
I

II

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION __ 1

1.1 Background of the Project __ 2

1.2 Objectives __ 3

CHAPTER 2 Overview of Design and Components ________________________________ 4

2.1 Review of Similar Sysytems __ 5

2.1.1 The Weather Station ___ 5

2.1.2 Home Made Logger of Temperature and Solar Data __ 6

2.1.3 Tenerife Weather Station ___ 7

2.1.4 Weather Station (EasiData Mark 4) ___ 8

2.2 Overview of Project Design ___ 10

2.3 Review of Components ___ 10

2.3.1 Arduino Uno (ATmega328P) ___ 11

2.3.2 GSM Modem (SM5100B-D) ___ 13

2.3.3 Humidity and Temperature Sensor – RHT03 ___ 14

2.3.4 Barometric Pressure Sensor BMP085 ___ 15

2.3.5 Hall Effect Sensor __ 17

2.3.6 Two Parallel Plate Capacitors ___ 17

2.3.7 Water Pump __ 18

2.3.8 Relay Bestar BS-115C __ 18

 2.3.9 NPN TRANSISTOR ___ 18

CHAPTER 3 Methodoligy and Design __ 19

3.1 Mechanism of Rain Gauge Measurement ___ 20

3.1.1 Rain Gauge Characteristics ___ 22

3.1.2 Calculations and relations __ 23

3.1.3 Interface with Arduino __ 24

3.2 Sensors Interface and Connections ___ 25

3.2.1 Humidity and Temperature Sensor – RHT03 ___ 25

3.2.2 Barometric Pressure Sensor BMP085 __ 25

3.2.3 Hall Effect Sensor __ 26

3.3 Mechanism of Wind Speed Measurements __ 27

3.4 GSM Modem Interface with Arduino Board ___ 29

III

CHAPTER 4 Results __ 30

4.1 About Sensors Measurements ___ 31

4.2 About Rain Gauge Measurements ___ 32

4.3 About Arduino Uno and GSM Modem ___ 33

CHAPTER 5 Discussion and Conclusion _______________________________________ 34

5.1 Problems We Faced ___ 35

5.2 Future improvement __ 35

5.3 Conclusion ___ 35

5.4 Commercial Study __ 36

Appendix __ 37

Appendix A: ARDUINO UNO ATMEGA328P __ 38

Appendix B: GSM MODEM ___ 38

Appendix C: Humidity and Temperature Sensor – RHT03 ______________________________________ 41

Appendix D: Barometric Pressure Sensor BMP085 __ 46

Appendix E: Relay Bestar BS-115C ___ 48

Appendix F: NPN switching transistor 2N2222A __ 51

Appendix G: Hall Effect Sensor __ 53

 Appendix H: System code ___ 55

References ___ 68

IV

LIST OF FIGURES

Fig 2.1.1.1 The weather Station project __ 6

Fig 2.1.2.1 Home Made logger of Temperature and solar system _________________________________ 7

Fig 2.1.3.1 Tenerife Weather Station __ 8

Fig 2.1.4.1 Weather Station (EasiData Mark 4) __ 9

Fig 2.2.1 Block diagram for overall system __ 10

Fig 2.3.1.1 Arduino uno board __ 11

Fig 2.3.2.1 GSM Modem (SM5100B-D) ___ 14

Fig 2.3.3.1 Humidity and Temperature Sensor – RHT03 _______________________________________ 15

Fig 2.3.4.1 Barometric Pressure Sensor BMP085 ___ 16

Fig 2.3.5.1 Hall Effect Sensor ___ 17

Fig 2.3.6.1 The Rain Gauge __ 17

Fig 2.3.8.1 Relay Bestar BS-115C ___ 18

Fig 3.1.1 Rain Gauge Characteristics ___ 20

Fig 3.1.1.1 The Rain Gauge inside a Cylindrical Pipe ___ 22

Fig 3.1.2.2 The relation between water level and (capacitance*resistor) __________________________ 23

Fig 3.1.3.1 Interface with Arduino Board ___ 24

Fig 3.2.1.1 Humidity and Temperature Sensor Interface ______________________________________ 25

Fig 3.2.2.1 Barometric Pressure Sensor BMP085 ___ 26

Fig 3.2.3.1 Hall Effect Sensor ___ 27

Fig 3.3.1 Plastic PVC End Cab __ 27

Fig 3.3.2 Hall Effect Sensor and magnet Location __ 27

Fig 3.4.1 Interface between GSM Modem and Arduino ______________________________________ 29

Fig 4.1.2 Output Readings of Sensors ___ 31

Fig 4.2.1 Output of water level and the CapSens (capacitance*resistor) _________________________ 32

 Figure 4.2.2: The relation between water level and the CapSens _________________________________ 33

V

LIST OF TABLES

Table 3.1.2.1 Relation between Capacitance and Amount of Rainfall ______________________________ 23

Table 4.1.1 Sensor Specifications __ 31

Table 5.4.1 Cost of Components ___ 36

VI

ACKNOWLEDGEMENT

All the praises for Allah Almighty, who gave us the ability of hard work and

courage as an ultimate consequence of which we became able to complete the

project at hand with the required goals and much before the prescribed limit of

time factor.

Secondarily, we, the associate workers of the project under study, are

thankful to our project supervisor Dr. Falah Mohammad, through the kind

guidance of which we were able to complete the project. He is absolutely a legend

in the field of Telecommunication Engineering. In spite of his job, he arranged a

number of meetings with us which proved to be very useful on our part.

Sometimes, one short meeting with him helped solve the problems which might

have taken days if we tried them on our own.

 In the end, we consider it ultimate to pay regards to our parents and all the

teachers of the Telecommunication Engineering Department, from which we learnt

a lot throughout our 5-year course of study. It was not just the matter of final year,

except the required competitive aptitude, sense of responsibility and sincerity

required for the successful completion of any project was developed in us by our

graceful parents and teachers during our 5-year period in the college.

VII

ABSTRACT

 In this project we aim to design weather station in order to provide us with

some weather parameters every day such as temperature, humidity, daily amount

of rainfall level, barometric pressure and wind speed. The main function for this

station is to send data two times or more during a day by using the global System

for Mobile communication (GSM) modem which is connected directly with a

microcontroller. To make the project more efficient, some parameters are taken

into account like cost, availability of components, the project time life,

consumption power, accurately at sending and receiving of data.

1

Chapter 1

Introduction

1.1 Background of the Project

1.2 Objectives

2

CHAPTER 1 Introduction

1.1 Background of the Project

A wireless weather station is a standalone system that keeps the status of the

outdoor temperature, humidity, daily amount of rainfall, barometric pressure, and

wind speed; which is an outdoor weather monitoring system that gives easy way to

keep the status of the outside weather. It has helped to travel safer without getting

caught in bad weather condition like rain, snow, and fog. Wireless weather stations

keeps us equipped with the weather report whenever and wherever. They are meant

to give moment by moment information about changing of weather conditions. The

main idea of this project is collecting information for weather conditions. Wireless

weather substation being useful and portable.

Weather forecasts is the most important services, which are used by

government to protect life and property and to improve the efficiency of

operations, and by individuals to plan a wide range of daily activities, today

weather forecast is a highly developed that is based in scientific principle and

method. The name of this project is Mobile Weather Forecast station, that means a

mobile will be a meteorological station, so that mobile will receive measurements

for some weather parameters as temperature, humidity, barometric pressure, wind

speed and the daily amount of rainfall, mobile will receive all measurements by

using GSM modem (the Global System for Mobile Communication) that will send

data to it, so that it is very important idea that is grounded on the GSM modem

which is very important in weather forecasts.

3

1.2 objectives:

 To design and implement a mini weather station that can read the

temperature, humidity, amount of daily rainfall, barometric pressure, and

wind speed at the deployed point.

 To investigate the optimum method to report the data including utilizing the

global System for Mobile communication (GSM).

4

CHAPTER 2

Overview of Design and

Components

2.1 Review of Similar Systems

 2.1.1 The Weather station

 2.1.2 Home Made Logger of Temperature and Solar Data

 2.1.3 Tenerife Weather Station

 2.1.4 Weather Station (EasiData Mark 4)

2.2 Overview of project design

2.3 Review of Components

http://hbucollegian.com/?p=1351

5

CHAPTER 2

Overview of Design and Components

This chapter contains three sections, first section is an overview of similar system,

second is an overview of the project design, and the last section will demonstrate

all components that are used in the overview of this design.

2.1 Review of Similar Systems

2.1.1The Weather station

This project was for students in Houston Baptist University it measures

temperature, rainfall, humidity, barometric pressure and wind speed, the aim of this

project is to compare data gathered from the weather station in 2011 to local

weather since 1900, and in the near future include working with Information

Technology Services to make up-to-date campus weather conditions available to

all University students through portal. Additional plans include installing a

lightning rod that will be beneficial for outdoor sporting events and a soil density

reader for biology lab, this project shown as figure 2.1.1.1. The Project does not

contain GSM modem to provide the destination by collected data moment by

moment [1].

http://hbucollegian.com/?p=1351

6

Figure 2.1.1.1: The Weather Station Project

2.1.2 Home Made Logger of Temperature and Solar Data:

This project made by David Cook, it is designed to be located away from the

house without a power cord and it is also Operate for long periods of time without

human intervention or maintenance, retain data in the event of a power loss or

microcontroller reset. Survive all outdoor temperatures and conditions (such as rain

and snow).The weather station consists of a small solar panel (about 1/8 watt),

rechargeable battery backup for night time and cloudy operation, microcontroller

,data stored in a 4 MB flash chip, two power source monitors, and six temperature

sensors. The six temperature sensors four are taped to a bamboo pole at various

heights, one is in the project box, and one is a couple of inches underground. This

project not has GSM for giving data moment by moment, and don’t have the

ability to provide the other conditions of the weather like wind and direction, and

humidity, this project shown as Figure 2.1.2.1.

http://hbucollegian.com/?p=1351

7

Figure 2.1.2.1: Home Made Logger of Temperature and Solar Data

2.1.3 Tenerife Weather Station

The weather station runs 24 hours a day, 7 days a week and 365 days a year;

logging data and providing weather status information to many systems within the

observatory, The weather station consist of many sensors, wind speed 1, wind

speed 2, wind direction, internal temperature, external temperature, rain, dew,

cloud south north, east, and west, solar radiation, light sun rise and set, barometric

pressure. One function of the weather station is to provide a good or bad signal to

the control server, the good or bad signal is generated every 10 seconds; the output

is controlled by a series of rules, if any of the rules report that the weather is bad

the output signal is set to bad, this information is used to govern the operation of

the control server. In addition to the control server the good or bad output is also

used by numerous safety systems that act to protect the system in the event of a

failure elsewhere in the system. The weather station collects samples from each

sensor every 10 seconds; every 10 minutes the weather station calculates average,

minimum and maximum values and inserts them into the database, from here the

database logs are uploaded to the primary UK server, from which they are used to

generate the weather statistics and graphs. This project needs to connect directly to

8

a source power, so this project not useful to be installed in isolated area to

measured weather conditions, and also it is more cost.

Figure 2.1.3.1 Tenerife Weather Station

2.1.4 Weather Station (EasiData Mark 4)

The EasiData Mark 4 is a highly flexible data logger that until 2009 formed

the core component of Environdata’s modular weather stations. These weather

stations can be customized to suit almost any application or location, The EasiData

Mark 4 can store up to 216 data types, including real time calculations on sensor

inputs (eg. Current sensor readings, means, maximums, minimums, true vector

wind analysis, evaporation rate etc). New commands can be sent to the logger at

any time to reconfigure its storage operation. The Mark 4 can be programmed to

meet specific requirements now, and re-programmed when those requirements

change. An Environ data Easi Data Mark 4 Weather Station is a robust

computerized system that measures and records environmental conditions in real

time. Weather station consists of four key components, external sensors that

measure environmental parameters and transmit raw data, A data logger that

9

collects and analyses the raw data and calculates the results before storing it into

internal memories, A communications method of the choice that transmits the

stored data to any external computer, Environ data’s software that will download

and display data in preferred format. Environ data manufactures almost 20

different types of sensors to operate with the Easi Data system, These include:

solar radiation, relative humidity, air temperature, wet and dry bulb temperature,

grass temperature, soil temperature, rainfall, wind speed, wind direction,

barometric pressure, soil moisture, radiant heat, ultra violet radiation, and Photo

synthetically active radiation. Remote Communications Equipment for project

include : GSM Remote Link (Global System for Mobile Communications),

CDMA Remote Link (Code Division Multiple Access),Modem Dial-Up – Via a

standard phone line, UHF Radio Link, Network Connection, or RS-232 Serial

Cable Link – maximum preferred distance 100 meters, up to 5 km with line

drivers. This project not contains system for rechargeable battery, so in isolated

area not useful, and also it is high cost.

Figure 2.1.4.1 Weather Station (Easi Data Mark)

10

2.2 Overview of project design

This section will explain a simple design for the project by using a block

diagram as shown in Figure 2.2.1 that will describe the basic idea for functionality

for overall system briefly.

Figure 2.2.1: Block diagram for overall system

This block diagram represents all measurements which will be taken from the

weather by station. The core of this design is a microcontroller (Arduino Uno)

which collects all data and sends it by using GSM modem to interface circuit that

will be a mobile device. The microcontroller will receive five measurements; one

from these measurements is taken from rain gauge to measure the amount of

rainfall, the rain gauge contains two parallel plate capacitors impacted along it,

then the equivalent capacitance varies due to rainfall amount, the other

measurements will be taken from four sensors; first sensor will read the

temperature, second one read the humidity, and the last two sensors read speed of

wind and barometric pressure.

2.3 Review of Components

This section gives a good background for all components which are used in the

project and describe the function of each one.

11

2.3.1 Arduino Uno (ATmega328P)

The Arduino Uno is a microcontroller board, as shown in Figure 2.3.1.1 it has 14

digital input/output pins (of which 6 can be used as PWM outputs), 6 analog

inputs, a USB connection, a power jack, and a reset button. It contains everything

needed to support the microcontroller; simply connect it to a computer with a USB

cable or power it with an AC-to-DC adapter or battery to get started.

Figure 2.3.1.1 : Arduino uno board

Basic features for Arduino Uno:

 Microcontroller ATmega328

 Operating Voltage 5V

 Input voltage(recommended) 7-12 V

 Input Voltage (limits) 6-20 V

 Digital I/O Pins 14(of which 6 provide PWM output)

 Analog Input Pins 6

12

 DC Current per I/O Pin 40 mA

 DC Current for 3.3V Pin 50 mA

 Flash Memory 32 KB

 SRAM 2 KB

 EEPROM 1 KB

 Clock Speed 16 MHz

"Uno" means one in Italian and is named to mark the upcoming release of Arduino

1.0. The Uno and version 1.0 will be the reference versions of Arduino, moving

forward. The Arduino Uno can be powered via the USB connection or with an

external power supply. The power source is selected automatically. External (non-

USB) power can come either from an AC-to-DC adapter or battery. The adapter

can be connected by plugging a 2.1mm center-positive plug into the board's power

jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the

POWER connector. The board can operate on an external supply of 6 to 20 volts. If

supplied with less than 7V, however, the 5V pin may supply less than five volts

and the board may be unstable. If using more than 12V, the voltage regulator may

overheat and damage the board. The recommended range is 7 to 12 volts.

The Arduino Uno can be programmed using software provided, the java-based

programming language is similar to C++ with some modifications, rather than

requiring a physical press of the reset button before an upload, the Arduino Uno is

designed in a way that allows it to be reset by software running on a connected

computer. The Arduino Uno has a resettable polyfuse that protects your computer's

USB ports from shorts and over current. Although most computers provide their

13

own internal protection, the fuse provides an extra layer of protection. If more than

500 mA is applied to the USB port, the fuse will automatically break the

connection until the short or overload is removed [8].

2.3.2 GSM Modem (SM5100B-D)

GSM Modem is a class of wireless Modem devices that are designed for

communication of a computer with the GSM network. It requires a SIM

(Subscriber Identity Module) card just like mobile phones to activate

communication with the network. Also they have IMEI (International Mobile

Equipment Identity) number similar to mobile phones, for their identification. A

GSM Modem can perform the following operations:

 Receive, send or delete SMS messages in a SIM.

 Read, add, search phonebook entries of the SIM.

 Make, Receive, or reject a voice call.

The Cellular Shield for Arduino includes all the parts needed to interface your

Arduino with anSM5100B cellular module as shown in Figure 2.3.2.1. This allows

you to easily add SMS, GSM/GPRS, and TCP/IP functionalities to your Arduino-

based project. All you need to add cellular functionality to your Arduino project is

a SIM card (pre-paid or straight from your phone) and an antenna and you can start

sending Serial. Print statements to make calls and send texts [9]. The main

components of the Cellular Shield are a 60-pinSM5100B connector, a SIM card

socket, and an SPX29302 voltage regulator configured to regulate the Arduino's

Raw voltage to 3.8V. The board's red LED indicates power. The Arduino's reset

button is also brought out on the shield.

http://www.sparkfun.com/commerce/product_info.php?products_id=9533
http://www.sparkfun.com/commerce/product_info.php?products_id=9535
http://www.sparkfun.com/commerce/product_info.php?products_id=548
http://www.sparkfun.com/commerce/product_info.php?products_id=548

14

Figure 2.3.2.1: GSM Modem (SM5100B-D)

AT commands are used for interface between GSM modem and Arduino board,

AT commands are also known as Hayes AT commands. There are different views

to understand the meanings of "AT". Some call it "Attention Telephone", whereas

others call it "Attention Terminal" commands. AT commands allow giving

instructions to both mobile devices and ordinary landline telephones. The

commands are sent to the phone's modem, which can be a GSM modem or PC

modem. Different manufacturers may have different sets of AT commands.

Fortunately, many AT commands are the same. AT commands can be used for

operations that are usually done from the keypad, for instance calling a number,

sending, reading, or deleting an SMS, reading and deleting phonebook data,

reading the battery status, reading the signal strength, and so on.

2.3.3 Humidity and Temperature Sensor – RHT03

The RHT-03 is a low cost humidity and temperature sensor with a single

wire digital interface as shown in Figure 2.3.3.1. The sensor is calibrated and

doesn't require extra components so you can get right to measuring relative

humidity and temperature [10].

15

Figure 2.3.3.1: Humidity and Temperature Sensor – RHT03

Features:

 3.3-6V Input

 1-1.5 mAmeasuring current

 40-50 A standby current

 Humidity from 0-100% RH

 c


8040  temperature range

 
2 RH accuracy

 c


5.0

2.3.4 Barometric Pressure Sensor BMP085

The BMP085 is a basic sensor that is designed specifically for measuring

barometric pressure (it also does temperature measurement on the side to help). It's

one of the few sensors that does this measurement, and it’s fairly low cost so you'll

see it used a lot. You may be wondering why someone would want to measure

atmospheric pressure, but it’s actually really useful for two things. One is to

measure altitude. As we travel from below sea level to a high mountain, the air

pressure decreases. That means that if we measure the pressure we can determine

our altitude - handy when we don't want the expense or size of a GPS unit.

16

Secondly, atmospheric pressure can be used as a predictor of weather which is why

weather-casters often talk about "pressure systems", BMP085 sensor is shown in

Figure 2.3.4.1:

Figure 2.3.4.1: Barometric Pressure Sensor BMP085

Specifications

- Pressure sensing range: 300-1100 hPa (9000m to -500m above sea level)

- Up to 0.03hPa / 0.25m resolution

- -40 to +85°C operational range, +-2°C temperature accuracy

- 2-pin i2c interface on chip

- V1 of the breakout uses 3.3V power and logic level only

- V2 of the breakout uses 3.3-5V power and logic level for more flexible usage

17

2.3.5 Hall Effect Sensor

A Hall Effect sensor as shown in Figure 2.3.5.1 is a transducer that varies its

output voltage in response to a magnetic field. Hall Effect sensors are used for

proximity switching, positioning, speed detection, and current sensing applications.

Figure 2.3.5.1: Hall Effect Sensor

2.3.6 Two Parallel Plate Capacitors

Rain gauge contains two parallel plate capacitors which are made from the

stainless steel metal which was chosen, because it is a very good conductor.

It is used to calculate the amount of rain fall by the changing in the capacitance

value which useful in determines this amount easy, and this shown as Figure

2.3.6.1:

Figure 2.3.6.1: The Rain Gauge

http://en.wikipedia.org/wiki/Transducer
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Hall_effect

18

2.3.7 Water Pump

The water pump is used to discharge the rain gauge from the water when it is

full and every day. The pump operates with 12v.

2.3.8 Relay Bestar BS-115C

The relay which is used its magnetic coil operates with 5 v input to close the

circuit which operates with 12v as pump water, and this relay shown as figure

2.3.8.1 below:

Figure 2.3.8.1: Relay Bestar BS-115C

2.3.9 NPN switching transistor 2N2222A

It is a switching transistor with high current (max. 800 mA), and operate at

low voltage and with maximum voltage 40 V and we use it to amplify the output

voltage comes from the arduino pin to supply it to the water pump. this transistor is

shown in figure 2.3.9.1:

Figure 2.3g.9.1: NPN switching transistor 2N2222A

19

CHAPTER 3

Methodology and Design

3.1 Mechanism of Rain Gauge Measurement
 3.1.1 Rain Gauge Characteristics

 3.1.2 Calculations and relations

 3.1.3 Interface with Arduino Board

3.2 Sensors Interface and Connections
3.2.1 Humidity and Temperature Sensor – RHT03

3.2.2 Barometric Pressure Sensor BMP085

3.2.3 Hall Effect Sensor

3.3 Mechanism of Wind Speed Measurements

3.4 GSM Modem Interface with Arduino Board

20

CHAPTER 3

Methodology and Design

3.1 Mechanism of Rain Gauge Measurement

According to the amount value of the rainfall which measured by the

Palestinian metrological center which are taken in the accounts to choose the best

design for the size and the shape of the rain gauge , and this value was 833mm

during winter semester in 2011- 2012 year. The height of rain gauge is 30 cm with

diameter 4 cm as shown in Figure 3.1.1:

Figure 3.1.1: Rain Gauge Characteristics

The main idea for this measurement depends on the changing in the

capacitance value for the two parallel plate capacitors which are impacted inside

the rain gauge, and this value increasing linearly as rainfall level increase

according to this relation:

d

A
C r 

21

Where:

 C: The Capacitance value.

 : Permittivity of free space MF /10
36

1
10854.8 912  



r : Permittivity of water MF /80 .

d : The distance between two parallel plates.

A : Area for the flooded part of the parallel plate capacitors.

From the previous relation the capacitance value is inversely proportional to

the distance between two parallel capacitors and this distance is a constant, so that

the capacitance value depend only on the area of the capacitors which flooded in

the water comes from the rainfall . The total capacitance for two parallel plate

capacitors when there is no water, it is a free space capacitance and this value is

very small, but when there is water inside rain gauge the total capacitance becomes

as this equation:

21 CCCtotal 

Where:

1C : The capacitance for folded part

2C : The capacitance for free space part

To calculate the amount of rainfall according to the changing of the total

capacitance value and using the Arduino Board which will calculate the time

constant (τ) which is equal to totalRC ,such that R is 10 Resistor.

22

3.1.1 Rain Gauge Characteristics

To achieve the best calculations for the amount rainfall, the rain gauge will

put inside the cylindrical plastic pipe to isolate it from outside conditions as shown

in Figure 3.1.1.1:

Figure 3.1.1.1: The Rain Gauge inside a Cylindrical Pipe

The amount of rainfall measurements will be taken every day so that the

discharging of the water is very necessary to take a new reading in the next day, so

the pump water is used to do this issue which placed inside the pipe.

23

3.1.2 Calculations and relations

 To find a relation between capacitance and amount of rainfall, some

calibrations are needed to achieve it, and these calibrations are divided into 8 levels

with 30 ml in each one as shown in Table 3.1.2.1:

Water level(ml) CapSens(R*C)

0 23547

30 24316

60 26382

90 28133

120 30293

150 32631

180 34673

210 37335

Table 3.1.2.1: Relation between CapSens and Amount of Rainfall

 From previous values the relation as shown in Figure 3.1.2.2:

Figure 3.1.2.2: The relation between the water level

 And the (capacitance x resistor)

Water level

C * R

24

 The relation between water level and capacitance approximately linearly, so

that the relation according for this as follows:

66.72

6.21593


Y
X

Where:

X: Amount of rainfall.

Y: capacitance x resistor.

To calculate the exact value for how much amount rainfall using the rain gauge, we

have been made the celebration in a way that takes into account the volume of the

two parallel plates and the hose, to do this we first put the water into the gauge and

after that we put the two parallel plates and the hose together into it, then we take

the reading of the gauge and write our notes.

3.1.3 Interface with Arduino Board

The interface between the two parallel plate capacitors and the arduino board

is shown in Figure 3.1.3.1:

Figure 3.1.3.1: Interface with Arduino Board

25

3.2 Sensors Interface and Connections

 This section shows the interfaces and connections for all sensors with

Arduino Uno.

3.2.1 Humidity and Temperature Sensor – RHT03

 The RHT03 sensor works from 3.3v to 6v, pin1 is connected to 5v on

Arduino. The sensor pin 2 goes to the Arduino pin 5, with a 1Kohm pull-up

resistor as shown in Figure 3.2.1.1:

Figure 3.2.1.1: Humidity and Temperature Sensor Interface

3.2.2 Barometric Pressure Sensor BMP085

Barometric Pressure Sensor BMP085 connection is shown in Figure 3.2.2.1,

- We Connect the VCC pin to a 3.3V power source. The V1 of the sensor

breakout cannot be used with anything higher than 3.3V so we don't use a

5V supply, V2 of the sensor board has a 3.3V regulator so we can connect it

to either 3.3V or 5V if we do not have 3V available.

- We Connect GND to the ground pin.

26

- We connect the i2c SCL clo ck pin to our i2c clock pin(Analog pin #5).

- We Connect the i2c SDA data pin to your i2c data pin(Analo g pin #4)

- Unfortunately, the i2c lines on most microcontrollers are fixed so we are

going to have to stick with those pins.

- We don't need to connect the XCLR (reset) or EOC (end-of-conversion)

pins. If we need to speed up our conversion time, we can use the EOC as an

indicator - in our code we just hang out and wait the maximum time

possible.

Figure 3.2.2.1: Barometric Pressure Sensor BMP085

3.2.3 Hall Effect Sensor

 Hall effect sensor has three pins, as shown in figure pin1 is connected to

digital output, pin2 to ground , pin3 to 5v and K10 resistor between pin1 and pin3

as shown in Figure 3.2.3.1:

27

Figure 3.2.3.1: Hall Effect Sensor.

3.3 Mechanism of Wind Speed Measurements

In this section the mechanism of wind speed measurements will be discussed

and these measurements depend with its operation on the magnetic field, so that

the Hall Effect sensor to sense the magnetic field and the magnet will be used to do

this operation.

To calculate the wind speed the end plastic PVC cab is used as follows in Figure

3.3.1:

Figure 3.3.1: Plastic PVC End Cab

The Hall Effect sensor will locate on the main column of the anthropomorphic, and

the magnet will be put in versus with the Hall Effect sensor by putting it in one of

the four arms of the PVC end as shown in figure 3.3.2:

28

Figure 3.3.2: Hall Effect Sensor and magnet Location

The main idea to calculate the number of the revolutions per unit time so that to

calculate it, every one revolution the magnet cross the sensor and the sensor will be

high then is very is to calculate how many revolution per unit time by calculating

how many times the sensor be high every one minute to calculate the angular

velocity ω which is equal to:

t

n


Where:

n: Numbers of revolutions (rad).

t: Time (t).

29

Now to calculate the wind speed, this angular velocity will be

transferred to be as a linear velocity v as this formula:

Rv .

Where:

ω: Angular Velocity (rad/s).

R: Radius from the center of the end cap to the center of the end cups (m).

3.4 GSM Modem Interface with Arduino Board

 The interface between GSM modem and Arduino Uno is very easy, as

shown in Figure 3.4.1 all pins for Arduino the same pins on GSM modem. The

GSM modem can often require up to 2A of current and it needs 5V power supply

but the Arduino board can only supply up to just under 1A, so that it is highly

recommended to use an external 5V power supply capable of delivering 2A of

current from an AC adapter

Figure 3.4.1: Interface between GSM Modem and Arduino

30

CHAPTER 4

Results

4.1 About Sensors Measurements.

4.2 About Rain Gauge Measurements.

4.3 About Arduino Uno and GSM Modem.

31

4.1 About Sensors Measurements

According to datasheet got for sensors, the properties for these sensors are

shown in Table 4.1.1:

Sensors Names Operating Ranges Output ERROR

Humidity And

Temperatures

Sensor

0-100% Digital +-2% RH

+-0.5 C

Pressure 0-1023 Analog 1.5%

Hall effect 0-1023 Digital 5%

Table 4.1.1: Sensor specifications

The different output readings which was taken from the sensors was the same

ranges in the previous table and don’t exceed it, and the Figure 4.1.2 show some

these output readings from all sensors after was connected.

Figure 4.1.2: Output Readings of Sensors

32

4.2 About Rain Gauge Measurements

In the following figure we show some trials and experiments to find the

relation between the water level and the value of R*C Figure 4.2.1:

Figure 4.2.1: Output of water level and the CapSens (R*C)

33

By making a step by step of water adding into the gauge with 30 ml for each step

we find that the relation between the water level and the value of CapSens(R*C) is

given by the following figure 4.2.2

Figure 4.2.2: The relation between water level and the CapSens

4.3 About Arduino Uno and GSM Modem

The Arduino uno was very easy to handle and designed in a way that allows

it to be reset by software running on a connected computer. In addition it can

interface with many devices and components such as GSM Modem.

Water level

C x R

34

 CHAPTER 5

Discussion and Conclusion

5.1 Problems we faced

5.2 Future improvements

5.3 Conclusion

5.4 Commercial Study

35

5.1 Problems We Faced

We faced a lot of problems during the work but we will discuss main it:

 Some components not available in the market, so that it was changed with

other components.

 What is the best design for our base station?

 How will the design wind speed sensor without friction to move more

easily?

 Some Components are expensive.

 The two parallel capacitors are very sensitive for the outside conditions.

5.2 Future improvement

 Install a weather station with a renewable energy.

 Make a network for weather station in different areas.

 Display the data through website weather.

 Use more sensitive components to get more reliable data.

5.3 Conclusion

Design wireless base station to collect the data from the weather and send

them through GSM Modem to Mobile Carriers without needing for Meteorological

observer.

36

5.4 Commercial Study

In our project we tried to use components which have more needed

functionality with high efficiency and minimum cost. The Table 5.4.1 below shows

the cost of each component used in the project.

Table 5.4.1: Cost of Components

Name of component Cost(NIS)

Arduino Uno 205

GSM Modem SM5100B-D 570

Humidity and Temperature Sensor

RHT03

73

Barometric Pressure Sensor BMP085 80

Rain Gauge 30

Hall Effect Sensor 25

Water Pump 25

Relay 7

Transistor 1

Bottle 12

37

Appendix

Appendix A: ARDUINO UNO ATMEGA328P

38

Appendix B: GSM MODEM

39

40

41

Appendix C: Humidity and Temperature Sensor – RHT03

42

43

44

45

46

Appendix D: Barometric Pressure Sensor BMP085

47

48

Appendix E: Relay Bestar BS-115C

49

50

51

Appendix F: NPN switching transistor 2N2222A

52

53

Appendix G: Hall Effect Sensor

54

55

Appendix H: System Code

// including libraries needed

#include <Wire.h>

#include <CapacitiveSensor.h>

#include <stdio.h>

#include <util/delay_basic.h>

#include <Time.h>

#include <TimeAlarms.h>

#include <SoftwareSerial.h>

#define BMP085_ADDRESS 0x77

SoftwareSerial cell(10,11);

// //definetion for some variables

char phoneNumber[] = "00972568607003";

float sensors[5];

char globalbuf[128];

int WaterLevel=0;

int Rev=0;;

float windspeed=0;

CapacitiveSensor cs_4_6 = CapacitiveSensor(4,6);

const unsigned char OSS = 0;

int ac1;

int ac2;

int ac3;

unsigned int ac4;

unsigned int ac5;

unsigned int ac6;

int b1;

int b2;

int mb;

56

int mc;

int md;

long b5; // b5 is calculated in bmp085GetTemperature(...), this variable is also used in bmp085GetPressure(...)

 // so ...Temperature(...) must be called before ...Pressure(...).

short temperature;

long pressure;

const float p0 = 101325;

float altitude;

const int sensorReadTimeoutMillis = 1000;

const int serialBaudRate = 9600;

const int sensorReadIntervalMs = 5000;

int millisSinceLastRead = 0;

int sensorPin = 2;

int pum=9;

volatile long lastTransitionMicros = 0;

volatile int signalLineChanges;

int timings[88];

char errorMsgBuf[256];

boolean errorFlag = false;

///

void bmp085Calibration()//// calibration function for BMP085 sensor

{

 ac1 = bmp085ReadInt(0xAA);

 ac2 = bmp085ReadInt(0xAC);

 ac3 = bmp085ReadInt(0xAE);

 ac4 = bmp085ReadInt(0xB0);

 ac5 = bmp085ReadInt(0xB2);

 ac6 = bmp085ReadInt(0xB4);

57

 b1 = bmp085ReadInt(0xB6);

 b2 = bmp085ReadInt(0xB8);

 mb = bmp085ReadInt(0xBA);

 mc = bmp085ReadInt(0xBC);

 md = bmp085ReadInt(0xBE);

}

long bmp085GetPressure(unsigned long up)//////////////// presure getting function for BMP085 sensor

{

 long x1, x2, x3, b3, b6, p;

 unsigned long b4, b7;

 b6 = b5 - 4000;

 x1 = (b2 * (b6 * b6)>>12)>>11;

 x2 = (ac2 * b6)>>11;

 x3 = x1 + x2;

 b3 = (((((long)ac1)*4 + x3)<<OSS) + 2)>>2;

 x1 = (ac3 * b6)>>13;

 x2 = (b1 * ((b6 * b6)>>12))>>16;

 x3 = ((x1 + x2) + 2)>>2;

 b4 = (ac4 * (unsigned long)(x3 + 32768))>>15;

 b7 = ((unsigned long)(up - b3) * (50000>>OSS));

 if (b7 < 0x80000000)

 p = (b7<<1)/b4;

 else

 p = (b7/b4)<<1;

 x1 = (p>>8) * (p>>8);

 x1 = (x1 * 3038)>>16;

 x2 = (-7357 * p)>>16;

 p += (x1 + x2 + 3791)>>4;

58

 return p;

}

char bmp085Read(unsigned char address)

{

 unsigned char data;

 Wire.beginTransmission(BMP085_ADDRESS);

 Wire.write(address);

 Wire.endTransmission();

 Wire.requestFrom(BMP085_ADDRESS, 1);

 while(!Wire.available())

 ;

 return Wire.read();

}

int bmp085ReadInt(unsigned char address)

{

 unsigned char msb, lsb;

 Wire.beginTransmission(BMP085_ADDRESS);

 Wire.write(address);

 Wire.endTransmission();

 Wire.requestFrom(BMP085_ADDRESS, 2);

 while(Wire.available()<2) ;

 msb = Wire.read();

 lsb = Wire.read();

 return (int) msb<<8 | lsb;

}

unsigned int bmp085ReadUT()

{

 unsigned int ut;

 Wire.beginTransmission(BMP085_ADDRESS);

59

 Wire.write(0xF4);

 Wire.write(0x2E);

 Wire.endTransmission();

 delay(5);

 ut = bmp085ReadInt(0xF6);

 return ut;

}

unsigned long bmp085ReadUP()

{

 unsigned char msb, lsb, xlsb;

 unsigned long up = 0;

 Wire.beginTransmission(BMP085_ADDRESS);

 Wire.write(0xF4);

 Wire.write(0x34 + (OSS<<6));

 Wire.endTransmission();

 delay(2 + (3<<OSS));

 Wire.beginTransmission(BMP085_ADDRESS);

 Wire.write(0xF6);

 Wire.endTransmission();

 Wire.requestFrom(BMP085_ADDRESS, 3);

 while(Wire.available() < 3);

 msb = Wire.read();

 lsb = Wire.read();

 xlsb = Wire.read();

 up = (((unsigned long) msb << 16) | ((unsigned long) lsb << 8) | (unsigned long) xlsb) >> (8-OSS);

 return up;

}

boolean readSensor(int * temperature_decidegrees_c, int * rel_humidity_decipercent) {

 initState();

60

 attachInterrupt(sensorPin - 2, sensorLineChange, CHANGE);

 if (!requestSensorRead()) {

 flagError();

 } else {

 const long startMillis = millis();

 do {

 delay(100);

 } while (signalLineChanges < 86 && ((millis() - startMillis) < sensorReadTimeoutMillis));

 detachInterrupt(sensorPin - 2);

 if (signalLineChanges != 86) {

 sprintf(errorMsgBuf, "*** MISSED INTERRUPTS ***: Expected 86 line changes, saw %i", signalLineChanges);

 flagError();

 } else {

 analyseTimings(temperature_decidegrees_c, rel_humidity_decipercent);

 }

 }

 return !errorFlag;

}

void sensorLineChange() {

 const long pulseMicros = micros() - lastTransitionMicros;

 lastTransitionMicros = micros();

 timings[signalLineChanges] = pulseMicros;

 signalLineChanges++;

}

void initState() {

 detachInterrupt(sensorPin - 2);

 for (int i = 0; i < 86; i++) { timings[i] = 0; }

 errorFlag = false;

 lastTransitionMicros = micros();

61

 signalLineChanges = 0;

}

void debugPrintTimings() {

 for (int i = 0; i < 86; i++) {

 if (i%10==0) { Serial.print("\n\t"); }

 char buf[24];

 sprintf(buf, i%2==0 ? "H[%02i]: %-3i " : "L[%02i]: %-3i ", i, timings[i]);

 Serial.print(buf);

 }

 Serial.print("\n");

}

void analyseTimings(int * temperature_decidegrees_c, int * rel_humidity_decipercent) {

 int timingsIdx = 5;

 int humid16 = readnbits(&timingsIdx, 16);

 if (errorFlag) {

 Serial.println("Failed to capture humidity data");

 return;

 }

 int temp16 = readnbits(&timingsIdx, 16);

 if (errorFlag) {

 Serial.println("Failed to capture temperature data");

 return;

 }

 int checksum8 = readnbits(&timingsIdx, 8);

 if (errorFlag) {

 Serial.println("Failed to capture checksum");

 return;

 }

 byte cs = (byte)(humid16>>8) + (byte)(humid16&0xFF) + (byte)(temp16>>8) + (byte)(temp16&0xFF);

62

 if (cs != checksum8) {

 sprintf(errorMsgBuf, "Checksum mismatch, bad sensor read");

 flagError();

 }

 if (temp16 & (1<<15)) {

 temp16 = -(temp16 & (~(1<<15)));

 }

 if (!errorFlag) {

 *temperature_decidegrees_c = temp16;

 *rel_humidity_decipercent = humid16;

 }

}

int readnbits(int * timingsIdx, int nbits) {

 const int * t = timings + *timingsIdx;

 const int * tStop = t + nbits*2;

 int result = 0;

 char buf[12];

 while (t != tStop) {

 checkPreBitLowPulse(*(t++), (*timingsIdx)++);

 result = shiftNextBit(result, *(t++), (*timingsIdx)++);

 }

 return result;

}

int shiftNextBit(int oldValue, int pulseMicros, int timingIndex) {

 if (pulseMicros > 10 && pulseMicros < 40) {

 return (oldValue<<1) | 0;

 } else if (pulseMicros > 60 && pulseMicros < 85) {

 return (oldValue<<1) | 1;

 } else {

63

 sprintf(errorMsgBuf, "Bad bit pulse length: %i us at timing idx %i", pulseMicros, timingIndex);

 flagError();

 return 0xFFFFFFFF;

 }

}

void checkPreBitLowPulse(int pulseMicros, int timingIndex) {

 if (pulseMicros <= 35 || pulseMicros >= 75) {

 sprintf(errorMsgBuf, "Low pulse before bit transmit (%i us) outside 45-70us tolerance at timing idx %i", pulseMicros,

timingIndex);

 flagError();

 }

}

boolean requestSensorRead() {

 if (digitalRead(sensorPin) != HIGH) {

 sprintf(errorMsgBuf, "Line not HIGH at entry to requestSensorRead()");

 flagError();

 return false;

 }

 digitalWrite(sensorPin, LOW);

 pinMode(sensorPin, OUTPUT);

 delayMicroseconds(7000);

 digitalWrite(sensorPin, HIGH);

 delayMicroseconds(30);

 pinMode(sensorPin, INPUT);

 int pulseLength = pulseIn(sensorPin, LOW, 200);

 if (pulseLength == 0) {

 sprintf(errorMsgBuf, "Sensor read failed: Sensor never pulled line LOW after initial request");

 flagError();

64

 return false;

 }

 delayMicroseconds(5);

 pulseLength = pulseIn(sensorPin, HIGH, 200);

 if (pulseLength == 0) {

 sprintf(errorMsgBuf, "Sensor read failed: Sensor didn't go back HIGH after LOW response to read request");

 flagError();

 return false;

 }

 return true;

}

void flagError() {

 pinMode(sensorPin, INPUT);

 digitalWrite(sensorPin, HIGH);

 errorFlag = true;

 Serial.println(errorMsgBuf);

}

void speedcalculation(){

 windspeed=(2*3.14*0.25*Rev)*3.6;

 //Serial.print(windspeed);

 //Serial.print(Rev);

 Rev=0;

 //Serial.print("\n");

}

void windcount()

 {

 Rev=Rev+1;

 }

void setup()

65

{

 cs_4_6.set_CS_AutocaL_Millis(0xFFFFFFFF);

 Serial.begin(9600);

 Wire.begin();

 cell.begin(9600);

 delay(35000); // give the GSM module time to initialise, locate network etc.

 bmp085Calibration();

 pinMode(sensorPin, INPUT);

 digitalWrite(sensorPin, HIGH);

 delay(5000);

 //Serial.begin(serialBaudRate);

 attachInterrupt(1, windcount, FALLING);

 Alarm.timerRepeat(60, speedcalculation);

 delay(sensorReadIntervalMs);

}

void loop()

{

//long start = millis();

long CapSen = cs_4_6.capacitiveSensorRaw(1023);

pressure = bmp085GetPressure(bmp085ReadUP());

altitude = (float)44330 * (1 - pow(((float) pressure/p0), 0.190295));

int temperature;

int humidity;

boolean success = readSensor(&temperature, &humidity);

 if (success) {

 char buf[128];

 sprintf(buf, "Temperature %i.%i degrees C at %i.%i relative humidity", temperature/10, abs(temperature%10),

humidity/10, humidity%10);

 Serial.println(buf);

66

 //globalbuf[128]=buf[128];

 sensors[0]=buf[128];

 }

 Serial.print("Pressure: ");

 Serial.print(pressure, DEC);

 Serial.println(" Pa");

 Serial.print("Altitude: ");

 Serial.print(altitude, 2);

 Serial.println(" m");

 Alarm.delay(200); // wait one second between clock display

 //Serial.println("CapSen");

 //Serial.println(CapSen);

 WaterLevel=((CapSen-21593.6)/(72.66)); // for water level calculations

 Serial.print("WaterLevel: ");

 Serial.print(WaterLevel);

 Serial.print(" ml");

 Serial.println();

 Serial.print("windspeed: ");

 Serial.print(windspeed);

 Serial.print(" km/h");

 Serial.println();

 sensors[1]=pressure;

 sensors[2]=altitude;

 sensors[3]=WaterLevel;

 sensors[4]=windspeed;

cell.println("AT");

delay(200);

cell.println("AT+CMGF=1"); // set SMS mode to text

67

delay(200);

cell.print("AT+CMGS="); // now send message...

cell.write((byte)34); // ASCII equivalent of "

cell.print(phoneNumber);

cell.write((byte)34); // ASCII equivalent of "

cell.println();

delay(200); // give the module some thinking time

cell.print("Amount Of Rainfall =");

cell.print(sensors[3]);

cell.print("ml");

cell.println();

cell.print("Windspeed =");

cell.print(sensors[4]);

cell.print("Km/hour");

cell.println();

cell.print(sensors[0]);

cell.println();

cell.print("Pressure =");

cell.print(sensors[1]);

cell.print("Pa");

cell.println();

cell.write((byte)26); // ASCII equivalent of Ctrl-Z

cell.println();

delay(15000); // the SMS module needs time to return to OK status

if(WaterLevel>200){

digitalWrite(pum,HIGH);

delay(20000);

digitalWrite(pum,LOW);

}

68

References

[1] http://en.wikipedia.org/wiki/Automatic_weather_station

[2] http://www.electronics-tutorials.ws/waveforms/555_oscillator.html

[3] http://www.circuitstoday.com/frequency-to-voltage-converter-using-lm331

[4] http://electrotech.ps/os/product_info.php?products_id=119

[5] http://www.alldatasheet.com/datasheet-pdf/pdf/5178/MOTOROLA/MPX4115.html

[6] http://microcontrollershop.com/product_info.php?products_id=2125

[7] http://www.engineersgarage.com

[8] http://arduino.cc/en/Main/ArduinoBoardUno

[9] https://www.sparkfun.com/products/9607

[10] https://www.sparkfun.com/products/10167

http://en.wikipedia.org/wiki/Automatic_weather_station
http://www.electronics-tutorials.ws/waveforms/555_oscillator.html
http://www.circuitstoday.com/frequency-to-voltage-converter-using-lm331
http://electrotech.ps/os/product_info.php?products_id=119
http://www.alldatasheet.com/datasheet-pdf/pdf/5178/MOTOROLA/MPX4115.html
http://microcontrollershop.com/product_info.php?products_id=2125
http://www.engineersgarage.com/
http://arduino.cc/en/Main/ArduinoBoardUno
https://www.sparkfun.com/products/9607
https://www.sparkfun.com/products/10167

