An – Najah National University Faculty of Graduate Studies

Design and Simulation of Solar Photovoltaic Powered Cathodic Protection Systems

By Abdurrahman Jamal Khalid Samoudi

Supervisor Prof. Dr. Marwan M. Mahmoud

This Thesis is Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Clean Energy and Conservation Strategy Engineering, Faculty of Graduate Studies, An–Najah National University, Nablus, Palestine.

Design and Simulation of Solar Photovoltaic Powered Cathodic Protection Systems

By Abdurrahman Jamal Khalid Samoudi

This Thesis was defended successfully on 15/12 /2015, and approved by

Defense Committee Members

Signature

Millali

- Prof. Marwan M. Mahmoud / Supervisor

- Prof. Sameer Hanna / External Examiner

- Dr. Hosne Odeh / Internal Examiner

Dedication

إلى والدي العزيزين اللذين هما نور حياتي ودربي ... بكل الحب والإحترام أهديكم هذا العمل

To the candles that burnt to light the road for me, my Father and my Mother

To my brothers and my sister

To those who enlightened my way with their glitter words

I dedicate this work

IV Acknowledgments

الحمد لله الذي بنعمته تتم الصالحات، والصلاة والسلام على سيدنا محمد وعلى أله وصحبه أجمعين.

Praise is to Allah who gave me the ability and patience to complete this thesis. Peace and blessings be upon His Prophet and his truthful companions.

I would like to thank Prof. Dr. Marwan M. Mahmoud, my supervisor, for his valuable suggestions, assistance, encouragement, and for his great and continuous effort in helping me at all stages of this study.

A great thankful to my eye sight my loving father and loving mother, who implemented me in loving science and success, may Allah gives them long and healthy life.

Also special thanks to my brothers, my sister, her husband, my uncle Hasan and his family, in them I see big hope and help.

أنا الموقع أدناه مقدم الرسالة التي تحمل عنوان:

Design and Simulation of Solar Photovoltaic Powered Cathodic Protection Systems

أقر بأن ما اشتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص، باستثناء ما تمت الإشارة إليه حيثما ورد، وأن هذه الرسالة ككل، أو أي جزء منها لم يقدم من قبل لنيل أية درجة علمية أو بحث علمي أو بحثي لدى أي مؤسسة تعليمية أو بحثية أخرى.

Declaration

The work provided in this thesis, unless otherwise referenced, is the researcher's own work, and has not been submitted elsewhere for any other degree or qualification.

Student's name:

Signature:

Sill is

اسم الطالب: عبر إحن عمال فالمسموري

التوقيع:

Date:

15/12/2015

التاريخ:

List of Figures	IX
List of Tables	XI
List of Abbreviations and Symbols	XIII
Abstract	XV
Chapter One: Introduction	1
1.1 Literature Survey	4
1.1.1 Previous Work	6
1.2 Thesis Objectives	8
Chapter Two: Literature Review	10
2.1 Background of Cathodic Protection	10
2.1.1 Definition and Principal of Cathodic Protection (CP)	10
2.1.2 CP History	12
2.1.3 Advantage and Uses of CP	13
2.1.4 Types of CP Systems	14
2.2 Electrochemical Analysis of Corrosion and Cathodic Protection	17
2.2.1 Corrosion Definition	17
2.2.2 Corrosion Parameters	17
2.2.3 Underground Pipeline Corrosion	20
2.2.4 Corrosion Circuit	21
2.2.5 Cathodic Protection Circuit	27
2.3 Photovoltaic (PV) Technology	32
2.3.1 PV Technology	33
2.3.2 History	33
2.3.3 PV Module	35
2.3.4 Battery Storage System for PV System	44
2.3.5 Solar Radiation in Palestine	46
Chapter Three: Methodology for Designing a Cathodic Protection S for Pipeline Distribution Network (PDN)	ystem 48
3.1 Study Objective	48
3.2 Case Study Preview	48
3.2.1 PDN Description	49

VI Table of Contents

V 11	
3.2.2 PDN Surrounding Environment	53
3.2.3 Case Study Alternatives	54
3.3 Components of the ICCP System	54
3.4 Simulation Model	55
3.4.1 Simulink Application	56
3.5 Economic Study	56
Chapter Four: Mathematical Design and Simulation of PV Powered System for Pipeline Distribution Network	ICCP
4.1 Corrosion Current Calculation	57
4.1.1 Pipeline Surface Area	57
4.1.2 Unprotected Pipeline Surface Area	57
4.1.3 Corrosion Current Calculation	58
4.2: Anodes Calculation and Anode Ground-bed Design	60
4.2.1 Anode Ground-bed	60
4.2.2 Carbonaceous Backfill	60
4.2.3 Anode Type and Properties	62
4.2.4 Number of Anodes for Different Media at different Alter	rnative
	62
4.3 Total Resistance Calculations	63
4.3.1 Total Resistance Diagram	63
4.3.2 Pipeline Metallic Structure Resistance	64
4.3.3 Anodes and ground-beds Resistances	65
4.3.4 Cable Resistance	66
4.3.5 Coating Current and Resistance	68
4.4 Total Required Voltage	70
4.5 PV Generator Calculation	71
4.5.1 Required Power and Energy for ICCP System	72
4.5.2 Required Power from PV Generator	73
4.5.3 Number of Modules	74
4.5.4 PV Modules Distribution	75
4.6 Battery Storage System Calculation	76
4.6.1 Batteries Number and Ratings	77
4.7 PV System Diagram	79

VIII
4.8 Simulation of PV powered ICCP System for PDN80
4.8.1 General System Description80
4.8.2 Current, Voltage, Power and Energy Measurement Blocks90
4.8.3 Simulation Results91
Chapter Five: Economic Study of PV powered ICCP System for
Pipeline Distribution Network95
5.1 Life Time Analysis95
5.2 Interest Rate
5.3 Capital Cost Analysis96
5.3.1 Capital Cost of Rehabilitation of Pipeline Distribution Network
5.3.2 Capital Cost of Impressed Current Anodes and Ground-bed97
5.3.3 Capital Cost of PV Generator
5.3.4 Capital Cost of Batteries100
5.3.5 Capital Cost Conclusion101
5.4 Annual Cost Analysis101
5.5 Saving Calculation104
Chapter Six: Discussion of the Results107
Chapter Seven: Conclusion and Recommendations108
7.1 Conclusion108
7.2 Recommendations
References
Appendices117
Appendix (1): Carbon Steel Pipeline API Tables117
Appendix (2): Different Impressed Current Anodes Properties123
Appendix (3): 240 W and 50 W PV Modules Datasheets
Datasheet of 240 W Module
Datasheet of 50 W Module
Appendix (4): Classic Solar Batteries Datasheet
Appendix (5): 8% Interest Rate Table142
ب

IX List of Figures

Figure (2. 1): SACP Anode Connected to the Structure	15
Figure (2. 2): ICCP System	16
Figure (2. 3): Corrosion Circuit Diagram	.22
Figure (2. 4): Oxidation of Iron and Water Molecules at	the
Anode/Electrolyte Interface	.23
Figure (2. 5): Reduction Reaction at the Cathode/Electrolyte Interface	.24
Figure (2. 6): Movement of Electrons and Ions in the Corrosion Cell	26
Figure (2.7): Rust Formation	.27
Figure (2.8): Pipeline Corrosion Circuit	.28
Figure (2.9): Sacrificial Anode Cathodic Protection Circuit	.30
Figure (2. 10): ICCP Protection Diagram	.32
Figure (2. 11): PV Module Diagram [2.15]	.35
Figure (2. 12): PV Cell, Module and Array [2.15]	.35
Figure (2. 13): PV Module Equivalent Circuit Diagram ; Rsh: Sh	unt
Resistance, Rs: Series Resistance, Iph: Photon Current, ID: Diode Curre	ent,
Ish: Shunt Current, IL: Load Current and VL: Load Voltage [2.17]	.37
Figure (2. 14): IV-Characteristic Curve [2.18]	.38
Figure (2. 15): Effect of Temperature on IV-Characteristic Curve [2.18]	40
Figure (2. 16): Effect of Variable Solar Radiation Levels on l	[V-
Characteristic [2.18]	.40
Figure (3. 1): Natural Gas Pipeline Distribution Network [2.18]	50
Figure (3. 2): Gaza Marine Gas Field [3.2]	51
Figure (3. 3): Block Diagram of ICCP System	55
Figure (4. 1): Total Resistance of ICCP Circuit Diagram	.64
Figure (4. 2): PV System Diagram for Alternative A	.79
Figure (4. 3): PV System Diagram for Alternative B	.80
Figure (4. 4): PV System Diagram for Alternative C	.80
Figure (4. 5): General System Block	.81
Figure (4. 6): Pipeline Distribution Network Block	.82
Figure (4.7): Internal Blocks in Pipeline Distribution Network Block	.82
Figure (4.8): Seawater Media Block	.83
Figure (4. 9): Clay, Well Aerated Soil Media Block	.83
Figure (4. 10): Dry Soil Media Block	.83
Figure (4. 11): Desert Media Block	.84
Figure (4. 12): Wet Soil with Stones Media Block	.84
Figure (4. 13): General Anodes Blocks	.85
Figure (4. 14): Anode and Ground-bed Resistance Block	85
Figure (4. 15): Number of Anodes Block	85
Figure (4. 16): Cables Resistance Block	86
Figure (4. 17): PV Module Block	86

Figure (4. 18): Inside One PV Module Block	
Figure (4. 19): Components of PV Module Block	
Figure (4. 20): Ratings and Number of PV Block	
Figure (4. 21): Number of PV Modules Block	
Figure (4. 22): Ampere Hour Capacity of Battery Block	
Figure (4. 23): Inside Ampere Hour Capacity Block	
Figure (4. 24): General Measurement Blocks	90
Figure (4. 25): Inside Current and Voltage Measurement Block	90
Figure (4. 26): Inside Power and Energy Block	
Figure (4. 27): Current Quantities in Amperes	
Figure (4. 28): Number of Anodes	92
Figure (4. 29): Total Resistances Quantities in Ohms	92
Figure (4. 30): The Required I, V, P and E Quantities in [A], [V],	[W] and
[Wh] respectively (Symbol e+04 represents 10000 in Matlab)	
Figure (4. 31): Number of PV Modules	93
Figure (4. 32): Ampere Hour Capacity [Ah]	94
Figure (5. 1): Cost Cash Flow for Alternative (A)	102
Figure (5. 2): Cost Cash Flow for Alternative (B)	103
Figure (5. 3): Cost Cash Flow for Alternative (C)	103
Figure (5. 4): Saving Cash Flow for Alternative (A)	105
Figure (5. 5): Saving Cash Flow for Alternative (B)	105
Figure (5. 6): Saving Cash Flow for Alternative (C)	106

XI List of Tables

Table (1. 1): Pipeline Characteristics [1.13]	6
Table (1. 2): Soil Parameters [1.14]	7
Table (1. 3): Pipeline Parameters [1.14]	7
Table (1. 4): ICCP Design Results [1.14]	8
Table (2. 1) [2.4]	.16
Table (2. 2): Sacrificial Anodes Specifications [2.5]	.29
Table (2. 3): Impressed current anodes specifications [2.5]	.31
Table (2. 4): Specifications of Different PV Modules [2.11, 2.14]	.43
Table (2. 5): Different Cells Efficiencies [2.17]	.44
Table (2. 6): Lead Acid and NiCd Batteries Parameters [2.10]	.46
Table (2. 7): Monthly Average of Daily Solar Radiation for Nablus	Site
[2.19]	.47
Table (3. 1): Dimensions of the Structure of Pipeline [2.9]	.50
Table (3. 2): Chemical Composition of the Pipeline [2.9]	.51
Table (3. 3): Specifications of FBE Coating [3.3]	.52
Table (3. 4): Electrical Parameters of the Pipeline Surround	ling
Environment [1.14, 3.4, 3.5, and 3.6]	.53
Table (4. 1): Pipeline Dimensions in Different Media	.57
Table (4. 2): Alternative A	.58
Table (4. 3): Alternative B	.58
Table (4. 4): Alternative C	.58
Table (4. 5): Alternative A	.59
Table (4. 6): Alternative B	.59
Table (4. 7): Alternative C	.59
Table (4. 8): Specification Calcined Petroleum Coke [4.1]	.61
Table (4. 9): Specifications Metallurgical Coke [4.1]	.61
Table (4. 10): Dimensions and Specifications of MMO Anode [4.3]	.62
Table (4. 11): Alternative A	.62
Table (4. 12): Alternative B	.63
Table (4. 13): Alternative C	.63
Table (4. 14): Pipeline Resistance	.65
Table (4. 15): Alternative A	.66
Table (4. 16): Alternative B	.66
Table (4. 17): Alternative C	.66
Table (4. 18): Cross Section Area and Its Resistivity [1.14]	.66
Table (4. 19): <i>RC</i> 1	.67
Table (4. 20): RC2	.67
Table (4. 21): Alternative A	.68
Table (4. 22): Alternative B	.68
Table (4. 23): Alternative C	.68

Table (4. 24): Alternative A	69
Table (4. 25): Alternative B	69
Table (4. 26): Alternative C	69
Table (4. 27): Alternative A	70
Table (4. 28): Alternative B	70
Table (4. 29): Alternative C	70
Table (4. 30): Alternative A	71
Table (4. 31): Alternative B	71
Table (4. 32): Alternative C	71
Table (4. 33): Alternative A	72
Table (4. 34): Alternative B	72
Table (4. 35): Alternative C	73
Table (4. 36): Alternative A	73
Table (4. 37): Alternative B	73
Table (4. 38): Alternative C	74
Table (4. 39): SCHOTT Poly Crystalline Module Datasheet [4.5]	74
Table (4. 40): Alternative A	74
Table (4. 41): Alternative B	75
Table (4. 42): Alternative C	75
Table (4. 43): Alternative A	76
Table (4. 44): Alternative B	76
Table (4. 45): Alternative C	76
Table (4. 46): Alternative A	77
Table (4. 47): Alternative B	77
Table (4. 48): Alternative C	77
Table (4. 49): Alternative A	78
Table (4. 50): Alternative B	78
Table (4. 51): Alternative C	78
Table (5. 1): Rehabilitation Cost	97
Table (5. 2): Alternative A	98
Table (5. 3): Alternative B	98
Table (5. 4): Alternative C	98
Table (5. 5): Alternative A	99
Table (5. 6): Alternative B	99
Table (5. 7): Alternative C	99
Table (5. 8): Battery Cost [5.9, 5.10]	100
Table (5. 9): Alternative A	100
Table (5. 10): Alternative B	100
Table (5. 11): Alternative C	101
Table (5. 12): Capital Cost Conclusion	101
Table (5. 13): Annual Cost	104
Table (5. 14): Cash Flow Data	104

List of Abbreviations and Symbols

API	American Petroleum Institute			
СР	Cathodic Protection			
ICCP	Impressed Current Cathodic Protection			
SACP	Sacrificial Anode Cathodic Protection			
GACP	Galvanic Anode Cathodic Protection			
Alternative A	The case of design where the coating			
	efficiency is 90%			
Alternative B	The case of design where the coating			
	efficiency is 95%			
Alternative C	The case of design where the coating			
USA	United States of America			
PV	Photovoltaic			
	United States of America Currency [\$]			
W	Watt (Unit of Electrical Power)			
MW	Maga Watt $(1 \times 10^6 W)$			
	Gross Domestic Product			
dDi km				
	$\frac{1}{2} Ohm (Unit of Electrical Pasistance)}$			
SZ V	Volt (Unit of Floatrical Potential)			
V A	Ampere (Unit of Electrical Current)			
A	Ampere (Onit of Electrical Current) Mills Motor $(1 + 10^{-3} \text{ m})$			
mm	Mine Meter (1x10 ° m)			
	Mixed Metal Oxide			
An	Ampere Hour (Unit of Battery Current			
Wh	Watt Hour (Unit of Electrical Energy)			
GNP	Gross National Products			
DC	Direct Current			
AC	Alternating Current			
Fe	Iron Atomic Symbol			
H	Hydrogen Atomic Symbol			
02	Oxygen Atomic Symbol			
+ve	Positive			
-ve	Negative			
<i>e</i> ⁻	Electron Symbol			
рН	Power of Hydrogen			

	XIV
Ε	Magnetic Field
q	Electrical Charge
F	Electrical Force
Al	Aluminum
Mg	Magnesium
Zn	Zinc
g	Unit of Mass $(1x10^{-3}kg)$
ст	Centimeter (Unit of Length $(1x10^{-2}m)$)
LCOE	Leveled Cost of Electricity
STC	Standard Temperature Condition
CIGS	Copper Indium/Gallium Selenide
CIS	Copper Indium Selenide
SOC	State of Charge
HVD	High Voltage Disconnects
LVD	Low Voltage Disconnect
DOD	Depth of Discharge
PDN	Pipeline Distribution Network
С	Carbon
Mn	Manganese
Р	Phosphorus
S	Sulfur
Cr	Chromium
Ni	Nickel
Мо	Molybdenum
V	Vanadium
Cu	Copper
FBE	Fusion Bonded Epoxy
μA	Micro Ampere $(1x10^{-6}A)$
SCC	Stress Corrosion Cracking

XV Design and Simulation of Solar Photovoltaic Powered Cathodic Protection System By Abdurrahman Jamal Samoudi Supervisor Prof. Dr. Marwan M. Mahmoud

Abstract

This thesis discusses the using of cathodic protection (CP) technology for providing protection against corrosion of Submarines and underground pipeline distribution networks (PDN) in Palestine. Solar photovoltaic (PV) energy is used to supply an impressed current cathodic protection (ICCP) system. The design deals with three alternatives depending on the percentage of protected surface area from the total area of the pipelines, the alternative A, B and C represent 90%, 95% and 98% respectively. A simple model has been built through Simulink/MATLAB software in this thesis.

Economic analysis is applied to compare between rehabilitation of the damaged pipelines and using the PV powered ICCP system for each alternative. The economic analysis shows that the saving through using PV powered ICCP system instead of rehabilitation of the pipelines is very large. The saving for the alternatives presented as: (A) is \$3,985,440 from \$5,371,493, (B) is \$1,840,670 from \$2,688,311 and (C) is \$1,015,603 from \$1,075,350. These savings represent percentages of 74.2%, 68.47% and 94.44% of the rehabilitation cost for the alternatives A, B and C respectively.

¹ Chapter One

Introduction

Pipelines play an extremely important role throughout the world as a means of transporting gases and liquids over long distances from their sources to the ultimate consumers [1.1].

For natural gas transportation pipeline accidents, 36% were caused by external corrosion and 63% were caused by internal corrosion. For natural gas distribution pipeline accidents, only approximately 4% of the total accidents were caused by corrosion, and the majority of those were caused by external corrosion [1.2].

In a summary report for incidents between 1985 and 1994, corrosion accounted for 28.5% of pipeline incidents on natural gas transmission and gathering pipelines [1.4]. In a summary report for incidents between 1986 and 1996, corrosion accounted for 25.1% of pipeline incidents on hazardous liquid pipelines [1.4].

The vast majority of underground pipelines are made of carbon steel, based on American Petroleum Institute API 5L specifications [1.5]. Typically, maximum composition limits are specified for carbon, manganese, phosphorous, and sulfur. In some cases, other alloying elements are added to improve mechanical properties.

Most of the corrosion of underground metal is as a result of an electrochemical reaction. Corrosion occurs through the loss of the metal ions at anodic area to the electrolyte. Cathodic areas are protected from

corrosion because of the deposition of hydrogen or other ions that carry current [1.4].

Cathodic protection can, in principle, be applied to any metallic structure in contact with a bulk electrolyte. In practice its main use is to protect steel structures buried in soil or immersed in water. It cannot be used to prevent atmospheric corrosion.

The most rapid development of cathodic-protection systems was made in the United States of America to meet the requirements of the rapidly expanding oil and natural gas industry which wanted to benefit from the advantages of using thin-walled steel pipes for underground transmission. For that purpose the method was well established in the United States in 1945. [1.4]

In the United Kingdom, where low-pressure thicker-walled cast-iron pipes were extensively used, very little cathodic protection was applied until the early 1950s. The increasing use of cathodic protection has arisen from the success of the method used from 1952 onwards to protect about 1000 miles of wartime fuel-line network that had been laid between 1940 and 1944. The method is now well established. [1.4]

There are two primary types of CP systems: sacrificial anode (galvanic anode) cathodic protection (SACP) and impressed current cathodic protection (ICCP). SACP utilizes an anode material that is electronegative to the pipe steel. When connected to the pipe, the pipe becomes the cathode in the circuit and corrosion is mitigated. Typical sacrificial anode materials for underground pipelines are zinc and magnesium. ICCP utilizes an outside power supply (rectifier) to control the voltage between the pipe and an anode (cast iron, graphite, platinum clad, mixed metal oxide, etc.) in such a manner that the pipe becomes the cathode in the circuit and corrosion is mitigated. [1.1]

The solar energy especially the Photovoltaic (PV) is used as power supply to feed the ICCP system. PV powered ICCP systems are used in different applications around the world. Solar panels generate electricity only when they are subjected to solar radiations.

During the first decade of the 21st century, the worldwide photovoltaic (PV) markets have experienced a tremendous expansion. The installed PV power increased from below 1000 MW to almost 8000 MW between years 2000 and 2007. The most rapid development of CP systems was made in the United States of America (USA) to meet the requirements of the rapidly expanding oil and the natural gas industry which wanted to benefit from the advantages of using thin-walled steel pipes for underground transmission. For that purpose the method was well established in USA in 1945. [1.1]

The industry sectors for corrosion cost analyses represented approximately 27% of the USA economy gross domestic product (GDP), and were divided among five sector categories: infrastructure, utilities, transportation, production, manufacturing, and government. [1.2]

1.1 Literature Survey

Krause [1.6] identified corrosion as the deterioration of a material (usually a metal) as a result of its reaction with its environment. Corrosion is inevitable in our ambient environment and constitutes a major problem for the crude-oil and natural-gas industry and pipeline operators. The rate of corrosion can be controlled by the use of protective coatings, CP as well as the choice of appropriate materials for the pipeline and/or corrosion inhibitors. Installing an effective protection system is seemed to be highly economic and constitutes only about 1% of total project cost for the pipeline.

Lilly [1.7], using the Saudi Arabian Oil-Company experience, reviewed the external corrosion of two 22-year old commissioned pipelines crossing the Arabian Desert. External corrosion protection was an applied tape-wrap, supplemented by an ICCP system, which was implemented after both pipelines were commissioned. No mention was made of maintaining the technical integrity of the new pipeline against external corrosion during the construction period.

Anene [1.8] concluded that increasing the wall thickness is not a recommended solution for an integrity problem as the pipeline will continue to corrode until a CP system is installed. Operating a commissioned pipeline with effective external CP, will result in considerable cost savings in life-time maintenance. Also an overall reduction in environmental and health hazards associated with leaks that would have occurred resulting of external corrosion of the pipeline. The use of an expensive alloy as the material of a pipeline (in order to inhibit its corrosion) is uneconomic [1.9].

Eliassen and Hesjerik [1.10] concluded that, for most pipelines buried in high-resistivity soil, the CP current demand is high. However the pipeline's integrity can be threatened by severe interference problems, e.g. arising from the presence locally of a direct current for a local electric railway. (For operational pipelines, the external corrosion risks are generally dependent on the anodic-current densities). Also, alternating current interference from near-by high-power transmission lines can be a major source of a pipeline's external corrosion. Hence, careful pipelineroute selection is important.

Pipelines are generally designed with an expected minimum service life of 25 years [1.11]. So in order to survive the harsh underground surroundings in which these pipelines are laid, they should be protected from external corrosion by appropriate coatings and supplemented with CP systems [1.12].

However, little or no consideration is at present given to the deteriorating integrity of pipelines during assembly in Nigeria, despite the often long unexpected delays during this construction period. The provision of a protective system for a pipeline throughout this construction stage is desirable. [1.12]

1.1.1 Previous Work

In 2009, a study in Algeria applied on gas transportation pipelines was performed. The object of the study is to provide corrosion prevention to the pipelines by design an ICCP system supplied with solar energy. The ICCP system is implemented for a pipeline mainly described by some characteristics which are summarized in table (1.1). [1.13]

 Table (1. 1): Pipeline Characteristics [1.13]
 Image: Characteristic state state

Characteristics of the Pipeline
Material: Carbon Steel API – 5L, Grade, X60
Length: 292 km
External Diameter: 0.762 m
Surface Area to Protect: 699,020 m^2
Resistivity: 8,000 Ω. m

The results of study show that the impressed current configuration by the solar photovoltaic modules ensures the protection of the pipeline. The results of study are listed as follows [1.13]:

- The mass of the backfill is 14.4 tons and the numbers of anodes is 5
- The number of modules is acceptable; 10 modules with 14 batteries
- The output voltage is 24 V
- The output current is 3.65 A which is high enough to protect the pipeline

In 2013, a research in Iran for designing an ICCP system powered by PV system to provide protection from corrosion to the buried pipeline network of Ahwaz region in Iran, which is owned by National Iranian South Oil Company, was carried out. The design of ICCP system depends on the parameters of the soil and the pipeline structure. The parameters are represented in tables (1.2) and (1.3) respectively. [1.14]

Parameter	Quantity
Soil Moisture	70%
Soil Temperature [°C]	35
Average Soil Resistivity $[\Omega. cm]$	1200
Soil pH	7.5

Table (1. 2): Soil Parameters [1.14]

 Table (1. 3): Pipeline Parameters [1.14]

Parameter	Quantity			
Pipe Material	Carbon Steel API – 5L			
Nominal Diameter [mm]	50.08	152.4	203.2	
Length [m]	52	6,000	7,000	
Total Surface Area to be	8000.47			
Protected $[m^2]$				

A selection of mixed metal oxide (MMO) coated titanium (150, 2.5×50) and a 4A nominal output according to the specifications of standard anodes. The used type of PV modules is AT250 with nominal output voltage, current and power of 17.5V, 2.86A and 250W respectively. The battery is sealed lead acid with nominal voltage and capacity of 12V and 250Ah. The results of ICCP System design are represented in table (1.4). [1.14]

Subject	Quantity
Minimum Required Current by System [A]	7.867
Number of Required Anodes	5
Pipe Resistance [Ω]	0.765
Coating Resistance $[\Omega]$	0.51
Cable Resistance $[\Omega]$	0.17
Ground-bed Resistance $[\Omega]$	1.52
Voltage Required by System [V]	48
Power Required by System [W]	755
System Lifetime [years]	32
Number of PV Modules	42
Output Voltage [V]	52.2
Output Current [A]	40.04
Output Power [W]	2102
Number of Batteries	4 in Series

Table (1. 4): ICCP Design Results [1.14]

1.2 Thesis Objectives

Previous studies (previous section) in Algeria and Iran about the use of PV system as an energy source to the ICCP system are feasible according to their studies. So as in this thesis, a PV powered ICCP system is designed for Palestine and a mathematical and economic study is done to ensure that this technology of corrosion prevention is feasible in Palestine.

The pipelines used to transport natural gas from Gaza Marine Natural Gas Station in the Mediterranean Sea to different distribution stations in Gaza Strip and West Bank. The case study of the thesis is a suggested situation, it does not exist at the present time, and the mathematical, economical studies are depending on this suggested case study. There many important objectives that are reached in the study, design and simulation of the PV powered ICCP system. The objectives are listed as follows:

- 1. Building a scientific basis about the cathodic protection (CP) technology using in preventing corrosion damage
- 2. Investigating the electrical and chemical behavior of environment and the structure to be protected by CP
- 3. Investigating the possibility of using solar photovoltaic (PV) power to supply the cathodic protection systems
- 4. Investigating the techno-economic feasibility of using PV powered CP in the Palestinian environment considering the natural gas pipeline distribution network from Gaza Marine Natural Gas Station to Gaza Strip and to West Bank
- 5. Design and simulation of solar electric powered CP systems to be used in Palestine

¹⁰ Chapter Two

Literature Review

2.1 Background of Cathodic Protection

2.1.1 Definition and Principal of Cathodic Protection (CP)

CP is a method of corrosion control and prevention that can be applied to the buried and submerged metallic structures. CP used in conjunction with coating and can be considered as a secondary corrosion control technique, where the coating system can be efficient with percentage between (50% - 99%). The percentage depends on type, age and a method of installation. So, the properly designed corrosion control or prevention is the combination between coating and CP system. [2.1]

CP works by preventing the anodic reactions of metal dissolution occurring on the structure under protection. CP prevents corrosion by allowing the anodic reactions to occur on specially designed and installed anodes. Also, CP can be defined as electrochemical means of corrosion control in which the oxidation reaction in a galvanic cell is constructed at the anode and suppresses corrosion of the cathode in the same cell [2.2].

In principal, CP can be applied to any metal, but in practice it's primarily used in carbon steel due to its little natural corrosion resistance when it used in corrosive environments as seawater, acid soils, salt-laden concrete, and many other corrosive environments.

CP has two forms of mechanisms; the first mechanism is the sacrificial anode CP, and the second mechanism is the impressed current

CP. The two forms differ in the source of current and type or operation of the anode.

In both techniques of CP, the current flows from the auxiliary anode through the soil to structure to be protected, where this current flow onto a structure from the surrounding electrolyte (soil or seawater), the potential of the structure is made more negative. CP can be achieved by the application of current of sufficient magnitude. Although, this statement is true, it is deceptively simple because there are very large differences in the design of CP systems. These differences result from the infinite variety of structures that are to be protected and from the large assortment of environments in which those structures that are located. [2.2]

If a portion of the structure does not receive current, the normal corrosion activity will continue at that point. If any of CP current picked up by the structure leaves that structure to flow back into the electrolyte, corrosion will be accelerated at the location where the current is discharged.

The need of CP can be summarized in the following points [2.3]:

- 3% to 5% of Gross National Products (GNP) is attributed to corrosion damage
- USA spend about \$300 Billion per year due to corrosion
- CP saved about one third of the money that spent on corrosion

CP can protect all types of buried and submerged metallic structures including the following:

- Cross country pipelines

- In plant pipelines
- Aboveground storage tank basis
- Buried tanks and vessels
- Internal surfaces of tanks, vessels, condensers, pipelines, and platforms ships
- Reinforced steel in concrete

2.1.2 CP History

In the 18th century, Galvani and Volta, investigate the potential differences between different metals in an electrolyte and the technical basis for batteries and galvanized steel. In addition, Volta's galvanic cells were described in a paper to the Royal Society in 1799. Galvanizing starts in 1742 by French chemist P.J. Malouin, who describe a method of coating iron by dipping it in molten zinc to French Royal Academy. [2.1]

In 1820s, Sir Humphrey Davey the first suggestion of using CP as a corrosion control on British Naval Ships. In 1836, Stanilaus Sorel who is French chemist obtained a patent for a means of coating iron with zinc. In 1850, Galvanizing industry was using 10,000 tons of zinc per year. [2.2]

In 1950, Applied of extensive use of low-pressure, thicker-walled cast iron pipe meant little CP. In the second half of 20th century, in part, from initial success of a method as used from 1952 onwards to protect 1,000 miles of wartime fuel-line network, also a wide use of CP expanded through North America, due to expanding use of oil and gas industry using

steel pipes for underground product transmission, and steel drilling platforms and pipes in the ocean. [2.1]

2.1.3 Advantage and Uses of CP

A substantial advantage of CP over other forms of corrosion mitigation is that it is achieved simply by maintaining a direct current (DC) electrical circuit, the effectiveness of which can be continuously monitored. CP commonly is applied to a coated structure to control corrosion at surfaces where the coating fails or is damaged.

Specifying the use of CP initially will avoid the need to provide a "corrosion allowance" to thin sections of structures that may be costly to fabricate. CP may be used to afford security where even a small leak cannot be tolerated for reasons of safety or environment. CP can, in principle, be applied to any metallic structure in contact with a bulk electrolyte (including concrete). In practice, its main use is to protect steel structures buried in soil or immersed in water. CP can be used to prevent atmospheric corrosion on metals. However, CP can be used to protect atmospherically exposed and buried reinforced concrete from corrosion, as the concrete itself contains sufficient moisture to act as electrolyte. [2.3]

CP is also used to protect the internal surfaces of [2.3]:

- Large diameter pipelines
- Ship's tanks (oil and water)
- Water-circulating systems

CP is applied to control the corrosion of steel embedded in reinforced concrete structures; bridges, buildings, ports and harbors structures, etc.

CP can be applied to copper-based alloys in water systems, and exceptionally to lead-sheathed cables and to aluminum alloys, where cathodic potentials have to be very carefully controlled.

2.1.4 Types of CP Systems

2.1.4.1 Sacrificial Anode Cathodic Protection (SACP) System

In SACP, the naturally occurring electrochemical potentials of different metals are used to provide protection. The sacrificial anodes are coupled to the structure under protection and conventional current flows from the anode to the structure as long as the anode is more active than the structure. As the current flows, all corrosion reactions occur on the auxiliary anode which is sacrifices itself in order to offer protection from corrosion to the structure. [2.4]

SACP use galvanic anodes which have a higher energy level or potential with respect to the structure to be protected. The anodes made of materials such as magnesium or zinc, which are naturally anodic with respect to steel structure [2.4]. See figure (2.1).

Figure (2. 1): SACP Anode Connected to the Structure

2.1.4.2 Impressed Current Cathodic Protection (ICCP) System

In ICCP system, the current is impressed (forced) by an external power supply to the rest components of the protection system. The anodes are either inert or have low consumption rates and can be surrounded by carbonaceous backfill to increase the efficiency and decrease cost. Typical anodes are titanium coated with Mixed Metal Oxide (MMO) or platinum, silicon iron, graphite and magnetite. [2.4]

As ICCP needs an external power source (DC), it can be obtained using a rectifier with an AC power source or from a Solar Photovoltaic (PV) System which can provide DC power directly.

ICCP use anodes which are energized by an external DC power source. The anodes are installed in the electrolyte (corrosive environment) and are connected to the positive terminal of the power source and the structure to be protected is connected to the negative terminal of the power source. See figure (2.2).

Figure (2. 2): ICCP System

2.1.4.3 Comparison between ICCP and SACP

The following table represents a comparison between the two types of CP Systems.

	SACP	ICCP	
	Uses		Uses
-	For protection of well coated areas Where the surface area of protected structure is small due to economic restrictions	-	Where the protective current and life requirements are high Over a wide range of soil and water resistivity quantities For protection of large uncoated areas
	Benefits and Features	Benefits and Features	
-	No independent current source	-	Need external power source
-	Limited effects on neighbor structures	-	Adjusted manually or automatically
-	Self-adjusting	-	Anodes are very compact
-	Simple to install	-	Can effects other structures
-	No damage due to wrong installation	-	Damage possibility due to wrong installation Need small number of Anodes

Table (2. 1) [2.4]

2.2 Electrochemical Analysis of Corrosion and Cathodic Protection

2.2.1 Corrosion Definition

Corrosion can be defined as electrochemical changes occur on the surface of metallic structure due to magnitude of potential difference when electrons move from the anodic site (where the oxidation reactions occur) to the cathodic site (where the reduction reactions occur). [2.5]

The electrochemical changes that lead to the oxidation and reduction reactions need a corrosive medium (electrolyte). In the electrolyte, the positive and negative ions move between the anodic and cathodic sites due to their charges as; the negative ions move from cathodic site to anodic site, and the positive ions move from the anodic site to the cathodic site. Corrosion causes a mechanical damage in the metallic structure due to corrosion products which are called rust (produced from reduction reactions). [2.5]

2.2.2 Corrosion Parameters

Corrosion cell is a circuit consisting of an anode, cathode, electrolyte and an electrical contact between the anode and cathode.

2.2.2.1 Anode

Anode is the metal surface where the corrosion reaction (oxidation) occurs as the metal atoms dissolve to produce electrons and ions, where electrons leave the anode through an electrical connection to the cathode

and ions leave the anode to the electrolyte. The following equation represents the oxidation reaction of Iron atom [2.6]:

2.2.2.2 Cathode

Cathode is the metal surface where the reduction reactions occur as a consumption of arriving electrons from anode through the electrical connection by the dissolved hydrogen and oxygen in the cathode's surrounding area of electrolyte. The following equations represent the reduction of hydrogen and oxygen [2.6]:

$$2H^+ + 2e^- \rightarrow H_2.....(2.2)$$

 $2O^{2-} + 4e^- \rightarrow O_2.....(2.3)$

2.2.2.3 Electrolyte

Electrolyte is the medium -which can be soil, water or any corrosive solution- where the dissolved negative and positive ions move from anode and cathode as to positive ions or from cathode to anode as to negative ions. The changes that occur in the electrolyte as a result of corrosion process are called electrolysis. [2.6]

- Soil

Chemical analysis of soils is usually limited to determination of constitutes that are soluble in water under standardized conditions. The elements that are usually determined are; the base-forming elements, such as sodium, potassium, calcium and magnesium; and the, or acid-forming elements, such as carbonate, bicarbonate, chloride, nitrate and sulfate. The nature and amount of soluble salts, together with the moisture content of the soil, largely determine the ability of the soil to conduct an electric current.

Moisture content in soil will probably have the most profound effect when considering corrosion potential than any other variable. No corrosion will occur in environments that are completely dry. When the soil is nearly dry, its resistivity is very high. However, the resistivity decreases rapidly with increases of moisture content until the saturation point is reached, after which further additions of moisture have little or no effect on the resistivity. [2.6]

- Water

The corrosion of metals in water depends on occurrence of baseforming and acid-forming element such as in soil. No corrosion will occur in completely fresh water. The corrosion in seawater or salt water depends on the concentration of corrosion inhibitors. [2.6]

- Effect of pH Value

A high pH value means there are fewer free hydrogen ions, and that a change of one pH unit reflects a tenfold change in the concentrations of the hydrogen ions. For example, there are 10 times as many hydrogen ions available at pH 7 than at pH 8. The pH scale commonly quoted ranges from 0 to 14 with a pH of 7 is considered to be neutral. [2.6]

Low pH acid waters accelerate corrosion by supplying hydrogen ions to the corrosion process. Although even absolutely pure water contains some free hydrogen ions, dissolved carbon dioxide in water can increase the corrosion chemistry hydrogen ion concentration. At pH of 4 or below, direct reduction of H^+ ions, is important particularly at lower partial pressure of carbon dioxide and the pH has a direct effect on the corrosion rate. [2.6]

2.2.3 Underground Pipeline Corrosion

There are many metals (such as iron) used in underground construction applications. The metallic materials used in underground construction are subjected to very complex corrosion types, because of the presence of many corrosiveness factors that may individual or in combination affect the corrosion reactions. These factors determine the rate and the type of electrochemical corrosion, such as uniform and pitting corrosion [2.7]. The following sections are the summary for commonly observed forms of corrosion.

The corrosion and CP of the underground pipelines is the main object in this thesis, especially in the design and simulation. It's important to have a good knowledge about these types of corrosion in order to get proper design of CP system to protect the underground pipelines.

2.2.3.1 Uniform Corrosion

Uniform corrosion or general corrosion process is exhibiting uniform thinning that proceeds without appreciable localized attack. It is the most common form of corrosion and may appear initially as a single penetration, but with thorough examination of the cross section it becomes apparent that the base material has uniformly thinned [2.8].

2.2.3.2 Pitting Corrosion

Pitting corrosion is a localized form of corrosion by which cavities (holes) are produced in the material. Pitting is considered to be more dangerous than uniform corrosion because it is more difficult to detect, predict, and design against. Corrosion products often cover the pits. The small narrow pit with minimal overall metal loss can lead to the failure of an entire engineering system. [2.8]

2.2.3.3 Corrosion Due to Dissimilar Metals

This form of corrosion occurs when dissimilar metals are in contact in the presence of an electrolyte, such as water (moisture) containing very small amounts of acid. The dissimilar metals produce a galvanic reaction which is resulted in deterioration of one of them [2.8].

2.2.4 Corrosion Circuit

Corrosion of iron in salt water is a good example to explain the process of corrosion. This section will discuss it in details.

2.2.4.1 Parameters of Corrosion Circuit

The corrosion circuit consists of two iron electrodes; one of them is unprotected so it's more active (has a higher ability to corrosion) than the other. Both of the electrodes are immersed in salt water solution with an electrical connection between them. Figure (2.3) shows the corrosion circuit diagram. The parameters of corrosion circuit are:

- Anode (Iron electrode with higher activity)
- Cathode (Iron electrode with lower activity)
- Electrolyte (salt water)
- Electrical connection

Figure (2. 3): Corrosion Circuit Diagram

2.2.4.2 Anodic Reaction

At the anode, the high concentration of salts, acidity, lower pH value in salt water and other solutions around the anode electrode, these factors lead the iron atoms at the surface of electrode to dissolve (oxidize/loose electrons), the electrons transferred along the surface of anode electrode surface, the transferred to the cathode electrode through the electrical connection. Due to iron conductivity, oxidation reactions happen as in equation (2.1) [2.5].

The electrons movements from anode to cathode are due to potential difference occur as a result of oxidation reaction of iron. As the potential increases some water molecules dissolve to the electrolyte as in equation (3.4). Figure (2.4) represents the oxidation of iron and water molecules at the anode/electrolyte interface. [2.5]

Figure (2. 4): Oxidation of Iron and Water Molecules at the Anode/Electrolyte Interface

2.2.4.3 Cathodic Reaction

At the cathode, the released electrons from anode which are transferred to the cathode through the electrical connection, these electrons will be consumed by the reduction reaction. The reduction happens as in reduction of oxygen and water with released electrons to form the hydroxide, see equation (2.5). Figure (2.5) represent the reduction reaction at the cathode/electrolyte interface. [2.5]

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$
.....(2.5)

Figure (2. 5): Reduction Reaction at the Cathode/Electrolyte Interface

2.2.4.4 Electrons and Ions Movement

Water temperature, pH value or concentration of salts and different corrosive materials are coefficients that provide energy to the metal surface atoms. The provided energy will result of potential difference in the electrolyte.

At specific quantity of energy, two electrons will free out of the iron atom outer band. As electrons free out as the iron atom become a positive ion and dissolves into the electrolyte. The free electrons travel through the metal path to the less active site and consumed through reduction reaction as in equation (2.5). Water molecules can dissolve like iron atoms as in equation (2.4).

The potential difference between the positive (active) part which is the anode and the negative part which is the cathode will polarize the electrolyte ions; the positive ions (like: H^+ , Fe^{2+}) goes from the anodic side to the cathodic side, and negative ions (hydroxide ions which produced from reduction of water, oxygen and free electrons that received from the anode) goes from the cathode side to the anode side.

The potential difference of the corrosion cell will produce an electric field (E) between anode and cathode. E lines are transmitted from the cathode to the anode. As charges move due to E, an electric force (F) produces. The direction of F is depending on the electric charge (q) polarity as in equations (2.6, 2.7, 2.8, and 2.9). [2.5]

Both F and E are vector quantities; they have both magnitude and direction. The magnitude of F is equal to (qE) and the direction of F is equal to the direction of E if q is positive, and the direction of F is in the opposite direction of E if q is negative. E is uniform when neither its magnitude nor its direction changes from one point to another. The unit of E is $(V.m^{-1})$. Figure (2.6) represents the movement of electrons and ions in the electrolyte. [2.9]

Where: ϵ the permittivity is r is the distance from charge (or the center of sphere) and the electric field is in a radial direction, and q is the electric charge. [2.9]

F = qE....(2.7)

For positive ions [3.3]:

$$F = +1.6x10^{-19}xE....(2.8)$$

For negative ions [3.3]:

$$F = -1.6x10^{-19}xE....(2.9)$$

Figure (2. 6): Movement of Electrons and Ions in the Corrosion Cell

2.2.4.5 Rust Formation

Hydroxide ions (OH^{-}) appear in water as the hydrogen ion concentration falls. They react with the iron (II) ions to produce insoluble iron (II) hydroxide, $(Fe(OH)_2)$, as in the following equation [2.3]:

 $Fe^{2+} + 20H^- \to Fe(OH)_2.....(2.10)$

Iron (II) ions also react with hydrogen ions and oxygen to produce iron (III) ions, as in the following equation [2.3]:

 $Fe^{2+} + 4H^+ + O_2 \rightarrow 4Fe^{3+} + H_2O$(2.11)

Iron (III) ions react with hydroxide ions to produce hydrated iron (III) oxide (also known as iron (III) hydroxide), as in the following equation [2.3]:

$$Fe^{3+} + 30H^- \rightarrow Fe(OH)_3.....(2.12)$$

26

Iron (III) hydroxide dried to make plain (III) oxide (Fe_2O_3) , this redbrown, powdery stuff and easily crumbles off to continually expose fresh metal for reaction, which is called "Rust". Figure (2.7) represents the formation of rust on the iron metallic structure in salt water.

Figure (2.7): Rust Formation

2.2.5 Cathodic Protection Circuit

2.2.5.1 Corrosion Circuit of Pipeline

The corrosion process can be described as in figure (2.8).

Figure (2.8): Pipeline Corrosion Circuit

2.2.5.2 Sacrificial (Galvanic) Anode Cathodic Protection (SACP)

- Sacrificial Anodes

Sacrificial anodes are commonly made of alloys of zinc (Zn), aluminum (Al) or magnesium (Mg), which are used to form a galvanic cell. Due to the potential differences that existing between sacrificial anode alloys and the cathodic area (steel), positively charged metal ions leave the anode surface while electrons leave the surface at the cathode. In the case of aluminum alloy anodes, the reaction at the aluminum anode surface is as in the following equation [2.5, 2.6]:

 $Al \to Al^{3+} + 3e^{-}$(2.13)

In underground applications, aluminum anodes are normally surrounded with a special backfill. The backfill is usually a mixture of Gypsum, Mennonite and sodium sulfate, this special backfill serves a number of purposes. First, it provides a uniform environment for the anode, thereby making the corrosion of the anode uniform. Second, the backfill decreases the anode to earth resistance. Third, it retains moisture and thereby maintains a lower resistance. Fourth, it acts as a depolarizing agent [2.6].

The most common alloys used for SACP with their specifications are explained in table (2.2).

Metal	Potential (Volts)	Density (g/cm^3)
Magnesium (Mg)	-1.55	1.70
Aluminum (Al)	-1.15	2.70
Zinc (Zn)	-1.10	7.10

 Table (2. 2): Sacrificial Anodes Specifications [2.5]

- Protection Circuit

In explanation of sacrificial anode circuit, a magnesium anode is used. By using magnesium anode, the structure to be protected will be as cathode, and as the structure is more cathodic as it is more protective from corrosion. The anodic (oxidation) reactions will occur on the magnesium anode.

When electrons move from the sacrificial anode to the pipe structure, it consumed by the reduction reaction of water and oxygen to form hydroxide molecules. As electrons transferred to the pipeline structure as the pipeline is protected from corrosion.

The magnesium anode sacrifices itself (waste away) as long as occurrence of anodic and cathodic reaction, as in figures (2.9).

Figure (2.9): Sacrificial Anode Cathodic Protection Circuit

2.2.5.2 Impressed Current Cathodic Protection (ICCP)

- Impressed Current Anodes

When external power source is used, the current is derived from an outside source and is not generated by the corrosion of particular metal as in the case with galvanic anodes. However, materials used as energized anodes do corrode.

The materials that are commonly used are graphite, high silicon cast iron and mixed metal oxide coated titanium. In underground work, special coke breeze backfills are usually used for the purpose of providing a uniform environment around the anode and for lowering the anode to earth resistance. [2.5, 2.6] The impressed current anode material is ideally non-consumed by the passage of current from it into the electrolyte, in practice the materials used are a compromise between this ideal and the cost and physical properties of available materials. Impressed current anodes specifications are represented in table (2.3).

Tuble (2. 5): Impressed current anoues specifications [2.6]				
Туре	Density $(g. cm^{-3})$	Anode Current Density $(A. m^{-2})$		
		Maximum	Average	
Graphite	1.6 to 2.1	50 to 150	10 to 50	
Magnetite	5.2	-	90 to 100	
High-Silicon Iron	7.0 to 7.2	300	10 to 50	
Lead Silver alloy	11.0 to 11.2	300	50 to 200	
Lead-Platinum	11.0 to 11.2	300	100 to 250	

 Table (2. 3): Impressed current anodes specifications [2.5]

- Protection Circuit

The DC power source drives electrons to the pipeline metallic structure through connection wire. The negative pole of the power source is connected with the pipeline structure. As the structure is at negative polarization as it's protected from corrosion.

The only reactions which are permitted to occur are the cathodic (reduction) reactions because the external power source is delivering electrons, so there is no anodic reactions will occur at the anode. ICCP protection circuit for pipeline is represented in figure (2.10).

Figure (2. 10): ICCP Protection Diagram

2.3 Photovoltaic (PV) Technology

Renewable power generation can help countries to meet their sustainable development goals through provision of access to clean, secure, reliable and affordable energy. Renewable energy has gone mainstream, accounting for the majority of capacity additions in power generation today. Tens of Giga-Watts of wind, hydropower and solar PV capacity are installed worldwide every year in a renewable energy market that is worth more than Hundred Billion USD annually [2.10].

The rapid increase in the growth of the renewable energy sector can be traced to the decline in the stock of conventional energy source such as oil, gas and coal. With the rapid growth of renewable energy, the prices and the cost of renewable energy systems has decreased remarkably. Recent years have seen dramatic reductions in the cost of renewable energy technologies as a result of research and accelerated development. [2.11]

2.3.1 PV Technology

PV is a method of generating electrical power by converting sunlight into direct current electricity using semiconducting materials that exhibit the PV effect. A PV system employs solar modules composed of a number of solar cells to supply usable solar power. Power generation from solar PV has long been seen as a clean sustainable energy technology which draws upon the plant's most plentiful and widely distributed renewable energy source – the sun. The direct conversion of sunlight to electricity occurs without any moving parts or environmental emissions during operation.

2.3.2 History

The PV effect was first experimentally demonstrated by French physicist Edmond Becquerel. In 1839, he built the world's first PV cell in his father's laboratory. Willoughby Smith first described the effect of light on Selenium during the passage of an electric current issue of nature, in February, 20, 1873. In 1883, Charles Frittz built the first solid state PV cell by coating the semiconductor selenium with a thin layer of gold to form the junctions. The device was only around 1% efficient. In 1888, Russian physicist Alexander Stoletov built the first cell based on the outer PV effect discovered by Heinrich in 1887 [2.10, 2.11].

Albert Einstein explained the underlying mechanism of light instigated carrier excitation – the PV effect – in 1905, for which he received the Noble Prize in physics in 1921. Russell Ohl patented the modern junction semiconductor solar cell in 1946, discovered while working on the series of advances that would lead to the transistor. [2.10]

The first practical PV cell was publicly demonstrated on April, 25 1954 at Bell Laboratories. The inventors were Daryl Chapin, Calvin Southern Fuller and Gerald Pearson. Solar cells gained prominence when they were proposed as an addition to the 1958 Vanguard 1st Satellite. By adding cells to the outside of the body, the mission time could be extended with no major changes to the spacecraft or its power system. In 1959, United States launched Explorer 6th, featuring large wing-shaped solar arrays, which became a common feature in satellites, these arrays consisted of 9600 Hoffman solar cells. [2.10, 2.11]

In 2013, the fast-growing capacity of worldwide installed solar PV increased by 38% to (139 Giga-Watts). This is sufficient to generate at least 160 Tera-Watts-Hours or about 0.35% of the electricity demand on the planet. China, followed by Japan and the United States, is now the fastest growing market, while Germany remains the world's largest producer, contributing almost 6% to its national electricity demands. [2.12, 2.13 and 2.14]

2.3.3 PV Module

Figure (2.11) represents the PV module diagram and figure (2.12) represents the PV cell, module and array.

Figure (2. 11): PV Module Diagram [2.15]

Figure (2. 12): PV Cell, Module and Array [2.15]

2.3.3.1 PV Module Characteristics and Equivalent Circuit

If a variable load is connected through the terminals of the PV module, the current and the voltage will be found to vary. The relationship

between the current and the voltage will be found to vary. The relationship between the current and the voltage is known as the IV characteristic curve of the PV module.

To measure the IV characteristic of a PV module and to find the maximum power point, international standard conditions (STC) should be fulfilled. Standard conditions means: irradiance level equal to $(1000 W/m^2)$, the reference air mass equal 1.5, and module junction temperature should be of 25°C [2.16].

2.3.3.2 PV Module Parameters

The main parameters that characterize a PV module are [2.17]:

- 1- Open Circuit Voltage (V_{OC}): The maximum voltage that the module provides when the terminals are not connected to any load (an open circuit). This value is about 22 V for modules dispend to work in 12 V systems. The output voltage of the module is directly proportional to the number of cells connected in series.
- 2- Short Circuit Current (I_{SC}): The maximum current provided by the module when the connectors are short circuited. The value of the output current of the module is proportional to the number of cells connected in parallel.
- 3- Maximum Power Point (P_{MPP}): The point where the power supplied by the module is at maximum value. The maximum power point of a module is measured in watts [W] or peak watts [W_p]. Typical value of: V_{max} and I_{max} are a bit smaller than V_{OC} and I_{SC} .

4- STC:

$$(T_{cell} = 25^{\circ}\text{C}, G = 1000 W/m^2$$
, Airmass = 1.5 and $V_{wind} \leq 2 m/s)$

Solar cells consist of a p-n junction fabricated in thin wafer or layer of semiconductors, whose electrical characteristics differ very little from a diode represented by the equation of Shockley. Thus the simplest equivalent circuit of a solar cell is a current source in parallel with a diode, see figure (2.13) [1.30]. The output of the current source is directly proportional to the light falling on the cell. So the process of deriving an equivalent circuit and IV characteristic curve can be developed based on the following equations [2.17].

Figure (2. 13): PV Module Equivalent Circuit Diagram ; R_{sh} : Shunt Resistance, R_s : Series Resistance, I_{ph} : Photon Current, I_D : Diode Current, I_{sh} : Shunt Current, I_L : Load Current and V_L : Load Voltage [2.17]

Where:

- A: Ideality factor = 1 2
- K: Boltzmann Constant; $1.38 \times 10^{-23} \frac{ws}{K}$
- I_0 : Saturation Current
- T: Cell Temperature in Kelvin

$$V_{R_s} = R_{sh}I_{sh} - V_L, R_{sh} \gg R_s.....(2.16)$$

When applying open and short circuit tests as follows [2.17]:

- At open circuit test of module: $I_L = 0$.

$$\ln\left(\frac{I_{ph}}{I_0}\right) = \frac{qV_{oc}}{AKT} \to V_{oc} = \frac{AKT}{q} \ln\left(\frac{I_{ph}}{I_0}\right)....(2.17)$$

- At short circuit test of module; $V_L = 0$, $V_{R_s} = V_{R_{sh}}$, $I_L = I_{ph} = I_{sc}$ Then the IV characteristic curve will be as in figure (2.14):

From IV characteristic curve some factors can be calculated as follows [2.17]:

$$\eta(Efficiency) = \frac{V_{mpp}I_{mpp}}{G_0 A_{cell}}.....(2.18)$$

$$FF(Fill \ Factor) = \frac{\frac{39}{V_{mpp}I_{mpp}}}{\frac{V_{oc}I_{sc}}{V_{oc}I_{sc}}}.....(2.19)$$

2.3.3.3 PV Module Types

- Mono Crystalline Silicon Cell: these are made using cells cut from single cylindrical crystal silicon. While mono crystalline cells offer the highest efficiency (approximately 18% conversion of incident sunlight), their complex manufacturing process makes them slightly more expensive. Mono crystalline cell specifications:
 - Open Circuit Voltage; $V_{oc} = 0.6 0.62$ Volts
 - Short Circuit Current; $I_{sc} = 3.4 A/100 cm^2$
- Polycrystalline Silicon Cell: these are made by cutting micro-fine wafers from ingots of molten and recrystallized silicon. Polycrystalline cells are cheaper to produce, but there is a slight compromise on efficiency (approximately 14% conversion of incident sunlight). Polycrystalline cell specifications:

- Open Circuit Voltage; $V_{oc} = 0.55 - 0.58$ Volts

- Short Circuit Current; $I_{sc} = 2.6 3.1 \ A/100 cm^2$
- ✤ Thin Film Silicon Cell: these are made by depositing an ultrathin layer of PV material onto a substrate. The most common type of thin film PV is made from the material a-Si (amorphous silicon), but numerous other materials such as Copper Indium/Gallium Selenide (CIGS), Copper Indium Selenide (CIS), Cadmium Telluride (*CdTe*) are produced. The efficiency of this type varies approximately in the range from 2% – 10%
 - Open Circuit Voltage; $V_{oc} = 0.65 0.78$ Volts

- Short Circuit Current; $I_{sc} = 1 - 2 A / 100 cm^2$ [2.17]

2.3.3.4 Temperature and Solar Radiation Effects on PV Performance

The two most important effects that must be considered are due to the variable temperature and solar radiation. The effect of these two parameters must be taken into account while sizing the PV system, as in figure (2.15) and figure (2.16).

Figure (2. 15): Effect of Temperature on IV-Characteristic Curve [2.18]

Figure (2. 16): Effect of Variable Solar Radiation Levels on IV-Characteristic [2.18]

Temperature effect: this has an important effect on the power output from the cell. The temperature effect appears on the output voltage of the cell, where the voltage decreases as temperature increases. The output voltage decrease for silicon cell is approximately 2.3 mV per 1°C increased in the solar cell temperature.

The solar cell temperature T_C can be found by the following equation [2.19]:

$$T_c = T_{amb} + \left(\frac{NOCT - 20}{800}\right) * G$$
.....(2.20)

Where:

 T_{amb} : Ambient temperature in °C

G: Solar radiation (W/m^2)

NOCT: Normal operating cell temperature at (solar radiation [800 W/m^2], spectral distribution of AM1.5, ambient temperature 25°C and wind speed [> 1 m/s]) [2.17].

Solar radiation effect: the solar cell characteristics are affected by the variation of illumination. Increasing the solar radiation increases in the same proportion the short circuit current. The following equation illustrates the effect of variation of radiation on the short circuit current [2.19]:

$$I_{sc} = I_{sc}(at \ 1000 \ W/m^2) * (G(in \ W/m^2)/1000).....$$
(2.21)

The output power from the PV cell is affected by the variation of cell temperature and variation of incident solar radiation. The maximum power output from the PV cell can be calculated using the following equation [2.16]:

 $P_{out-PV} = P_{r-PV} * (G/G_{ref}) * [1 + K_T(T_C - T_{ref})]....(2.22)$ Where:

 P_{out-PV} : Output power from the PV cell

 P_{r-PV} : Rated power at reference conditions

 G_{ref} : Solar radiation at reference conditions ($G_{ref} = 1000 W/m^2$)

 K_T : Temperature coefficient of maximum power ($K_T = -3.7 x 10^3 / ^{\circ}$ C) for mono and poly crystalline silicon

 T_C : Cell temperature

 T_{ref} : Cell temperature at reference conditions ($T_{ref} = 25^{\circ}$ C)

The following equation can be used to calculate the cell temperature approximately if the NOCT is not given by the manufacturer [2.17]:

 $T_C = T_{amb} + 0.0256 * G.....(2.23)$

2.3.3.5 Effect of Tilting the PV Modules on the Total Solar Radiation

Measurements of solar radiation usually occur on a horizontal plane. PV modules are usually fixed making a tilt angle (β) with the horizontal. This is done to make the PV modules facing the sun to collect more solar radiation. The value of tilt angle depends mainly on latitude value of the location (L) and seasonal changes. PV modules may be fixed with a fixed tilt angle or may be changed seasonally to collect more solar radiation. These changes are as follows [2.17]:

- $\beta = L + 20^{\circ}$ During winter season
- $\beta = L$ During spring and autumn season
- $\beta = L 10^{\circ}$ During summer season

If the tilt angle changes are made, a yearly increase in solar radiation by a value of 5.6% can be obtained. For Palestine (especially Ramallah & Nablus sites) latitude (L) is about (32°). [2.17]

2.3.3.6 Module Performance and Efficiency

In outdoor environment the magnitude of the current output from a PV module directly depends on the solar irradiance and can be increased by connecting solar cells in parallel. The voltage of solar cell does not depend strongly on the solar irradiance but depends primarily on the cell temperature.

Table (2.4) and table (2.5) contain typical parameters that are used in module specification sheets to characterize PV modules. Four examples of PV modules with comparable power output are included in table (2.4), such as a Shell module with Mono crystalline silicon solar cells, a Shell module based on copper indium dieseline (CIS) solar cells, a Kaneka's amorphous silicon (a - Si: H) module, and a module of First Solar based on cadmium telluride (CdTe) solar cells. Electrical parameters are determined at standard test conditions (STC). [2.11, 2.14]

Module Type	Shell SM50-H	Shell ST40	Kaneka PLE	First Solar FS-	
				50	
Cell Type	Mono c-Si	CIS	a − Si: H	CdTe	
$P_{max}[W_p]$	50	40	50	52	
$V_{MPP}[V]$	15.9	16.6	16.5	63	
$I_{MPP}[A]$	3.15	2.2	3.03	0.82	
$V_{oc}[V]$	19.8	23.3	23	88	
$I_{SC}[A]$	3.4	2.68	3.65	0.95	
Cells/Module	33	40	36	96	
Dimensions	1219x329	1293x328	952x920	1200x600	
[mm]					

Table (2.4): Specifications of Different PV Modules [2.11, 2.14]

PV Module Type	Efficiency
Mono Crystalline Silicon	12.5% to 15%
Poly Crystalline Silicon	11% to 14%
Copper Indium Gallium Selenide (CIGS)	10% to 13%
Cadmium Telluride (<i>CdTe</i>)	9% to 12%
Amorphous Silicon (a-Si)	5% to 7%

 Table (2. 5): Different Cells Efficiencies [2.17]

2.3.4 Battery Storage System for PV System

The simplest means of electricity storage is to use the electric rechargeable batteries, especially when PV modules produce the DC current required for charging the batteries. Most of batteries used in PV systems are lead acid batteries. In some applications, for example when used in locations with extreme climate conditions or where high reliability is essential, nickel-cadmium batteries are used. The major difficulty with this form of storage is the relative high cost of the batteries and a large amount required for large scale application [2.17]. The following factors should be considered when choosing a battery for a PV application:

- Operating temperature range (1.5°C to 50°C)
- Self-discharge rate
- Permissible depth of discharge (DOD) up to 80%
- Capacity ampere hour (Ah) at 10 hour & 100 hour rates ($C_{10}\&C_{100}$)
- Resistance to over charging
- Cost

2.3.4.1 Lead Acid Batteries

The most commonly available lead acid battery is the car battery, but these are designed mainly to provide a high current for short periods to start engines, and they are not well suited for deep discharge cycles experienced by batteries in PV systems. Car batteries are sometimes used for small PV systems because they are cheap, but their operational life in PV applications is likely to be short.

The most attractive lead acid battery for use in most PV systems is the flooded tubular plate design, with low antimony plates. Good quality batteries of this type can normally be expected to have operational life of 5 – 7 years if they are properly maintained and used in a PV system with a suitable charge controller. Longer operational life may be achieved if the maximum depth of discharge is limited, but shorter lifetimes must be expected if the batteries are mistreated. [2.17]

2.3.4.2 Nickel Cadmium (NiCd) Batteries

There are two types of *NiCd* batteries represented as follows:

- Sintered plate (*NiCd*) batteries suffer from the well-known memory effect, in which the useful capacity of the battery appears to drop after it has been discharged over many cycles or if it is discharged at low rates. Sintered plate *NiCd* batteries are not therefore attractive for use in PV systems.
- Pocket plate *NiCd* batteries can be used in PV systems, because they have additives in their plates to prolong their operational life and to

minimize the memory effect. In addition, they are highly resistant to extremes of temperature, and can safely be taken down to less than 10% state of charge. Their main disadvantage is their high cost compared with lead acid batteries, as in table (2.6). [2.17]

ible (200). Leua Heia ana Hiea Datteries Farameters [2010]				
Battery Parameter	Lead Acid	NiCd		
Cycle Time	600 to 1500	1500 to 3500		
Efficiency	83% to > 90%	71%		
Self-discharge Rate	3% to 10%	6% to 20%		
Range of Operation	-15°C to 50°C	-40°C to 45°C		

Table (2. 6): Lead Acid and NiCd Batteries Parameters [2.10]

2.3.5 Solar Radiation in Palestine

Palestine is located between $([34^{\circ}20' - 35^{\circ}30']East and [31^{\circ}10' - 32^{\circ}30']North)$. Palestine elevations range from 350 m below sea level in Jordan Valley and exceed 1000 m above sea level at some location in West Bank. Climate conditions in Palestine vary widely. The daily average temperature and humidity in West Bank vary in the ranges of (8°C to 25°C) and (51% to 83%) respectively. Palestine has about 3000 sun shine hours per year. The annual solar radiation on horizontal surface varies from (2.63*kWh/m*²) daily in December to (8.4*kWh/m*²) daily in June [RCA]. See figure (2.17). [2.17]

Palestine has an average solar radiation of $(5.4Wh/m^2)$ daily, this average solar radiation can be used in several applications, specially the electrical applications either off grid or on grid. Table (2.7) presents the monthly average of daily solar radiation for different months for Nablus site.

[2.	[2.19]				
	Month	Monthly Average Radiation $(kWh/m^2. day)$			
	January	2.89			
	February	3.25			
	March	5.23			
	April	6.25			
	May	7.56			
	June	8.25			
	July	8.17			
	August	8.1			
	September	6.3			
	October	4.7			
	November	3.56			
	December	2.84			

 Table (2. 7): Monthly Average of Daily Solar Radiation for Nablus Site

Chapter Three

Methodology for Designing a Cathodic Protection System for Pipeline Distribution Network (PDN)

3.1 Study Objective

There are many forms of corrosion occurring on different materials in different environments, and the CP has also many forms of protection techniques. In order to have a good understanding of corrosion prevention by CP, the main objective of this study is to deal with the corrosion of steel pipelines that transport natural gas under seawater surface and underground, and the protection is depending on the ICCP system which is powered by solar PV generation system with battery storage system.

The study is depending on the knowledge that represented in the literature review chapter and on the experiences and applied projects that represented in previous work section in the introduction chapter.

3.2 Case Study Preview

There is neither pipeline distribution network (PDN) nor existing large metallic structure that can be studied seriously in Palestinian Territories, so this thesis will depend on a suggested PDN under the Palestinian seawater and ground. The specifications of the pipelines depend on the USA steel pipelines properties that are represented in appendix (1), and the corrosion damage is measured by taking the properties of the seawater and soils in Palestine.

3.2.1 PDN Description

The suggested pipeline distribution network in Palestine transports the produced natural gas from Gaza Marine Natural Gas Station in the Mediterranean Sea to distribution stations in Gaza Strip and West Bank. The pipelines are installed under water in the sea area and buried underground in rest areas. Figure (3.1) shows the pipeline network distribution.

The Gaza Marine natural gas field is legally under the control of the Palestinian National Authority. It is located about 36 kilometers offshore at a depth of 610 m. It has around 1.4 trillion cubic feet of gas and an estimated value of 2.4 to 7 billion dollars.^[2] In 1999, the leader of the Palestinian Authority, Yasser Arafat, made a deal with British Gas (BG), to have 25 years to exploit the oil fields. In 2000, BG discovered the Gaza Marine Gas Field. It has enough energy to supply Palestinian territories and still have a surplus for export, making the Palestinian territories more energy independent. See figure (3.2). [3.1]

The pipeline distribution network total length is 437 km, these lengths have been measured using Google Earth program, and they are distributed as:

- 50 km in Sea area
- 105 km in clay, well aerated soil
- 70 km in desert sand
- 85 km in dry soil
- 127 km in wet soil with stones

The material of pipeline is carbon steel, API Spec. 5L, Grade X-42, high strength and low alloy steel (which is widely used in the construction of natural gas and petroleum pipelines). The dimensions of carbon steel pipeline are represented in table (3.1) and the chemical composition is represented in table (3.2). See the carbon steel pipeline properties in appendix (1).

 Table (3. 1): Dimensions of the Structure of Pipeline [2.9]

Item	Quantity
Diameter [<i>cm</i>]	30.5
Thickness [<i>cm</i>]	1.27
Mass per Unit Length $[kg/m]$	40.27

Figure (3. 1): Natural Gas Pipeline Distribution Network [2.18]

Figure (3. 2): Gaza Marine Gas Field [3.2]

•						
	Chemical Composition	Nominal	Analytical			
	C(%)	0.199	0.191			
	Mn(%)	1.95	1.95			
	P(%)	0.016	0.014			
	S(%)	0.018	0.015			
	Cr(%)	0.015	0.015			
	Ni(%)	0.007	0.003			
	<i>Mo</i> (%)	0.008	0.008			
	V(%)	0.004	0.003			
	<i>Cu</i> (%)	0.024	0.028			
	Fe (%)	Remaining	Remaining			

 Table (3. 2): Chemical Composition of the Pipeline [2.9]

- Coating Type

Fusion-bonded epoxy coatings are 100% solid, thermosetting materials in powder form that bond to the steel surface as a result of a heat-generated chemical reaction. Formulations consist of epoxy resins, hardeners, pigments, flow control additives, and stabilizers to provide ease of application and performance. [3.3]

The pipe must be preheated to remove moisture, and it must be cleaned with proper anchor pattern profile and to improve the adhesion properties. It is important to observe the powder manufacturer's pipe preheat temperature. Heating the pipe to be coated is typically done with induction or gas burners to temperatures in the range of (215°C *to* 245°C). [3.3]

Fusion Bonded Epoxy (FBE) coating system is used for coating of underground and underwater pipelines. FBE offer corrosion protection to the pipeline structure by preventing interacts between the pipeline structure and the surrounding environment, so it plays as an isolation layer. Table (3.3) represents some specifications of FBE coating.

ItemQuantityCurrent Density $[\mu A/m^2]$ 5Thickness [mm]1.5 to 2High Temperature [°C]+130 to +160Low Temperature [°C]-60Life Time [Year]20 to 25

 Table (3. 3): Specifications of FBE Coating [3.3]

There are a number of properties that make FBE coatings useful as pipe coatings. They exhibit: [3.3]

- Excellent adhesion to steel
- Good chemical resistance
- Non-shielding, work with cathodic protection (CP)
- No reported cases of stress-corrosion cracking (SCC) of pipe coated with FBE
- Toughness, frequently installed under the sea, through rolling plains, in rocky mountainous areas, in the desert, and in the arctic

3.2.2 PDN Surrounding Environment

There are four types of soil which the pipelines are immersed in it as mentioned above in addition to the sea water. Due to the differences in humidity, pH values, salts concentration, etc. in different sea water and soil types, the current density and resistivity will be different. The quantities of current density (J [A/m^2]) and resistivity (ρ [Ω . *cm*]) are represented in the following table.

 Table (3. 4): Electrical Parameters of the Pipeline Surrounding

 Environment [1.14, 3.4, 3.5, and 3.6]

Environment	$J[A/m^2]$	ρ [Ω. cm]
Seawater	0.008	10
Clay, Well Aerated Soil	0.003	250
Dry Soil	0.0015	2000
Desert	0.0004	2500
Wet Soil with Stones	0.006	120

The current densities and soil resistivity quantities that are represented in table (3.4) are not been measured in Palestine, these quantities were matched with the similar types of seawater and soils that were measured by previous work in applied projects that represented in the introduction chapter.

The properties of seawater and soils in this study were matched with the properties of seawater and soils in the previous applied projects (taking in consideration all factors that affect these quantities due to differences in climate and ground properties) and publications from institutions that interested in this field of science, such as the department of transportation in USA, University of Khartoum, Islamic Azad University in Iran and corrosion society NACE in USA.

3.2.3 Case Study Alternatives

In this study there are three alternatives for ICCP system design depending on the coating efficiency (η_c) of the pipeline distribution network. The CE means the coating damaged (inactive) area to the coating active area, for example if the damaged coated area of pipeline is 10% from total pipeline surface area, so this means that the η_c is 90%.

The three alternatives are listed as follows:

- Alternative (A): $\eta_c = 90\%$
- Alternative (B): $\eta_c = 95\%$
- Alternative (C): $\eta_c = 98\%$

3.3 Components of the ICCP System

An impressed current cathodic protection (ICCP) system consists of: the DC current source which is a PV generator, batteries storage system, DC – DC converter (not used in the design of the PV system), coated pipeline structure and impressed current anodes. All the mentioned ICCP system and PV system components are described in chapter three and chapter four respectively. Figure (3.3) shows a block diagram for the whole PV powered ICCP system.

Figure (3. 3): Block Diagram of ICCP System

3.4 Simulation Model

The simulation of the ICCP system is done in the MATLAB program which is a short for (MATrix LABoratory) is a programming package specifically designed for quick and easy scientific calculations and I/O. It has literally hundreds of built-in functions for a wide variety of computations and many toolboxes designed for specific research disciplines, including statistics, optimization, solution of partial differential equations, data analysis. [3.7]

The modeling of the ICCP system is depending on the equations that used in the mathematical design and these equations is modeled in the Simulink application in matlab.

55

3.4.1 Simulink Application

Simulink is a software package for modeling, simulating, and analyzing dynamic systems. It supports linear and nonlinear systems, modeled in continuous time, sampled time, or a hybrid of the two. Systems can also be multi rate, i.e., have different parts that are sampled or updated at different rates. [3.8]

3.5 Economic Study

The economic study in this thesis concentrates on the comparison between the costs of the ICCP system at different alternatives and the cost of the rehabilitation of the pipelines. The data and costs that related to the rehabilitation of pipelines are taken from measurements done by the department of transportations in USA. The costs of the impressed current anodes, PV modules and Batteries are taken from the manufactures price lists.

Chapter Four

Mathematical Design and Simulation of PV Powered ICCP System for Pipeline Distribution Network

4.1 Corrosion Current Calculation

4.1.1 Pipeline Surface Area

The total surface area (A) of the pipeline in different media (environment) can be calculated using the following equation, which is applied on cylindrical shapes as the distribution pipelines depending on the length of the pipeline (L) and the diameter of the pipeline (D). Table (4.1) represents L, D and A of the pipeline in different media.

Environment	L [m]	D [m]	A $[m^2]$
Seawater	50,000	0.305	48,000
Clay, Well Aerated Soil	105,000	0.305	100,601
Dry Soil	85,000	0.305	79,466
Desert	70,000	0.305	67,073
Wet Soil with Stones	127,000	0.305	121,690

 Table (4. 1): Pipeline Dimensions in Different Media

4.1.2 Unprotected Pipeline Surface Area

The unprotected surface area (A_{up}) of the pipeline depends on the coating efficiency (η_c) – as mentioned in chapter five – which represents the three alternatives of the design. The following equation is used to find A_{up} for each alternative in different media. Equation (4.2) is applied on the
values of η_c = 90%, 95% and 98% for alternatives A, B and C are illustrated in Tables (4.2), (4.3) and (4.4) respectively. [1.14]

$$A_{up} = (1 - \eta_c) x A \dots (4.2)$$

Table (4. 2): Alternative A

Media	A $[m^2]$	$A_{up} [m^2]$
Seawater	48,000	4,800
Clay, Well Aerated Soil	100,601	10,060
Dry Soil	79,466	7,946.6
Desert	67,073	6,707.3
Wet Soil with Stones	121,690	12,169

Table (4. 3): Alternative B

Media	A (m^2)	$A_{up} [m^2]$
Seawater	48,000	2,400
Clay, Well Aerated Soil	100,601	5,030
Dry Soil	79,466	3,973.3
Desert	67,073	3,345
Wet Soil with Stones	121,690	6,084.5

Table (4. 4): Alternative C

Media	A $[m^2]$	$A_{up} [m^2]$
Seawater	48,000	960
Clay, Well Aerated Soil	100,601	2,012
Dry Soil	79,466	1,590
Desert	67,073	1,341
Wet Soil with Stones	121,690	2,434

4.1.3 Corrosion Current Calculation

The required current to prevent corrosion (I_R) is calculated for different media depending on the quantities of (J) which is the minimum quantity of electrical current required to prevent corrosion from occurring

The values of (I_R) which depend on the values of A_{up} for alternatives

A, B and C are illustrated in tables (4.5), (4.6) and (4.7) respectively.

()			
Media	$A_{up}(m^2)$	$J(A/m^2)$	I_R [A]
Seawater	4,800	0.008	38.4
Clay, Well Aerated Soil	10,060	0.003	30.2
Dry Soil	7,946.6	0.0015	11.92
Desert	6,707.3	0.0004	2.7
Wet Soil with Stones	12,169	0.006	73

Table (4. 5): Alternative A

Table (4. 6): Alternative B

Media	$A_{up}(m^2)$	$J(A/m^2)$	I_R [A]
Seawater	2,400	0.008	19.2
Clay, Well Aerated Soil	5,030	0.003	15.1
Dry Soil	3,973.3	0.0015	5.96
Desert	3,345	0.0004	1.35
Wet Soil with Stones	6,084.5	0.006	36.5

Table (4. 7): Alternative C

Media	$A_{up}(m^2)$	$J(A/m^2)$	I_R [A]
Seawater	960	0.008	7.7
Clay, Well Aerated Soil	2,012	0.003	6.04
Dry Soil	1,590	0.0015	2.4
Desert	1.341	0.0004	0.54
Wet Soil with Stones	2,434	0.006	14.6

4.2: Anodes Calculation and Anode Ground-bed Design

4.2.1 Anode Ground-bed

Impressed-current ground-beds in soils have traditionally consisted of high-silicon cast iron. However, mixed metal oxide (MMO) anodes are becoming increasingly popular for all environments because of their good mechanical and electrical characteristics and compact size. For seawater applications and areas where chlorides are present, MMO anodes work well as do high-silicon cast iron alloyed with chromium. Other anodes consist of lead alloy and platinum formed in a thin layer on a titanium or niobium base.

4.2.2 Carbonaceous Backfill

Impressed current anodes are usually surrounded by a carbonaceous backfill. Types of materials are used include metallurgical coke and petroleum coke. The dual purpose of the carbonaceous backfill is to reduce the ground-bed resistance by increasing the effective size of the anode and to provide a surface on which oxidation reactions could occur. The latter function prolongs anode life. To ensure good electrical contact, the backfill must be tamped around the anode. Resistivity of carbonaceous backfill is in the range of 10 - 50 Ω cm. Particle size and shape is also important when specifying a backfill. Both parameters determine the contact area between anode and surrounding soil whilst influencing the porosity of the column which is important for gas ventilation. [4.1]

A general purpose coke breeze is for use in shallow horizontal and vertical ground-beds. It has a resistivity of approx. $(35 \ \Omega. cm)$. For deep well applications a special calcined petroleum coke breeze is available, this coke specification is represented in table (4.8). It has a resistivity of approx. $(15 \ \Omega. cm)$ and can be pumped. Metallurgical coke of high quality that gives optimum performance at a low cost is available in various size ranges and its specification is represented in table (4.9). [4.1, 4.2]

Coke backfill, prepared from calcinated petroleum coke, has been properly developed to meet all the basic requirements for an earth contact backfill. The carbon content, very high in calcined coke assures a low consumption rate of the backfill material and therefore a longer system life. [4.1]

Ash 0.1% Max. 0.8%					
Volatile 0.6% Max. 0.8%					
Moisture 0.1% Max. 0.5%					
Fixed Carbon 99.0% Min. 98.0%					
Grading: $(2-8)$ mm					
Resistivity: 10 Ω. cm					
Bulk Density: approx. $(800 - 900) kg/m^3$ (compacted)					

 Table (4.8): Specification Calcined Petroleum Coke [4.1]

1 abic (4. 7). Specifications metanini gical Conc [4.1	Fable	(4.9)	: Specifications	Metallurgical Coke	[4.1]
--	--------------	-------	------------------	--------------------	-------

, specifications meaningfear conce [m]							
Ash 10.0% Max. 12.0%							
Volatile	Volatile 1.4% Max. 1.8%						
Sulfur 0.6% Max. 1.0%							
Moisture 0.6% Max. 1.0%							
Fixed Carbon 89.0% Min. 86.0%							
Grading: (0 – 1)mm, (1 – 5)mm, (2 – 7)mm, (3 –							
10)mm							
Resistivity: 50 Ω. cm							

4.2.3 Anode Type and Properties

The most common anode type in underwater and underground applications is the mixed metal oxide (MMO) coated titanium, the tubular shape type. The dimensions and outputs of MMO anode are represented in table (4.10). See appendix (2) for some ICCP anodes specifications.

Item	Quantity
D [<i>mm</i>]	25
L [<i>mm</i>]	500
A $[m^2]$	0.039
Mass [kg]	0.56
Typical I_A in Carbonaceous Backfill [A]	4
Typical I_A in Seawater [A]	25
Maximum Anode Current Density (J_A) $[A/m^2]$	50
Life Time [Years]	20
Anode Cable Cross Section Area (A_{cross}) $[mm^2]$	50

Table (4. 10): Dimensions and Specifications of MMO Anode [4.3]

4.2.4 Number of Anodes for Different Media at different Alternative

The number of anodes (N_A) in ICCP system can be calculated according to the following equation. (N_A) depends on (I_A) which can be taken from the MMO anode in different media.

 (N_A) for alternatives A, B and C are illustrated in tables (4.11), (4.12) and (4.13) respectively.

Media	I_R [A]	I_A [A]	N _A
Seawater	38.4	25	2
Clay, Well Aerated Soil	30.2	4	8
Dry Soil	11.92	4	3
Desert	2.7	4	1
Wet Soil with Stones	73	4	19

 Table (4. 11): Alternative A

Media	I_R [A]	I_A [A]	N _A
Seawater	19.2	25	1
Clay, Well Aerated Soil	15.1	4	4
Dry Soil	5.96	4	2
Desert	1.35	4	1
Wet Soil with Stones	36.5	4	10

Table (4. 12): Alternative B

Table (4. 13): Alternative C

Media	I_R [A]	I_A [A]	N _A
Seawater	7.7	25	1
Clay, Well Aerated Soil	6.04	4	2
Dry Soil	2.4	4	1
Desert	0.54	4	1
Wet Soil with Stones	14.6	4	4

4.3 Total Resistance Calculations

4.3.1 Total Resistance Diagram

Figure (4.1) represents the parameters of the circuit diagram. The symbols that are represented in figure (4.1) are described in the following list:

- R_{C1} : Resistance of cables from DC power source and the pipeline
- R_{C2} : Resistance of cables from DC power source and the anodes ground-bed
- R_{C3} : Resistance of cables between anodes
- R_P : Resistance of the pipeline metallic structure
- R_A : Resistance of anodes
- R_{GB} : Ground-bed to earth resistance

- The return back voltage: this voltage considered as (2 V) in the design of ICCP systems, it is the drop voltage from pipeline to the electrolyte between the pipeline and the anodes ground-bed [1.14,

Figure (4. 1): Total Resistance of ICCP Circuit Diagram

4.3.2 Pipeline Metallic Structure Resistance

The resistance of the metallic structure of the pipeline distribution network (R_P) in different media is calculated using equation (4.5) [1.14, 3.4]. (R_P) is fixed for the different alternatives. (R_P) values are represented in table (4.14). [1.14]

$$R_P = \left(\frac{3.3}{4w}\right) x \, 10^{-3} x L \, \dots \, (4.5)$$

Where: (*w*) is the mass of one meter length of the pipeline which is taken from chapter five as 40.27 kg/m and the quantity (3.3) represents the most common quantity in measurements of (R_P) in different researches and papers, this quantity is taken from the following reference [1.14].

Media	$(R_P) [\Omega]$
Seawater	1.024
Clay, Well Aerated Soil	2.143
Dry Soil	1.74
Desert	1.44
Wet Soil with Stones	2.603

 Table (4. 14): Pipeline Resistance

4.3.3 Anodes and ground-beds Resistances

The resistance of the carbonaceous backfill ground-bed (R_{GB}) is fixed at the quantity of (1.5 [Ω]) and it used in the calculations of all medias except the seawater media. The resistance of anodes (R_A) that their numbers are calculated in (section 4.3.4) can be calculated as in the following equation [4.4].

$$R_A = \frac{\rho}{2x\pi x L_A} x [\ln(\frac{8xL_A}{D_A}) - 1]....(4.6)$$

Where: (ρ) is the resistivity of seawater (10 [Ω . *cm*]) and the carbonaceous backfill (50 [Ω . *cm*]). (L_A) is the length of the anode (500) [mm], (D_A) is the diameter of the anode (0.025) [m]. The resistance of multiple anodes connected in parallel (R_{AT}) is calculated as: the general equation for calculating (R_{AT}) with different (R_A) values is equation (4.7). (R_{AT}) values for alternatives A, B and C are illustrated in tables (4.15), (4.16) and (4.17).

$$R_{AT} = \frac{1}{\frac{1}{R_{A1}} + \frac{1}{R_{A2}} + \dots + \frac{1}{R_{AN}}}.....(4.7)$$

Media	N _A	$R_A [\Omega]$	$R_{AT} [\Omega]$	$R_{GB} [\Omega]$
Seawater	2	0.13	0.065	—
Clay, Well Aerated Soil	8	0.65	0.1	1.5
Dry Soil	3	0.65	0.22	1.5
Desert	1	0.65	0.65	1.5
Wet Soil with Stones	19	0.65	0.034	1.5

Table (4. 15): Alternative A

Table (4. 16): Alternative B

Media	N _A	$R_A[\Omega]$	$R_{AT} [\Omega]$	$R_{GB} [\Omega]$
Seawater	1	0.13	0.13	—
Clay, Well Aerated Soil	4	0.65	0.2	1.5
Dry Soil	2	0.65	0.325	1.5
Desert	1	0.65	0.65	1.5
Wet Soil with Stones	10	0.65	0.07	1.5

Table (4. 17): Alternative C

Media	N _A	$R_A[\Omega]$	$R_{AT} [\Omega]$	$R_{GB} [\Omega]$
Seawater	1	0.13	0.13	—
Clay, Well Aerated Soil	2	0.65	0.325	1.5
Dry Soil	1	0.65	0.65	1.5
Desert	1	0.65	0.65	1.5
Wet Soil with Stones	4	0.65	0.2	1.5

4.3.4 Cable Resistance

Connection cables have different cross sectional area and each of them has a resistance per meter depending on its material (cables material here is copper) and cross sectional area (A_{CS}). Table (4.18) represents each cross sectional area with its resistance of one meter length (R_m).

 Table (4. 18): Cross Section Area and Its Resistivity [1.14]

/	v = 3
$A_{CS} (mm^2)$	$R_m \left[\Omega/\mathrm{m}\right]$
16	0.00108
25	0.00069
35	0.000439
50	0.000345

The resistance of cable (R_c) can be calculated using the following equation, which is applied to find the values of: (R_{C1}) with cable length from DC power supply to the pipeline structure $(L_{SP} = 200m)$, (R_{C2}) with cable length from DC power supply to the anode ground-bed $(L_{SA} = 20m)$ and (R_{C3}) with cable length between anodes $(L_{AA} = 2m)$. [1.14]

Where: (L_C) is the length of cable in meters. The values of (L_{SP}) , (L_{SA}) and (L_{AA}) are applied in equation (4.8) instead of the value of (L_C) . (L_{SP}) and (L_{SA}) are fixed with $(A_{CS} = 25mm^2)$ for different alternatives. (R_{C1}) and (R_{C2}) they represented in tables (4.19) and (4.20) respectively.

Media	$R_{C1}[\Omega]$		
Seawater	0.138		
Clay, Well Aerated Soil	0.138		
Dry Soil	0.138		
Desert	0.138		
Wet Soil with Stones	0.138		

Table (4. 19): *R*_{C1}

Table	(4.	20):	R_{C2}
	· ·		

Media	$R_{C2} [\Omega]$
Seawater	0.0138
Clay, Well Aerated Soil	0.0138
Dry Soil	0.0138
Desert	0.0138
Wet Soil with Stones	0.0138

 (R_{C3}) values with $(A_{CS} = 16mm^2)$ for alternatives A, B and C are illustrated in tables (4.21), (4.22) and (4.23) respectively.

Table (4. 21): Alternative A

Media	N _A	$R_{C3} [\Omega]$
Seawater	2	0.00216
Clay, Well Aerated Soil	8	0.01512
Dry Soil	3	0.00432
Desert	1	—
Wet Soil with Stones	19	0.03888

Table (4. 22): Alternative B

Media	N _A	$R_{C3} [\Omega]$
Seawater	1	—
Clay, Well Aerated Soil	4	0.00648
Dry Soil	2	0.00216
Desert	1	—
Wet Soil with Stones	10	0.01944

Table (4. 23): Alternative C

Media	N _A	<i>R</i> _{C3} [Ω]
Seawater	1	—
Clay, Well Aerated Soil	2	0.00108
Dry Soil	1	_
Desert	1	_
Wet Soil with Stones	4	0.00648

4.3.5 Coating Current and Resistance

Coating current (I_{CO}) is a small quantity of current ($J_{CO} = 5 \ \mu A/m^2$ for FBE coating type) which can improve more protection to the pipeline coating [1.14, 5.7 and 6.5]. (I_{CO}) can be calculated as in equation (4.10) depending on (J_{CO}) and the protected area of the pipeline (A_{Pr}) which can be calculated as in equation (4.9). [1.14, 5.7 and 6.4]

$$A_{Pr} = \eta_C x A_{Pr}$$
 (4.9)
 $I_{CO} = J_{CO} x A_{Pr}$ (4.10)

The values of (A_{Pr}) and (I_{CO}) for alternatives A, B and C are illustrated in tables (4.24), (4.25) and (4.26) respectively.

Media	A $[m^2]$	$A_{Pr} [m^2]$	<i>I_{CO}</i> [A]
Seawater	48,000	43,200	0.22
Clay, Well Aerated Soil	100,601	90,541	0.5
Dry Soil	79,466	71,520	0.36
Desert	67,073	60,366	0.302
Wet Soil with Stones	121,690	109,521	0.55

Table (4. 24): Alternative A

Table (4. 25): Alternative B

Media	A $[m^2]$	$A_{Pr} [m^2]$	<i>I</i> _{CO} [A]
Seawater	48,000	45,600	0.23
Clay, Well Aerated Soil	100,601	95,571	0.48
Dry Soil	79,466	75,493	0.38
Desert	67,073	63,720	0.32
Wet Soil with Stones	121,690	115,606	0.58

Table (4. 26): Alternative C

Media	A $[m^2]$	$A_{Pr} [m^2]$	<i>I_{CO}</i> [A]
Seawater	48,000	47,040	0.24
Clay, Well Aerated Soil	100,601	98,589	0.5
Dry Soil	79,466	77,877	0.4
Desert	67,073	65,732	0.33
Wet Soil with Stones	121,690	119,257	0.6

The coating resistance (R_{CO}) can be calculated as in the following equation depending on the return back voltage (V_{RB}) quantity which is equal to 2 V [1.14, 3.4 and 4.4].

 (R_{CO}) values in different media for alternatives A, B and C are illustrated in tables (4.27), (4.28) and (4.29) respectively.

Table (4. 27): Alternative A

Media	I_{CO} [A]	$R_{CO} [\Omega]$
Seawater	0.22	9.1
Clay, Well Aerated Soil	0.5	4
Dry Soil	0.36	5.56
Desert	0.302	6.623
Wet Soil with Stones	0.55	3.64

Table (4. 28): Alternative B

Media	<i>I_{co}</i> [A]	$R_{CO} [\Omega]$
Seawater	0.23	8.7
Clay, Well Aerated Soil	0.48	4.2
Dry Soil	0.38	5.3
Desert	0.32	6.25
Wet Soil with Stones	0.58	3.45

Table (4. 29): Alternative C

Media	I_{CO} [A]	$R_{CO} [\Omega]$
Seawater	24	8.33
Clay, Well Aerated Soil	30.2	4
Dry Soil	11.92	5
Desert	2.7	6.1
Wet Soil with Stones	73	3.33

4.4 Total Required Voltage

The required voltage (V_R) from the DC power supply to deliver the ICCP system by energy to improve corrosion protection is calculated as in the following equation. Equation (4.12) depends on the previous calculated data in this chapter for resistances and current. (V_R) values in different media for alternatives A, B and C are illustrated in tables (4.30), (4.31) and (4.32) respectively. [1.14, 3.4 and 4.4]

Where: (R_{AT+GB}) is the summation of (R_{AT}) and (R_{GB}) , (R_{CT}) is the summation of (R_{C1}) , (R_{C2}) and (R_{C3}) .

Media	I_R [A]	$R_P[\Omega]$	$R_{AT+GB} \left[\Omega \right]$	$R_{CT} [\Omega]$	V_R [V]
Seawater	38.4	1.024	0.13	0.2168	54.7
Clay, Well Aerated	30.2	2.143	1.6	0.16	120
Soil					
Dry Soil	11.92	1.74	1.72	0.154	45.1
Desert	2.7	1.44	2.15	0.152	12.1
Wet Soil with Stones	73	2.603	1.534	0.172	316.56

Table (4. 30): Alternative A

Table (4. 31): Alternative B

Media	I_R [A]	$R_P[\Omega]$	$R_{AT+GB} [\Omega]$	$R_{CT} [\Omega]$	V_R [V]
Seawater	19.2	1.024	0.13	0.152	27
Clay, Well Aerated	15.1	2.143	1.7	0.16	62.45
Soil					
Dry Soil	5.96	1.74	1.825	0.153	24.16
Desert	1.35	1.44	2.15	0.152	7.052
Wet Soil with Stones	36.5	2.603	1.57	0.162	160.23

Table (4. 32): Alternative C

Media	I_R [A]	$R_P[\Omega]$	$R_{AT+GB} [\Omega]$	$R_{CT} [\Omega]$	V_R [V]
Seawater	7.7	1.024	0.13	0.152	12
Clay, Well Aerated	6.04	2.143	1.825	0.153	27
Soil					
Dry Soil	2.4	1.74	2.15	0.152	12
Desert	0.54	1.44	2.15	0.152	4.02
Wet Soil with	14.6	2.603	0.2	0.16	45.3
Stones					

4.5 PV Generator Calculation

ICCP system needs an external current source, the PV generator is been used as a current source for the ICCP system. The PV station is constructed in one place per each section of PDN which means that each media has PV station and the station is including the anodes and batteries in the same place of PV station.

4.5.1 Required Power and Energy for ICCP System

The required power (P_R) for ICCP system can be calculated as in equation (4.13) and the required energy (E_R) for one day is calculated as in equation (4.14). (P_R) and (E_R) values in different media for alternatives A, B and C are illustrated in tables (4.33), (4.34) and (4.35) respectively. [2.17]

$$P_R = I_R x V_R \dots (4.13)$$
$$E_R = P_R x 24 \dots (4.14)$$

Media	I_R [A]	V_R [V]	$P_R[W]$	$E_R [Wh]$
Seawater	38.4	54.7	2,100	50,400
Clay, Well Aerated Soil	30.2	120	3,624	86,976
Dry Soil	11.92	45.1	537.592	12,902
Desert	2.7	12.1	32.67	784
Wet Soil with Stones	73	316.56	23,108.88	554,613

Table (4. 33): Alternative A

Table (4. 34): Alternative B

Media	I_R [A]	V_R [V]	$P_R[W]$	$E_R [Wh]$
Seawater	19.2	27	518	12,432
Clay, Well Aerated Soil	15.1	62.45	942.995	22,632
Dry Soil	5.96	24.16	143.9936	3,456
Desert	1.35	7.052	9.5202	228.5
Wet Soil with Stones	36.5	160.23	5,848.395	140,362

	•••			
Media	I_R [A]	V_R [V]	$P_R[W]$	$E_R [Wh]$
Seawater	7.7	12	92	2,208
Clay, Well Aerated Soil	6.04	27	163.08	3,914
Dry Soil	2.4	12	28.8	691
Desert	0.54	4.02	2.1708	52.1
Wet Soil with Stones	14.6	45.3	661.38	15,873

Table (4. 35): Alternative C

4.5.2 Required Power from PV Generator

The required power from PV generator (P_{PV}) can be calculated as in the following equation. (P_{PV}) values in different media for alternatives A, B and C are illustrated in tables (4.36), (4.37) and (4.38) respectively. [2.17]

$$P_{PV} = \frac{E_R}{\eta_{Conv}} x 1.15 x \frac{1000 W}{5400 W h/day} \dots (4.15)$$

Where: (η_{Conv}) is the DC – DC converter efficiency which is (90%).

Media	$E_R [Wh]$	$P_{PV}[W]$
Seawater	50,400	11,926
Clay, Well Aerated Soil	86,976	20,581
Dry Soil	12,902	3,053
Desert	784	186
Wet Soil with Stones	554,613	131,236

Table (4. 36): Alternative A

Table (4. 37): Alternative B

Media	$E_R [Wh]$	$P_{PV}[W]$
Seawater	12,432	2,942
Clay, Well Aerated	22,632	5,355
Soil		
Dry Soil	3,456	818
Desert	228.5	54
Wet Soil with Stones	140,362	33,213

Media	$E_R [Wh]$	$P_{PV}[W]$
Seawater	2,208	523
Clay, Well Aerated	3,914	926
Soil		
Dry Soil	691	164
Desert	52.1	12
Wet Soil with Stones	15,873	3,756

Table (4. 38): Alternative C

4.5.3 Number of Modules

The number of modules (N_M) is calculated in equation (4.16) depending on the peak power of one module (P_M) which is taken here as (240 W), this value referred to SCHOTT PV modules, the IV – Characteristic of SCHOTT module and module's specifications are represented in table (4.39). See appendix (3) for datasheet of 240 and 50 Watt PV modules. (N_M) values in different media for alternatives A, B and C are illustrated in tables (4.40), (4.41) and (4.42) respectively. [2.17] $N_M = \frac{P_{PV}}{P_M}$(4.16)

 Table (4. 39): SCHOTT Poly Crystalline Module Datasheet [4.5]

Item	Quantity
$P_{MPP}[W]$	240
V_{MPP} [V]	30.4
$I_{MPP}[A]$	7.9
$V_{oc}[V]$	37.3
$I_{OC}[A]$	8.52

	Table	(4.	40):	Alternative	A
--	-------	-----	------	-------------	---

Media	$P_{PV}[W]$	N_M
Seawater	11,926	50
Clay, Well Aerated Soil	20,581	86
Dry Soil	3,053	13
Desert	186	1
Wet Soil with Stones	131,236	547

Media	$P_{PV}[W]$	N _M
Seawater	2,942	14
Clay, Well Aerated	5,355	23
Soil		
Dry Soil	818	4
Desert	54	1
Wet Soil with Stones	33,213	139

Table (4. 41): Alternative B

Table (4. 42): Alternative C

Media	$P_{PV}[W]$	N _M
Seawater	523	3
Clay, Well Aerated	926	4
Soil		
Dry Soil	164	1
Desert	12	1 (50W)
Wet Soil with Stones	3,756	16

4.5.4 PV Modules Distribution

In order to distribute PV modules, it must be considered that the batteries design depends on the nominal (V_{BN}) for battery banks. The nominal open circuit voltage (V_{PV-OC}) necessary to charge the battery at STC can be considered as in the following equation. [2.17]

$$V_{PV-OC} = 1.8 x V_{BN} \dots (4.17)$$

The proper distribution of PV modules (the calculated number of PV modules could be edited in order to have the best design of PV system) for alternatives A, B and C are illustrated in tables (4.43), (4.44) and (4.45) respectively. The short name (N_{MP}) represent number of PV module strings and (N_{MS}) represents the number of modules in one string.

Table (4. 43): Alternative A

Media	N _M	N _{MP}	N _{MS}
Seawater	50	10	5
Clay, Well Aerated Soil	90	15	6
Dry Soil	15	5	3
Desert	1	1	1
Wet Soil with Stones	560	35	16

Table (4. 44): Alternative B

Media	N _M	N _{MP}	N _M
Seawater	14	7	2
Clay, Well Aerated Soil	24	8	3
Dry Soil	4	2	2
Desert	1	1	1
Wet Soil with Stones	144	18	8

Table (4. 45): Alternative C

Media	N _M	N _{MP}	N _M
Seawater	3	3	1
Clay, Well Aerated Soil	4	2	2
Dry Soil	1	1	1
Desert	1	1	1
Wet Soil with Stones	18	6	3

4.6 Battery Storage System Calculation

The required ampere hour capacity (C_{Ah}) of batteries can be calculated as in equation (4.18). (C_{Ah}) values depend on the DOD of the battery (0.85) and its average (Ah–efficiency = 78%). (C_{Ah}) values in different media for alternatives A, B and C are illustrated in tables (4.46), (4.47) and (4.48) respectively. [2.17]

Where: (V_B) is the battery bank voltage.

Table (4. 46): Alternative A

Media	$E_R [Wh]$	C_{Ah} [Ah]
Seawater	50,400	2,112
Clay, Well Aerated Soil	86,976	729
Dry Soil	12,902	406
Desert	784	99
Wet Soil with Stones	554,613	2,614

Table (4. 47): Alternative B

Media	$E_R [Wh]$	$C_{Ah} [Ah]$
Seawater	12,432	521
Clay, Well Aerated	22,632	267
Soil		
Dry Soil	3,456	109
Desert	228.5	29
Wet Soil with Stones	140,362	1,307

Table (4. 48): Alternative C

Media	$E_R[Wh]$	C_{Ah} [Ah]
Seawater	2,208	278
Clay, Well Aerated	3,914	211
Soil		
Dry Soil	691	22
Desert	52.1	7
Wet Soil with Stones	15,873	521

4.6.1 Batteries Number and Ratings

Where: (B_{C10}) is standard capacity that can be discharged in ten hours which is given from batteries datasheet. [4.6]

Media	$C_{Ah} [Ah]$	V_{BN}/B_{C10}	N_{SB}	N_{St}	N_B
		[V/Ah]			
Seawater	2,112	2/3,415	18	1	18
Clay, Well Aerated Soil	729	2/3,415	60	2	120
Dry Soil	406	2/820	24	1	24
Desert	99	12/52	1	1	1
Wet Soil with Stones	2,614	2/3,415	160	10	1,600

Table (4. 49): Alternative A

Table (4. 50): Alternative B

Media	$C_{Ah} \left[Ah\right]$	V_{BN}/B_{C10} [V/Ah]	N _{SB}	N _{St}	N _B
Seawater	521	2/1,009	14	1	14
Clay, Well Aerated Soil	267	2/273	64	1	64
Dry Soil	109	2/220	24	1	24
Desert	29	12/52	1	1	1
Wet Soil with Stones	1,307	2/3,415	81	3	405

Table (4. 51): Alternative C

Media	C_{Ah} [Ah]	V_{BN}/B_{C10}	N _{SB}	N _{St}	N _B
		[V/Ah]			
Seawater	278	2/325	6	1	6
Clay, Well Aerated Soil	211	2/273	14	1	14
Dry Soil	22	12/52	1	1	1
Desert	7	12/52	1	1	1
Wet Soil with Stones	521	2/1,009	23	1	23

4.7 PV System Diagram

The diagrams will be for the wet soil with stones environment. The diagrams for alternatives A, B and C are illustrated in figures (4.3), (4.4) and (4.5) respectively.

Figure (4. 2): PV System Diagram for Alternative A

Figure (4. 3): PV System Diagram for Alternative B

Figure (4. 4): PV System Diagram for Alternative C

4.8 Simulation of PV powered ICCP System for PDN

4.8.1 General System Description

In this section, the blocks are representing the equivalent of each part of the ICCP system depending on the equation and standards in previous sections. See the following figures (4.5) to (4.23).

Figure (4. 5): General System Block

Figure (4. 6): Pipeline Distribution Network Block

Figure (4.7): Internal Blocks in Pipeline Distribution Network Block

82

Figure (4.8): Seawater Media Block

Figure (4. 9): Clay, Well Aerated Soil Media Block

Figure (4. 10): Dry Soil Media Block

Figure (4. 11): Desert Media Block

Figure (4. 12): Wet Soil with Stones Media Block

Figure (4. 14): Anode and Ground-bed Resistance Block

Figure (4. 15): Number of Anodes Block

85

Figure (4. 16): Cables Resistance Block

Figure (4. 17): PV Module Block

Figure (4. 18): Inside One PV Module Block

Figure (4. 19): Components of PV Module Block

Figure (4. 20): Ratings and Number of PV Block

Figure (4. 21): Number of PV Modules Block

Figure (4. 22): Ampere Hour Capacity of Battery Block

Figure (4. 23): Inside Ampere Hour Capacity Block

4.8.2 Current, Voltage, Power and Energy Measurement Blocks

Figure (4. 24): General Measurement Blocks

Figure (4. 25): Inside Current and Voltage Measurement Block

Figure (4. 26): Inside Power and Energy Block

4.8.3 Simulation Results

The results of the simulation are taken according to the first alternative which is at %90 coating efficiency.

4.8.3.1 Corrosion Current Quantities

Figure (4. 27): Current Quantities in Amperes

4.8.3.2 Number of Anodes

Figure (4. 28): Number of Anodes

4.8.3.3 Total Resistance Quantities

Figure (4. 29): Total Resistances Quantities in Ohms

4.8.3.4 Total Required Current, Voltage, Power and Energy Quantities

Figure (4. 30): The Required I, V, P and E Quantities in [A], [V], [W] and [Wh] respectively (Symbol e+04 represents 10000 in Matlab)

4.8.3.5 PV Modules Quantities

Figure (4. 31): Number of PV Modules
94 **4.8.3.6 Batteries Ampere Hour Quantities**

Figure (4. 32): Ampere Hour Capacity [Ah]

95 Chapter Five

Economic Study of PV powered ICCP System for Pipeline Distribution Network

The economic study in this chapter is depending on comparison between the costs of rehabilitation and the PV powered ICCP system. The rehabilitation cost is taken from different references from USA, Canada and Germany. The ICCP system components costs are taken from different selling websites and manufacturing companies.

In this chapter, the economic study is started with calculating the cost of rehabilitation of the pipeline distribution network in different media. Then, the cost of ICCP anodes and ground-beds are calculated, in addition to the cost of PV system components. All of previous costs are calculated in different media for the three alternatives. After the calculations, cash flows are done and the net cost that represents the saving of using the PV powered ICCP system in protection of the pipeline distribution network is performed.

5.1 Life Time Analysis

The life time of each part of the pipeline rehabilitation, PV and ICCP systems is very important in the economic study in order to have a proper estimation of feasibility of rehabilitation and PV powered ICCP system. [5.1-5.7]

- Pipelines Recoating Life Cycle: the life time is 30 years. But for warranty the calculation will be on 20 years

- Anodes Life Cycle: the life time is 20 years
- PV Modules Life Cycle: the life time is from 20 to 25 years. But for warranty the calculation will be on 20 years
- Batteries Life Cycle: the life time is 10 years. But the calculation will depend on 20 years life time, so the batteries will be doubled

5.2 Interest Rate

There are many interest rates for cash flow analysis, but in this case study the interest rate that will be used is (8%). The interest rate table is represented in Appendix (5).

5.3 Capital Cost Analysis

5.3.1 Capital Cost of Rehabilitation of Pipeline Distribution Network

The rehabilitation process of pipeline includes; moving the pipelines out from sea and ground, removing the old coating layer, cleaning, recoating and re-installing the pipes into sea and ground. The average capital cost for rehabilitation of one meter length and 0.62 meter diameter of pipeline is \$100/m to \$250/m. [5.1 - 5.7]

In the case study situation the cost that will be taken is \$250/m with 0.62 meter diameter, but here the diameter is 0.305 meter, so the cost per meter (C_m) is \$123/m. The total capital cost (C_c) of rehabilitation for the total length (L) of the pipeline distribution network will be as in the following equation:

$$C_C = C_m x L = 123x437,000m = $53,751,000$$
(5.1)

Depending on the surface area of the pipeline distribution network (A), the cost of rehabilitation per square meter (C_{R-1m^2}) is calculated as in the following equation:

$$C_{R-1m^2} = \frac{C_C}{A} = \frac{53,751,000}{\pi x 0.305 x 437,000} = \$128.4/m^2 \dots (5.2)$$

The rehabilitation costs (C_R) of the pipeline distribution network for alternatives A, B and C are (C_{R-A}), (C_{R-B}) and (C_{R-C}) respectively, they are illustrated in table (5.1). The rehabilitation costs of alternatives are calculated depending on the following equations [5.1 – 5.6]:

$$C_{R-A} = (1 - 0.9) x A x C_{R-1m^2} \dots (5.3)$$

$$C_{R-B} = (1 - 0.95) x A x C_{R-1m^2} \dots (5.4)$$

$$C_{R-C} = (1 - 0.98) x A x C_{R-1m^2} \dots (5.5)$$

Table	(5. 1	1):	Rehabilitation	Cost
-------	-------	-----	-----------------------	------

Alternative	C_R [\$]
А	5,376,493
В	2,688,311
С	1,075,350

5.3.2 Capital Cost of Impressed Current Anodes and Ground-bed

The cost of anode (C_{1-A}) and the cost of the ground-bed (C_{GB}) is taken from different sources, but they have very large difference in cost, so an average approximated cost is taken as follows:

- $(C_A) = 300 for one anode. [5.10]
- $(C_{GB}) = $2,400$ for ground-bed. [5.10]

The costs of anodes and ground-beds in different media for alternatives A, B and C are illustrated in tables (5.2), (5.3) and (5.4).

The ground-bed is not used in seawater media. Where: (C_{AT}) is the anodes cost.

Environment	N _A	C_A [\$]	<i>C_{AT}</i> [\$]	C _{GB} [\$]	
Seawater	2	300	600	0	
Clay, Well Aerated Soil	8	300	2,400	2,400	
Dry Soil	3	300	900	2,400	
Desert	1	300	300	2,400	
Wet Soil with Stones	19	300	5,700	2,400	
Total $(C_{A+GB}) = $19,500$					

Table (5. 2): Alternative A

Table (5. 3): Alternative B

Environment	N _A	C_A [\$]	<i>C_{AT}</i> [\$]	C _{GB} [\$]
Seawater	1	300	300	0
Clay, Well Aerated Soil	4	300	1,200	2,400
Dry Soil	2	300	600	2,400
Desert	1	300	300	2,400
Wet Soil with Stones	10	300	3,000	2,400
Total $(C_{A+GB}) = $15,000$				

Table (5. 4): Alternative C

Environment	N _A	C_{A} [\$]	C_{AT} [\$]	<i>C_{GB}</i> [\$]	
Seawater	1	300	300	0	
Clay, Well Aerated Soil	2	300	600	2,400	
Dry Soil	1	300	300	2,400	
Desert	1	300	300	2,400	
Wet Soil with Stones	4	300	1,200	2,400	
Total $(C_{A+GB}) = $12,300$					

5.3.3 Capital Cost of PV Generator

The capital cost of PV generator (C_{PV}) is calculated depending on the following equation which uses \$1 per watt peak [2.17, 5.10]. (C_{PV}) for alternatives A, B and C are represented in tables (5.5), (5.6) and (5.7).

Table (5. 5): Alternative A

Environment	$P_{PV}[W]$	C_{PV} [\$]		
Seawater	12,000	12,000		
Clay, Well Aerated Soil	21,600	21,600		
Dry Soil	3,600	3,600		
Desert	240	240		
Wet Soil with Stones	134,400	134,400		
Total $(C_{PV}) = $171,840$				

Table (5. 6): Alternative B

Environment	$P_{PV}[W]$	C _{PV} [\$]		
Seawater	3,360	3,360		
Clay, Well Aerated Soil	5,760	5,760		
Dry Soil	960	960		
Desert	240	240		
Wet Soil with Stones	34,560	34,560		
Total (C_{PV})= \$44,880				

Table (5. 7): Alternative C

Environment	$P_{PV}[W]$	C _{PV} [\$]		
Seawater	720	720		
Clay, Well	960	960		
Aerated Soil				
Dry Soil	240	240		
Desert	50	50		
Wet Soil	4,320	4,320		
with Stones				
Total $(C_{PV}) = $6,290$				

5.3.4 Capital Cost of Batteries

The capital cost of one battery (C_{1-B}) for each capacity rating is represented in table (5.11). The life time of the battery is 10 years, but for life time of 20 years the cost of battery is doubled. The costs of batteries in different media for alternatives A, B and C are illustrated in tables (5.12), (5.13) and (5.14). See batteries ratings in appendix (4).

$B_{C10} [Ah]$	C_{1-B} [\$]
2/1,411	673
2/3,415	2,700
2/820	500
12/52	165
12/65	165
2/325	250
2/1,751	2,500
2/220	250
2/273	250
2/1,009	673

Table (5.8): Battery Cost [5.9, 5.10]

Table (5. 9): Alternative A

Environment	N _B	$C_{1-B} \left[V/Ah \right]$	$C_{2-B}[\$]$	C _{BT} [\$]
Seawater	18	2/3,415	5,400	97,200
Clay, Well Aerated Soil	60	2/3,415	5,400	234,000
Dry Soil	24	2/820	1,000	24,000
Desert	1	12/52	330	330
Wet Soil with Stones	160	2/3,415	5,400	864,000
Total (C_{BT}) = \$1,201,530				

Table (5. 10): Alternative B

Environment	Np	$B_{1} = [V/Ah]$	$C_{2,p}[\$]$	Срт [\$]	
Segwater	1/	$\frac{2}{2} \frac{1}{2} \frac{B}{1} \frac{1}{2} \frac{1}$	13/6		
Scawatci	14	2/1,007	1,540	10,044	
Clay, Well Aerated	64	2/1,751	5,000	320,000	
Soil					
Dry Soil	24	2/220	500	12,000	
Desert	1	12/52	330	330	
Wet Soil with Stones	81	2/3,415	5,400	437,400	
Total $(C_{BT}) = $788,574$					

1	Δ	1
T	υ	T

Environment	N _B	$B_{1-B} \left[V/Ah \right]$	C_{2-B} [\$]	<i>C_{BT}</i> [\$]
Seawater	6	2/325	500	3,000
Clay, Well Aerated	14	2/273	500	7,000
Soil				
Dry Soil	1	12/52	330	330
Desert	1	12/52	330	330
Wet Soil with Stones	23	2/1,009	1,346	30,958
Т	otal (C	$(L_{BT}) = $41,618$		

Table (5. 11): Alternative C

5.3.5 Capital Cost Conclusion

The conclusion of all capital costs are represented as ICCP system capital cost (C_{ICCP}) and rehabilitation capital cost (C_R) in the following table.

	nerasion	
Alternative	C_R [\$]	C _{ICCP} [\$]
А	5,376,493	1,392,870
В	2,688,311	848,454
С	1,075,350	60,208

Table (5. 12): Capital Cost Conclusion

5.4 Annual Cost Analysis

The annual cost analysis is depending on 20 years life time and 8% interest rate. The annual cost of rehabilitation (C_{AR}) and the annual cost of ICCP System (C_{A-ICCP}) are calculated according to the following equations.

$$C_{AR} = (A/P)_{8\%} x C_R \dots (5.7)$$
$$C_{A-ICCP} = (A/P)_{8\%} x C_{ICCP} \dots (5.8)$$

Where: $((A/P)_{8\%})$ is taken from interest tables for 20 years life time and its equals (0.1019) [5.8]. (C_{AR}) and (C_{A-ICCP}) are represented in table (5.13). The costs of ICCP and rehabilitation are representing in cash flow diagrams in figures (5.1), (5.2), (5.3) for alternatives A, B and C respectively.

Figure (5. 1): Cost Cash Flow for Alternative (A)

Figure (5. 2): Cost Cash Flow for Alternative (B)

Figure (5. 3): Cost Cash Flow for Alternative (C)

Alternative	C_R [\$]	<i>C_{ICCP}</i> [\$]	$(A/P)_{8\%}$	C_{AR}	C_{A-ICCP}
				[\$]/year	[\$]/year
А	5,376,493	1,392,870	0.1019	547,865	141,933
В	2,688,311	848,454		273,939	86,460
С	1,075,350	60,208		109,578	6,135

Table (5. 13): Annual Cost

5.5 Saving Calculation

The annual saving $(C_{A-saving})$ is calculated according to the following equation [5.8]:

$$C_{A-saving} = C_{AR} - C_{A-ICCP}$$
(5.9)

The present saving for 20 years ($C_{P-saving}$) is calculated according to the following equation [5.8]:

Where $((P/A)_{8\%})$ is taken from interest table of 8% interest rate and its equals (9.818). $(C_{A-saving})$ and $(C_{P-saving})$ for each alternative are represented in table (5.14). The cash flow diagrams of annual and present saving for alternatives A, B and C are illustrated in figures (5.4), (5.5) and (5.6).

Alternative	C_{AR} [\$]	C _{A-ICCP}	C _{A-saving}	(P)	$C_{P-saving}$
		[\$]/year	[\$]/year	/A) _{8%}	
А	547,865	141,933	405,932	9.818	3,985,440
В	273,939	86,460	187,479		1,840,670
C	109,578	6,135	103,443		1,015,603

 Table (5. 14): Cash Flow Data

Figure (5. 4): Saving Cash Flow for Alternative (A)

Figure (5. 5): Saving Cash Flow for Alternative (B)

Figure (5. 6): Saving Cash Flow for Alternative (C)

106

¹⁰⁷ Chapter Six

Discussion of the Results

The performed study and analysis have given the following results:

- 1. Using of cathodic protection technology is more appropriate for providing protection for the pipeline distribution network due to the difficulty of rehabilitation of the pipelines through digging, extracting, cleaning, recoating, re-piping and burying.
- 2. Using of solar PV electrical energy to supply the ICCP system is recommended due to the existing high solar energy potential in Palestine amounting to $(5.4 \ kWh/m^2 - day)$.
- The economic analysis shows that the saving from rehabilitation cost in alternative A is \$3,985,440 from \$5,371,493, for alternative B is \$1,840,670 from \$2,688,311 and for alternative C is \$1,015,603 from \$1,075,350

The economic analysis shows the savings are representing a percentage of 74.2%, 68.47% and 94.44% of the rehabilitation cost for alternatives A, B and C respectively. The high percentage of saving mean that using PV powered ICCP system instead of rehabilitation of the pipelines is more feasible.

¹⁰⁸ Chapter Seven

Conclusion and Recommendations

7.1 Conclusion

Corrosion is very danger to the metallic structures (pipelines as a case study) due to its damage which destruct the metallic structure and make it out of service. Applying the cathodic protection (CP) technology for protection of pipeline distribution networks is recommended due to the cost and the difficulty of the rehabilitation of the pipelines.

The thesis shows that using solar photovoltaic (PV) energy to supply impressed current cathodic protection (ICCP) systems for Submarine and underground pipeline distribution network in Palestine is feasible. The design deals with three alternatives depending on the percentage of protected surface area, the alternative A, B and C represent 90%, 95% and 98% respectively.

The economic analysis shows that the saving for the three alternatives A, B and C are \$3,985,440, \$1,840,670, and \$1,015,603 respectively and there percentages from the rehabilitation cost are 74.2%, 68.47% and 94.44% for alternatives A, B and C respectively.

7.2 Recommendations

 Performing ICCP projects in Palestine (within B.sc graduation projects, M.Sc. thesis or Ph.D. thesis), where practical measurements of the current density and resistances of the different media have to be carried out. Further mathematical analysis considering the obtained measuring results are required.

2. Implementation of studies about protection of different metallic structures as: storage tanks, bridges, ships, high voltage transmission line towers, etc...

110 **References**

- [1.1]: John A. Beavers and Neil G. Thompson, "External Corrosion of Oil and Natural Gas Pipelines", ASM Handbook, Volume 13C, Corrosion: Environments and Industries (#05145), 2006
- [1.2]: Mayer Kutz, "Handbook of Environmental Degradation of Materials", Page 4, Mayer Kutz Associates Inc, New York, 2005
- [1.3]: Specifications for Line Pipe, API 5L, 42nd edition, American Petroleum Institute, Washington D.C., July 1, 2000
- [1.4]: P.H. Vieth, W.G. Morris, M.J. Rosenfeld, and J.F. Kiefner, "DOT-Reportable Incident Data Review—Natural Gas Transmission and Gathering Systems—1985 through 1995" Final Report, Contract No. PR-218-9603, Pipeline Research Council International, Sept 19, 1997
- [1.5]: Mohd Saiful Nizam Bin Mohamed, "Cathodic Protection of Underground Steel Pipelines by Using Sacrificial Anodes", Faculty of Mechanical Engineering, University of Malaysia Pahang, November 2009
- [1.6]: Krause, D. (1995), Corrosion Control Extends Infrastructure Life
 a paper published by American City and Council Journal, September 1995,

http:/localgovtupdate.americancityandcounty.com/ar/government corrosion
[1.7]: M.T. Lilly, S.C. Ihekwoaba, S.O.T. Ogaji, S.D. Probert, "Prolonging the lives of buried crude-oil and natural-gas pipelines by

cathodic protection", School of Engineering, Cranfield University, Bedfordshire Mk43 OAL, United Kingdom, May 2007

- [1.8]: Anene S.C., "Economic Viability of the Application of Cathodic Protection to Underground Petroleum Product Pipelines", NICA Journal of Corrosion Science and Technology, March 2004 p 33-43
- [1.9]: Okorafor C, (2004), "Cathodic Protection as a Means of Saving National Asset", NICA Conference held in Port Harcourt, Nigeria, March 2004 p 2-3
- [1.10]: Eliassen S.I and Hesjerik S.M. (2000), "Corrosion Management of Buried Pipelines under Difficult Operational and Environmental Conditions", paper presented at the NACE International Conference held in Houston, Texas, U.S.A, March 2000
- [1.11]: Klechka, E.W. (2004), "Corrosion Protection for Pipelines", a paper published in Corrosion Journal, https://www.nace.org, April Edition 2004
- [1.12]: National Association of Corrosion Engineers Int. (1996), "Standard recommended Practice Control of External Corrosion on Underground or Submerged Piping Systems", RP0169-96 September 1996
- [1.13]: B. Laoun, K. Niboucha and L. Serir, "Cathodic Protection of a Buried Pipeline by Solar Energy", Scientific and Technical Research Center on Control and Welding, Cheraga, Algeria, 2009
- [1.14]: Talebzadegan Mohsen, Abodi Ali and Riazi Iman, "Feasibility of Using Impressed Current Cathodic Protection Systems by Solar

- **Energy for Buried Oil and Gas Pipes**", Department of Engineering, Ramhormoz Branch, Islamic Azad University, Ramhormoz, Iran, 2013
- [2.1]: Dr. Y. Z. Bahnas and Dr. S. Elraghy, "Cathodic Protection of Pipelines Using Solar Energy", Pages 180 – 187, 1982
- [2.2]: Corrosion Brobe, INC., United States of America, "Cathodic Protection – Electrochemical Principles and Design Considerations", http://www.cpiengineering.com, 2011
- [2.3]: Cathodic Protection Co. Limited, Venture Way, Grantham, United Kingdom, "Cathodic Protection – An Overview", www.cathodic.co.uk, 2009
- [2.4]: James B. Bushman, P. E., "Corrosion and Cathodic Protection Theory", Principal Corrosion Engineer Bushman and Associates, Inc Medina, Ohio USA, BUSHMAN & Associates, Inc., http://www.bushman.cc, 2001
- [2.5]: L. L. Shreir, "Electrochemical Principles of Corrosion, A Guide for Engineering", United Kingdom, Department of Industry, 1982
- [2.6]: U.S. Department of the Interior Bureau of Reclamation, "Corrosion and Cathodic Protection", Denver, Colorado, www.usbr.gov, 2013
- [2.7]: Romanoff, M., "Underground Corrosion", National Bureau of Standards, Circular No. 579, U.S. Government, 2013
- [2.8]: Ezz Eldin Balla Mohamed Hussein., "System Identification and Adaptive Self-tuning Control for Impressed Current Cathodic Protection System". University Teknologi Malaysia, Jan. 2013

- [2.9]: Phys1120 Lecture Notes, Dubson, ©University of Colorado at Boulder
- [2.10]: Pearce, Joshua (2002). Open access, "Photovoltaics A Path to Sustainable Futures", Futures 34 (7): 663–674, 2002
- [2.11]: Tracy Dahl, "**Photovoltaic Power System**", Technology White Paper, www.PolarPower.org, 2001
- [2.12]: Renewable Energy Policy Network for the 21st century (REN21), Renewables 2010 Global Status Report, Paris, 2010, pp. 1–80.
- [2.13]: Photovoltaics Report. Fraunhofer Institute for Solar Energy Systems ISE, November 2013
- [2.14]: Tam Hunt, "The Solar Singularity Is Nigh". Greentech Media. Retrieved 29 April 2015
- [2.15]: Wikipedia, the free encyclopedia, www.wikipedia.com
- [2.16]: M. Sedighzadeh and A. Rezazadeh, "Comparison between Batteries and Fuel Cells for Photovoltaic System Backup", World Academy of Science, Engineering and Technology, 2007
- [2.17]: Prof. Dr. Marwan M. Mahmoud, "Renewable Energy Technology
 1&2", Course Lectures, An Najah National University, 2013, 2014
- [2.18]: Google Research, Pictures, www.google.com
- [2.19]: Energy Research Center (ERC), An Najah National University, Nablus, Palestine, 2015
- [3.1]: Henderson, Simon, "Natural Gas in the Palestinian Authority: The Potential of the Gaza Marine Offshore Field", Journal of Health and Social Behavior 53(3): 296, March 2014

- [3.2]: Revolve Magazine on pages 60-67, http://revolve.media/exploitingeastern-mediterranean-gas, 2015
- [3.3]: U. S. Steel Tubular Product, 600 Grant Street, room 2001, Pittsburgh, Pa15219, www.ussteel.com
- [3.4]: A JPCL eBook," Protecting and Maintaining Transmission
 Pipeline", Copyright 2012 by Technology Publishing Company
 2100 Wharton Street, Suite 310 Pittsburgh, PA 15203
- [3.5]: Ronald L. Biancheti, "Control of Pipeline Corrosion", NACE International, the Corrosion Society, 1440 South Creek Drive, Houston, Texas 77084, 2001
- [3.6]: Hisham Mohamed Khalid Elmouazen, "Design of Solar Cathodic Protection System for Khartoum – Medani Pipeline", University of Khartoum, 2014
- [3.7]: Linear Algebra with Application to Engineering Computations, "A brief introduction to MATLAB", CME200, M. Gerritsen, September 2006
- [3.8]: Mathworks Company, "Simulink Simulation and Model-Based Design", www.mathworks.com
- [4.1]: German Cathodic Protection (GCP), "Impressed Current Anodes", Accessories: Carbonaceous backfills, Document No.: 04-602-R1
- [4.2]: BAC Products for Corrosion Control, October 2002, www.bacgroup.com, email: sales@bacgroup.com

- [4.3]: Cathodic Protection Co Limited, "Impressed Current Cathodic
 Protection", Section Two, cpc@cathodic.co.uk, www.cathodic.co.uk
- [4.4]: Rajko Vukcevic, Infoware Consulting Pty Ltd, "Improving Anode Energy Efficiency of Marine ICCP Systems", Conference Paper, November, 2009
- [4.5]: Solar Cells from SCHOTT/MOTECH, Germany, Taiwan, RS-P630 210~230W Series Poly-crystalline PV Module
- [4.6]: Classic Solar, Industrial Batteries / Network Power, Product Datasheet, www.gnb.com
- [5.1]: S. A. Taylor, "Worldwide Rehabilitation Work is Undergoing Major Changes" Pipeline Industry, February 1994
- [5.2]: R. N. Sloan, "Pipeline Coatings" A. W. Peabody, R. L. Bianchetti, eds., Control of Pipeline Corrosion, 2nd ed., (Houston, TX: NACE, 2001), pp. Pp. 7 20
- [5.3]: L. D. Vincent, "Ambient Condition Effects on Pot Life, Shelf Life, and Recoat Times" Materials Performance, Vol. 40, No. 9.September 2001, pp. 42 43
- [5.4]: J. Alan Kehr, "Rehabilitation of Pipeline Coatings Can Reduce Cost and Risk", 3M, USA, jakehr@mmm.com; 1-512-984-5678
- [5.5]: CC Technologies Laboratories, Inc., Dublin, Ohio
- [5.6]: Distribution Survey: Costs of Installation, Maintenance, and Operations

Installations,www.gri.org/pub/oldcontent/tech/dist/project_sum/gdisrvy/install.html, January 2001

- [5.7]: P. Singh, "Development of a Cost Effective Powder Coated Multi-Component Coating for Underground Pipelines", J.Cox, DuPontCanada Inc., Calgary, Alberta
- [5.8]: Dr. Imad H. Ibrik, "Energy Conservation", Lectures Course, Graduate Studies, An – Najah National University
- [5.9]: Carbon Neutral Website, Copyright 1997-2013 Energy Development Co-operative Limited, www.solar-wind.co.uk
- [5.10] Alibaba sales website, www.alibaba.com

117 Appendices

Appendix (1): Carbon Steel Pipeline API Tables

The represented data in this section is taken from: "Standard Pipe and Line Pipe, USS Company, U. S. Steel Tubular Products".

Disclaimer

All material contained in this publication is for general information only. thismaterial should not, therefore, be used or relied upon for any specific application without independent competent professional examination and verification of its accuracy, suitability and applicability. anyone making use of the material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel tubular Products disclaims any and all expressed or implied warranties of merchantability and/or fitness for any general or particular purpose.

118

PRODUCT PROPERTIES

ulabilitu - Standard Dia

U. S. Steel Tubular Products manufactures both seamless and welded pipe to meet specific tubular products is the only domestic producer of tubular products is streamless pipe in the 11-314 to 26° OD size range. Use Standard Dipe and Line Pipe for a wide range of applications. Our seamless pipe in the 11-314 to 26° OD size range. Standard Pipe and Line Pipe for a wide range of applications. Our seamless pipe in the 11-314 to 26° OD size range. Standard Pipe and Line Pipe for a wide range of applications. Our seamless pipe in the 11-314 to 26° OD size range. Standard Pipe and Line Pipe for a wide range of applications. Our seamless pipe in the 11-314 to 26° OD size range. Standard Pipe and Line Pipe for a wide range of applications. Our seamless pipe in the 11-314 to 26° OD size range. Standard Pipe and Line Pipe for a wide range of applications. Standard Pipe is widely used primarily in the construction, refining, chemical and petrochemical industries. Line Pipe is used for the torate.
 Chemical and mechanical property requirements are as prescribed by current API, ASTM.

5	iize ¹	Wall Thickn	ess, ² Inches
NPS	OD (Inches)	Lorain, OH	Fairfield, AL
11/2	1.900	0.140-0.281	
2	2 3/8	0.154-0.436	-
2 1/2	2 7/8	0.160-0.552	-
3	3 1/2	0.170~0.600	-
31/2	4	0.180-0.650	
4	4 1/2	0.188-0.674	0.205-0.750
5	5 9/16		0.250-0.750
6	6 5/8	-	0.250-0.870
8	8 5/8		0.250-1.200
10	10 3/4	0.307-2.000	-
12	12 3/4	0.330-2.312	-
14	14	0.375-2.000	-
16	16	0.375-2.000	-
18	18	0.375-1.562	-
20	20	0.375-1.512	-
22	22	0.375-1.375	-
24	24	0.375-1.250	
26	26	0.375-1.125	-

23

ELECTRIC RESISTANCE WELD EXPLOSION STANDARD PIPE AND LINE WILL STANDARD PIPE AND N. Steel Tubular Products' FRW Standard Pipe for the standard Pipe and standard the long tubul standard Pipe and standard pipe and standard pipe standard Pipe and Line Pipe are widely to pipe standard Pipe and Line Pipe are widely stof pipe bings, pipe-type cable systems and stor pipe.

Characteristics and Advantages Eighty-Foot Lengths – Ultra-long lengths of U.S. Steet Tubular Products ERW pipe, available from McKeesport Tubular Operations minimize

handling time in transportation and installation, and significantly reduce field welding labor, time and costs.

Smooth Surfaces – U. S. Steel Tubular Products hot rolled strip steel is continuously cold formed into smooth-surfaced, uniform-gage pipe for superior flow characteristics.

Stronger, Lighter Walls – The improved, higher strength, lighter gage steel bands used by U.S. Steel Tubular Products are fused by high-frequency electric resistance welders into rugg pipe that can meet exacting tolerances and strength specifications.

Uniform Dimensions and Quality – Higher auto-mated production, combined with continuous non-destructive and visual inspection and hydrostatic testing, assures a pipe product of excellent quality. And, because the pipe is made from flat-rolled steel, it has highly uniform wall thicknesses.

Si	ze ¹	Wall Thickness Linches
NPS	OD	wan mickness, menes
8	8 5/8	0.172-0.406
10	10 3/4	0.172-0.400
12	12 3/4	0.188-0.406
14	14	0.188-0.406
16	16	0.203-0.406
18	18	0.219-0.406
20	20	0.250-0.413
Si	ze ¹	
NPS SI	ze ¹	Wall Thickness, ² Inches
NPS 2	23/8	Wall Thickness, ² Inches
Si NPS 2 2 1/2	2 3/8 2 7/8	Wall Thickness, ² Inches 0.218-0.344 0.203-0.375
Si NPS 2 2 1/2 3	2 3/8 2 7/8 3 /1/2	Wall Thickness, ² Inches 0.218-0.344 0.203-0.375 0.216-0.300
5i NPS 2 21/2 3 31/2	2 3/8 2 3/8 2 7/8 3 /1/2 6	Wall Thickness, ² Inches 0.218-0.344 0.203-0.375 0.216-0.300 0.226-0.318
Si NPS 2 2 1/2 3 3 1/2 4	ze ⁴ 0D 2 3/8 2 7/8 3 /1/2 4 4 1/2	Wall Thickness, ² Inches 0.218-0.344 0.203-0.375 0.216-0.300 0.226-0.318 0.237-0.531
5i NPS 2 2 1/2 3 3 1/2 4 5	27/8 27/8 27/8 3/1/2 4 4 4.1/2 59/16	Wall Thickness," Inches 0.218-0.344 0.203-0.375 0.216-0.300 0.226-0.318 0.237-0.531 0.258-0.500
5i NPS 2 21/2 3 31/2 4 5 5 6	ze* OD 2 3/8 2 7/8 3 /1/2 6 1/2 5 9/16 6 5/8	Wall Thickness,* Inches 0.218-0.344 0.203-0.375 0.218-0.305 0.237-0.531 0.238-0.500 0.288-0.500
Si NP5 2 21/2 3 3 1/2 6 5 5 6 8	2e ⁴ OD 2 3/8 2 7/8 3 /1/2 4 6 1/2 5 9/16 6 5/8 8 5/8	Wall Thickness," Inches 0.218-0.344 0.203-0.375 0.216-0.300 0.226-0.318 0.227-0.531 0.258-0.500 0.269-0.432 0.259-0.438
51 NPS 2 2 1/2 3 1/2 4 5 5 6 8 8 10	28 ⁴ OD 2 3/8 2 7/8 3 /1/2 6 1/2 5 9/16 6 5/8 8 5/8 8 5/8 10 3/4	Wall Thickness,* Inches 0.218-0.344 0.203-0.375 0.218-0.300 0.225-0.315 0.225-0.311 0.228-0.500 0.288-0.500 0.288-0.500 0.280-0.432 0.279-0.500
51 NP5 2 2 1/2 3 1/2 6 5 6 8 10 12	28 ⁴ OD 2 378 2 778 3 /1/2 4 1/2 5 9/16 6 5/8 8 5/8 10 3/4 12 3/4	Wall Thickness," Inches 0.218-0.344 0.203-0.375 0.226-0.300 0.226-0.318 0.258-0.500 0.258-0.500 0.260-0.432 0.259-0.500 0.259-0.500
51 NP5 2 3 3 3 1/2 6 5 6 8 10 12 14	2e ⁴ OD 2 3/8 3 /3/2 6 1/2 5 9/16 6 5/8 8 5/8 10 3/4 12 3/4 3 4	Wall Thickness,* Inches 0.218-0.344 0.203-0.375 0.216-0.300 0.226-0.318 0.258-0.300 0.258-0.300 0.2780-0.432 0.2780-0.432 0.2790-0.500 0.250-0.500 0.312-0.552

24

<section-header><section-header><section-header><section-header><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Specification A water, oil and o	PI SL co	overs se juefied i	amles: media.	s and w	elded	pipe su	itable I	for use	in con	veying	gas,		
Chemical Req	uirem	ents											
Specificatio	n	Grade	СЬ	Mnb	Р	s	Si	Cr	Mo	Ni	v	СЬ	Ti
		A25	.21	.60	.030	.030	-	-	-	-	-	-	-
	- H	A	.22	.90	.030	.030	-	-	-	-	-	-	-
	- H	8	.28	1.20	.030	.030	-	-	-	-	c,d	c,d	d d
API 5L	- H	X42	.20	1.30	.030	.030	-	-	-	-	0		
44th Ed (PSI 1)	- H	X60	.28	1.40	.030	.030	-	-	-	-	0		
Seamless	- H	VEE	.20	1.40	.030	.030	-	-	-	-	4	d	4
		X60	28 ^e	1.40 ^e	030	030	-	-	-	-	f	f	f
		X65	28 ^e	1.40 ^e	030	030	-	-	-	-	1	1	
		X70	.28 ^e	1.40 ^e	.030	.030	-	-	-	-	1	f	
		A25	.21	.60	.030	.030	-	-	-	-	-	-	-
		A	.22	.90	.030	.030	-	-	-	-	-	-	-
		в	.26	1.20	.030	.030	-	-	-	-	c,d	c,d	d
API SI		X42	.26	1.30	.030	.030	-	-	-	-	d	d	d
44th Ed		X46	.26	1.40	.030	.030	-	-	-	-	d	d	d
(PSL 1)		X52	.26	1.40	.030	.030	-	-	-	-	d	d	d
Welded		X56	.26	1 6 0	030	030							
					.0.30	.0.30	-		-	-			
		X60	.26 ^e	1.40 ^e	.030	.030	-	-	-	-	f	f	f
50% mar (n. Ni Cra	nd 35 mar	X60 X65 X70	.26 ^e .26 ^e .26 ^e	1.40 ^e 1.40 ^e 1.65 ^e	.030 .030 .030	.030 .030 .030	- - -	- - -	- - -	-	f f	f f f	f f f
 .50% max Co, Ni, Cr a b. For each reduction o and < X70, and 2.0% Unless otherwise age Cb + V + Ti < = .15% 	nd 35 max f. 0.1% belo for X70, read Cb + V	X60 X65 X70 Mo. For grad withe max C	.26 ^e .26 ^e .26 ^e	1.40 ^e 1.40 ^e 1.65 ^e	.030 .030 .030 g x52, Cu	.030 .030 .030 Cr and Nis	- - - b a max of	- - - - 1.65% for g	- - - praction add pr practices B, X-	- - -	f f f	f f f	f f f
 .50% max Cu, Ni, Cr a .For each reduction o and < XP0, and 2, ON . Unless otherwise age . Unless otherwise age . Unless otherwise age . Unless otherwise age 	nd .15 max f .01% belo for X70, reed Cb + V reed. reed the sur	X60 X65 X70 Mo. For grad the max C < = .15%	.26° .26° .26° so up to a and incre	1.40 ^e 1.40 ^e 1.65 ^e ad including	.030 .030 .030 .030	.030 .030 .030 .030 Cr and Nis	- - hall not be p a max of	- - - - - - - - - - - - - - - - - - -	- - - entionally, prades 8, X	- - -	f f f	f f f	f f f
 .30% mar Cu, N, Cr a For each reduction of and < X70, and 2.0% Unless otherwise age Cb + V + Ti < - 1.3% Unless otherwise age Specification 	nd .15 max f.0 The belo for X30, need Cb + V reed. reed the sur Grade	X60 X65 X70 Mo. For grad wither max C < = .15%. a of Cb + V + Cond R. or M	.26° .26° .26° and locro	1.40° 1.40° 1.65° director	.030 .030 .030 .030 g X52, Ctu, Mn is peri	.030 .030 .030 .030 Crand Nix mitted up t	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - entionally, prades B, X	- - - - - - - - - - - - - - - - - - -	f f f .up to 1.75	f f f % for grad	f f f Pcm
 30% max Ca, N, C = 3 For each reduction of and < X70, and 2.0% Unless otherwise age Cb + V + Ti <= 1.5% Unless otherwise age Specification API 5L 	Ind -15 max (.0 The belo for X30, need Cb + V need, seed the sur Grade B Xlu2	X60 X65 X70 Mo. For grad wither max C < = .15%. and Cb + V + Cond R or N R or N	.26° .26° .26° .26° 	1.40 ^e 1.40 ^e 1.65 ^e director model Mnb 1.20 1.20	.030 .030 .030 .030 .030 .030 .030 .030	.030 .030 .030 Crand Nis nitted up 1 .015 .015	- - - ball not be o a max of Sii .40	- - - 1.65% for g	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	f f f .up to 1.75 Other e	f f f M for grad	Pcm .25
30% max Cu, Ni, Cr at For each reduction o and < X70, and 2.0% and < C 2, and 2.0% and < C 2, and 2.0% and 2.0%	nd .15 max (.01% belo for XX0, read Cb + V read Grade B X42 X45	X60 X65 X70 Mo. For grad the max C <13%. of Cb + V - Cond R or N R or N N	.26° .26° .26° .26° 	1.40 ^e 1.40 ^e 1.65 ^e 1.65 ^e 1.20 1.20	.030 .030 .030 .030 .030 .030 .030 .025 .025	.030 .030 .030 Crand Nis nitted up 1 .030 S .015 .015	- - - - - - - - - - - - - - - - - - -	- - - 1.55% for g	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	o f f f 	IIIW .43 .43	Pcm .25 .25
A done must can be con for each and a con and < X/0 and 2 Offi- Unless otherwise agi Control to the set of the Control of the set of the Specification API SL Getta 2 -	Grade B X42 X42 X45 X52	X50 X65 X70 Mo. For great the max C < = .15% af Cb + V - Cond R or N R or N N N	.26° .26° .26° .26° .26° .26° .26° .24 .24 .24 .24	1.40 ^e 1.40 ^e 1.65 ^e 1.65 ^e 1.20 1.20 1.40 1.40	.030 .030 .030 .030 .030 .030 .030 .030	.030 .030 .030 .030 Constituted up total ut up total ut ut ut ut ut ut ut ut ut ut ut ut ut	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	Other e d, e d, e	u f f f Moregad .43 .43 .43 .43	Pcm .25 .25 .25
 30% max Cu, N, Cr at Pror each Multicharm Pror each Multicharm United to the set United and the set Specification API 5L 444th Ed [PSL 2] [Seamless 6 Weided] 	Grade 8 X42 X46 X52 X56	X50 X65 X70 Motor program with mark C < = .15% of Cb + V - Cond R or N R or N N N N	26° .26° .26° .26° .26° .26° .26° .26°	1.40° 1.40° 1.65° 1.65° 1.65° 1.20 1.20 1.40 1.40	.030 .030 .030 .030 .030 .030 .030 .025 .025 .025 .025	.030 .030 .030 .030 .030 .030 .030 .030	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	f f f .up to 1.75 Other e d, e d, e d, e	1 f f f f f f f f f f f f f f f f f f f	Pcm .25 .25 .25 .25
 JON max Ca, NJ, Cr For each reduction of a sed a STA, and 2 ON Unless atherwise agit Unless atherwise agit Unless atherwise agit Specification API 5L API 5L (PSL 2) [Seamless 6 Welded] 	Grade B X42 X46 X52 X56 X60	X60 X65 X70 Mo. For grad Mo. Fo	.26° .26° .26° .26° .26° .26° .26° .24° .24° .24° .24° .24° .24° .24° .24	Mnb 1.40 ^e 1.65 ^e 1.20 1.20 1.40 1.40 ^e 1.40 ^e	P 0.025 0.025 0.025 0.025 0.025 0.025	.030 .030 .030 .030 Cr and Nit mitted up 1 .015 .015 .015 .015 .015 .015	- - - - - - - - - - - - - - - - - - -	- - - 1.45% for g	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	Other e d, e d, h	1 f f f % for grad .43 .43 .43 .43 .43 .43	Pcm .25 .25 .25 .25 .25 .25 .25 .25
 30% mer Co, No, Cr For each reduction of a set of the set of t	Ind.15 max f.07% belonging f.07% belonging read. weed Ch + V Weed. X42 X46 X52 X56 X60 B	X50 X65 X70 Mo. Fot grad when max C < = .13%. Cond R or N R or N N N N N Q	.26° .26° .26° .26° for up to a and nor .24 .24 .24 .24 .24 .24 .24 .24 .18	1.40° 1.40° 1.65° distant 1.65° distant 1.65° 1.20 1.20 1.20 1.40 1.40 1.40 ^f 1.40 ^f	P .025 .025 .025 .025 .025 .025 .025	.030 .030 .030 .030 .030 Crank Ni mitsed up t .015 .015 .015 .015 .015 .015 .015 .015	- - - - - - - - - - - - - - - - - - -	- 	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	0 ther e d, e d, e d, h e	1 F F F K for grad 43 .43 .43 .43 .43 .43 .43 .43	Pcm .25 .25 .25 .25 .25 .25 .25
Store may Co. N. Co. For a S. Y. A. Co. United Elements of Second State of Second Control of Second State Control of Second State Specification API SL Acth Ed Acth Ed Schuthers S Sweided]	6 st mae f d ms belo f d ms belo sed (b + v wed, wed (b + v wed) sed (b + v wed) sed (b + v wed) sed (b + v wed) sed (b + v x46 X46 X56 X56 X56 X56 X56 X56	X60 X65 X70 X70 X60 For grad with a max C < = 15%. Cond R or N N N N N N Q	.26° .26° .26° .26° .26° .26° .26° .24 .24 .24 .24 .24 .24 .24 .24 .24 .24	1.40° 1.40° 1.65° 4.65° 4.65° 4.65° 4.65° 1.20 1.20 1.20 1.40 1.40 [°] 1.40 1.40 [°]	P .025 .025 .025 .025 .025 .025 .025 .025	.030 .030 .030 .030 .030 .030 .030 .015 .015 .015 .015 .015 .015 .015 .01	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	0 ther e e d, e d, e d, e e e e	IIIW .43 .43 .43 .43 .43 .43 .43 .43 .43	Pcm Pcm 25 25 25 25 25 25 25 25 25 25
 S9% mas Cu, N, Gr For each read/stoor For each read/stoor For each read/stoor Ch V I Tr = 15% Specification API 5L 44th Ed (PSL 2) (Seamless 6) Welded) 	nd 35 mar f.0ms belo for X%. wed Ch + V wed Grade 8 X42 X46 X52 X56 X60 8 X42 X56 X60 8 X42 X46	X60 X65 X70 Mo. For grad when may C < .13% of Cb + V - Cond R or N R or N N N N N N N Q Q Q	26° 26° 26° 26° 26° 26° 26° 24° 24 24 24 24 24 24 24 24 24 18 18	Mnb 1.40° 1.65° Mnb 1.20 1.20 1.20 1.40 1.40 1.40 1.40 1.40 1.40	P 0.030 0.030 0.030 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	3030 .030 .030 .030 .030 .030 .030 .015 .015 .015 .015 .015 .015 .015 .01	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	Other e e d, e d, e d, h e e e	1 F F F F K for grad 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	Pcm -25 -25 -25 -25 -25 -25 -25 -25
30% max Cu, bi, Cr / Pri and M, and Ko, M, and Ko, M, Chines offbraness and Chines offbraness and Chines offbraness and Specification API SL (seamless 6 Weided) API SL Apri SL	Grade 8 X42 X46 X52 X56 X50 8 X42 X55 X56 X50 X50 8 X42 X42 X55 X56 X52 X56 X52 X56 X52 X56 X52 X56 X52 X55 X55 X55 X55 X55 X55 X55 X55 X55	X60 X65 X70 Web For grad with max C <=.15% Cond R or N R or N N N N N N N Q Q Q Q	.26° .26° .26° .26° .26° .26° .24° .24 .24 .24 .24 .24 .24 .24 .24 .24 .24	1.40° 1.60° 1.65° 1.65° 1.65° 1.20 1.20 1.20 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.50	P P 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	5 .010 .030 .030 .030 .030 .030 .015 .015 .015 .015 .015 .015 .015 .01	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	0 ther e e d, e d, e e e e e e e e e e e e e e e e e e e	IIIW 4 4 4 4 4 4 4 4 4 4 4 4 4	Pcm -25 -25 -25 -25 -25 -25 -25 -25
39% max Co. In Co. and a 25% mat 25% bits of the second second bits of the second second second second second second second second second second second second second second second second second second second secon	ad 35 mass. d 35 mass. for X below for X 20 wed Cb + V. wed Cb + V. Weed. B X42 X46 X52 X60 B X42 X46 X52 X40 X42 X46 X52 X46 X52	X60 X65 X70 MacForgrad When max C <33% of Cb-V R or N R or N N N N N N N N Q Q Q Q Q Q	.26 ^e .26 ^e .26 ^e .26 ^e .26 ^e .24 ^e .24 .24 .24 .24 .24 .24 .24 .24 .24 .24	1.40° 1.40° 1.65° 1.65° 1.20 1.20 1.20 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.50	P .025 .025 .025 .025 .025 .025 .025 .025	5 .030 .030 .030 .030 .030 .030 .030 .015 .015 .015 .015 .015 .015 .015 .01	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	0 ther e e d, e d, e d, e e e d, e d, e d, e d	IIIW .4.3	Pcm -25 -25 -25 -25 -25 -25 -25 -25 -25 -25
200% note (21, 10, 0 70% and 50%, and 20% 70% and 50% and 50% 70% and 50% and 50% 70%	d 13 max d 13 max <td< td=""><td>X60 X65 X70 Mo.Forgrad Strong and Strong and</td><td>.26^e .26^e .26^e .26^e .26^e .24 .24 .24 .24 .24 .24 .24 .24 .18 .18 .18 .18 .18 .18</td><td>1.40° 1.40° 1.65° Mnb 1.20 1.20 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4</td><td>P 0.330 0.330 0.330 0.330 0.330 0.330 0.255 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025</td><td>5 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3</td><td>- - - - - - - - - - - - - - - - - - -</td><td>- - - - - - - - - - - - - - - - - - -</td><td>- - - - - - - - - - - - - - - - - - -</td><td>- - - - - - - - - - - - - - - - - - -</td><td>0 ther e d, e d, e d, e d, e e e e e e e e e e e e e e</td><td>IIIW 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3</td><td>f f f f .25 .25 .25 .25 .25 .25 .25 .25 .25 .25</td></td<>	X60 X65 X70 Mo.Forgrad Strong and Strong and	.26 ^e .26 ^e .26 ^e .26 ^e .26 ^e .24 .24 .24 .24 .24 .24 .24 .24 .18 .18 .18 .18 .18 .18	1.40° 1.40° 1.65° Mnb 1.20 1.20 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4	P 0.330 0.330 0.330 0.330 0.330 0.330 0.255 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	5 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	0 ther e d, e d, e d, e d, e e e e e e e e e e e e e e	IIIW 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	f f f f .25 .25 .25 .25 .25 .25 .25 .25 .25 .25
30% mai Co No. Co and c 200, mol 200 both a strand and the both a strand and the period of the period of the strand and the strand and the period of the strand and the strand	Grade 6 8 3 242 3 256 3 256 3 260 3 256 3 260 3 256 3 260 3 256 3 260 3 256 3 260 3 256 3 256 256 256 256 256 256 256 256 256 256	X60 X65 X70 Mo. For grad with a mark of constraints	.26 ^e .26 ^e .26 ^e .26 ^e .26 .26 .24 .24 .24 .24 .24 .24 .24 .24 .24 .24	Mnb 1.40° 1.65° Mnb 1.20 1.20 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4	P 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255	5 0.030 0.030 0.030 0.030 0.030 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	0 ther f f f c c c c c c c c c c c c c	IIW f f f f f f f f f f f f f	Pcm Pcm 225 225 225 225 225 225 225 225 225 22
a streng near (a), hi (c) mar (a 2 R), and 2 Aon (c) a v (F) c a 1 R (a 2 R), and 2 Aon (c) a v (F) c a 1 R (a 2 R), and 2 Aon (c) a v (F) c a 1 R (a 2 R), and 2 Aon (c) a v (F) c a 1 R (a 2 R), and a 2 R	Crade 8 X442 X46 X52 X56 8 X46 X52 X46 X52 X46 X52 X46 X52 X46 X52 X46 X52 X46 X52 X46 X52 X55 X60 X65 X70	X60 X65 X70 Mo. For grad Mo. For grad Mo. For grad Mo. For grad Mo. For grad Mo. For grad R or N R or N R or N N N N N N N N N Q Q Q Q Q Q Q Q Q Q	.26 ^e .26 ^e .26 ^e .26 ^e .26 ^e .26 ^e .26 ^e .26 ^e .24 ^e .24 .24 .24 .24 .24 .24 .24 .24 .24 .18 .18 .18 .18 .18 .18f .18f	1.40° 1.40° 1.65° 4.40° 1.65° 4.40° 1.20 1.40 1.40° 1.50° 1.20° 1.	P 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.255	8 0.030 0.030 0.030 0.030 0.030 0.030 0.015	- - - - - - - - - - - - - - - - - - -	V c 	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	0 ther e d, e d, e d, e d, e d, e d, e h e e e h h	111W f f f f f f f f f f f f f	Pcm - f - f - f - f - f - 25 -

119

Specification G	rade Con	d Cb	Mnb	P	s	Si	v	СЬ	Ti	Other	IIW	Pcm
	B M	.22	1.20	.025	.015	.45	.05	.05	-04	e	.43	.25
	X42 M	.22	1.30	.025	.015	.45	.05	.05	.04	e	.43	.25
	X46 M	.22	1.30	.025	.015	.45	.05	.05	-04	e	.43	.25
	X52 M	.22	1.40	.025	.015	.45	[V + C	b + Ti <	= .15]	e	.43	.25
API 5L	X50 M	121	1.40	.025	.015	.45 ASE	[V + C	D + II <	= .15]	e	.43	.25
(PSL 2)	X65 M	.12f	1.60f	.025	.015	.45f	[V + C	b + Ti <	= .15]	h	.43	.25
(Welded Only)	X70 M	.12f	1.70 ^f	.025	.015	.45f	(V + C	b + Ti <	= .15)	h	.43	.25
	X80 M	.12f	1.85f	.025	.015	.45f	[V + C	:b + Ti <	= .15]	1.1	.43 f	.25
	X90 M	.12f	1.85f	.025	.015	.45f	[V + C	b + Ti <	= .15]	- I	-	.25
	(100 M	.12*	1.85	.025	.015	.45r	[V + C	b + Ti <	= .15]	- 64	-	.25
For Seamless nine wall th	inkness > 787*	E shall be h										
Tensile Properti	es – Tens	ile Req	uireme	nts Se	amles	s and	Welde	d Pipe				
ensile Properti Specification	es – Tens Gr	ile Req	uireme	nts Se Vi	amles	s and	Welde	d Pipe Ter	sile		¥/T 8	tatio
Specification API SL 44th ed	es – Tens Gr	ile Req Ide	Mireme Mi 25,0	nts Se Vi in.	eld M	s and	Welde M	d Pipe Ter in.	sile M	ax.	V/T 8	tatio
Tensile Properti Specification API SL 44th ed	es – Tens Gr	ile Req ide 25	uireme Mi 25,0 30,5	nts Se Vi in. 100	eld M	s and ' ix.	Welde <u>M</u> 45,0 48,/	d Pipe Ter in. 500	sile M	ax. -	V/T I Mi	tatio
Tensile Properti Specification API SL 44th ed	es – Tens Gr	ile Req ide 25 1 3	Mi 25,0 30,5 35,5	nts Se Vi in. 500 500	eld M	s and '	Welde M 45,0 48,0 60,0	d Pipe Ter in. 500 200	sile M	ax. - -	W/T I	tatio ax. -
Tensile Properti Specification API SL 44th ed	es – Tens	ile Req ide	Mireme 25,0 30,1 35,5 42,1	nts Se Vi in. 500 500	eld M	s and '	Welde M 45,(48,) 60,	d Pipe Ter in. 500 200 200	sile M	ax. - - -	V/T I Ma	Ratio ax. - -
Tensile Properti Specification API 5L 44th ed PSL-1	es – Tens	ile Req ide 25 1 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Miremel 25,0 30,1 35,5 42,1 46,0	nts Se vi in. 500 500 500 500 500 500 500 500	eld M	s and '	Welde M 45,1 60, 60, 63,1 63,1	d Pipe Ter in. 500 200 200 200	sile M	ax. - - - -	V/T I Mi	tatio ax. - -
Tensile Properti Specification API 5L 44th ed PSL-1	es – Tens	ile Req ide 25 3 3 52 52 56	Miremet 25,0 30,9 35,9 42,1 45,0 52,3 56,0	vi in. 500 500 100 200 500	eld M	s and '	Welde 45,0 48,0 60,0 63,0 65,0 71,0	d Pipe Ter in. 200 200 200 200 100 100	sile M	ax. - - - - -	V/T 1 Mi	tatio
Tensile Properti Specification API 5L 44th ed PSL-1	es – Tens	ile Req ide 25 3 42 42 45 52 56 50	Miremet 25,0 30,9 35,9 42,9 46,0 52,2 56,0 60,1	nts Se Vi in. 500 500 500 500 500 200 200 200	eld M	s and '	Welde M 45,0 48,1 60,2 60,2 63,2 66,7 71,2 75,0 75,0 75,0 0 0 0 0 0 0 0 0 0 0 0 0 0	d Pipe Ter in. 000 500 200 200 200 100 100 100	sile M	ax. - - - - - - - - - -	V/T 5 Mi	tatio ax. - - - - - - -
Tensile Properti Specification API 5L 44th ed PSL-1	es – Tens Gr A X X X X X X X X X X	ile Req ide 25 14 25 14 25 14 25 14 25 15 25 15 15 15 15 15 15 15 15 15 1	42; 46; 52; 42; 46; 56; 60; 65;	nts Se vi in. 100 500 100 200 200 200 300 	eld M	s and '	Welde M 45,0 48,1 60,2 63,2 66,2 71,1 75,0 77	d Pipe Ter in. 200 200 200 200 200 200 200 200 200 20	sile M	ax. - - - - - - - - - - - -	V/T I	tio
Censile Properti <u>Specification</u> API SL 44th ed PSL-1	es – Tens Gr A X X X X X X X X X X X	ile Req ide 25 3 3 4 2 5 5 5 5 5 5 5 5 70 5 5	42; 46; 52; 42; 45; 56; 60; 65; 70;	nts Se in. 500 500 200 200 200 300 300 300	eld M	s and 1	Welde M 45,1 60, 60, 63,2 71,2 75,1 75,1 77,0 82,2 60	d Pipe Ter in. 000 500 200 200 200 200 200 200 200 200	sile M	ax. - - - - - - - - - - - - - - - - - - -	W/T I	Ratio ax. - - - - - - - - - - - - -
Tensile Properti Specification API SL 64th ed PSL-1	es – Tens Gr A X X X X X X X X X X X X X X X X X X	ile Req ide 25 1 3 42 55 52 55 50 55 70 3 42 55 55 70 3 42 55 55 70 55 55 55 55 55 55 56 56 56 56	Miremel Mi 25,0 30,1 35,1 42,1 442,1 55,1 56,0 60,1 70,1 35,1 42,1 44,1 4	nts Se Vi in. 000 500 500 500 200 300 300 500 100	eld Mi	s and '	Welde M 48, 60, 60, 63, 71, 75, (77, 82, 60, 60,	d Pipe Ter in. 200 200 200 200 200 200 200 200 200 20	sile M 110	ax. - - - - - - - - - - - - - - - - - - -	V/T I Mi	Ratio ax. - - - - - - - - - - - - -
Fensile Properti Specification API SL 64th ed PSL-1	es – Tens Gr A X X X X X X X X X X X X X X X X X X	ile Req ide 25 3 3 42 55 55 55 55 70 3 42 55 55 55 55 55 55 55 55 55 5	Miremet 30, 35, 42, 45, 55, 56, 60, 65, 70, 35, 42, 42, 442, 44, 54, 65, 60, 65, 70, 44, 44, 65, 65, 66, 65, 66, 65, 66, 66	nts Se vii in. 000 500 500 500 200 300 300 500 100 400 500 500 500 500 500 500 5	amles eld 	s and ax. - - - - - - - - - - - - - - - - - - -	Welde M 45,1 48, 60, 63, 66, 71, 75, 77,0 82, 60, 60, 63, 60, 63,	d Pipe Ter in. 200 200 200 200 200 200 200 200 200 20	sile M 110 100	ax. - - - - - - - - - - - - - - - - - - -	×/T I M(Ratio a
Tensile Properti <u>Specification</u> API SL 64th ed	es – Tens Gr X X X X X X X X X X X X X X X X X X	ile Req ade 25 4 25 4 2 25 5 2 5 2 5 2 5 2 5 2 5 2	Miremel Mi 25,4 30,5 35,5 42,1 42,1 442,1 56,6 60,1 35,5 42,1 42,1 42,1 42,1 42,1 44,1 56,6 44,1 55,6 55,6	nts Se Vi in. 400 500 500 500 200 200 200 300 300 300 500 200 200 200 200 200 200 2	amles eld 	s and 1	Welde M 45,1 60, 63, 66, 71, 77,1 82, 60, 60, 63, 66, 63, 66,	d Pipe Ter in. 000 200 200 200 200 200 200 200 200 20	sile M 110 100 110 110	ax. - - - - - - - - - - - - - - - - - - -	M M M 	Ratio ax. - - - - - - - - - - - - -
Tensile Properti Specification API 5L 44th ed PSL-1	es – Tens Gr A X X X X X X X X X X X X X X X X X X	ile Req ade 25 3 -2 55 55 55 55 55 55 55 55 55 55 55 55 55	Miremet 84 25,0 35,5 35,5 46,6 66,1 46,6 52,2 56,6 60,1 770,1 35,5 42,1 46,6 52,2 56,6 55,1 42,1 56,6 55,2 52,2 56,6	nts Se Vi in. 400 500 500 500 200 200 500 500 5	amles eld 	s and)	Welde M 45, 60, 63, 66, 71, 75, 77, 82, 60, 60, 63, 71, 75, 77, 77, 77, 77, 77, 77, 77	d Pipe Ter in. 000 200 200 200 200 100 500 700 200 200 200 200 200 200 200 200 2	sile M 110 100 110 110	ax. - - - - - - - - - - - - - - - - - - -	1 1 / V 1 1 / V 1 1 / V 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .	Ratio ax. - - - - - - - - - - - - -
PSL-2	es – Tens Gr A X X X X X X X X X X X X X X X X X X	ile Req ide ide ide ide ide ide ide ide	Miremet 84 25,0 30,1 35,5 42,2 44,2 44,2 44,2 44,2 44,2 55,1 55,2 35,5 35,5 35,2 45,4 56,6 56,7 55,2 55,6 56,6 56,7 55,6 55,6 55,7	nts Se Vi in. 400 500 500 200 500 5	eid 	s and)	Welde M 45,(48,) 60, 63, 66, 71,; 75,(60, 60, 60, 60, 77,(82, 60, 77,(82, 60, 77,(82, 60, 77,(82, 60, 77,(82, 60, 77,(82, 60, 77,(77,(82, 60, 77,(77,(82, 60, 77,(77,(82, 60, 77,(77,(82, 60, 77,(77,(82, 60, 77,(77,(82, 60, 77,(77,(82, 60, 77,(77,(77,(82, 60, 75,(77,(77,(82, 60, 75,(77,()))))))))))))))))))))))))))))))))))	d Pipe Ter in. 500 200 200 200 200 200 200 200 200 200	sile M 110 100 110 110 110	ax. - - - - - - - - - - - - - - - - - - -	1 T/V 1 T/V 2	Ratio **. - - - - - - - - - - - - -
PSL-2	es – Tens Gr A X X X X X X X X X X X X X X X X X X	ile Req ide 25 3 42 55 55 55 55 56 56 56 55 56 56	Miremet 25,0 30,0 35,5 42,1 56,6 55,6 60,2 35,5 42,1 56,6 60,2 55,6 65,1 42,1 56,6 60,2 52,3 52,3 52,4 56,6 60,1 55,6 60,2 56,6 60,2 700,0 700,0	Vi in. 400 500 100 400 200 500 200 2	eid M 65, 71, 75, 75, 79, 81, 87, 99, 92	s and)	Welde M 45, 60, 60, 66, 71, 75, 77, 82, 60, 63, 66, 77, 1, 77, 82, 60, 77, 77, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82	d Pipe Ter in. 300 500 200 200 200 200 200 200 2	sile M 1100 1000 1100 1100 1100 1100 1100	ax. - - - - - - - - - - - - - - - - - - -	1 T/V 	Ratio 8. - - - - - - - - - - - - -
PSL-2	es – Tens Gr A X X X X X X X X X X X X X X X X X X	ile Req de 25 3 3 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5	Mireme Mile Mile Mile Mile Mile Mile Mile Mile	NTS Sec 100 100 100 100 100 100 100 10	eid M. 65, 71, 76, 76, 79, 81, 87, 92, 102	s and)	Welde M 485,1 60, 60, 63, 66, 71, 75,1 82, 60, 63, 60, 63, 60, 77,1, 77,1 82, 77,1 82, 77,1 82, 90,0	d Pipe Ter in. 500 500 200 200 200 200 200 200 200 200	sile M 1100 1100 1110 1110 1110 1110 1110	ax. - - - - - - - - - - - - - - - - - - -	1 T/V 1 T/V 2	Ratio a
PSL-2	es – Tens Gr A X X X X X X X X X X X X X X X X X X	ile Req ide ide ide ide ide ide ide ide	Mireme Mile 25, 30, 35, 35, 42, 42, 42, 42, 56, 65, 70, 35, 56, 65, 70, 35, 56, 65, 70, 35, 56, 65, 70, 35, 56, 65, 70, 35, 56, 65, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 70, 85, 85, 85, 85, 85, 85, 85, 85	Vi in. 200 200 200 200 200 200 200 20	eid M. 65, 71, 76, 79, 81, 87, 92, 102,	s and x. - - - - - - - - - - - - -	Welde M 45, 60, 63, 66, 71, 75, 77, 60, 60, 60, 60, 60, 65, 71, 75, 77, (82, 90, 100,	d Pipe Ter in. 2000 2000 2000 2000 2000 2000 2000 20	sile M 1100 100 1100 1100 1100 1100 1100 11	ax. - - - - - - - - - - - - - - - - - - -	×/T 1 	Ratio ax. - - - - - - - - - - - - - - - - - - -
PSL-2	es – Tens Gr A X X X X X X X X X X X X X X X X X X	ile Req ide ide ide ide ide ide ide ide	Minemet MM 30.1 35.1 42.2 56.6 60.2 52.3 56.6 65.1 52.2 56.6 65.1 52.2 56.6 60.2 65.1 65.2 65.3 65.3 90.1 90.1	Vi in. 400 500 500 100 200 200 200 200 200 200 2	eid M. 65, 71, 75, 76, 76, 81, 81, 81, 81, 81, 82, 92, 102, 112,	s and (*** 	Welde M 4-8. 60. 63. 65. 71. 75. 77. 60. 63. 66. 63. 65. 71. 75. 77. 82. 90. 100.	d Pipe Ter in. 2000 2000 2000 2000 2000 2000 2000 20	sile M 1100 1100 1100 1100 1110 1110 1110 1	ax. - - - - - - - - - - - - - - - - - - -	×/T 1 MA 	Ratio ax. - - - - - - - - - - - - - - - - - - -
PSL-2	es – Tens Gr A X X X X X X X X X X X X X X X X X X	ile Req adde 25 3 3 -2 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	Uremet Mil 30,1 35,2 42,2 56,6 60,7 70,1 35,5 66,5 66,6 56,6 66,7 70,1 56,6 65,7 70,1 70,1 70,1 90,0 100,0 120,0	Nit See in. 600 500 500 500 500 200 500 200 500 200 500 200 500 200 500 200 500 200 500 200 500 200 500 200 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500	eid Mi 555 71, 76, 779, 81, 87, 92, 102, 112, 112,	s and (ax. - - - - - - - - - - - - -	Melde M 48, 60, 63, 66, 71, 77, 60, 66, 66, 66, 71, 77, 82, 86, 71, 77, 82, 90, 100, 1100, 132,	d Pipe Ter in. 200 200 200 200 200 200 200 200 200 20	sile M 1100 1100 1100 1100 1100 1100 1100 1	ax. - - - - - - - - - - - - - - - - - - -	×/11 4 	Ratio ax. - - - - - - - - - - - - - - - - - - -

API 5L Line Pipe

Testing Requirements

- Hydrostatic Testing
 Hydrostatic Testing
 Lists hydrostatic inspection test pressures for all sizes and grades covered by the specification.
 Test pressures are held for not less than:
 Seamless (all sizes) 5 seconds
 Welded [NPS 18 and smaller] 5 seconds
 [NPS 20 and larger] 10 seconds

Mechanical Tests Tensile Test • Seamless – longitudinal • ERW – longitudinal and transverse Charpy Tests – PSL 2 Flattening Test – ERW – All sizes

Number of Tests Flattening – Non-expanded ERW for single lengths, crop ends from each length; for multiple lengths, crop ends from first and last pipe of each coil, plus 2 intermediate rings. Tensile –

remainer	
NPS	On One Length From Each Lot of
5 and smaller	400 or less
6 through 12	200 or less
14 and larger	100 or less

Permissible Variations

Wall Thickness = -12.5 % / +15 % Seamless:0.158"-0.983" wall, tolerance = -0.120" / +0.146" or - /+ 10 % whichever is greater > = 0.984" wall, tolerance = -0.120" / +0.146" or - /+ 10 % whichever is greater [except if 00 is >= 34" 6 wall is >= -984" then tolerance is -10 /+354]

HFW: < = 0.197* wall, tolerance = - /+ .020" = 0.198*-0.590" wall, tolerance = - /+ .10.0%" ≥ 0.591" wall, tolerance = - /+ .060"

- Weights per Foot For Single Lengths Special Plain End and Grade A25 Not more than plus 10% minus 5% For Single Lengths Other Pipe Not more than plus 10% minus 3.5% For Carload Lots Not more than minus 1.75% Note: NPS 4 OD and smaller may be weighed individually or in convenient lots; larger sizes by length

1	2	1
T	L	L

		Diameter Tolera	nce		0	ut of Roun	d Toleran	ce	
OD	Pipe	Body	Pipe	Ends	Pipe	Body	Pipe	Ends	
	SMLS	Welded	SMLS	Welded	SMLS	Welded	SMLS	Welded	
< 2.375	- 0.031	/ + 0.016	- 0.016 /	+ 0.063	Include	ed in the di	iameter to	lerance	
2.375 - 6.625	-/+ 0.0075 (D)		- 0.016 /	- 0.016 / + 0.063		020 (D)		15 (D)	
> 6.625 - 24.00	-/+ 0.0075 (D)	-/+ 0.007 5 [D] up to -/+ 0.125	-/+ 0.005	(D) up to .063"	020	(D)	0.0	15 (D)	
Lengths									
Plain End Pipe	Sh in E	ortest Length ntire Shipment	Minit	mum Avg. I Entire Ship	Length ment	Ma	ximum Le	ngth	
20' Nominal		9.0.		17'6"			22'6"		
40' Nominal		14.0.		35"0"			45'0"		
	14'0"			EDIER			65'0"		
60' Nominal	21'0*			32.0			050		
50" Nominal 80" Nominal Marking Requ Paint Stenciled process of man labulated (NPS Supplemental	irements on or Die Stamp ufacture, type 2 and larger o	28'0" Each Length ed manufacturer of steel, length mly).	's name o (NPS 4 ar	70°0* r mark, S id larger	pec 5L, s only). Tes	ize, weig st pressur	85'0" ht per fo	ot, grade, higher tha	in
60' Nominal 80' Nominal Marking Requ Paint Stenciled process of man tabulated (NPS Supplemental API Specificatio	irements on or Die Stampe ufacture, type 2 and larger o I Annexes on SL contains	28'0" Each Length ed manufacturer of steel, length mly). 15 Supplement:	's name o (NPS 4 ar al Annexe	70'0" r mark, S nd larger (pec SL, s only). Tes dress spe	ize, weigl st pressur cial cond	85'0" ht per fo re when I	ot, grade, higher tha id/or	in 🔶
60' Nominal 80' Nominal Marking Requ Paint Stenciled process of man cabulated [NPS Supplemental API Specificati additional requ Annex A Spe Annex C Trea Annex C Trea Annex C Trea	irements on or Die Stamp ufacture, type 2 and larger o I Annexes on 5L contains irements. cification for w ufacturing pro timent of surfa air welding pro	2100 2200 ⁻ Each Length 2d manufacturer 9 of steel, length mly]. 15 Supplement: elded jointers cedure qualificat ce imperfections	's name o (NPS 4 an al Annexe tion for PS and defec	70'0" r mark, S nd larger (s that add L 2 pipe cts	pec 5L, s only). Tes dress spe	ize, weigl st pressur cial cond	85'0" ht per fo e when l	ot, grade, higher tha id/or	in 📢
60' Nominal 80' Nominal Marking Requ Paint Stenciled process of man abulated (NPS Supplemental API Specification dditional requ Annex 8 Man Annex C Trea Annex C Trea Annex F Req Annex F Rom	irements on or Die Stampi ulfacture, type Z and larger of Annexes on SL contains airements. cification for w nufacturing pro- disgractive in direments for of destructive in uirements for of 2 pipe with res	280° Each Length ed manufacturer of steel, length nily]. 15 Supplement: elded jointers cedure qualificat ce imperfections cedure spection for otho ouplings (PSL 1 c sistance to ductil	's name o (NPS 4 ar al Annexe tion for PS and defec er than so only) e fracture	r mark, S d larger of s that add L 2 pipe cts ur service propagat	pec SL, s only). Tes dress spe or offsho ion	ize, weigl st pressur icial cond	BS'0 ⁴ ht per fo e when h itions an	ot, grade, higher tha hd/or	in
60' Nominal 80' Nominal 80' Nominal Marking Requ Paint Stenciled process of man abulated (NPS Supplemental API Specificatil Annex 8 Man Annex C Trea Annex C Tr	irrements on or Die Stampi ulfacture, type Z and larger of I Annexes on SL contains ariements. clification for w ulfacturing pro- ulfacturing pro- ulfacturing pro- ulfacturing pro- ulfacturing pro- ulfacturing pro- ulfacturing pro- ulfacturing pro- pro- pro- pro- pro- drama as the spipe ordered ordered as 'Th	2800* 2800* Each Length ad manufacturer of steel, length inly]. 15 Supplementa elded jointers cedure qualificat cedure qualificat cedure qualificat spection for oth- oupling (PSL 1 c istance to ductil for outpreservice rough the Flowii for offshore service	"s name o (NPS 4 ar al Annexe tion for PS and defec er than so only] e fracture ne* (TFL) p rice	ar mark, S nd larger of s that add L 2 pipe cts ur service propagat bipe	pec SL, s anly]. Tes dress spe ar offsha ion	ize, weig ot pressur icial cond	85'0" ht per fo e when i itions an	ot, grade, higher tha Id/or	in 🔶
or Nominal ar Nominal Bo' Nominal Marking Requ Paint Stenciled process of man labulated (NPS Supplemental API Specificati additional requ Annex A Spe Annex B Man Annex C Frea Annex C Pel Annex C Pel Annex C Pel Annex F Non Annex I Pel Annex I Pipe Annex K Non Annex K Non Annex K Non Annex K Son	airements on or Die Stampe unfacture, type 2 and larger of 1 Annexes on SL contains inements. clification for w infacturing pro- tament of surfa- air welding pro- destructive in air welding pro- destructive in a pipe ordered ordered as "Th pipe ordered o	28'0' 28'0' Each Length ed manufacturer of steel, length inly]. 15 Supplement: elded jointers cedure qualificat ce imperfections cedure spection for oth- ouplings [PSL 1 of istance to ductil for our service rough the Flowill for our service rough the Flowill for our service rough the Flowill for our service	r's name o (NPS 4 ar al Annexe and defect er than sou only) e fracture ne* (TFL) p rice e ordered 1	ar mark, S nd larger of s that add L 2 pipe tts ur service propagat appe for sour so 3183 and	pec 5L, s only). Tes dress spe or offsho ion ervice anu	ize, weigi it pressur icial cond ore service d/or offsh e docume	85'0' ht per fo re when l itions an e ore servi	ot, grade, higher tha id/or ice	n
or Neminal Bo' Neminal Bo' Neminal Marking Requ Paint Stenciled process of man labulated (NPS Supplemental Annex 8 Man Annex 8 Man Annex 8 Man Annex 9 Rep Annex 9 Rep Annex 1 Pipe Annex 1 Pipe Annex 1 Stence Annex N Idence Annex N Idence	airements on or Die Stampe unfacture, type 2 and larger of 1 Annexes on SL contains inements. clification far w airements. clification far w airweiding pro- destructive in airweiding pro	2800* 2800* Each Length ed manufacturer er of steel, length mly]. 15 Supplement: elded jointers cedure qualificat ce imperfections cedure spection for oth- istance to ductil for sour service rough the Flowil for sour service for point of pipt f terminology be lanation of Devia	's name o (NPS 4 ar al Annexe: tion for PS and defec er than so only) e fracture e fracture e ordered f tween ISO tions	ar mark, S nd larger i s that add L 2 pipe tts ur service propagat aipe for sour so 3183 and	pec 5L, s only]. Tes dress spe or offsho ion ervice and its sourc	ize, weigl st pressur scial cond ore service d/or offsh e docume	85'0" ht per fo re when l itions an e ore servi	ot, grade, higher the id/or	in

API Specification SE PSE	1 and PSE 2 Comparison		
	Summary of Differences Betw	een PSL1 and PSL2	
Parameter	PSL 1	PSL 2	Reference
Grade Range	L175 or A25 through L485 or X70	L245 or 8 through L830 or X120	Table 1 Table 2
Grade Suffix	-	R, N, Q ar M	Table 2 Footnote b
Type of Pipe Ends	Plain End, Belled End, Threaded , Special Coupling Pipe End	Plain End Only <=0.125°t Square Cut >0.125° 30° Bevel Unless Otherwise Agreed	Table 2, 9.12.1.2 9.12 9.12.5.3
Manufacturing Routes	Not Defined in Detail	Defined in Detail	Table 3
Manufacturing Procedure Qualification	-	If Agreed	7.2 c) 40) Annex B
Resistance to Ductile Fracture	-	If Agreed	7.2 c) 49) Annex G
For Sour Service	-	If Agreed	7.2 c) 50) Annex H
Offshore Pipe	-	If Agreed	7.2 c) 54) Annex J
Steel Making	-	Killed, Fine Grain Practice	8.3.2
Heat Treatment of Weld Seam and the HAZ of HFW Pipe	Simulate Normalizing OR by Agreement Other Methods	Heat Treated so as to Simulate Normalizing	8.8.1 - 8.8.2
Chemical Traceability of Heat Identity	Traceable Only Until All Related Chemical Tests are Performed and Conformance is Shown	Each Length of Pipe Must be Traceable Even After Completion of all Related Chemical Tests and Conformance is Shown	8.13.1 - 8.13.2
Physical Properties Traceability of Unit Identity	Traceable Only Until All Related Mechanical Tests are Performed and Conformance is Shown	Each Length of Pipe Must be Traceable Even After Completion of all Related Mechanical Tests and Conformance is Shown	8.13.1 - 8.13.2
Max C Seamless Pipe N	0.28% for Grades B - X60	0.24% for Grades B - X60	9.2.2, Table 4 & 5
Max C Seamless Pipe O	0.28% for Grades 8 - X60	0.18% for Grades B - X60	Table 4 & 5
Max C Welded Pipe M	0.20% for Grades B - X70	0.22% for Grades 8 - X56 0.12% for Grades 60 - X20	Table 4 & 5
Max Si Seamless Pipe R	-	0.40% for Grades 8 - X46 0.45% for Grades 52 - X70	Table 4 & 5
Max Si Welded Pipe M	-	0.45% for Grades 8 - X70	Table 4 & 5
Max Mn Seamless Pipe R	1.30% for Grade X42	1,20% for Grade X42	Table 4 & 5
Max Mn Seamless Pipe N	1.30% for Grade X42	1.20% for Grade X42	Table 4 & 5
Max Mn Seamless Pipe Q	1.20% for Grade B 1.30% for Grade X42 1.40% for Grades X46 - X70	1.40% for Grades 8 - X42 1.50% for Grades X52 - X56 1.70% for Grades X60 - X70	Table 4 & 5
Max Mn Welded Pipe M	1,40% for Grade X42 1,40% for Grade X60 1,45% for Grade X55 1,45% for Grade X70	1.30% for Grade X42 1.60% for Grade X60 1.60% for Grade X05 1.20% for Grade X70	Table 4 & 5
Max P Seamless Pipe	0.030% for Grade B - X70	0.025% for Grade 8 - X70	Table 4 & 5
Max P Welded Pipe	0.030% for Grade B - X70	0.025% for Grade 8 - X70	Table 4 & 5
Max S Seamless Pipe	0.030% for Grade 8 - X70	0.015% for Grade 8 - X70	Table 4 & 5
Max S Welded Pipe	0.030% for Grade 8 - X70	0.015% for Grade 8 - X70	Table 4 & 5
Max V Seamless Pipe N	-	0.00% for Grade X42 0.07% for Grade X46 0.10% for Grade X52 - 360	Table 4 & S
Max V Seamless Pipe Q	_	0.05% for Grades 8 - X52 0.07% for Grades X56	Table 4 & S
Max V Welded Pipe M	-	0.05% for Grades B - X46	Table 4 & 5
Max Nb Seamless Pipe N	-	0.05% for Grades X42 - X60	Table 4 & 5
Max Nb Seamless Pipe Q	-	0.05% for Grades B - X56	Table 4 & 5
Max Nb Welded Pipe M	-	0.05% for Grades 8 - X46	Table 4 & 5
Max Ti Seamless Pipe N	-	0.05% for Grades B - X60	Table 4 & 5
Max Ti Seamless Pipe Q	-	0.04% for Grades 8 - X56	Table 4 & 5
Max Ti Welded Pipe M	-	0.04% for Grades B - X46	Table 4 & 5

						122	2					
							_					
	1					_						
Outside		wall		Wei	ight		Specified	Minimum	Mill Hyd	Irostatic	Lifting also	
Diameter NPS		Schedule		Ib/ft	Tons/	Grade	(P	nsi)	(P	sij	Burst	
[inches]	Inches	Number	Class	End	Mile		Vield	Tensile	Standard	Alternate	լթայ	
	625											
000	.025			F1 00		~ 50	F2 200	<5 T00	2.000	6.300	0.000	
	0.594	100		51.00	134.63	X52 X56	52,200	66,700	3,000	5,390	9,190	
	0.594	100		51.00	134.63	×50	60,000	75,600	3,000	6,220	10 390	
	0.594	100		51.00	134.63	×65	65,300	77,600	3,000	6,750	10,690	
	0.594	100		\$1.00	134.63	×70	70,300	82,700	3,000	7,260	11,390	
	0.594	100		51.00	134.63	X80	80,500	90,600	3,000	7,260	12,480	
	0.625			53.45	141.11	8	35,500	60,200	2,800	2,800	8,720	
	0.625			\$3.45	141.11	c	40,000	70,000	2,800		10,140	
	0.625			53.45	141.11	X42	42,100	60,200	3,000	4,580	8,720	
	0.625			53.45	141.11	X46	46,400	63,100	3,000	5,040	9,140	
	0.625			51.45	141.11	X52	52,200	66,700	3,000	5,670	9,670	
	0.625			53.45	141.11	X56 X60	56,600	71,100	3,000	6,150	10,300	
	0.625			53.45	161.11	x65	65 300	72,600	3,000	7 100	11,250	
	0.625			\$3.45	141.11	×70	70,300	82,700	3,000	7,260	11,990	
	0.625			53.45	141.11	×80	80,500	90,600	3,000	7,260	13,130	
	0.719	120		60.77	160.42	8	35,500	60,200	2,800	2,800	10,040	
	0.719	120		60.77	160.42	c	+0,000	70,000	2,800		11,670	
	0.719	120		60.77	160.42	3042	42,100	60,200	3,000	5,260	10,040	
	0.719	120		60.77	160.42	X46	46,400	63,100	3,000	5,800	10,520	
	0.719	120		60.77	160.42	x52	52,200	66,700	3,000	6,530	11,120	
0D 8.625	0.719	120		60.77	160.42	×56	56,600	71,100	3,000	7,080	11,850	
Seamless	0.719	120		60.77	160.42	X60	60,200	75,400	3,000	7,260	12,570	/
	0.719	120		60.77	160.42	×30	30,300	77,800	3,000	7,260	12,940	
	0.719	120		60.77	160.42	×80	80,500	90,600	3,000	7,260	15,110	
	0.812	140		67.82	179.04	в	35.500	60.200	2.800	2,800	11.340	1
	0.812	140		67.82	179.04	c	+0,000	70,000	2,800		13,180	S .
	0.812	140		67.82	179.04	3942	42,100	60,200	3,000	5,950	11,340	
	0.812	140		67.82	179.04	X46	46,400	63,100	3,000	6,550	11,880	
	0.812	140		67.82	179.04	x52	52,200	66,700	3,000	7,260	12,560	
	0.812	140		67.82	179.04	X56	\$6,600	71,100	3,000	7,260	13,390	
	0.812	140		67.82	179.04	X6 0	60,200	75,400	3,000	7,260	14,200	
	0.812	140		67.82	179.04	X65	30,200	77,600	3,000	7,260	14,610	
	0.812	140		67.82	129.05	100	80,500	30,600	3,000	7,260	17,050	
	0.875	140	XXS	72,49	191.38	B	35,500	60,200	2,800	2,800	12,210	
	0.875		XXS	72.49	191.38	c	+0,000	70,000	2,800		14,200	
	0.875		XXS	72,49	191.38	342	42,100	60,200	3,000	6,410	12,210	
	0.875		xxs	72,49	191.38	X46	46,400	63,100	3,000	7,060	12,800	
	0.875		xxs	72.49	191.38	X52	52,200	66,700	3,000	7,260	13,530	
	0.875		xxs	72,49	191.38	X56	56,600	71,100	3,000	7,260	14,430	
	0.875		XXS	72,49	191.38	X60	60,200	75,400	3,000	7,260	15,300	
I	0.875		XXS	72,49	191.38	x65	65,300	77,600	3,000	(,260	15,740	
						57						

Appendix (2): Different Impressed Current Anodes Properties

The represented data in this section is taken from: "Impressed Current Cathodic Protection, Section Two, Cathodic Protection Co. Limited, Venture Way, Grantham, Lincs NG31 7XS UK. Tel: +44 (0)1476 590666 Fax: +44 (0)1476 570605, Email: cpc@cathodic.co.uk Website: www.cathodic.co.uk, Registered Office: Minalloy House, Regent Street, Sheffield S1 3NJ, UK VAT No.116 8408 71, Reg'd in England No. 478098"

RAPPLICATION Marine Structures, Seawater Intakes, Deepwell Groundbeds, Horizontal Groundbeds, Distributed Anodes, Tank Internals & Tank Bottoms. Suitable For Use In Soils, Mud, Carbonaceous & Petroleum Coke Backfill; Fresh, Br

CHEMICAL COMPOSITION

	Normal	Chrome		
Silicon	14.50%	14.50%		
Manganese	0.75%	0.75%		
Carbon	0.85%	0.95%		
Chromium		4.50%		
Iron	Remainder	Remainder		

CONSUMPTION RATES

Туріс	al Rates
Normal Alloy	0.5 kg/Amp/year
Chrome Alloy	0.2 kg/Amp/year

CABLE CONNECTION

Anode/Cable Connection : Connection less than 0.001 0hm

ASHEET	
.1	
	1

	124
IMPRESSED CURREN	T CATHRODIC PROTECTION DATASHEET 2.1.1 ICON IRON ROD ANODES
Available cat	CABLE TYPES ite types include : XLPE/PVC, HMWPE, PVDF(Kynar), XLPE/PVC/SWA/PVC, EPR/CSPE
	STANDARD ANODE TYPES AND WEIGHTS
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	CANISTERED ANODES
	Brandard Stress Brandard Geoges 150nm0Le x 1050mm L 1.0mm 30bg 950mm0Le x 2000mm L 1.8mm 18bg 300mm0Le x 2000mm L 2.0mm 14bg
2.1.1 En	hune Wwy, Granthem, Linca NEST 278 LK, Tel: +44 (0)1475 500065 Fau: +44 (0)1475 570065 all: geoleastenisis ex ut Weshiste: www.exachedie.eu.uk jetared Oficie: Mineley Hisae, Rejert Strivet, Sheffeld S1 3NJ, LK WIT No. 118 8408 71, Rejti in Eighert No. 478098
	ICON IRON BULAR ANODES
APPLICATION Marine Structures, St & Tank Bottoms (not Backfill; Fresh, Bracki	sweiter Intakes, Despwell Groundbeds, Horizontal Groundbeds, Distributed Anodes, Tank Internals recommended for large diameter tanks). Suitable For Use In Solis, Mud, Carbonaceous & Pet Coke in and See Water
	SILICON IRON TUBULAR ANODE DATA

 CHEMICAL COMPOSITION

 Silicon Iron ASTM A518 - 86 Grade 3

 Silicon
 14.20 - 14.75%

 Silicon
 15.00 - 10.00m

Silicon	14.20 - 14.75%
Manganese	1.50% Max
Carbon	0.75 = 1.15%
Chromium	3.25 - 5.00%
Capper	0.50% Max
Malybdenum	0.20%Max
iron	Remainder

TECHNICAL DATA

Tensile Strength (1/2"Dia bar)	15,000 psi	
Compressive Strength	100,000 psi	
Brinell Hardness	520 bhn	
Density	7.0 gr/mi	
Melting Point	2,300 °F	

Consumption Rate	Typical rates – Oreane: 0.2kg/A/yr For DP design a current densky of not more than 3DA/m ² of anode surface is recommended
Anode/Cable Connection	Centre connection less than 0.001 Ohm resin encapsulated
Cable Types	XLPE/PVC, HMWPE, PVDF(Kynar); XLPE/PVC/SWA/PVC, EPR/CSPE

Versure Way, Brantham, Lince NG31 7V5 LK. 1st +44 (2)1476 5900666 Fax: +44 (2)1476 570605 Email: epoRestedic.cs.uk Webste: www.esthedic.cs.uk Registerio Ofex: Onder Yman, Regist Sond, Smith 81 Jul, JK NdT Ha. 118 8408 71, Regist Inder Ha. 47508 DATASHEET 2.1.2

STANDARD ANODE TYPES, WEIGHTS, DIMENSIONS AND OUTPUTS

Туре	Average Wt		Approx Area		Outside Dia		Inside Dia		Length		Nominal Discharge
	Ibs	kgs	ft#	m²	mm	in	mm	in	mm	in	Amps
MS-1	31	14.1	2.4	0.2	71	2.8	45.7	1.8	1067	42	1.5-2.0
MS-2	46	20.9	4.0	0.4	58	2.3	35.6	1.4	2134	84	3.0-4.0
MS-3	63	28.6	4.9	0.5	71	2.8	45.7	1.8	2134	84	3.5-5.0
MS-4	85	39.2	6.9	0.6	96	3.8	74.4	2.9	2134	84	6.0-7.0
MS-5	110	49.9	8.7	0.8	124	4.9	99.0	3.9	2134	84	6.0-8.5

APPLICATION Marrie Brudtures, Seeweter Intakes, Despivell Groundbeds, Horizontal Groundbeds, Distributed Anades, Tark Internals & Tark Bottmen: Suitable For Use In Solls, Mud, Carbonnacous & Pet Cate Bucklit, Frazi, Brackah and See Water

T11 ----DE DATA

	Titanium ASTM B338 Grade	1 or 2					
Coating	IrO2/Ta2O5						
Coating Method	Multi pass thermal decomposition of precious metal salts technique						
Diameter	25.4mm						
Wall Thickness	0.90mm						
Consumption Rate	0.5 • 4.0 mg/A/yr dependir	ng upon CP application conditi	ons				
Utilisation Factor	Dimensionally Stable						
Working Environment	Suitable for Cl ₂ & C ₂ or com	bination of both					
Operating Characteristics	Environment	Max Current Density (A/m ²)	Life (Years)				
	Carbonaceous Backfill	50	20				
	Calcined Petroleum Coke	100	20				
	Freshwater	100	20				
	Brackish Water	100-300	20				
	Seawater	600	20				
Cable Types	Costing loading can be adjusted for HMW/PE//PVDF(Kynar); XLPF Maximum 10:50mm ⁴	r specific lifetime/current density re c/PVC/SWA/PVC; EPR/CSP	quinament. E				

DATASHEET Venture Way, Grantham, Lincs NG31 7X5 LK. 1st: 444 (0)1476 590666 Fax: 444 (0)1476 570605 Email: epoResthadic:co.uk Welsike: www.estbadic.co.uk Regeleren Offen: Mediag Haas, Regert Street, Johnied 31 Jul, UK VAT He. 116 8408 71, Regte in Englerd Ne. 47808

STANDARD ANODE TYPES, DIMENSIONS AND OUTPUTS

Туре	0	D	Len	igth	Current Output (Typical)	Current Output (Typical)	
Soil (with carbon backfill)	mm	inches	mm inches		(Amps from 5-70°C)	(Amps from D-5°C)	
S-2.5/50	25 1		500	19.7	4	2	
S+2.5/100	25	1	1000	39.4	8	4	
Fresh Water							
PW-2.5/50	25	1	500	19.7	4	2	
FW-2.5/100	25	1	1000	39.4	8	4	
Sea Water							
SW-2.5/50	25	1	500	19.7	25	5	
SW-2.5/100	25	1	1000	39.4	50	10	
Mud (*)							
M-2.5/50	25	1	500	19.7	2.4	1.5	
Mk2.5/100	25	1	1000	39.4	4.8	3	
Brackish Water (**)					(Amps from 10-70°C)	(Amps from 0-10°C)	
BW-2.5/50	25	1	500	19.7	4+12	2+6	
BW-2.5/100	25	1	1000	39.4	8+24	4+12	

(*) Current outputs in mud depend on site conditions (sea mud or river mud, etc) (**) Current outputs in brackish water depend on site conditions & chloride concentrations.

NOTES
Cotating loading may be adjusted to suit a particular current density or design life
Standard anodes are designed for 2D year life, however, design life of up to 5D years can be catered for.
Tubular MMD anode strings can be supplied to Clients specific requirements.
Other tube diameters are available on request, 16mm dia & 32mm dia.

APPLICATION Reinforced Concrete Structures & Tank Bottoms

STANDARD ANODE TYPES, DIMENSIONS AND OUTPUTS APPLICATION Sand & Concrete

RIBBON MMD DATA	
Substrate	Titanium ASTM B338 Grade 1
Coating	IrO ₂ /Ta ₂ O ₅
Coating Method	Multi pass thermal decomposition of precious metal salts technique
Width (Nam)	0.25* (6.35mm)
Thickness (Nom)	0.025* (0.635mm)
Standard Coil Length	250' (76.22m)
Standard Coil Weight	2.5lbs (1.12kg)
Surface Area of Ribbon Consumption Rate	0.014m ² /m 0.5 • 4.0 mg/A/yr depending upon DP application conditions
Utilisation Factor	Dimensionally Stable
Working Environment	Suitable for Cl ₂ & O ₂ or combination of both
	CLIFICENT OLITIFUT IN FINE SAND 12.8mA/# (42mA/m) when operating at a current density of 0.278A/#2 (32.4m2). 50 year design life when operating at a current density of 0.278A/#2 (32.4m2).
Operating Characteristics	CLIDDENT OF ITRUIT IN CONCRETE
	0.45mA/ft (1.5mA/m) when operating at a current density of 10.19mA/ft ² (110A/m ²).
	100 year design life when operating at a current density of 10.19mA/ft2 (110A/m2).
Titanium Conductor Bar	Width: 0.50* (12.7mm); Thickness: 0.035* (0.9mm) Coil length: 250* (76.22m); Coil Weight: 8.5lbs (3.8kg)
Substrate	Titanium ASTM B 265 Grade 1

DATASHEET 2.2.2 Venture Way, Granzham, Lincs NG31 7X5 LK. Tal: +44 (D)1476 590666 Fac: +44 (D)1476 570605 Email: opeResthedic on uk Website: www.cathodic.co.uk Registered Dire: Media Haan, Repert Brend, Selfield 51 SUL, LK VAT No. 118 8408 71, Reg1 in English No. 4780

STANDARD ANODE TYPES, DIMENSIONS AND OUTPUTS allable in two standard sizes, with two standard current ratings. Other sizes and rating are available upon request. MMD Wire Anode consists of solid titanium wire which meets ASTM B348 Grade 1 or 2 standards, that has been coated with Mixed Metal Oxide.

APPLICATION Tank Bottome, Tank Internals, Pipeline Internals, Canistered Anodes, Continuous Horizontal Groundb Discontinuous Horizontal Groundbeds, Shallow Vertical Groundbeds, Deep Anode Groundbeds.

WIRE ANODES ELECTRICAL RESISTANCE 1.5mm diameter : 75,537 microhms/tt / 247,821 microhms/m 3.0mm diameter : 18,884 microhms/tt / 61,954 microhms/m

nce @ 25°C. Mechanical properties are based on typical room temper ctrical re

PIGGYBACK WIRE ANODE SYSTEMS For use on pipelines, the product comprises Mixed Metal Dakis Wire Anode material "pigghacked" to a cable at predetermined intervals [to aid ourver distribution]. The wire and cable is contrained within a cottan sock filled with calcined petroleum coke threase backfil. The Pigghack Sock Anode is placed alongside the pipeline with suitable lengths of cable at each and of the long allowed for termination into a junction hox.

GYBACK WIRE SOCK ANODE SYSTEMS

For use on pipelines, the product comprises March Metal Oxids Wire Anote material "sign/backed" to a cable at produtermined transla for aid corrent distribution and attancession. The wire and cable is contained within a catton sock filled with calcined petroleum coles breaze backfil. The Yigg/back Sock Anode is placed alonguide the pipeline with suitable lengths of cable at each of of the loop allowed for termination into a junction box.

Venture Way, Genzham, Linco M331 7/58 LK. Tel: +44 (0)1476 590566 Fac: +44 (0)1476 570505 Email: genzhanten en Mehriner avene entendin on als Begiererel Ofice: Mealey House, Regel Screet, Sheffel 31 3NJ, LK WAT No. 118 BMD8 71, Deglé n. Engléné No. 478088	DATASHEET 2.2.3
---	--------------------

APPLICATION

Magnetics is a natural mineral with a high corrosion resistance making is an excelent ander material. The anodes are case dysthriding and hollow. Cables are correct connected to give a uniform dissipation of current from the anode surface. The anode to cable connection is electrically sealed with a dielectric compound and an anode cap. Suitable for use in Horizontal Connection, is electrically sealed with a dielectric compound and an anoder par-

MAGNETITE ANODE DATA

Specific gravity	4.7-4.8	kg/dm3
Brinell hardness (WB5/187.5/15) Bending strength Density Meting point Coefficient of linear expansion	344 5 4,71 1500 6.4x10-6	kN/am2 g/am3 *C 1/*C (0-100*C)
Consumption rate Current density (1) Efficiency	0.02 0.70 90%	kg/A year mA/dm2

(1) depends on environment

Same -	Street and a street
FeO	28 - 32%
Fe304	60 - 64%
Balance	4 . 12%

129 IMPRESSED CURRENT CATHODIC PROTECTION DATASHEET 2.3.1 MAGNETITE ANODES CATHODIC PROTECTION STANDARD ANODE TYPES WEIGHTS AND OUTPUTS TYPE MA-SEA TYPE MA-CHAIN Dif annual Dif annual an Can Panah tuja anta-Surrounding electrolyte: Applications: chlorine containing soll or deep groundbeds open stagnant water hole, deep groundbeds closed hole, water tank Surrounding electrolyte: Applications: flowing seawater or platforms, jetties, brackish water harbours Diameter Total length Effective length Total weight Min, effective ma 60 mm 740 mm 600 mm Diameter Total length 60 mm 760 mm 710 mm 710 mm 6.0 kg 4.7 kg 13.4 dm² Effective length 600 mm 6.2 kg 4.7 kg 11.3 dm² Total weight Min. effective mass Surface area 11.3 dr Max. current load (groundbeds) 6.0 A Max. current load (tanks) 16.0 A rface area Max. current load 16.0 A CANISTER FOR MA-U & MA-CS COKE BACKFILL Minimum carbon content 90% Maximum moisture content Maximum resistivity 5% 10m Density Particle size (dia.) 700-950 kg/m 20 mm max. Inderd carister Diameter (mm) Length (mm) Total weight (kg) CAN 10 180 1000 22 CAN 15 300 1500 85 CAN 20 300 2000 110 Verture Way, Grantham, Linca NG31 7/35 LK. Tel: +4-4 (0)1476 590666 Fac: +4-4 (0)1476 570605 Email: opeRvathodic.co.uk Website: even cathodic.co.uk Pageared Offici Mediay Touca, Regert Serve, Settledia 51 StuL, UK VXT No. 116 8408 71, Regit in England No. 4780 DATASHEET 2.3.1

APPLICATION

Plain graphite anodes are used in dry soil conditions installed in groundbeds containing compacted carbonaceous backfill. Lineaed oil impregnated anodes can be used in maint saline sols, in firsh and frackish water, and for seawater applications. Graphite anodes can be installed as horicontal or despitell groundbeds to protect buried pipelines or due to their lightweight nature they can be suspended into the electricityse to protect water tank internal surfaces or marine structures.

GRAPHITE ANODE DATA

Cathodic Protection Co Ltd graphite anodes are manufactured in two standard sizes - 3" dia up to 60" long & 4" dia up to 60" long. There are two types of graphite anodes - plain & Inseed oi Impregnated. Plain graphite or searcher and interpreteria.

CONSUMPTION RATES

Environment	Current Density	Consumption Rate
	Amps/M ²	kg/Amp/Year
Fresh Water	2.5 - 3	0.1 - 0.3
Sea Water	10	0.3 - 0.5
Carbonaceous Backfill	10	0.1 - 0.3

Venture Way, Greethem, Lince NG91 7%5 UK. Tet: +44 (0)1476 5905655 Fac: +44 (0)1476 5706055 Email: op:0extNotific exa & Website: www.cethelic.co.uk Regionerol Discr. Monity Heau, Brayer Elbert, Shariffeld S Juli, UK W No. 116 8408 71, Regide England No.-478038

TYPICAL CHARACTERISTICS gm/cm² Plain Impregnated

Properties	gm/cm2	Plain graphite	Impregnated graphite
Bulk density	gm/cm ^a	1.55	1.65
Porosity	H ₂ O%	30	19
Flexural strength	N/mm ²	15	20
Compressive strength	N/mm²	19	44
Electrical ¹¹	Ωµm	7.5	14
Resistivity ²		12	20
Thermal	W/mk	198	38
conductivity		116	35
Mean linear			
thermal coefficient	l/k	0.9	1.9
of expansion		2.7	3.2
Ash	96	<0.5	<0.5

⁹ parallel to grain structure ² perpendicular to grain structure

ANODE TO CABLE CONNECTION Cable for Graphite Anodes is supplied according to customer requirements. We can offer the following insulation and sheathing types FVC. XLPE/FVC, HAWNE, KTVAR, HALAR, ERP/CSPE.

DATASHEET
2.3.2
Venture Way, Granthum, Lincs NG31 7XS LK. Tal: +44 (0)1476 5500666 Fac: +44 (0)1476 570605
Email: epeReathedic.ex.ak Webbletz: enwac estabelic ca.uk
Fagularent Dite:: Meally mous, Repart Seven, Serielis B3 134, LK VAT No. 116 8408 71, Reg1 in Englinet No. 47008

APPLICATION

• Unarrowster statistications: Whereas, pitcles, sheet ple wells and plens. Unarity not type anotes distributed
installed in areas not failed to cause Anotes damage i.e. out of the way of berthing reseases, mooring regulated be
installed in areas not. Salet to cause Anote damage i.e. out of the way of berthing reseases, mooring regulated be
installed in areas not. Salet to cause Anote damage i.e. out of the way of berthing reseases, mooring regulated be
installed in areas not. Salet to cause Anote damage i.e. out of the way of berthing reseases, mooring regulated be
installed in areas not. Salet to cause Anote damage i.e. out of the way of berthing reseases, mooring regulated be

Exterior protection of ships hulls - anodes in the shape of plates, discs or strips. Housed in chlorine resistant plastic as the anode operates at high current denaties in seawater which produces chlorine.
 Water tank internal protection - usually distributed rod anodes are used for this type of installation by suspending from the tank rod.

Internal protection of plant - large diameter water pipelines such as cooling water can be protected using rod or wire shaped anodes.

PLATINISED TITANIUM ANODE DATA

PLATINISED TITANIUM ANODE DATA. Plainised Teanium anodes are manufactured from a commercially gue teanium substrate plated with a very thin coating of platnum. The itanium serves simply as the anode body and the conductor, the active anode element being the platnum coating.

The usual thickness of the platinum coating is approximately 2.5 microns, however, this coating thickness should be increased to 5.0 microns for harsher environments. The base metal is available in a wide variety of standard shapes - rolds, tubes, mash, sto - which can be fabricated into non-metalike mounts for stachment to the structure to be cachodically protected.

The thickness of the platinum coating and the current density at which the anode is operated determine the useful life of the anode. The maximum voltage at the anode to electrolyte interface should not exceed 8 Volta in electrolytes containing childred as voltages greater than this volte could cause local corresion on any unplatinized portions of

Platinised titanium anodes should not be used in electrolytes containing fluoride as titanium axide dissolves in fluoride. Anodic passivation does not protect the titanium substrate in such electrolytes. The advantage of platinised titanium anodes is that they can be operated at high current densities with very low consumption rates.

Venture Wey, Brancham, Lincs ND31 775 LK. Tel: +44 (0)1478 550566 Fac: +44 (0)1476 570505 Email: expetitudic.ex.ak Website: www.cathofic.ex.ak Registered Otto: Advise Integr. Strat., Stratelli 51 314, UK NJ No. 115 8408 71, Regit in Enginet No. 478058

CURRENT DENSITY AND CONSUMPTION RATES

FEATURES • Anades can work at high current densities without decomposition or dissolving. · Favourable strength to weight ratio.

Anodes can be smaller and more compact than comparable conventional anodes.

- Can be manufactured in a wide variety of shapes and sizes.
- Lightweight support tube installation for Pt Ti anode installation.

ANODE INSTALLATION EXAMPLES

DATASHEET 2.3.3

Venture Way, Grantham, Linca NG31 7X5 UK. 7st: 444 (0)1475 590068 Fac: 444 (0)1476 570605 Email: epotexteoline: on all Website: www.estholife.co.uk Regelerate Office: Kinniky novae, Regel Stream, Similari S1 314, UK VX1 No. 115 6408 71, Reg1t in Englerel No. 47809

Appendix (3): 240 W and 50 W PV Modules Datasheets

Datasheet of 240 W Module

133

Specifications are for reference only, and are subjected to changes due to technology advancements from time to time.

	Warranty
5 years	product quality limited warranty
10 years	90% power limited warranty
25 years	80% power limited warranty

IEC61215, IEC61730 accredited for : RS-P618-130W, RS-P624-190W, RS-P630-220W, RS-P636-270W series

Office : 17 Phan Phu Tien, District 5, Hochimian City, Vietnam Factory : C2 Duc Hoa Ha Ind. Park, Duc Hoa, Long An, Vietnam Tel: (84-8) 626 11 071 Fax: 626 11 072 www.redsun-solar.com

Datasheet of 50 W Module

We turn sunlight into power.

www.solarworld-usa.com

SW-01-5050US 07-2011

Sunmodule' SW 50 poly RMA

PERFORMANCE UNDER STANDARD TEST CONDITIONS (STC)*

		SW 50	
Maximum power	P	50 Wp	
Open circuit voltage	u_	22.1 V	
Maximum power point voltage	U	18.2 V	
Short circuit current	L.	2.95 A	
Maximum power point current	L	2.75 A	

"STC: 1000W/m?, 25°C, AM 1.5

PERFORMANCE AT 800 W/m², NOCT, AM 1.5

		SW 50	
Maximum power	P	35.9 Wp	
Open circuit voltage	υ	19.8 V	
Maximum power point voltage	u	16.3 V	
Short circuit current	L	2.38 A	
Maximum power point current		2.20 A	

Minor reduction in efficiency under partial load conditions at 25°C: at 200W/m3, 95% (+/-3%) of the STC efficiency (1000 W/m3) is achieved.

COMPONENT MATERIALS

Cells per module	36
Cell type	Poly crystalline
Cell dimensions	2.44 in x 6.14 in (62 mm x 156 mm)
Front	tempered glass (EN 12150)

THERMAL CHARACTERISTICS

NOCT	46 °C
TCL	0.034 %/K
TC U_	-0.34 %/K
TC P	-0.48 %/K

SYSTEM INTEGRATION PARAMETERS

Maximum system voltage SC II	1000 V
Maximum reverse current	12 A
Increased snowload acc. to IEC 61215	5.4 kN/m ²
Number of bypass diodes	2

ADDITIONAL DATA

Power tolerance	+/- 10 %
Junction box	IP65
Maximum outer cable diameter	0.31 in (7.8 mm)
Maximum wire cross section	4 mm ²

SolarWorld AG reserves the right to make specification changes without notice. This data sheet complies with the requirements of EN 50380. **Appendix (4): Classic Solar Batteries Datasheet**

≈Classic[®]

136

Network Power > Product overview

Industrial Batteries The powerful range of Network Power

Energy storage solutions for critical systems that require uninterrupted power supply. GNB[®] Industrial Power offers powerful batteries for your individual needs. The below table is only indicative and depends on customers' specific applications. For more information please ask a GNB sales representative.

Applica-		Battery ranges																		
tions			So	nnensch	ein			Marc	then		Sprinter		Absolyte	Powerfit	Classic					
	A400/ A600	A400 FT	A500	A700	SOLAR	RAIL	Power Cycle	M-FT	M/L/ XL		NAP	IP-FT	GMSX	\$300	GitaE	OCSIM	OPzS	Energy Bloc/OGi	Solar	rail (
Telecom	•	•	•	•			•	•	•	•		•	•			•	•			
urs A		•	•	•			•	•	•	•	•	•	•							
Emergency Egiting	•		•						•		•	•		•			•			
Security	•		•	•							•	•		•						
	•	•		•			•	•	•	•			•							
talbaya	•	•	•	•		•	•	•	•	•			•							
Phofavalitaic					•		•						•							
	•	•	•	•			•	•	•	•	•	•	•	•						

The GNB Network Power brand overview

- Sortaiser Powerfit is fixed in an absorbent glass mat (AGM) > Excellent high current capability

 - > Very economical
 - > Maintenance-free (no topping up)

≈€lassic'

- > VRLA batteries (Valve Regulated Lead Acid) in which the electrolyte is fixed in a gel (dryfit technology)
- > Inventor of Gel technology
- > Highest reliability, even in non-optimal conditions
- > Particularly suitable for cyclic applications
- > Maintenance-free (no topping up)
- > Conventional lead-acid batteries with liquid electrolyte
- > Extreme reliability, proven over decades
- > Low maintenance
- > Further information about service is available on page 10

Network Power > Classic Solar > Classic OPzS Solar > Technical data

Classic OPzS Solar Technical data

Technical characteristics and data

Type	Part number	Norn. voltage	Nominal capacity	Length (I)	Width (b/w)	Height* (T)	Installed length	Weight incl. acid	Weight acid**	Internal resistance	Short circuit	Terminal	Pole pairs
			C DB				(1)				current		
		v	25 °CAh	max. mm	na. mn	max. mm	nas. nn	approx. kg	approx. kg	mühm			
OPzS Solar 190	NVSL020190WC0FA	2	190	105	208	395	115	13.7	5.20	1.45	1400	F-M8	1
OPzS Solar 245	NVSL020245WC0FA	2	245	105	208	395	115	15.2	5.00	1.05	1950	F-M8	1
OP2S Solar 305	NVSL020305WC0FA	2	305	105	208	395	115	16.6	4.60	0.83	2450	F-M8	1
OP2S Solar 380	NVSL020380WC0FA	2	380	126	208	395	136	20.0	5.80	0.72	2850	F-M8	1
OP2S Solar 450	NVSL020450WC0FA	2	450	147	208	395	157	23.3	6.90	0.63	3250	F-M8	1
OPzS Solar 550	NVSL020550WC0FA	2	550	126	208	511	136	26.7	8.10	0.63	3250	F-M8	1
0PzS Solar 660	NVSL020660WC0FA	2	660	147	208	511	157	31.0	9.30	0.56	3650	F-M8	1
OP2S Solar 765	NVSL020765WC0FA	2	765	168	208	511	178	35.4	10.8	0.50	4100	F-18	1
OP2S Solar 965	NVSL020985WC0FA	2	985	147	208	686	157	43.9	13.D	0.47	4350	F-M8	1
OP2S Solar 1080	NVSL021080WC0FA	2	1060	147	208	686	157	47.2	12.8	0.43	4800	F-M8	1
0PzS Solar 1320	NVSL021320WC0FA	2	1320	212	193	686	222	59.9	17.1	0.30	6800	F-M8	2
OP2S Solar 1410	NVSL021410WC0FA	2	1410	212	193	686	222	63.4	16.8	0.27	7500	F-M8	2
0PzS Solar 1650	NVSL021650WC0FA	2	1650	212	235	686	222	73.2	21.7	0.26	7900	F-M8	2
OPzS Solar 1990	NVSL021990WC0FA	2	1990	212	277	686	222	86.4	26.1	0.23	8900	F-M8	2
0PzS Solar 2350	NVSL022350WC0FA	2	2350	212	277	836	222	108	33.7	0.24	8500	F-M8	2
OP2S Solar 2500	NVSL022500WC0FA	2	2500	212	277	836	222	114	32.7	0.22	9300	F-M8	2
OP2S Solar 3100	NVSL023100WC0FA	2	3100	215	400	812	225	151	50.0	0.16	12800	F-M8	3
OP2S Solar 3350	NVSL023350WC0FA	2	3350	215	400	812	225	158	48.D	0.14	14600	F-M8	3
OP2S Solar 3850	NVSL023850WC0FA	2	3850	215	490	812	225	184	60.D	0.12	17000	F-M8	4
OP2S Solar 4100	NVSL024100WC0FA	2	4100	215	490	812	225	191	58.D	0.11	17800	F-M8	4
0PzS Solar 4600	NVSL024600WC0FA	2	4600	215	580	812	225	217	71.0	0.11	18600	F-M8	4
OP2S Solar 280	IN/SL060280WC0FB	6	294	272	206	347	282	41.0	13.D	2.68	2283	F-M8	1
OP2S Solar 350	WSL060350WC0FB	6	364	380	206	347	392	56.D	20.0	2.39	2800	F-M8	1
OP2S Solar 420	IN/SL0E0420WC0FB	6	417	380	206	347	392	63.D	20.0	1.96	3106	F-M8	1
OP2S Salar 70	NVSL120070WC0FB	12	82.7	272	206	347	282	35.0	15.0	18.1	688	F-M8	1
OP2S Solar 140	NVSL120140WC0FB	12	139	272	206	347	282	45.0	14.D	9.26	1314	F-M8	1
0PzS Solar 210	NVSL120210WC0FB	12	210	380	206	347	392	64.0	19.0	6.46	1884	F-M8	1

Type	C, 1.75 Vpc	C 1.80 Vpc	С _ш 1.80 Vpc	C ₂₈ 1.80 Vpc	C _{al} 1.80 Vpc	С _в 1.80 Vpc	C ₁₀₀ 1.85 Vpc	C _{ce} 1.85 Vpc	C ₃₄₈ 1.85 Vpc
0P2S Solar 190	122	132	134	145	165	175	185	190	200
OP2S Solar 245	159	173	176	190	215	230	240	245	260
OP2S Solar 305	203	220	224	240	270	285	300	305	320
OP2S Solar 380	250	273	277	300	330	350	370	380	400
OPzS Solar 450	296	325	330	355	395	420	440	450	470
OP2S Solar 550	353	391	398	430	480	515	540	550	580
OP2S Solar 660	422	469	477	515	575	615	645	660	685
OPzS Solar 765	492	546	555	600	670	710	750	765	805
0PzS Solar 985	606	700	710	770	860	920	970	985	1035
OP2S Solar 1080	669	773	784	845	940	1000	1055	1080	1100
OPzS Solar 1320	820	937	950	1030	1150	1230	1295	1320	1385
OP2S Solar 1410	888	1009	1024	1105	1225	1305	1380	1410	1440
0PzS Solar 1650	1024	1174	1190	1290	1440	1540	1620	1650	1730
OPzS Solar 1990	1218	1411	1430	1550	1730	1850	1950	1990	2090
OPzS Solar 2350	1573	1751	1770	1910	2090	2200	2300	2350	2470
OP2S Solar 2500	1667	1854	1875	2015	2215	2335	2445	2500	2600
0PzS Solar 3100	2080	2318	2343	2520	2755	2910	3040	3100	3250
OPzS Solar 3350	2268	2524	2550	2740	2985	3135	3280	3350	3520
OPzS Solar 3850	2592	2884	2915	3135	3430	3615	3765	3850	4040
OP2S Solar 4100	2775	3090	3125	3355	3650	3840	4000	4100	4300
OP2S Solar 4600	3099	3451	3490	3765	4100	4300	4500	4600	4850
OP2S Solar 280	203	206	229	250	296	304	287	294	338
0PzS Solar 350	245	257	284	311	374	383	355	364	424
0PzS Solar 420	284	309	322	354	420	432	408	417	482
OP2S Solar 70	55.0	51.5	63.7	69.4	78.4	79.8	81.0	82.7	92.9
OP2S Solar 140	95.4	103	108	118	141	145	136	139	162
OP2S Solar 210	131	154	162	177	206	217	203	210	234
Capacities in Ah (C	- O _{cen} at 2	5 °C)							

Includes installed connector, the above mentioned height can differ depending on the used vent(s).
 Acid density d_g = 1.24 kgll

Terminal and torque

12 Nm for blocks; 20 Nm for cells

Data is also valid for dry charged version. Change +W+ (Wet) to +D+ (Dry) in the part number.

E.g.: > filled and charged: NVSL120070 W C0FB

> dry charged: NVSL120070 D C0FB

Network Power > Classic Solar > Classic EnerSol T > Technical data, Drawings

Classic EnerSol T Technical data, Drawings

Technical characteristics and data

Type	Part number	Nom. voltage V	Nominal capacity C _{co} 1.85 Vpc 25 °C Ah	Length (i) max.mm	Width (b/w) max.mm	Height" (H) max.mm	Installed length (L) max.mm	Weight incl. acid approx. kg	Weight acid** approx. kg	Internal resistance mühm	Short circuit current A	Terminal	Pole pairs
EnerSal T 370	NVTS020370WC0FA	2	376	83.0	199	445	93.0	17.3	5.10	0.70	2900	F-M10	1
EnerSal T 460	NVTS020460WC0FA	2	452	101	199	445	111	21.0	6.30	0.56	3625	F-M10	1
EnerSal T 550	NVTS020550WC0FA	2	542	119	199	445	129	24.7	7.50	0.46	4350	F-M10	1
EnerSal T 650	NVTS020650WC0FA	2	668	119	199	508	129	29.5	8.60	0.45	4500	F-M10	1
EnerSal T 760	NVTS020760WC0FA	2	779	137	199	508	147	31.0	10.0	0.38	5250	F-M10	1
EnerSal T 880	NVTS020880WC0FA	2	897	137	199	556	147	38.0	11.0	0.43	4660	F-M10	1
EnerSol T 1000	NVTS021000WC0FA	2	1025	155	199	556	165	43.1	12.6	0.38	5325	F-M10	1
EnerSol T 1130	NVTS021130WC0FA	2	1154	173	199	556	183	47.7	14.1	0.34	5891	F-M10	1
EnerSol T 1250	NVTS021250WC0FA	2	1282	191	199	556	201	52.8	15.8	0.30	6657	F-M10	1

The above mentioned height can differ depending on the used vent(s). "Acid density d_i = 1.26 kg/l

	_		-		
			-		

Туре	64 1.75 100	С _в 1.80 WC	С _ы 1.80 WC	C ₂ 1.80 VC	С _а 1.80 WC	C ₂ 1.80 VC	C ₁₀₀ 1.85 WC	C _{DB} 1.85 WC	C ₃₄₀ 1.85 WC		
EnerSel T 370	260	280	294	333	361	368	369	376	383		
EnerSal T 460	327	350	367	416	437	460	444	452	478		
EnerSel T 550	393	425	441	499	524	553	533	542	574		
EnerSal T 650	492	527	552	625	656	668	647	668	719		
EnerSal T 760	574	615	645	729	766	780	755	779	839		
EnerSal T 880	654	714	742	840	854	953	869	897	966		
EnerSol T 1000	755	809	848	960	1008	1089	993	1025	1104		
EnerSol T 1130	850	910	954	1080	1134	1225	1117	1154	1242		
EnerSol T 1250	944	1011	1060	1200	1260	1361	1241	1282	1380		
The capacities are given in Ah at 25 °C after 5 cycles.											

Terminal and torque

Drawings with terminal position

Not to scale!

7

Network Power > Classic Solar > EnerSol > Technical data, Drawings

Classic EnerSol Technical data, Drawings

Technical characteristics and data

Туре	Part number	Norn. voltage	Capacity C	Nominal capacity C	Discharge current	Length M	Width (b/w)	Hight (N	Weight incl. acid	Weight acid*	Terminal	Terminal position
			1.85 Vpc 25 °C Ah	1.85 Vpc 25 *C Ah	1.85 Vpc A	max. mm	11 21. IM	max. mm	approx. kg	apprax. kg		
EnerSol 50	NVCE120050WC0TA	12	52.0	53.0	0.44	210	175	190	13.7	2.10	A-Terminal	1
EnerSol 65	NVCE120065WC0TA	12	65.0	66.0	0.55	242	175	190	17.3	2.70	A-Terminal	1
EnerSol 80	NVCE120080WC0TA	12	78.0	80	0.66	278	175	190	20.7	4.70	A-Terminal	1
EnerSol 100	NVCE120100WC0TA	12	97.0	99.0	0.82	353	175	190	26.4	7.00	A-Terminal	1
EnerSol 130	NVCE120130WC0TA	12	130	132	1.10	349	175	290	33.0	10.9	A-Terminal	1
EnerSol 175	NVCE120175WC0TA	12	175	179	1.49	513	223	223	47.8	14.6	A-Terminal	2
EnerSol 250	NVCE120250WC0TA	12	250	256	2.13	518	276	242	63.0	18.6	A-Terminal	2

* Acid density d_a = 1.28 kg/l

Terminal and torque

Don't use torque for adapter.

Data is also valid for dry charged version. Change =W= (Wet) to =D= (Dry) in the part number. E.g.: > filled and charged: NVCE120050 W C0TA > dry charged: NVCE120050 D C0TA

Drawings with terminal position

Accessories

Not to scale!

EnerSol adapter negative

9

Exide Technologies, with operations in more than 80 countries, is one of the world's largest producers and recyclers of lead-acid batteries. Exide Technologies provides a comprehensive and customized range of stored electrical energy solutions. Based on over 120 years of experience in the development of innovative technologies, Exide Technologies is an esteemed partner of OEMs and serves the spare parts market for industrial and automotive applications.

GNB Industrial Power – A division of Exide Technologies – offers an extensive range of storage products and services, including solutions for telecommunication systems, railway applications, mining, photovoltaic (solar energy), uninterrupted power supply (UPS), electrical power generation and distribution, fork lifts and electric vehicles.

Exide Technologies takes pride in its commitment to a better environment. An integrated approach to manufacturing, distributing and recycling of lead-acid batteries has been developed to ensure a safe and responsible life cycle for all of its products.

www.gnb.com

GNB* INDUSTRIAL POWER devises enduring energy concepts that convince with efficiency, flexibility and profitability.

8%	Compound Interest Factors												
	Single Pa	yment		Uniform Pa		Arithmeti							
п	Compound Amount Factor Find F Given P F/P	Present Worth Factor Find P Given F P/F	Sinking Fund Factor Find A Given F A/F	Capital Recovery Factor Find A Given P A/P	Compound Amount Factor Find F Given A F/A	Present Worth Factor Find P Given A P/A	Gradient Uniform Series Find A Given G A/G	Gradient Present Worth Find P Given G P/G	п				
1	1.080	.9259	1.0000	1.0800	1.000	0.926	0	0	1				
2	1.166	.8573	.4808	.5608	2.080	1.783	0.481	0.857	2				
3	1.260	.7938	.3080	.3880	3.246	2.577	0.949	2.445	3				
4	1.360	.7350	.2219	.3019	4.506	3.312	1.404	4.650	4				
3	1.409	.0800	.1705	.2303	3.807	3.995	1.840	1.512	3				
6	1.587	.6302	.1363	.2163	7.336	4.623	2.276	10.523	6				
7	1.714	.5835	.1121	.1921	8.923	5.206	2.694	14.024	7				
9	1.001	5002	0801	1601	12 488	6 247	3 4 9 1	21 808	9				
10	2.159	.4632	.0690	.1490	14.487	6.710	3.871	25,977	10				
11	2 332	4280	0601	1401	16.645	7 130	4 240	30.266	11				
12	2.518	.3971	.0527	.1327	18.977	7.536	4.596	34.634	12				
13	2.720	.3677	.0465	.1265	21.495	7.904	4.940	39.046	13				
14	2.937	.3405	.0413	.1213	24.215	8.244	5.273	43.472	14				
15	3.172	.3152	.0368	.1168	27.152	8.559	5.594	47.886	15				
16	3.426	.2919	.0330	.1130	30.324	8.851	5.905	52.264	16				
17	3.700	.2703	.0296	.1096	33.750	9.122	6.204	56.588	17				
18	3.996	.2502	.0267	.1067	37.450	9.372	6.492	60.843	18				
19	4.316	.2317	.0241	.1041	41.446	9.604	6.770	65.013	19				
20	4.661	.2145	.0219	.1019	45.762	9.818	7.037	69.090	20				
21	5.034	.1987	.0198	.0998	50.423	10.017	7.294	73.063	21				
22	5.437	.1839	.0180	.0980	55.457	10.201	7.541	76.926	22				
23	5.871	1577	.0164	.0964	66 765	10.571	8.007	84.300	23				
25	6.848	.1460	.0137	.0937	73.106	10.675	8.225	87.804	25				
26	7 396	1352	0125	0925	70.054	10.810	8 4 3 5	01 184	26				
27	7.988	1252	.0114	.0914	87.351	10.935	8.636	94,439	27				
28	8.627	.1159	.0105	.0905	95.339	11.051	8.829	97.569	28				
29	9.317	.1073	.00962	.0896	103.966	11.158	9.013	100.574	29				
30	10.063	.0994	.00883	.0888	113.283	11.258	9.190	103.456	30				
31	10.868	.0920	.00811	.0881	123.346	11.350	9.358	106.216	31				
32	11.737	.0852	.00745	.0875	134.214	11.435	9.520	108.858	32				
33	12.676	.0789	.00685	.0869	145.951	11.514	9.674	111.382	33				
34	13.690	.0730	.00630	.0863	158.627	11.587	9.821	113.792	34				
35	14.785	.00/0	.00580	.0858	172.317	11.655	9.961	116.092	35				
40	21.725	.0460	.00386	.0839	259.057	11.925	10.570	126.042	40				
45	31.920	.0313	.00259	.0826	580.500	12.108	11.045	133.733	45				
55	68.914	.0215	.00118	.0812	848.925	12.319	11.690	144.006	55				
60	101.257	.00988	.00080	.0808	1 253.2	12.377	11,902	147.300	60				
65	148 780	00672	00054	0805	1 847 3	12 416	12.060	149 730	65				
70	218,607	.00457	.00037	.0804	2 720.1	12.443	12.178	151.533	70				
75	321.205	.00311	.00025	.0802	4 002.6	12.461	12.266	152.845	75				
80	471.956	.00212	.00017	.0802	5 887.0	12.474	12.330	153.800	80				
85	693.458	.00144	.00012	.0801	8 655.7	12.482	12.377	154.492	85				
90	1018.9	.00098	.00008	.0801	12724.0	12.488	12.412	154.993	90				
95	1 497.1	.00067	.00005	.0801	18701.6	12.492	12.437	155.352	95				
100	2 199.8	.00045	.00004	.0800	27 484.6	12.494	12.455	155.611	100				

Appendix (5): 8% Interest Rate Table

جامعة النجاح الوطنية كلية الدر اسات العليا

تصميم و محاكاة انظمة الحماية المهبطية المغذاة بالطاقة المولدة من الخلايا الشمسية

إعداد عبد الرحمن جمال خالد سمودي

> إشراف أ. د. مروان محمود

قدمت هذه الأطروحة استكمالاً لمتطلبات الحصول على درجة الماجستير في هندسة الطاقة النظيفة وترشيد الاستهلاك، كلية الدراسات العليا، جامعة النجاح الوطنية، نابلس، فلسطين. 2015 تصميم و محاكاة انظمة الحماية المهبطية المغذاة بالطاقة المولدة من الخلايا الشمسية إعداد عبد الرحمن جمال خالد سمودي إشراف أ. د. مروان محمود

الملخص

تتناول هذه الأطروحة استخدام تكنولوجيا الحماية المهبطية لتوفير الحماية من التآكل لشبكة توزيع أنابيب تحت سطح البحر و تحت الأرض في فلسطين. نظام الحماية الهبطية يستخدام الطاقة الكهربائية المولدة من الخلايا الكهروضوئية لتزويد نظام الحماية المهبطية المغذى بمصدر تيار خارجي. تصميم نظام الحماية المهبطية المغذى بالطاقة المولدة من الخلايا الكهروضوئية يتعامل مع ثلاث حالات تعتمد على نسبة المساحة المحمية من المساحة الإجمالية لخطوط الأنابيب، والحالات هي: (أ) و (ب) و (ج) تمثل 90% و 95% و 88% على التوالي. تم عمل محاكاة لنظام الحماية المهبطية باستخدام الخلايا الكهروضوئية وذلك من خلال استخدام تطبيق السميولنك في برنامج الماتلاب

تم عمل تحليل اقتصادي للمقارنة بين إعادة تأهيل خطوط الأنابيب التالفة نتيجة لتآكل واستخدام نظام الحماية المهبطية المغذى بالطاقة المولدة من الخلايا الكهروضوئية في كل الحالات. يظهر التحليل الاقتصادي أن استخدام نظام الحماية المهبطية المغذى بالطاقة المولدة من الخلايا الكهروضوئية بدلا من إعادة تأهيل خطوط الأنابيب ينتج عنه فرق كبير جدا في من الخلايا الكهروضوئية بدلا من إعادة تأهيل خطوط الأنابيب ينتج عنه فرق كبير جدا في التكلفة. المدخرات من تكلفة إعادة التأهيل في الحالة (أ) هو 3985440 \$ من 5371493 \$، وفي الحالة (ب) هو 1840670 \$ من 1015601 \$ من 1075350 \$. هذه المدخرات وتمثل نسبة 24.2% و 68.47% و 68.44% من تكلفة إعادة تأهيل بدائل (أ) و (ب) و (ج) على التوالي.

ب