Pitfalls in the premarital testing for thalassaemia

Dr. Riad Amer

MB ChB, MSc, FRCP, FRCPath, JBH

Assistant Professor of Medicine
Al Najah University
Consultant Haematologist

Husband and Wife are not related

Husband

• Hb 13gm

- MCV 82
- RDW 17
- MCH 31

Wife

Hb 10.5gm MCV 63.5 RDW 13

MCH 23

Husband and Wife are not related

Husband

Wife

Baby

 Hb 	13gm
------------------------	------

- MCV 82
- RDW 17
- MCH 31

Hb 10.5gm

MCV 63.5

RDW 13

MCH 23

- Hb 6.5gm
- MCV 72.5
- RDW 19
- MCH 23

Husband and Wife are not related

Husband

Baby

- Hb 13gm
- MCV 82
- RDW 17
- MCH 31

Wife

Hb 10.5gm

MCV 63.5

RDW 13

MCH 23

- Hb 6.5gm
- MCV 72.5
- RDW 19
- MCH 23
- A 0%
- A2 3.0%
- F+S 97%

Husband and Wife are not related

Husband

Hb 13gm

- MCV 82
- RDW 17
- MCH 31
- A2 2.3%
- S 36%

Wife

Hb 10.5gm MCV 63.5 RDW 13 MCH 23

A2 4.3%

Baby

- Hb 6.5gm
- MCV 72.5
- RDW 19
- MCH 23
- A 0%
- A2 3.0%
- F+S 97%

Diagnosis

Sickle thalassemia Hb S/B

Husband and Wife are first degree relatives

Husband

Wife

Baby 6 month

 Hb 	13gm
------------------------	------

- MCV 63
- RDW 13
- MCH 23
- A2 2.8%
- 2.9%
- 3,0%

Hb 10.5gm

MCV 63.5

RDW 13

MCH 23

A2 4.8%

• Hb 5.5gm

- MCV 85.5
- RDW 19
- MCH 23
- A2 3.0%

Diagnosis

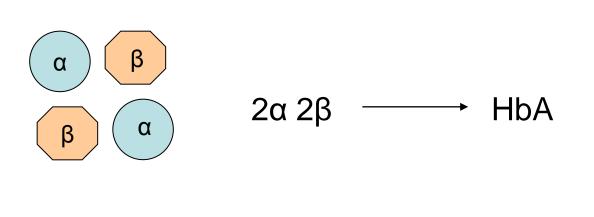
Alpha thalassemia silent with beta thalassemia minor

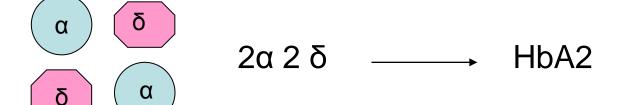
Haemoglobin

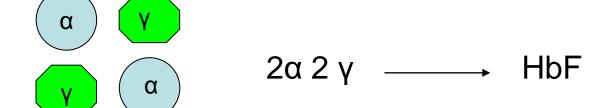
Haem

- Iron
- portoporphyrins

<u>Globin</u>

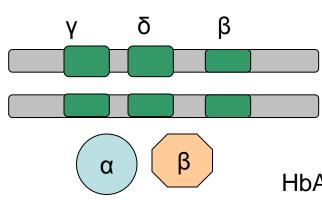

Two alpha with either

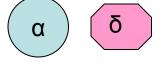



- Two beta (Hb A)
- Two gamma (Hb F)
- Or two delta (Hb A2)

Gene on chr 16

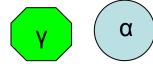
Gene on chr 11




Beta gene defects

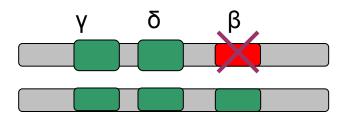
Normal

HbA 95.5 – 99%


α

α

HbA2 < 3.5%

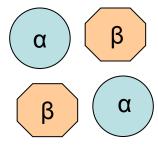


HbF < 1% (after one year age)

Types of defects on β gene

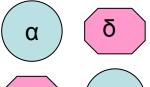
- Decrease OR absent production
 - Thalassemia
 - β+ decrease production
 - β Absent production
- Abnormal production
 - Sickle cell disease and others
 - Hb S, C^H, C ,E, D, J, O, I and others

Beta Thalassemia minor

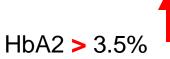


Beta thalassaemia minor

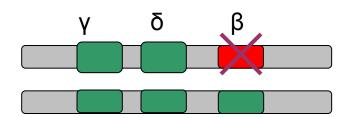
 β + decreased production


or

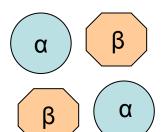
β○ absent production



HbA



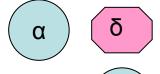
δ

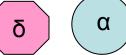

Beta thalassaemia minor

 β + decreased production

or

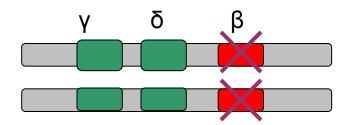
β○ absent production

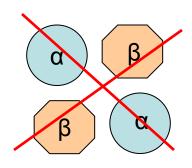



HbA

Features:

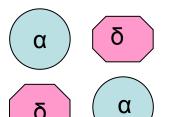
- Asymptomatic
- •Mild anaemia
- Microcytosis
- Normal RDW
- Low MCH
- Normal MCHC
- At least one parent has microcytosis



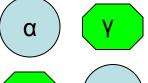

HbA2 > 3.5%

Beta thalassemia major

Beta thalassaemia major

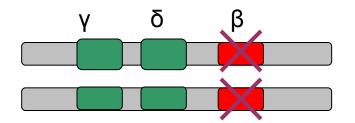


HbA absent or markedly reduced

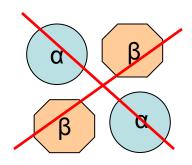

 $\beta \circ \beta \circ \text{Hb A} = 0$

 β + β 0 Hb A ≈ 5%

 β + β + Hb A \approx 10%



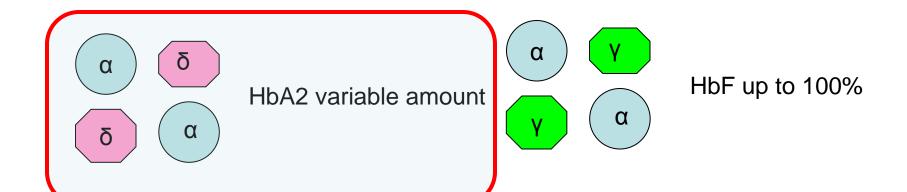
HbA2 variable amount



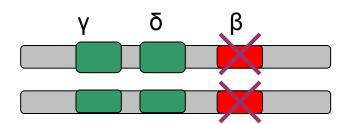
γ α

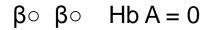
HbF up to 100%

Beta thalassaemia major

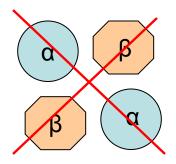


HbA absent or markedly reduced

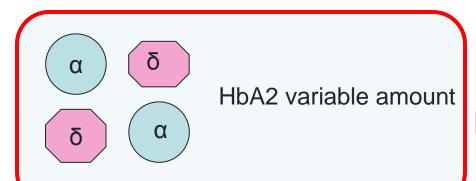

$$\beta \circ \beta \circ \text{Hb A} = 0$$

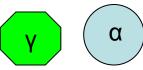

$$\beta$$
+ β 0 Hb A ≈ 5%

$$\beta$$
+ β + Hb A \approx 10%


Beta thalassaemia major

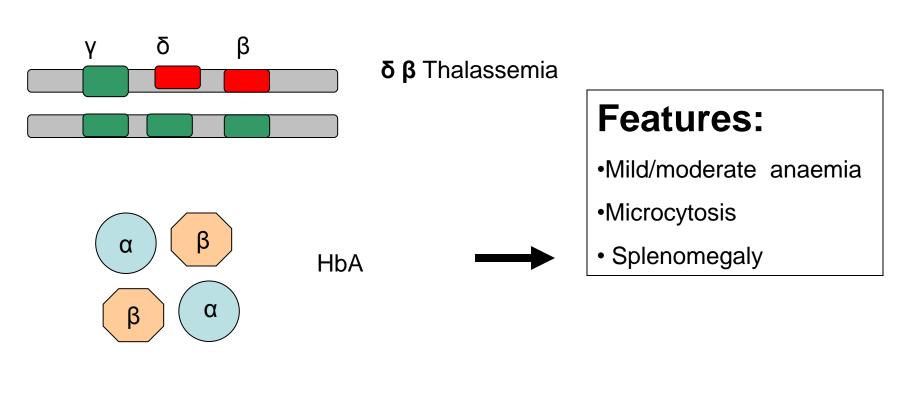
$$\beta$$
+ β 0 Hb A ≈ 5%

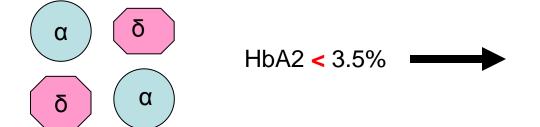

$$β$$
+ $β$ + Hb A ≈ 10%


HbA absent or markedly reduced

Features:

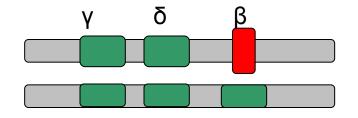
- Transfusion dependant
- •Both parents must have beta thal minor-
- Both have low MCV


HbF up to 100%

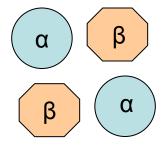

Beta thalassemia intermedia

Beta thalassemia intermedia

- Same genetics as in thal major
- But milder symptoms and less transfusion requirement
- Usually benefit from splenectomy
- Causes may include:
 - $-\beta+\beta+$
 - HPHF
 - Concomitant alpha thalassemia defect
 - Others


$\delta \beta$ Thalassemia

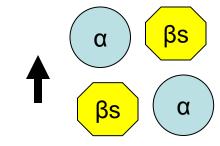
Abnormal chain production


Sickle and others

Abnormal gene

Abnormal chain production

S, C^H, C, E, D, J, O, I



HbA

Hb S, C, E, D, J, O, I

MCV might be normal

HbA2 < 3.5% =

Premarital counseling

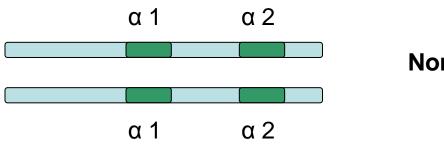
β+	β+
βο	βο
δβ	δβ
S	S
CH	CH
C	C
E	E
D	D
J	J
0	0
I	I

Alpha thalassemia

Haemoglobin

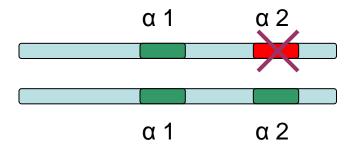
Haem

- Iron
- portoporphyrins


<u>Globin</u>

- Two alpha with either
- Two beta (Hb A)
- Two gamma (Hb F)
- Or two delta (Hb A2)

Gene on chr 16

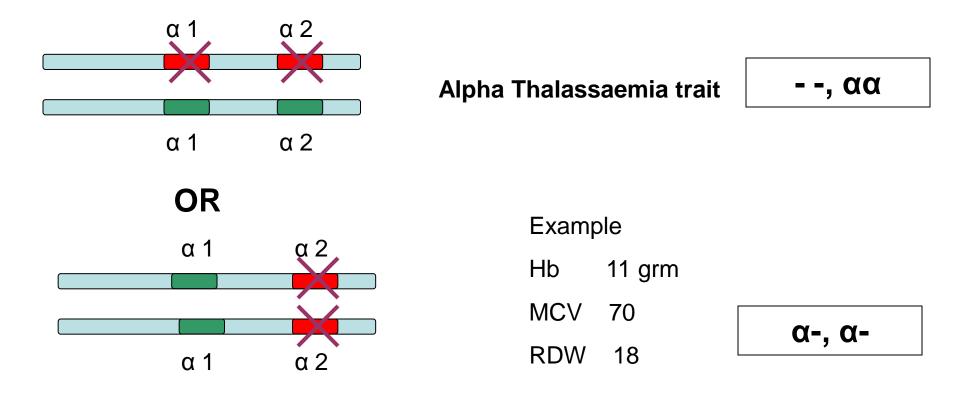

Gene on chr 11

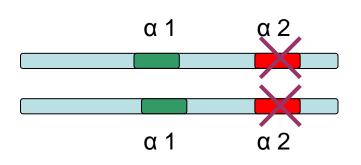
αα, αα

Normal

α-, αα

Alph Thalassaemia silent


Around 15% of Palestinians


Example

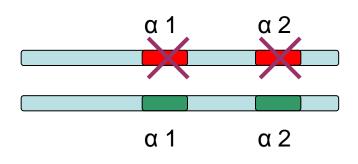
Hb 13 grm

MCV 81

RDW 14.5

α-, α-

Alpha Thalassaemia trait


- •Fairly common in Palestine
- Usually both parents have normal MCV (Silent)

Example

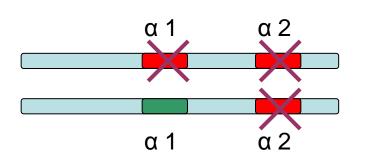
Hb 11 grm

MCV 70

RDW 18

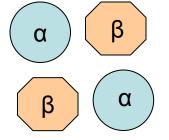
- -, αα

Alpha Thalassaemia trait


- Very rare in Palestine
- One parent must have low MCV

Example

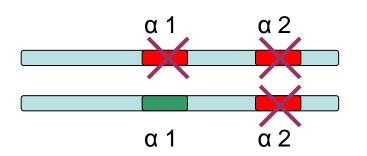
Hb 11 grm


MCV 70

RDW 18

- -, α-

Alpha Thalassaemia – HBH disease

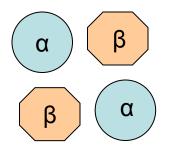


ββ

ββ

HbA

HbH



- -, α-

Alpha Thalassaemia – HBH disease

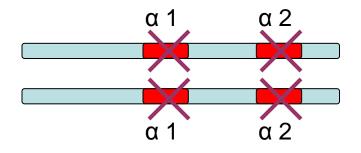
Features:

- Splenomegaly
- One parent has normal MCV and one parent has low MCV

HbA

β β β β

HbH


Example

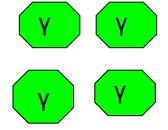
Hb 7.5grm

MCV 65

RDW 21

Alph Thalassaemia – HB Barts disease

Example


Hb 1-2grm

MCV --

RDW --

Incompatible with life

Death in utero due to hydrops fetalis

Hb Barts

Causes of Normal Hb A2 in a patient with thalassaemic picture

- Lab error / technique
- Concomitant iron deficiency
- Concomitant alpha thalassaemia
- Alpha thalassaemia minor
- Delta Beta thalassaemia
- Hb Lepore
- Extreme love of couples

Recommendations

- Study of all new cases of thalassemia major since the introduction of the premarital testing
- CBC on both couples(Not one as it is now) and proceed for Hb electrophoresis if one has low MCV (Needs cost analysis)

THANK YOU