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Abstract

One of the most critical optimization problems called Bin Packing Problem
(BPP) attracts researchers attention because it is an NP-Complete problem
means the solution can not be found in polynomial time. It has many

applications such as storage and filling container.

BPP aims to pick several items with different weights and pack them in a
minimum number of bins without exceeding the bin’s capacity. One
dimension BPP (1D-BPP) is one of its variations. Researchers have
developed and proposed many algorithms to find an optimal solution or

near-optimal solution.

This research aims to make a comparison between six algorithms to solve
one-dimensional BPP. Two heuristic algorithms proposed by Zehmakan [?]
are approximation algorithms; one of them has an approximation ratio of
3/2, called Al and A2. Those algorithms promise to perform more efficient

and much better than other algorithms.

Two classical approximation algorithms First Fit Decreasing (FFD) and
Best Fit Decreasing (BFD) and two meta-heuristic algorithm namely
Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) with

specific parameters have been compared.
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In this work, several data sets have been used with the known optimal
solution. They vary between random and arranged. Also, they vary in size.
Some groups are small such as 9, 20 items, and medium such as 50, 100,

120 items and large such as 250, 500, 1000 items.

Moreover, the sets vary in difficulty between easy and medium. So the
number of bins used and running time have been compared to consider

these algorithms’ performance.

According to the number of bins used, A2 has performed better than Al by
comparing heuristic algorithms. However, it took much more running time
than Al, especially in large data sets. Nevertheless, classical heuristics
(BFD FFD) outperform both Al and A2 in easy datasets, while in hard

datasets A2 outperform the classical heuristics.

By comparing meta-heuristic algorithms according to the number of bins
used, in small data sets, PSO has performed better than GA but in large sets
it’s almost the same. Also, PSO takes double running time than GA. PSO
and GA have close results by the number of bins comparison and running
time comparisons in other data sets. PSO is slightly better than GA when
both the heuristics and the meta-heuristics are compared. Heuristic performs

more efficient according to the number of bins and running time
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Chapter 1
Introduction
1.1 Research Background

Bin Packing Problem (BPP) is one of the challenging problems nowadays
due to the wide range of applications in science and computing[19]. BPP
has many variations, one dimensional BPP (1D-BPP), two-dimensional

BPP (2D-BPP), multidimensional BPP, packing by weight... and so on.
[7]

In this thesis, we consider 1D-BPP, which aims to find the minimum

number of bins with a bin capacity (C > 0) to pack items of different sizes.

Researchers proposed many algorithms to solve BPP. There are two types
of optimization algorithms: heuristic algorithms and approximation
algorithms, designed for a specific problem, these algorithms are efficient
and strightforward and leads to optimal or near-optimal solution such as
classical approximation algorithm First Fit Decreasing (FFD) and Best Fit
Decreasing, and Zehmakan’s approximation algorithm 1 and 2 (Al and
A2)[19] which depends on classifying the items, each class belong to a
specific range, these algorithms show a promising algorithm since the
approximation ratio, a ratio between algorithm solution and optimal

solution for Al is 3/2 and A2 is based on the effective algorithm FFD [19].

On the other hand, a nature-inspired algorithms that are part of

metaheuristic algorithms take a place in BPP researches. Unlike heuristic
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algorithms, these algorithms are class-independent algorithms that can be
used to solve several optimization problems. It’s not designed for a
specific problem such as Genetic Algorithms (GA) [12] and Particle

Swarm Optimization (PSO) [13] which are used in this work.

These algorithms have parameters that need to be set to enhance their
performance. Usually, it is not easy to find these parameters. researchers

are still active to tune parameters depends on the problem.

GA inspired by the natural-selection in evolution theory where the best
individuals are selected to produce new offsprings with a slight chance for
a weak individual to survive. GA has several operators includes selection,

crossover, and mutation, can be set in various ways.

In this thesis, operators are set as in Falkenauer (1996). For implementing
BPP in GA, several gene representation schemes such as bin-based

representation and group-based representation are used in this research.

PSO [13] inspired by the movement of birds flocking and fish schooling
where each particle is trying to find the optimal solution by updated its
position and sharing information with other particles. For implementing
PSO for BPP, the continuous algorithm (PSO) will be discretized to fit
BPP. In this research, we are using Binary Particle Swarm Optimization

(BPSO) proposed by khanesar (2007) [14].

These heuristic and meta-heuristic algorithms are used in this research to
compare them based on the number of bins used and running time to help

answer the critical question about BPP: What is the best algorithm to reach
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the optimal or at least near-optimal solution for BPP?

1.2 Research objectives

This study aims to find the best algorithm for solving BPP. The study aims
to find the best algorithm that leads to the nearest optimal solution by
minimizing the number of bins used to pack the items that leads to reduce

the storage space.

The objective is to compare based on number of bins and running time
between six algorithms. The following objectives were presented to

achieve this goal:

e Dbetween recently proposed algorithms (zehmakan approximation
algorithm “Al and A2").

e Dbetween meta-heuristic algorithms (GA and PSO).
e between heuristic and meta-heuristic algorithms.

e with classic heuristic algorithm (First Fit) (FF) and Best Fit (BF)

algorithms).
1.3 Research hypotheses
In this work, we test several hypothesis as the following:

e The classical approximation algorithm (BFD, FFD) performs better
than other approximation algorithms such as Zehmakan’s

approximation algorithms.
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e According to researchers’ work for solving BPP, the meta-heuristic
algorithms’ performance such as PSO and GA and tuning parameters

and population size.

e The performance of the algorithms based on the number of bins and

running time.
1.4 Thesis structure
This thesis contains five chapters as follows:

Chapter two is a theoretical background consists of three parts. The first is
about an introduction to optimization problems, mathematical formulation
and types of problem. The second one is about Bin Packing problem
definition and mathematical formulation. The last part is about

optimization algorithm techniques Al, A2, GA, and PSO.

Chapter three is related to the methodology, it explains how each algorithm
iIs used to solve the Bin Packing Problem and tuning parameter for

metaheuristic algorithm.

Chapter four discuss the experiments and results of the performance of the

algorithms and analysis of the data.

Chapter five is the conclusion of all the work. Also, it considers researches

and promising projects for the future in this field.
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Chapter 2
Theoretical Background
2.1 Optimization Problems

The optimization problem is significant problems in mathematics and
computer-like grouping problem. So what is the definition of an
optimization problem? Why are they important? Furthermore, what are the

types of these problems?
2.1.1 Definition

The term optimization means making something reaching the best phase,
so optimization algorithms are about finding the optimal values for a set of
feasible solutions. This kind of problems form most daily life problems
such as finding the smallest path to work, the best way to save money and
arranging books in boxes or even more complicated issues such has

Scheduling log cutting in forests, airline reservation and GPS [1], [18].

2.1.2 Mathematical Formulation

The following mathematical formula. describes the optimization problem:
Minimize/Maximize (2.1)
Subjectto x € 2 (2.2)

Where f is the objective or cost function for the set of the decision

variables x which are a subset of the constraints set [5]. As mentioned
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before optimization problem is how to find the best solution, the “best” of

the values of vector x depending on the objective function whether it’s

maximization or minimization of values of the feasible set.
2.1.2.1 Types of optimization problem

Many algorithms are proposed to solve optimization problems, to choose
the suitable algorithm to reach at least a near-optimal solution, you have to

know what type of optimization problem is.
1. Continuous optimization vs discrete optimization.

In discrete optimization, feasible solutions must belong to a discrete set.
Unlike continuous optimization, a possible solution is derived from real

numbers domain [23].
2. Unconstrained optimization vs constraint optimization.

It depends on the constraints whether they exist on the objective function

while optimizing it or not.
3. One objective or many objectives.

Most of the optimization problems have one objective function mentioned
before. However, some cases have many objective functions, such as in

engineering problems.

This thesis deals with one of the widely known problems: discrete,

constrained, and one objective problem called Bin Packing Problem (BPP).
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2.2 Bin Packing Problem (BPP)
2.2.1 What is BPP?

Bin Packing Problem is one of the most important and widely used
optimization problems because it is an NP-hard combinatorial problem. In
addition to computing and science’s essential applications, especially in
storage, resource allocation and scheduling such as filling containers,
machine scheduling, and technology mapping. Thus, many variations have
been proposed and developed such as two-dimensional BPP, Multi-

dimensional BPP, packing by cost...etc. [19].

Therefore many researchers were interested in finding the best algorithm to
solve it. Books, articles, working papers were published about this problem
as shown in figure 2.1. Many algorithms have been proposed from the
thirties until now such as First Fit, Best Fit, Genetic Algorithm, and
Simulated Annealing, scientists keep looking for the better, faster and

more accurate algorithm. [6]

140

120

100

bat ) +*

I
1989 1904 1999 2004 2009 2014

et Google Scholar e Scopus Web of Science

Figure 2.1: number of articles published about BPP through the years [6].
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BPP aims to pack several items with different weights in the minimum
number of bins, the capacity of these bins must not exceed, this problem is
a particular case of Cutting Stock which is about finding the minimum
material with a known size that needed to be cut into specific parts of
different sizes. Also, Knapsack Problem is a particular case of BPP that
aims to find the maximum value of items packed in a bin (bag) with known
capacity where capacity must not exceed, unlike BPP, in knapsack
problem not all items have to be packed. Each item has a specific weight
and value. In general, these problems, which called packing optimization

problems, change according to the number of bins and items. [6]
2.2.2 Mathematical Formulation

The Bin-Packing Problem (BPP) can be formulated as the follows: Each
item with specific weight will be packed to one bin without exceeding the
capacity (2.4) of the bin and minimum of bins. The mathematical

formulation of the problem is

minimizez = )"y, (2.3)
i=1
subjectto iy wix;; <cy; ,i€ N={12,...,n}, (2.4)
=1 xj=1j € N, (2.5)
y; =0 or 1, [ € N, (2.6)

x;j =0 or 1, i € N,j €N, (2.7)



Where

Z=Number of bins.

n=Number of items.

wi=weight of item j.

¢ =capacity of each bin.

(1 if bin i is used, }
Yi= {0 otherwise, (28)
_ if item j is assigned to bin i;
T {0 otherwise} (2.9)
O<wj<c for jEN (2.10)

[16]

This problem has two constrains, in (equation 2.4) items must not exceed
the bin’s capacity, and in (equation 2.5) no item could be placed in two

bins and all items have to be packed.
2.3 Optimization Algorithms

To solve any optimization problem, we have to determine the objective.
Then the optimization algorithm will find the feasible solutions for the

problem.

Picking the suitable optimization algorithm for the problem depends on
“the nature of the algorithm, the desired quality of solutions, type of
problem, the available computing resource, time limit, the availability of

the algorithm implementation, and the experts of the decision-makers”.



[31]

picking the suitable optimization algorithm for the problem depends on
algorithm’s nature and type of problem as mentioned in (2.1.3). In addition
to time limit, complexity, the experts of decision-makers and how easy and

available the algorithm to implement. [31]

[ Optimization algorithm I

Determilnistic
| )
—F—

(e | |GB||GF|
1 1

SLX NR
(1947) || (1660) Higsed)

NM (1965) |

I Meta-heuristic |
|

f 1
NN (1966) l | Bio-inspired l Physics-inspired

TS (1986) |

[ Evolutionary I [ Swarm-based ] [ Plant-based I Hs|—--_s,t\I
(2001) || (1983)

GA (1960s) | [—{ ACO (1992) | TPO
(2013)

GP (1992) | [ Pso (1995) |

DE (1996) | [ €5 (2009) |

FFA (2007)

BFA (2002)

ABC (2005)

Figure 2.2: Optimization Algorithm Classification[11]

So optimization algorithms can be classified into two classes:
Deterministic algorithms which are the algorithms that do not have any
randomness in them so running them several times with the same initial
point will give the same final results such as zehmakan approximation 1
(Al) and Hill climbing. Unlike Stochastic algorithms that have

randomness, leadsing to multiple final results when running the program,
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whether it starts with the same initial value or not such as Genetic

Algorithm and PSO. [31]

2.3.1 Heuristic and Approximation Algorithms

Heuristic algorithms are class-dependent algorithms that can solve only a
specific problem by choosing the next step to find a solution based on the
collected information. These algorithms can lead to optimal or near-

optimal solutions [30]

Heuristics can be classified into two classes: first one is local based
heuristics, which can find the solution for all items a whole iteratively like
in [24]) who starts with a subset of items and pack them into bins,
evaluates the maximum free space and starts unallocated them until
reaching to O unallocated items in 2D BPP. These algorithms are known to
be fast and effective. The other classification is a construction based that
deals with each item and packed it until all items are packed. Suppose this
algorithm has a guarantee on the solution (a), it will be called
approximation algorithm like in First Fit (FF) which takes an item and
place it in the first bin without exceeding the capacity until all items are
packed. Also as in Best Fit (BF) which takes an item and places it in the
bin with the minimum free space that fits it, and many more algorithms

[24]

As mentioned before, heuristic algorithms are effective and fast since it
can find a suitable solution in a polynomial-time where the running time is

guaranteed but there’s no guarantee to find the optimal solution. In the
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other hand, approximation algorithms guaranteed to reach a near optimal

solution in polynomial time.
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The guarantee on the performance of these algorithm is also called the
approximation factor or approximation ratio. If approximation algorithms’
objective function is minimizing then the approximation ratio should be at
least one, otherwise, in maximization function, the approximation ratio

should be at most one [19].

This ratio can be measured to be the ratio of the measured function and the
measure of the optimal solution as the following equation:

mI(A(I)) (2 11)

a(A) = MiMiez 2 oo

Where,

Z : optimization problem
A: optimization algorithm
| : items of the problem

Sol(l) is the set of feasible solutions to |
m,; : Sol(l) — R is the measure function associated with I, and

Opt(l) € Sol(l) is the feasible solutions with optimal measure (be it

minimum or maximum)

Suppose the optimization problem is a minimization problem. In that case,
the solution of approximation algorithm A(l) is trying to reach the optimal
solution OPT(I). Therefore, A(I) is bigger than OPT(I), then a is at least

one.

Furthermore, suppose it is a maximization problem. In that case, the
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approximation algorithm A(l) is less than OPT(l), then the approximation

ratio is less than 1.

The approximation algorithms are mathematically useful because this
performance ratio gives an idea of how it will perform if the items perform

well or not[25]

2.3.2 Meta-heuristic Algorithms

Meta-heuristic algorithms are independent algorithms that can solve many
problems, not specific for one problem and create its design. These
algorithms are developed from heuristics since it selects heuristic
algorithms and modifies them with a degree of randomness that leads to a
better solution without any previous knowledge about it. Also, it protects

the solution from getting trapped in local optima[32] [31].

meta-heuristic algorithms have been proposed in recent years. These
algorithms are classified into nature-inspired algortihms called bio-inspired
algorithms inspired by the nature of animals and birds. and non-nature-

inspired algorithms.[3]

Bio-inspired algorithms like ant colony algorithms mimic the ant routine in
finding food by marking its path with Pheromone if food is found. it will
come back from the same direction and mark it again with Pheromone to
concentrate it more to lead other ants to the food source. Such as in the
Genetic algorithm, Bee Algorithm (BA), Bat Algorithm (BA) and Particle

Swarm optimization. In comparison, Tabu Search (TS) is the non-inspired
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algorithm.[31]

classification for meta-heuristic algorithms, the population-based
algorithms that depend on multiple agents, each agent produces a solution
such as individuals in the genetic algorithm and particles in PSO. Unlike
Trajectory based algorithms which use only one agent in each iteration in
the search space to find the optimal solution such as Tabu Search (TS) and

simulated annealing [31] [3].

Meta-heuristics have parameters that need tuning; most of the parameters
are related to each other, making it challenging. The tunning process can
be done through the execution such as Adaptive PSO (APSO) [35]. or

before the implementation such as in GA.[9]

In this work, for solving BPP, we compare Genetic algorithm (GA) with

Particle Swarm optimization (PSO).
2.3.2.1 Genetic Algorithm (GA)

Genetic algorithms proposed by J. Holland [12] based on the Darwinian
principle, are population-based algorithms that use multiple individuals.
These individuals consist of chromosomes, and each chromosome consist

of genes and genes are composed of 0s or 1s see figure 2.3 [17].
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Figure 2.3: Chromosome and gene

Chromosomes are the basic stones in GA, by initializing population consist
of chromosomes and evaluating its fitness. Then select two individuals for
mating. After the selection, chromosomes will crossover by swapping
genes from them and producing a new offspring. After that, chromosome
needs to be mutated by a small random probability that changes the
chromosome to maintain diversity. This leads to producing a new solution
in each generation. The fitness function evaluates the solution’s
performance; the higher, the better (Yang, 2014). General steps of GA as

follows:

1. initialize population.

2. while stopping criteria not satisfied.

select parents for mating .

— crossover paretns to produce new offsprings.

— mutate the new offsprings.

— evaluate the fitness of new offsprings.

— population = new population.
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theses are shown in figure 2.4 [17]

!

Initialization

v

Fitness assignment

v

Selection

Y

Crossover

4

Mutation

i

\

Stopping criteria = false

Stopping criteria = true
-

Figure 2.4: Genetic Algorithm flowchart [37]
2.3.2.2 GA operaters

1. Selection Selection is process of choosing the best individuals to form a

new population as shown in figure 2.5
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Figure 2.5: Selection process

To achieve this step, many methods were proposed such as:

(@)

(b)

Roulette Wheel Selection: which also called fitness proportionate
proposed by [12] because it depends on evaluation of the fitness of
all chromosomes and finds their proportion by measuring the ratio
of chromosome fitness and sum of all chromosomes fitness as
shown in figure 2.6. chromosome 1 is the fittest, and chromosome
4 is the worst. chromosome 1 will have a bigger chance when the

wheel rolled.[27]

Tournament Selection: proposed by [10]. the number of
chromosomes is selected randomly to choose chromosomes for the
mating pool. A number of the selected chromosomes called the
tournament size. The fittest chromosome will be chosen for mating

pool[4].
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Roulette wheel Selection
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Figure 2.6: Selection Methods

2. Crossover Crossover is the process of swapping the selected parents
from the previous step in some parts of it with a high random
probability to produce a new offsprings by one of the crossover

methods such as One Point Crossover, N-points Crossover, Uniform

Crossover. as shown in figure .2.7[26] [31]

0jojo[o] [OJIR[0[0]0 0

B One Point Crossover m

B N-Points Crossover

N O Y91 © B0 O [0 0 I 0
°I°I°_°~

EACICICIRAE] Hl{]oli 0[1 1074714

M Uniform Crossover
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Figure 2.7: Cross over operators[21]

In figure 2.7 chromosomes in one point crossover methos are split into two
string by a random point. One string in chromosome 1 is swapped with one
string in chromosome 2, Both strings are on the same side, producing a

new offsprings. this method was proposed by Holland [12] [26].

Another method is similar to one point crossover is N-point crossover.
Instead of choosing one random point to split chromosome, at least two
points are chosen randomly such as in figure 2.8 3 random points split the

chromosome, the second and the forth chromosomes are swapped[15].

Syswerda proposed a method with no split points. however, it deals with
each gene separately [28] in figure 2.8, each gene randomly chooses one of
the parent’s genes. each gene inherits some of one of the parent’s genes.

[26]

3. Mutation is the process of changing a gene in the chromosomes by
swapping the gene with another gene in the same chromosome or put it
in a random place with a low random probability as shown in figure
2.8, unlike crossover, mutation maintains diversity because crossover
operator may lead to similar chromosomes, so there is no diversity to

expand the search space and explore it [27] [4].
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Beforemutaton 0110011110

]
After mutation 0111011110

Figure 2.8: Mutation Method
2.3.2.3 Particle Swarm Optimization (PSO)

PSO was developed by Kennedy and Eberhart in 1995 [13] it mimics the
behavior of fish and bird schooling [31]. “PSO maintaining strong abilities
of convergence and global search” [33], it had many variations such as
Adaptive Particle Swarm Optimization (APSO) [35], Particle Evolutionary
Swarm Optimization (PESO) [34]...etc. figure 2.9 shows the movement of

PSO.

/’A.*

lteration # 0O lteration # N

Figure 2.9: PSO movement [29]

As mentioned before, optimization algorithms are classified into stochastic
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and deterministic algorithms. PSO saves the best position and global best
position. It has a randomness behavior, so it is a stochastic algorithm; the
particle’s movement is measured by updating the particle’s velocity and

particle’s position as follows: [31]

vi*t = w v} + ¢, randi(pBest! — xf) + ¢, rand5(nBestt — x)]  (2.12)
x*t = xb +vftt (2.13)

x ; . position vector

v; . velocity vector

pbest : best position

nbest : global best position

rand!, rand} : random numbers between [0,1]
c,. self-cognition.

c,. social influence.

Since PSO mimic the movement of birds, suppose each particle is a bird
searching for a place to land see figure 2.10, each particle has it is own
current position x;(t) and current velocity v;(t), to update the bird’s

velocity.

The particle depends on the local and global search, then the self-cognition
factor (c,) and the social influence factor (c,) need to be balanced. If the
cognition factor is larger than the social factor, then the local search ability
will be more significant. If the social facor is bigger than the cognition

factor, then the global search ability will be more significant.[22] [35]
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The following figure 2.10 shows the particle x;(t) updated its position to

x;(t + 1) depending on the local best position and global best position.

‘“ (a)

I, :
Il
’ , * x/
Social part x

Cognitive part

v, (#)

Current motion part Momentum part

Figure 2.10: Particle Movement [20]



24

Chapter 3
Methodology

3.1 Introduction

The focus of this study is on finding the most near-optimal algorithm of
one dimensional BPP. One of the approaches is the heuristic algorithms,
also called approximation algorithms, when the solution guarantees on
how much the solution is near the optimal solution. Also, there are meta-

heuristic algorithms that mimic the best features of nature.

This study is a quantitative and experimental research type. Four
optimization algorithms were experimented and compared to two of the
most efficient approximation algorithms on several benchmark problems
with an already known optimal solution. This comparison is based on the

number of bins used and running time.
3.2 Optimization Algorithms

This work is showing a comparison between six optimization algorithms.
On one hand, four of them are approximation algorithms, the well-known
Best Fit Decreasing (BFD), First Fit Decreasing (FFD) and Zehmakan
approximation algorithm (Al and A2). On the other hand, two meta-
heuristic algorithms, Genetic Algorithm, and Particle Swarm Optimization.

These two algorithms have parameters that need to be specified.

Al and A2 have recently proposed algorithms, these algorithms are chosen

because the approximation ratio is 3/2 that means the approximation ratio
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is close to optimal solution, which is the best ratio that has been reached so
far. also they are efficient and one of them is based on First fit algorithm

and simple [19].

These algorithms have been tested in eight sets of instances of BPP from
OR Library. They been compared to Guochuan’s algorithms and
Berghammer’s algorithm [36] [2] and have shown much better and more
effective and efficient results than them. Also, it showed interesting results

by comparing it with FFD, and they are parameter-less.

Other algorithms were chosen, Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO). The meta-heuristic algorithms are suitable for
BPP because it’s one of the most effective, practical and successful
approaches. It has very essential concepts: intensification and

diversification, and its simplicity and flexibility.

To test the efficiency of these algorithms in bin packing problem, it has
been tested on some of the benchmark problems and compared with each

other and with FFD, BFD.
3.2.1 First Fit Decreasing (FFD)

One of the classical approximation algorithm for BPP, based on arranging
the items in the decreasing order, then place the items one by one on the
first bin that fits the item without exceeding the capacity. Figure 3.1 shows

an example on BFD, seven items with bin capacity 10.
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L={9 2 2 9 4, 6, 5}

4
9 2 9
6
> 5
FF algorithm
4 2
o 2
9 6 "
FFD algorithm

Figure 3.1: FF vs FFD example
3.2.2 Best Fit Decreasing (BFD)

Another classical approximation algorithm which also based on arranging
the items in the decreasing order. Unlike FFD, BFD places the items in the
best bin fits without exceeding the capacity and with less free space.
Figure 3.2 shows example on BFD and FF that was mentioned before, 7

items with bin capacity 10.
L={0.9, 0.1, 0.2, 0.9, 0.3, 0.6, 0.6}

0.1
0.9 0.3 0.9 0.6 0.6
0.2 ) )
BF algorithm
0.1
0.3 0.2
0.9
0:9 0.6 0.6

BFD algorithm

Figure 3.2: BF vs BFD example
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3.2.3 Zehmakan’s approximation algorithm 1 (A1)

Al is based on ranking and classifying technique, which aims to create
output bins, items will be classified into 4 ranges (S, M1, M2, L) to fill at

least 2/3 of output bins as follows:
S=(0-1/3)

M1= (1/3 - 1.5/3)

M2=(1.5/3 - 2/3)

L=(2/3-1)

start with L item by placing them directly and separately into bins. Each
item in M2 will be matched with the biggest item in M1 without exceeding
the bin’s capacity. If any item left in M1, then it will be matched with each
other leading to fill at least 2/3 of bin. If M2 is not empty, then M2 will
match with at least one item from S, and the last step is matching the

remaining S items with each other.

Most of the output bins are 2/3 full, therefore, this algorithm has approved

that its approximation ratio is 3/2 as follows :

Theorem 1: If all the output bins of the proposed algorithm Al are at least

2/3 full, then the approximation ratio is at least 3/2.
Proof:

1. L items fill at least 2/3 of bin capacity.
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2. M2 has a space of (1/3 - 1.5/3) that matches with M1 items with a range
(1/3 - 1.5/3) to fill at least 2/3 of bin capacity.

3. the remaining items in M1 will match with each other and fill at least

2/3 of bin capacity.

4. the remaining items in M2 will be matched with some S items with
range (0 - 1/3) without exceeding bin capacity. so we claim it fills more

than 2/3 of bin capacity, as a result there are two cases :

Case 1: if all S items are matched and there still M2 items. The space of
M2 items (1/3 - 1.5/3) it cannot be matched with L or itself, so the

remaining items will be placed in separated bins.

Case 2: if all M2 items are matched and there still S items. the remaining S
items are matched with each other, leading to fill 2/3 of bin’s capacity.

then all the output bins are at least 2/3 full.

Suppose A* is the number of output bins in optimal solution where all the
bins are filled, and A is the number of output bins found by Al Algorithm.

then the bin | can be discribed as follows:

(A)>1>24 (3.1)

then the approximation ratio as mentioned in 2.11

S

a(d) =—=<

N W

(3.2)

*

b

we proposed a modification on Algorithm Al. where L items will be

matched with S items.
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Theorem 2: If the modified Algorithm’s output bins are 2/3 full, then the

approximation ratio is 3/2.

Proof:

1. L has a empty space of (0/3 - 1/3) that matches with S items with range
(1/3 - 1.5/3) to fill more than 2/3 of bin capacity.

2. M2 has a empty space of (1/3 - 1.5/3) that matches with M1 items with
range (1/3 - 1.5/3) to fill at least 2/3 of bin capacity.

3. if any M1 items have remained, they will be matched with each other

and fill at least 2/3 of bin capacity.

4. if any M2 items and S items have remained, will be matched togather to

fill at least 2/3 of bin capacity.

Then all the output bins are at least 2/3 full.

As proved before, if all the bins are 2/3 full, then the approximation ratio is

3/2.

Algorithm 3.1 shows the pseudocode and the steps of Al
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Algorithm 3.1:
Zehmakan's Approximation Algorithm 1 (A1)

Read inputs & classify them into S, M;, M-, and L
Sort Ml& M2
For (any item a in M)

If (a can be matched with at least an item in M)
Match a with the biggest possible item in M, ;
Eliminate them & Bin-counter ++;

Else contfinue;

A M
Bin-counter + = . 2";
For (any item a in M)

Do
Choose an item b in S;
a=a+ b & eliminate b & ¢ = b;
While (a = 1)
Eliminate a & put ¢ in S & Bin-counter +—+;
While (S is not empty)
Choose an item a in S;
While (a = 1)
ChooseanitembinS &a =a+ b & c = b;
Eliminate a & Bin-counter++ & purcin S
End

3.2.4 Zehmakan approximation algorithm 2 (A2)

A2 is the new version of FFD. It considers 10 classes of bins B; =
By,B1,B,,...,By, and 10 ranges R; = Ry, Ry, R,,...,Ry e€ach range

contains items that fill (i * 0.1, (i + 1) * 0.1) of bin’s capacity.

Although this algorithm is parameter-less, it has a scale parameter that

presents the number of classes of bins and ranges.

Since A2 is based on BFD, matching items start with the biggest range
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(Ry) until reaching the smallest one (R,). all items in any range should be
matched and placed in the suitable set of bins (B;) that contains only bins

with free capacity (i * 0.1, (i + 1) * 0.1).

Each item will go through matching process to choose a suitable bin, start
with B, until By, pick random bin from B;, Check if there is a space for
item. If there is a space, place it and move the bin to suitable set of bins.
Else, search for another bin to place it. If there is no bin suitable for it,

open a new bin.

The pseudocode of algorithm A2 and steps are shown in Algorithm 3.2

Algorithm 3.2:
Zehmakan's Approximation Algorithm 2 (42)

Consider 10 sets of bins B; V 0 < i < 9. A4 bin is in the set B, if the bin's free space
between (i*0.1) and ((i+1) 0.1). (At first all sets are empty;
Consider 10 ranges R; = (i+#0.1,(i+1)=0.1) v0<i <9.
Read items from input.
Put the items into corresponding ranges
For(i=9i>-1i—-)
While (R; is not empty)
Choose an item a in R; randomly;
For(j=0;j<10; j++)
Choose a random bin in By,
If (the bin has enough space for a)
Put a in the bin & change that to the appropriate B;;
Eliminate a from R;;
Break;
Put the item a into an empty bin and put the bin into corresponding B;;
Eliminate a from R;

3.2.5 Genetic Algorithm (GA)

Many researchers proposed several genetic algorithm mechanisms to solve
BPP in this work. We use [8], the Grouping Genetic Algorithm for Bin

Packing Problem.
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3.2.5.1 Gene Representation

There are many representation schemes for bin packing problems such as
object-based representation, bin-used representation, Mohamadi’s
representation scheme [17]. The gene representation used in this work
proposed by [8] which called group-based representation. Unlike most of
the representation schemes that are item-oriented, group-based
representations are group-oriented. The cost function depends on the bins
groups where each bin represents a group of items. The items will be
presented as 1, 2, 3... N, the groups will be labeled as A, B, C... as in the

following example:

my caption 1

1|12 |3|4|5)| 6 <3 Items
A|B|A|cC|cC|D|<3Groups

Items 1 and 3 are placed in group (bin) A, item 2 placed in group B, items
4 and 5 placed in group C, and item 6 placed in group D, so the number of
bins is 4 in solution. The group part presented, for example, CABD
represents the bins used, which are 4 bins, to use it in the genetic
operations, so the item part need to identify the items as follows: A= 1, 3,

B=2,C=4,5D=60r1,324,56
3.2.5.2 Cost Function for BPP

The usual cost function used is the minimum number of bins required to

pack all items without exceeding the bin’s capacity. We used another
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function based on maximizing the following

F.
i (D"
BPP — (NC) f i=1.. N (33)

Where,

N: number of bins,

F;: the sum of item sizes in bin i,

C: bin capacity,

k: concentration on the most filled bin to the least filled bin, k>1.
3.2.5.3 Selection

After testing several tournament sizes in this work, the selection method
used is tournament selection of size two. In algorithm 3.3, in figure 3.3 two
tournaments are selected randomly from the population and evaluated the

fitness value, the fittest chromosome will be chosen for the mating pool.

Poplation §Tournament§ choosen individual

BCADE | ACDB | ACDB
ACDB | ABCD |

ABCDE

ABDC

ABCDEF

Figure 3.3: Example of tournament selection of size 2
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1: P < population
2: t + tournament size, t > 1

3: Best < individual picked at random from P with replacement

4: for i from 2 to t do

5. Next < individual picked at random from P with replacement

6 if Fitness(Next) > Fitness(Best) then
z: Best <— Next
8

- return Best

3.2.5.4 Crossover

The chosen crossover method is one point crossover because it performs

better than other methods in most of the scheduling problems.

First, the selected parents are copied to start the crossover process as in

figure 3.4.

copied parents

offspring

ABC|DE

ac|DE

modified offspring

ac|db

achD

(a)

ABC/db

(5)

(c)

Figure 3.4: example of crossover
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1. The crossover point is chosen randomly as in (A)

2. The first part of the first parent is replaced by the second part of the

second parent

3. The first part of the second parent is replaced by the second part of the

first parent producing offspring as in (B).

Since in BPP no items can be placed in two bins. Suppose E contains an

item already placed in A then bin E is removed as in (C).

l |

items:0,1,2,3,4,5,6,7,8

unassigned items: 3,56

items:0,1,23,4,5,6,7,8

unassigned items: 1,5

I3,5,7 I 0,28 I I 4 |

BinA Bin8 Binc¢

_] /."

0,28 |

Figure 3.5: example of crossover

Suppose the removed bin E contains other items 3, 5, 6. These unassigned
items need to be placed.[16], up to three of the assigned items in each bin
can be placed by one or two of the assigned items as in figure 3.5. Item 1 is
replaced by items 3 and 6, so item 1 will be unassigned and items 3 and 6
will be assigned items. Repeat this for all bins. If any items were still

unassigned, then use FFD to assign them.
3.2.5.5 Mutation

Mutation is very simple; choose a random bin, then mutate it as in figure

3.6. The bin c is selected to be mutate to be removed, and the bin’s items
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will be unassigned. The unassigned items placed in bin ¢ will be placed as

in the crossover by using FFD to assign them.

ABcdE :> ABdE

Mutation bin c

Figure 3.6: Mutation example
3.2.6 Particle Swarm Optimization (PSO)

Particle swarm optimization is one of the best meta-heuristic algorithms,
but it’s designed for continuous problems, so many researchers, proposed

techniques to solve discrete problems such as this work problem, BPP.

Khanesar (2007) proposed a novel binary PSO that implemented in this

work. The velocity of particle is a probability of bit. It takes one or zero. If

the position of a particle changes into 1, the velocity will denoted as v{’j

and if the position of particle changes into 0, the velocity will denoated as

1

vjj, as in 3.4.

and the particle best position and global best position depend on a fixed
variable (c;,c,) and on random variables (r;,7,) as shown in 3.5 and

3.2.6.
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O .
v if x::=1
vi= 17 f X (3.4)
vij, if x;;=0
and
p , then dul = ¢y, and dl]1 —C1y
thest =0 ,then d; = ¢ymy and d}j, = —ony
(3.5)
- 1, then dj;, = c;r, and djj, = —c,r
P]best = sz 22 (3.6)
9 0 ,then dl]2 oty and djj, = —Co1y

unlike standard BPSO that updates the velocity as in standard PSO in
equation 2.13, Novel BPSO updates the velocity as in equations 3.7 and
3.8

to update the velocity of jth bit in ith particle, consider the best position is

one, so according to equation 3.5, the temporary value dU ; Will increase

and d?;

0i1 Will decrease. as a result, the velocity of v; ; increases and v}

ij,1

decreases as in equation 3.4.

and if the best position is zero, then the velocity of ”ilj,l increases and v?j,1

decreases as in equation 3.8.

vl =woh + df, + di, (3.7)

v =wu) + di, + df, (3.8)

To update particle’s position, the velocity must be normalized as in

equation 3.9, then the position is updated according to equation 3.10.
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vij(t) = sig(vy; () = 1/1 + e /O (3.9)
S {1, if vij(t) = sig(v;(t + 1)) (3.10)
Y , otherwise '
x';j(®) ,if rj <v'y
xt+1D)=4""Y oY 3.11
i+ {xij(t) JUf 1y > v G11)

Where

P;pest - best position of particle i

Dgbest - 9lobal best position

1, Ty: random variables

cy, Co- fixed variables.

w: inertia weight

X: variable position.

dp;, dj; : two temporary values.

The pseudocode of BPSO and steps is shown in algorithm 3.4 [14]

1. Initialize the swarm X; , the position of particles is randomly initialized
within the hypercube. Elements of X; are randomly selected frombbinary

values 0 and 1.

2. Compare the performance F of each particle, using its current position
X;(t). Compare the performance of each individual to its best performance

so far: If F(X;t) < F(ibest): F(P;best) = F(X;(t)P;best = X;(t)



39
3. Compare the performance of each particle to the global best particle: If

F(X;(t) < F(B;best).
4. Change the velocity of the particle, vilj and v?j according to 3.2.6 , 3.7.

5. Calculate the velocity of change of the bits, v;; as in 3.4.

6. Generate the random variable 7;j in the range: (0,1). Move each particle

to a new position using equation 3.11.

7. Go to step 2, and repeat until convergence.
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Chapter 4
Experiments and Results
4.1 Introduction

In this chapter, we will compare the performance of six algorithms, two of
them are approximation algorithms proposed by Zehmakan (2015), two
classical approximation algorithms (FFD BFD), and a widely used meta-
heuristic algorithms (GA PSO) on Bin Packing Problem by comparing the

number of bins and running time. Each algorithm runs 30 times.

In meta-heuristic algorithms, GA parameters and gene representation are
set according to E.Falkenauer [8]. The used PSO binarization is proposed
by Khanesar (2007). To assess the merit of all algorithms, in addition to
the heuristic algorithms, we re-implemented them in the experiment. We
use the t-test to analyze the results and draw them with MatLab. We used

several benchmark problems as follows:

1. Type 1: BP1, BP2, BP3, and BP4 are benchmark problems presented by
E. Falkenauer (1994) which are consisted of uniformly distributed items
between 20 and 100 with bin capacity 150, And downloaded from
BPPLIB.

2. Type 2: M1, M2, M3, M4, and M5 are easy benchmark problems
considered by Mohamadi (2010) with a small number of items between 4

and 40.
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3. Type 3: NIC1W1_ G, N1IC2W1_ B, N2C3W1_ H, N3C2W1_ D, and
N3C3W1_ E are data sets by A.Scholl and R.Klein(1997), where number
of items are between 50 and 500, and capacity of the bin is varying
between 50, 100, 150, the items are arranged in the decreasing order

between 1 and 100.

4. Type 4: HARDO, HARDL1.. . HARD9 also are data setes by A.Scholl
and R.Klein(1997), where the number of items are between 20000 and
35000, and capacity of the bin is 100000.

5. Type 5: ul20-1, ul20-2,u120-3... ul20-10 are benchmark problems
from OR Library, which uniformaly distributed items are between 20 and

100.
4.2 Heuristic Algorithms Comparison

Zehmakan (2015) has proposed two algorithms (Al and A2) to prove the
efficiency of his algorithms. He tested them on type 1 of data sets, which
mentioned previously, and compared them with Gouchuan’s algorithm and
Berghammer’s algorithm [2]. Zehmakan’s experiment is shown in figure

4.1
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Figure 4.1: The ratio of the algorithms (Al, A2, Berghammer’s algorithm,
Gouchuan’s algorithm) for the set problem of instances bpl, bp2, bp3 and bp4

[19]

The ratio of the algorithm is the proportion of the algorithm solution to
optimal solution. As mentioned before, the approximation ratio of
minimization problem should be at least one. Since the optimal solution is

less than or equal to the algorithm solution.

In Zehmakan’s (2015) experiment, figure 4.1 shows promising algorithms,
Al algorithm shows the best results among compared algorithms, while
both Al and A2 gave optimal or near-optimal solutions with a ratio at most
1.05 as shown figure 4.1. Unlike the other two algorithms [2], that gave a

ratio at least 1.15 and never reach the optimality.
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where Al is more accurate and need less space than A2, but A2 shows

better results in time complexity and the homogeneity of items.

These algorithms are re-implemented in this experience on the same
benchmark problem type 1 data set. Due to stochastic features of A2, each
problem set runs 30 times and the result is reported. The results are shown

in figure 4.2.

Unlike Zehmakan’s experiment A2 preforms better than the Al, also it is
hard to reach optimality for Al algorithm where the least ratio is 1.05,
otherwise, A2 has a ratio at most 1.06 as it is described in Zehmakan’s
experiment. For time and space complexity. Al shows better results than

A2. But for the accuracy A2 is shown a very interseting results.

12-
N
[—# 118~ [—==
K
16
1"

Prbiom Sat Preblen S6.

The ratio of the algorithm for the set problems of instances BP1 The ratio of the algorithm for the set problems of instances BP2

L
Problerr So

The ratio of the algorithm for the set problems of instances BP3 The ratio of the algorithm for the set problems of instances BP4

Figure 4.2: The ratio of the algorithm for the set problems of instances for bin

packing
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In this experiment, a modification was proposed for algorithm Al to obtain
a better performance, by matching the L items with S items to fill bins. But
this modification fails, because it performed worse results. Both algorithms
Al and modified Al are implemented and experimented on data set from

OR Library as shown in the results in figure 4.3.

The problem sets vary from 10 to 1000, so as shown the bigger problem
set, the better performance. But still has worse results although it shows an
interesting results in type 4 sets. so the original algorithm will be

considered in the comparison.

Problem Set
Figure 4.3: The Ratio of algorithms for the set problems for A1 modified Al

Due to randomness in A2, the following table 4.1 is statistics of a sample
of the experimented problem sets run for 30 times. The bigger the problem
set, the higher the spread of solution space while the standard deviation is

getting bigger.
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Table 4.1: Descriptive statistics of Zehmakan Approximation

Algorithm 2
items |Optimal| Mean A2 Std. Std. 95% 95%

Deviation | Error Cl Min Cl Max

120 50 50.1 0.32 0.101 49.87 50.33
250 99 103.9 0.57 0.18 103.49 104.31
500 | 198 208.5 0.34 0.108 207.73 209.27
1000 | 399 419.2 0.63 0.199 418.75 419.65
1000 | 395 414.2 0.96 0.304 413.54 414.25

The figure 4.4 shows the proposed algorithms Al and A2 performance on
several benchmark problems mentioned in section 4.1 (type 1, 2 and 3),
the results of implementing Al and A2 shown in table 5.2 in Appendix.
Comparing them according to accuracy of results, A2 performs more
efficiently than Al. The figure shows that the results are calculated on 15
problem sets arranged in an increasing order. In the problem sets with
small number of items from 1 to 7, there’ s a difference in performance.
But while the problem is getting bigger and more difficult, the
performance of Al becomes more efficient and close to the performance

of A2.

m=—hJ
— Al

146

Ratio
T

1.06 -

Problem set

Figure 4.4: comparison between Al and A2 by the number of bins
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By comparing the classical approximation algorithms (FFD, BFD), both
gave the same results (number of bins used) shown in table 5.2. So
comparing them with Al and A2 shows in figure 4.5, in small problem
sets, the classical algorithms can reach the optimal solution, in larger
problems the solution has a ratio of at most 1.01 which is very close to the
optimal solution. Also, A2 is similar to FFD and BFD but with a ratio of at
least 1.04 since A2 based on FFD. Otherwise, Al gave the worst results

with a ratio of at least 1.15.

1 2 r ”\\ Al
r =49
115 F /\ / \ —n BFD
g Al TH / i e
= / \ ¢ =
T 14F -/ A
(14 //».‘ s
/ ‘\-'/
105 — e
/
/ / | — E— R——
1 / y | [ | 1 - — | =]
1 2 3 4 5 6 7 8 9 10
Problem Set

Figure 4.5: comparison between Al, A2, FFD and BFD by number of bins

So, table 5.3 shows a comparison between the four algorithms by running
time. Al is the fastest algorithm among the four algorithms with a best-
case of O(1) while BFF, FFD shows a fine running time of O(n), and A2

shows a bad results O(nlogn) as shown in figure 4.6

Al is not only the fastest algorithm but also it saves space because it
requires all the inputs at the beginning of the algorithm and doesn’t keep

all inputs during the whole process(off-line algorithms).
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But A2, FFD and BFD process the inputs one by one where it keeps all the
inputs during processing (on-line algorithm) so they consume more space

than Al.

40

©
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Figure 4.6: comparison between Al, A2, FFD and BFD by running time
4.3 Meta-heuristic algorithms comparison

Meta-heuristic algorithms are effective and efficient for bin packing
problem, depending on choosing the right parameters. Both GA and PSO
are re-implemented to solve BPP as described before in chapter three. In

this section we will set the parameters and find results.

As mentioned before, the Grouping Genetic Algorithm is used in this
work. The parameters are set as in Falkenauer (1997) with some

modification set by experimenting different parameters as follows:
1. Mutation: 0.66
2. Mutation size: Mutation * Population size

3. Crossover probability: 0.4
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4. Size of Offsprings: (crossover probability * Population size)/2
5. Number of iteration: 1000
6. Tournament selection round: 2

Population size have been tested for genetic algorithm for benchmark
problem of 500 instances with optimal solution of 198 as shown in

Table 4.2

Table 4.2: Sample of solutions for several population size for GA

Pop. size Solutions
50 239 257 227 242 240
100 237 239 235 238 235
1000 235 237 232 237 241

Also for BPSO, as mentioned in Khanesar (2007), parameters are set same
as the continuous PSO, the constriction coefficients c1 and c2 both are set
to 2.05, which is useful to analyze the convergence. Also for PSO,

population size has been tested on the same benchmark as shown in

Table 4.3
Table 4.3: Sample of solutions for several population size for PSO
Pop. size Solutions
50 239 232 227 242 230
100 237 240 235 238 236
1000 241 241 232 237 237

The larger the population size, the higher the time complexity. The
population size 50 is the best for running time comparison. However, for
the accuracy of the objective function results which is the minimum

number of bins, the following statistics in Table 4.4 shows that the best
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population size for both GA and PSO is 100 with Confidence interval
between 0.92 and 7.08

Table 4.4: statistics on GA and PSO for different population size

Pop. size| GA mean PSO mean M1-M2|GA St. | PSO | 95% 95%
(M1) (M2) Dev. |[St. Dev|Cl min |Cl max
50 244.6 233.2 114 | 1798 | 2.28 | -11.03 | 33.83
100 236.8 232.8 4 2.39 1.39 | 0.92 | 7.08
200 236.4 236.6 -0.2 | 3.029 | 4.04 | -557 | 5.17

To measure the efficiency of PSO and GA, both have been tested on the
same benchmark problems that used in heuristic and the results are
obtained in table 5.4 in appendix, figure 4.7 shows that PSO outperforms
GA by comparing number of bins. At small to medium problem set but in

large

sets ,problem sets with number of item of 250,500,1000, both algorithms

give almost the same solution

13 T |
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Figure 4.7: comparison between PSO and GA by number of bins

Comparing meta-heuristic to heuristics, it shows that heuristics performs

much better than meta-heuristics by comparing both number of bins and
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running time. since PSO outperformed GA in metaheuristics algorithms,

and A2 outperformed Al in heuristic algorithms. figure 4.8 shows a

comparison between the performance of heuristic A2 and the performance

of metaheuristic algorithm PSO.

PSO vs A2
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A2
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number of items

Figure 4.8: comparison between PSO and A2

Another experiment is set for a different benchmark problem type 5 on all

algorithms where the implemented results are shown in table 5.6 in

appendix. This comparison for medium size, easy problem sets, both BFF

and FFD reaches the optimal solution among all the sets, GA and PSO

have a close results but A2 outperform them, and Al has the worse results

comparing to all algorithms but still acceptable results for BPP shown in

figure 4.9.
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Figure 4.9: comparison between all algorithms by number of bins for easy datasets

By comparing running time for easy benchmark problems GA and PSO
has a fine complexity of O(n) and Al, Al, BFD and FFD are showing a

good complexity.

Also an experiment is done on hard problem set type 4 with 200 items and
capacity of 100000 shown in Figure 4.10. A2 outperforms all the
algorithms with interesting results very close to optimal solution, which
the results are shown in appendix table 5.8, where all algorithms reach
acceptable results except Al is the worse with solutions far from optimal
solution because the distribution of items are focused on S and M1 ranges,
according to A2 algorithm M1 range is matching with M2 and itself, and S
range is matching with M2 and itself, then M1 won’ t match with S

leading to a big increase on number of the used bins.
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Figure 4.10: comparison between all algorithms by number of bins for hard

datasets

By comparing the running time for hard data sets, the following figure 4.11

shows that both FFD and BFD have the best complexity time among all

algorithms. Therefore A2 has a fine complexity time better than GA and

PSO. Al has the worst results due to the distribution of the items.
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Figure 4.11: comparison between all algorithms by the running time for hard

datasets
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Chapter 5

Conclusion

In this thesis, we searched for optimal or near-optimal solution for Bin

Packing Problem which aims to find the minimum number of bins used to

pack items. This problem is very important in computing and science.

Therefore, many researchers have proposed algorithms to reach the

optimal solution as mentioned in the previous chapter.

Six algorithms were chosen to make a comparison based on the number of

the used bins and running time to test the performance of these algorithms

(A1, A2, BFD, FFD, GA and PSO). The question of this thesis is what is

the best algorithm for BPP is worked around as follows:

1.

Comparing heuristic algorithms by the number of bins used, A2
outperforms Al, but classical heuristics FFD and BFD outperform both
of them, since they reach the optimal solution in all small to medium

items size benchmark problem.

. Comparing heuristic algorithm by the running time, all algorithms take

milliseconds to reach a solution but A2 has a bad complexity time.

The experiments showed similarities between Al and FFD by

comparing number of bins.

Comparing metaheuristic algorithms by number of bins leads to two
different results, on the first experiment PSO outperform GA while on
the second one PSO and GA has a close results, PSO is slightly better
than GA.
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5. Comparing metaheuristic algorithm by running time, in some cases

PSO took double GA running time in most cases.

6. Comparing the six algorithms shows that all the algorithm are efficient
and effective, although meta-heuristic algorithms are good competitor
for heuristic algorithm. In easy datasets classical heuristics outperform
all algorithms, but in hard datasets A2 outperforms all algorithms with a

small difference between all of them. according to number of bins.

This thesis highlighted two approaches for the same problem after
comparing and analyzing the results of the experiments were done, the
researchers who are interested in BPP will be able to choose the suitable

approach for their work.

this thesis can be used as a base for promising researches in the future, for
example, the heuristic and met-heuristic algorithms could be combined

together to reach for better algorithms for BPP.
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Appendix

Table 5.1: Comparison between Al and modified Al by the number

of bins
Set No. | Items size | Bin capacity | Optimal solution | Al |Modified Al
1 10 20 6 7 10
2 50 120 26 30 49
3 100 150 35 40 42
4 120 150 49 52 65
5 200 120 85 98 101
6 250 150 99 114 124
7 500 150 198 222 240
8 500 150 205 226 237
9 1000 150 399 454 451
10 1000 150 395 414 421

Table 5.2: Comparison between Al, A2, BFD and FFD by the number
of bins

Set No. | Setname | Iltems Bin Optimal | A1 | A2 | FFD |BFD
size | capacity | solution
1 M1 4 6 2 2 | 2| 2 2
2 M2 9 14 6 6| 7| 6 6
3 M3 10 20 6 716 6 6
4 M4 20 45 10 12 110 | 10 | 10
5 M5 40 70 19 22 120 | 19 | 19
6 N1C1W1 G| 50 100 25 30|26 | 25 | 25
7 N1C2W1 B| 50 120 26 30|26 | 26 | 26
8 N2C3W1 H| 100 150 35 40136 | 35 | 35
9 BP1 120 150 49 52 |50 | 49 | 49
10 |N3C2W1 D| 200 120 85 98 190 | 98 | 98
11 N3C3W1 E| 200 150 68 78 | 71| 69 | 69
12 BP2 250 150 99 114|103 100 | 100
13 BP2 250 150 102 |114]107| 103 | 103
14 BP3 500 150 198 222]209| 201 | 201
15 BP4 1000 150 399 [454/419]| 403 | 403
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Table 5.3: Comparison between Al, A2, FFD and BFD by running
time

Set No.| Set Name Al A2 FFD BFD
1 M1 1 1 3 2
2 M2 1 1 3 2
3 M3 1 1 2 2
4 M4 1 1 2 4
5 M5 1 3 3 3
6 N1C1W1 G 1 2 3 4
7 N1C2W1 B 1 5 2 3
8 N2C3W1 H 2 4 3 3
9 BP1 2 5 3 3

10 N3C2W1 D 2 9 3 4
11 N3C3W1 E 3 8 4 4
12 BP2 3 16 6 4
13 BP2 3 14 4 5
14 BP3 4 36 7 7
15 BP4 4 74 14 17

Table 5.4. Comparison between GA and PSO by the number of bins

Set | Setname |ltems size|Bin capacity| Optimal GA | PSO
No. solution
1 M1 4 6 2 2 2
2 M2 9 14 6 6 6
3 M3 10 20 6 6 6
4 M4 20 45 10 11 | 10
5 M5 40 70 19 21 | 19
6 |N1C1W1 G 50 100 25 27 | 26
7 |N1C2W1 B 50 120 26 28 | 26
8 |N2C3w1 H 100 150 35 42 | 39
9 BP1 120 150 49 57 | 54
10 |N3C2w1l D| 200 120 85 102 | 96
11 |N3C3W1 E 200 150 68 81 | 79
12 BP2 250 150 99 117 | 109
13 BP2 250 150 102 123 | 115
14 BP3 500 150 198 233 | 232
15 BP4 1000 150 399 510 | 499
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Table 5.5 : comparison between GA and PSO by running time

Set No. Set name GA PSO
1 M1 10.8 s 16.9s
2 M2 11.7s 2255
3 M3 125s 23.9s
4 M4 12.8s 30.7s
5 M5 16.7 s 435s
6 N1C1W1l G 27.4 s 50s
7 N1C2W1 B 24.6 s 514s
8 N2C3W1 H 26.7 s 85.2s
9 BP1 39.35s 100.3 s
10 N3C2W1 D 56.2 s 162.6 s
11 N3C3W1 E 47.1s 199.4 s
12 BP2 62.3 s 19755
13 BP2 62.8 s 194.2 s
14 BP3 141.9s 483 s
15 BP4 306.8 s 1118 s

Table 5.6: Comparison between all algorithms by the number of bins
for easy datasets

Set No.| Set Name Optimal | A1 | A2 |FFD |BFD| GA [PSO
solution
ul20 01 48 59 |50 | 48 | 48 | 55 | 51
ul20 02 49 52 |50 | 49 | 49 | 55 | 50
ul20 03 46 52 |50 | 46 | 46 | 52 | 50
ul20 04 49 60 [50 | 49 | 49 | 56 | 55
ul20 05 50 59 [51] 50 | 50 | 56 | 54
ul20 06 48 56 51| 48 | 48 | 56 | 54
ul20 07 48 52 |50 | 48 | 48 | 53 | 52
ul20 08 49 56 |50 | 49 | 49 | 56 | 55
ul20 09 51 61 |56 | 51 | 51 | 56 | 55
ul20 10 46 52 |50 | 46 | 46 | 54 | 51

Table 5.7: comparison between all algorithms by the running time for
easy datasets

Set No.| Set Name Optimal | Al | A2 |BFD|FFD| GA |PSO
solution | (ms) |[(ms)| (ms) | (ms) | (s) | (S)
1 ul20 01 48 1 5 2 3 | 183 | 154
2 ul20 02 49 2 5 3 2 | 162 | 133
3 ul20 03 46 1 | 4] 3 2 | 155|134
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4 ul20_04 49 1 |6 ] 2 2 | 174 ] 151
&) ul20_05 50 3 |3 ] 4 2 1196 | 160
6 ul20_06 48 2 | 3] 3 3 194|161
/ u120_07 48 3 | 5] 3 3 1189|171
8 ul20_08 49 2 | 5] 4 2 | 300 | 238
9 ul20_09 o1 1 |6 ] 2 4 ]185 | 148
10 ul20_10 46 2 | 4| 2 3 320 | 290

Table 5.8: Comparison between all algorithms by the number of bins
for hard datasets

Set No.|Set Name| Optimal | A1 | A2 | FFD |BFD| GA |PSO
solution
1 hard0 56 96 58 59 | 59 | 62 | 63
2 hardl 57 101 | 59 60 | 60 | 66 | 63
3 hard?2 56 101 | 58 60 | 60 | 65 | 64
4 hard3 55 97 58 59 | 59 | 64 | 62
5 hard4 57 97 59 60 | 60 | 64 | 64
6 hard5 56 97 58 59 | 59 | 64 | 62
7 hard6 57 100 | 59 60 | 60 | 63 | 62
8 hard7 55 94 57 59 | 59 | 63 | 62
9 hard8 57 100 | 59 60 | 60 | 65 | 64
10 hard9 56 100 | 58 60 | 60 | 65 | 63

Table 5.9: comparison between all algorithms by the running time for
hard datasets

Set No.| Set Name Optimal | A1 | A2 |BFD|FFD| GA |[PSO
solution | (ms) |[(ms)| (ms) | (ms)| (s) | (S)

1 hard0 56 985 | 98 | 1 1 | 916 | 745
2 hardl 57 10852| 60 1 1 897 | 660
3 hard2 56 6894 | 154| 1 1 | 726 | 761
4 hard3 55 13716 27 | 3 1 | 871 | 754
5 hard4 57 5833 | 125| 4 4 | 375 | 689
6 hard5 56 14396| 255| 12 7 | 1516 | 2933
7 hard6 57 221411 30 | 1 2 | 360 | 684
8 hard7 55 13463| 158| 3 4 638 | 785
9 hard8 57 11652 32 | 1 1 | 475 | 725
10 hard9 56 5152 | 56 | 2 1 | 865 | 2041
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Datasets

Set M1
N=4C=6

2,2,4,4

Set M2
N=9 C=14

5,7,3,5,12,11, 10,11, 9

Set M3
N=10,C=20

14, 15,12, 2,4, 8, 13, 19, 20, 7

Set M4
N =20, C =45

17,19, 12, 11, 17, 18, 17, 4, 5, 21, 10, 23, 37, 32, 29, 40, 41,
30, 21,11
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Set M5
N=40,C=70

12, 13, 11, 40, 22, 60, 61, 63, 11, 10, 19, 31, 32, 37/, 25, 14,
21, 38, 51, 59, 40, 45, 54, 62, 59, 40, 13, 31, 17, 20, 26, 36,
15,12, 9, 10, 27, 31, 55, 40

Set NICIW1 G
N =50, C = 100

99, 99, 96, 96, 92, 92, 91, 88, 87, 86, 85, 76, 74, 712, 69, 67,
67, 62, 61, 56, 52, 51, 49, 46, 44, 42, 40, 40, 33, 33, 30, 30,
29, 28, 28, 27, 25, 24, 23, 22, 21, 20, 17, 14, 13, 11, 10, 7, 7,
3

Set 7 N1C1W1_B
N =50,C =120

99, 96, 96, 96, 95, 95, 94, 90, 90, 88, 87, 84, 82, 78, 77, 77,
77, 75,75, 70, 70, 69, 68, 56, 54, 53, 53, 50, 50, 49, 48, 47,
45, 38, 36, 35, 34, 28, 25, 21, 19, 18, 16, 13, 13,7, 7,6, 3, 3
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Set N1ICIWZ1 H
N = 100, C = 150

98, 97, 97, 97, 96, 95, 95, 95, 95, 93, 92, 88, 87, 86, 86, 85,
81, 81, 80, /8, 78, 78, 77, 77, 16, 75, 74, 72, 71, 70, 70, 69,
69, 67, 67, 67, 65, 65, 65, 64, 64, 63, 62, 58, 58, 56, 56, 56,
55, 52, 51, 50, 50, 50, 49, 49, 47, 45, 43, 43, 43, 42, 41, 40,
40, 40, 39, 38, 36, 35, 33, 33, 32, 30, 29, 28, 28, 25, 25, 22,
22,20, 20, 18, 17, 16, 15, 11, 11, 10, 8, 5,5,5,4,4,2,2,2,1

Set BP1
N =120, C =150

97, 57, 81, 62, 75, 81, 23, 43, 50, 38, 60, 58, 70, 88, 36, 90,
37, 45, 45, 39, 44, 53, 70, 24, 82, 81, 47, 97, 35, 65, 74, 68,
49, 55, 52, 94, 95, 29, 99, 20, 22, 25, 49, 46, 98, 59, 98, 60,
23, 72, 33, 98, 80, 95, 78, 57, 67, 53, 47, 53, 36, 38, 92, 30,
80, 32, 97, 39, 80, 72, 55, 41, 60, 67, 53, 65, 95, 20, 66, 78,
98, 47, 100, 85, 53, 53, 67, 27, 22, 61, 43, 52, 76, 64, 61, 29,
30, 46, 79, 66, 27, 79, 98, 90, 22, 75, 57, 67, 36, 70, 99, 48,
43, 45, 71, 100, 88, 48, 27, 39
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Set N3C2W1_D
N =200, C = 120

100, 100, 100, 99, 99, 98, 98, 98, 97, 96, 95, 95, 95, 94, 94,
93, 93, 93, 93, 92, 92, 92, 91, 90, 90, 89, 89, 88, 87, 86, 86,
85, 85, 84, 84, 84, 83, 83, 83, 83, 81, 79, 78, 78, 77, 71, 16,
76, 75, 75, 15, 75, 75, 74, 714, 74, 74, 74, 73, 13, 13, 72, 11,
71, 70, 69, 69, 68, 68, 66, 65, 65, 65, 65, 65, 64, 64, 63, 61,
61, 61, 61, 60, 60, 60, 60, 60, 59, 59, 58, 58, 57, 57, 56, 55,
54, 53, 53, 52, 51, 51, 51, 50, 49, 48, 47, 46, 46, 45, 44, 44,
43, 41, 41, 39, 39, 38, 38, 38, 37, 37, 37, 36, 36, 35, 35, 35,
34, 34, 34, 34, 34, 33, 32, 32, 32, 31, 29, 28, 28, 28, 27, 27,
26, 25, 25, 23, 23, 23, 23, 23, 22, 22, 22, 22, 21, 20, 18, 18,
17, 17, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12, 12, 11, 11, 11,
11, 11, 10, 8, 8, 8, 8,8,6,6,6,6,6,5,5,4,4,3,3,2,2,1, 1,
1,1

Set N3C3W1_E
N =200, C = 150

100, 100, 100, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 95,
95, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 90, 90, 89, 89, 89,
89, 88, 88, 87, 86, 85, 84, 84, 84, 84, 83, 83, 82, 82, 82, 82,
81, 80, 79, 78, 718, 77, 76, 76, 75, 74, 74, 74, 73, 72, 71, 71,
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70, 70, 70, 70, 70, 70, 69, 69, 68, 68, 68, 67, 66, 65, 64, 64,
63, 63, 62, 62, 61, 60, 59, 57, 57, 57, 56, 55, 55, 55, 55, 54,
54, 53, 53, 52, 52, 52, 52, 50, 48, 48, 48, 47, 47, 46, 46, 45,
45, 44, 44, 43, 43, 43, 42, 42, 42, 42, 41, 41, 40, 40, 39, 39,
36, 35, 34, 33, 32, 32, 31, 30, 29, 29, 28, 28, 27, 27, 24, 24,
24, 24, 23, 23, 23, 23, 23, 23, 21, 21, 20, 20, 19, 19, 18, 17,
17, 17, 16, 16, 15, 15, 15, 15, 14, 14, 13, 13, 13, 12, 12, 12,
12,11, 11, 11, 10, 10,9,9,8,8,8,7,7,7,7,6,5,4, 4,3, 3, 1,
1,1, 1

Set BP2
N =250, C =150

42, 69, 67, 57, 93, 90, 38, 36, 45, 42, 33, 79, 27, 57, 44, 84,
86, 92, 46, 38, 85, 33, 82, 73, 49, 70, 59, 23, 57, 72, 74, 69,
33, 42, 28, 46, 30, 64, 29, 74, 41, 49, 55, 98, 80, 32, 25, 38,
82, 30, 35, 39, 57, 84, 62, 50, 55, 27, 30, 36, 20, 78, 47, 26,
45, 41, 58, 98, 91, 96, 73, 84, 37, 93, 91, 43, 73, 85, 81, 79,
71, 80, 76, 83, 41, 78, 70, 23, 42, 87, 43, 84, 60, 55, 49, /8,
73, 62, 36, 44, 94, 69, 32, 96, 70, 84, 58, 78, 25, 80, 58, 66,
83, 24, 98, 60, 42, 43, 43, 39, 97, 57, 81, 62, 75, 81, 23, 43,
50, 38, 60, 58, 70, 88, 36, 90, 37, 45, 45, 39, 44, 53, 70, 24,
82, 81, 47, 97, 35, 65, 74, 68, 49, 55, 52, 94, 95, 29, 99, 20,
22, 25, 49, 46, 98, 59, 98, 60, 23, 72, 33, 98, 80, 95, 78, 57,
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67, 53, 47, 53, 36, 38, 92, 30, 80, 32, 97, 39, 80, 72, 55, 41,
60, 67, 53, 65, 95, 20, 66, 78, 98, 47, 100, 85, 53, 53, 67, 27,
22, 61, 43, 52, 76, 64, 61, 29, 30, 46, 79, 66, 27, 79, 98, 90,
22, 75, 57, 67, 36, 70, 99, 48, 43, 45, 71, 100, 88, 48, 27, 39,
38, 100, 60, 42, 20, 69, 24, 23, 92, 32

Set BP2
N =250, C =150

64, 42, 86, 65, 47, 68, 20, 45, 69, 78, 44, 96, 50, 27, 58, 55,
81, 87, 76, 38, 79, 71, 60, 76, 91, 69, 77, 57, 33, 22, 76, 51,
66, 90, 34, 46, 74, 62, 93, 74, 29, 22, 73, 26, 72, 41, 91, 88,
95, 35, 84, 32, 59, 56, 84, 71, 78, 82, 78, 52, 71, 26, 66, 84,
76, 95, 80, 50, 53, 30, 82, 38, 45, 99, 51, 98, 100, 88, 81, 77,
99, 97, 31, 54, 47, 45, 36, 96, 96, 74, 77, 98, 69, 22, 40, 39,
81, 90, 73, 84, 53, 73, 81, 51, 38, 43, 64, 28, 83, 28, 66, 22,
56, 61, 72, 69, 55, 20, 50, 52, 95, 89, 32, 60, 29, 90, 20, 90,
41, 37, 95, 20, 84, 33, 28, 40, 91, 39, 63, 66, 29, 74, 97, 41,
81, 53, 22, 32, 91, 61, 33, 91, 55, 56, 57, 44, 60, 55, 92, 39,
38, 100, 30, 65, 22, 78, 84, 32, 51, 52, 47, 62, 63, 25, 42, 59,
24, 88, 61, 71, 23, 48, 78, 85, 92, 39, 31, 76, 87, 54, 61, 66,
40, 22, 74, 99, 96, 73, 24, 43, 93, 47, 51, 22, 49, 39, 21, 72,
93, 72, 49, 68, 71, 82, 44, 25, 82, 74, 59, 28, 33, 61, 90, 97,
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62, 42, 100, 50, 31, 84, 81, 27, 45, 84, 54, 34, 79, 100, 63, 48,
68, 46, 74, 65, 35, 66, 53, 27, 70, 86
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Set BP3
N =500, C =150

42, 69, 67, 57, 93, 90, 38, 36, 45, 42, 33, 79, 27, 57, 44, 84,
86, 92, 46, 38, 85, 33, 82, 73, 49, 70, 59, 23, 57, 72, 74, 69,
33, 42, 28, 46, 30, 64, 29, 74, 41, 49, 55, 98, 80, 32, 25, 38,
82, 30, 35, 39, 57, 84, 62, 50, 55, 27, 30, 36, 20, 78, 47, 26,
45, 41, 58, 98, 91, 96, 73, 84, 37, 93, 91, 43, 73, 85, 81, 79,
71, 80, 76, 83, 41, 78, 70, 23, 42, 87, 43, 84, 60, 55, 49, 78,
73, 62, 36, 44, 94, 69, 32, 96, 70, 84, 58, 78, 25, 80, 58, 66,
83, 24, 98, 60, 42, 43, 43, 39, 97, 57, 81, 62, 75, 81, 23, 43,
50, 38, 60, 58, 70, 88, 36, 90, 37, 45, 45, 39, 44, 53, 70, 24,
82, 81, 47, 97, 35, 65, 74, 68, 49, 55, 52, 94, 95, 29, 99, 20,
22, 25, 49, 46, 98, 59, 98, 60, 23, 72, 33, 98, 80, 95, 78, 57,
67, 53, 47, 53, 36, 38, 92, 30, 80, 32, 97, 39, 80, 72, 55, 41,
60, 67, 53, 65, 95, 20, 66, 78, 98, 47, 100, 85, 53, 53, 67, 27,
22, 61, 43, 52, 76, 64, 61, 29, 30, 46, 79, 66, 27, 79, 98, 90,
22, 75, 57, 67, 36, 70, 99, 48, 43, 45, 71, 100, 88, 48, 27, 39,
38, 100, 60, 42, 20, 69, 24, 23, 92, 32, 84, 36, 65, 84, 34, 68,
64, 33, 69, 27, 47, 21, 85, 88, 59, 61, 50, 53, 37, 75, 64, 84,
74, 57, 83, 28, 31, 97, 61, 36, 46, 37, 96, 80, 53, 51, 68, 90,
64, 81, 66, 67, 80, 37, 92, 67, 64, 31, 94, 45, 80, 28, 76, 29,
64, 38, 48, 40, 29, 44, 81, 35, 51, 48, 67, 24, 46, 38, 76, 22,
30, 67, 45, 41, 29, 41, 79, 21, 25, 90, 62, 34, 73, 50, 79, 66,
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59, 42, 90, 79, 70, 66, 80, 35, 62, 98, 97, 37, 32, 75, 91, 91,
48, 26, 23, 32, 100, 46, 29, 26, 29, 26, 83, 82, 92, 95, 87, 63,
57, 100, 63, 65, 81, 46, 42, 95, 90, 80, 53, 27, 84, 40, 22, 97,
20, 73, 63, 95, 46, 42, 47, 40, 26, 88, 49, 24, 92, 8/, 68, 95,
34, 82, 84, 43, 54, 73, 66, 32, 62, 48, 99, 90, 86, 28, 25, 25,
89, 67, 96, 35, 33, 70, 40, 59, 32, 94, 34, 86, 35, 45, 25, 76,
80, 42, 91, 44, 91, 97, 60, 29, 45, 37, 61, 54, 78, 56, 74, 74,
45, 21, 96, 37, 75, 100, 58, 84, 85, 56, 54, 71, 52, 79, 43, 35,
27, 70, 31, 47, 35, 26, 30, 97, 90, 80, 58, 60, 73, 46, 71, 39,
42, 98, 27, 21, 71, 71, 78, 76, 57, 24, 91, 84, 35, 25, 77, 96,
97, 89, 30, 86

Set BP4
N =1000, C =150

42, 69, 67, 57, 93, 90, 38, 36, 45, 42, 33, 79, 27, 57, 44, 84,
86, 92, 46, 38, 85, 33, 82, 73, 49, 70, 59, 23, 57, 72, 74, 69,
33, 42, 28, 46, 30, 64, 29, 74, 41, 49, 55, 98, 80, 32, 25, 38,
82, 30, 35, 39, 57, 84, 62, 50, 55, 27, 30, 36, 20, 78, 47, 26,
45, 41, 58, 98, 91, 96, 73, 84, 37, 93, 91, 43, 73, 85, 81, 79,
71, 80, 76, 83, 41, 78, 70, 23, 42, 87, 43, 84, 60, 55, 49, 78,
73, 62, 36, 44, 94, 69, 32, 96, 70, 84, 58, 78, 25, 80, 58, 66,
83, 24, 98, 60, 42, 43, 43, 39, 97, 57, 81, 62, 75, 81, 23, 43,
50, 38, 60, 58, 70, 88, 36, 90, 37, 45, 45, 39, 44, 53, 70, 24,
82, 81, 47, 97, 35, 65, 74, 68, 49, 55, 52, 94, 95, 29, 99, 20,
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22, 25, 49, 46, 98, 59, 98, 60, 23, 72, 33, 98, 80, 95, 78, 57,
67, 53, 47, 53, 36, 38, 92, 30, 80, 32, 97, 39, 80, 72, 55, 41,
60, 67, 53, 65, 95, 20, 66, 78, 98, 47, 100, 85, 53, 53, 67, 27,
22, 61, 43, 52, 76, 64, 61, 29, 30, 46, 79, 66, 27, 79, 98, 90,
22, 75, 57, 67, 36, 70, 99, 48, 43, 45, 71, 100, 88, 48, 27, 39,
38, 100, 60, 42, 20, 69, 24, 23, 92, 32, 84, 36, 65, 84, 34, 68,
64, 33, 69, 27, 47, 21, 85, 88, 59, 61, 50, 53, 37, 75, 64, 84,
74, 57, 83, 28, 31, 97, 61, 36, 46, 37, 96, 80, 53, 51, 68, 90,
64, 81, 66, 67, 80, 37, 92, 67, 64, 31, 94, 45, 80, 28, 76, 29,
64, 38, 48, 40, 29, 44, 81, 35, 51, 48, 67, 24, 46, 38, 76, 22,
30, 67, 45, 41, 29, 41, 79, 21, 25, 90, 62, 34, 73, 50, 79, 66,
59, 42, 90, 79, 70, 66, 80, 35, 62, 98, 97, 37, 32, 75, 91, 91,
48, 26, 23, 32, 100, 46, 29, 26, 29, 26, 83, 82, 92, 95, 87, 63,
57, 100, 63, 65, 81, 46, 42, 95, 90, 80, 53, 27, 84, 40, 22, 97,
20, 73, 63, 95, 46, 42, 47, 40, 26, 88, 49, 24, 92, 87, 68, 95,
34, 82, 84, 43, 54, 73, 66, 32, 62, 48, 99, 90, 86, 28, 25, 25,
89, 67, 96, 35, 33, 70, 40, 59, 32, 94, 34, 86, 35, 45, 25, 76,
80, 42, 91, 44, 91, 97, 60, 29, 45, 37, 61, 54, 78, 56, 74, /4,
45, 21, 96, 37, 75, 100, 58, 84, 85, 56, 54, 71, 52, 79, 43, 35,
27,70, 31, 47, 35, 26, 30, 97, 90, 80, 58, 60, 73, 46, 71, 39,
42, 98, 27, 21, 71, 71, 78, 76, 57, 24, 91, 84, 35, 25, 77, 96,
97, 89, 30, 86, 81, 39, 75, 66, 85, 36, 60, 56, 50, 75, 75, 37,
87, 95, 21, 99, 42, 57, 31, 37, 42, 40, 69, 91, 45, 97, 84, 90,
52, 43, 68, 53, 37, 65, 79, 73, 92, 87, 20, 20, 73, 42, 52, 20,
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24,76, 71, 72, 21, 21, 82, 92, 78, 87, 50, 41, 31, 73, 89, 59,
88, 40, 71, 69, 45, 57, 49, 68, 84, 32, 69, 7/, 92, 98, 57, 39,
32, 23, 99, 91, 48, 21, /0, 43, 73, 69, 65, 57, 67, 28, 84, 42,
61, 92, 82, 34, 74, 55, 60, 69, 26, 25, 67, 77, 67, 79, 47, 84,
50, 21, 87, 83, 44, 88, 78, 53, 78, 37, 47, 52, 32, 88, 85, 82,
55, 41, 60, 66, 78, 72, 34, 64, 20, 60, 100, 62, 80, 34, 68, 38,
32, 32, 37, 82, 98, 90, 58, 97, 56, 34, 70, 39, 56, 69, 36, 20,
99, 84, 53, 27, 88, 53, 42, 45, 42, 31, 54, 60, 55, 27, 36, 31,
39, 91, 45, 97, 26, 80, 41, 56, 70, 97, 48, 87, 23, 32, 75, 100,
97, 51, 78, 78, 21, 72, 72, 79, 46, 30, 48, 27, 95, 48, 67, 58,
46, 92, 21, 82, 91, 40, 56, 24, 94, 44, 91, 92, 81, 24, 84, 44,
83, 37, 98, 85, 88, 95, 29, 35, 100, 55, 48, 27, 20, 66, 62, 52,
88, 59, 97, 91, 81, 81, 86, 48, 43, 60, 72, 88, 90, 48, 38, 60,
53, 55, 90, 48, 55, 57, 59, 25, 51, 22, 43, 31, 52, 89, 96, 58,
63, 27, 46, 43, 30, 44, 71, 66, 64, 28, 83, 88, 42, 92, 95, 36,
24, 62, 44, 82, 59, 31, 96, 44, 61, 78, 72, 62, 76, 65, 22, 41,
27, 85, 80, 72, 100, 29, 27, 43, 83, 32, 33, 53, 95, 99, 20, 23,
72, 50, 50, 27, 89, 53, 75, 81, 34, 27, 69, 48, 84, 37, 69, 54,
51, 49, 49, 54, 100, 55, 45, 83, 61, 96, 91, 37, 53, 76, 50, 66,
70, 87, 92, 35, 53, 95, 47, 56, 55, 86, 32, 99, 83, 88, 41, 63,
77, 60, 66, 53, 79, 81, 96, 34, 99, 47, 74, 87, 44, 77, 52, 99,
69, 64, 94, 38, 69, 61, 98, 40, 84, 89, 49, 64, 53, 41, 34, 85,
35, 55, 61, 68, 100, 75, 98, 36, 44, 57, 24, 60, 45, 48, 60, 94,
71, 70, 64, 62, 93, 20, 69, 37, 63, 61, 26, 54, 89, 46, 54, 50,
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32, 71, 62, 40, 26, 59, 62, 27, 60, 50, 74, 34, 40, 70, 56, 23,
66, 57, 43, 45, 65, 25, 82, 82, 37, 66, 47, 44, 94, 23, 24, 51,
100, 22, 25, 51, 95, 58, 97, 30, 79, 23, 53, 80, 20, 65, 64, 21,
26, 100, 81, 98, 70, 85, 92, 97, 86, 71, 91, 29, 63, 34, 67, 23,
33, 89, 94, 47, 100, 37, 40, 58
HARDO

34978, 34849, 34703, 34608, 34598, 34524, 34356, 34308,
34069, 34049, 33895, 33842, 33806, 33738, 33716, 33590,
33546, 33507, 33468, 33465, 33383, 33190, 33075, 32976,
32897, 32762, 32696, 32638, 32553, 32398, 32230, 32176,
31967, 31954, 31903, 31782, 31724, 31686, 31597, 31561,
31532, 31499, 31346, 30943, 30915, 30869, 30766, 30683,
30678, 30644, 30559, 30448, 30315, 30238, 30125, 29974,
29947, 29890, 29886, 29858, 29856, 29783, 29697, 29438,
29427, 29301, 29174, 29173, 29123, 29117, 29116, 29095,
29094, 29063, 29041, 29038, 28977, 28946, 28921, 28910,
28842, 28703, 28360, 28350, 28305, 28302, 28225, 28160,
28094, 28040, 28020, 27901, 27775, 27765, 27688, 27439,
27425, 27394, 27365, 27349, 27284, 27180, 26935, 26881,
26867, 26795, 26703, 26651, 26550, 26432, 26375, 26368,
26244, 26204, 26192, 26181, 26158, 26133, 2606/, 25945,
25906, 25759, 25698, 25688, 25652, 25615, 25530, 25528,
25366, 25324, 25273, 25142, 24852, 24846, 24658, 24592,
24564, 24463, 24457, 24374, 24359, 24332, 23987, 23956,
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23952, 23932, 23895, 23837, 23795, 23774, 23663, 23621,
23502, 23453, 23430, 23366, 23178, 23090, 22991, 22942,
22743, 22442, 22432, 22415, 22338, 22134, 22081, 22014,
21950, 21948, 21796, 21784, 21727, 21722, 21557, 21498,
21480, 21315, 21193, 21127, 21060, 20997, 20837, 20813,
20693, 20693, 20686, 20677, 20676, 20664, 20663, 20634,
20616, 20570, 20566, 20496, 20441, 20307, 20226, 20114

HARD1

34991, 34949, 34847, 34577, 34461, 34343, 34318, 34316,
34302, 34290, 34282, 34279, 34046, 33944, 33814, 33813,
33753, 33653, 33620, 33584, 33554, 33544, 33426, 33414,
33376, 33273, 33270, 33170, 33034, 33007, 32957, 32897,
32784, 32773, 32528, 32499, 32423, 32400, 32356, 32302,
32090, 31863, 31850, 31841, 31840, 31775, 31773, 31655,
31613, 31608, 31587, 31535, 31378, 31197, 31194, 31179,
30992, 30899, 30780, 30742, 30685, 30645, 30641, 30610,
30498, 30336, 30327, 30271, 30105, 29975, 29957, 29924,
29870, 29815, 29777, 29754, 29658, 29648, 29553, 29481,
29416, 29415, 29410, 29408, 29361, 29316, 29002, 28987,
28947, 28897, 28801, 28636, 28538, 28507, 28435, 28360,
28330, 28063, 28007, 27983, 27937, 27879, 27760, 27715,
27517, 27230, 27146, 27072, 27028, 26985, 26894, 26840,
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26799, 26797, 26717, 26582, 26511, 26472, 26469, 26386,
26301, 26117, 26110, 26031, 26030, 25705, 25532, 25524,
25499, 25441, 25421, 25356, 25310, 25227, 25118, 25073,
24989, 24955, 24844, 24792, 24625, 24562, 24526, 24451,
24299, 24290, 23927, 23885, 23873, 23850, 23795, 23583,
23473, 23438, 23408, 23354, 23328, 23260, 23145, 23128,
22994, 22744, 22687, 22596, 22581, 22516, 22467, 22412,
22337, 22253, 22226, 22206, 22177, 22036, 21997, 21933,
21807, 21749, 21669, 21656, 21585, 21525, 21506, 21437,
21415, 21316, 21222, 21214, 21098, 20944, 20819, 20718,
20488, 20458, 20422, 20324, 20233, 20137, 20008

HARD2

34953, 34942, 34849, 34732, 34683, 34640, 34590, 34446,
34315, 34314, 34236, 34088, 34060, 33942, 33861, 33858,
33811, 33800, 33764, 33725, 33709, 33475, 33415, 33402,
33367, 33286, 33280, 33093, 33083, 33047, 33005, 32966,
32931, 32906, 32787, 32731, 32716, 32708, 32670, 32651,
32621, 32560, 32555, 32544, 32387, 32363, 32186, 32143,
32094, 32072, 31982, 31912, 31830, 31759, 31646, 31641,
31548, 31505, 31411, 31408, 31383, 31192, 31155, 31153,
31083, 30955, 30726, 30648, 30531, 30532, 30369, 30250,
30226, 30165, 30111, 29999, 29973, 29899, 29787, 29512,
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29509, 29501, 29429, 28933, 28887, 28882, 28849, 28841,
28823, 28595, 28497, 28486, 28399, 28269, 28099, 28021,
28006, 27873, 27850, 27672, 27670, 27607, 27402, 27317,
27290, 27211, 27163, 27104, 27052, 27012, 26866, 26786,
26656, 26598, 26477, 26474, 26470, 26411, 2639/, 26352,
26176, 26155, 26076, 26019, 25983, 25932, 25802, 25702,
25474, 25412, 25279, 25253, 25192, 25058, 25039, 24864,
24654, 24595, 24508, 24497, 24496, 24376, 24345, 24324,
24250, 24202, 24093, 24069, 23977, 23833, 23793, 23758,
23407, 23207, 23152, 23080, 23023, 22961, 22772, 22764,
22743, 22739, 22695, 22660, 22655, 22649, 22587, 22582,
22579, 22579, 22576, 22572, 22467, 22412, 22346, 22284,
22190, 21694, 21671, 21599, 21567, 21546, 21502, 21499,
21459, 21338, 21299, 21148, 21132, 21004, 20926, 20822,
20818, 20701, 20654, 20643, 20633, 20474, 20396, 20009

HARD3

34746, 34740, 34738, 34679, 34566, 34566, 34437, 34404,
34037, 33786, 33749, 33609, 33606, 33587, 33508, 33490,
33363, 33346, 33279, 33269, 33211, 33145, 33032, 33000,
32818, 32811, 32703, 32481, 32478, 32414, 32307, 32032,
32009, 31971, 31940, 31937, 31851, 31751, 31678, 31598,
31575, 31503, 31491, 31462, 31449, 31414, 31299, 31232,
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31037, 31025, 30940, 30934, 30865, 30720, 30704, 30677,
30499, 30394, 30265, 30264, 30249, 30188, 29896, 29750,
29750, 29623, 29553, 29435, 29404, 29376, 29288, 29280,
29216, 29162, 29068, 29036, 29022, 28885, 28758, 28746,
28566, 28462, 28308, 28077, 27961, 27896, 27800, 27680,
27509, 27509, 27504, 27482, 27474, 27402, 27327, 27302,
27299, 27237, 27205, 27169, 27019, 27008, 26993, 26946,
26737, 26667, 26663, 26635, 26506, 26375, 26310, 26229,
26132, 26075, 26036, 26011, 25993, 25726, 25604, 25579,
25501, 25466, 25454, 25349, 25296, 25225, 25143, 25050,
25028, 24838, 24796, 24724, 24688, 24585, 24518, 24458,
24451, 24312, 24256, 24239, 24212, 24175, 23857, 23791,
23680, 23452, 23406, 23405, 23369, 23367, 23346, 23336,
23290, 23174, 23096, 23070, 23057, 22950, 22917, 22896,
22893, 22823, 22781, 22678, 22352, 22351, 22308, 22268,
22220, 22217, 22195, 22097, 22063, 22036, 21965, 21856,
21751, 21615, 21613, 21585, 21415, 21346, 21328, 21310,
21299, 21269, 21267, 21117, 20919, 20903, 20847, 20778,
20773, 20740, 20664, 20633, 20600, 20530, 20423, 20033

HARD4

35000, 34970, 34839, 34733, 34369, 34328, 34237, 34229,
34225, 34197, 34154, 34002, 33988, 33977, 33958, 33934,
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33891, 33839, 33471, 33218, 33149, 32979, 32940, 32936,
32912, 32902, 32900, 32885, 32802, 32802, 32802, 32708,
32637, 32415, 32403, 32200, 32110, 32068, 32067, 32058,
31950, 31946, 31923, 31919, 31690, 31624, 31562, 31482,
31475, 31450, 31432, 31405, 31363, 31187, 3110/, 31088,
30940, 30873, 30866, 30750, 30538, 30527, 30497, 30370,
30347, 30290, 30156, 30140, 30118, 30051, 29845, 29750,
29654, 29646, 29552, 29512, 29415, 29403, 29382, 29300,
29271, 29151, 29131, 28998, 28951, 28937, 28867, 28821,
28820, 28724, 28696, 28489, 28380, 28267, 28252, 28225,
28223, 28105, 28104, 28044, 27900, 27864, 27699, 27668,
27661, 27593, 27589, 27570, 27497, 27416, 27322, 27287,
27271, 27221, 26975, 26881, 26813, 26692, 26591, 26520,
26432, 26337, 26290, 26289, 26219, 25966, 25822, 25563,
25546, 25461, 25442, 25361, 25356, 25281, 25259, 25122,
25078, 25024, 24793, 24790, 24789, 24721, 24714, 24424,
24413, 24341, 24325, 24234, 24198, 24149, 24092, 23920,
23907, 23864, 23811, 23799, 23781, 23671, 23662, 23493,
23299, 23206, 23162, 23139, 23119, 23013, 22984, 22983,
22872, 22846, 22771, 22533, 22467, 22246, 22237, 22217,
22166, 22143, 22140, 22095, 22045, 21930, 21774, 21753,
21744, 21500, 21369, 21289, 20986, 20971, 20920, 20899,
20897, 20892, 20788, 20774, 20738, 20368, 20299, 20139



83

HARDS

34955, 34773, 34641, 34529, 34478, 34453, 34441, 34399,
34131, 34102, 33996, 33978, 33732, 33523, 33445, 33437,
33428, 33386, 33338, 33183, 33140, 33108, 33076, 33005,
32986, 32984, 32859, 32819, 32749, 32681, 32620, 32582,
32504, 32425, 32417, 31766, 31717, 31699, 31648, 31566,
31505, 31373, 31355, 31273, 31264, 31216, 31064, 31008,
30918, 30905, 30751, 30724, 30707, 30689, 30617, 30592,
30519, 30459, 30315, 30297, 30279, 30246, 30246, 30148,
30138, 30069, 29962, 29899, 29898, 29737, 29735, 29626,
29590, 29495, 29434, 29159, 29063, 28917, 28862, 28709,
28678, 28524, 28426, 28296, 28231, 28213, 28210, 28198,
27960, 27628, 27622, 27502, 27473, 27345, 27330, 27323,
27301, 27240, 27120, 27090, 27015, 26845, 26839, 26828,
26636, 26607, 26570, 26554, 26311, 26308, 26270, 26225,
26219, 26211, 26088, 26067, 26060, 25994, 25942, 25920,
25916, 25866, 25827, 25735, 25600, 25561, 25504, 25443,
25437, 25380, 25097, 25077, 25071, 25054, 25037, 24941,
24933, 24871, 24843, 24788, 24751, 24720, 24594, 24565,
24361, 24312, 24168, 24153, 24152, 24145, 24109, 24088,
23852, 23829, 23766, 23654, 23630, 23572, 23482, 23379,
23172, 23012, 22937, 22936, 22897, 22887, 22886, 22876,
22689, 22673, 22670, 22542, 22345, 22262, 22199, 22131,
22109, 22095, 21958, 21712, 21642, 21440, 21345, 21296,
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21156, 21147, 21122, 21048, 21036, 21031, 21021, 20960,
20812, 20646, 20500, 20443, 20409, 20385, 20382, 20000
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HARDG6

34973, 34910, 34885, 34807, 34720, 34655, 34630, 34613,
34536, 34230, 34226, 34172, 34069, 34069, 34066, 33902,
33843, 33761, 33637, 33632, 33429, 33351, 33343, 33303,
33300, 33259, 33070, 33045, 33022, 32986, 32881, 32785,
32759, 32649, 32583, 32560, 32558, 32545, 32380, 32332,
32297, 32113, 32077, 31943, 31916, 31787, 31770, 31719,
31718, 31701, 31652, 31641, 31470, 31269, 31227, 31138,
31006, 30831, 30828, 30814, 30582, 30580, 30561, 30379,
30371, 30339, 30150, 30125, 30104, 30098, 30075, 30039,
29907, 29860, 29627, 29547, 29532, 29516, 29404, 29313,
29268, 29186, 29179, 29139, 9051, 28932, 28820, 28716,
28692, 28436, 28360, 28321, 28298, 28086, 27954, 27911,
27758, 27642, 27627, 27616, 27464, 27393, 27334, 27321,
27202, 27080, 27032, 26978, 26794, 26705, 26671, 26630,
26449, 26409, 26354, 26345, 26307, 26278, 26192, 26188,
26112, 26014, 25959, 25808, 25806, 25741, 25655, 25640,
25611, 25609, 25491, 25344, 25233, 25134, 25028, 24967,
24931, 24870, 24584, 24512, 24507, 24476, 24424, 24413,
24382, 24363, 24356, 24200, 24129, 24089, 24064, 24043,
23991, 23866, 23765, 23632, 23595, 23547, 23483, 23378,
23335, 23324, 23302, 23232, 23224, 23147, 23088, 22948,
22922, 22886, 22778, 22618, 22513, 22487, 22450, 22433,
22345, 22237, 22232, 22149, 22041, 21753, 21720, 21711,
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21649, 21634, 21577, 21473, 21472, 20895, 2081/, 20619,
20613, 20598, 20565, 20433, 20395, 20348, 20081, 20050

HARD7

34808, 34689, 34603, 34583, 34336, 34297, 34244, 34192,
34092, 34045, 34030, 33976, 33959, 33872, 33820, 33736,
33641, 33592, 33405, 33362, 33333, 33299, 33253, 33242,
33223, 33120, 33093, 33067, 32733, 32256, 32193, 32094,
32003, 31894, 31/88, 31746, 31734, 31720, 31675, 31651,
31648, 31618, 31611, 31599, 31598, 31312, 31095, 31062,
30853, 30793, 30691, 30599, 30567, 30537, 30462, 30436,
30264, 30246, 30218, 30053, 30037, 29942, 29941, 29879,
29779, 29746, 29688, 29682, 29641, 29633, 29563, 29462,
29461, 29450, 29356, 29299, 29288, 29280, 29235, 29169,
29129, 28955, 28954, 28671, 28437, 28336, 28269, 28200,
28000, 27973, 27968, 27914, 27885, 27759, 27741, 27653,
27567, 27563, 26904, 26550, 26402, 26366, 26361, 26348,
26225, 26139, 26108, 25991, 25718, 25683, 25639, 25462,
25290, 25228, 25136, 25043, 25038, 24962, 24892, 24823,
24803, 24768, 24621, 24559, 24441, 24419, 24381, 24250,
24235, 24093, 24083, 24065, 24060, 23974, 23868, 23833,
23636, 23633, 23581, 23523, 3445, 23413, 23317, 23202,
23160, 23150, 23117, 22977, 22959, 22955, 22947, 22915,
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22833, 22755, 22739, 22603, 22592, 22557, 22554, 22530,
22354, 22313, 22306, 22095, 22092, 22021, 21948, 21934,
21913, 21855, 21594, 21564, 21543, 21518, 21440, 21389,
21370, 21205, 21174, 21027, 20984, 20969, 20932, 20900,
20844, 20816, 20721, 20694, 20584, 20533, 20490, 20476,
20343, 20332, 20260, 20173, 20162, 20157, 20131, 20017

HARDS

34992, 34948, 34868, 34591, 34582, 34127, 34077, 34055,
34007, 34004, 33990, 33918, 33813, 33780, 33756, 33744,
33700, 33659, 33496, 33484, 33443, 33428, 33369, 33354,
33347, 33191, 33185, 33162, 33110, 32988, 32968, 32879,
32846, 32797, 32708, 32656, 32584, 32486, 32466, 32456,
32440, 32390, 32373, 32353, 32352, 32282, 32187, 32111,
32097, 32084, 32017, 31990, 31917, 31880, 3181/, 31752,
31540, 31528, 31471, 31309, 31267, 31232, 31204, 30773,
30703, 30552, 30549, 30515, 30305, 30221, 30162, 30115,
30107, 30072, 30010, 29972, 29704, 29550, 29547, 29547,
29457, 29418, 29325, 29226, 29155, 29034, 28859, 28837,
28652, 28535, 28502, 28423, 28421, 28388, 28386, 28348,
27930, 27919, 27793, 27703, 27669, 27365, 27266, 27096,
26928, 26868, 26848, 26677, 26676, 26673, 26658, 26559,
26507, 26476, 26424, 26421, 26320, 26251, 26224, 26214,
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26128, 25943, 25900, 25879, 25852, 25821, 25720, 25655,
25625, 25495, 25455, 25174, 25150, 25104, 25028, 24917,
24898, 24860, 24813, 24682, 24659, 24475, 24370, 24301,
24283, 24273, 24251, 24230, 24199, 24088, 24086, 24084,
24023, 23947, 23872, 23736, 23725, 23609, 23562, 23515,
23453, 23414, 23235, 23078, 23036, 22937, 22932, 22897/,
22826, 22680, 22664, 22646, 22523, 22404, 22287, 22240,
22151, 21978, 21963, 21921, 21866, 21747, 21655, 21560,
21464, 21403, 21046, 21041, 21020, 20796, 20778, 20774,
20622, 20603, 20410, 20371, 20248, 20236, 20146, 20091

HARD9

34991, 34941, 34922, 34866, 34849, 34771, 34768, 34748,
34544, 34358, 34254, 34155, 34098, 34076, 34055, 34048,
34029, 33990, 33871, 33780, 33750, 33654, 33612, 33581,
33430, 33260, 33197, 33155, 33115, 33007, 32989, 32795,
32708, 32394, 32384, 32309, 32193, 32039, 32038, 32008,
31995, 31961, 31946, 31865, 31839, 31829, 31692, 31633,
31354, 31169, 31141, 31006, 30929, 30843, 30842, 30807,
30741, 30514, 30395, 30387, 30341, 30296, 30287, 30284,
30140, 30135, 30063, 29975, 29933, 29859, 29735, 29730,
29703, 29525, 29518, 29423, 29378, 29234, 29218, 29178,
29092, 29089, 28947, 28647, 28574, 28550, 28547, 28471,
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28461, 28299, 28267, 28252, 28251, 28159, 28009, 28003,
27967, 27852, 27811, 27664, 27508, 27413, 27409, 27184,
27162, 27113, 27099, 27048, 27041, 26733, 26506, 26362,
26183, 25997, 25976, 25897, 25856, 25784, 25700, 25668,
25641, 25522, 25490, 25433, 25408, 25322, 25299, 25237,
25091, 25057, 25015, 24990, 24974, 24939, 24834, 24777,
24743, 24625, 24555, 24449, 24367, 24340, 24329, 24126,
24085, 24050, 24020, 23999, 23989, 23974, 23928, 23837,
23836, 23565, 23491, 23422, 23417, 23205, 23195, 23156,
23092, 22712, 22644, 22417, 22392, 22281, 22239, 22212,
22067, 22045, 22042, 22003, 21866, 21851, 21849, 21713,
21674, 21608, 21607, 21594, 21401, 21296, 21239, 21180,
21128, 21059, 20954, 20948, 20947, 20813, 20755, 20725,
20693, 20585, 20513, 20431, 20338, 20310, 20296, 20081
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