5 0 0] 0(')5 = 0.999956
0

1.687 —0.45 0 0 0.866
—-045 19 0 0 0.5

t —
PoAApo = 10866 0.5 0 Ol|_ 1575 0" 1788-045|| o

0 —1 —045 1.9 0
— 1.350475
Thus,
_ 0999956 _
% = 71350475

Step5 Compute the first iteration u, by the formula

U; = Uy + APy

u, = (0,0,0,0) + 0.740447(0.866,0.5,0,0)

the first iteration u; =

89

0.641227

0.370223

0
0

Likewise, after 5 iterations we obtain the approximate solution:

[0.622885
0.410683
0.469790
10.327415

Number of iterations

The error

5

2.52240 x 107009

The Matlab code for the conjugate gradient iterative method can be formed

in Appendix H.

Table (4.4): Comparison between iterative methods in example 4.3

ethods | Jacobi Method | Gauss-Seidel SOR Method Conjugate
u Method Gradient
Uy 0.622885 0.622885 0.622885 0.622885
U, 0.410683 0.410683 0.410683 0.410683
Us 0.469790 0.469790 0.469790 0.469790
Uy 0.327415 0.327415 0.327415 0.327415
Number of | 15 8 6 5
iterations
Error 5.2541 x 107998 | 44056 x 107°%8 | 8.0375 x 107908 | 252240 x 107909

Example 4.4: Consider the one-dimensional heat equation

U = Uyy,

0<x<1t=0

Subject to initial condition u(x, 0) = sinmx and boundary conditions

90

u,(0,t) —u(0,t) = 0,u(l,t) =0.

Next, using the finite difference method, we start with make a partition for
b-a 1-0

the domain by dividing x-axis into equal steps h = — == é also we
dividing t-axis into equal steps k = 0.05 as shown in Figure (4.4).

Now, we define the mesh points (x;, ¢;) as follow:

xX; =a+ih ,i=0,1,2,3

t=c+jk ,j=012

For i =0, X9 =0+0Xx2=0
i=1, x1=o+1x§=§
i=2, X, =0+2x-=12
i=3, x3=0+3x:=1

Andfor j =0, to=0+0x0.05=0

j=1, t; =0+1x2=0.05
j=2, t;=0+2x:=01

These partitions will be illustrated in Figure 4.3

91

0.1@ & o 9
o]
1] o)
- I
=, —_
= L]
T 0.05¢ & L] E
£ =
=)
@ ® -
0? 1/3 2/3 1

u(x,0) = sinmx

Figure (4.4). Discretization of the domain for example 4. 4

The black points are known boundary points and the red points (interior)

points are unknown which are to be approximate.
To approximate the interior points, we use the formula:
ui,j_l = (1 + 2 /’L)ui’j - A (ul‘+1’j + ui_l’j)

At the left boundary we will treat the boundary condition by generate ghost

boundary x_, by:

ul’ i u_l’]
Uy (X, tn) = # =u(0,t;)

We get
u_l,j = uljj - ZhU(O, t]) (412)

Now we back to equation u;;y =(1+2 A)u;; — 4 (ui+1,j +ui_1’j)

and put i = 0, yield:

92

Ugj—1=(1+2 A)ug;— A(ug;+u_q) (4.13)
Putting equation (4.12) into equation (4.13) we get:

Ugj—1 = (1+2 A)ug; — 22 (ug; — hu(0,¢))) (4.14)
Equation (4.14) will used to the left boundary.
f(i=1j=1),u0=0+2 Duy; — A(uzs +ug1)

Replace u, 4 by using equation (4.14)

u0,0 == (1 + 2 ﬂ,)uO,l - 2 A (u1,1 - hu(O, tl)

2 A

Te2 A1z ALl put u, ; into equation above yield:

SO uo’l =

Uo=10+2 A)uy;;— A <u2,1 +) j,/1+ > lhu1'1>
Then we get fist equation

1.4909u, ; — 0.45u, ; = 0.866 (1)
f(i=2j=1)u0=0+2 Duy; — A(usy +usq)
Also, we get second equation

1.9u,, — 0.45u,; = 0.5 (2)

If (l = 1,] = 2), ul’l = (1 + 2 /’L)ul’z - A (uz'z + uo'z)

We do the same argument in first equation to find u,,, then we get third

equation.

93

1.7159u, , — 0.45u,, — 1.08367u; ; = 0 3)
fF(=2=2)u33=1+2 Duyy — A(ugy+us)
In the same way we get the fourth equation

1.9uy, — 0.45uy 5 —uy; =0 (4)

We will use the notation (u; 1 = Uy, Uy, = Uz, Up 1 = Up, Uy, = Uy), then

equations 1-4 becomes:

1.4909u, — 0.45u, = 0.866

1.9u, — 0.45u; = 0.5 (4.15)
1.7159u; — 0.45u, — 1.08367u; = 0

1.9u, — 0.45u3; —u, =0

System (4.15) can be expressed in a matrix form as follows:

1.4909 —0.45 0 Uy 0. 866
—-0.45 19 Uz
—1.08367 0 1. 7159 0. 45 us
0 —1 —-0.45 19 11U

Using u = A~1b we obtain the exact solution

0.7111
_10.4316
~10.5424

0.3556

We can also solve the linear system (4.15) by the following iterative

techniques:

94

Jacobi Method

We write the Jacobi equations as:

045 sy, 0866
1.4909 2 1.4909

' =qgu tig

w0 =

(4.16)

(k) _ 0.45 LD 108367u(k 1
"~ 1.7159 ¢ 1.7159 1

(k) _ 0-45u(k—1)+ L e
1.9 %2

Choose the initial solution as u(® = (0,0,0,0)7, then we find the first
iteration u(as:

@ 045 4 = 0.866

uq 14909u2 +m = 0.580857
0.45 0.5
u® = ——u® + = =0263157

1.9

@ _ 045 g 108367)

YT T 17159 T 17150 M
0.45 1
(1 (0) (0) _
u4—19u30u3 +19 =0
The first iteration u™® is:
0.580857
L — [0.263157
0
0

Likewise, after 16 iterations we obtain the approximate solution:

95
0.711121

_ 0.43158
0.542364
0.355602
Number of iterations The error
16 3.02119 x 107008

The Matlab code for the Jacobi iterative method can be formed in

Appendix I.
Gauss-Seidel Method

We start with writing the Gauss-Seidel equations as:

o _ 045 o1, 0866

“17 = T2900%2 * 12909

29 = 01495) | 2?9 (4.17)
uy = %u‘(*k ’ 11?78135697 u

ul? = 01'%95 ul® + rlgugk)

Choose the initial solution as u(® = (0,0,0,0,)7, then we obtain the first
iteration u® as:

@ _ 045 g 0866 _ 0.866

Wi =12900% T12909 ~ 14909 _ 0280857
() _ 045 () 05 _045x 0580857 05
20779 ™M T19” 1.9 19 = 0400729
W 045 o 108367 ., 108367 x 0.580857
U3 =77159% T {7150 h = 17159 = 0.366838

96

) _045 o) 1) _ 045x0366838 0400729
Y T s TTg%2 = 19 19
= 0.297792
The first iteration is
0.580857
@ _ |0.400729
u =
0.366838
0.297792

Likewise, after 14 iterations we obtain the approximate solution:

0.711121
_10.431581
~ |0.542364

0.355602

Number of iterations

The error

14

2.512671 x 107008

The Matlab code for the Gauss-Seidel iterative method can be formed in

Appendix J.

Successive Over Relaxation (SOR) Method

We start with writing the SOR equations by using Gauss-Seidel equations

by using relaxation factor w = 1.3 we get

ul =1 -13)uY+13
ul =1 -13)u"+13
ul? =@ - 1.3l + 1.3
ul =1 -13)u P +13

045 gy 0866
14909 “2 1.4909
0.45 (k)+05] s
79" TT9 (4.18)
- 0.45 o 1.08367 g
17159 ¢ 1.7159 "1
0.45 1
®) 2
7o T1gY]

97
Choose the initial solution as u(® = (0,0,0,0)7, then we obtain the first

iteration u™® as:

™ _ (1 - 135 + 1.3 r 0.45 LD 0.866 1.3 x 0.866
o= 2Jth 2 [1.2909 *2 1.4909 1.4909
= 0.755114
r0.45 0.5
1 _ (0) 1)
u,’ =(1-13)u, +1.3 To W T 9]

[0.45 x 0.755114 0.5

19 + 1.9] = 0.57460

0.45 1.08367
@ _ © o i
u;” = (1 -13)u" +13 [1 71594 T 17159 t]

4 1.08367 x 0.755114] _ 0619956
o [1.7159]_ '

0.45 1
ul = (1-13)%u + 13[19 W+ —ugl)]

s [0.45 x 0619956 10574601
- 1.9 1.9

] = 0.584029

The first iteration u@ is:

0.755114
1 — |0574601
0.619956
0.584029

Likewise, after 11 iterations we obtain the approximate solution:

0.711121
~10.431581
~10.542364
0.355602
Number of iterations The error
11 2.223857 x 107008

The Matlab code for the SOR iterative method can be formed in Appendix
K.

98

Conjugate Gradient Method

This algorithm can be implemented as follows:
Step1 Start with initial guess u, = (0,0,0,0)T
Step2 Calculate the residual vector r, as follows:

T'0=b—Au0

0.866 1.4909 —0.45 0 0
|05]|_[-045 19 0 0
0 0 —1.08367 0 1.7159—0.45

0 —1 —0.45 1.9

0
0.866
0.5
ro -

0
0

Step 3: Let the initial direction vector p, = 1. SO

0.866

_| o5
Po 0

0

Step 4 compute the scalar a;,'s by formula

rin
a;, =
“ PliAPk
fork =0,
T()tro
a e
° PSAPO
0.866
riro = [0.866 0.5 0 0] O(')S = 0.999956

0

o O O O

99

14909 —-045 O 0 0.866
—-0.45 1.9 0 0 0.5

t —
PoAPo = [0.866 05 0 Ol jescr " 17159_045|| o

0 1 —045 1.9 0
= 1.203409
Thus
_ 0999956 _ o
% = 71503209

Step5 Compute the first iteration u, by the formula
U; = Uy + AoPo
u; = (0,0,0,0) + 0.830936(0.866,0.5,0,0)

The first iteration is:

0.719590
_lo.415468
u, = 0
0

Likewise, after 5 iterations we obtain the approximate solution:

0.711121
~10.431581
~ 10.542364
0.355602
Number of iterations The error
5 5.68523 x 10700°

The Matlab code for the conjugate gradient iterative method can be formed

in Appendix L.

100

Table (4.5): Comparison between iterative methods in example 4.4

Jacobi Method | Gauss-Seidel SOR Method Conjugate
Metheads Method Gradient
u
Uy 0.711121 0.711121 0.711121 0.711121
U, 0.431581 0.431581 0.431581 0.431581
Us 0.542364 0.542364 0.542364 0.542364
Uy 0.355602 0.355602 0.355602 0.355602
Number 16 14 11 5
of
iterations
Error 3.0119 x 107908 | 2512671 x 107°08 | 2.223857 x 107°°% | 5685235
X 10—009

Example 4.5: Consider the one-dimensional heat equation

U = Uyy + X, 0<x<1t=0

subject to initial condition u(x,0) = sinmtx and boundary conditions

u(0,t) = 0,u(1,t) = 0.

Next, using finite difference method, we start with make a partition for the

domain by dividing x-axis into equal stepsh = b_Ta = 13;0 =% , also we

dividing t-axis into equal steps k = 0.05 as shown in Figure (4.5).

We define the mesh points (x;, ¢;) as follow:

X; =a+ih ,i=0,1,2,3

ti=c+jk ,j=012
For i=0, X =0+0Xx=0
i=1, X =0+1x2=1

i=2, X, =0+2x2=2
3 3

101
i=3, x3=0+3x:=1

to=0+0x0.05=0

Andfor j =0,
j=1, t; = 0+1x-=005
j=2, t;=0+2x-=01
0.1® L & L

= L]
Il I
“ 0.058 * * * =
= —
= -
o? 173 DE T

ul(x,0) = sinmx

Figure (4.5): Discretization of the domain for example 4. 5

The black points are known boundary points and the red points (interior)

points are unknown which are to be approximate.

To approximate the interior points, we use the formula:

a’k
ui,j—l = ui’j —k h(xl-, t]) + ?(Zui,]’ - ui_l'j - ui+1'j)

We will start to find the interior points:

. . 2k
If (=1j=1), wo=uy,; —kh(x,t)+ 0;1_2(2711,1 —Up1 — u2,1)
Inserting the boundary conditions in the previous equation yield

1.9u, ; — 0.45u,; = 0.86683 (D

102
If (i=2j=1), uzo—u21—kh(x2,t1)+ (2u21—u11 Us)

Inserting the boundary conditions in the previous equation yield
1.9U,2’1 - 0.45u1,1 == 050167 (2)

Ifi =17 =2) w1 =up —k h(x, t5) + —(2u12 —Ugp — Upp)

Inserting the boundary conditions in the previous equation yield

1.9y, , — 0.45u,, —uy 1 = 1.666 X 1073 (3)

. . a’k
If ((=2j=2),uz;s =upp —kh(x,t2) + ?(Zuz,z — Uy —Usp)
Inserting the boundary conditions in the previous equation yield

1.9u,, — 0.45u; , —uy; = 3.333 x 1073 (4)

We will use the notation (u; 1 = uy, Uy 1 = Uy, Ugp = Uz, Uy, = Uy), then

equations 1-4 becomes:

1.9u, — 0.45u, = 0.86683

1.9u, — 0.45u; = 0.50167

1.9u; — 0.45u, —u; = 1.666 x 1073 (4.19)
1.9u, — 0.45u; —u, = 3.333 x 1073

System (4.19) can be expressed in matrix form as follows:

—-045 19 0 0 Uz| _ 0.50167
-1 0 19 —-045]|uUs3 1.666 x 1073

19 =045 O 0 ul‘ I 0.86683
0 -1 —-045 19 1lus 3.333x 1073

103
Using u = A~1b we obtain the exact solution:

0.5496
_10.3942
~10.3599

0.2945

We can also solve the linear system (4.19) by the following iterative

techniques:
Jacobi Method

We write the Jacobi equations as:
0.45 0.86683
(k) _ (k-1)
=T T
®) _ 045 4_qy 050167

27T 79" TT1g (4.20)
-3
NOISULE 045 e L 1 -, 16667 x10
P19 19" 1.9
0.45 1 3.333 x 1073
(k) _ (k-1) (k 1)
T Tio™ T 19

Choose the initial solution as u(® = (0,0,0,0)7, then we find the first
iteration u® as:

@y _ 045) 086683

= 0.45622
1o =gt 19— 0436
0.45 0.50167
1 _ (0)
= ———— =0.264
U, 1o W 19 0.26403 3
0.45 1 1.6667 x 10~
1 _ (0) (0) — -
Uz~ = EU@ + 1.911,1 19 =8.7721 x 1073

0.45 1 3.333 x 1073
1 _ (0) (0)
=—U, + — U, 19

= 1.75421 x 1073
1.9

104
The first iteration u™® is:

0.45622
(1) _ 0.26403
ur = -3
08.7721 x 10
1.75421 x 1073

Likewise, after 14 iterations we obtain the approximate solution:

[0.54959
U= 0.39420
0.35987
10.29446
Number of iterations The error
14 9.72601 x 107008

The Matlab code for the Jacobi iterative method can be formed in

Appendix E.
Gauss-Seidel Method

We start with writing the Gauss-Seidel equations as:

G0 _ 045 qe1y 086683

W' =79% tTg
0.45 0.50167

k) _ (k)

U, ETY u, ’ + 19 (4.21)
0.45 1 1.6667 X 1073

) _ -1, 1 @

Us" =g ta tigh T 19

0.45 1 3333 x 102
) _) @
Uy ' =7g % tigh 19

Choose the initial solution as u(® = (0,0,0,0,)7, then we find the first

iteration u™® as:

105
@ 045 o = 0.86683

_ = 0.45622
1o =gt g~ 046
() 045) 050167 _045x045622 050167 .
B2- =79 %M 19 19 19
0.45 1 1.6667 X 1073
@ _)) _
u3 = ﬁ% + Eul 19 = 0.24099
0.45 1 3.333 x 103
@ _ 1)) _
u, = —1.9 Uy + Euz + 19 = 0.25

The first iteration is:

0.45622
L — [0.37208
0.24099
0.25466

Likewise, after 8 iterations we obtain the approximate solution:

0.54959
~—10.39420
~10.35987
0.29446
Number of iterations The error
8 2.06637 x 107008

The Matlab code for the Gauss-Seidel iterative method can be formed in

Appendix F.
Successive Over Relaxation (SOR) Method

We will start with writing the SOR equations by using Gauss-Seidel
equations and use the relaxation factor w = 1.3. We get:

045 g , 0.86683

ug")=(1—1.3)u"1)+13[1 =

106

10.45 0.50167
(k) _ (k—1) (k)
u, = (1 - 1.3)u2 + 1.3 19 - U T
0.45 1
(k) _ (k-1) (k—1)
u; ’ = (1-13)u, + 1.3 19 —1U, To™
0.45 1
k) _ (k—-1) (k)
u,’=01-13)u, ~+13 19 —u; + ol

(4.22)

) = 1.6667 X 10—3]

1.9

3.333x 1073
1.9

Choose the initial solution as u(® = (0,0,0,0)7, then we find the first

iteration u™® as;

10.45 0.86683
1 _ (0) (0)
u, " = (1 - 1.3)u1 + 1.3 1.9 - U, T
10.45 0.50167
1 _ (0) 1)
u, = (1 - 1.3)u2 + 1.3 1.9 —a U T
[0.45 1
1 _ (0) (0) 1)
u;’ = (1-13)u; +1.3 79 To % TgW
= (0.25071
0.45 1
1 _ (0) (1) €))
u, =1-13)u,”’ +1.3|—— E) gt
= 0.26728
The first iteration u is:
0.46535
L — 038173
0.25071
0.26728

] = 0.46535

] = 0.381735

1.6667 x 1073
1.9

3.333x 1073
1.9

Likewise, after 6 iterations we obtain the approximate solution:

0.54959
_|0.39420
~ |0.35987

0.29446

107
Number of iterations The error

6 8.32123 x 107998

The Matlab code for the SOR iterative method can be formed in Appendix
G.

Conjugate Gradient Method

This algorithm can be implemented as follows:
Step1 Start with initial guess u, = (0,0,0,0)”
Step2 Calculate the residual vector r, as follows:

T0=b—Au0

0.86683 19 —0.45 0 0 0
. | 050167 | _[-045 19 0 0 0
7 11.666 x 1073 -1 0 19 —o045]{]o0
3.333x 1073 0 -1 —045 19 1lo
0.86683
. _| 050167
7 11.666 x 1073
3.333 x 1073

Step 3: Let the initial direction vector p, = 1. SO

0.86683
| 050167
Po = [1.666 x 1073
3.333 x 1073

Step 4 compute the scalar a;,'s by formula

t
Tk Tk

P}iAPk

adp =

108

fork =0,
rér,

pgApo

ay =

10.866837
0.50167
1.666 3.333]| 1.666

rtr. = |0.86683 0.50167 22 1= 1.00308
00 1000 1000l| 1000
3.333
| 1000 -
PoApP,
r0.86683

19 -045 0 0 0.50167

_ 1.666 3.3331|-045 19 0 0 1.666
=|0-86683 0.50167 1000 10001l =1 0o 1.9 —0.45|| 1000

0 -1 —0.45 1.9 3.333

L1000 -

= 1.51135

Thus
1.00308

24

Step5 Compute the first iteration u, by the formula

U = Ug + &Py

0.86683
0.50167
1.666 x 1073
3.333x 1073

u, = (0,0,0,0) + 0.66369

The first iteration is

0.57530

. — [0-33295
17 10.00110
0.00221

109

Likewise, after 5 iterations we obtain the approximate solution:

0.54959
_10.3943
~10.35971
0.29455
Number of iterations The error
5 13.872124 x 107009

The Matlab code for the conjugate gradient iterative method can be formed
in Appendix H.

4.1 Conclusion

In this thesis we have used two methods to solve homogeneous and
inhomogeneous parabolic partial differential equation subject to Dirichlet,
Neumann and Robin’s boundary conditions, these methods are finite

difference method (FDM) and finite element method (FEM).

The discretization process converts the initial boundary value problem into
n-algebraic linear equations. This system has been solved by several
iterative schemes. These are: Jacobi, Gauss-Seidel, Successive over

Relaxation and conjugate gradient method.

We observe that the finite difference method is very simple and efficient
method for approximating the solution of initial boundary value problem
when the domain has regular shape, while the finite element method is
more efficient for irregular domain. Moreover, we clearly see that the

conjugate gradient method is one of the most efficient and accurate method

110
in comparison with the other iterative techniques. It requires less number of

iterations and least error.

111

References

[1] F. Abdelnour, H. Voss and A. Raj, Network Diffusion Accurately
Models the Relationship between Structural and Functional Brain
Connectivity Networks, NCBI, 2014.

[2] H. Abood, F. Fadhel and L. Hammza, The Existence and Uniqueness
Solution to the Diffusion Equation by using Arbitrary Function,
University of Babylon, 2014.

[3] M. Asadzadeh, an Introduction to the Finite Element Method
(FEM) for Differential Equations, December 10, 2014.

[4] 1. Babuska and T. Stroubulis, the Finite Element Method and its
Reliability, Clarendon Press, Oxford, 2001.

[5] M. Benzi, Key Moments in the History of Numerical Analysis,
Emory University, Atlanta, GA, 2005.

[6] R. Boucekkine, C. Camacho and G. Fabbri, Spatial Dynamics and
Convergence: The Spatial AK Model, Elsevier, Journal of Economic
Theory, 2013.

[7] R. L. Burden and J. D. Faires, Numerical Analysis, Ninth Edition,
Books Publishing Company, 2011.

[8] S. Chapra, Applied Numerical Method with MATLAB for
Engineers, Published by McGraw-Hill Companies, Third Edition,
2012.

[9] R. Clough, the Finite Element Method in Plane Stress Analysis,
American Journal of Civil Engineers, 1960.

[10] J. Demmel, Applied Numerical Linear Algebra, SIAM, 1997,

112

[11] S. J. Farlow, Partial Differential Equations for Scientists and
Engineers, John Willey & Sons, 1982,

[12] L. A. Hageman and D. M. Young, Applied Iterative Methods,
Academic Press, 1981.

[13] C. Johnson, Numerical Solution of Partial Differential Equations
by the Finite Element Method, Dover Publications, New York, 2009.

[14] 1. Kalambi, a Comparison of Three Iterative Methods for the
Solution of Linear Equations, Journal of Applied Sciences and
Environmental Management (JASEM), 2008.

[15] E. Kersale, Analytic Solution of Partial Differential Equations,
School of Mathematics, University of Leeds, 2003.

[16] M. Konstantinov, Foundations of Numerical Analysis, Second
Edition, 2007.

[17] R. Kress, Numerical Analysis, Springer-Verlag, New York, 1998.

[18] M. A. Lau and S. P. Kuruganty, Spread Sheets Implementations for
Solving Boundary-Valve Problems in Electromagnetics, Article 1,
2010.

[19] J. Mathews, Matlab Programming Guidebook for Numerical
Methods, 2% Edition, 1992.

[20] S. Mazumder, Numerical Methods for Partial Differential
Equations, the Ohio State University, 2015.

[21] G. Mazzola, G. Milmesiter and J. Weissmann, Comprehensive

Mathematics for Computer Scientists 2, Springer, 2005.

113

[22] A. R. Michell and D. F. Griffith, The Finite Difference Method in
Partial Differential Equations, John Willey & Sons, 1980.

[23] M. Necti, H. R. B. Orlande, M. J. colaco and R. M. Cotta, Finite
Difference Methods in Heat Transfer, Second Edition, CRC Press,
2017.

[24] J. Nocedal and S. Wright, Numerical Optimization, Series in
Operations Research, Springer Verlag, 1999.

[25] L. Olsen-Kettle, Numerical Solution of Partial Differential
Equations, The University of Queensland, 2011.

[26] E. Ostertagova, O. Ostertag and J. Bocko, Problems of Mechanics
Described by Parabolic and Hyperbolic Differential Equations (of
Second Order), MMAMS, Technical University of Kosice, 2011.

[27] N. Qatanani, Analysis of the Heat Equation with Non-Local
Radiation Terms in a Non-Convex Diffuse and Grey Surfaces,
European Journal of Scientific Research, 15(2), 245-254, 2006.

[28] C. Rycroft, Iterative Methods for Linear Systems, Lecture Notes,
UC Berkeley, Mathematics Department, November 2007.

[29] Y. Saad, Iterative Methods for Sparse Linear Systems, Second
Edition, Society for Industrial and Applied Mathematics (SIAM),
2003.

[30] G. D. Smith, Numerical Solutions of Partial Differential Equations,

Clarendon Press, Oxford, 1987.

114

[31] V. Thomee, From Finite Difference to Finite Elements A Short
History of Numerical Analysis of Partial Differential Equations,
Elsevier Science B. V., 2001.

[32] J. A. Trangenston, Numerical Solution of Elliptic and Parabolic
Partial Differential Equations, Cambridge University Press, 2013.

[33] C. Vuik, Iterative Solution Methods, Mathematics and Computer
Science, Delft Institue of Applied Mathematics, Morgan Kaufmann
Publishers, San Francisco, 2001.

[34] G. A. Watson, the History and Development of Numerical Analysis
in Scotland: A Personal Perspective, University of Dundee, 2009.

[35] Z. Wu, J. Yin and C. Wang, Elliptic and Parabolic Equations, Jilin
University, China, 2006.

[36] T. Young and M. J. Mohlenkamp, Introduction to Numerical
Methods and MATLAB Programing for Engineers, Ohio
University, 2018.

[37] L. Zhilin, Z. Qiao and T. Tang, Numerical Solution of Differential
Equations Introduction to Finite Difference and Finite Element

Methods, Cambridge University Press, 2018.

115
Appendix A

% Matlab code for Jacobi iterative method
% lterative Solutions of linear equations: Jacobi Method
% Linear system: Au="hb
% Coefficient matrix A, right-hand side vector b, unknown vector u .
clc
clear
format long
tic
A=[1.8-0.40000000;-0418-04000000;0-0418000000;-10
018-040000;0-10-0418-04000,00-10-0418000;,000-10
018-0400000-10-0418-04,00000-10-0.41.8];
b=[40;0;20;40;0;20;40;0;20];
%show the exact solution
inv(A)*b
% Set initial value of u to zero column vector
u=[0;0,0;0];
% Set the iteration number =k , so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix
% loop for iterations
err=1.0;
k=0;
while err >1.0e-7

fori=1:4
un()=(b(i)-(AG,:)*u-A,)*u()))/A(,i);

end

err= max(abs(un'-u));

116
k=k+1;

M(k,:)=[un"];
u=un’;
end
% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

117
Appendix B

% Matlab code for Gauss-Seidel iterative method

% lterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: Au="hb

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[1.8-0.40000000;-0418-04000000;0-0418000000;-10

018-040000;0-10-0418-04000,00-10-0418000;,000-10

018-0400000-10-0418-04,00000-10-0.41.8];

b=[40;0;20;40;0;20;40;0;20];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0,0;0];

% Set the iteration number =k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

err=1.0;

k=0;

while err >1.0e-7

ul=u;

118
for i=1:4

u(i)=(o(i)-(AG,:)*u-AdLD)*ui))/AdL);
end
un=u’
err= max(abs(un'-u0));
k=k+1;

M(k,:)=[uT;

end

%

show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

K

119
Appendix C

% Matlab code for SOR iterative method

% lterative Solutions of linear equations: SOR me Method

% Linear system: Au="hb

% Coefficient matrix A, right-hand side vector b, unknown vector u.
clear

format long

tic
A=[18-040000000;-041.8-04000000;0-041.8000000;-10
018-040000;0-10-0.41.8-04000;,00-10-0.41.8000;000-10
018-040,0000-10-0418-04,00000-10-0.41.8];
b=[40;0;20;40;0;20;40;0;20];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number =k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.02;

err=1.0;

k=0;

while err >1.0e-7

ul=u;

120
fori=1:4
u(i)=(L-w)*u()+W/A(1L1))* (b 3)-(AG:) u-AdL1)*u(i)));
end
un=u’
err= max(abs(un'-u0));
k=k+1;
M(k,:)=[u’];
end
% show the cpu time
toc
% show the solutions
M
% show the error
err
% show the total iteration number

K

121
Appendix D

function [u, niter, flag] = solveCG(A, 1, s, tol, maxiter)
% SOLVECG Conjugate Gradients method.

% Input parameters:

% A . Symmetric, positive definite NxN matrix
% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break
% condition

% maxiter : Maximum number of iterations to perform
% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum
% number of iterations, O otherwise (= iteration
% successful).

tic

A=[1.8-0.40000000;-0418-04000000;0-0418000000;-10
018-040000;0-10-0418-04000,00-10-041.8000;000-10
018-0400000-10-0418-04,00000-10-0.41.8];
f=[40;0;20;40;0;20;40;0;20];

err=1.0;
format long

s=[0;0;0;0;0;0;0;0;0];

122
tol=0.0000001;
maxiter =6;
u=s; % Set u_0 to the start vector s
r=1-A*s; % Compute first residuum
p=r
rho = r'*r;
niter =0; % Init counter for number of iterations
flag=0; % Init break flag
% Compute norm of right-hand side to take relative residuum as
% break condition.
normf = norm(f);
if normf <eps % if the norm is very close to zero, take the
% absolute residuum instead as break condition
% (norm(r) > tol), since the relative
% residuum will not work (division by zero).
warning(['norm(f) is very close to zero, taking absolute residuum' ...
" as break condition.");
normf = 1;
end
while (norm(r)/normf > tol) % Test break condition
a=A*p;
alpha = rho/(a"*p);
u =u + alpha*p;

r =r - alpha*a;

123
rho_new = r'*r;

p =r+rho_new/rho * p;

rho = rho_new;

niter = niter + 1;

if (niter == maxiter) % if max. number of iterations
flag = 1; % is reached, break.
break
end
end

% show the cpu time
toc

u

err= max(abs(u-0))

niter

124
Appendix E
% Matlab code for Jacobi iterative method
% lterative Solutions of linear equations: Jacobi Method
% Linear system: Au="hb
% Coefficient matrix A, right-hand side vector b, unknown vector u .
clc
clear
format long
tic
A=[1.687-0.4500;-0.451900;-1.11201.788 -0.45;0 -1 -0.45 1.9];
b=[0.866;0.5;0;0];
%show the exact solution
inv(A)*b
% Set initial value of u to zero column vector
u=[0;0;0;0];
% Set the iteration number =k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix
% loop for iterations
err=1.0;
k=0;
while err >1.0e-7
fori=1:4
un()=(b(i)-(A®,:)*u-A,D)*u()))/A,i);
end
err= max(abs(un'-u));
k=k+1;
M(k,:)=[un'];

125

u=un’;
end
% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number
k

126
Appendix F

% Matlab code for Gauss-Seidel iterative method

% lterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: Au="hb

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[1.687-0.4500;-0.451900;-1.11201.788 -0.45;0 -1 -0.45 1.9];

b=[0.866;0.5;0;0];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number =k, so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

err=1.0;

k=0;

while err >1.0e-7

ul=u;

fori=1:4
u(i)=(b(i)-(A(,:)*u-Ad,)*ui))/A,);
end

un=u,

127
err= max(abs(un'-u0));

k=k+1;
M(k,:)=[u'];
end
% show the cpu time
toc
% show the solutions
M
% show the error
err

% show the total iteration number

K

128
Appendix G

% Matlab code for SOR iterative method

% lterative Solutions of linear equations: SOR me Method

% Linear system: Au="hb

% Coefficient matrix A, right-hand side vector b, unknown vector u.
clear

format long

tic
A=[1.687 -0.4500;-0.451.900;-1.112 0 1.788 -0.45;0 -1 -0.45 1.9];
b=[0.866;0.5;0;0];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number =k, so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.02;

err=1.0;

k=0;

while err >1.0e-7
u0=u;

fori=1:4
u(1)=(1-w)*u(i)+(w/A(i,1))*(b(i)-(AG,:)*u-Ad,i)*u(i));

end

un=u’;
err= max(abs(un'-u0));
k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

K

129

130
Appendix H

function [u, niter, flag] = solveCG(A, 1, s, tol, maxiter)
% SOLVECG Conjugate Gradients method.

% Input parameters:

% A . Symmetric, positive definite NxN matrix
% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break
% condition

% maxiter : Maximum number of iterations to perform
% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum
% number of iterations, O otherwise (= iteration
% successful).

tic

A=[1.687-0.4500;-0.451.900;-1.112 0 1.788 -0.45;0 -1 -0.45 1.9];
b=[0.866;0.5;0;0];

err=1.0;

format long

s=[0;0;0;0];

tol=0.0000001;

maxiter =6;

131
u=s; % Set u_0 to the start vector s
r=f-A*s; % Compute first residuum
p=r
rho = r'*r;
niter =0; % Init counter for number of iterations
flag=0; % Init break flag
% Compute norm of right-hand side to take relative residuum as
% break condition.
normf = norm(f);
if normf <eps % if the norm is very close to zero, take the
% absolute residuum instead as break condition
% (norm(r) > tol), since the relative
% residuum will not work (division by zero).
warning(['norm(f) is very close to zero, taking absolute residuum’ ...
" as break condition."));
normf = 1;
end
while (norm(r)/normf > tol) % Test break condition
a=A*p;
alpha = rho/(a"*p);
u=u + alpha*p;
r =r - alpha*a;
rho_new = r'*r;

p =r+ rho_new/rho * p;

132
rho = rho_new;

niter = niter + 1;

if (niter == maxiter) % if max. number of iterations
flag = 1; % is reached, break.
break
end
end

% show the cpu time
toc

u

err= max(abs(u-0))

niter

133
Appendix |

% Matlab code for Jacobi iterative method
% lterative Solutions of linear equations: Jacobi Method
% Linear system: Au="hb
% Coefficient matrix A, right-hand side vector b, unknown vector u .
clc
clear
format long
tic
A=[1.4909 -0.450 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9];
b=[0.866;0.5;0;0];
%show the exact solution
inv(A)*b
% Set initial value of u to zero column vector
u=[0;0;0;0];
% Set the iteration number =k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix
% loop for iterations
err=1.0;
k=0;
while err >1.0e-7

fori=1:4
un(i)=(b(i)-(AG,:)*u-A,D)*u()))/A,i);

end

err= max(abs(un'-u));

k=k+1;
M(k,:)=[un'];

134

u=un’;
end
% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number
k

135
Appendix J

% Matlab code for Gauss-Seidel iterative method

% lterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: Au="hb

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[1.4909 -0.450 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9];

b=[0.866;0.5;0;0];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number =k, so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

err=1.0;

k=0;

while err >1.0e-7

ul=u;

fori=1:4
u(i)=(b(i)-(A(,:)*u-Ad,)*ui))/A,);
end

un=u,

136
err= max(abs(un'-u0));

k=k+1;
M(k,:)=[u'];
end
% show the cpu time
toc
% show the solutions
M
% show the error
err

% show the total iteration number

K

137
Appendix K

% Matlab code for SOR iterative method

% lterative Solutions of linear equations: SOR me Method

% Linear system: Au="hb

% Coefficient matrix A, right-hand side vector b, unknown vector u.
clear

format long

tic
A=[1.4909 -0.45 0 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9];
b=[0.866;0.5;0;0];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number =k, so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.02;

err=1.0;

k=0;

while err >1.0e-7
u0=u;

fori=1:4
u(1)=(1-w)*u(i)+(w/A(i,1))*(b(i)-(AG,:)*u-Ad,i)*u(i));

end

un=u’;
err= max(abs(un'-u0));
k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

K

138

139
Appendix L

function [u, niter, flag] = solveCG(A, 1, s, tol, maxiter)
% SOLVECG Conjugate Gradients method.

% Input parameters:

% A . Symmetric, positive definite NxN matrix
% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break
% condition

% maxiter : Maximum number of iterations to perform
% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum
% number of iterations, O otherwise (= iteration
% successful).

tic

A=[1.4909 -0.450 0;-0.451.900;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9];
f=[0.866;0.5;0;0];

err=1.0;

format long
s=[0;0;0;0];
tol=0.0000001;

maxiter =6;

140
u=s; % Set u_0 to the start vector s
r=f-A*s; % Compute first residuum
p=r
rho = r'*r;
niter =0; % Init counter for number of iterations
flag=0; % Init break flag
% Compute norm of right-hand side to take relative residuum as
% break condition.
normf = norm(f);
if normf <eps % if the norm is very close to zero, take the
% absolute residuum instead as break condition
% (norm(r) > tol), since the relative
% residuum will not work (division by zero).
warning(['norm(f) is very close to zero, taking absolute residuum’ ...
" as break condition."));
normf = 1;
end
while (norm(r)/normf > tol) % Test break condition
a=A*p;
alpha = rho/(a"*p);
u=u + alpha*p;
r =r - alpha*a;
rho_new = r'*r;

p =r+ rho_new/rho * p;

141
rho = rho_new;

niter = niter + 1;

if (niter == maxiter) % if max. number of iterations
flag = 1; % is reached, break.
break
end
end

% show the cpu time
toc

u

err= max(abs(u-0))

niter

142
Appendix M
% Matlab code for Jacobi iterative method
% lterative Solutions of linear equations: Jacobi Method
% Linear system: Au="hb
% Coefficient matrix A, right-hand side vector b, unknown vector u .
clc
clear
format long
tic
A=[19-0.4500;-0451900;-101.9-0.45;0 -1 -0.45 1.9];
b=[0.86683;0.51167;0.0016667;0.0033333];
%show the exact solution
inv(A)*b
% Set initial value of u to zero column vector
u=[0;0;0;0];
% Set the iteration number =k, so initial k equals 0
% Set the stopping criteria such that err<1.0e-7
% Show the M matrix
% loop for iterations
err=1.0;
k=0;
while err >1.0e-7
fori=1:4
un()=(b(i)-(A®,:)*u-A,D)*u()))/A,i);
end
err= max(abs(un'-u));
k=k+1;
M(k,:)=[un'];

143

u=un’;
end
% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number
k

144
Appendix N

% Matlab code for Gauss-Seidel iterative method

% lterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: Au="hb

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[1.9-0.4500;-0451900;-101.9-0.45;0-1-0.451.9];

b=[0.86683;0.51167;0.0016667;0.0033333];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number =k, so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

err=1.0;

k=0;

while err >1.0e-7

ul=u;

fori=1:4
u(i)=(b(i)-(A(,:)*u-Ad,)*ui))/A,);
end

un=u,

145
err= max(abs(un'-u0));

k=k+1;
M(k,:)=[u'];
end
% show the cpu time
toc
% show the solutions
M
% show the error
err

% show the total iteration number

K

146
Appendix O

% Matlab code for SOR iterative method

% lterative Solutions of linear equations: SOR me Method

% Linear system: Au="hb

% Coefficient matrix A, right-hand side vector b, unknown vector u.
clear

format long

tic
A=[19-0.4500;-0451900;-101.9-0.45;0 -1 -0.45 1.9];
b=[0.86683;0.51167;0.0016667;0.0033333];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number =k, so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.02;

err=1.0;

k=0;

while err >1.0e-7
u0=u;

fori=1:4
u(1)=(1-w)*u(i)+(w/A(i,1))*(b(i)-(AG,:)*u-Ad,i)*u(i));

end

un=u’;
err= max(abs(un'-u0));
k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

K

147

148
Appendix P

function [u, niter, flag] = solveCG(A, 1, s, tol, maxiter)
% SOLVECG Conjugate Gradients method.

% Input parameters:

% A . Symmetric, positive definite NxN matrix
% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break
% condition

% maxiter : Maximum number of iterations to perform
% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum
% number of iterations, O otherwise (= iteration
% successful).

Tic

A=[19-0.4500;-0451900;-101.9-0.45;0 -1 -0.45 1.9];
f=[0.86683;0.51167,0.0016667,0.0033333];

err=1.0;

format long
s=[0;0;0;0];
tol=0.0000001;

149
maxiter =6;
u=s; % Set u_0 to the start vector s
r=71-A*s; % Compute first residuum
p=r
rho = r'*r;
niter =0; % Init counter for number of iterations
flag=0; % Init break flag
% Compute norm of right-hand side to take relative residuum as
% break condition.
normf = norm(f);
if normf <eps % if the norm is very close to zero, take the
% absolute residuum instead as break condition
% (norm(r) > tol), since the relative
% residuum will not work (division by zero).
warning(['norm(f) is very close to zero, taking absolute residuum' ...
" as break condition."));
normf = 1;
end
while (norm(r)/normf > tol) % Test break condition
a=A*p;
alpha = rho/(a"*p);
u =u + alpha*p;
r =r - alpha*a;

rho_new = r'*r;

150
p =r+rho_new/rho * p;
rho = rho_new;

niter = niter + 1;

if (niter == maxiter) % if max. number of iterations
flag = 1; % is reached, break.
break
end
end

% show the cpu time
toc

u

err= max(abs(u-0))

niter

daihagll 7 ladl) daals

Ldad) bl Al

Aiiadl Adalatl) daleall Jad dase Gk
ABISal) Lbail

%Y

@L’\h‘é PN |

LIS abuall) B pdeald) dags o Jgaal) cildbital Ylasind dag) ol Cuadd
2019

A81<al) dudadl) dufiall dubialatl) Alalaal) Jad dase (3
e
las 3gana pran
il
gjmaé PERE |

uadlall
N alaaS el lyasty dadalyy piles IS8 o el Luanlally Abydll Jalslall (e S
adyall dloalill Alaleall Liensiod Al sda B . alshl) 038 dals Cocal Abya Llials
A Chagl 2350 Bhall Alas o 3K 2 Gumy Lol Aapdll e A8 Adaal
.l glal)
dad o oS el e Yoy L Abas Bila Wglas canay Sl oda alaea o8 cadlgl)
Anlual)l culla) aladiwly baae
baae lgla o5 Bpand) Lagyal) (g Adlide plgil pe Acslaiall hall Alsles cdag k¥ o2 b
Adalal) dbled Jal) cujil sagasall yealiall dinhy sagasall Gl danh Hladial;
ol e s s I Jgemsll 530 <8 I Alabeal) isat oy 13gas LIS 4350
tdie dyhSs Gyb alaials lels (Ko
Jacobi, Gauss-Seidel, Successive Over Relaxation, Conjugate Gradient
Methods
PULITRER PN Jac g
5ol ST o saganall (3ol Ayl) Auaaal) i) i Le (DIA e andl 138 3 Lang
OsS dla b oSen (b Uiy doleall o s e Jeaall s3g0nall ualiadl Gk e
Baiaall cVlaall 48y ST Baganall ealiall dinh oly cdeliiie Lowdia JIKE1 53 Jlal
Y il Jaas Conjugate Gradient dlsall dayylall () Jaadl cliayl daksiia juallg

LAY Lol GHlall o A8y

