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Estimation of Nuclear DNA Contents of Three Economically
Important Plant Species by Laser Flow Cytometry
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Abstract

Nuclear DNA content and genome size are key factors in biology and
biodiversity, and have important implications in modern molecular
genetic studies. Diesel tree (Copaifera officinalis L.) and switchgrass
(Panicum virgatum L. cv. Alamo) are attractive sources for biofuels
production, including biodiesel and cellulosic ethanol. On the other hand,
horseweed (Conyza canadensis L.) is one of the most agriculturally
problematic herbicide-resistant weeds worldwide. The nuclear DNA
contents (expressed as 1C values) of these economically significant
plants were estimated by a fast and valid method of laser flow cytometry.
Intact nuclei were isolated from young leaves or roots, stained with
propidium iodide, a fluorescent DNA-staining dye, and then analyzed by
a flow cytometer simultaneously with nuclei from reference standard
plants of known C-values. The 1C-value of the nuclear DNA content of
C. officinalis was ca. (1,161 Mbp = 1.19 pg DNA). It is approximately
similar to that of oilseed rape and soybean, and is more than eight times
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the genome size of Arabidopsis thaliana (L.) Heynh. ecotype Columbia.
The 1C DNA content of switchgrass (P. virgatum) cv. ‘Alamo’ tetraploid
ecotype was estimated at 1,445 Mbp (= 1.48 pg DNA), which is more
than ten times the genome size of A. thaliana. Finally, the DNA content
of the diploid horseweed (C. canadensis) was ca. (378 Mbp = 0.39 pg
DNA), which is approximately 2.8 times the genome size of A. thaliana,
and smaller than the reference genomes of rice and poplar. These data
will be useful for molecular and genomic approaches, such as genome
sequencing projects and construction of genomic libraries.

Keywords: flow cytometry, DNA content, genome size, 1C-value,
Copaifera officinalis, diesel tree, switchgrass, horseweed, Conyza
canadensis.
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Introduction

The amount of DNA in the un-replicated nucleus of an organism is
known as its C-value (Swift, 1950). It stands for the DNA content of the
whole chromosome complement or karyotype irrespective of the degree
of generative polyploidy of the organism. However, genome size is the
DNA content of the monoploid genome or chromosome set (Greilhuber
et al., 2005). Nuclear DNA content and genome size are key characters in
biology and biodiversity, and have important implications in modern
molecular genetics practice (Bennett et al., 2000; Bennett and Leitch,
2005; 2011; Zonneveld et al., 2005). The genome sequencing and
chromosomal karyotyping approaches were also based on genome and
individual chromosomes sizes. Small genomes and chromosomes were
chosen first for DNA sequencing including the model plant Arabidopsis
thaliana (The Arabidopsis Genome Initiative, 2000), and rice that has the
smallest genome size among the world's major cereal crops (Sasaki,
1998). In addition, the C-value data have contributed to a variety of
related studies such as plant breeding programs, ploidy screening,
detection of aneuploids, cell cycle kinetics, and reproductive pathways
(Dole"zel and Barto’s, 2005). Moreover, continual improvement of our
knowledge of the C-values is important for studying mechanisms in
genome size evolution, to probe phylogenetic dimensions among
organisms, creating genetic libraries, and as indicators to a broad range of
external ecological issues and environmental concerns (Bennett et al.,
2000; Bennett and Leitch, 2005; 2011; Zonneveld et al., 2005).

DNA flow cytometry is a fast, valid and relatively cheap method
most frequently used to determine nuclear DNA content and ploidy level
in many organisms including plants (Marie and Brown, 1993; Bennett et
al., 2000; Torrell and Valles, 2001; Dole"zel and Barto’s, 2005; Dole zel
et al., 2007). In principle, the method involves preparation of suspensions
of intact nuclei whose DNA is stained using a DNA fluorochrome such
as propidium iodide. The stained nuclei are then classified according to
their relative fluorescence intensity or/and DNA content (Dole“zel and
Barto’s, 2005).
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The diesel tree (Copaifera officinalis L.)

Copaifera officinalis, also called ‘‘diesel tree”, is known for
oleoresin production which results from tapping the trunk of a mature
tree (Joyce et al., 2012). The chemical composition of the C. officinalis
oleoresin is mainly composed of sesquiterpene terpenoids (Chen et al.,
2009), which have been suggested to play a role in plant defense against
pests and pathogens (Langenheim et al., 1986). In addition, Copaifera
oleoresin hydrocarbons can be directly used as biofuel in a diesel engine
(Calvin, 1980). However, the geographical distribution of Copaifera trees
is limited to the tropics. Thus, genomics research is crucially required to
characterize and exploit the genes involved in Copaifera oleoresin
biosynthetic pathways. Subsequently, key genes and gene regulation
networks could be engineered into potential oilseed plants suitable for
temperate regions to complement and increase their bioproducts and
biofuel production. Estimation of the nuclear DNA content for the genus
Copaifera might be useful for such genomics studies, future genome
sequencing projects and construction of genomic libraries for the diesel
tree. Thus, it was considered for the first time in the present study.

Switchgrass (Panicum virgatum L. cv. Alamo)

Switchgrass (Panicum virgatum L.) is a perennial grass native
to North America. It has been the target for intensive agronomic and
breeding research, and biotechnology approaches since it was selected
as a model herbaceous biofuel feedstock crop by the United States
Department of Energy (US-DOE) (McLaughlin and Kszos, 2005).
Switchgrass is a genetically and morphologically diverse species
with multiple ploidy levels and ecotypes. Based on flow cytometric
studies, most switchgrass cultivars are categorized into two major
ecotypes: Lowland ecotypes are primarily tetraploids (2n = 4x = 36),
while upland ecotypes are predominantly octaploids (2n = 8x = 72)
(Gunter et al., 1996; Hopkins et al., 1996; Narasimhamoorthy
et al., 2008). ‘Alamo’ is a lowland tetraploid switchgrass variety
(Hopkins et al., 1996). This cultivar is extensively distributed throughout
switchgrass breeding programs in the southern United States and is a
parent of several mapping populations (Casler et al., 2011). The current
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whole-genome sequencing effort is focused on a high-yielding, ‘Alamo’
clone, API13 (http://www.phytozome.net/panicumvirgatum_er.php).
Switchgrass genomic resources will accelerate the ability of plant
breeders to enhance biomass productivity, reduction of recalcitrance
towards better cellulosic ethanol production, better pest resistance, and
nutritional quality, particularly for this high-yielding and embryogenic
‘Alamo’ cultivar. It has been the most-often transformed cultivar that has
also been used for intensive cellular and molecular genetic studies during
the last decade (Mazarei et al., 2008; 2011; Mann et al., 2009;
Nageswara-Rao et al., 2013a,b; Shen et al., 2013).

Using flow cytometry, the nuclear DNA content has been determined
for several switchgrass populations of various ploidy levels, including
tetraploid ecotypes (Hopkins et al., 1996; Lu et al., 1998; Costich, 2010).
However, the nuclear DNA content of this specific ecotype is not well
characterized yet, and thus was considered in this study.

Horseweed (Conyza canadensis L.)

Horseweed, is a worldwide problematic weed that shares many
weediness features with the world’s most damaging weeds (Basu et al.,
2004; Chao et al., 2005). It has evolved resistance to four herbicide
classes in thirteen countries including the United States (Weaver, 2001;
Okada et al., 2013; Heap, 2014). In fact, horseweed was the first
broadleaf weed to evolve resistance to glyphosate, the most widely used,
low cost, highly efficient herbicide for controlling weeds. This intensive
use of glyphosate resulted in the emergence of independent resistant
biotypes of horseweed in many locations in the United States (Yuan et
al., 2010). In addition, a horseweed plant transformation and regeneration
method has been developed (Halthill et al., 2007) that allows for
overexpression or knockdown analysis of potential gene targets.
Therefore, it is an attractive model for weed genomics approaches that
are critical for better understanding of weed biology, weediness
molecular genetics, which are crucial for better weed management
(Stewart et al., 2009; Peng et al., 2010; 2014; Yuan et al., 2010). In this
current study, the genome size of a glyphosate-resistant horseweed
accession from Tennessee, USA is determined.
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The overall objectives of this research were to estimate the nuclear
DNA contents of three economically significant plants species using the
technology of flow cytometry, including switchgrass cv. ‘Alamo’ and the
diesel tree as potential bioenergy crops for ethanol and biodiesel
production, and horseweed as a key problematic agricultural glyphosate-
resistant weed in USA.

Methods
Plant material

The flow cytometric estimations of nuclear DNA contents were
achieved through 4-6 replicated measurements from young healthy leaf
or root tissues of the plant of interest and the internal standard plant
species of known DNA contents (Table 1; see flow cytometric analysis).
Preliminary experiments (data not shown) determined the optimal
internal plant reference(s) for each tested plant species, and the type of
tissue(s) appropriate for subsequent cytometric analyses.

The diesel tree (C. officinalis) seeds were kindly provided by James
Ackerman at the University of Puerto Rico. Seeds were surface sterilized
in 70% ethanol for 2 min, then in 10% household bleach (Clorox, 6 %
sodium hypochlorite) for 10 min, followed by washing three times with
sterile distilled water. For seed germination, the seeds were placed on
sterile filter paper soaked with sterile distilled water in sterile Petri-dishes
and incubated under standard growth chamber conditions. About two-
weeks old seedling roots were used for the subsequent DNA
measurements.

For soybean, oilseed rape, switchgrass, tobacco, horseweed, and rice
plants, the seeds were sown in pots, and plants were grown in a
greenhouse. Young healthy leaves were used for each measurement
(Table 1).

Nuclei Isolation and Staining

For preparation of suspensions of nuclei, approximately 300-500 mg
of fresh root tips or young leaf tissues of the experimental plant species
and those from the internal reference plant species were co-chopped at

An - Najah Univ. J. Res. (N. Sc.) Vol. 31(1), 2017




Hani Al-Ahmad, et al. 41

the same time with razor blades in 3-ml ice-cold propidium iodide nuclei
staining buffer in a glass Petri-dish, and analyzed simultaneously through
the flow cytometer according to the protocol described by Galbraith et al,
(1983). In parallel, intact nuclei were isolated and stained with propidium
iodide using the CyStain Pl absolute P-Partec” kit, N.J., USA, according
to the manufacturer’s instructions. Both procedures were optimized with
the following beneficial modifications: 1% (w/v) polyvinylpyrrolidone
(PVP-40; Sigma) were added to the extraction buffer to remove phenolic
impurities and cytoplasmic compounds from plant nuclei, making the
suspension more suitable for flow cytometry (Lee and Lin, 2005). The
PVP-40 reduces the crystalline calcium oxalate and other metabolites that
block the fluidics system of the flow cytometer. The nuclei suspension
was filtrated using 12 x 75 mm, 5 ml polystrene round bottom test tube,
1400 RCF rating, with a nylon-cell strainer cap designed for flow
cytometric applications (BD Biosciences Discovery Labware-BD
Falcon™, USA). Before staining the nuclei, their filtrates were
centrifuged at 120 g for 10 min at 4°C as recommended by Lee and Lin,
(2005) to increase the nuclei number in the final solution.

Flow cytometric analysis

Flow cytometric data was collected from several runs using a 650-
nm DL dichroic filter plus a 625-nm BP band-pass filter with a flow
cytometer equipped with an argon-ion laser tuned to 488 nm (EPICS XL
flow cytometer, Expo 32 ADC software, Beckman Coulter, Miami,
Florida). Doublet discrimination was performed using the peak versus
integral two parameter histogram method. Mean fluorescence intensity
was calculated using a linear scale from a region encompassing the
GO0/G1 peak as a non-replicating phase, i.e. before the replicating S-
phase, or the replicated G2 phase. The GO-G1 phase is easily
distinguished from the G2 phase in histograms by lower fluorescence
intensity. Plant species of known 1C-value of the nuclear DNA content
were used as internal references, including: Tobacco (Nicotiana tabacum
L. cv. ‘Xanthi’) for switchgrass (P. virgatum cv. Alamo); soybean
(Glycine max L. cv. ‘Jack’) and oilseed rape (Brassica napus cv. Westar)
for the diesel tree (C. officinalis); and rice (Oryza sativa L. ssp. Japonica
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cv. ‘Nipponbare”) and poplar (Populus trichocarpa - black cotton wood)
for horseweed (C. canadensis) (Table 1). The unknown nuclear DNA
content expressed as 1C-values of the diesel tree and horseweed were
computed from standard curves of mean fluorescence intensity measured
in this study vs. known 1C-values of standard controls obtained from
available published data (Table 1; Figures 1,3). The 1C-value for
switchgrass was calculated using the formula: (mean fluorescence of
plant nuclei/mean fluorescence of standard nuclei) x 1C-value of
standard reference (Costich et al., 2010) (Table 1; Figure 2). The C-
values typically measured in terms of mass (as picograms, abbreviated
pg), or as the total number of nucleotides (as millions of base pairs =
mega base pairs, abbreviated Mbp). One pg of pure DNA equals 978
Mbp (Dolez el et al., 2003).

Results and discussion

An organism's complexity is not directly proportional to its genome
size, where variation in genome sizes is mainly due to repetitive DNA
(Gregory, 2001). Genome size can be defined as the total amount of
DNA contained within one copy of a genome. Since many angiosperms
undergo polyploidy, the monoploid genome size, is often estimated and
analyzed. Flow cytometry is a fast and efficient method for such
characterization of the plant nuclear DNA content (Bennett and Leitch,
2011). In the study presented here, the genome sizes of the Copaifera
diesel tree, tetraploid switchgrass cv. ‘Alamo’, and horseweed were
estimated by flow cytometry using propidium iodide as a fluorescent dye.
As described in the Methods section above, the 1C-values of the three
plant species under study were calculated using known C-values of
standard references from the corresponding published literature. In this
paper, we used the most recent available C-values of these internal
references (Table 1) compared to our early data shown in a conference
abstract (Al-Ahmad et al., 2008). Thus, the variation in the estimated C-
values of the same tested plants in our two reports is due to using the
most updated C-values of these internal standard references in this
present study.
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Nuclear DNA content of the diesel tree (Copaifera officinalis L.)

Copaifera tropical tree is a promising species for bioproducts
and biodiesel production (Joyce et al., 2012). The 1C DNA content of
this family ranges from 0.31 pg to 27.40 pg (Bennett and Leitch, 2012).
In this study, a flow cytometric analyses of seedling root samples
were run and analyzed simultaneously against samples of young leaf
tissues from the calibration standard plants of oilseed rape and soybean.
The 1C-value representing the haploid genome size of C. officinalis
was ca. (1,161 Mbp = 1.19 pg DNA) (Tables 1; Figure 1). It is
approximately similar to the genome sizes of oilseed rape and soybean,
and is more than eight times the genome size of the model
plant Arabidopsis thaliana (L.) Heynh. ecotype Columbia. (135 Mbp;
http://www.arabidopsis.org/portals/genAnno).

Nuclear DNA content of switchgrass (Panicum virgatum L.) ‘Alamo’
tetraploid ecotype

A series of flow cytometric studies have been conducted to estimate
the nuclear DNA content and the ploidy level of several switchgrass
populations, and were useful in discriminating between tetraploid (2n =
4x) and octaploid (2n = 8x) switchgrass plants (Hopkins et al., 1996;
Waullschleger et al., 1996; Lu et al., 1998, Costich et al., 2010).
According to the studied switchgrass populations, the average 2C-values
were 2.35-3.1 pg for the studied tetraploid populations, and 4.88-6.1 pg
for the examined octaploid populations (Hopkins et al., 1996; Lu et al.,
1998; Costich et al., 2010; Bennett and Leitch, 2012).

Analyses of nuclei isolated from young stems and stained with
propidium iodide indicated that ‘Alamo’ switchgrass is a tetraploid
(Wullschleger et al., 1996). The authors used arbitrary units from limited
flow cytometric analyses to describe the DNA content of ‘Alamo’
cultivar against other switchgrass cultivars with different ploidy levels.
From our own flow cytometry experiments it is estimated that ‘Alamo’
ecotype has a nuclear DNA content of about 1,445 Mbp, which is
equivalent to 1.48 pg/haploid genome (thus, the 2C-value = 2.96 pg/

An - Najah Univ. J. Res. (N. Sc.) Vol. 31(1), 2017




Hani Al-Ahmad, et al. 45

nucleus) (Tables 1; Figure 2) . This value is more than ten times the
genome size of A. thaliana and lies within the range of previously
reported genome sizes of other switchgrass tetraploid cultivars, as
described above.

Nuclear DNA content of the economically-important weed (Conyza
canadensis L.)

Despite their agricultural and economic significance, weeds
genomics data are very scarce. Horseweed exerts a global agricultural
challenge mainly due to its herbicide resistance. The 1C nuclear DNA
content of a Tennessee-accessed glyphosate-resistant horseweed biotype
estimated by flow cytometry was ca. (378 Mbp = 0.39 pg DNA), which
is smaller than the genomes of rice and poplar tree reference plants
(Tables 1; Figure 3). Also, these estimations indicate that the genome
size of horseweed is about 2.8 times the genome size of A. thaliana. This
simplicity of horseweed genome should facilitate both genomics and
biotechnology research studies particularly the evolution of herbicide-
resistance. On the other hand, these findings have encouraged our
colleagues in the laboratory of Prof. Neal Stewart at the University of
Tennessee; who built a draft horseweed genome assembly using
integrated data from multiple sequencing platforms (Peng et al., 2014).
Based on their genomic sequencing data, the horseweed genome size is
about 335 Mbp, which is roughly close to our herein-shown data that
were obtained earlier by flow cytometric analysis. One of the example of
the variation in the genome size measured by flow cytometry and other
high-throughput technologies, is that of willow tree (Salix purpurea),
which was 450 Mb measured by flow cytometry comparing to an early
estimation by ALLPATHS that was of 379 Mb (Salix purpurea v1.0,
DOE-JGI,
http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Spurpurea_
er). Therefore, the estimation of DNA content through a fast and
relatively cheap flow cytometric analysis can provide us with initial
valuable knowledge of the genome size of a desired plant species, which
could be then subjected to subsequent high-throughput, but time
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consuming and high-cost sequencing technologies, for example the next-
generation sequencing technology, which is valid for advanced
descriptive structural and functional genomics approaches.

Conclusions

The nuclear DNA contents (genome size) of three economically
significant plants including: diesel tree (C. officinalis = 1,161 Mbp),
switchgrass (P. virgatum = 1,445 Mbp) cultivar ‘Alamo’, and horseweed
(C. Canadensis = 378 Mbp) were estimated by a rapid method of flow
cytometry. These data will be a valuable starting points towards many
areas of subsequent molecular and genomic research, ranging from
evolutionary studies to genome mapping and construction of genomic
libraries.
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Figure (2): Relative nuclear DNA content of switchgrass (Panicum
virgatum L.) cv. ‘Alamo’. The histograms of DNA content were
obtained after flow cytometric analysis of propidium iodide-stained
nuclei of switchgrass and tobacco (Nicotiana tabacum cv. ‘Xanthi’)
reference standard, which were isolated, stained and analysed
simultaneously (Table 1). Numbers appear on the y-axis represent the
number of stained nuclei detected by the flow cytometer. The x-axis
represents the relative nuclear DNA content.
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