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Abstract

The heat capacity of two interacting electrons confined in a quantum

dot presented in a magnetic field had been calculated by solving the

Hamiltonian using variational method. We had investigated the dependence

of the heat capacity on temperature, magnetic field and confining

frequency. The singlet triplet transition in the ground state of the quantum

dot spectra and the corresponding jumps in the heat capacity curves had

been shown. The comparisons show that our results are in very good

agreement with reported works.
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Chapter One

Introduction

1.1 Low dimensional crystal

Low dimensional systems such as quantum dots, quantum wires and

quantum wells are semiconductors whose size confine the electrons in a

limited size (few nanometers) in three, two and one dimension respectively.

The confinement phenomena change significantly the density of state of the

system and the energy spectra. For quantum dot (zero dimensional system)

the density of state shows a discrete behavior unlike to the other

confinements which have a continuous density of state,  and means a fully

quantized energy levels due to its three dimensional confinement. The

density of state for these confinements are shown in  Figure (1.1).

The nanofabrication techniques allow us to control precisely both the

size and the shape of the low dimensional system. The electronic

characteristics of a quantum dot (QD) depend strongly on the size and

shape, and this unique parameter effects are impossible for bulk system.

The diameter of the QDs is about 100 nm.



3

Figure (1.1)  Schematic image and the density of state as function of energy for
various confinement systems: bulk (3D) , quantum well (2D), quantum wire (1D),
and quantum dot (0D).

QDs, or artificial atoms, had been the subject of interest research due

to its physical properties and great potential device applications such as

quantum dot lasers, solar cells, single electron transistors and quantum

computers [1- 6]. The application of a magnetic field perpendicular to the

dot plane will introduce an additional structure on the energy levels and on

the correlation effects of the interacting electrons confined in a quantum

dot.

In early 1980s, the first QD were successfully made in laboratory,

this forced to investigate the properties of the quantum dot system and to

study the effect of the size, material, and shape.
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The QDs can be fabricated by two different ways, the first one is made

by using lithography techniques of microchip manufacturing; and the

second approach can be done by applying chemical processes to get a QD

from bulk material.

1.2 Literature survey

The electronic properties of the quantum dots depend strongly on the

interplay between electron-electron interaction (coulomb energy),

confining potential, and the applied magnetic field. The existence of

coulomb and parabolic potential makes the exact analytical solution of the

quantum dot's Hamiltonian not possible.

Different theoretical methods had been used to solve the two

electrons in a quantum dot Hamiltonian, to obtain the eigenenergies and

eigenstates [7-23].

Maksym and Chakraborty [7] had used the diagonalization method

to obtain the eigenenergies of interacting electrons in a magnetic field and

show the transitions in the angular momentum of the ground state. They

had also calculated the heat capacity curve for both interacting and non-

interacting confined electrons in the QD presented in a magnetic field. The

interacting model shows very different behavior from non-interacting

electrons, and the oscillations in these thermodynamic quantities like

magnetization (ℳ) and heat capacity (C ) are attributed to the spin singlet-

triplet transitions in the ground state energy of the quantum dot. This
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transition had been shown as a peak in the current-voltage curve as

displayed in figure (1.2). Wagner et.al.[8] had also studied this interesting

QD system and predicted the oscillations between spin-singlet (Sin) and

spin-triplet (Tri) ground state. This transition had been investigated

experimentally by using single electron spectroscopy technique [9] for

three terminal QD. This experimental energy eigenvalues curve had been

presented in Ashoori work [2] figure (1.3), and a schematic picture of three

terminal QD is presented in figure (1.4).

Figure (1.2) The source-drain current against the gate voltage for vertical QD.
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Figure (1.3) The single-electron capacitance spectroscopy as function of magnetic
field for a QD with various electron numbers.

Figure (1.4) Schematic picture of a three-terminal QD.

Taut [10] had managed to obtain the exact analytical results for the

energy spectrum of two interacting electrons through a coulomb potential,

confined in a QD, just for particular values of the magnetic field strength.
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In Refs. [11, 12] the authors had solved the QD-Hamiltonian by variational

method and obtained the ground state energies for various values of

magnetic field (ω ), and confined frequency (ω ). In addition, they had

performed exact numerical diagonalization for the Helium QD-Hamiltonian

and obtained the energy spectra for zero and finite magnetic field strength.

Kandemir [13, 14] had found the closed form solution for this QD

Hamiltonian and the corresponding eigenstates for particular values of the

magnetic field strength and confinement frequencies. Elsaid et.al.[15-19]

had used the dimensional expansion technique, in different works, to study

and solve the QD-Hamiltonian and obtain the energies of the two

interacting electrons for any arbitrary ratio of coulomb to confinement

energies and gave an explanation to the level crossings. De Groote

et.al.[20] had also calculated the magnetization, susceptibility and heat

capacity of helium like confined QDs and obtained the additional structure

in the heat capacity. In a detailed study, Nguyen and Peeters [21] had

considered the QD helium in the presence of a single magnetic ion and

applied magnetic field taking into account the electron-electron correlation

in many quantum dots. They had shown the dependence of these thermal

and magnetic quantities: C ,ℳ and χ on the strength of the magnetic field,

confinement frequency, magnetic ion position and temperature. They had

observed that the crossings in the energy levels show up as peaks in the

heat capacity and magnetization.
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Very recently, Boyacioglu and Chatterjee [22] had studied the

behavior of heat capacity of a single quantum dot confined with a Gaussian

potential model. They had observed that the heat capacity curve shows

peaks structure at low temperature. Helle et.al. [23] had computed the

magnetization of a rectangular QD in a high magnetic field and the results

show the oscillation and smooth behavior in the magnetization curve for

both, interacting and non-interacting confined electrons, respectively.

1.3 Hetrostructure and confinement potential

The nanofabrication methods allow to the researchers fabricate

electronic structures where the electrons are confined in a small regions of

the order of nanometers (QDs). The QD is a small island on a

semiconductor heterostructure, where the shape of the QD and the number

of the electrons can be controlled by an external voltage. A scanning

tunneling microscope image is shown in figure (1.5) for double quantum

dot (DQD) which had been charged with few electrons, in this case the QD
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Figure (1.5) Scanning tunneling microscope images for single QDs fabricated from
GaAs/AlGaAs and charged with few electrons.

is made from GaAs/AlGaAs semiconductor heterostructure. The

heterostructure is growing by using the molecular beam epitaxy (MBE)

method.

The AlGaAs layer is doped with Silicon donors in order to have free

electrons in the heterostructure (n type AlGaAs). These free electrons move

from AlGaAs layer with high band gap to GaAs layer with lower band gap.

The electrons are trapped in the quantum well of GaAs layer. In this way

we create a 2D structure where the motion of the electrons is quantized

along the growth axis (z direction) while the electron is free to move in xy

plane Fig (1.6).
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Figure (1.6) Schematic picture for the mechanism of confining electrons in
semiconductor QD heterostructure a) 2DEG at the interface between GaAs and
AlGaAs heterostructure. The electrons in the 2DEG is due to the ionization of
silicon donors located in the n-AlGaAs layer. b) The metal electrodes on the
surface of heterostructure are used to apply a negative voltage in order to deplete
locally the electrons below 2DEG. In this way, we can confine the electrons in zero
dimensions to obtain a QD system.

A negative voltage is finally applied on the surface of the

heterostructure to reduce further the confinement region and creating one

or more small islands from large two dimensional electron gas (2DEG) Fig

(1.6 b) and Fig (1.7).

Lateral confinement potential ( , ) (due to the hetrostrucuture of

the QD) quite similar to Coulomb potential which confined the electron in

the real atom, and from here we can called the QD to be artificial atom. The

lateral confinement potential is usually taken as a simple parabolic model,

the theoretical-experimental comparisons show that harmonic oscillator

model is the best to describe this confinement.
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Figure (1.7) Negative gate potentials used to confine the electrons in a double
quantum dot (DQD).

1.4 Objectives

This research project has two objectives which can be summarized as

follows:

 To use  variational method to reproduce the eigenenergies spectra of

the two electrons quantum dot Hamiltonian for different ranges of

magnetic field strength ω and confining potential ω .

 The eigenenergies obtained above will be used to study the

dependence of heat capacity of the quantum dot system on ω , ω

and temperature ( T).
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1.5 Outlines of thesis

In this work, the heat capacity has been calculated as a thermodynamic

quantity for a quantum dot helium atom in which both the magnetic field

and the electron-electron interaction are fully taken into account. Since, the

eigenvalues of the electrons in the QD are the starting point to calculate the

physical properties of the QD system. The variational  method have been

used to solve the QD Hamiltonian and obtain the eigenenergies. Second,

the eigenenergies spectra had been calculated to display theoretically the

behavior of heat capacity of the QD as a function of magnetic field

strength, confining frequency and temperature.

The rest of this thesis is organized as follows: the Hamiltonian

theory, the principle of the variation of parameter technique and how to

calculate the heat capacity from the mean energy expression are presented

in chapter II. In chapter III, the results of energy and heat capacity of our

work had been displayed and discussed, while the final chapter devoted for

conclusions and future work.
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Chapter Two

Theory

A detailed description for the theory of two electron quantum dot

system and the method used will be given. The main three parts which

consist the theory, namely: quantum dot Hamiltonian, variation of

parameter method and the heat capacity will be presented in this chapter.

2.1 Quantum dot Hamiltonian

The effective mass Hamiltonian for two interacting electrons

confined in a QD by a parabolic potential in a uniform magnetic field of

strength B, applied along z direction is given by

H = 12m∗ + ec + 12m∗ω r + eϵ| − | (2.1)

Where ω is the confining frequency and ϵ is the dielectric constantand describe the positions of the first and second electron in the xy

plane and the vector potential was taken to be:( ) = 12B (− , , 0) (2.2)

[ , ] = 0 (2.3)( ) = 12 × (2.4)
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Expressing the Hamiltonian explicitly in terms of coordinates and

momenta we get:

= 12 + 12 + | − |
+ + [ ]2 + + [ ]2 (2.5)

By using the standard coordinate transformation, The quantum dot

Hamiltonian can be decoupled into center of mass ( ) and relative ( )
parts. = +2 (2.6)

= − (2.7)

= + (2.8)= −2 (2.9)

So the Hamiltonian can be written as

H =
e A − r2 + Rc − p + P22m +

e A r2 + Rc + p + P22m+ 12m − r2 + R ω + 12m r2 + R ω + er ϵ (2.10)

The confining potential terms can be expressed as:12 −2 + + 12 2 + = 14 + (2.11)
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Using the linear property of the vector potential, we can separate

kinetic energy terms into center of mass and relative part:

e A − r2 + Rc – p + P22m +
e A r2 + Rc + p + P22m

= eA[r]2c + pm + 2eA[R]c + P4m (2.12)

The full QD Hamiltonian in , coordinates has the following form:

= eA[r]2c + pr 2m + 2eA[R]c + PR 24m +14mr2ωo2+mR2ωo2+ e2ϵ r (2.13)

Finally, the complete two electron QD Hamiltonian is separated into

center of mass Hamiltonian H and relative Hamiltonian Part H as

shown below:

H = H + H (2.14)

H = 12M P + Qc A(R) + 12Mω R (2.15)

H = 12μ p + qc A(r) + 12 μω r + eϵ|r| (2.16)

Where is the total mass= 2 , is the total charge= 2 , μ is reduce

mass= , and is the reduce charge =
The corresponding energy of this Hamiltonian equation (2.14)  is:
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= + (2.17)

The center of mass Hamiltonian has The harmonic oscillator form

which has well known fully analytical solution for wave function and

energy that was found Independently by Fock [24] and Darwin [25] to be

respectively:

, ( )= (−1) | |√ n!(n + |m|) ! ⁄ | | | |
(2.18)

E , = (2n + |m | + 1)ℏ ω4 + ω +m ℏω2 (2.19)

Where are the polar coordinates, n ,m are the radial and

azimuthal quantum numbers, respectively. And is the associate laguerre

polynomial, and = ℏ , where = ωc24 + ωo2
Due to existence of both  coulomb and parabolic terms, The relative

Hamiltonian part equation (2.16)  does not have an analytical solution for

all ranges of ω andω , therefore, in this case we will use the variational

method as an approximation method to find the energy spectra for the

relative  Hamiltonian in terms of a variational parameter.

By the help of a symmetric gauge , the relative Hamiltonian part can

be written as:
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H = 12μ p + qc 14 B r + (−1) qc L⃗ . B⃗ + 12 μω+ eϵ| | (2.20)

Where the magnetic field is uniform with strength = taken to be

along z direction ⃗. ⃗ = (2.21)

H = pm + 116ω mr + 12ω L + 14m ω + eϵ| |= pm + 14mr ω4 + ω + 12ω L + eϵ| | (2.22)

The effective frequency is a sum of a nanostructure confining

frequency and the magnetic field confining frequency, using a new

parameter ( ) defined as follow:

= 14 ω4 + ω (2.23)

Now, The relative Hamiltonian is:

H = pm + 14mr (16 α ) + 12ω L + eϵ|r| (2.24)

Which can be expressed in an operator form as:

= −ℏm r ⁄ ∂∂r r ⁄ + 1r ∂∂ϕ + 14+ 4 mr α − 12 iℏ ∂∂ϕ ω + eϵ|r| (2.25)
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Where = − ℏ (2.26)

= − ℏ∇ (2.27)

∇ = ⁄ ⁄ + 1 + 14 (2.28)

2.2 Variation of parameter method

As we have mentioned early we will use the variational method as an

approximation method  to calculate the desired energy eigenvalues of the

relative part Hamiltonian of the two electron quantum dot.

The principle idea for variational method that choosing the variational

wave function with parametersΨ = ( , , …… . , ) (2.29)

and calculate the energy by solving Schrödinger equation

Ψ = Ψ (2.30)

To find the energy in terms of the variational parameter, we should

minimize the energy expression , , …… . , with respect to each

variational parameter to reach a stable system:, , …… . , = 0 (2.31)
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For = 1,2,….
In our problem, the  adopted one parameter variational wave function

is [26]:

( ) = √ ( )√2 (2.33)

Where

( ) = ⁄ | |(1 + ) (2.34)

= √ (2.35)

We can write  Schrödinger equation with complete relative

Hamiltonian form and full variational wave function, in differential

operator form, it  takes the following picture:

−ℏm r ⁄ ∂∂r r ⁄ + 1r ∂∂ϕ + 14 + 4 mr α
− 12 iℏ ∂∂ϕ ω + eϵ|r| √α u (ρ)e√2π ρ= E √αu (ρ)e√2π ρ (2.36)
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Simplify the equation to be :

− ℏ + − + 4 mr α − ℏ ω +
| | ( ) = E ( )

(2.37)

In our calculations, we have used the  following Atomic Rydberg

units

= 2, ℏ = 1, = 1, = 1
Finally, the equation for a relative Hamiltonian coordinate part is

− 2 + 2 m − 14 1r + 12 + 2 + 2 (2.38)

We have normalized our wave function

( ) = ⁄ | |(1 + ) (2.39)

Where is the variational parameter, the normalizing constant is given as

= 2√α(1 + β )Γ[1 + |m|] + β |m|Γ [1 + |m|] + 2βΓ 32 + |m| (2.40)

The above normalization constant can be written in terms of a new

constant

C = √+ + (2.41)
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Where d = 12 Γ[1 + |m|] (2.41)

e = Γ 32 + |m| (2.42)

f = 12Γ[2 + |m|] (2.43)

We have found the energy spectra of the relative Hamiltonian part:

= 12ω m+ C × 2α√α 12m Γ[|m|] + 12 |m|Γ[|m|] + 58β |m|Γ[|m|]
+ 12m β Γ[|m|] + Γ 12 + |m|2√α − 14βΓ 12 + |m|+ m βΓ 12 + |m| + β Γ 12 + |m|4√α + β |m|Γ 12 + |m|2√α+ βΓ[1 + |m|]√α − 18β Γ[1 + |m|] + 12m β Γ[1 + |m|]+ βΓ 32 + |m| + 12Γ[2 + |m|] + β Γ[2 + |m|]+ 12β |m|Γ[2 + |m|] + β Γ 52 + |m| (2.44)

Which can be written as(β) = −12 ω + 2 + β + β+ β + β (2.45)

where a = e(2 |m| + 1) √α + 2f (2.46)

b = 2d√α + 2(|m| + 1)e (2.47)
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d, e, f  which is  previously defined in Equation (2.41-2.43) respectively.

The energy eigenvalues of can be obtained by minimizing the

energy expression equation (2.45) with respect to the variational parameter

namely

= 0 , > 0 (2.49)

The value of the parameter which satisfies the minimum energy

requirement is

, → 2 − 2 − (2 − 2 ) − 4( − )( − )2(− + ) (2.50)

So, the final energy expression in terms of the variational parameter

value which satisfies the minimization condition is

(β ) = −12 ω + 2 + β + β+ β + β (2.51)

Having obtained the eigenenergies for the QD system for any state

labeled by , quantum number , now we are able to calculate the

exchange energy (J) define as the difference between the singlet (S=0, L is

even ) and triplet (S=1, L is odd) states:

= − (2.52)

For any range magnetic field and confining potential.
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2.3 Heat capacity

The heat capacity is defined as the amount of energy which is

needed to increase the temperature of the system by one degree, and it is

considered the most important thermal property.

To calculate the heat capacity of the two electron quantum dot

system, first, we have evaluate the mean energy from the statistical energy

expression [27]:

〈E(T, B,ω )〉 = ∑ E e ⁄∑ e ⁄ (2.53)

Where T is the temperature and is the Boltzmann constant.

Now, the heat capacity can be calculated from the temperature

derivative of the mean energy of the QD.C (T, B,ω ) = ∂〈E(T, B,ω )〉∂T (2.54)

We have computed numerical value of the heat capacity of the QD

system for various ranges of the magnetic field ω , confining frequency ω
and temperature T. The obtained results are displayed in  the next chapter.
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Chapter Three

Result and Discussion

3.1 Quantum Dot Spectra

3.2 Heat Capacity
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Chapter Three

Result and Discussion

3.1 Energy spectra

Our computed results for two interacting electrons in a quantum dot

made from GaAs material ( ∗ = 0.067 , ∗ = 5.825 ) are

presented in this chapter.

In the Absence of the magnetic field, the states of the QD system are

degenerate as shown in figure (3.1), while for finite strength of magnetic

field, the degeneracy of the states are removed.

Figure (3.1) The energy spectra of Fock-Darwin states and the corresponding
degeneracy.

We had plotted the computed energy results of this work against the

strength of the magnetic field for ω = R∗ for both non-interacting

Figure (3.2) and interacting Figure (3.3) electrons. The non-interacting



27

graph shows that the ground state energy level (0,0) remains the lowest

energy level as magnetic field increase while the interacting case shows

clearly the transition in the angular momentum of the ground state of the

QD system as the magnetic field increases. The origin of these transitions is

due to the effect of coulomb interaction energy in the QD Hamiltonian.

These transitions in the angular momentum of the QD system correspond to

the (singlet-triplet) transitions are expected to manifest themselves as cusps

in the heat capacity curve of the QD. The present results also show very

good agreement compared with Dyblaski's result [27], where the authors

had used the same variational wave function. In addition, we had displayed

the energy result for interacting electrons in table 1, and one could clearly

notice the transition of ground state angular momentum when the magnetic

field strength increase.

Figure (3.2) The dependence of the relative motion energy spectra on the
magnetic field for two non-interacting electrons in a QD at confining frequency= ∗
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Figure (3.3) The computed relative motion energy spectra of two interacting
electrons quantum dot against the strength of the magnetic field for = ∗ ,

and angular momentum = ,± ,± ,± .
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Table (3.1)The relative motion  energy spectra of the QD states
(m=0,1,2……8) against the magnetic field for two interacting electrons
for = ∗ (the underlined energy values show the angular

momentum transitions of the ground state of the QD).
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Continue of the table
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The angular momentum dependence on confinement frequency is

displayed in figure (3.4)

Figure(3.4) The singlet-triplet phase diagram of the QD. Confining frequency
against the strength of the magnetic field

To deeply understand this transition we had plotted the singlet-triplet

gap for specific confinement frequency ω = , which clearly shows that

the ground state angular momentum changed from = 0 to = 1 at certain

magnetic field values which depend on the confinement frequency

figure(3.5).
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Figure (3.5) The exchange energy of the two interacting electrons in a QD against the
magnetic field strength for = ∗
3.2 Heat capacity

In Figure (3.6) we had shown the behavior of the heat capacity C
against the temperature for different values of the confining frequency ω ,

while keeping ω unchanged. For particular confining frequency ω , the

heat capacity curve shows a peak value at low temperature, while at high

temperature degrees the heat capacity saturates. This behavior for the heat

capacity is in agreement with the results of Refs.[21, 22, 28, 29]. As the

confining frequency increases, the peak of the heat capacity shifts to a

higher temperature, numerical values of the heat capacity against the

temperature  are shown in Table (2) .
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Figure (3.6) The dependence of the heat capacity on the temperature for fixed
value of magnetic field = . ∗and various confinement frequencies: =∗ Solid , = . ∗ Dashed.

In Figure (3.7) we had shown the dependence of the heat capacity on

the magnetic field strength for fixed values of the confining frequency and

temperature.  The heat capacity shows a peak structure which is a result of

the transition in the angular momentum of the ground state energy as

shown and discussed previously in Figure (3.3). For example, the first peak

corresponds to the transition in the angular momentum of the ground state

fromm = 0 tom = 1.

Solid ω = R∗Dashed ω = 0.6 R∗
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Table (3.2) The heat capacity of two interacting electrons QD against
the temperature for = ∗ and = . ∗

T T T
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Figure (3.7) The heat capacity as function of magnetic field strength for fixed value
of temperature ( = . K)  and confinement frequency = ∗.
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Conclusion and future work

In conclusion, we had applied the variational method to solve the

Hamiltonian for interacting electrons confined parabolically in a quantum

dot subjected to a magnetic field. We had used the one variation parameter

wave function to get the minimized energy expression. In addition, we had

shown the angular momentum transitions in the ground state of

GaAs/AlGaAs quantum dot spectra. These level crossings which result of

Coulomb interaction cause oscillations in the heat capacity curve of the

quantum dot. In addition we had investigated the dependence of the heat

capacity of the QD on the system parameters , , and T. The results of

both, the eigenenergies and the heat capacity, calculated by variational

method  show very good agreement comparable with other recent works.

In this work we had taken the heat capacity as a thermal property of

the QD system, however another thermodynamic and magnetic quantities

like magnetization and magnetic susceptibility can be considered in the

future. We expect that the angular momentum transition of the ground state

will affect significantly the magnetic properties of the QD.  In addition the

electronic and magnetic properties of few electrons QD are important

issues to be studied.
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جامعة النجاح الوطنیة 
كلیة الدراسات العلیا 

لنقطة كمیة تحتوي إلكترونین السعة الحراریة 
في مجال مغناطیسي خارجي "بطریقة المتغیرات"

إعداد
أیهم أنور شاعر

إشراف
د. محمد السعیدأ.

د. موسى الحسن

قدمت هذه الأطروحة استكمالا لمتطلبات الحصول على درجة الماجستیر في الفیزیاء 
نابلس.–كلیة الدراسات العلیا في جامعة النجاح الوطنیة في 

2015



ب

لنقطة كمیة تحتوي إلكترونینالحراریة السعة
في مجال مغناطیسي خارجي "بطریقة المتغیرات"

إعداد
أیهم أنور شاعر

إشراف
د. محمد السعیدأ.

د. موسى الحسن
المخلص 

المتشادة والمحصورة في نقطة كمیة تم حساب السعة الحراریة لزوج من الإلكترونات 
والموضوعة أیضا في مجال مغناطیسي وذلك عن طریق  حل دالة هاملتون باستخدام طریقة 
المتغیرات. ولقد قمنا بدراسة  اعتماد السعة الحراریة على كل من درجة الحرارة والمجال 

الثلاثي للزخم الزاوي - يالمغناطیسي بالإضافة لتردد الحصر. كما وضحت الدراسة الانتقال الأحاد
للمستوى الأرضي والقفزات في منحنى السعة الحراریة الناتجة عنه. وأظهرت المقارنات توافق كبیر 

.بین نتائجنا مع نتائج أعمال أخرى منشورة




