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Abstract

The heat capacity of two interacting electrons confined in a quantum
dot presented in a magnetic field had been calculated by solving the
Hamiltonian using variational method. We had investigated the dependence
of the heat capacity on temperature, magnetic field and confining
frequency. The singlet triplet transition in the ground state of the quantum
dot spectra and the corresponding jumps in the heat capacity curves had
been shown. The comparisons show that our results are in very good

agreement with reported works.
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Chapter One
I ntroduction

1.1 Low dimensional crystal

Low dimensional systems such as quantum dots, quantum wires and
quantum wells are semiconductors whose size confine the electrons in a
limited size (few nanometers) in three, two and one dimension respectively.
The confinement phenomena change significantly the density of state of the
system and the energy spectra. For quantum dot (zero dimensional system)
the density of state shows a discrete behavior unlike to the other
confinements which have a continuous density of state, and means a fully
quantized energy levels due to its three dimensional confinement. The

density of state for these confinements are shown in Figure (1.1).

The nanofabrication techniques allow us to control precisely both the
size and the shape of the low dimensional system. The electronic
characteristics of a quantum dot (QD) depend strongly on the size and
shape, and this unique parameter effects are impossible for bulk system.

The diameter of the QDs is about 100 nm.
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Figure (1.1) Schematic image and the density of state as function of energy for

various confinement systems: bulk (3D) , quantum well (2D), quantum wire (1D),
and quantum dot (OD).

QDs, or artificial atoms, had been the subject of interest research due
to its physical properties and great potential device applications such as
quantum dot lasers, solar cells, single electron transistors and quantum
computers [1- 6]. The application of a magnetic field perpendicular to the
dot plane will introduce an additional structure on the energy levels and on
the correlation effects of the interacting electrons confined in a quantum

dot.

In early 1980s, the first QD were successfully made in laboratory,
this forced to investigate the properties of the quantum dot system and to

study the effect of the size, material, and shape.



The QDs can be fabricated by two different ways, the first one is made
by using lithography techniques of microchip manufacturing; and the
second approach can be done by applying chemical processes to get a QD

from bulk material.

1.2 Literature survey

The electronic properties of the quantum dots depend strongly on the
interplay between electron-electron interaction (coulomb energy),
confining potential, and the applied magnetic field. The existence of
coulomb and parabolic potential makes the exact analytical solution of the

quantum dot's Hamiltonian not possible.

Different theoretical methods had been used to solve the two
electrons in a quantum dot Hamiltonian, to obtain the eigenenergies and

eigenstates [7-23].

Maksym and Chakraborty [7] had used the diagonalization method
to obtain the eigenenergies of interacting electrons in a magnetic field and
show the transitions in the angular momentum of the ground state. They
had also calculated the heat capacity curve for both interacting and non-
interacting confined electrons in the QD presented in a magnetic field. The
interacting model shows very different behavior from non-interacting
electrons, and the oscillations in these thermodynamic quantities like
magnetization (M) and heat capacity (C,) are attributed to the spin singlet-

triplet transitions in the ground state energy of the quantum dot. This



transition had been shown as a peak in the current-voltage curve as
displayed in figure (1.2). Wagner et.al.[8] had also studied this interesting
QD system and predicted the oscillations between spin-singlet (Sin) and
spin-triplet (Tri) ground state. This transition had been investigated
experimentally by using single electron spectroscopy technique [9] for
three terminal QD. This experimental energy eigenvalues curve had been
presented in Ashoori work [2] figure (1.3), and a schematic picture of three

terminal QD is presented in figure (1.4).

D=0.35pm

Current (pA)

5 __JLJ__Z_LJL_ML. 6|[ ,-ULJJU\I 1h J’L_A_JOUJUL

-1.5 -10
Gate voltage (V)

Figure (1.2) The source-drain current against the gate voltage for vertical QD.



Figure (1.3) The single-electron capacitance spectroscopy as function of magnetic
field for a QD with various electron numbers.

lateral
SOURCE quantum dot DRAIN

DT

Figure (1.4) Schematic pictureof athree-terminal QD.

Taut [10] had managed to obtain the exact analytical results for the
energy spectrum of two interacting electrons through a coulomb potential,

confined in a QD, just for particular values of the magnetic field strength.



In Refs. [11, 12] the authors had solved the QD-Hamiltonian by variational
method and obtained the ground state energies for various values of
magnetic field (w.), and confined frequency (w,). In addition, they had
performed exact numerical diagonalization for the Helium QD-Hamiltonian
and obtained the energy spectra for zero and finite magnetic field strength.
Kandemir [13, 14] had found the closed form solution for this QD
Hamiltonian and the corresponding eigenstates for particular values of the
magnetic field strength and confinement frequencies. Elsaid et.al.[15-19]
had used the dimensional expansion technique, in different works, to study
and solve the QD-Hamiltonian and obtain the energies of the two
interacting electrons for any arbitrary ratio of coulomb to confinement
energies and gave an explanation to the level crossings. De Groote
et.al.[20] had also calculated the magnetization, susceptibility and heat
capacity of helium like confined QDs and obtained the additional structure
in the heat capacity. In a detailed study, Nguyen and Peeters [21] had
considered the QD helium in the presence of a single magnetic ion and
applied magnetic field taking into account the electron-electron correlation
In many quantum dots. They had shown the dependence of these thermal
and magnetic quantities: C,, M and X on the strength of the magnetic field,
confinement frequency, magnetic ion position and temperature. They had
observed that the crossings in the energy levels show up as peaks in the

heat capacity and magnetization.



Very recently, Boyacioglu and Chatterjee [22] had studied the
behavior of heat capacity of a single quantum dot confined with a Gaussian
potential model. They had observed that the heat capacity curve shows
peaks structure at low temperature. Helle et.al. [23] had computed the
magnetization of a rectangular QD in a high magnetic field and the results
show the oscillation and smooth behavior in the magnetization curve for

both, interacting and non-interacting confined electrons, respectively.
1.3 Hetrostructure and confinement potential

The nanofabrication methods allow to the researchers fabricate
electronic structures where the electrons are confined in a small regions of
the order of nanometers (QDs). The QD is a small island on a
semiconductor heterostructure, where the shape of the QD and the number
of the electrons can be controlled by an external voltage. A scanning
tunneling microscope image is shown in figure (1.5) for double quantum

dot (DQD) which had been charged with few electrons, in this case the QD



Figure (1.5) Scanning tunneling microscope images for single QDs fabricated from
GaAgAlGaAs and charged with few electrons.

IS made from GaAs/AlGaAs semiconductor heterostructure. The
heterostructure is growing by using the molecular beam epitaxy (MBE)

method.

The AlGaAs layer is doped with Silicon donors in order to have free
electrons in the heterostructure (n type AlGaAs). These free electrons move
from AlGaAs layer with high band gap to GaAs layer with lower band gap.
The electrons are trapped in the quantum well of GaAs layer. In this way
we create a 2D structure where the motion of the electrons is quantized
along the growth axis (z direction) while the electron is free to move in xy

plane Fig (1.6).



10

100 Nnm

Figure (1.6) Schematic picture for the mechanism of confining electrons in
semiconductor QD heterostructure a) 2DEG at the interface between GaAs and
AlGaAs heterostructure. The electrons in the 2DEG is due to the ionization of
silicon donors located in the n-AlGaAs layer. b) The metal electrodes on the
surface of heterostructure are used to apply a negative voltage in order to deplete
locally the electrons below 2DEG. In thisway, we can confine the electronsin zero
dimensionsto obtain a QD system.

A negative voltage is finally applied on the surface of the
heterostructure to reduce further the confinement region and creating one
or more small islands from large two dimensional electron gas (2DEG) Fig

(1.6 b) and Fig (1.7).

Lateral confinement potential V(x,y) (due to the hetrostrucuture of
the QD) quite similar to Coulomb potential which confined the electron in
the real atom, and from here we can called the QD to be artificial atom. The
lateral confinement potential is usually taken as a simple parabolic model,
the theoretical-experimental comparisons show that harmonic oscillator

model is the best to describe this confinement.
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Figure (1.7) Negative gate potentials used to confine the electronsin a double
guantum dot (DQD).

1.4 Objectives

This research project has two objectives which can be summarized as

follows:

To use variational method to reproduce the eigenenergies spectra of
the two electrons quantum dot Hamiltonian for different ranges of
magnetic field strength w. and confining potential w,.

The eigenenergies obtained above will be used to study the
dependence of heat capacity of the quantum dot system on w, , wg

and temperature ( T).
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1.5 Outlines of thesis

In this work, the heat capacity has been calculated as a thermodynamic
quantity for a quantum dot helium atom in which both the magnetic field
and the electron-electron interaction are fully taken into account. Since, the
eigenvalues of the electrons in the QD are the starting point to calculate the
physical properties of the QD system. The variational method have been
used to solve the QD Hamiltonian and obtain the eigenenergies. Second,
the eigenenergies spectra had been calculated to display theoretically the
behavior of heat capacity of the QD as a function of magnetic field

strength, confining frequency and temperature.

The rest of this thesis is organized as follows: the Hamiltonian
theory, the principle of the variation of parameter technique and how to
calculate the heat capacity from the mean energy expression are presented
in chapter Il. In chapter Il the results of energy and heat capacity of our
work had been displayed and discussed, while the final chapter devoted for

conclusions and future work.
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Chapter Two
Theory

A detailed description for the theory of two electron quantum dot
system and the method used will be given. The main three parts which
consist the theory, namely: quantum dot Hamiltonian, variation of

parameter method and the heat capacity will be presented in this chapter.
2.1 Quantum dot Hamiltonian

The effective mass Hamiltonian for two interacting electrons
confined in a QD by a parabolic potential in a uniform magnetic field of

strength B, applied along z direction is given by

ong : direction 1 if Elve:

= Z {Zm [P () + A(ﬂ)] g = n w"riz} R (2.1)

El'rl —_ ]’2'

Where ©, is the confining frequency and e is the dielectric constant
r;and r, describe the positions of the first and second electron in the xy

plane and the vector potential was taken to be:

.-n'(al) _ EB (- tores
A 7 2 v, x, 0) (2.2)
= i
oo, 20 (2.3)
L4, pl =
A o %B X .- (2.4)
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Expressing the Hamiltonian explicitly in terms of coordinates and

momenta we get:

> el 1 1 €2
- — L2 2+ = 2CU 2 — —
H = 2m?’1 a_)‘o Z?Trz 20 +E|r2-:-r‘1| 2
Al ] Al |\
st (et
et m — @9)

By using the standard coordinate transformation, The quantum dot

Hamiltonian can be decoupled into center of mass (R) and relative (r)

parts.

o BT (2.6)
ol @.7)
= 29)
atee (2.9)

So the Hamiltonian can be written as

ARI g ni can k Aen a8
r + R P. : re R Pu 2‘1
( eal=5—1_ o+ -;%) ( eAlZr—]. 4 -23\/
H= +
2m 2m

2 2 2

%m(_%m) mf;+%m(%+R) mé+f—e (2.10)

The confining potential terms can be expressed as:

= cee MU1IA b eXy . a
1 onfinj,e pc =r lerms can e 1:sse 1.

(.(J5 + '.r“n_;*":“zc.a5 (2'11)

51

= 2 L = =3

E?‘?I(—’g -+ R) o +§'n1 (g_!_ ;*":“)d(.a5 = Z'nrr
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Using the linear property of the vector potential, we can separate

Kinetic energy terms into center of mass and relative part:

BY ' ms cent Mass ANA  Jar -e pa
(ﬂ[__;; R, EZ_) (e A’_[_gci_Rl _— gz_>
2m +2 2m )
() ()
B m 4m (2.12)

The full QD Hamiltonian in R, r coordinates has the following form:

» Hamilu an in R, r cool .es has

- + Pg.2
NG iy N G- PP
B m 4m 4

2002 4 &
+ mR"w; + cT (2_13)

Finally, the complete two electron QD Hamiltonian is separated into

center of mass Hamiltonian Hqy and relative Hamiltonian Part H,. as

shown below:
H= HCM +H, (2.14)
1 Q -

1. — ; T 2Lz
HCM _m [l. + CA(R)] —I—%M(DDR (215)

1zn q X% 2777 ¢

H _— -—A D W2 e, —
Tl ] M5 4 (2.16)

Where M is the total mass= 2m, Q is the total charge= 2e, u is reduce

e

mass = =, and g is the reduce charge = -

The corresponding energy of this Hamiltonian equation (2.14) is:
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L7

(2.17)

Etotal — Ecm + Er

The center of mass Hamiltonian has The harmonic oscillator form
which has well known fully analytical solution for wave function and
energy that was found Independently by Fock [24] and Darwin [25] to be

respectively:

ypn,m (R) 1

1+1| =
PRI i [n—'r e~BR?/2gImI Ml g2 p2 o im¢

v L(n+|ml)! (2.18)

2 h
Enepmen = @Dy, + M| + DA [0S+ 0z 4+m ;"f (2.19)
4

Where R and ¢ are the polar coordinates, n.p,, m¢, are the radial and

azimuthal quantum numbers, respectively. And LY} is the associate laguerre
T -2.
polynomial, and 8 = l%, where w = f% + w2

Due to existence of both coulomb and parabolic terms, The relative
Hamiltonian part equation (2.16) does not have an analytical solution for
all ranges of w, and w,, therefore, in this case we will use the variational
method as an approximation method to find the energy spectra for the

relative Hamiltonian in terms of a variational parameter.

By the help of a symmetric gauge , the relative Hamiltonian part can

be written as:



1 q, 1 q. , 1
H s =z = BZ z _1 — 4 ; = 2 =z
r_zu(p * 34 k +( )C ) —_2,”00"-—
2
e_
|l (2.20)

Where the magnetic field is uniform with strength w,. = j—i taken to be

along z direction

F=LzB (2.21)
H _pi¢iw rjziw +lmwz 2 e
16 t2 ek 4T e T
p/ 1 : -n-zjz L+ e' elr|

= nT +Zmrz (C_;_fz;- Q)g) +?:(1)CLZ +E_|;I— (222)

The effective frequency is a sum of a nanostructure confining

frequency and the magnetic field confining frequency, using a new

parameter («) defined as follow:

low I

1 —

2

« 7[5 03 (2:23)

Now, The relative Hamiltonian is:

N p: 1= 1 okl e,
Hr= rﬁ+4mrz(16(xz) I—zoo ol +E_|I‘_| (2.24)
Which can be expressed in an operator form as:
cin h 1(_-‘5‘! N rm z: 1
= —— —1/z (_ | sz s
R )
0 e?

1
+ 4 mr? o? —Elhﬂ m (225)
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Where
—— 1 (2.26)
= rj_(f)
pr = _iﬁ.v (2.27)
; 1T STy 1
2= -—1/2 ;‘5 Pl +?—T§ (a—;E -|-Z) (228)

2.2 Variation of parameter method

As we have mentioned early we will use the variational method as an
approximation method to calculate the desired energy eigenvalues of the

relative part Hamiltonian of the two electron quantum dot.

The principle idea for variational method that choosing the variational

wave function with parameters C;

C;

Y = . )3 (2.29)

1!)((."1' CCEE CJ)

and calculate the energy by solving Schrdodinger equation

solx Schrod

)= (2.30)

H 4 Foas

To find the energy in terms of the variational parameter, we should

minimize the energy expression E(Cy,Cs, ... ..., C;) with respect to each

variational parameter C; to reach a stable system:

Zh a3 wIc ays

i to reas i © tem:

or (Ce1da s D) (2.31)
aci
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2 E ((C-l_’Cz-;"'!- i) (232)

Fori=1,2,...

In our problem, the adopted one parameter variational wave function

is [26]:
W) = Ve zm, . Cp)elme (2 33)
ILT) = N V/—_\/_ .
Where
oy = permiclt o —(8) (2.34)
/2+ (1 + BP)
-V, (2.35)
~2 = [ o

We can write  Schrodinger equation with complete relative
Hamiltonian form and full variational wave function, in differential

operator form, it takes the following picture:

it -Eked SV % svvoarag ctur 1
= o’ +2 ] +4mr?o?
# —1/3.___ ri/z 4 T ( a?— 4 mr- o
(—Tn arz r7 ch

1.0 4 um(p)elm¢
- Elfl% )'\/— \/—\/—
|m¢
— E, %um(p)e

VZn Jp (2.36)
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Simplify the equation to be :

1 | e
1

h2 < 1 4
e L (— 5 mre . W
m'(g'2 2 \g — ,, )) - Z o — Eﬁﬂ c +

:_:.I)um(p) = Erm Um(p)

(2.37)

In our calculations, we have used the following Atomic Rydberg

units

Finally, the equation for a relative Hamiltonian coordinate part is

eq. 107 for “ Il'n.'.:lati H ar iltoni n ::l)Ur 1nate g
- 2 di 2 - L y 2 z =z -2
d_i + (r'n - -—) —jE _|— 2 ot e oo "i =3 (2'38)
e 4/ r < e

We have normalized our wave function

aized 1r we =~ n

— 1/2+|mE(i1 + 3p)e_§02_2) (239)

M (o) B (-..n! P
Where £ is the variational parameter, the normalizing constant is given as

s v %\/&

£

is

2
+71
[Siih

"G+ BT+ i) + BT [1+ Imi] + 2Br B ml ] (- (240)

The above normalization constant can be written in terms of a new

constant

Cz, = va 2.41
d+ el + fB° (2.41)
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Where
i 1
" 2T[1+ |m]] (2.41)
ﬁ; i
e="T P— + |m|i (2.42)
o 1
" 2l[2 + |m]] (2.43)

We have found the energy spectra of the relative Hamiltonian part:

W e na a nerg-
—Cz %_2 |m|] '1| IT[lm]] —5 [T[im]]

- 1w 2= 1 lzpfm|] + = |m + =Bz | |m

Er=3 B va (,_n ! 2 BBln

1
+ %mz 820 [Iml] + Lzzj{_illl A%Br E+ |m|]

1 1
1 BT |5+ m|[ B*Im|T |5 + [m]
+mZBF|§+ Iml] + [j\/& ] 252& ]
Br{1+[m|] 1 ,
+T_§B l“[1+|m|]+§m B F[1+|m|]

3 1
+ BT [5+ |m|] +5T[2 + ml] + B0[2 + [ml]

+ 262 mIr[2 + [m(] + r|5+ Iml]
2 2

(2.44)
Which can be written as
tc.”1 as N 1 2
Er By - 2mewct o ;'“ ::g:;':; (2.45)
where
° +2f
a=
(2 |m| + 1) Va (2.46)
b = 2d +2 +1
= \/—a (|m] Je (2.47)
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e 3

d, e, f which is previously defined in Equation (2.41-2.43) respectively.

The energy eigenvalues of H, can be obtained by minimizing the
energy expression equation (2.45) with respect to the variational parameter

S namely

——

e
OE o ol &
25 _ o 3ps > (2.49)

The value of the parameter S which satisfies the minimum energy
requirement is

21
2
— —cd — Zaf — ﬁ;-d_— Zaf)?2 — 4(bd — aedlce — b " (250)
ce + bf) -

pminmn

So, the final energy expression in terms of the variational parameter

value which satisfies the minimization condition is

sz isf | niza :Qll‘ldilion; ‘ i

2 T min :

o G FBEEE—cpRn (3 5])
d + e 3min f Bmin

, T .
Ercgmin) = 2 e T

Having obtained the eigenenergies for the QD system for any state
labeled by n,m quantum number , now we are able to calculate the
exchange energy (J) define as the difference between the singlet (S=0, L is

even ) and triplet (S=1, L is odd) states:

dd) st

(2.52)

J = Etri — Esin

For any range magnetic field and confining potential.
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2.3 Heat capacity

The heat capacity C, is defined as the amount of energy which is
needed to increase the temperature of the system by one degree, and it is

considered the most important thermal property.

To calculate the heat capacity of the two electron quantum dot
system, first, we have evaluate the mean energy from the statistical energy
expression [27]:

Eo 'k T
Zr;::l Eqe-

(E(T,B,w )) = =8zt o (2.53)

Z§=] e‘Ea/EB?
Where T is the temperature and kj is the Boltzmann constant.

Now, the heat capacity can be calculated from the temperature
derivative of the mean energy of the QD.
d(E(T,B,w ))
C(TBw )= Qa7 = (2.54)
We have computed numerical value of the heat capacity of the QD
system for various ranges of the magnetic field w, confining frequency w,

and temperature T. The obtained results are displayed in the next chapter.
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Chapter Three
Result and Discussion
3.1 Quantum Dot Spectra

3.2 Heat Capacity
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Chapter Three
Result and Discussion
3.1 Energy spectra

Our computed results for two interacting electrons in a quantum dot
made from GaAs material (m* = 0.067 m,, R* = 5.825meV) are

presented in this chapter.

In the Absence of the magnetic field, the states of the QD system are
degenerate as shown in figure (3.1), while for finite strength of magnetic

field, the degeneracy of the states are removed.

degeneracy

/

5 (0-9 (-2 (29 1.2 09
4 (0-3) 4111 03

3 (0-2) (1,9 (0.2)
2 0-) ©1)
1 (0.9

Figure (3.1) The energy spectra of Fock-Darwin states and the corresponding
degeneracy.

We had plotted the computed energy results of this work against the
2

strength of the magnetic field for w, == R* for both non-interacting

Figure (3.2) and interacting Figure (3.3) electrons. The non-interacting
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graph shows that the ground state energy level (0,0) remains the lowest
energy level as magnetic field increase while the interacting case shows
clearly the transition in the angular momentum of the ground state of the
QD system as the magnetic field increases. The origin of these transitions is
due to the effect of coulomb interaction energy in the QD Hamiltonian.
These transitions in the angular momentum of the QD system correspond to
the (singlet-triplet) transitions are expected to manifest themselves as cusps
in the heat capacity curve of the QD. The present results also show very
good agreement compared with Dyblaski’s result [27], where the authors
had used the same variational wave function. In addition, we had displayed
the energy result for interacting electrons in table 1, and one could clearly
notice the transition of ground state angular momentum when the magnetic

field strength increase.

Figure (3.2) The dependence of the relative motion energy spectra on the
magnetic field for two non-interacting electrons in a QD at confining frequency

2
w0=§R*
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Figure (3.3) The computed relative motion energy spectra of two interacting
electrons quantum dot against the strength of the magnetic field for wg = ER* y

and angular momentum m, = 0,+1,+2,+3.
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Table (3.1)The relative motion energy spectra of the QD states
(m=0,1,2......8) against the magnetic field for two interacting electrons

for w, =§R* (the underlined energy values show the angular
momentum transitions of the ground state of the QD).

m
0 1 2 3 - 5 1
0. 1.69986 2. 2.52194 3.10835 3.72268 4.3519

0.1 1.7035 1.95475 2.42832 2.96647 3.5326 4.11363
0.2 1.71434 1.91891 2.34733 2.8407 3.3621¢8 3.89863
0.3 | 1.73217 1.89223 2.27866 2.73063 3.21093 3.70632
0.4 | 1.75667 1.8743 2.22179 2.6356 3.0780&6 3.53577
0.5 1.7874 1.86462 2.17605 2.55479 2.96258 3.38581
0.6 | 1.82387 1.86258 2.14066 2.48723 2.8633 3.25504
0.7 | 1.86555 1.86754 2.11479 2.43186 2.77896 3.14198
0.8 | 1.91192 _1.87885 2.09759 2.38763 2.70826 3.04511
0.9 | 1.96243 1.89585 2.08821 2.35346 2.64992 2.96291
1. 2.01661 1.91795 2.08586 2.32835 2.60271 2.89393
1.1 2.07397 1.94455 2.08978 2.3113%5 2.56547 2.8368
1.2 | 2.13411 1.97515 2.09927 2.30157 2.53714 2.79028
1.3 | 2.19664 2.00926 2.1137 2.29823 2.51676 2.75322
1.4 | 2.26124 2.04646 2.13252 2.30061 2.50345 2.7246
1.5 | 2.32761 2.08637 2.15523 2.30808 2.49643 2.70348

% 1.6 | 2.39548 2.12867 2.18137 2.32005 2.49501 2.68905
%; 1.7 | 2.46465 2.17307 2.21055 2.33605 2.49858 2.6806
GC) 1.8 2.53492 2.2193 2.242494 2.35561 2.50661 2.67748
%% 1.9 | 2.60611 2.26715 2.27673 2.37837 2.51861 2.67912
%5 2. 2.67808 2.31643 _2.31314 2.40396 2.53417 2.68502
= 2.1 | 2.75072 2.36696 2.35146 2.4321 2.55291 2.6947¢6
éé 2.2 | 2.82391 2.41859 2.39147 2.46252 2.57451 2.7079%4
g 2.3 | 2.89755 2.4712 2.43299 2.49498 2.59869 2.72422
ég 2.4 | 2.97157 2.52467 2.47587 2.52929 2.62518 2.74329

2.5 3.04591 2.95789 Z.51997 2.58544 2.65377 2.7649
2.6 | 3.12049 2.63381 2.5651S 2.6027 2.6842¢6 2.788es8
2.7 | 3.19527 2.68931 2.61132 2.64151 2.71646 2.81478
2.8 3.2702 2.74535 2.65837 2.68154 2.75023 2.84265
2.9 | 3.34525 2.80186 2.70623 2.72269 2.78541 2.87225
3. 3.42038 2.85879 2.7548 2.76485 2.8219 2.90343
3.1 | 3.49556é 2.91609 2.80403 2.80793 2.85957 2.93605
3.2 | 3.57077 2.97372 2.85386 2.85186 2.89832 2.96999
3.3 | 3.64599 3.03164 2.90422 2.89655 2.93806 3.00515
3.4 3.72119 3.08983 2.95507 2.94195 2.97872 3.04143
3.5 | 3.79636& 3.14825 3.00638 2.988 3.02022 3.07873
3.6 | 3.87149 3.20687 3.05809 3.03464 3.06249 3.11699
3.7 | 3.94656 3.26568 3.11017 3.08182 3.10548 3.15612
3.8 | 4.02157 3.32466 3.16259 3.12951 3.14912 3.196086
3.9 4.0965 3.38377 3.21532 3.17766 3.19337 3.23676!
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m

‘‘‘‘‘‘‘ 3 4 5 6 7 8 )
3. 3.22624 3.23819 3.27816  3.3348  3.40228 3.47728
4.1 3.27522 3.28353 3.32021 3.37374 3.43826 3.51037
4.2 3.32456 3.32936 3.36286 3.41341 3.47507 3.54441
4.3 3.37424 3.37564 3.40607 3.45375 3.51266 3.57934
4.4 3.42423 3.42235 3.44981 3.49472 3.55098  3.6151
4.5 3.47452 3.46944 3.49404 3.53628 3.58998 3.65163
4.6 3.52507 3.5169 3.53873 3.57838 3.62962 3.68889
4.7 3.57588 3.56471 3.58385 3.621  3.66986 3.72684
4.8 3.62693 3.61283 3.62937 3.6641 3.71067 3.76543
4.9 3.67819 3.66125 3.67526 3.70766 3.752  3.80462
5. 3.72966 3.70995 3.72151 3.75164 3.79383 3.84438
5.1 3.78131 3.75892 3.7681 3.79602 3.83613 3.88467
5.2 3.83315 3.80813 3.81499 3.84078 3.87887 3.92547
5.3 3.88514 3.85757 3.86218 3.8859  3.92203 3.96675
5.4 3.9373  3.90723 3.90965 3.93135 3.96558 4.00848
5.5 3.9896 3.95709 3.95738 3.97712 4.0095  4.05063
5.6 4.04203 4.00715 4.00536 4.02319 4.05378 4.09319
5.7 4.0946 4.05739 4.05357 4.06954 4.09839 4.13613
5.8 4.14728  4.1078  4.10199 4.11617 4.14331 4.17943
5.9 4.20007 4.15836 4.15063 4.16304 4.18853 4.22308
5 4.25297 4.20909 4.19946 4.21016 4.23404 4.26705
6.1 4.30506 4.25095 4.24848 4.2575 4.27982 4.31133
6.2 4.35905 4.31095 4.29768 4.30506 4.32585 4.35591
6.3 4.41222 4.36207 4.34704 4.35283 4.37212 4.40077
6.4 4.46548 4.41332 4.39657 4.40079 4.41863 4.44589
6.5 4.51881 4.46468 4.44624 4.44893 4.46535 4.49127
6.6 4.57221 4.51615 4.49605 4.49726 4.51229 4.53689
6.7 4.62568 4.56772 4.54601 4.54575 4.55943 4.58274
6.8 4.67921 4.61939 4.59609 4.5944 4.60675 4.62881
6.9 4.7328  4.67115 4.64620 4.64321 4.65426 4.6751
7. 4.78645 4.723  4.69661 4.69216 4.70194 4.72158
7.1 4.84015 4.77493 4.74704 4.74125 4.74979 4.76826
7.2 4.89389 4.82694 4.79758 4.79047 4.7978  4.81512
7.3 4.94769 4.87902 4.84821 4.83981 4.84595 4.86215
7.4 5.00153 4.93118 4.89895 4.88928 4.89426 4.90935
7.5 5.0554 4.9834 4.94977 4.93887 4.9427  4.95672
7.6 5.10932 5.03568 5.00069 4.98856 4.99127 5.00424
7.7 5.16327 5.08803 5.05168 5.03836 5.03997 5.05191
7.8 5.21726 5.14043 5.10276 5.08826 5.08879 5.09971
7.9 5.27127 5.19289 5.15381 5.13826 5.13773 5.14766 |
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The angular momentum dependence on confinement frequency is

displayed in figure (3.4)

10}’

Singlet
S=0

08F

Triplet Singlet

~ Triplet
s=1 s=0 -~ >

S=1

06

wy(R")

| > Singlet j

S=0

0af |

00F

W, (R")

Figure(3.4) The singlet-triplet phase diagram of the QD. Confining frequency w,
against the strength of the magnetic field w,

To deeply understand this transition we had plotted the singlet-triplet
gap for specific confinement frequency w, = % , which clearly shows that
the ground state angular momentum changed from [ = 0 to [ = 1 at certain
magnetic field values which depend on the confinement frequency

figure(3.5).
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Exchange energy Jin &)

0.3}

Figure (3.5) The exchange enargy of the two interacting electrons in a QD against the
magnetic field strength for w, = é R

3.2 Heat capacity

In Figure (3.6) we had shown the behavior of the heat capacity C,,
against the temperature for different values of the confining frequency w, ,
while keeping w. unchanged. For particular confining frequency wy, the
heat capacity curve shows a peak value at low temperature, while at high
temperature degrees the heat capacity saturates. This behavior for the heat
capacity is in agreement with the results of Refs.[21, 22, 28, 29]. As the
confining frequency increases, the peak of the heat capacity shifts to a
higher temperature, numerical values of the heat capacity against the

temperature are shown in Table (2) .
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Solid Wo = 2

Heat capacity (C,/kg)

| Dashed w2 _ 0.6 R*

[ ¥ " A " A A A a " A A a 1
v 5 10 15

temperature (kelvin)

Figure (3.6) The dependence of the heat capacity on the temperature for fixed
value of magnetic ficld w. = 0.5 R*and various confinement frequencies. w, =

= R’ Solid , w, = 0.6 R* Dashed.

In Figure (3.7) we had shown the dependence of the heat capacity on
the magnetic field strength for fixed values of the confining frequency and
temperature. The heat capacity shows a peak structure which is a result of
the transition in the angular momentum of the ground state energy as
shown and discussed previously in Figure (3.3). For example, the first peak

corresponds to the transition in the angular momentum of the ground state

fromm, =0tom, = 1.
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Table (3.2) The heat capacity of two interacting eectrons QD against
the temperaturefor w, = g R andw,=0.5R"

Ay

-

T 4 T b T -

r 0. 0. r 4.  0.335805 8. 0.447141
0.1 0. 4.1 0.332201 8.1  0.45238
0.2 0. 4.2 0.320137 8.2 0.457594
0.3 6.58844x10°¢ 4.3  0.326607 8.3 0.462777
0.4  0.000307524 4.4 0.324599 8.4 0.467926
0.5  0.00278886 4.5 0.323101 8.5 0.473036
0.6 0.0113384 4.6 0.322095 8.6 0.478103
0.7 0.0294182 4.7 0.321565 8.7 0.483125
0.8 0.0579614 4.8 0.32149 8.8 0.488098
0.9 0.0953708 4.9 0.321852 8.9  0.493019
{. 0.138626 5.  0.322628 9.  0.497886
153 0.184392 5.1 0.323799 9.1  0.502697
1.2 0.229715 5.2 0.325342 9.2  0.507448
3.4 0.272334 5.3 0.327236 9.3  0.51214
1.4 0.310731 5.4 0.329461 9.4  0.51677
1.5 0.34404 5.5 0.331996 9.5 0.521336
1.6 0.371918 5.6 0.33482 9.6 0.525838
By 0.394398 5.7 0.337914 9.7 0.530274
1.9 0.411768 5.8 0.341258 9.8  0.534645
1.9 0.424471 5.9 0.344833 9.9  0.538948
2. 0.433031 6. 0.348621 10.  0.543184
2.1 0.438 6.1 0.352606 10.1 0.547353
2.2 0.439923 6.2 0.356769| |10.2 0.551453
2.3 0.439318 6.3 0.361095| [10.3 0.555486
2.4 0.43666 6.4 0.365569| |10.4 0.55945
2.5 0.432375 6.5 0.370176| |10.5 0.563346
2.6 0.426842 6.6 0.374901 10.6 0.567175
2.7 0.420389 6.7 0.379731 10.7 0.570936
2.8 0.413301 6.8 0.384654 10.8  0.57463
2.9 0.405816 6.9 0.389657| [10.9 0.578258
g, 0.398139 7. 0.394729 11.  0.581819
3.1 0.390437 7.1 0.399859 | |11.1 0.585315
3.2 0.38285 7.2 0.405037| |11.2 0.588745
3.3 0.37549 7.3 0.410254 11.3  0.592112
3.4 0.368449 7.4 0.415499 | |11.4 0.595415
9.5 0.361795 7.5 0.420765| |11.5 0.598655
3.6 0.355584 7.6 0.426044 | |11.6 0.601833
3.7 0.349856 7.7  0.431327 11.7  0.60495
3.8 0.34464 7.8 0.436609| |11.8 0.608006

L 3.9 0.339953 7.9 0.441882! '11.9 0.611003
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Figure (3.7) The heat capacity as function of magnetic field strength for fixed value
of temperature (T = 0.1 K) and confinement frequency w, = g R".
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Chapter Four

Conclusion and Future Work
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Chapter Four
Conclusion and futurework

In conclusion, we had applied the variational method to solve the
Hamiltonian for interacting electrons confined parabolically in a quantum
dot subjected to a magnetic field. We had used the one variation parameter
wave function to get the minimized energy expression. In addition, we had
shown the angular momentum transitions in the ground state of
GaAs/AlGaAs quantum dot spectra. These level crossings which result of
Coulomb interaction cause oscillations in the heat capacity curve of the
quantum dot. In addition we had investigated the dependence of the heat
capacity of the QD on the system parameters wg, w., and T. The results of
both, the eigenenergies and the heat capacity, calculated by variational

method show very good agreement comparable with other recent works.

In this work we had taken the heat capacity as a thermal property of
the QD system, however another thermodynamic and magnetic quantities
like magnetization and magnetic susceptibility can be considered in the
future. We expect that the angular momentum transition of the ground state
will affect significantly the magnetic properties of the QD. In addition the
electronic and magnetic properties of few electrons QD are important

issues to be studied.
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