An Najah Nattional University Faculty of Graduate Studies

Effects of different level of Phytase on Broilers Performance and Body Status of Phosphorus

1

By Rabie Ihsan Ahmad Sabha

Supervisor Prof. Jamal Abo Omar

Submitted In Partial Fulfillment of the Requirements for the Degree of Master in Animal Production, Faculty of Graduate Studies at An Najah National University at Nablus, Palestine.

2008

Effects of different level of Phytase on Broilers Performance and Body Status of Phosphorus

By Rabie Ihsan Ahmad Sabha

This thesis was defended successfully on 25/5/2008 and approved by:

Committee members:

Prof. Jamal Abo Omar

Dr. Rateb Aref

Prof. Adnan Shqueir

<u>Signature</u> J. Q. Oma Antan Advance

DEDICATION

This work is dedicated to :

My father and mother;

To brothers and sisters;

To my friends.

ACKNOWLEDGMENT

I would like to express my deepest thanks and gratitude to my advisor Prof. Jamal Abo Omar for his support and help since the start of my university study. Thanks to my committee. Special thanks to Dr. Hassan Abu Qauod for his help in statistical analysis. Special thanks to all of my colleagues and friends especially Mr. Omar Abu Baker and Mr. Omar Nasr of Hebron University.

List of Content

	Page
Content	no.
The committee decision	II
Dedication	III
Acknowledgment	IV
Adoption	V
List of contents	VI
List of tables	VIII
List of abbreviations	IX
Abstract	Х
Chapter One - Introduction	1
Introduction	2
Chapter Two - Literature Review	4
Literature Review	5
What is phytase	5
Management of phytase enzyme	7
Manufacturers of Phytase	7
Phytase effects on swine	8
Effects of phytase on broilers	9
Effects of phytase on layer hen feed	10
Phytase effects on nutrients digestibility	10
Phytase effect on toe ash content	11
Effects of phytase on feed intake	11
Effects of phosphorus on environment.	12
Chapter Three – Materials and Methods	13
Ration preparation	14

Performance experiment	17
Metabolism trial	17
Visceral organs and carcass cuts preparation and sampling	17
Chemical analysis	18
Statistical analysis	18
Chapter Four - Results and Discussion	19
Broiler performance	20
Feed intake	21
Feed conversion efficiency	22
Visceral organ mass	23
The edible parts	23
The inedible parts	24
Gastrointestinal tract	25
Percentage of some carcass cuts and meat	27
The dressing percent	28
Mineral content of tibia	30
Effect of phytase supplementation on digestibility	31
Retention of calcium and phosphorus	31
Chapter Five	33
Conclusions	34
Recommendations	35
Reference	36
Appendices	45
Arabic Abstract	59

List of Table

Table	Subject	Page no.
1	Composition and chemical analysis of the 5 starter experimental rations used in the experiment.	15
2	Composition and chemical analysis of the 5 finisher experimental rations used in the experiment.	16
3	Average weekly body weights development broilers on different treatments (g).	21
4	Average daily feed intake of broilers under different (g).	22
5	Feed conversion ratio of broilers under different treatments.	23
6	Edible parts of male broilers under different treatments (% of live weight).	24
7	Edible parts of female broilers under different treatments (% of live weight).	24
8	Inedible parts of male broilers under different treatments (% of live weight).	25
9	Inedible parts of female broilers under different treatments (% of live weight).	25
10	Components of the gastrointestinal and digestive tract of male broilers under different treatments (% of live weight).	26
11	Components of the gastrointestinal and digestive tract of female broilers under different treatments (% of live weight).	26
12	Carcass cuts of male broilers under different treatments (% of live weight).	27
13	Carcass cuts of female broilers under different treatments (% of live weight).	28
14	Dressing percent of male broilers under different treatments.	29
15	Dressing percent of female broilers under different treatments.	29
16	Tibia minerals of male and female broilers under different treatments, %.	30
17	Digestibility of nutrients in broilers under different treatments, %.	31
18	Broilers excreta of Ca, P and Zn, %.	32

List of Abbreviations

СР	Crude Protein.
CF	Crude Fiber.
PP	Phytate phosphorus.
PPM	Part Per Million.
Р	Phosphorous.
IP	Inorganic phosphate.
Ca	Calcium.
Zn	Zinc.
PU	Phytase Unit.
PA	Phytic acid.
Κ	Potassium.
NPP	Nonphytate phosphorous.
DM	Dry Matter.
ADF	Acid Detergent Fiber.
NDF	Neutral Detergent Fiber.

Effects of different level of Phytase on Broilers Performance and Body Status of Phosphorus By Rabie Ihsan Ahmad Sabha Supervisor Prof. Jamal Abo Omar

Abstract

This experiment was conducted to investigate the effect microbial broilers phytase supplementation on performance, nutrient digestibility, visceral organ mass, carcass cuts and body status of Ca and P. a total of 200 day-old Cobb 500 chicks were used in the experiment. Birds were partitioned into five experimental groups of 40 birds in each. Each treatment was composed of 4 replicates with 10 birds in each. The control group was fed a commercial starter and finisher diet. The second treatment was a phosphorus deficient diet, while the third, fourth and fifth treatments were fed a phosphorus deficient diets plus the microbial phytase. Phytase enzyme was incorporated at levels 1000, 2000 and 3000 PU/kg feed for the last three treatments, respectively. At the last week of experiment, three birds from each replicate were used in metabolic trial. However, at time of termination of the experiment, the same birds were killed for carcass cuts, visceral organ mass and tibia ash content investigations. The experiment lasted for 42 days. Results of the experiment showed that addition of phytase to P-deficient diets improved (P<0.5) broilers performance with impact starting from the beginning of the fourth week of the feeding trial. However, it has no effect on feed intake. Feed conversion ratio and dressing percent were increased (P<0.05) in birds fed P-deficient diets supplemented with phytase. Phytase supplementation had no significant effect on both male and female carcass cuts compared to birds fed the low P diets. Variable effects of phytase supplementation at different levels on gastrointestinal tract and its associated organs of both male and female broilers were observed. Male and female birds fed P-deficient diets incorporated with phytase enzyme at different levels had more (P < 0.05) ash, Ca and P compared to birds fed the P-deficient diet. Also results of this

investigation showed that phytase enzyme increased (P<0.05) the digestibility of dry matter, crude protein and ash. Phytase supplementation decreased the excreta content of Ca and P indicating the improvement of the retention of these two minerals. The overall results indicated that incorporation of phytase in broiler ration could be economically feasible as significant portion of P in diets could be reduced.

Chapter One

Introduction

Introduction:

Large portion of phosphorus (P) in plant feed ingredients is present in the form of phytate, which is largely unavailable for nonruminants (Rezaei, et al., 2007). Phytic acid can ionically binds minerals and proteins in aqueous medium (Sebastian, et al., 1997). The interest in the use of microbial feed enzymes such as phytase arises from the need to improve the availability of phytate bound phosphorus and to reduce phosphorus levels in effluent from intensive livestock operations.

In the studies to reduce excretory P of broilers (Nelson, 1967; Kornegay, 1999) reported that phytase supplementation improved the utilization of phytate P derived from plant feedstuffs, and decreased excretory P by approximately one-third without depressing performance. However, these studies were conducted at only the starter phase at seven to 14 days of age. Practically the data at the finishing phase are needed, but there are few reports which covered all of the feeding phase in broilers.

One such application in poultry, Phytic acid, that is abundant in all plant seeds, serve as the chief storage form of phosphorus. The phytic acid molecule has a high P content (28.2%), and since a major portion of poultry and pig diets consist of plant derived ingredients, P from the phytic acid assumes considerable nutritional significance. The ability of poultry and pigs to use phytate P is poor (Ravindran, et al., 2006; Wu, et al., 2003; National Research Council, 1994) due to insufficient quantities or lack of intestinal phytase secretion. This inadequacy of poultry and pigs to use phytate P resultes in the excretion of large amounts of P in the manure, posing an environmental concern especially in areas of intensive animal production. For the phytate-P to be used by monogastric animals, the phytate must be dephosphorylated, and this requires the provision of exogenous sources of phytase. During the past decade, advances in biotechnology and fermentation technology have resulted in the largescale production of microbial phytases capable of hydrolyzing phytic acid and releasing phytate bound P. Two distinct phytase products are available in the market: one derived from submerged liquid fermentation that uses genetically manipulated organisms to achieve maximum enzyme production and the other based on solid state fermentation that uses normal organisms for enzyme production. Because of the technology and the nature of organism used, the latter phytase product also contains several side enzyme activities, including protease, amylase, cellulase, xylanase, and β -glucanase (Potter, 1988).

The aims of the present study were to investigate the influence of a phytase, produced by solid-state fermentation, on the performance, digestibility, carcass merits and P status of broilers (tibia ash contents) of male and female broiler chicken fed corn-soybean based diets.

Chapter Two

Literature Review

Literature Review:

The poultry (broilers and layers) sector plays an important role in agriculture in the Palestinian Authority. This sector contributes about 13.1 % of the total income from agriculture. Recent statistics showed that the number of raised broilers is 30.15 % (Palestinian Central Bureau of Statistics, 2006).

There are several obstacles facing the local livestock sector, among these is the feed and feed supplements problem. It is well documented that local feed costs make up more than 75% of total costs of any livestock operation in the Palestinian Authority (Abo Omar, 2003). One significant fraction of formulated feeds is the source of phosphorus (about 2% of broilers rations). The cost of feeds ingredients reduces profitability of livestock (especially broiler) business to a marginal level. On the other hand, large fraction of dietary phosphorus which is not available to animal is dumped into manure creating significant hazards to the environment (Mondal, et al., 2007).

To help solving this problem, attempts were made to use some feed additives or enzymes. These enzymes had variable effects on animal's general performance and the utilization of feed phosphorus. Phytase enzyme is one of the promising additives to solve part of the stated problem.

What is phytase?

Phytase is an enzyme that breaks down the indigestible phytic acid (phytate) portion in grains and oil seeds; thereby, releasing digestible phosphorus and calcium for the nonruminants (Nelson, 1967; O'Dell, Et al., 1972; Raboy, 1990; Ravindran, et al., 1999; Todd, et al., 2004). Phosphorus from the phytate molecule can be made more available to poultry by the addition of phytaze enzymes (Denbow, et al., 1995; Qian, et al., 1997; Zanini and Sazzad, 1999; Ravindran, et al., 2000).

Phytic acid (PA) occurs naturally in plants and serves as the

storage form of phosphorus. The primary storage site of PA implants is in seeds, which are the primary ingredients in poultry diets. The P in seed – based ingredients used in poultry diets, 50 to 80% found as phytate phosphorus (PP), phytate phosphorus is poorly available to poultry (Taylor and Coleman, 1979; Sebastion, et al., 1996; Zanini and Sazzad, 1999)

Approximately two-third of the phosphorous in plant feedstuffs is present as phytic acid (Cromwell, 1980).

Phytic acid is highly reactive and readily forms chemical complex with Ca, Fe, Mg, Cu, Zn, carbohydrate and proteins (Radcliffe, 2002).

Phytic acid can also act as an anti-nutrient due to the ability of the complex to bind starch, protein and trace minerals such as phosphorus, zinc, iron, calcium and magnesium (Kornegay, 1999; Camden. et al., 2001; Radcliffe, 2002).

Phytic acid has the ability to bind protein at acidic, alkaline, and neutral PH (Anderson, 1985). However, the interaction between phytic acid and protein leads to decreased solubility of protein and eventually reduce its utilization (Cheryan, 1980). Some workers have found that microbial phytase has a positive influence on the utilization of nutrients other than P, such as amino acids (Yi, et al., 1996; Namkung and Leeson, 1999; Ravindram, et al., 1999; Ravindram, et al., 2000).

Furthermore, it was reported that mineral-phytate complexes might prevent lipid utilization, and by preventing the formation of mineralphytate complex, phytase might reduce the degree of soap formation in the gut and enhance the utilization of energy derived from lipids (Ravindran, et al., 2001).

Phytate refers to the PA molecule, which is generally chelated to Mg, Ca, Na, and K, and cases to proteins and starch (Selle, et al., 2000).

Studies have indicated that the inclusion of phytase in nonruminants diets has increased the availability of phytate phosphorus in a corn-soy diet from approximately 15% to 45% (McMullen, 2006).

Phytase activity is expressed as "phytase units" or "FTU" per unit of feed (i.e. - FTU/kg or FTU/lb.) FTU is a worldwide standard unit. One phytase unit is the activity of phytase that generates 1 micromole of inorganic phosphorus per minute from an excess of sodium phytate at pH 5.5 and 37 degrees Celsius (Zyla, et al., 1995).

Management of phytase enzyme:

Phytase, a high molecular weight protein, is sensitive to the presence of moisture and high temperature. Therefore, shelf life of the product must be considered and proper storage of the product needs to be maintained (McMullen, 2006).

Phytase products should be stored in a dark, cool, and dry area. Label should be checked for proper storage and length of shelf life. If phytase is contained within a commercial supplement or premix product, recommended storage method should be also reviewed.

Because of the heat and moisture associated with pelleting, enzymes are destroyed; therefore, the phytase stability in pelleted diets should be considered. Consequently, when phytase is added to a pelleted diet, spraying a liquid phytase product onto the cooled pellet will allow stability of the phytase (McMullen, 2006).

Manufacturers of Phytase:

There are different forms of the enzyme. Each manufacturer has its type of the product as the following:

- 1 BASF (Natuphos 600^{a} /dry, Natuphos 5000^{a} /dry & liquid, and Natuphos 1000^{a} /dry {^a = FTU/gram}).
- 2 Alltech, Inc. (Allzyme Phytase / dry or liquid).
- 3 Roche (Ronozyme P / dry or liquid).

There are 2 main types of microbial phytase classified on the basis of the site of initial hydrolysis on phytase 3- phytase and 6- phytase. The 3-phytase ,such as phytase from *Aspergillus ficuum* or *Aspergillus niger*, initiate phytate degradation by removing inorganic phosphate (IP) from position 3. The 6-phytase such as phytase from *peniophora lycii* or *Escherichia coli* begin phytate degradation by removing IP from the sixth position on the phytic acid molecule (Todd and Angel, 2004).

Phytase effects on swine:

The inclusion rate for phytase in all stages of swine diets is 115 to 227 FTU/lb. For a corn-soybean based diet without supplemental fat, the inclusion rate would be approximately 115 to 150 FTU/lb. A diet with a significant amount of supplemental fat should be increased to approximately 150 to 227 FTU/lb. Use a higher inclusion rate in the initial diet phase and decrease the rate over the duration of the phases. At these inclusion rates, the total phosphorus level can be reduced approximately 10%. In addition, calcium should also be reduced approximately 10% to maintain the proper calcium: phosphorus ratio (McMullen, 2006).

Several studies showed that feeding of phytase will increase trace mineral absorption and it also has the potential to increase amino acid digestibility (Yi, et al., 1994).

Supplementation of swine diet with exogenous phytase sources, such as that produced by *Aspergillus Niger*, has consistently been shown to markedly improve phytate-P utilization (Cromwellus, et al., 1993; Simons, et al., 1990). With the recommended phytase inclusion

level, the phytase addition will not increase the cost of the diet.

Effects of phytase on broilers:

Phytase supplementation increased the availability of phosphorus and Ca (Rezaei, et al., 2007; Schooner, et al., 1991; Broze, et al., 1994; Kornegay, et al., 1996; Sebastian, et al., 1996). Similarly, phytase increased the availability of nutrient, when was included at rate of 500 FUK /Kg phytase. Toe ash , and toe ash Ca and P percentages were increased with the addition of phytase in both sexes but without significant effect on blood phosphorus concentration (Rezaei, et al., 2007).

In another study when phytase was added at the level of 250 PU/Kg to a low P broiler diets it increased body weight gain and feed conversion efficiency, more Ca and P in tibia ash and Ca and phosphorus retention was significantly increased (Mondal, et al., 2007).

However, inclusion of phytase had no effects broilers growth performance and body levels of Ca and P (Akyurek, et al., 2005).

When phytase was added to a corn based diet had a significant increase in body weight in the broiler fed for 49 days (Huff, et al., 1998). Serum activity of alkaline phosphates was significantly decreased in the diet supplemented with phytase, while serum cholesterol was significantly decreased (Huff, et al., 1998).

When phytase was added to broiler diets at level of 600 ppm had no effects on broilers growth (Hussein, 2005).

It has been reported that phytase supplementation improved N retention in broiler chickens (Farrell, et al., 1993). Shirley, et al., (2003) indicated that broilers consuming a total P-deficient cornsoybean meal diet can achive maximum performance when phytase is supplemented at 12000 U/Kg diet and that current phytase supplementation levels within the poultry industry may need to be

reevaluated.

Mondal, et al., (2007); Orban, et al., (1999); Atia, et al., (2000); Ciftci, et al., (2005) suggested that phytate phosphorous released by phytase is sufficient to meet starter and finisher broiler's growth requirement.

Effects of phytase on layer hen feed:

This effect was investigated by several researchers. Ciftci, et al., (2005), Musapuer, et al., (2005) reported that phytase supplementation had a positive impact on hen's general performance and egg production. It was concluded that phytase supplementation to hens with P deficient diets improved P and Ca retention.. Both egg production and egg average weight were improved by addition of phytase to low P diets (Scott, et al., 1999). However, Peter, (1992) reported that feeding laying hens a low nonphytate phosphorous (NPP) diet supplemented with phytase had significantly higher egg production, egg weights and feed consumption compared to hens that consumed the low nonphytate phosphorous diet free of phytase. Similarly, supplementation of phytase at level of 300 PU/kg diet caused an increase in egg production and a significant decline in number of broken eggs and premature egg production rates (Lim et al., 2003).

It has been also reported that phytase supplementation improved N retention in laying hens (Vander Klis and Verteegh, 1991).

Phytase effects on nutrients digestibility:

Effects of phytase enzyme supplementation on feed nutrients digestibility were investigated by some experiments. Sebastian, et al., (1997) reported that supplementation of phytase significantly improved of ileal digestibility of crude fat. Phytase may also improve the utilization of protein, amino acid and apparent metabolic energy of

the broiler diets supplemented with phytase enzyme (Ravindran, et al., 1999).

Rutherfurd, et al., (2004) also showed that microbial phytase improved phytate P and total (P digestibility) as well as true ileal amino acid digestibility for a corn – soybean based diets.

Onyange, et al (2005) indicated that phytase improved broiler retention of P. Ca, N, and a number of amino acids. Microbial phytase on broiler diet has shown reduce phosphorus excretion (Simons, et al, 1990). Yan, et al., (2006) P excretion of broilers could be markedly reduced by phytase supplementation.

Several recent studies have explored the utilization of phytase from 3 to 6 week of age (Sohail and Roland, 1999; Yan, et al., 2001).

Phytase effect on toe ash content:

When phytase was added to broiler diets at level of 600 ppm, it decreased the ash of tibia and toe bones compared to the control (Hussein, 2005). In contrast, inclusion of phytase had no effect on toe ash content (Akyurek, et al., 2005). Yan, et al., (2006) reported an optimum broilers performance and tibia bone ash content.

Effects of phytase on feed intake:

This effect was variable (Hussein, (2005) it was reported that addition of phytase to P deficient diets increased feed intake and general performance of broilers. This finding contrasted with the finding of Scott, et al., (1999) where phytase supplementation had no effect on feed intake.

Yan, et al., (2006) reported that level of Ca of 0.7% was sufficient to maintain proper performance of broilers.

Effect of phosphorus on environment:

As a general rule, the amount of phosphorus reduction in the diet will cause a similar phosphorus reduction in the manure. With the reduction of phosphorus in the manure, less land would be required for manure application while still maintaining the appropriate dietary phosphorus requirement of the nonruminants. Phytase addition to swine diets will reduce the amount of phosphorus in the manure. The amount of reduction will depend on diet type, inclusion rate of phytase, degree of replacement of inorganic phosphorus, and the dietary phosphorus relative to the animal needs(McMullen, 2006).

Lim, et al., (2003) reported that supplementation of microbial phytase at a level of 300 U/Kg diet of laying hens can decrease phosphorous excretion. Also, the lower excreta of phosphorus by using phytase on laying hens could decrease pollution (Musapuer, et al., 2005).

Chapter Three

Materials and Methods

Ration preparation:

The experimental rations were formulated at the experimental site. Raw ingredients were bought from a local feed factory then mixed rations to fit the (NRC, 1994) requirements. Two types of rations were formulated, the starter ration which was fed from day 1 to day 21, and the finishing diet which was fed from age of 22 days till the termination of the experiment. Rations used in the experiment are shown in tables 1 and 2:

Diet 1: Control diet contains the recommended levels of Ca and P, with no phytase enzyme.

Diet 2: low phosphorous with no phytase enzyme.

Diet 3: low phosphorous diet contains 1000 PU/Kg diet.

Diet 4: low phosphorous diet contains 2000 PU/Kg diet.

Diet 5: low phosphorous diet contains 3000 PU/Kg diet.

Phytase enzyme used was bought from China. The concentration of the active ingredient is 5000 units/g.

diet	control	P-	Р-	Р-	Р-	
		deficient	def.+1000PU/kg	de.+2000PU/kg	def.+3000PU/kg	
			Diet composition %	6		
Corn	57	57	57	57	57	
Soybean meal	37.5	37.5	37.5	37.5	37.5	
Oil	3	3	3	3	3	
Limestone	1	1.32	1.32	1.32	1.32	
Di-calcium Phosphorous	0.75	0.42	0.42	0.42	0.42	
Premix*	0.75	0.75	0.75	0.75	0.75	
Phytase enzyme	0	0	1000	2000	3000	
			Chemical analysis?	/0		
Dry matter	90.1	90	90	89.9	89.9	
Crude protein	22	22.1	21.9	22	22.2	
Crude fiber	4.25	4.25	4.25	4.25	4.25	
Crude fat	5.46	5.46	5.46	5.46	5.46	
Ash	5.04	5.04	5.04	5.04	5.04	
Calcium	0.77	0.77	0.77	0.77	0.77	
Phosphorous	0.4	0.34	0.34	0.34	0.34	

Table (1). Composition and chemical analysis of the 5 starter experimental rations used in the experiment.

* Contents Premix Per 1 Ton Feed: Vitamin A 12 iu, Vitamin D3 3 iu, Vitamin E 50 iu, Vitamin K3 2.5 Gram, Vitamin B1 1 Gram, Vitamin B2 7 Gram, Panototic Acid 14 Gram, Niacin 37 Gram Vitamin B6 3 Gram, Vitamin B12 10Mg, Folic Acid 1 Gram, Biotin 150 Mg, Cholin Chloride 200 Gram, Cobalt 0.20 Gram, Copper 15 Gram, Iron 20 Gram, Manganese 80 Gram, Iodine 1.20 Gram, Selenium 0.20 Gram, Zinc 50 Gram, Limestone 1897.09 Gram, Anilox 125 Gram, Methionin 2000 Gram, Lysine 1500 Gram.

		P-	Р-	Р-	Р-
diet	control			_	
			Diet composition %	6	
Corn	60	60	60	60	60
Soybean meal	31	31	31	31	31
Oil	4.4	4.4	4.4	4.4	4.4
Limestone	1.86	2.6	2.6	2.6	2.6
Di-calcium Phosphorous	1.37	0.59	0.59	0.59	0.59
Premix*	1.37	1.37	1.37	1.37	1.37
Phytase enzyme	0	0	1000	2000	3000
			Chemical analysis?	/o	
Dry matter	90	90.1	89.9	90	90
Crude protein	19.04	19.04	19.04	19.04	19.04
Crude fiber	3.8	3.8	3.8	3.8	3.8
Crude fat	7.87	7.87	7.87	7.87	7.87
Ash	4.87	4.87	4.87	4.87	4.87
Calcium	1.29	1.3	1.3	1.3	1.3
Phosphorous	0.5	0.36	0.36	0.36	0.36

Table (2). Composition and chemical analysis of the 5 finisher experimental rations used in the experiment

* Contents Premix Per 1 Ton Feed: Vitamin A 8.5 iu, Vitamin D3 2.5 iu, Vitamin E 50 iu, Vitamin K3 2 Gram, Vitamin B1 0.80 Gram, Vitamin B2 6 Gram, Panototic Acid 11.20 Gram, Niacin 30 Gram Vitamin B6 2.40 Gram, Vitamin B12 8 Mg, Folic Acid 0.80 Gram, Biotin 150 Mg, Cholin Chloride 200 Gram, Cobalt 0.20 Gram, Copper 15 Gram, Iron 20 Gram, Manganese 80 Gram, Iodine 1.20 Gram, Selenium 0.20 Gram, Zinc 50 Gram, Limestone 1666.96 Gram, Anilox 125 Gram, Methionin 1100 Gram, Lysine 1200 Gram.

Performance experiment:

A 200 one day-old broiler chicks (Cobb 500) were bought from a local hatchery (Poultry Company of Palestine, Tulkarm, Palestine). Chicks were immediately transferred to the experimental site and divided into five dietary treatment groups of 40 chicks in each. Each group was composed of 4 replicates with 10 chicks each. Chicks were housed on floor of a suitable size house and managed as any commercial broiler flock. Chicks were weighed at weekly basis till the end of the experiment which lasted for 42 days. Feed intake, body weight and mortality rate were weekly recorded, and weight gain and feed conversion efficiency were calculated.

Metabolism trial:

A metabolic trial of 3 days duration was conducted during the last three days of feeding trial. This trial was after an adaptation period of another three days. During the metabolic trial a total collection of daily feed intake and feces from 4 birds of each treatment was performed. Feed and feces samples were kept for later chemical analysis.

Visceral organs and carcass cuts preparation and sampling:

At termination of the feeding trial, 8 chicks were taken randomly from each feeding group. Chicks were killed according to the routine practices adopted in commercial broiler slaughter house after a fasting period of 10 hours. Chicks were then eviscerated and viscera were measured. Weights of visceral organs like liver, heart, kidneys, were recorded as percent of carcass weight.

Weights of total digestive tract and segments as esophagus, provintriculus, gizzard, small intestine, cecum and large intestine were also recorded.

Total cool carcass weight was recorded then each carcass was split into its cuts, breast, and thighs were each cut weight was recorded. Weights of wings, neck, head and feet were also recorded. The tibia of each killed bird was removed and frozen for later Ca and P analysis.

Chemical analysis:

Feed and feces were analyzed for dry matter (DM), crude protein (CP), fiber, crude fat (CF), Ca and P utilizing the A.O.A.C (1995) procedures. Toe Ca and P contents were determined using the flame photometry procedure.

Statistical analysis:

All data were analyzed by ANOVA using the linear model procedure of SAS (SAS, 1988) to determine the effect of addition of phytase enzyme to broiler rations on body weight development, feed intake, feed conversion, visceral organ mass, gastrointestinal tract components and carcass cuts and toe ash contents. **Chapter Four**

Results and Discussion

Broiler performance:

The effect of phytase enzyme supplementation on the broilers chicks is shown in Table 3. Reducing P level in the second treatment in both starter and finisher diets depressed body weight starting from week 2, compared to control and diets supplemented with different levels of phytase. This lower body weight was due to the deficiency of P in the broilers fed the lower level of P which is lower than the recommended levels for broilers during starter and finisher periods (NRC, 1994). This effect of P deficiency was also reported in broilers (Sohail and Roland, 1999; Fernandez, et al., 1999; Bozkurt, et al., 2006; Mondal, et al., 2007) and ducks (Orban, et al., 1999).

Phytase supplementation at levels of 1000, 2000 and 3000 PU/kg in both starter and finisher diets solved the problem of P deficiency and resulted in birds average body weights similar to control. However, levels of phytase lower than 500 PU/kg had no effect on improving broilers body weights (Mondal, et al., 2007). Results of this experiment also is in agreement with those of Qian, et al., (1997), Huff, et al. (1998), Namkung and Leeson, (1999), Zyla, et al., (2000) and Bozkurt, et al., (2006) which reported that the growth rate and feed conversion ratio of broilers fed low P diets containing phytase were comparable or even better than those obtained for broilers fed the standard P diets. These results supported the concept that phytase was improving P availability and P level can be lowered in cornsoybean meal based broiler starter and finisher added phytase.

age/ weeks	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
0	46.5	46.5	46.5	46.5	46.5
1	114.6a	106b	108.9ab	108.9ab	106.9b
2	221.1a	197.5b	217.1a	216.8a	217.6a
3	372.1a	328.6a	357.9a	347.1a	352.6a
4	849a	738b	837.5a	849.8a	862.8a
5	1399.2a	1184.1b	1399.2a	1442.4a	1415a
6	2012a	1568.7b	2011.2a	1991.9a	2016.4a

Table (3). Average weekly body weights development broilers on different treatments (g).

Rows of different letters are significantly different (P<0.05)

Feed intake:

Feed intake of broilers fed P-deficient diets supplemented with phytase at different levels was similar to those fed control diet. Phytase enzyme supplementation improved (P<0.05) feed intake in broilers fed P-deficient diets. The results indicate that phytase at levels of 1000 PU/kg and higher released phytate P that was utilized for growth in a similar manner as would P supplied by di-calcium phosphate (Table 4). Similar findings were reported by Monndal, et al., (2007) when broilers fed with P-deficient diets supplemented with phytase at levels higher than 500 PU/kg. However, phytase levels lower than 500 PU/kg had no impact on feed intake and feed conversion efficiency.

age/ weeks	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
1	19.21a	17.4b	18.28a	19.06a	18.65a
2	33.19a	28.71b	30.45a	35.21a	33.17a
3	41.1a	40.98b	42.2a	42.15a	43.23a
4	78.6a	76.15b	78.32a	79.96a	80.07a
5	121.46a	113.8b	117.44a	116.46a	121.86a
6	151.18a	114.55b	146.14a	141.77a	149.19a

Table (4). Average daily feed intake of broilers under different (g)

Rows of different letters are significantly different (P<0.05)

Similar intake trends were observed for duck, turkey and layer diets (Mondal, et al., 2007; Orban, et al., 1999; Atia, et al., 2000; Ciftci, et al., 2005), respectively.

Feed conversion efficiency:

Phytase supplementation to low P diets at levels starting from 1000 PU/kg improved (P<0.05) feed conversion ratio of broilers at weight of marketing compared to with low P diets (Table 5). The current study supports the observations of Huff, et al., (1998), Sohail and Roland, (1999), Ravindan, et al., (2001), Bozkurt, et al., (2006) and Mondal et al. (2007) who reported that phytase supplementation to broiler diets caused numerical improvement in feed efficiency of broilers fed a P-deficient diets fed without phytase.

age/weeks	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
Feed Conversion	1.583a	1.833b	1.520a	1.589a	1.599a

 Table (5). Feed conversion ratio of broilers under different treatments

Rows of different letters are significantly different (P<0.05)

Visceral organ mass:

The edible parts:

The parts concerned are gizzard, liver and heart. Although it was reported by Moharrery and Mohammadpour, (2005) that phytase supplementation had no impact on gizzard and liver weights, our experiment showed an influence in the male broilers' heart and liver (Table 6).

Results showed that hearts of male birds fed the P-deficient diets had the highest (P<0.05) weight percentages. Hearts of males fed with control and the highest two levels of phytase broilers had the lowest (P<0.05) percentages. However, supplementation of phytase had different effects on female broilers where gizzards of female broilers fed the highest two levels of phytase had the lowest (P<0.05) percentages compared to females fed deficient P and the control diets (Table 7). Hearts of female broilers fed the P-deficient diet had the highest percentages, however, it is similar to that of broilers fed the control and broilers fed phytase at levels of 2000 and 3000 PU/kg. the only significance effect was compared to percentages of female broilers fed phytase at 1000 PU/kg level. Again, the highest percent of liver was observed in females fed the P-deficient diet which was higher (P<0.05) compared to birds fed the lowest level of phytase, but was similar to percentages in other treatments.

Organs	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
Gizzard	2.3a	2.6a	2.3a	2.1a	2.3a
heart	0.52c	0.7a	0.56bc	0.64ab	0.57bc
liver	2.2ab	2.5ab	2.2ab	2.5a	2.1b

Table (6). Edible parts of male broilers under different treatments (% of live weight).

Rows of different letters are significantly different (P<0.05

Table (7). Edible parts of female broilers under different treatments (% of live weight).

Organs	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
Gizzard	3.2ab	2.9ab	3.6a	2.8ab	2.7b
Heart	0.59ab	0.73a	0.54b	0.6ab	0.56b
Liver	2.2ab	2.4a	2b	2.3a	2.1ab

Rows of different letters are significantly different (P<0.05)

The inedible parts:

They include: crop, proventriculus and spleen.

Results showed that phytase supplementation had no significant effect on all of the inedible items of male broilers (Table 8). Similar trend was observed for the crop of female broilers (Table 9). However, the lowest phytase level caused a significant increase (P<0.05) compared to to the highest level, but similar to spleen percentages in other treatments.

Organs	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
Proventriculus	0.51a	0.53a	0.47a	1.2a	0.51a
Сгор	0.59a	0.76a	0.51a	0.71a	0.59a
spleen	0.12a	0.09a	0.13a	0.1a	0.09a

 Table (8). Inedible parts of male broilers under different treatments

 (% of live weight).

Rows of different letters are significantly different (P<0.05)

Table (9). Inedible parts of female broilers under different treatments (% of live weight)

Organs	control	P-deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
Proventriculus	0.91a	0.49b	0.75ab	0.69ab	0.57ab
Сгор	0.59a	0.5a	1.3a	1.5a	0.48a
Spleen	0.11ab	0.11ab	0.15a	0.12ab	0.08b

Rows of different letters are significantly different (P<0.05)

Gastrointestinal tract:

Results of our experiment showed that phytase supplementation had no effects on gastrointestinal tract and its components (Tables 10, 11). Males fed the P-deficient diet had higher percentages of small intestine, cecum and total digestive tract content compared to small intestines of male birds in other treatments. However the large intestine percentages were the highest in male birds fed the 2000

PU/kg phytase level.

The percentages of these segments were larger in male's broilers in general but the gut contents had the opposite.

Table (10). Components of the gastrointestinal and digestive tract ofmale broilers under different treatments (% of live weight).

Organs	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
Small intestine	3.9a	4.3a	4a	3.9a	4a
Large intestine	0.2a	0.27a	0.35a	0.49a	0.26a
Cecum	0.81a	0.9a	0.87a	0.85a	0.81a
Total dig. Tract and content	7.8a	8.6a	8.1a	7.9a	8a

Rows of different letters are significantly different (P<0.05)

Table (11). Components of the gastrointestinal and digestive tract of female broilers under different treatments (% of live weight)

Organs	control	P- deficient	P-def.	P-de.	P-def.
			+1000PU/kg	+2000PU/kg	+3000PU/kg
Small intestine	4.2	4.1	4	5.6	3.8
Large intestine	0.25	0.73	0.27	0.17	0.23
Cecum	0.94	0.77	1	0.85	0.73
Total dig. Tract and content	9.2	9.1	9	9	8

Rows of different letters are significantly different (P<0.05)

Percentage of some carcass cuts and meat:

The parts investigated were thighs, neck, head, back, legs, wings, and breast. Phytase supplementation had no effect on percentages of all male and female cuts as well (Table 12, 13).

These results agrees with previous findings of Angel, et al., (2007) but contradicts with those of Pillai, et al., (2006) who showed that phytase supplementation significantly increased percentages of most of carcass merits compared to P-deficient diets.

Table (12). Carcass cuts of male broilers under different treatments(% of live weight).

Organs	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
neck	4.6	4.7	4.1	4.7	4.3
thighs	20.8	22.1	20.3	20.6	20.2
head	2.1	2	1.99	2.1	1.9
back	13.9	12.3	12.8	13	13.6
legs	4.8	5	4.4	4.2	4.1
wings	7.2b	8a	7.8ab	7.6ab	7.9ab
breast	26.6	24.5	24.7	24.3	25.7

Rows of different letters are significantly different (P<0.05)

Organs	control	P- deficient	P-def. +1000PU/kg	P-de. +2000PU/kg	P-def. +3000PU/kg
Neck	4.6	4.5	4	4.8	4.4
Thighs	20	21.2	20.1	20.3	21
Head	2	6.1	1.8	1.8	1.8
Back	13.9	13.6	14.3	13.9	14.4
Legs	3.8	4.8	4.1	3.8	4.1
Wings	7.8	8.4	7.8	7.3	7.6
Breast	24.7	24	24.8	24.1	26.4

 Table (13). Carcass cuts of female broilers under different (% of live weight).

Rows of different letters are significantly different (P<0.05)

The dressing percent:

As shown in (Tables 14 and 15) the dressing percent of the birds was not affected by phytase supplementation in both males and females. However, dressing percent values reported in this experiment were higher than values reported by (Khawaja, 2003) in broilers fed commercial rations.

Parameter	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
Live weight (g)	2190	1898.7	1980	2075	2148.7
Carcass weight (g)	1621.25	1382.5	1435	1498.75	1545
Dressing percent (%)	74a	72.8a	72.4a	72.1a	72a

 Table (14). Dressing percent of male broilers under different treatments

Rows of different letters are significantly different (P<0.05)

Table (15). Dressing percent of female broilers under different treatments.

Parameter	control	P- deficien t	P-def. +1000PU/k g	P-def. +2000PU/k g	P-def. +3000PU/kg
Live weight (g)	1895	1682.5	2076	2215	2033
Carcass weight (g)	1346.2 5	1208.75	1460	1556.25	1495
Dressing percent (%)	71	71.7	70.1	70.4	73.5

Rows of different letters are significantly different (P<0.05)

Mineral content of tibia:

The effect of microbial phytase supplementation to low P diets on mineral content is shown in (Table 16). The percentage of male and female broilers tibia crude ash was significantly increased by the addition of dietary phytase. This agrees with the several studies on broilers (Sebastian, et al., 1996; Zyla, et al., 2000; Mondal, et al., 2007), pekin ducks (Orban, et al., 1999) and turkeys (Atia, et al., 2000). However, it disagrees with others (Fernandez, et al., 1999; Harter-Dennis and Sterling, 1999; Bozkurt, et al., 2006).

Phytase supplementation to diets increased the content of Ca and P in the tibia compared to diets containing low P. This is a good indication of increased availability of P from phytase mineral complex by the action of phytase (Sebastian, et al., 1996; Mondal, et al., 2007). Our findings are similar to previous work with broilers and ducks, in which dietary phytase does increase tibia ash and P percentages.

Bone Zn level was increased (P<0.05) when phytase was added to the diet. This result is in agreement with those reported by Zanini and Sazzad, (1999) and Mondal, et al., (2007), where they reported an increase in the concentration of Ca and Zn in the tibia by phytase supplementation. Phytase can decrease Zn availability by chelating divalent Zn which increases its concentration in bone tissue.

	con	tral	P-			def.	P-de.		P-def.	
	COL	trol	defic	cient	+100	0PU/kg	+2000	PU/kg	+3000)PU/kg
	Μ	F	Μ	F	Μ	F	М	F	М	F
Ash	9.0	9.8	6.0	6.6	9.2	10.5	10.2	9.3	10.7	10.8
Са	.92	1.0	.81	.80	1.1	1.3	1.1	1.2	1.0	.91
Р	1.1	1.0	.9	.89	1.4	1.3	1.2	1.4	1.2	1.2
Zn	.22	.25	.12	.15	.22	.3	.27	.25	.25	.26

Table (16). Tibia minerals of male and female broilers under different treatments, %

Effect of phytase supplementation on digestibility:

Phytase tended (P<0.05) to increase apparent digestibility of dry matter, crude protein and crude ash, however, it had no effects on cell wall contents (ADF and NDF) (Table 17). These results can be explained that phytase enzyme had a positive influence on digestive enzymes of gastrointestinal tract that leads to the increase in digestibility observed in birds fed with P-deficient diets. These results are in agreement with previous findings on broiler (Ravindran, et al., 1999; Rutherfurd, et al., 2004; Onyange, 2005; Mondal, et al., 2007).

Table (17). Digestibility of nutrients in broilers under different treatments, %.

Trait	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
DM	83.0	80.1	83.2	82.9	83.2
Crude protein	81.0	78.1	82.1	82.4	81.8
Ash	82.6	79.4	82.0	82.4	82.6
ADF	75.5	76	75.2	76.1	75.6
NDF	72.9	72.6	72	73.4	73.7

Retention of calcium and phosphorus:

Retention of Ca and P was improved by the addition of phytase to low P diet. This indicates that phytase reduced the amount of inorganic P in starter and finisher broiler diets. The phytase supplementation improved P bioavailability resulting in low P excretion (Um, et al., 2000) and increased retention of Ca and P (Lim, et al., 2001; Mondal, et al., 2007). Results of this experiment suggests that phytase in broiler starter and finisher diets enhanced the bioavailability of P that supported the growth performance, ash P content and retention of Ca and P (Table 18).

	control	P- deficient	P-def. +1000PU/kg	P-def. +2000PU/kg	P-def. +3000PU/kg
Ca, %	1.11	2.3	1.2	1.9	2.0
P, %	1.3	1.8	1.1	.9	1.4
Zn,%	2.1	2.6	2.0	2.3	2.3

Table (18). Broilers excreta of Ca, P and Zn, %

Chapter Five

Conclusions and Recommendations

Conclusions:

- 1. The results of this study suggest that microbial phytase in broiler starter and finisher diet enhanced the bioavailability of P that supported the growth performance.
- 2. Incorporation of phytase in corn- soybean based broiler starter and finisher diets improved Ca and P bioavailability.
- 3. It can be concluded that, dietary P can be reduced to .44 and .56% in starter and finisher diets, respectively of broilers without affecting performance.
- 4. Feed intake was not affected by phytase supplementation among all experimental groups.
- 5. Feed conversion ratio and dressing percentages were not influenced by phytase supplementation.
- 6. Phytase supplementation had no impact on carcass cuts of both male and female broilers.
- 7. Phytase enzyme had variable effects on gastrointestinal tract and its associated organs of both males and females.

8. Digestibility of dry matter, ash, crude protein, Ca and P was improved by addition of phytase to broilers starter and finisher diets.

9. Tibia ash, Ca and P content increased by the incorporation of phytase in broilers starter and finisher diets.

Recommendations:

It can be recommended by the study that incorporation of microbial phytase in starter and finisher diets of broilers at levels from 1000 to 3000 PU/kg feed proved to be beneficial. However, since amount of P could be reduced to .44 and .56% in starter and finisher diets, significant amount of savings could be achieved.

Reference

- Abo Omar, J. (2003). Utilization of Sesame cake in Awasi Lambs Rations. Small Ruminant Research. 13: 49-54.
- AOAC., (1995) Official Methods of Analysis Association of Officials Analysis Chemist Vol, -1,16 Ed., AOAC international, Arington, USA.
- Akyurek, H., N. Senkoylu and Mehmet Levent Ozduven. (2005). Effect of microbial phytase on growth performance and nutrients digestibility in broilers. Pakistan Journal of Nutrition. 4 (1): 22-26.
- Anderson, P. A., (1985). Interactions between proteins and constituents that affect protein quality. Pages 31-46 in: Digestibility and Amino Acid Availability in Cereals and Oilseeds. G. W. Finley and D. T. Hopkins, ed. American Association of Cereal Chemists, St. Paul, MN.
- Angel, R., WW Saylor, AD Mitchell, W Powers, and TJ Applegate., (2007). Effect of dietary phosphorous, phytase, and 25-hydroxycholecalciferol on broiler chicken bone mineralization, Nutrient Utilization, and Excreta Quality of Broiler chickens, **Poult. Sci. 87: 1200-1211.**
- Atia, F. A., P. E. Waibel, I. Hermes,* C. W. Carlson and M. M. Walser, (2000). Effect of dietary phosphorus, calcium, and phytase on performance of growing turkeys. **Poultry Science.**, **79:231–239.**
- Bozkurt, M., M. Cabuk and A. Alcicek, (2006). The effect of microbial phytase in broiler grower diets containing low phosphorous, energy and protein. J. Poult. Sci., 43: 29-34.

- Broz, J., P. Oldale, A.H. Perrin-Voltz, G. Rychen, J. Schulze and C.S. Nunes, (1994). Effects of supplemental phytase on performance and phosphorus utilization in broiler chickens fed a low phosphorus diet without addition of inorganic phosphates. Br. Poult. Sci., 35: 273-280.
- Camden, B.J., P.C.H. Morel, D.V. Thomas, V. Ravindran and M.R. Bedford, (2001). Effectiveness of exogenous microbial phytase in improving the bioavailability of phosphorus and other nutrients in maize-soybean meal diets for broilers. **Br.** Anim. Sci., 73: 289-297.
- Cheryan, M., (1980). Phytic acid interactions in food systems. CRC Crit. Rev. Food. Sci. Nutr. 13:297–335.
- Ciftci, Mehmet, Bestami Dalkilic and M. Ali Azman. (2005). Effects of microbial phytase supplementation on feed consumption and egg production of laying hens. International Journal of Poultry Science. 4 (10): 758-760.
- Cromwell, G.L. (1980). Biological availability of phosphorus in feedstuffs for swine. Feedstuffs 52: (9)14-16.
- Cromwell, G. L., T. S. Stahly, R. D. Coffey, H. J. Moneque, and J. H. Randolph. (1993). Efficacy of phytase in improving the bioavailability of phosphorus in soybean meal and cornsoybean meal diets for pigs. J. Anim. Sci. 71:1831-1840.
- Denbow, D. M., V. Ravindran, E. T. Kornegay, Z. Yi, and R. M. Hulet. (1995). Improving phosphorus availability in soybean meal for broilers by supplemental phytase. Poult. Sci. 74:1831–1842.
- Farrell, D. J., E. Martin, J. J. Preez, M. Bongarts, A. Sudaman, and E. Thomson, (1993). The beneficial effects of a microbial phytase in diets of broiler chickens and ducklings. J. Anim. Physiol. Anim. Nutr. 69:278–283.

- Fernandes, J.I.M., F.R. Lima, Jr., C.X. Mendonca, I. Mabe, R. Albuquerque and P.M. Leal, (1999). Relative bioavailability of phosphorus in feed and agricultural phosphates for poultry. **Poult. Sci., 78: 1729-1736.**
- Harter-Dennis and K. Sterling, (1999). Evaluation of phytase in corn based diets in male broilers from 21-42 days of age. Poult. Sci. 78 (Suppl. 1): 137 (Abstract).
- Huff, W. E., P. A. Moore, JR., P. W. Waldroup, A. L. Waldroup, J. M. Balog, G. R. Huff, N. C. Rath, T. C. Daniel, and V. Raboy. (1998). Effect of Dietary Phytase and High Available Phosphorus corn on broiler chicken performance. poultry science. 77:1899–1904.
- Hussein, A. S., (2005). The effect of exogenous phytase in broiler production on organic phosphorous utilization. Collage of food and agriculture 40.
- Khawaja, Z. (2003). Utilization of citrus pulp in broiler rations. Master theses. Faculty of Graduate Studies, An Najah National University.
- Kornegay, E. T. (1996). Nutritional, environmental and economic considerations for using phytase in pig and poultry diets. Pages 277–302 in Nutrient Management of Food Animals to Enhance and Protect the Environment. E. T. Kornegay, ed. CRC Press, Boca Raton, FL.
- Kornegay, E. T. (1999). Feeding to reduce nutrient excretion: Effects of phytase on phosphorus and other nutrients. Pages 461- 490 in Biotechnology in the Feed Industry. Proc. Alltech's 15th Annu. Symp. T. P. Lyons and K. A. Jacques, ed. Nottingham University Press, Nottingham, UK.
- Larry K. McMullen, Iowa State University Extension, Swine Field Specialist, 605 East Main, Anamosa, Iowa 52205

6/12/2006

http://www.agronext.iastate.edu/immag/pubs/phytase.doc.

- Lim, H.S., H. Namkung, J.S. Um, K.R. Kang, B.S. Kim and I.K. Paik, (2001). The effects of phytase supplementation on the performance of broiler chickens fed diets with different levels of nonphytate phosphorus. **Poultry Science.**, 14:250-257.
- Lim, H. S., H. Namkung, and I. K. Paik, (2003). Effects of phytase supplementation on the performance, egg quality, and phosphorous excretion of laying hens fed different levels of dietary calcium and nonphytate phosphorous. **Poultry Science.**, 82:92–99.
- Moharrery, A. and A. A. Mohammadpour. (2005). effects of diets containing different qualities of barley on growth performance and serum amaylase and intestinal villus morphology. International J. of Poult. Sci. 8: 549-556.
- Mondal, M. K., S. Panda and P. Biswas, (2007).. Effect of microbial phytase in soybean meal based broiler diets containing low phosphorous. International Journal of Poultry Science., 6 (3): 201-206, 2007.
- Musapuor, A., J. Pourreza, A. Samie and H. Moradi Shahrbabak. (2005). Phytase and different level of dietary calcium and phosphorous on phytate phosphorus utilization in laying hens. International Journal of Poultry Science. 4 (8): 560-562.
- Namkung, H., and S. Leeson. (1999). Effect of phytase enzyme on dietary nitrogen-corrected apparent metabolizable energy and ileal digestibility of nitrogen and amino acids in broiler chicks. **Poult. Sci. 78:1317–1319.**
- National Research Council. (1994). Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, DC.

- Nelson, T. S. 1967. The utilization of phytate phosphorus by poultry-A review. **Poult. Sci. 46:862–871.**
- O'Dell, B. L., A. R. de Boland, and S. R. Koirtyohann. (1972). Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J. Agric. Food Chem. 20:718–721.
- Onyango, E. M., M. R. Bedford and O. Adeola. (2005). Efficacy of an Evolved *Escherichia coli* Phytase in diets of broiler chicks. **Poultry Science. 84:248–255.**
- Orban, J.L., O. Adeola and R. Strashine, (1999). Microbial phytase in finisher diets of white pekin ducks: effect on growth performance, plasma phosphorus concentration and leg bone characteristics. **Poult. Sci., 78: 366-377**.
- Palestinian Central Bureau of Statistics, (2006). Agricultural Statistics, 2005\2006. Ramallah Palestine.
- Peter, W. (1992). Investigations on the use of phytase in the feeding of laying hens. Page 672 in: Proceedings XIX World's Poultry Congress, Amsterdam.
- Pillai, P. B., T. O. Conner- Dennie, C. M. Owens and J. L. Emmert. (2006). Efficacy of an E. Coli Phytase in broiler fed adequate or reduced phosphorus diets and its effects on carcass characteristics. **Poultry Sci. 85: 1200-1211.**
- Potter, L. M. (1988). Bioavailability of phosphorus from various phosphates based on body weight and toe ash measurements. **Poult. Sci. 67:96–102.**
- Qian, H., E. T. Kornegay, and D. M. Denbow. (1997). Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium: total phosphorus ratio in broiler diets. *Poult. Sci.* 76:37–46.

- Raboy, V. (1990). Biochemistry and genetics of phytic acid synthesis. Pages 55–76 in Inositol Metabolism in Plants. D. J. Moore, W. Boas, and F. A. Loewus, ed. Wiley-Liss, New York.
- Radcliffe, J.S., (2002). Phytase in poultry diets: Where do we stand? Maryland Nutrition Conference **Report**, pp: 88-103.
- Ravindran, V., S. Cabahug, G. Ravindran, and W. L. Bryden. (1999). Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult. Sci. 78:699– 706.
- Ravindran, V., S. Cabahug, G. Ravindran, W. L. Bryden, and P. H. Selle. (2000). Response of broilers to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus levels. II. Effects on nutrient digestibility and retention. Br. Poult. Sci. 41:193–200.
- Ravindran, V., P.H. Selle, G. Ravindran, P.C.H. Morel, A.K. Kies and W.L. Bryden, (2001). Microbial phytase improves performance, apparent metabolizable energy and ileac amino acid digestibility of broilers fed a lysine-deficient diet. **Poult.** Sci., 80: 338-344.
- Ravindran, V., W. L. Bryden, and E. T. Kornegay. (2006). Phytates: Occurrence, bioavailability and implications in poultry nutrition. **Poult. Avian Biol. Rev. 6:125–143.**
- Rezaei, M., S. Borbor, M. Zaghari and A. Teimouri. (2007). Effect of Phytase supplementation on nutrients availability and performance of broiler chicks. International Journal of Poultry Science. 6 (1): 55-58.
- Rutherfurd, S. M., T. K. Chung, P. C. H. Morel and P. J. Moughan. (2004). Effect of microbial phytase on ileal

digestibility of phytate phosphorus, total phosphorus, and amino Acids in a low-phosphorus diet for broilers. **Poultry Science. 83:61–68.**

- SAS User's Guide: Statistics Version 6.03, 4" Ed., (1988). SAS Inst., Cary, NC.
- Schoner, F.J., P.P. Hoppe and G. Schwarz, (1991). Comparative effects of microbial phytase and inorganic phosphorus on performance and retentions of phosphorus, calcium and crude ash in broilers. J. Anim. Physiol. Anim. Nutr., 66: 248-255.
- Scott, T. A., R. Kampen and F. G. Silversides. (1999). The effect of phosphorus, phytase enzyme, and calcium on the performance of layers fed corn-based diets. **Poultry Science**. 78:1742–1749.
- Sebastian, S., S. P. Touchburn, E. R. Chavez, and P. C. Lague. (1996). Efficacy of supplemental microbial phytase at different dietary calcium levels on growth performance and mineral utilization of broiler chickens. **Poult. Sci. 75:1516–1523.**
- Sebastian, S., S. P. Touchburn, E. R. Chavez and P. C. Lague. (1997). Apparent digestibility of protein and amino acids in broiler chickens fed a corn-soybean diet supplemented with microbial phytase. **Poultry Science. 76:1760–1769**.
- Selle, P. H., V. Ravindran, R. A. Caldwell, and W. L. Bryden. (2000). Phytate and phytase: Consequences for protein utilization. Nutr. Res. Rev. 13:255–278.
- Shirley, R. B. and H. M. Edwards, Jr. (2003). Graded levels of phytase past industry standards improves broiler performance. **Poultry Science. 82:671–680**.
- Simons, P.C., H.A. Versteegh, A.W. Jongbloed, P.A. Kemme, P. Slump, K.D. Bos, M.G. Wolters, R.F. Beudeker and G.J.

Verschoor, (1990). Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr., 64: 525-540.

- Sohail, S. S., and D. A. Roland, Sr. (1999). Influence of supplemental phytase on performance of broilers four to six weeks of age. **Poult. Sci. 78:550–555.**
- Taylor, T. G., and J. W. Coleman. (1979). A comparative study of the absorption of calcium and the availability of phytatephosphorus in the golden hamster (*Mesocricetus auratus*) and the laboratory rat. **Br. J. Nutr. 42:113–119.**
- Todd J. Applegate, and R. Angel. (2004). Phytase: basics of enzyme function. AS-560-W Purdue Univ. Coop. Ext. Publ. <u>http://www.ces.purdue.edu/extmedia/AS/AS-560-W.pdf</u>.
- Um, J.S., H.S. Lim, S.H. Ahn and I.K. Paik, (2000). Effects of microbial phytase supplementation to low phosphorus diets on the performance and utilization of nutrients in broiler chickens. Asian-Aust. J. Anim. Sci., 13: 824-829.
- Van der Klis, J. D., and H.A.J. Versteegh, (1991). Ileal absorption of phosphorus in lightweight white laying hens using microbial phytase and various calcium contents in laying hen feed. Spelderholt Publication No. 563, Beekbergen, The Netherlands.
- Wu, Y. B., J. Pierce, W. H. Hendriks, and V. Ravindran. (2003). Comparison of in vitro nutrient release by three enzyme preparations in wheat-and maize-based diets. Proc. Aust. Poult. Sci. Symp. 15:114–118.
- Yan, F., J. H. Kersey, and P. W. Waldroup. (2001). Phosphorus requirements of broiler chicks 3 to 6 weeks of age as influenced by phytase supplementation. **Poult. Sci. 80:455–459.**

- Yan, F., J.H. Kersey, C.A. Fritts and P.W. Waldroup. (2006). Effect of phytase Supplementation on the calcium requirement of broiler chicks. International. Journal of Poultry Science. 5 (2): 112-120.
- Yi, Z., E. T. Kornegay, M. D. Lindemann, and V. Ravindran, (1994). Effect of Natuphos phytase for improving the bioavailabilities of phosphorus and other nutrients on soybean meal-based semi-purified diets for young pigs. J. Anim. Sci. 72 (Suppl.1):7. (Abstr.).
- Yi, Z., E. T. Kornegay, and D. M. Denbow. (1996). Effect of microbial phytase on nitrogen and amino acid digestibility and nitrogen retention of turkey poults fed corn-soybean meal diets. **Poult. Sci. 75:979–990.**
- Zanini, S. F., and M. H. Sazzad. (1999). Effects of microbial phytase on growth and mineral utilization in broilers fed on maize soybean-based diets. **Br. Poult. Sci. 40:348–352.**
- Zyla, K., D.R. Leudoux, and T.L. Veum, (1995). Complete enzymic dephosphorylation of corn soybean meal feed under simulated intestinal conditions of the turkey. J. Agric. Food Chem. 43:288-294.
- Zyla, K., J. Koreleski, A. Swiatkiewicz Wikiera, M. Kujawski, J. Piironen and D.R. Ledovx, (2000). Effects of phosphorolytic and cell wall-degrading enzymes on the performance of growing broilers fed wheat based diets containing different calcium levels. **Poult. Sci., 79: 66-67.**

Appendices

Table (1): Body weight of individual birds of the 5 treatments at end of week 1.

Replicate	1	2	3	4	5
R 1	1	2	3	4	5
	159	99	99	95	100
	119	111	111	105	104
	98	111	102	105	97
	110	114	120	113	109
	115	127	109	110	98
	115	100	118	110	108
	114	111	106	110	92
	117	118	100	110	88
	117	111	101	90	123
sum r 1	94	105		104	109
Average	1158	1107	966	1052	1028
R 2	116	111	107	105	103
	120	94	111	125	97
	116	109	97	101	116
	120	110	111	109	109
	114	118	127	123	111
	112	102	123	104	114
	98	119	100	98	94
	136	94	94	112	112
	121	112	125	85	100
	123	94	114	77	87
sum r 2	122	108	119	89	125
Average	1182	1060	1121	1023	1065
R 3	118	106	112	102	107
	118	101	117	114	98
	110	112	89	115	113
	124	109	119	138	117
	122	99	115	123	109
	98	107	103	127	114
	112	101	110	130	99
	107	103	125	126	111
	130	115	99	108	100
	116	102	122	116	110
sum r 3	120	120	98	115	104

Average	1157	1069	1097	1212	1075
R 4	116	107	110	121	108
	95	115	83	103	136
	124	110	97	110	123
	103	99	107	112	107
	107	90	112	115	106
	120	94	109	115	111
	116	110	120	99	91
	107	81	120	114	119
	91	94	91	111	117
	120	108	122	99	96
sum r 4	107	103	105	92	103
Average	1090	1004	1066	1070	1109
Av. Of trt	109	100	107	107	111
	115	106	109	109	107

Table (2): Body weight of individual birds of the 5 treatments at end of week 2.

Replicate	1	2	3	4	5
R 1	248	197	192	170	174
	243	183	209	205	215
	166	213	188	230	191
	235	250	232	230	284
	225	196	214	190	195
	227	235	243	210	236
	213	207	209	200	224
	211	182	184	210	186
	233	206	198	175	253
	185	188		195	216
sum r 1	2186	2057	1869	2015	2174
Average	219	206	208	202	217
R 2	263	180	198	267	151
	238	220	177	200	258
	269	219	242	231	221
	255	228	237	226	256
	220	192	220	236	216
	186	207	236	227	197
	198	184	177	263	198
	202	200	245	163	222
	242	148	257	161	165

	217	177	218	161	214
sum r 2	2290	1955	2207	2135	2098
Average	229	196	221	214	210
R 3	227	207	248	262	180
	202	204	180	280	234
	207	176	232	222	260
	243	121	204	242	191
	174	193	248	229	245
	253	187	254	229	185
	250	228	205	217	205
	237	219	194	201	222
	173	194	221	217	216
	190	234	189	205	201
sum r 3	2156	1963	2175	2304	2139
Average	216	196	218	230	214
R 4	167	240	248	235	292
	275	156	180	232	267
	275	194	232	280	227
	250	184	204	218	214
	248	219	248	206	240
	228	210	254	215	191
	192		205	232	215
	181	184	194	214	238
	176	169	221	219	205
	223	177	189	170	206
sum r 4	2215	1733	2175	2221	2295
Average	222	193	218	222	230
Av. Of trt	221	198	216	217	218

Table (3): Body weight of individual birds of the 5 treatments at end of week 3.

Replicate	1	2	3	4	5
R 1	420	355	305	200	225
	350	310	315	350	380
	260	365	255	345	310
	405	420	370	455	405
	365	340	340	340	325
	415	400	400	335	365
	300	370	300	315	375
	350	280	300	330	255
	405	280	285	225	425

	315	315		345	340
sum r 1	3585	3435	2870	3240	3405
Average	359	344	319	324	341
R 2	415	230	330	450	205
	430	350	270	340	285
	440	310	315	375	325
	455	350	370	375	460
	360	340	335	200	295
	275	320	345	320	325
	325	270	240	435	310
	340	290	360	225	325
	435	200	475	210	250
	305	305	340		325
sum r 2	3780	2965	3380	2930	3105
Average	378	297	338	326	311
R 3	380	330	440	425	295
	365	275	335	430	455
	310	305	345	405	455
	430	205	370	410	310
	395	290	335	465	430
	415	395	430	335	395
	390	415	350	365	310
	390	325	300	340	340
	290	325	325	340	350
	305	410	335	340	320
sum r 3	3670	3275	3565	3855	3660
Average	367	328	357	386	366
R 4	275	420	420	250	510
	445	285	420	300	420
	505	330	550	355	435
	410	300	380	420	370
	450	425	420	430	435
	440	360	420	390	300
	345		400	385	390
	310	335	355	355	380
	300	395	400	400	355
	370	275	420	250	340
sum r 4	3850	3125	4185	3535	3935
Average	385	347	419	354	394
Av. Of trt	372	329	358	347	353

Replicate	1	2	3	4	5
R 1	835	845	735	590	590
	615	715	900	850	930
	870	790	715	1005	860
	885	970	940	965	995
	865	715	755	800	820
	975	960	900	805	975
	850	825	745	915	925
	860	580	765	890	675
	915	680	755	650	1115
	505	765		710	965
sum r 1	8175	7845	7210	8180	8850
Average	818	785	801	818	885
R 2	1085	605	850	1120	585
	995	840	705	895	950
	935	650	900	960	845
	930	815	1010	960	920
	860	710	810	510	855
	580	700	905	720	875
	755	585	550	1015	795
	790	630	835	620	850
	960	450	795	515	680
	890	665	865		840
sum r 2	8780	6650	8225	7315	8195
Average	878	665	823	813	820
R 3	755	830	855	1065	780
		655	615	995	930
	795	660	805	1035	980
	1005	885	900	965	775
	820	660	940	915	1020
	720	515	895	870	705
	930	895	765	930	720
	870	785	755	785	910
	700	770	635	855	845
	720	940	805	860	730
sum r 3	7315	7595	7970	9275	8395
Average	813	760	797	928	840
R 4	680	920	885	645	1120
	1015	665		710	1020

Table (4): Body weight of individual birds of the 5 treatments at end of week 4.

	1070	780	1185	900	945
	935	610	920	1035	920
	945	770	935	840	920
	980	920	930	900	765
	875		800	935	955
	725	695	805	975	870
	765	665	945	855	800
	890	665	960	615	760
sum r 4	8880	6690	8365	8410	9075
Average	888	743	929	841	908
Av. Of trt	849	738	838	850	863

Table (5): Body weight of individual birds of the 5 treatments at end of week 5.

Replicate	1	2	3	4	5
R 1	1470	1350	1205	1120	1065
	1120	1185	1545	1310	1445
	1485	1350	1285	1730	1579
	1470	1430	1525	1530	1580
	1475	1100	1470	1390	1430
	1470	1525	1445	1370	1585
	1450	1285	1220	1535	1500
	1410	1130	1340	1490	1205
	1520	960	1275	1060	1430
	850	1255		1015	1565
sum r 1	13720	12570	12310	13550	14384
Average	1372	1257	1368	1355	1438
R 2	1705	995	1360	1935	1130
	1125	1410	1330	1470	
	1605	1035	1530	1525	1535
	1485	1280	1630	1600	1565
	1470	1140	1370	1065	1455
	1160	1190	1550	1130	1495
	1295	945	1170	1655	1265
	1290	1065	1405	1150	1320
	1560	725	1375	970	1170
	1565	1090	1540		1550
sum r 2	14260	10875	14260	12500	12485
Average	1426	1088	1426	1389	1387
R 3	1335	1245		1835	1335
		915	1120	1265	1505

	1285	1000	1305	1520	1530
	1575	1300	1310	1630	1300
	1230	1105	1485	1510	
	1060	915	1565	1620	1205
	1675	1465	1350	1210	1305
	1435	1210	1310	1350	1550
	1215	1195	1025	1370	1235
	1275	1450	1430	1085	1265
sum r 3	12085	11800	11900	14395	12230
Average	1343	1180	1322	1440	1359
R 4		1440	1430	1670	1670
	1840	1130		1660	1615
	1265	1315	1770	1710	1490
	1475	1030	1425	1660	1550
	1500	1200	1555	1610	1380
	1585	1505	1540	1435	1375
	1485		1350	1660	1645
	1210	1100	1320	1345	1385
	1300	1155	1320	1515	1420
	1445	1035	1620	1600	1225
sum r 4	13105	10910	13330	15865	14755
Average	1456	1212	1481	1587	1476
Av. Of trt	1399	1184	1399	1442	1415

Table (6); Body weight of individual birds of the 5 treatments at end of week 6.

Replicate	1	2	3	4	5
R 1	1920	1525	1715	1670	1590
	1725	1455	2390	1815	1965
	2345	1325	2150	2500	2185
	2050	1830	2250	2020	2200
	2130	1120	2095	1980	2105
	2090	1370	1930	1970	2335
	2170	1945	1860	2020	2035
	2120	1370	1770	2150	1740
	2285	1730	1830	1620	2190
	1325	1780		1480	2415
sum r 1	20160	15450	17990	19225	20760
Average	2016	1545	1999	1923	2076
R 2	2375	1450	1970	2820	1590

	2165	1630	2020	2225	1965
	1810	1430	2080	2040	2185
	2035	1605	2150	2040	2200
	2040	1305	1910	1715	2105
	1465	2120	2120	1/10	2335
	1915	1355	1785	2790	2035
	2030	1480	1930	1355	1740
	2105	1100	1955	1765	2190
	2175	1350	2100		2415
sum r 2	20115	14825	20020	16750	20760
Average	2012	1483	2002	2094	2076
R 3	2030	1950		2430	1980
		1400	1485	2200	2000
	1940	1300	1930	2260	2200
	1885	1740	2070	1300	1850
	1725	1570	2070	1750	
	1555	1220	2340	1860	1700
	2470	1750	2040	2240	1605
	2065	1580	1975	1750	2240
	1860		1515	2210	1460
	1935	1725	2205	2200	1900
sum r 3	17465	14235	17630	20200	16935
Average	1941	1582	1959	2020	1882
R 4		1620	1975	1890	2345
	2560	1555		1685	2105
	1840	1810	2285	2025	2000
	2045	1585	2100	2470	2200
	2140	1685	2200	2100	1910
	2225	2060	2115	2250	2100
	2230		1920	2145	2340
	1735	1455	1850	1660	1870
	1930	1665	2120	1745	2050
	2015	1555	2200	1345	1650
sum r 4	18720	14990	18765	19315	20570
Average	2080	1666	2085	1932	2057
Av. Of trt	2012	1569	2011	1992	2023

	(Week 1)									
Γ	Replicate	1	2	3	4	5				
	r1	123	144	123	132	115				
Γ	r2	147	116	128	121	119				
Γ	r3	133	109	134	153	120				
	r4	135	120	127	128	113				
	average of trt	134	122	128	133	117				

Table (7): Average daily feed intake / bird for different week.

(Week 2)

Replicate	1	2	3	4	5
r1	249	226	195	252	299
r2	215	202	215	1930	172
r3	209	156	249	299	195
r4	257	221	195	242	264
average of trt	232	201	213	681	232

(Week 3)

)		
Replicate	1	2	3	4	5
r1	304	339	226	312	275
r2	2912	202	2312	221	253
r3	260	328	322	371	346
r4	296	345	291	276	337
average of trt	943	303	788	295	303

(Week 4)

			/		
Replicate	1	2	3	4	5
r1	520	556	457	634	541
r2	535	479	567	503	585
r3	491	571	500	691	614
r4	656	345	614	608	671
average of trt	550	488	534	609	603

Replicate	1	2	3	4	5
r1	903	801	807	883	951
r2	86	884	911	759	826
r3	491	768	704	860	656
r4	656	734	868	760	980
average of trt	534	797	822	815	853

(Week 6)

Replicate	1	2	3	4	5
r1	1056	825	1023	983	1169
r2	1104	800	1098	926	1102
r3	1065	710	1002	1130	955
r4	1009	873	969	931	953
average of trt	1058	802	1023	992	1044

Table (8): Percent of organs to live weight for 5 treatments at end 6 week.

(Treatment 1/ Control)

Wt. Gm	1.0	0	2.00		3.00		4.00	
wt. Gill	7 m	2 f	10 m	8 f	4 m	1 f	2 m	5 f
Live wt.	2100.00	1660.00	2110.00	1960.00	2120.00	1950.00	2430.00	2010.00
Carcass wt.	73.81	70.78	73.46	70.66	75.47	68.97	73.46	73.63
Total intestinal wt.	7.79	10.55	7.59	8.28	7.27	9.50	8.70	8.70
Wt. of gizzard	2.45	4.26	1.87	2.54	2.32	3.52	2.61	2.71
Wt. of heart	0.50	0.52	0.49	0.74	0.49	0.60	0.61	0.53
Wt. of liver	2.06	2.15	2.39	2.36	2.12	2.26	2.27	2.14
Wt. of cecum	1.06	1.27	0.75	1.22	0.40	0.66	1.07	0.64
Wt. l.i	0.24	0.24	0.21	0.13	0.17	0.15	0.20	0.51
Wt. s.i.	3.92	4.19	4.06	4.02	3.91	4.70	3.76	4.15
Proventricules	0.57	1.16	0.47	0.74	0.45	1.13	0.59	0.64
Neck	4.51	4.20	4.62	5.29	4.75	5.05	4.67	3.94
Wt. head	1.86	2.01	2.32	2.07	2.03	2.08	2.25	1.93

(Week 5)

Wt. legs	3.98	3.81	7.58	3.99	4.00	3.59	3.85	4.00
Thighs wt.)	21.06	19.55	20.63	19.48	19.83	18.92	20.38	20.92
Wings wt.	6.79	8.13	7.72	8.11	7.17	7.22	7.20	7.76
Back wt.	13.49	13.15	13.73	13.39	13.73	14.10	14.83	15.11
Breast wt.	24.26	25.60	26.49	24.16	29.70	23.59	26.34	25.65
Spleen wt.	0.14	0.14	0.11	0.08	0.16	0.14	0.11	0.08
Wt. Esophagus	0.12	0.58	0.70	0.66	0.49	0.46	1.07	0.70

(Treatment 2)

Wt Cm	1.	00	2.	00	3.	00	4.00	
Wt. Gm	4m	7f	6m	4f	1 m	6 f	6 m	3 f
Live wt.	2045.00	1690.00	1750.00	1625.00	1820.00	1690.00	1980.00	1725.00
Carcass wt.	73.10	73.37	77.43	67.07	68.68	74.26	72.22	72.46
Total	7.70	7.79	8.05	8.07	10.35	9.12	8.60	11.58
intestinal wt.								
Wt. of gizzard	2.54	2.85	2.60	2.92	27.70	2.79	1.70	3.39
Wt. of heart	0.67	0.73	0.84	0.79	0.71	0.79	0.62	0.62
Wt. of liver	2.54	2.72	2.72	2.12	2.72	2.62	2.13	2.24
Wt. of cecum	0.70	0.61	1.18	0.98	0.87	0.87	0.86	0.64
Wt. l.i	0.13	0.17	0.40	0.16	0.21	0.16	0.38	2.45
Wt. s.i.	3.82	3.63	3.34	3.54	5.42	4.72	4.70	4.67
Proventricules	0.53	0.33	0.48	0.46	0.72	0.51	0.42	0.67
Neck	4.66	4.40	4.08	4.87	5.38	4.64	4.85	4.14
Wt. head	2.19	2.22	2.01	1.69	2.12	2.39	1.95	18.37
Wt. legs	5.20	5.87	5.49	4.38	5.11	4.91	4.28	4.28
Thighs wt.	23.09	22	22.69	18.55	21.29	21.87	23.12	20.25
Wings wt.	7.95	8.17	8.30	8.40	7.84	8.96	7.93	8.23
Back wt.	12.79	13.49	15.42	13.16	10.99	14.92	10.18	13.04
Breast wt.	24.05	24.37	25.92	22.04	22.74	23.43	25.40	26.26
Spleen wt.	0.13	0.08	0.13	0.09	0.06	0.12	0.05	0.15
Wt. Esophagus	0.50	0.53	0.53	0.47	1.07	0.58	0.97	0.43

Wt Cm	1.00		2.	00	3.	00	4.00	
Wt. Gm	5 m	4 f	9 m	6 f	8 m	7 f	10 m	3 f
Live wt.	2020.00	2160.00	1900.00	2010.00	1915.00	1935.00	2085.00	2200.00
Carcass wt.	72.28	71.53	73.42	72.39	71.54	63.82	72.66	72.95
Total intestinal wt.	7.54	10.24	7.81	11.03	8.54	12.65	8.82	12.31
Wt. of gizzard	1.77	3.29	2.21	4.73	2.72	3.10	2.59	3.53
Wt. of heart	0.57	0.58	0.58	0.61	0.55	0.40	0.58	0.61
Wt. of liver	2.70	2.01	2.07	2.29	2.23	1.82	2.11	1.98
Wt. of cecum	0.80	1.66	1.21	1.69	0.84	1.02	0.66	4.41
Wt. l.i	0.19	0.37	0.23	0.35	0.45	0.22	0.53	0.17
Wt. s.i.	4.04	4.20	3.69	3.68	4.12	4.87	4.34	3.59
proventricules	0.45	0.70	0.43	0.56	0.50	0.51	0.53	1.25
Neck	3.95	4.83	4.42	4.01	4.69	4.52	3.69	2.95
Wt. head	2.09	1.98	2.03	1.77	1.99	1.94	1.89	1.86
Wt. legs	4.34	4.13	4.58	4.07	4.41	4.13	4.43	4.39
Thighs wt.	19.01	20.32	16.81	19.7	22.79	21.97	23.74	21.36
Wings wt.	7.56	7.71	6.98	7.92	8.80	8.06	7.91	7.59
Back wt.	16.04	13.65	12.65	15.52	11.19	13.26	11.61	14.12
Breast wt.	25.46	24.81	24.21	25.00	23.93	24.05	25.46	25.68
Spleen wt.	0.22	0.13	0.10	0.20	0.10	0.16	0.14	0.16
Wt. Esophagus	0.73	0.72	0.36	0.58	0.42	3.44	0.53	0.61

(Treatment 3)

(Treatment 4)

Wt. Gm	1.00		2.00		3.00		4.00	
wt. Gill	6 m	5 f	3 m	6 f	2 m	1 f	1 m	3 f
Live wt.	1950.00	2090.00	1970.00	2720.00	2200.00	1650.00	2180.00	2400.00
Carcass wt.	70.77	72.01	70.56	66.91	73.64	70.61	73.62	72.29
Total intestinal wt.	8.08	8.05	7.05	11.32	8.05	16.52	8.54	8.51
Wt. of gizzard	2.03	2.56	1.76	3.64	2.32	2.85	2.57	2.54
Wt. of heart	0.61	0.54	0.64	0.58	0.68	0.56	0.66	0.75
Wt. of liver	2.75	2.44	2.81	2.13	2.21	2.30	2.52	2.38
Wt. of cecum	0.87	0.84	0.95	1.07	0.95	0.78	0.66	0.73

Wt. l.i	0.27	0.11	0.26	0.17	1.27	0.22	0.16	0.19
Wt. s.i.	4.04	4.10	3.42	4.96	3.79	9.70	4.71	3.93
proventricules	0.43	0.60	3.42	0.90	0.38	0.73	0.55	0.58
Neck	4.42	4.38	3.99	4.74	5.39	5.99	5.39	4.36
Wt. head	2.10	1.82	2.18	1.76	2.03	1.98	2.10	1.79
Wt. legs	4.18	3.59	4.19	3.86	4.41	3.64	4.24	4.42
Thighs wt.	20.99	20.81	18.99	18.4	23.55	19.72	21.79	21.28
Wings wt.	8.15	7.60	7.57	6.51	7.50	8.00	7.50	7.47
Back wt.	11.39	14.15	13.41	13.38	12.36	14.62	15.02	13.75
Breast wt.	25.78	24.99	23.54	23.53	24.58	22.70	23.67	25.21
Spleen wt.	0.08	0.19	0.10	0.10	0.10	0.15	0.12	0.07
Wt.	0.88	0.44	0.66	1.50	0.86	2.97	0.45	1.13
Esophagus	0.00		0.00		0.00		0.10	

(Treatment 5)

Wt. Gm	1.00		2.	00	3.00		4.00	
Wt. GIII	6 m	5 f	3 m	6 f	2 m	1 f	1 m	3 f
Live wt.	2250.00	2035.00	2120.00	2100.00	1950.00	1900.00	2275.00	2100.00
Carcass wt.	68.44	73.22	72.17	80.24	75.90	74.21	71.65	66.43
Total intestinal wt.	7.71	7.89	8.29	8.79	6.91	8.11	9.46	7.39
Wt. of gizzard	2.10	2.87	2.07	3.20	2.53	2.60	2.61	2.39
Wt. of heart	0.43	0.45	0.68	0.57	0.58	0.72	0.59	0.53
Wt. of liver	1.90	2.13	2.39	2.11	2.10	2.37	2.31	2.07
Wt. of cecum	1.04	0.66	1.07	0.77	0.59	0.82	0.54	0.70
Wt. l.i	0.14	0.24	0.13	0.29	0.43	0.27	0.38	0.13
Wt. s.i.	4.16	3.79	4.48	4.01	3.05	4.03	4.69	3.49
proventricules	0.55	0.60	0.45	0.43	0.48	0.82	0.59	0.45
Neck	4.23	4.27	3.68	5.06	5.03	5.02	4.44	3.52
Wt. head	1.66	1.99	2.00	2.06	2.05	1.90	2.13	1.63
Wt. legs	3.72	4.32	4.62	4.68	3.96	3.92	4.44	3.59
Thighs wt.	20.26	20.85	20.32	23.45	19.33	21.25	20.82	18.67
Wings wt.	8.68	7.45	7.61	8.59	8.08	7.73	7.28	6.91
Back wt.	12.57	14.16	14.76	15.29	13.81	15.23	13.30	13.07
Breast wt.	23.75	26.77	25.30	27.69	28.88	24.60	25.25	26.76
Spleen wt.	0.08	0.06	0.09	0.11	0.09	0.09	0.11	0.08

الجهاز الهضمي في كل من الإناث و الذكور المستخدمة و كذلك على ملحقات الجهاز الهضمي من الغدد. لم يكن لأنزيم الفايتيز تأثير على قطع الذبائح المختلفة حيث تشابهت نسب هذه القطع للذكور و الإناث من الطيور في مجموعات التجربة المختلفة. وبينت التجربة أن أنزيم الفايتيز، عندما أضيف الى العلائق الفقيرة بالفسفور، قد أدى إلى زيادة معدلات الهضم لكل من المادة الجافة، الرماد الخام، و الألياف الخام (ADF, NDF)، معدلات الهضم لكل من المادة الجافة، الرماد الخام، و الألياف الخام (ADF, NDF)، لاتجربة أدى إلى زيادة معدلات الهضم لكل من المادة الجافة، الرماد الخام، و الألياف الخام (ADF, NDF)، كما أدى إلى نقص (5.0>P) معنوي في نسب كل مــن الكالسيوم و الفسفور و الزنك في زرق الصيصان المغذاة على علائق فقيرة بالفسفور مما يدلل على زيادة الاستفادة من الفسفور في العلائق. و بينت النتائج أيضا أن محتوى العظم من الفسفور و الكالسيوم و الزنك لكل من الذكور و الإناث قد ازداد عندما أضيف الإنزيم إلى العلائق الفقيرة الفنفور. هذا و يمكن الاستنتاج انه من الممكن توفير كمية لا يستهان بها من النفقات الزيم الفايتز.

تأثير الفايتيز بنسب مختلفة على دجاج اللاحم وعلى مستوى الفوسفور في الجسم إعداد الطالب ربيع احسان أحمد صبحه إشراف أ.د. جمال ابوعمر

الملخص

تم إجراء هذه التجربة للتعرف على اثر استخدام أنزيم الفايتيز على الصفات الإنتاجية لدجاج اللحم من نوع كوب 500 ، و على معدلات استهلاك العلف و التحويل الغذائي و نسب التصافي، إضافة إلى صفات الذبائح ومعاملات الهضم ومستويات الكالسيوم والفسفور في عظم فخذ الدجاج. استخدم في التجربة التي استمرت 42 يوم 200 صوص لحم بعمر يوم واحد. و تم توزيع الصيصان على خمس مجموعات احتوت كل منها 40 صوصا، بينما قسمت كل مجموعة إلى أربع مككرات احتوت كل منها 10 صيصان. و قد كانت المجموعات كالتالي: المجموعة الأولى هي مجموعة الشاهد و التي تشابة العلائق التجارية المستخدمة في المزارع، بينما كانت المجموعة الثانية تحوي نسب اقل من الفسفور المقررة لصيصان اللحم، أما المجموعات الثلاث الأخرى فقد احتوت نسب من الفسفور مشابهة للمجموعة الثانية إلا إنه أضيف إليها أنزيم الفايتيز بمعدل 1000، 2000 و 3000 وحدة لكل كغم من العلف، على الترتيب. و قد تم عمل تجربة هضم في الأيام الثلاثة الأخيرة من التجربة حيث تم اخـــذ اربع صيصان من كل من مكررات المجموعات، و تم ذبحها على عمر 42 يوما بعد تصويمها مدة 8 ساعات من اجل در اسة بعض خصائص الذبائح ومستوى الكالسيوم والفسفور في العظم. بينت النتائج أن للأنزيم المضاف تأثير معنوى (P<0.5) على معدلات الوزن عندما أضيف إلى العلائق الفقيرة بالفسفور ابتداء من الأسبوع الرابع، كما أنه أدى الى زيادة معنوية (P<0.5) في استهلاك العلف للصيصان المغذاة على العلائق الفقيرة بالفسفور أيضا. و كان للأنزيم نفس الأثر على معدلات التحويل الغذائي و نسب التصافي. إضافة إلى تأثيره المتباين على مكونات

جامعة النجاح الوطنية عمادة كلية الدراسات العليا

تأثير الفايتيز بنسب مختلفة على دجاج اللاحم وعلى مستوى الفوسفور في الجسم

إعداد الطالب ربيــع إحسان أحمد صبحه

> إشراف أ.د. جمال ابوعمر

قدمت هذه الأطروحة استكمالا لمتطلبات درجة الماجستير في الانتاج الحيواني بكلية الدراسات العليا في جامعة النجاح الوطنية في نابلس، فلسطين.

2008