Electrochemical properties of Sol-gel WO₃ films single doped with Ti and Co-doped with Ti and Zn

I Saadeddin^{a,*}, <u>M. Albalshi</u>^a, M. Suleiman^b

^aDepartment of physics, An-Najah N. university, Nablus, Palestine ^bDepartment of chemistry, An-Najah N. university, Nablus, Palestine

iyads@najah.edu

Abstract

 WO_3 nanoparticles single doped with Ti ($W_{1-x}Ti_xO_3$) and co-doped with Ti and Zn $(W_{1-x}Ti_{x-y}Zn_yO_3)$ have been prepared, onto FTO/glass substrate. Preparation of films was done using wet chemical method (dipping in a sol-gel). The molar concentration of Ti into $W_{1-x}Ti_xO_3$ ranges from 0-30 % in steps of 5%. Best electrochemical and electrochromic properties were observed for composition that has Ti nominal concentration of 5 % ($W_{0.95}Ti_{0.05}O_3$). This was evidenced from measurements of cyclic voltammetry (CV), chronoamperometry (CA), and transparency during CA. The composition that gives best electrochemical and electrochromic properties ($W_{0.95}Ti_{0.05}O_3$) was used to prepare WO₃ nanocrystallite films co-doped with Zn for the first time (W_{0.95}Ti_{0.05}- $_{\rm v}$ Zn $_{\rm v}$ O₃). The Zn molar concentration in these films varied from 1-5%. From CV, and transparency measurements. the best CA, electrochemical and electrochromic properties were observed for films that contains 3% of Zn $(W_{0.95}Ti_{0.02}Zn_{0.03}O_3)$. Moreover, this film was found to have better electrochemical and electrochromic properties than single doped WO₃ film ($W_{0.95}Ti_{0.05}O_3$). In addition, higher electrochemical stability was observed for co-doped films.