
An-Najah National University

Faculty of Graduate Studies

Computational Techniques for

Solving Linear Parabolic Partial

Differential Equation

By

Sameer Mahmoud Musleh

Supervisor

 Prof. Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Mathematics, Faculty of Graduate Studies,

An-Najah National University, Nablus-Palestine.

2019

III

Dedication

I dedicate my work to all my family members, to my parents, my wife, my

sisters and my brothers who encourage me to learn, grow and develop and

who have been a source of encouragement and inspiration to me.

IV

Acknowledgement

In the beginning, I am grateful to the God to complete this thesis. I wish to

express my sincere thanks to Prof. Dr. Naji Qatanani for providing me with

all the necessary facilities for research and I am thankful and indebted to

him for sharing expertise, sincere and valuable guidance and

encouragement extended to me.

My thanks also to internal examiner Dr. Adnan Daraghmeh and my

external examiner Dr. Saed Mallak.

I take the opportunity to express gratitude to all my family members for

their help and support.

I also thank my parents, my wife and my daughter for their encouragement,

support and attention.

V

 الاقرار

 انا السهقع ادناه مقجم الخسالة التي تحسل عشهان:

Computational Techniques for Solving Linear Parabolic Partial

Differential Equation

ما تست الاشارة اليو باستثشاءأقخ بأن ما اشتسمت عميو ىحه الخسالة انسا ىي نتاج جيجي الخاص،
حيثسا ورد، وان ىحه الخسالة ككل، او اي جدء مشيا لم يقجم من قبل لشيل اي درجة عمسية او بحث

 بحثي لجى اي مؤسدة تعميسية او بحثية اخخى. عمسي او

Declaration

The work provided in this thesis, unless otherwise referenced, is the

researcher’s own work, and has not been submitted elsewhere for any other

degree or qualification.

Student’s name: :اسم الطالب

Signature: :التوقيع

Date: :التاريخ

VI

Table of Contents

No Contents Pages

 Dedication III

 Acknowledgement IV

 Declaration V

 Abstract IX

 Introduction 1

 Chapter One: Mathematical Preliminaries 5

1.1 Second Order Linear Partial Differential Equation and

their Classification

5

1.2 Existence of Solution to Heat Equation 6

1.3 Uniqueness of Solution for Linear Parabolic Partial

Differential Equation

8

 Chapter Two: Numerical Techniques 10

2.1 Parabolic Equation in One Space Dimension 10

2.2 Finite Difference Method Principle 11

2.3 Strategy of Discretization and Stability Considerations 12

2.4 Parabolic Partial Differential Equation Subject to

Boundary Conditions

20

2.4.1 Heat Equation with Dirichlet Boundary Conditions 20

2.4.2 Heat Equation with Neumann Boundary Conditions 24

2.4.3 Heat Equation with Robin’s Boundary Condition 26

2.5 Finite Element Method 27

2.5.1 The Principle of Finite Element Method 27

2.5.2 Finite Element Method for Dirichlet Boundary

Conditions

28

2.5.3 Finite Element Method for Neumann Boundary 33

VII

Conditions

2.5.4 Finite Element Method with Robin’s Boundary

Conditions

36

 Chapter Three: Iterative Methods for Solving

Linear Systems

37

3.1 Jacobi Method 38

3.2 Gauss-Seidel Method 41

3.3 Successive Over Relaxation (SOR) Method 43

3.4 Conjugate Gradient Method 45

3.5 Convergence of Iterative Methods 47

3.5.1 Convergence of Jacobi and Gauss-Seidel Iterative

Methods

49

3.5.2 Convergence of SOR iterative Method 49

3.5.3 Convergence of Conjugate Gradient Method 50

 Chapter Four: Numerical Results 52

4.1 Conclusion 109

 References 110

 Appendix A 115

 Appendix B 117

 Appendix C 119

 Appendix D 121

 Appendix E 124

 Appendix F 126

 Appendix G 128

 Appendix H 130

 Appendix I 133

 Appendix J 135

VIII

 Appendix K 137

 Appendix L 139

 Appendix M 142

 Appendix N 144

 Appendix O 146

 Appendix P 148

 ب الممخص

IX

Computational Techniques for Solving Linear Parabolic Partial

Differential Equation

By

Sameer Mahmoud Musleh

Supervisor

Prof. Naji Qatanani

Abstract

Parabolic partial differential equations appear in various fields of science

and engineering. These involve heat conduction, particle diffusion and

ocean propagation. The most common example of such equation is the heat

equation.

Physical problems involving parabolic equations are hard to solve

analytically, instead, they can be solved numerically using computational

methods.

In this work, initial boundary value problems involving heat diffusion

phenomenon will be solved. This will be carried out using the finite

difference and finite element methods.

The discretizing approach transforms the initial boundary value problem

into a linear system of algebraic equations. Consequently, we use some

iterative techniques such as, the Jacobi Method, the Gauss-Seidel Method,

the Successive over relaxation (SOR) Method and the Conjugate Gradient

Method to solve the resulted linear system. Some numerical test cases will

be solved using the proposed methods.

Numerical results show clearly that the finite difference method is more

effective than the finite element method for regular domains. Moreover, the

results show that the conjugate gradient method gives the most effective

results amongst the other iterative schemes.

1

Introduction

Partial differential equations play a very important role in science,

technology and used to describe a wide variety of time dependent

phenomena. These include: heat conduction, particle diffusion, ocean

acoustic propagation and pricing of derivatives investment.

At the heart of many engineering and scientific analysis is the solution of

differential equations, both ordinary and partial differential equations

(PDEs). The solution of the later types of equation can be very challenging,

depending on the type of equation, the number of independent variables,

the boundary and initial conditions and other factors. A variety of broadly

applicable methods have been developed to solve such problems. Among

the deterministic methods for solving differential equations, are the finite

element method and the finite difference method [7, 5]. These methods

appear in certain classification of problems for reasons that are deeply

rooted in mathematical foundation of each method. Although trends are

slowly changing, the finite element method has been traditionally used for

solving problems in solid mechanics. While the finite difference method

traditionally has been used to solve problems involving fluid flow and heat

transfer problems [7, 31].

 The finite difference method is one of the oldest and most popular method

for solving partial differential equations. This method is based on the

application of Taylor expansion used to approximate the solution of partial

differential equations [31, 34].

2

For time dependent problems, considerable progress in finite difference

method occurred during the period that followed the end of the Second

World War. When the large scale practical applications became possible

with the aid of computers, a major role was played by the work of Van

Neumann that was partly mentioned in O. Brien Hyman and Kaplan studies

in (1951) [31]. As far as parabolic differential equations are concerned,

they were highlighted in the early paper done by John in (1951) that

included this theory. For initial boundary value problems, implicit methods

were established in this period, for example Crale and Nicolson in (1947).

The finite difference theory for general initial boundary value problems and

parabolic problems then, had an intense period of development during the

50s and the 60s, when the concept of stability was explored in Lax

equivalence theorem and the Kreiss matrix lemma, and further major

contributions made by Douglas Lees, Samarskii, Widlund and others

[31,5].

On the other hand, the finite element method was understood to be used as

an approximation for solving partial differential equations utilizing a

vartiational principle and piecewise polynomial approximation. G. Leibnitz

(1646-1716) in 1696 was the first author to introduce the finite element

method. At the same time L. Euler (1707-1783) introduced the vartiational

methods with the approximation approach being essentially the main tool

employed for derivation of Euler equation [4].

3

The finite difference and finite element methods are now two universally

approaches use to approximate linear and nonlinear differential equations

governing mathematical and engineering problems [5,31]. Finite difference

method is simple to formulate and can readily be extended to approximate

two- or three-dimensional problems. In addition, it is easy to learn, apply

and has the flexibility in dealing with problems involving regular geometry.

The finite element method has the flexibility in dealing with problems

involving irregular geometry. However, with the evolving of numerical

grid generation technique, the finite difference method now possesses the

geometrical flexibility of finite element method while maintaining the

simplicity of the conventional finite difference technique [23].

In the modern era several researchers and authors deal with parabolic

partial differential equations and its applications in several fields. Those

researchers are: R. Bueckkine, C. Camacho and G. Fabbri worked in

economics fields [6]. While F. Abdelnour, H. Voss and A. Raj worked in

the field of neuroscience [1]. Other researchers: E. Ostertagova, O.

Ostertag and J. Bocko worked in mechanics field [26]. In addition, N.

Qatanani worked in the field of heat equation with non-local radiation

terms [27].

This thesis is organized as follows: Chapter 1 contains the basic elements

and some preliminaries related to second order partial differential

equations. In chapter 2 details of finite difference and finite element

methods for homogeneous heat equation, with respect to different types of

4

boundary conditions are presented. Chapter 3 presents some iterative

methods namely: the Jacobi, the Gauss-Seidle, the successive over

relaxation (SOR) and the Conjugate Gradient methods used for solving

linear systems. These systems resulted upon using the finite difference and

finite element methods. Chapter 4 contains some numerical examples,

comparisons and results.

5

Chapter One

Mathematical Preliminaries

In this chapter we present some basic definitions and classification of

second order linear partial differential equations

1.1 Second Order Linear Partial Differential Equation and their

Classification

A second order linear partial differential equation in two variables

has the general form:

where the coefficients A, B, C, D, E, F and G can either be constants or

functions of variables and .

 Equation (1.1) can be classified into three types, depending on the

discriminant as follows:

1- Hyperbolic

Equation (1.1) is called hyperbolic if the discriminant is positive

(i.e.). For example, wave equation.

2- Elliptic

Equation (1.1) is called elliptic if the discriminant is negative

(i.e.). For example, Laplace’s equation.

6

3- Parabolic

Equation (1.1) is called parabolic if the discriminant is equal zero

(i.e.). For example, heat equation.

In this thesis, we will investigate the linear parabolic partial differential

equation with respect to three boundary conditions. These conditions are:

1- Dirichlet Boundary Conditions

The condition where the value of the unknown function is specified on the

boundary, on , with being a prescribed continuous function

on (Boundaries).

2- Neumann Boundary Conditions

The normal derivative

 satisfies the condition,

 on B, where is

prescribed function continuous on (Boundaries).

The symbol

 denotes the directional derivatives of u along the outward

orthogonal to B.

3- Robin’s Boundary Conditions (Mixed Boundary Conditions)

These conditions contain the value of the unknown function and its

orthogonal derivatives at the boundary of the domain [11].

1.2 Existence of Solution to Heat Equation

Consider the initial boundary value problem

7

where , is bounded domain and

Theorem 1:[35]

Let , ,

 ̅ and

 ̅ . Then the

first initial boundary problem (1.2), (1.3) admits a unique solution

 ̅ .

Theorem 2: [35]

Assume that has the exterior ball property and there exist a sequence

{ } with smooth boundary such that ̅ and

approximate uniformly. Let ,

 ̅ and

 ̅ . Then the problem (1.2), (1.3) admits a unique solution

 ̅ ̅

Proof:

Without loss of generality, we assume that , otherwise we consider

the equation for the approximation problem of (1.2), (1.3). We

first prove that the limit of the solution of the approximation problems

satisfies equation (1.2) and then apply the barrier function technique to

check that at equal zero. Here, we only point out the construction

of the barrier function . Let then the barrier

function should have the following properties:

i) , for all ̅ { }

ii) ̅ ,

 in ̅

8

Now for point at the lateral boundary, we choose

 and for the point . Clearly the function

defined possesses the above properties.

For more details see [35].

1.3 Uniqueness of Solution for Linear Parabolic Partial

Differential Equation

To demonstrate uniqueness of solution for one dimensional heat equation

with respect to Dirichlet or Neumann boundary conditions, Consider the

following problem [15]:

 = in

with at and

 and , (Dirichlet)

or

 and

 , (Neumann)

Suppose that and are two solutions and consider then

 satisfies

 = in

with at and

 and , (Dirichlet)

or

 and

 , (Neumann)

Consider the function of time

9

∫

 such that and . As

which represents the energy of the function .

 ∫

 ∫

 (where =)

Integrating ∫

 by parts, yields:

[

]

 ∫

 ∫

then

Since

 . So and , that implies .

11

Chapter Two

Numerical Techniques

Finite difference and finite element methods are numerical techniques that

will be used to discretize the heat equation with respect to different types of

boundary conditions.

2.1 Parabolic Equation in One Space Dimension

A linear parabolic partial differential equation takes the general form,

which is defined within some prescribed domain R of the space as

shown in Figure (2.1) with this domain, the functions and

are strictly positive and is non-negative.

We focus our attention on the finite difference method to discretize

parabolic equation as a simplified form of equation (2.1), that is, the

diffusion (heat) equation with constant coefficients

 and [22], i.e.

 = , (2.2)

11

Figure (2.1): Domain of Parabolic equation

2.2 Finite Difference Method Principle

The principle of finite difference method is one of numerical schemes that

used to solve partial differential equations. This can be done by replacing

the partial derivatives of dependent variables of the unknown function

 with partial differential equations using finite difference

approximation with error. This error is called discretization error or

truncation error.

This procedure converts the domain R (where the independent variables are

defined) to vertical and horizontal lines called grid lines. Their intersections

are called grid points as shown in Figure (2.2).

The replacement of partial derivatives by difference approximation formula

depends on Taylor’s theorem.

 Taylor’s theorem [21]

Let be an times differentiable function on an open interval

containing and . Then

12

where

for some number between and

2.3 Strategy of Discretization and Stability Considerations

At this point, finite difference method will be used to discretize the

diffusion equation

 = , and

The rectangular domain R in Figure (2.1) is converted into identical small

rectangles by:

 and for

where

as shown in Figure (2.2).

13

Figure (2.2(: Discretize the domain of heat equation

and then replacing partial derivatives and by the value of the

unknown function at each grid point i.e. ()

To replace partial derivatives of unknown function using Taylor’s series,

difference method is applied on t, and used on and to obtain

 ()

 ()

where ϵ ().

Also, by applying Taylor’s theorem in , we get

 () () ()

 ()

where ϵ ().

14

Substituting (2.5) and (2.6) into (2.2) yields

 ()

 *

 () () ()

+

with truncation error

 ()

for simplicity, we use the notation to approximate , then

equation (2.7) becomes

 [

]

Solving (2.8) for , then the finite difference method is called forward-

difference method as shown in Figure (2.3). We get,

 (

)

()

for each

Then, we have

 , ,…,

15

Figure (2.3): Forward-difference method

Then we generate the next t-row by

 (

)

()

 (

)

()

 (

)

()

Now, we can use the values to generate all and so on [7,11].

The explicit nature of the difference method implies that the

 matrix associated with this system (2.10) can be written

in tridiagonal form.

16

where

 .

So, the approximate solution is demonstrated by , for

 , with error

Stability Considerations

Suppose that error

 is made in representing

the initial data

(for any particular step, the choice of the initial step must be convenient).

An error of A propagates in , because

 ()

This process continues. At the n
th

 time step, the error in due to

equals [7]. The forward difference method is consequently stable

when these errors do not grow as increase. But is true if and only if for

initial error , we have ‖ ‖ ‖ ‖ for any and any natural

17

norm (see Definition 3.3). Hence, we must have || || , this condition

requires that .

The forward difference method is stable if .

The eigenvalues of matrix A can be expressed as follow:

 (

)

so, the condition for stability is reduced to determining whether

 [(

)]

and this is simplifying to

 (

)

 for

Stability requires that this inequality condition holds as , the fact

that

 (

)

that means, stability will occur if

 , by definition 

, so

this inequality requires that and must be chosen so that,

 .

If we use and , then the finite difference method is called backward

finite difference method, as shown in Figure (2.4).

18

Figure (2.4): Backward-difference method

When considering an implicit difference method that results from using the

backward –difference quotient for then it takes the form:

 ()

where ϵ ().

Substituting equation (2.5) and (2.6) into (2.11), yields:

 [

]

with truncation error

 ()

 Solving equation (2.12) for , we get:

 (

)

()

for and

19

 The same argument can be applied on boundaries using the knowledge that

 , for . This difference method has the

following matrix representation

where

Therefore, the approximate solution is given by , for

 , with truncation error [7,11].

Stability considerations

The stability for backward-difference method can be illustrated by

analyzing the eigenvalues of the matrix A. For the backward-difference

method the eigenvalues are:

 (

)

since , so we have , for all . Since the

eigenvalues of are the reciprocals of those of A and the spectral radius

 [7]. This implies that is a convergent matrix.

21

An error in the initial data produces an error at n
th

 step of

backward-difference method. Since is convergent, then

This means, the method is stable, regardless of the choice of

. This

implies that the backward-difference method is unconditionally stable [7].

2.4 Parabolic Partial Differential Equation Subject to Boundary

Conditions

Finding the solution for special case of heat equation depending on different

types of boundary conditions, namely, Dirichlet, Neumann and Robin’s

boundary conditions. Consequently, the unknown function must satisfy these

conditions at the boundary.

2.4.1 Heat Equation with Dirichlet Boundary Conditions

The Dirichlet boundary conditions, obtained by the German mathematician

Dirichlet, is also known as the boundary condition of the first order. In this

type of boundary conditions, the value of dependent variable is prescribed on

the boundary.

To derive the formula of finite difference approximation with Dirichlet

boundary condition for special case of heat equation

 (2.14)

21

We consider three points , and which are located on x-axis

with an equal distance between them as shown in Figure (2.5).

Figure (2.5): Three points , and which are located on x-axis

Consider the points , and are located on t-axis, then

the value of unknown function at these points are , and

respectively as shown in Figure (2.6)

Figure (2.6): Three points , and which are located on t-axis

Now, Taylor’s theorem is used to express , in the form of

Taylor expansion about the point as follows:

 = +

 +

 +

 +

 + O((2.15)

 =

 +

 -

 +

 + O((2.16)

Adding (2.15) and (2.16) yields

22

Equation (2.17) is a finite difference approximation with error term

of second order for

 .

Subtracting (2.15) and (2.16) yields

Similarly, consider three points , and , which are located on t-

axis with an equal distance between them using Taylor expansions to

get and about the point j

 =

 +

 +

 + O((2.19)

 = +

 +

 +

 +

 + O((2.20)

Subtracting equations (2.19) and (2.20) yields

Substituting equations (2.17) and (2.21) into (2.14), we get

Solving equation (2.22) for , we get

[]

 []

for and

23

This is valid for any 5 points as shown in Figure (2.7).

Figure (2.7): Combining x-axis and t-axis around the point

Assuming that Dirichlet conditions defined on the semi-rectangular domain

 and , as shown in Figure (2.8).

Figure (2.8): Dirichlet boundary conditions defined on the rectangular domain

24

 Let be given on all boundaries of the domain, so all

points in boundary grid (black points) and corner points (red points) are

known, and for corner points the following equations are [20, 30]:

 (2.24)

2.4.2 Heat Equation with Neumann Boundary Conditions

The Neumann boundary conditions, credited to the German mathematician

Neumann, is also known as the boundary condition of the second kind. For

this type of boundary conditions, the value of the gradient of the dependent

variable normal to the boundary

 is prescribed on the boundary.

The Neumann boundary condition at the left boundary, for example, may

be represented as:

 (2.25)

where is the prescribed value of the derivatives.

 By applying the second approximation on the approximate equation (2.21)

using equation (2.18), the grid points are located at imaginary

boundary outside the domain towards the left. Here, the grid points fake

coordinates become as shown in Figure (2.9).

25

Figure (2.9): Neumann boundary condition defined on the left boundary

Equation (2.23) is approximated using equation (2.16), at the line .

thus,

 (2.26)

Using equation (2.23) at the point

[]

[] (2.27)

and putting equation (2.26) into (2.27) yields

 []

[] (2.28)

 For any two positive integers m and n, we use equation (2.24) for

 and , where the function is specified [32]. As

26

Dirichlet condition is specified on the boundary, the value of

{ },{ }, and { } are known.

Equation (2.24) is used to find the corner grid points.

2.4.3 Heat Equation with Robin’s Boundary Condition

This type of boundary condition, is a linear combination of the value of the

dependent variable and its normal gradient specified at the boundary. This

type of boundary condition is credited to the French mathematician

Gustave Robin. It is also known as the boundary condition of the third

kind, and sometimes referred to as the Robins boundary condition [7]. For

one dimensional problem, the Robin boundary condition can be shown as:

 (2.29)

where , and are prescribed constants. To apply the boundary

condition, it is first rewritten as follows:

 (2.30)

substituting equation (2.30) into equation (2.18) yields

 ()

Rearrangement equation (2.31) we get

 (

 ()) (2.32)

put equation (2.32) into equation (2.8) yields

27

* (

 ())+

[]

 * (

 ())+

[] (2.32)

and then the same argument for Neumann boundary conditions.

2.5 Finite Element Method

The finite element method is a numerical tool that can be used to determine

approximate solution to a large set of partial differential equations.

The finite element method considers the solution region (irregular shape)

comprises of many small, interconnected, sub-regions or elements and

gives an approximate solution for the governing equations, i.e. the complex

partial differential equations are reduced to either linear or nonlinear

simultaneous equations. Thus, the finite element discretization procedure

reduces the continuum problem, which has finite number of unknown, to

one with a finite number of unknowns at specified element points referred

to as nodes [3, 4]. Since the finite element method allows us to form the

elements, or sub-regions, in arbitrary sense, a close representation of the

boundaries of complicated domain is possible.

2.5.1 The Principle of Finite Element Method

The idea behind the finite element method is to divide the solution region

into non-over lapping elements or sub-regions.

28

The finite element allows a variety of element shapes, for example,

triangle, rectangle. Each element is formed by connecting a certain number

of nodes as shown in Figure (2.10).

Figure (2.10): Typical finite elements, nodes, edges

2.5.2 Finite Element Method for Dirichlet Boundary Conditions

The finite element method used to discretize the heat equation subject to

Dirichlet boundary conditions as follows:

 ,

 ,

As illustrated in section (2.3), the solution region is divided into a finite

number of elements and triangle elements and the collection of all elements

are used to resemble the original region as closely possible as shown in

Figure (2.11).

29

Figure (2.11): Rectangular domain with Dirichlet boundary conditions

For example, the region showed in Figure (2.11), divided into 40 equal

triangles. In this discretization, there are thirty global nodes, the blue nodes

are known since they are located on the boundaries and interior (green)

nodes are unknown.

Assuming that is the number of equal partitions of located on

the . In our case (from node 1 to node 2, and from node 2

to node 3 and so on), and the length of each partition is

 .

Also, let be the number of equal partitions of located on t-axis.

In our case , (from node 1 to node 12, and node 12 to node 13 and so

on), and the length of each partition is

 .

31

The coordinate for each node can be determined with respect to partition as

shown in Figure (2.12) as follows:

Figure (2.12): Coordinate for each node in finite element method

node 1: , node 2:

 , node 3:

 , …, node 30: .

Now, when deriving governing equation, for a typical element we

determine the coefficient matrix. For each element (triangle) , we have

nodes 1, 2 and 3 that must be assigned, so that global nodes associated with

an element are traversed in a counter clockwise. If we take element 1 and

locate each element coordinate as follows:

the local node 1 is coordinate

31

the local node 2 is coordinate

the local node 3 is coordinate

as shown in Figure (2.13).

Figure (2.13): The local node numbers are determined on nodes start form node 1, then node 2

and finally with node 12 (in a counterclockwise)

Similarly, the local node is determined for each element in the same way to

find coefficient matrix [9, 18].

For each element the following quantities are computed:

 (2.34)

32

where the subscripts refer to the local node number 1, 2 and 3 of element .

For example, in Figure (2.11), element (25) has global node 15, 16 and 22

respectively.

For each element and for are computed to obtain

element coefficient matrix by

 (2.35)

where

 The global coefficient matrix is assembled from the element’s coefficient

matrices. Since there are 30 nodes, the global coefficient matrix will be a

 matrix.

The computation of one diagonal and off-diagonal entries illustrated in the

following example, node 13, which corresponds to the entry in the

global coefficient matrix , belongs to element 11, 12 and 21, since node

13 is assigned local node number 3 in element 11 and 12, and local node

number 1 in element 21, as shown in Figure (2.11), the corresponding

global coefficient is

For off-diagonal entry , global link 10-15 corresponds to local link 1-

2 of element 14 and local link 1-3 of element 15, hence

33

 Define to be the vector of unknown nodes (interior nodes) and to be

the vector of prescribed boundary values as shown in Figure (2.11).

Define matrix to be a matrix of unknown nodes obtained from the

global coefficient matrix and matrix to be a matrix of unknown nodes

with prescribed boundary values that are obtained from the global

coefficient matrix.

In our case, is a matrix since we have 12 interior nodes (green

nodes) and is matrix since we have 12 interior nodes and 18

boundary nodes (blue nodes). Also, is a vector of size .

The vector of unknown nodes can be computed by using:

 (2.36)

The vector contains the approximation to the unknown nodes (interior

nodes) [18, 13].

2.5.3 Finite Element Method for Neumann Boundary Conditions

Consider the one-dimensional heat equation with Neumann boundary

condition, that is

 ,

34

Weak formulation starts by multiplying the partial differential equation by

test function on both sides, then integrate the resulting

equation over the domain [37]. We obtain the weak formulation:

∫ ∫ ∫ ∫

Integrating the right-hand side of equation (2.37) by part, we get

∫ ∫ ∫

 ∫ ∫

 Inserting the boundary condition in equation (3.38) yield

∫ ∫

 ∫

 ∫ ∫

 we can express equation (2.37) as:

 ()

where () ∫ ∫

Given a triangulation and finite space , with

 , denote a set of basis function for to seek the finite

element solution of form:

35

 ∑

Substituting (2.40) into (2.39) to get

(∑

) (∑

)

and let for , to obtain the following linear

system of ODEs:

[

] [

]

 [

] [

]

The corresponding problem can be expressed as:

with initial condition ,

Using the forward finite difference approximation, we get

Inserting (2.44) into (2.43) yields

36

Solving equation (2.45) with respect to , we have

2.5.4 Finite Element Method with Robin’s Boundary Conditions

Consider the one-dimensional heat equation with Robin’s boundary

conditions:

{

 (2.46)

where and are constants.

We do same argument in previous section, by multiplying both sides of

equation (2.46) by test function , then integrating by parts and

substitute the condition

 in equation (2.39) yields:

∫ ∫

 ∫

 ∫ ∫

The same procure in pervious section (2.5.3) to get the formula of finite

element for heat equation with Robin’s boundary condition.

37

Chapter Three

Iterative Methods for Solving Linear Systems

In previous chapter, finite difference and finite element methods are used to

discretize the partial differential equations. This discretization yields a

system of linear equations which can be solved by different iterative

schemes [10]. In this chapter we will use the Jacobi, the Gauss-Seidel, the

Successive over Relaxation and the Conjugate Gradient methods to solve

this linear system and discuss their convergence properties.

For solving the linear system

 (3.1)

We start with an initial approximation to the solution , and then

generate a sequence { }
 that converges to solution .

Most iterative methods involve a process of converting the system

into an equivalent system:

 (3.2)

where is an matrix and is a column matrix.

After selecting an initial approximation , we generate a sequence of

vectors { }

 defined as [11]:

 (3.3)

38

Four iterative methods: Jacobi method, Gauss-Seidle method, successive

over relaxation (SOR) method and Gradient method, are to be considered.

3.1 Jacobi Method

The Jacobi method is the simplest iterative method for solving a (square)

linear system. This method depends on two assumptions: the linear system

 has a unique solution and the coefficient matrix has no zeros on

its main diagonal. If any of the diagonal entries are zero, then rows and

columns must be interchanged to get a coefficient matrix that has nonzero

entries in the main diagonal [7].

To derive a general formula of Jacobi method, consider the following

 linear system

 (3.4)

We can rewrite (3.4) in a matrix form:

[

] [

] [

] (3.5)

where

39

 [

], [

] and [

]

 The equation (3.4) can be expressed in the form as follows:

 (3.6)

The system (3.6) can be illustrated into matrix form

[

]

[

]

[

]

[

]

 (3.7)

where

 =

[

]

 ,

[

]

Given initial approximation , we generate the sequence of vectors

{ }
 by computing:

41

*∑

 +

 and (3.8)

Also, we can derive formula (3.7) by splitting a matrix into its diagonal

and off-diagonal parts.

Let be the diagonal matrix where entries are those of matrix , let – be

strictly lower triangular matrix and – be the strictly upper triangular part

of matrix [12, 33].

With this notation, matrix is spilt into:

 (3.9)

where

 [

] [

]

and

 [

] .

 Substituting (3.9) into (3.1) yields

 (3.10)

Equation (3.10) can be written as:

41

If exists, then:

This result is the matrix form of the Jacobi scheme:

using and , we obtain the Jacobi technique

of the form:

So,

*∑

 +

 To find approximation we must know approximation for any

 where . Continuing this procedure, we obtain a sequence of

approximations [29,10].

3.2 Gauss-Seidel Method

This iterative method is used for solving a square linear system

which is similar to the Jacobi method. For the Jacobi method, the values of

 obtained in the iteration remain unchanged until the entire

(iteration has been calculated. With the Gauss-Seidel method, we

use the new values
 reached. For example, once we have computed

https://en.wikipedia.org/wiki/Jacobi_method

42

 from the first equation, its value is then used in the second equation

to obtain the new
 and so on, this is the difference between the

Jacobi and Gauss-Seidel methods [7].

To derive the general form of Gauss-Seidel method, consider the following

 linear system:

 (3.11)

Given initial approximation , we generate the sequence of vectors

{ }
 by computing:

In general, the Gauss-Seidel iterative method given by the sequence

* ∑

 ∑

 +

 and (3.12)

Rearranging equation (3.10) yields

43

if exists, then:

this result is the matrix form of the Gauss-Seidel scheme:

using and , we obtain the Gauss-

Seidel technique of the form [10,29]:

 .

3.3 Successive Over Relaxation (SOR) Method

To use successive over relaxation method, the coefficient matrix must be

symmetric and positive definite. For any real positive number is

called the relaxation parameter. If , then the method is called

successive under relaxation. This method can be used to achieve

convergence of systems that are not convergent by Gauss-Seidel method.

On the other hand, if , then the method is called successive over

relaxation method. Here, accelerated convergence of a linear systems that

are already convergent by Gauss-Seidel method. If , we get Gauss-

Seidel method [28 ,29].

Gauss-Seidel method in (3.11), will be used to derive the general formula

of successive over relaxation method.

* ∑

 ∑

 +

44

 and

 Define the difference

 (3.13)

Rearranging equation (3.13), we get

 (3.14)

Multiplying in (3.14) by relaxation parameter yileds

 (3.15)

Rearranging equation (3.15) to get

 (3.16)

Now, put (3.12) into (3.16) yields:

* ∑

 ∑

 +

 and (3.17)

 this formula is called (SOR)

Also, to write (3.17) in the matrix form

Since multiply each side of (3.17) by

45

 * ∑
 ∑

 +

 ∑
 ∑

 ∑

 ∑

 (() (3.18)

if (exist, multiply both sides of (3.18) by (we get:

 () (3.18)

in (3.18) let () and

 we get:

 (3.20)

3.4 Conjugate Gradient Method

The conjugate gradient method is an iterative method that is used to

approximate the exact solution of the linear system , where the

coefficient matrix must be symmetric and positive definite.

We denote the initial guess , and we may assume without loss of

generality that , otherwise be given. Starting with we search for

the solution and each iteration we need a metric to tell us whether we are

46

closer to the exact solution is absolute. The unique solution minimizes the

quadratic function

And for simplicity, we will take the conjugate gradient method as

algorithm [5,29].

Step 1: Start with initial guess that may be considered 0 if otherwise is

not given.

Step 2: Calculate the residual vector as follows:

Step 3: Let the initial direction vector , that is, the negative of the

gradient of the quadratic function:

 at

we see that will change in each iteration.

Step 4: Compute the scalars 's using the formula:

Step 5: Compute the first iteration using the formula:

Step 6: Compute the residual vectors 's using the formula:

47

Step 7: Compute the scalars 's using the formula:

Step 8: Compute the direction vectors 's using the formula:

Step 9: Compute the iterations using the formula:

3.5 Convergence of Iterative Methods

In this section, the general aim is to study the convergence for each

previous iterative method, and then make a comparison between them.

After that, we will conclude the fastest method that reached to the solution.

In any computational problem, we’ll get high accuracy if the error becomes

very small. In our iterative methods problem, the actual error is the

difference between the exact solution and the approximate solution .

But we cannot compute its value because we do not know the exact

solution.

Instead, we will deal with the estimated error, which equals the difference

between the approximate solution and the next approximate

solution [7].

48

Therefore, we can compute more iterations with less errors, and hence, we

get high level of accuracy.

Suppose is the exact solution of the following linear system:

This can be written in an equivalent form as:

where is an matrix and is a column vector.

The idea of the iterative methods is to generate a sequence of vectors

{ }

that converges to the exact solution of the linear system

 . (Note: Each vector in the sequence is an approximation to the

exact solution) [5].

Before going through convergence of the iterative methods, we need some

definitions:

Definition 3.1 [7]

An matrix A is positive definite if A is symmetric matrix and

 for any non-zero n-dimensional column vector C.

Definition 3.2 [7]

Let be eigenvalues of the matrix . Then the spectral

radius defined as: { }.

49

Definition 3.3 [7]

The and norms for the vector { } are defined by

‖ ‖ (∑

)

 and ‖ ‖ { }.

3.5.1 Convergence of Jacobi and Gauss-Seidel Iterative Methods

The following theorems hold for Jacobi and Gauss-Seidel iterative

methods:

Theorem 3.1 [29]

For any initial approximation, a sequence of vectors { }

 converges to

the exact solution if and only if the spectral radius of the square matrix

 . (is the matrix as in (3.2) form).

Theorem 3.2 [29]

If the coefficient matrix for the linear system (3.1) is strictly diagonally

dominant, then the sequence of vectors { }

 generated by the Jacobi

and Gauss-Seidel Iterative techniques converges to the unique solution of

that system.

Theorem 3.3 [7]

If (any norm of) then the sequence of vectors

{ }

converges to a vector for any initial approximation vector

 .

3.5.2 Convergence of SOR iterative Method

Theorem 3.4 “Ostrowski-Reich” [7]

51

If the coefficient matrix of the linear system (3.20) is a positive definite

matrix and the relaxation parameter (factor) , then the SOR

method converges for any choice of initial approximation vector .

3.5.3 Convergence of Conjugate Gradient Method

Theorem 3.5 [24]

The sequence of vectors { }

generated by the Conjugate Gradient

method converges to the solution of the square linear system of

 variables in at most steps for any choice of initial approximation vector

 .

Proof:[24]

Suppose is the exact solution and is the initial solution.

The set of directional vectors are orthogonal so they are linearly

independent. Therefore, they span the space . Hence, we can write:

 where 's

Multiplying both sides of the last expression by
 , we obtain

Simplify the above expression, we get

but , , and
 . So, it becomes:

Thus,

51

Now, we want to show that where

Multiply both sides of the last equation by

The above can be written as:

or

 ()

Therefore,

 ()
 ()

 ()

 Now, put

 in equation (3.21), then we get:

 .

52

Chapter Four

Numerical Results

In this chapter, the finite difference and finite element methods are used to

solve homogeneous and inhomogeneous one-dimensional heat equation

subject to different types of boundary conditions: Dirichlet, Neumann and

Robin’s. Moreover, a comparison is carried out between the

aforementioned iterative methods.

Example 4.1: Consider the one-dimensional heat equation

Subject to the initial condition and boundary conditions

 , .

We seek to approximate the solution by using the finite difference

method.

First, we start with a partition for the domain by divide x-axis into equal

steps

 , also we divide t-axis into equal steps

 as shown in Figure (4.1).

Now, we define the mesh points () as follow:

53

For ,

 ,

 ,

 ,

 ,

And for ,

 ,

 ,

 ,

These partitions are illustrated in Figure 4.1

Figure (4.1): Discretization of the domain for example 4.1

54

The black points are known boundary points and the red points (interior)

points are unknown which are to be approximate.

 using the formula:

   ()

to approximate the interior points.

For:

 ,   ()

 ,   ()

 ,   ()

 ,   ()

 ,   ()

 ,   ()

 ,   ()

 ,   ()

 ,   ()

by put the initial and boundary conditions in equations 1to 9 and use the

notation

 yields:

55

The above equations can be expressed in matrix form as:

[

]

[

]

[

]

 (4.1)

Using we obtain the exact solution:

We can also solve the linear system (4.1) by the following iterative

techniques:

Jacobi Method

The Jacobi method given by the sequence

56

*∑

 +

 and

where n is the number of the unknown variables

Consider the initial solution is , so we use the

initial solution in system (4.2) to find the first iteration

57

The first iteration gives

Likewise, after 24 iterations we obtain the approximate solution:

Number of iterations The error

24

The Matlab code for the Jacobi iterative method can be formed in

Appendix A.

Gauss-Seidel Method

It is given by the sequence (3.11)

* ∑

 ∑

 +

58

 and

 where n is the number of the unknown variable.

Choose the initial solution as , then we find the

first iteration as:

59

 The first iteration gives

Likewise, after 24 iterations we obtain the approximate solution:

Number of iterations The error

24

The Matlab code for the Gauss-Seidel iterative method can be formed in

Appendix B.

Successive Over Relaxation (SOR) Method

The SOR method is given by the sequence (3.16)

* ∑

 ∑

 +

61

 , and

Here we will choose the relaxation factor .

The Gauss-Seidel equations are:

Now, the SOR equations with are:

 [

]

 [

]

 [

]

61

 [

]

 [

]

 [

]

 [

]

 [

]

 [

]

Select the initial solution as , then we obtain

 [

] [

]

 [

] [

]

 [

] [

]

 [

]

 [

]

 [

]

 [

]

62

 [

]

 [

]

 [

]

 [

]

 [

]

 [

]

 [

]

 [

]

The first iteration is:

Likewise, after 22 iterations we obtain the approximate solution:

Number of iterations The error

22

The Matlab code for the SOR iterative method can be formed in Appendix

C.

Conjugate Gradient Method

This algorithm can be implemented as follows:

63

Step1 Start with initial guess

Step2 Calculate the residual vector as follows:

[

]

[

]

[

]

[

]

Step 3: Let the initial direction vector . So

64

[

]

Step 4 compute the scalar by formula

for ,

[

]

[

]

[

]

[

]

65

Thus

Step5 Compute the first iteration by the formula

the first approximation

[

]

Likewise, after 10 iterations we obtain the approximate solution:

[

]

Number of iterations The error

10

66

Table 4.1: Comparison between the iterative methods for example 4.1

Methods

 u

Jacobi Method Gauss-Seidel

Method

SOR Method Conjugate

Gradient

 24.0487 24.0487 24.0487 24.0487

 8.2192 8.21917 8.21917 8.21917

 12.9376 12.9375 12.9375 12.9375

 39.6609 39.6609 39.6609 39.6609

 18.3524 18.3524 18.3524 18.3524

 22.3770 22.3769 22.3769 22.3769

 50.4851 50.4851 50.4851 50.4851

 28.0307 28.0306 28.0306 28.0306

 29.7718 29.7717 29.7717 29.7717

Number

of

iterations

24 24 22 10

Error

The Matlab code for the conjugate gradient iterative method can be formed

in Appendix D.

Example 4.2: Consider the one-dimensional heat equation

with initial condition and boundary conditions are

 , and the upper boundary condition

 to get rectangular domain

We want to approximate the solution by using finite element method.

We will start with discretize the domain by finite element as shown in

Figure (4.2).

67

Figure (4.2): Discretization of the Domain by Finite Element Method

The region is divided into 32 equal triangular elements which are identified

by encircled numbers 1 through 32 as indicated in Figure (4.4). In this

discretization there are 25 global nodes. Now, we will write the coordinates

for each node:

Node 1: node 2: node 3: , node 4:

node 5: , node 6: , node 7: , node 8:

node 9: , node 10: , node 11: , node 12:

node 13: (5, 4), node 14: (7.5, 4), node 15: (10, 4), node 16: (10, 6)

node 17: (7.5, 6), node 18: (5, 6), node 19: (2.5, 6), node 20: (0, 6)

68

node 21: (0, 8), node 22: (2.5, 8), node 23: (5, 8), node 24: (7.5, 8) and

 node 25: (10, 8).

For each element e, we will label the local node numbers 1, 2, and 3 of

element e in a counterclockwise sense.

Table 4.4 shows that for each element we write its global nodes and their

local node numbers and coordinates.

Table 4.2: The global nodes, local node numbers and the coordinates

for each element

Element # global

nodes

local node

numbers

The coordinates of each

global node

Element 1 1 1

2 2

10 3

Element 2 2 1

9 2

10 3

 … …. …

Element 31 17 1

16 2

24 3

Element 32 16 1

25 2

24 3

Now, for each element , the following quantities must be computed:

For element 1:

 – –

69

 – –

 – –

In similar manner, we compute
 and for each remaining element

where .

We use equation (2.32) to write the entries of the 3 × 3 element coefficient

matrix, let us take element 1 as an example:

[], for =1,2,3, where:

71

Thus, the 3 × 3 element coefficient matrix for element 1 is:

 [

] [

]

In a similar manner, we find the 3 × 3 element coefficient matrix for

elements 2, 3, 4, …, 32.

 [

] [

]

 [

] [

]

 [

] [

]

 [

] [

]

 [

] [

]

 [

] [

]

 [

] [

]

 [

] [

]

71

 [

] [

]

The global coefficient matrix assembled from the element coefficient

matrices. Since there are 25 nodes, the global coefficient matrix will be a

 matrix.

The one diagonal entries can be computed as follows:

For example:

For the off-diagonal entries, for example , the global link 9−12

corresponds to local link 1−3 of element 11 and local link 1−2 of element

10 as shown in Figure (4.4) and hence

We can compute the value of other off-diagonal entries in the same

manner. We continue the process to obtain the global matrix.

76

[

]

77

Defining the vector to be vector of unknowns (interior nodes) and

vector to be vector of prescribed boundary values (nodes that are

located on the boundaries) as shown in table 4.3.

Table 4.3: Represents vector of functions at the boundary

Global node Boundary conditions The value of global

node

1 on left and at bottom

boundaries

The average of its

boundary values

2 on bottom boundary 0

3 on bottom boundary 0

4 on bottom boundary 0

5 on bottom boundary and

 at right boundary

The average of its

boundary values

6 on right boundary 50

10 on left boundary 100

11 on left boundary 100

15 on right boundary 50

16 on right boundary

20 on left boundary 100

21 on left boundary and

 on upper boundary

The average of its

boundary values

22 on upper boundary 75

23 on upper boundary 75

24 on upper boundary 75

25 on upper boundary and

 at right boundary

The average of its

boundary values

The vector is:

78

 Now, we will define the matrix to be the matrix of unknown nodes

(interior nodes) and the matrix to be the matrix of unknown nodes and

prescribed boundary values. Both matrices and are obtained from

global coefficient matrix

[

]

[

]

 the inverse of matrix
 is:

[

]

The vector of unknown nodes can be found by using the formula:

79

[

]

[

]

Example 4.3: Consider the one-dimensional heat equation

Subject to initial condition and boundary conditions

 , .

Next, using the finite difference method, we start with make a partition for

the domain by dividing x-axis into equal steps

, also we

dividing t-axis into equal steps as shown in Figure (4.3).

 Now, we define the mesh points () as follow:

For ,

 ,

 ,

 ,

81

And for ,

 ,

 ,

These partitions will be illustrated in Figure 4.3

Figure (4.3): Discretization of the domain for example 4. 3

The black points are known boundary points and the red points (interior)

points are unknown which are to be approximate.

Using the formula:

   ()

to approximate the interior points.

At the left boundary we will treat the boundary condition by generate ghost

boundary by:

81

We get

 (4.5)

Now we back to equation   ()

and put , yield:

   ()

Put equation (4.5) into equation (4.6) we get:

   ()

The equation (4.7) will used to the left boundary.

We will start to find the interior points:

If ,   ()

Replace by using the equation (4.7)

   ()

So
 

 
 , put into equation above yield:

   (
 

 
)

Simplifying this equation yield

82

If ,   ()

Also, by some calculation we get the second equation

 If ,   ()

We do the same argument in first equation to find and we get third

equation

If ,   ()

In the same way we get the fourth equation

We will use the notation (), so

equations 1-4 becomes:

 (4.8)

System (4.8) can be expressed as a linear system

83

[

] [

] [

]

Using we obtain the exact solution

 [

]

We can also solve the linear system (4.8) by the following iterative

techniques:

Jacobi Method

We write the Jacobi equations as:

Select the initial solution as , then we find the

first iteration as:

84

The first iteration is:

 [

]

 Likewise, after 15 iterations we obtain the approximate solution:

 [

]

Number of iterations The error

15

The Matlab code for the Jacobi iterative method can be formed in

Appendix E.

Gauss-Seidel Method

We write the Gauss-Seidel equations as:

85

Choose the initial solution as , then we find the first

iteration as:

The first iteration is

 [

]

Likewise, after 8 iterations we obtain the approximate solution:

 [

]

Number of iterations The error

8

The Matlab code for the Gauss-Seidel iterative method can be formed in

Appendix F.

86

Successive Over Relaxation (SOR) Method

Writing the SOR equations by using Gauss-Seidel equations and use the

relaxation factor we get

 [

]

 [

]

 [

]

 [

]

Select the initial solution as , then we find the first

iteration as:

 [

]

 [

]

 [

]

 [

]

 [

]

 [

]

 [

]

87

The first iteration gives

 [

]

Likewise, after 6 iterations we obtain the approximate solution:

 [

]

Number of iterations The error

6

The Matlab code for the SOR iterative method can be formed in Appendix

G.

Conjugate Gradient Method

This algorithm can be implemented as follows:

Step1 Start with initial guess

Step2 Calculate the residual vector as follows:

 [

] [

] [

]

88

 [

]

Step 3: Let the initial direction vector . So

 [

]

Step 4 compute the scalar by formula

for ,

 [

]

 [

] [

]

Thus,

Step5 Compute the first iteration by the formula

89

the first iteration [

]

Likewise, after 5 iterations we obtain the approximate solution:

 [

]

The Matlab code for the conjugate gradient iterative method can be formed

in Appendix H.

Table (4.4): Comparison between iterative methods in example 4.3

 Methods

Jacobi Method Gauss-Seidel

Method

SOR Method Conjugate

Gradient

 0.622885 0.622885 0.622885 0.622885

 0.410683 0.410683 0.410683 0.410683

 0.469790 0.469790 0.469790 0.469790

 0.327415 0.327415 0.327415 0.327415

Number of

iterations

15 8 6 5

Error

Example 4.4: Consider the one-dimensional heat equation

Subject to initial condition and boundary conditions

Number of iterations The error

5

91

 , .

Next, using the finite difference method, we start with make a partition for

the domain by dividing x-axis into equal steps

, also we

dividing t-axis into equal steps as shown in Figure (4.4).

Now, we define the mesh points () as follow:

For ,

 ,

 ,

 ,

And for ,

 ,

 ,

These partitions will be illustrated in Figure 4.3

91

Figure (4.4): Discretization of the domain for example 4. 4

The black points are known boundary points and the red points (interior)

points are unknown which are to be approximate.

To approximate the interior points, we use the formula:

   ()

At the left boundary we will treat the boundary condition by generate ghost

boundary by:

We get

 (4.12)

Now we back to equation   ()

and put , yield:

92

   ()

Putting equation (4.12) into equation (4.13) we get:

   ()

Equation (4.14) will used to the left boundary.

If ,   ()

Replace by using equation (4.14)

   ()

So
 

  
 , put into equation above yield:

   (
 

  
)

Then we get fist equation

If ,   ()

Also, we get second equation

If ,   ()

We do the same argument in first equation to find , then we get third

equation.

93

If ,   ()

In the same way we get the fourth equation

We will use the notation (), then

equations 1-4 becomes:

 (4.15)

System (4.15) can be expressed in a matrix form as follows:

[

] [

] [

]

Using we obtain the exact solution

 [

]

We can also solve the linear system (4.15) by the following iterative

techniques:

94

Jacobi Method

 We write the Jacobi equations as:

Choose the initial solution as , then we find the first

iteration as:

The first iteration is:

 [

]

Likewise, after 16 iterations we obtain the approximate solution:

95

 [

]

Number of iterations The error

16

The Matlab code for the Jacobi iterative method can be formed in

Appendix I.

Gauss-Seidel Method

We start with writing the Gauss-Seidel equations as:

Choose the initial solution as , then we obtain the first

iteration as:

96

The first iteration is

 [

]

Likewise, after 14 iterations we obtain the approximate solution:

 [

]

Number of iterations The error

14

The Matlab code for the Gauss-Seidel iterative method can be formed in

Appendix J.

 Successive Over Relaxation (SOR) Method

We start with writing the SOR equations by using Gauss-Seidel equations

by using relaxation factor we get

 [

]

 [

]

 [

]

 [

]

97

Choose the initial solution as , then we obtain the first

iteration as:

 [

]

 [

]

 [

]

 [

]

 [

]

 [

]

 [

]

The first iteration is:

 [

]

Likewise, after 11 iterations we obtain the approximate solution:

 [

]

Number of iterations The error

11

The Matlab code for the SOR iterative method can be formed in Appendix

K.

98

Conjugate Gradient Method

This algorithm can be implemented as follows:

Step1 Start with initial guess

Step2 Calculate the residual vector as follows:

 [

] [

] [

]

 [

]

Step 3: Let the initial direction vector . So

 [

]

Step 4 compute the scalar by formula

for ,

 [

]

99

 [

] [

]

Thus

Step5 Compute the first iteration by the formula

The first iteration is:

 [

]

Likewise, after 5 iterations we obtain the approximate solution:

 [

]

Number of iterations The error

5

The Matlab code for the conjugate gradient iterative method can be formed

in Appendix L.

111

Table (4.5): Comparison between iterative methods in example 4.4

Methods

Jacobi Method Gauss-Seidel

Method

SOR Method Conjugate

Gradient

 0.711121 0.711121 0.711121 0.711121

 0.431581 0.431581 0.431581 0.431581

 0.542364 0.542364 0.542364 0.542364

 0.355602 0.355602 0.355602 0.355602

Number

of

iterations

16 14 11 5

Error

Example 4.5: Consider the one-dimensional heat equation

subject to initial condition and boundary conditions

 , .

Next, using finite difference method, we start with make a partition for the

domain by dividing x-axis into equal steps

 , also we

dividing t-axis into equal steps as shown in Figure (4.5).

 We define the mesh points () as follow:

For ,

 ,

 ,

111

 ,

And for ,

 ,

 ,

Figure (4.5): Discretization of the domain for example 4. 5

The black points are known boundary points and the red points (interior)

points are unknown which are to be approximate.

To approximate the interior points, we use the formula:

 ()

()

We will start to find the interior points:

If ,

 ()

Inserting the boundary conditions in the previous equation yield

112

If ,

 ()

Inserting the boundary conditions in the previous equation yield

If ,

 ()

Inserting the boundary conditions in the previous equation yield

If ,

 ()

Inserting the boundary conditions in the previous equation yield

We will use the notation (), then

equations 1-4 becomes:

System (4.19) can be expressed in matrix form as follows:

[

] [

] [

]

113

Using we obtain the exact solution:

 [

]

We can also solve the linear system (4.19) by the following iterative

techniques:

Jacobi Method

We write the Jacobi equations as:

Choose the initial solution as , then we find the first

iteration as:

114

The first iteration is:

 [

]

Likewise, after 14 iterations we obtain the approximate solution:

 [

]

Number of iterations The error

14

The Matlab code for the Jacobi iterative method can be formed in

Appendix E.

Gauss-Seidel Method

We start with writing the Gauss-Seidel equations as:

Choose the initial solution as , then we find the first

iteration as:

115

The first iteration is:

 [

]

Likewise, after 8 iterations we obtain the approximate solution:

 [

]

Number of iterations The error

8

The Matlab code for the Gauss-Seidel iterative method can be formed in

Appendix F.

Successive Over Relaxation (SOR) Method

We will start with writing the SOR equations by using Gauss-Seidel

equations and use the relaxation factor . We get:

 [

]

116

 [

]

 *

+

 *

+

Choose the initial solution as , then we find the first

iteration as:

 [

]

 [

]

 *

+

 *

+

The first iteration is:

 [

]

Likewise, after 6 iterations we obtain the approximate solution:

 [

]

117

Number of iterations The error

6

The Matlab code for the SOR iterative method can be formed in Appendix

G.

Conjugate Gradient Method

This algorithm can be implemented as follows:

Step1 Start with initial guess

Step2 Calculate the residual vector as follows:

 [

] [

] [

]

 [

]

Step 3: Let the initial direction vector . So

 [

]

Step 4 compute the scalar by formula

118

for ,

 [

]

[

]

 [

] [

]

[

]

Thus

Step5 Compute the first iteration by the formula

 [

]

The first iteration is

 [

]

119

Likewise, after 5 iterations we obtain the approximate solution:

 [

]

Number of iterations The error

5

The Matlab code for the conjugate gradient iterative method can be formed

in Appendix H.

4.1 Conclusion

 In this thesis we have used two methods to solve homogeneous and

inhomogeneous parabolic partial differential equation subject to Dirichlet,

Neumann and Robin’s boundary conditions, these methods are finite

difference method (FDM) and finite element method (FEM).

The discretization process converts the initial boundary value problem into

 -algebraic linear equations. This system has been solved by several

iterative schemes. These are: Jacobi, Gauss-Seidel, Successive over

Relaxation and conjugate gradient method.

We observe that the finite difference method is very simple and efficient

method for approximating the solution of initial boundary value problem

when the domain has regular shape, while the finite element method is

more efficient for irregular domain. Moreover, we clearly see that the

conjugate gradient method is one of the most efficient and accurate method

111

in comparison with the other iterative techniques. It requires less number of

iterations and least error.

111

References

[1] F. Abdelnour, H. Voss and A. Raj, Network Diffusion Accurately

Models the Relationship between Structural and Functional Brain

Connectivity Networks, NCBI, 2014.

[2] H. Abood, F. Fadhel and L. Hammza, The Existence and Uniqueness

Solution to the Diffusion Equation by using Arbitrary Function,

University of Babylon, 2014.

[3] M. Asadzadeh, an Introduction to the Finite Element Method

(FEM) for Differential Equations, December 10, 2014.

[4] I. Babuska and T. Stroubulis, the Finite Element Method and its

Reliability, Clarendon Press, Oxford, 2001.

[5] M. Benzi, Key Moments in the History of Numerical Analysis,

Emory University, Atlanta, GA, 2005.

[6] R. Boucekkine, C. Camacho and G. Fabbri, Spatial Dynamics and

Convergence: The Spatial AK Model, Elsevier, Journal of Economic

Theory, 2013.

[7] R. L. Burden and J. D. Faires, Numerical Analysis, Ninth Edition,

Books Publishing Company, 2011.

[8] S. Chapra, Applied Numerical Method with MATLAB for

Engineers, Published by McGraw-Hill Companies, Third Edition,

2012.

[9] R. Clough, the Finite Element Method in Plane Stress Analysis,

American Journal of Civil Engineers, 1960.

[10] J. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

112

[11] S. J. Farlow, Partial Differential Equations for Scientists and

Engineers, John Willey & Sons, 1982.

[12] L. A. Hageman and D. M. Young, Applied Iterative Methods,

Academic Press, 1981.

[13] C. Johnson, Numerical Solution of Partial Differential Equations

by the Finite Element Method, Dover Publications, New York, 2009.

[14] I. Kalambi, a Comparison of Three Iterative Methods for the

Solution of Linear Equations, Journal of Applied Sciences and

Environmental Management (JASEM), 2008.

[15] E. Kersale, Analytic Solution of Partial Differential Equations,

School of Mathematics, University of Leeds, 2003.

[16] M. Konstantinov, Foundations of Numerical Analysis, Second

Edition, 2007.

[17] R. Kress, Numerical Analysis, Springer-Verlag, New York, 1998.

[18] M. A. Lau and S. P. Kuruganty, Spread Sheets Implementations for

Solving Boundary-Valve Problems in Electromagnetics, Article 1,

2010.

[19] J. Mathews, Matlab Programming Guidebook for Numerical

Methods, Edition, 1992.

[20] S. Mazumder, Numerical Methods for Partial Differential

Equations, the Ohio State University, 2015.

[21] G. Mazzola, G. Milmesiter and J. Weissmann, Comprehensive

Mathematics for Computer Scientists 2, Springer, 2005.

113

[22] A. R. Michell and D. F. Griffith, The Finite Difference Method in

Partial Differential Equations, John Willey & Sons, 1980.

[23] M. Necti, H. R. B. Orlande, M. J. colaco and R. M. Cotta, Finite

Difference Methods in Heat Transfer, Second Edition, CRC Press,

2017.

[24] J. Nocedal and S. Wright, Numerical Optimization, Series in

Operations Research, Springer Verlag, 1999.

[25] L. Olsen-Kettle, Numerical Solution of Partial Differential

Equations, The University of Queensland, 2011.

[26] E. Ostertagova, O. Ostertag and J. Bocko, Problems of Mechanics

Described by Parabolic and Hyperbolic Differential Equations (of

Second Order), MMAMS, Technical University of Kosice, 2011.

[27] N. Qatanani, Analysis of the Heat Equation with Non-Local

Radiation Terms in a Non-Convex Diffuse and Grey Surfaces,

European Journal of Scientific Research, 15(2), 245-254, 2006.

[28] C. Rycroft, Iterative Methods for Linear Systems, Lecture Notes,

UC Berkeley, Mathematics Department, November 2007.

[29] Y. Saad, Iterative Methods for Sparse Linear Systems, Second

Edition, Society for Industrial and Applied Mathematics (SIAM),

2003.

[30] G. D. Smith, Numerical Solutions of Partial Differential Equations,

Clarendon Press, Oxford, 1987.

114

[31] V. Thomee, From Finite Difference to Finite Elements A Short

History of Numerical Analysis of Partial Differential Equations,

Elsevier Science B. V., 2001.

[32] J. A. Trangenston, Numerical Solution of Elliptic and Parabolic

Partial Differential Equations, Cambridge University Press, 2013.

[33] C. Vuik, Iterative Solution Methods, Mathematics and Computer

Science, Delft Institue of Applied Mathematics, Morgan Kaufmann

Publishers, San Francisco, 2001.

[34] G. A. Watson, the History and Development of Numerical Analysis

in Scotland: A Personal Perspective, University of Dundee, 2009.

[35] Z. Wu, J. Yin and C. Wang, Elliptic and Parabolic Equations, Jilin

University, China, 2006.

[36] T. Young and M. J. Mohlenkamp, Introduction to Numerical

Methods and MATLAB Programing for Engineers, Ohio

University, 2018.

[37] L. Zhilin, Z. Qiao and T. Tang, Numerical Solution of Differential

Equations Introduction to Finite Difference and Finite Element

Methods, Cambridge University Press, 2018.

115

Appendix A

% Matlab code for Jacobi iterative method

% Iterative Solutions of linear equations: Jacobi Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u .

clc

clear

format long

tic

A=[1.8 -0.4 0 0 0 0 0 0 0;-0.4 1.8 -0.4 0 0 0 0 0 0;0 -0.4 1.8 0 0 0 0 0 0;-1 0

0 1.8 -0.4 0 0 0 0;0 -1 0 -0.4 1.8 -0.4 0 0 0;0 0 -1 0 -0.4 1.8 0 0 0;0 0 0 -1 0

0 1.8 -0.4 0;0 0 0 0 -1 0 -0.4 1.8 -0.4;0 0 0 0 0 -1 0 -0.4 1.8];

b=[40;0;20;40;0;20;40;0;20];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

k=0;

 while err >1.0e-7

 for i=1:4

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 err= max(abs(un'-u));

116

 k=k+1;

M(k,:)=[un'];

u=un';

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

117

Appendix B

% Matlab code for Gauss-Seidel iterative method

% Iterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[1.8 -0.4 0 0 0 0 0 0 0;-0.4 1.8 -0.4 0 0 0 0 0 0;0 -0.4 1.8 0 0 0 0 0 0;-1 0

0 1.8 -0.4 0 0 0 0;0 -1 0 -0.4 1.8 -0.4 0 0 0;0 0 -1 0 -0.4 1.8 0 0 0;0 0 0 -1 0

0 1.8 -0.4 0;0 0 0 0 -1 0 -0.4 1.8 -0.4;0 0 0 0 0 -1 0 -0.4 1.8];

b=[40;0;20;40;0;20;40;0;20];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

 k=0;

 while err >1.0e-7

 u0=u;

118

 for i=1:4

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

%

 show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

K

119

Appendix C

% Matlab code for SOR iterative method

% Iterative Solutions of linear equations: SOR me Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clear

format long

tic

A=[1.8 -0.4 0 0 0 0 0 0 0;-0.4 1.8 -0.4 0 0 0 0 0 0;0 -0.4 1.8 0 0 0 0 0 0;-1 0

0 1.8 -0.4 0 0 0 0;0 -1 0 -0.4 1.8 -0.4 0 0 0;0 0 -1 0 -0.4 1.8 0 0 0;0 0 0 -1 0

0 1.8 -0.4 0;0 0 0 0 -1 0 -0.4 1.8 -0.4;0 0 0 0 0 -1 0 -0.4 1.8];

b=[40;0;20;40;0;20;40;0;20];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.02;

err=1.0;

k=0;

 while err >1.0e-7

 u0=u;

121

for i=1:4

 u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i)));

end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

121

Appendix D

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)

% SOLVECG Conjugate Gradients method.

% Input parameters:

% A : Symmetric, positive definite NxN matrix

% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform

% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum

% number of iterations, 0 otherwise (= iteration

% successful).

tic

A=[1.8 -0.4 0 0 0 0 0 0 0;-0.4 1.8 -0.4 0 0 0 0 0 0;0 -0.4 1.8 0 0 0 0 0 0;-1 0

0 1.8 -0.4 0 0 0 0;0 -1 0 -0.4 1.8 -0.4 0 0 0;0 0 -1 0 -0.4 1.8 0 0 0;0 0 0 -1 0

0 1.8 -0.4 0;0 0 0 0 -1 0 -0.4 1.8 -0.4;0 0 0 0 0 -1 0 -0.4 1.8];

f=[40;0;20;40;0;20;40;0;20];

err=1.0;

format long

s=[0;0;0;0;0;0;0;0;0];

122

tol=0.0000001;

maxiter =6;

u = s; % Set u_0 to the start vector s

r = f - A*s; % Compute first residuum

p = r;

rho = r'*r;

niter = 0; % Init counter for number of iterations

flag = 0; % Init break flag

 % Compute norm of right-hand side to take relative residuum as

% break condition.

normf = norm(f);

if normf < eps % if the norm is very close to zero, take the

 % absolute residuum instead as break condition

 % (norm(r) > tol), since the relative

 % residuum will not work (division by zero).

 warning(['norm(f) is very close to zero, taking absolute residuum' ...

 ' as break condition.']);

 normf = 1;

end

while (norm(r)/normf > tol) % Test break condition

 a = A*p;

 alpha = rho/(a'*p);

 u = u + alpha*p;

 r = r - alpha*a;

123

 rho_new = r'*r;

 p = r + rho_new/rho * p;

 rho = rho_new;

 niter = niter + 1;

 if (niter == maxiter) % if max. number of iterations

 flag = 1; % is reached, break.

 break

 end

end

% show the cpu time

toc

u

 err= max(abs(u-o))

niter

124

Appendix E

% Matlab code for Jacobi iterative method

% Iterative Solutions of linear equations: Jacobi Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u .

clc

clear

format long

tic

A=[1.687 -0.45 0 0;-0.45 1.9 0 0;-1.112 0 1.788 -0.45;0 -1 -0.45 1.9];

b=[0.866;0.5;0;0];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

k=0;

 while err >1.0e-7

 for i=1:4

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 err= max(abs(un'-u));

 k=k+1;

M(k,:)=[un'];

125

u=un';

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

126

Appendix F

% Matlab code for Gauss-Seidel iterative method

% Iterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[1.687 -0.45 0 0;-0.45 1.9 0 0;-1.112 0 1.788 -0.45;0 -1 -0.45 1.9];

b=[0.866;0.5;0;0];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

 k=0;

 while err >1.0e-7

 u0=u;

 for i=1:4

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 un=u';

127

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

K

128

Appendix G

% Matlab code for SOR iterative method

% Iterative Solutions of linear equations: SOR me Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clear

format long

tic

A=[1.687 -0.45 0 0;-0.45 1.9 0 0;-1.112 0 1.788 -0.45;0 -1 -0.45 1.9];

b=[0.866;0.5;0;0];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.02;

err=1.0;

k=0;

 while err >1.0e-7

 u0=u;

for i=1:4

 u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i)));

129

end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

131

Appendix H

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)

% SOLVECG Conjugate Gradients method.

% Input parameters:

% A : Symmetric, positive definite NxN matrix

% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform

% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum

% number of iterations, 0 otherwise (= iteration

% successful).

tic

A=[1.687 -0.45 0 0;-0.45 1.9 0 0;-1.112 0 1.788 -0.45;0 -1 -0.45 1.9];

b=[0.866;0.5;0;0];

err=1.0;

format long

s=[0;0;0;0];

tol=0.0000001;

maxiter =6;

131

u = s; % Set u_0 to the start vector s

r = f - A*s; % Compute first residuum

p = r;

rho = r'*r;

niter = 0; % Init counter for number of iterations

flag = 0; % Init break flag

 % Compute norm of right-hand side to take relative residuum as

% break condition.

normf = norm(f);

if normf < eps % if the norm is very close to zero, take the

 % absolute residuum instead as break condition

 % (norm(r) > tol), since the relative

 % residuum will not work (division by zero).

 warning(['norm(f) is very close to zero, taking absolute residuum' ...

 ' as break condition.']);

 normf = 1;

end

while (norm(r)/normf > tol) % Test break condition

 a = A*p;

 alpha = rho/(a'*p);

 u = u + alpha*p;

 r = r - alpha*a;

 rho_new = r'*r;

 p = r + rho_new/rho * p;

132

 rho = rho_new;

 niter = niter + 1;

 if (niter == maxiter) % if max. number of iterations

 flag = 1; % is reached, break.

 break

 end

end

% show the cpu time

toc

u

 err= max(abs(u-o))

niter

133

Appendix I

% Matlab code for Jacobi iterative method

% Iterative Solutions of linear equations: Jacobi Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u .

clc

clear

format long

tic

A=[1.4909 -0.45 0 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9];

b=[0.866;0.5;0;0];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

k=0;

 while err >1.0e-7

 for i=1:4

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 err= max(abs(un'-u));

 k=k+1;

M(k,:)=[un'];

134

u=un';

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

135

Appendix J

% Matlab code for Gauss-Seidel iterative method

% Iterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[1.4909 -0.45 0 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9];

b=[0.866;0.5;0;0];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

 k=0;

 while err >1.0e-7

 u0=u;

 for i=1:4

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 un=u';

136

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

K

137

Appendix K

% Matlab code for SOR iterative method

% Iterative Solutions of linear equations: SOR me Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clear

format long

tic

A=[1.4909 -0.45 0 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9];

b=[0.866;0.5;0;0];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.02;

err=1.0;

k=0;

 while err >1.0e-7

 u0=u;

for i=1:4

 u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i)));

138

end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

139

Appendix L

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)

% SOLVECG Conjugate Gradients method.

% Input parameters:

% A : Symmetric, positive definite NxN matrix

% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform

% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum

% number of iterations, 0 otherwise (= iteration

% successful).

tic

A=[1.4909 -0.45 0 0;-0.45 1.9 0 0;-1.08367 0 1.7159 -0.45;0 -1 -0.45 1.9];

f=[0.866;0.5;0;0];

err=1.0;

format long

s=[0;0;0;0];

tol=0.0000001;

maxiter =6;

141

u = s; % Set u_0 to the start vector s

r = f - A*s; % Compute first residuum

p = r;

rho = r'*r;

niter = 0; % Init counter for number of iterations

flag = 0; % Init break flag

 % Compute norm of right-hand side to take relative residuum as

% break condition.

normf = norm(f);

if normf < eps % if the norm is very close to zero, take the

 % absolute residuum instead as break condition

 % (norm(r) > tol), since the relative

 % residuum will not work (division by zero).

 warning(['norm(f) is very close to zero, taking absolute residuum' ...

 ' as break condition.']);

 normf = 1;

end

while (norm(r)/normf > tol) % Test break condition

 a = A*p;

 alpha = rho/(a'*p);

 u = u + alpha*p;

 r = r - alpha*a;

 rho_new = r'*r;

 p = r + rho_new/rho * p;

141

 rho = rho_new;

 niter = niter + 1;

 if (niter == maxiter) % if max. number of iterations

 flag = 1; % is reached, break.

 break

 end

end

% show the cpu time

toc

u

 err= max(abs(u-o))

niter

142

Appendix M

% Matlab code for Jacobi iterative method

% Iterative Solutions of linear equations: Jacobi Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u .

clc

clear

format long

tic

A=[1.9 -0.45 0 0;-0.45 1.9 0 0;-1 0 1.9 -0.45;0 -1 -0.45 1.9];

b=[0.86683;0.51167;0.0016667;0.0033333];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

k=0;

 while err >1.0e-7

 for i=1:4

un(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 err= max(abs(un'-u));

 k=k+1;

M(k,:)=[un'];

143

u=un';

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

144

Appendix N

% Matlab code for Gauss-Seidel iterative method

% Iterative Solutions of linear equations: Gauss-Seidel Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clc

clear

format long

tic

A=[1.9 -0.45 0 0;-0.45 1.9 0 0;-1 0 1.9 -0.45;0 -1 -0.45 1.9];

b=[0.86683;0.51167;0.0016667;0.0033333];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

 err=1.0;

 k=0;

 while err >1.0e-7

 u0=u;

 for i=1:4

u(i)=(b(i)-(A(i,:)*u-A(i,i)*u(i)))/A(i,i);

 end

 un=u';

145

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

K

146

Appendix O

% Matlab code for SOR iterative method

% Iterative Solutions of linear equations: SOR me Method

% Linear system: A u = b

% Coefficient matrix A, right-hand side vector b, unknown vector u.

clear

format long

tic

A=[1.9 -0.45 0 0;-0.45 1.9 0 0;-1 0 1.9 -0.45;0 -1 -0.45 1.9];

b=[0.86683;0.51167;0.0016667;0.0033333];

%show the exact solution

inv(A)*b

% Set initial value of u to zero column vector

u=[0;0;0;0];

% Set the iteration number = k , so initial k equals 0

% Set the stopping criteria such that err<1.0e-7

% Show the M matrix

% loop for iterations

w=1.02;

err=1.0;

k=0;

 while err >1.0e-7

 u0=u;

for i=1:4

 u(i)=(1-w)*u(i)+(w/A(i,i))*(b(i)-(A(i,:)*u-A(i,i)*u(i)));

147

end

 un=u';

 err= max(abs(un'-u0));

 k=k+1;

M(k,:)=[u'];

end

% show the cpu time

toc

% show the solutions

M

% show the error

err

% show the total iteration number

k

148

Appendix P

function [u, niter, flag] = solveCG(A, f, s, tol, maxiter)

% SOLVECG Conjugate Gradients method.

% Input parameters:

% A : Symmetric, positive definite NxN matrix

% f : Right-hand side Nx1 column vector

% s : Nx1 start vector (the initial guess)

% tol : relative residual error tolerance for break

% condition

% maxiter : Maximum number of iterations to perform

% Output parameters:

% u : Nx1 solution vector

% niter : Number of iterations performed

% flag : 1 if convergence criteria specified by TOL could

% not be fulfilled within the specified maximum

% number of iterations, 0 otherwise (= iteration

% successful).

Tic

A=[1.9 -0.45 0 0;-0.45 1.9 0 0;-1 0 1.9 -0.45;0 -1 -0.45 1.9];

f=[0.86683;0.51167;0.0016667;0.0033333];

err=1.0;

format long

s=[0;0;0;0];

tol=0.0000001;

149

maxiter =6;

u = s; % Set u_0 to the start vector s

r = f - A*s; % Compute first residuum

p = r;

rho = r'*r;

niter = 0; % Init counter for number of iterations

flag = 0; % Init break flag

 % Compute norm of right-hand side to take relative residuum as

% break condition.

normf = norm(f);

if normf < eps % if the norm is very close to zero, take the

 % absolute residuum instead as break condition

 % (norm(r) > tol), since the relative

 % residuum will not work (division by zero).

 warning(['norm(f) is very close to zero, taking absolute residuum' ...

 ' as break condition.']);

 normf = 1;

end

while (norm(r)/normf > tol) % Test break condition

 a = A*p;

 alpha = rho/(a'*p);

 u = u + alpha*p;

 r = r - alpha*a;

 rho_new = r'*r;

151

 p = r + rho_new/rho * p;

 rho = rho_new;

 niter = niter + 1;

 if (niter == maxiter) % if max. number of iterations

 flag = 1; % is reached, break.

 break

 end

end

% show the cpu time

toc

u

 err= max(abs(u-o))

niter

 جامعة النجاح الوطنية
 كمية الدراسات العميا

 معادلة التفاضمية الجزئيةالطرق عددية لحل
 المكافئة الخطية

 أعداد
 سمير محمود مصمح

 اشراف

 أ.د. ناجي قطناني

بكمية ،لمتطمبات الحصول عمى درجة الماجدتير في الرياضيات هذه الاطروحة استكمالاا قدمت
 فمدطين. -نابمس ،في جامعة النجاح الوطنية ،الدراسات العميا

1029

 ب

 المكافئة الخطية معادلة التفاضمية الجزئيةالطرق عددية لحل
 أعداد

 سمير محمود مصمح
 اشراف

 أ.د. ناجي قطناني

 الممخص
من الظهاىخ الفيديائية والطبيعية تظيخ عمى شكل نساذج رياضية وتحجيجا تظيخ كسعادلات كثيخا

تفاضمية جدئية ترف طبيعة ىحه الظهاىخ. في ىحه الخسالة استخجمشا السعادلة التفاضمية الجدئية
الخطية السكافئة من الجرجة الثانية بحيث يتم التخكيد عمى معادلة الحخارة كشسهذج لهصف تمك

 لظهاىخ.ا
في الهاقع، فان معظم ىحه السدائل يرعب حميا بطخق تحميمية. بجلا من ذلك، يسكن ان تحل

 عجديا باستخجام الاساليب الحدابية.
في ىحه الاطخوحة، معادلة الحخارة الستجاندة مع انهاع مختمفة من الذخوط الحجية تم حميا عجديا
باستخجام طخيقة الفخوق السحجودة وطخيقة العشاصخ السحجودة لتقخيب الحل لسعادلة التفاضمية

ادلات الجدئية السكافئة. وبيحا يتم تحهيل السعادلة الى شكل اخخ لمهصهل الى نظام خطي من السع
 يسكن حميا باستخجام طخق تكخارية، مثل:

Jacobi, Gauss-Seidel, Successive Over Relaxation, Conjugate Gradient

Methods

 وعسل مقارنة بيشيم.
كفاءة أكثخوججنا في ىحا البحث من خلال ما بيشتو الشتائج العجدية ان طخيقة الفخوق السحجودة ىي

خطأ مسكن في حال كهن وبأقللمحرهل عمى حل تقخيبي لمسعادلة من طخيقة العشاصخ السحجودة
دقة لمسجالات السعقجة أكثخالسجال ذو اشكال ىشجسية مشتظسة، وان طخيقة العشاصخ السحجودة

تعطي الشتائج الاكثخ Conjugate Gradientالطخيقة التكخارية نلاحظ ان والغيخ مشتظسة. ايزا،
 دقة من بين الطخق التكخارية الاخخى.

