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Magnetic properties of donor impurity in GaAs semiconductor 

quantum pseudo-dot system 

By 

Hanaa Mohammad Rehan 

Supervisor 

Prof. Mohammad Elsaid 

Abstract 

The magnetic properties like magnetization and susceptibility of donor 

impurity in quantum pseudo-dot (QPD) are studied in the presence of the 

applied external magnetic and electric fields. The shifted 1/N expansion 

method has been used to solve the Hamiltonian of the donor impurity in 

(QPD). We calculate the energy eigenvalue for the ground state and low 

lying state as a function of magnetic field strength with various quantum 

dot physical parameters. Our computed energy results of the QPD show 

very good agreement compared with the corresponding reported work. 

These parameters are: the presence of the impurity, the electric field 

strength η, the magnetic field strength ωc, the confinement pseud-dot 

potential: radius of QD (R0) and the confinement strength (V0). The 

dependencies of the binding energy and statistical energy on the electric 

field strength η, the magnetic field strength ωc, and the confining pseud-dot 

potential (R0 , V0) are presented. Our results reveal that the  presence of the 

impurity, the electric field strength η, the magnetic field strength ωc, and 

the confinement pseud-dot potential (R0 , V0) have significant influences on  

magnetization and susceptibility. The magnetization and susceptibility 
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curves show oscillating behavior which is attributed to the energy level 

crossings of the QPD spectra. 
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Chapter One 

Introduction 

1.1 Quantum confinement effects 

A quantum confined structure is one in which the motion of the carriers 

(electron and hole) are confined in one or more directions by potential 

barriers. Based on the confinement direction, the quantum confinement has 

significant effects on the physical properties of low-dimensional quantum 

system like: quantum well (QW), quantum wires (QWW), quantum dot 

(QD) and quantum pseudo-dot (QPD).  

In quantum dot (0D), the charge carriers are confined in all three 

dimensions and electrons have discrete energy spectra. Quantum wires 

(1D), the charge carriers travel only along the wire direction (two 

dimensions of the system are confined). In quantum well (2D), charge 

carriers are confined to move in a plane and are free to move in  two 

dimensional. Bulk materials do not show energy confinement effects.[1] 

 

Figure (1.1): Density of electron states for low dimensional semiconductor systems [2]. 
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1.2 Quantum Pseudo-dot 

Quantum pseudo-dots (QPD) are nanoscale materials where the motion of 

the charge carriers have been limited in all dimensions. This carrier 

confinement leads to formation of discrete energy levels and  the change of 

electronic and magnetic properties [3]. The nanoscale is defined from 1 to 

100 nm. 

The quantum pseudo-dot (QPD) consists of quantum dot and    quantum 

anti-dot [4]. 

1.2.1 Quantum dots 

Quantum dots (QDs) are nanostructure semiconductor materials closely 

confine either electrons or electron holes. Quantum dots are also sometimes 

referred to as artificial atoms. QD size ranges from 2-10 nanometers. So 

small that their optical and electronic properties differ from those of larger  

particles. Their size, shape and other properties can be controlled in 

experiment. 

QDs is an important field of research for both pure and applied physics 

because of the large number of applications it has, such as: solar cells, 

diode lasers, transistors, medical imaging and quantum computing. These 

QDs materials have unique electronic properties [5]. 

 

 

https://en.wikipedia.org/wiki/Electron_holes
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1.2.2 Quantum  Anti-dot 

Anti-dots, in a moderate or high magnetic field, confined electrons to the 

edges of a sample, when external negative potential is applied at the center 

of the QPD, as shown in figure (1.2).  

As the magnetic field or gate voltage is changed, the energy levels of the 

zero-dimensional states formed pass through the Fermi energy, causing the 

resistance to oscillate. The oscillations develop extra structure, such as 

double peaks. We can explain these effects in terms of transport through 

more than one of the edge states encircling the anti-dot [6]. 

 

Figure (1.2):  Edge states around an antidote[6]. 
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The energy levels of the QPD can be controlled by applying external 

magnetic and electric fields, in addition to the impurities. 

In our study, the heterostructures  of  QPD on the surface of a two-

dimensional electron gas is formed by GaAs/AlGaAs layers, as shown in 

figure (1.3). 

 

Figure (1.3): Quantum dot made from GaAs/ AlGaAs heterostructure in two dimensions[7]. 

The study of impurity in QPD has been of great interest  to researchers, 

therefore a large number of theoretical works have been devoted to the 

understanding of confined impurity states in QPD system. Additionally, the 

external electric and magnetic fields are effective tools for investigating the 

properties of impurity in QPD. 

 



 

5 

 
 

In this thesis, we will study the effects of the electric and magnetic field on 

the energy spectra of donor impurity in QPD by using 1/N expansion 

method. The 1/N computational techniques will be used to solve the QPD 

Hamiltonian and obtain the eigenenergies of the donor impurity as a 

function of magnetic and electric fields. 

1.3  Literature Survey 

The effects of electric and magnetic fields on the impurity states in QPD 

have been studied recently. Different  theoretical works had been devoted 

to solve the Schrodinger equation for this potential by using various 

methods such as: variational and perturbation method[8], asymptotic 

iteration method(AIM)[9]. R. Khordad [3,4] had studied three 

characteristics of a hydrogenic impurity located in the center of QPD 

within the effective mass approximation and the influence of Rashba effect 

on bound polaron in a QPD using the variational procedure. Dehyar and 

Zamani [10] studied the effects of the Kratzer potential on the hydrogenic 

impurity in external electric and magnetic fields by using AIM. G.Rezaei 

and Shojaeian [11] investigated the effects of electric and magnetic fields, 

pressure, temperature on the binding energy of hydrogenic donor impurity 

confined in 2D parabolic QD  using the direct numerical diagonalization 

method. G.Rezaei and Doostimotlagh [12] used the direct numerical 

diagonalization to study the effects of conduction band non- parabolicity, 

electric field and pressure on the binding energy and magnetic 

susceptibility of hydrogenic donor impurity in QD. G.Rezaei, Taghizadeh 
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and Enshaeian [13] considered simultaneous effects of electric field, 

pressure, temperature on the binding energy of an off center hydrogenic 

donor confined by spherical Gaussian potential based on the effective mass 

approximation within a matrix diagonalization scheme. Jian and Chao [94] 

had computed of an off-center hydrogenic donor in a spherical QD with 

strong parabolic confinement by a perturbation method. 

Aydogdu and Sever [15] had used  the Nikiforov – Uvarov method to 

compute the energy spectra and corresponding wave functions of the Dirac 

equation for pseudo harmonic potential. R.Khordad [16] had calculated the 

electronic and optical properties in QD with Kratzer potential by using the 

numerical diagonalization method. Investigation of magnetic field effects 

on binding energies in spherical QD with finite confinement potential had 

been carried by Bekir Çakır,
  
Yusuf Yakar

 
, Ayhan Ozmen [17]. While D.B. 

Hayrapetyan, S.M. Amirkhanyan, E.M. Kazaryan, H.A. Sarkisyan [18] had 

studied  the effects of hydrostatic pressure on diamagnetic susceptibility of 

hydrogenic donor impurity in  spherical QD with Kratzer confining 

potential. D.Sanjeev Kumar, Soma Mukhopadhyay, Ashok Chatterjee [19] 

had studied the magnetization and susceptibility of a two-electron parabolic 

QD in the presence of electron–electron and spin–orbit interactions as a 

function of magnetic field and temperature. M. Akbari G. Rezaei R. 

Khordad [20] had considered the impact of the spin-orbit coupling on the 

level structure in  2D-QPD. Elsaid et.al. [21-30] had also investigated , 

very recently , the magnetic properties of  two-interacting electrons in a 

single  and double QDs, which are presented in a magnetic field. The 
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energy spectrum, the optical and electromagnetic properties of a donor 

impurity confined by 2D of an electron confined by a pseudoharmonic 

potential in the presence of a strong magnetic field are investigated [31-34]. 

In this work, we use the shifted 1/N expansion method to calculate the 

eigenenergies of donor impurity in a QPD under  the effects of the electric 

and magnetic fields. The obtained eigenenergies will be used as input data 

to compute the average statistical energy, magnetization and magnetic 

susceptibility of the impurity in QPD system made from GaAs material. 

1.4 Research Objectives  

This research has two objectives which can be summarized as follows:  

Firstly, QPD Hamiltonian will be solved by using 1/N expansion method to 

obtain the eigenenergies of the donor impurity in QPD in different ranges 

of electric and magnetic field strengths. 

Secondly, the magnetization and magnetic susceptibility of donor impurity 

in QPD will be studied as function of the physical parameters of the QPD 

system: strengths of magnetic ( ), electric fields (η) and the confining 

potential (V0 , R0). 
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Chapter Two 

Theory 

This chapter consists of three main parts:  

i) The Hamiltonian of donor impurity in 2D QPD under the effects of 

electric and magnetic field. 

ii)  1/N shifted expansions method. 

iii)  the magnetic properties of QPD:  magnetization and  magnetic 

susceptibility. 

2.1 QD Hamiltonian 

The Hamiltonian of donor impurity confined in 2D QPD under the 

influence of external electric and magnetic fields, can be written as: 

H =    – eηr +V(r)                                               (2.1)                         

 Where  is a  vector potential, given by:    =  B  

ɛ is the dielectric constant of the medium (GaAs),   

c is the speed of light,  e is the electron charge, 

 is the electron momentum operator, given by:   =   

η is the strength of the electric field.  
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m* is the effective mass of the electron in GaAs material that equals 

0.067me 

-   represents the coulomb attractive energy between the electron and the 

donor impurity center. 

r is the electron position coordinate r = (x,y) from the center of the QD in a 

2D. 

V(r) is the pseudo harmonic confining potential that includes both    

harmonic QD potential and anti-dot potential [4], 

(r) = (  -  )²                                                                                (2.2) 

V0   is the strength of the  potential. 

R0  is the zero point of the pseudo-dot harmonic potential. 

The potential can be rewritten as:  

  

This model can also be applied to describe of several other physical 

systems: 

When the system becomes straight wires. If we take  , the 

QPD becomes the parabolic confinement potential for QD  . 

When  , the potential becomes   , which describe an 

anti-dot [35].  
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It is important to note that the QPD systems with  potential can be 

solved analytically in 1D, 2D and 3D [36].  

 The Hamiltonian of this system Eq (2.1), using the symmetric gauge   

  =  (-y,x,0) , is given by: 

H =  +  +  -  – eηr + (r)                      (2.3) 

Where Lz is the orbital angular momentum, =  = 0.308  is 

the magnetic field cyclotron frequency,  is 

the electric field strength in units of R*. We use ħ=1, ɛ=1, e= . 

In this work, we use the effective Rydberg units =  =5.61meV, and 

Bohr radius  =  = 10.04nm,  for GaAs material. 

It is clear that the Hamiltonian of the QPD given by Eq (2.1) is quite 

complex and cannot be solved analytically. In this work we will implement 

the shifted 1/N expansion method to solve the Eq (2.3) to obtain the desired 

energies which in turn be used to study M, χ of an electron in QPD.  

2.2 The Shifted 1/N Expansion method 

The shifted 1/N expansion method has been used to solve the Schrodinger 

equation for N-dimensions. It gives exact results for Harmonic oscillator 

and Coulomb potentials. This method is quite simple technique and ensures 

high accuracy. The radial part of Schrodinger equation in an N dimensional 

space is [37] : 
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                   (2.4) 

Where  is the effective potential of Eq (2.3) given as:  

   (2.5) 

The term:  is the eigenvalue of the square of the orbital 

angular momentum operator in N dimensional space and  where 

 is the magnetic quantum number  in 2D space. 

The main concept of 1/N expansion method is to rewrite Eq (2.4) by using 

a parameter as  and shift parameter . We use  which is 

defined    and Eq (2.1) takes the form: 

    (1.6) 

Where  is a scaling constant, chosen to make Eq (2.4) and (2.6) equals, 

this means; =   

For large , the energy comes from the effective potential and the kinetic 

energy becomes negligible. The effective potential  reads as:  

                                                                           (2.7) 

 is assumed to be well behaved so that has minimum at  =  

given by the form: 

                                                                          (2.8) 
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Shifting the origin  to the position of the minimum of the effective 

potential (x=0) by a new variable as: 

                                                                                 (2.9) 

By using Taylor expansion of the Schrodinger equation around the 

effective potential minimum  , 

The energy eigenvalues are given: 

……..                                                     (2.10) 

The shift parameter  can be determined by taking  so: 

                                                                 (2.11) 

Where ω is defined as  an oscillator potential with frequency: 

                                                           (2.12) 

The root is determined from Eq (2.8), (2.11) and (2.12) by the relation: 

             (2.13) 

After determining the roots (r0), the eigenenergies can be computed for any 

quantum state: |nr,m˃ with different ranges of external fields and confining 

potential parameters. The energy expression is very long to be repeated 

here. The complete eigenvalue equations are given, in terms of quantum 
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numbers, an harmonic frequency and potential derivatives, the interested 

reader can refer to [38]. 

2.3 Magnetization of QPD (M)  

The magnetization is one measure of the magnetic properties of a material, 

it can be calculated from the statistical energy according to the following 

relation: 

M(ωc ,η ,R0 ,V0) = -                                                                     (2.14)                                                  

Where the statistical energy is given as:  

 =                                                        (2.15) 

 Where α indicates the quantum states of the QPD represented by the 

Hamiltonian given in Eq (2.1)  and  is the Boltzman constant . 

 2.4 The magnetic susceptibility of QPD (χ) 

Another important physical quantity is the magnetic susceptibility (χ), if χ 

is positive a material can be classified as paramagnetic. if χ is negative, the 

material is diamagnetic.  χ is defined as the variation of the magnetization 

of the QPD systems as we vary the magnetic field, B. as: 

χ =                                                                                                 (2.16) 
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Chapter Three 

Results and Discussions 

This chapter is devoted for computed numerical results of the electronic 

and magnetic properties of QDs (energies, binding energies, magnetization 

and magnetic susceptibility). The analysis of these obtained results are also 

presented. 

3.1 Energy spectra 

In the first step in our work, we have calculated the energy spectrum 

without impurity of GaAs QPD at different values of magnetic  and electric 

fields. It is important to mention that the energy expression of the QPD- 

Hamiltonian, in special cases like  zero electric field and no impurity, can 

be obtained in a closed analytic form [Ref.20]. Thus, we use in this work 

the shifted 1/N expansion method to solve the full QPD Hamiltonians 

including all external potential terms. 

In figure (3.1), we have plotted the energy spectrum for ground and exited 

states as a function of magnetic field strength without impurity and zero 

electric field, we compare our figure (3.1.a) with figure (3.1.b) of Ref [20]. 

The comparison shows good agreement between both results.  
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Figure (3.1): The energy spectrum versus magnetic field calculated at R0=8nm, V0=50meV and 

zero electric field without impurity, a)Present work, b)Ref [20].  

To see the effects of magnetic and electric fields, confinement and impurity 

on the energy spectra of QPD. Figure (3.2) shows the enhancement of the 

QPD energy of the electron as the magnetic field increases. The presence of 
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the impurity decreases the energy of the electron due to the attractive 

energy contribution in QPD.  

 

Figure (3.2): The ground state energy as a functions of magnetic field ωc with (solid 

line)/without (dashed line) impurity, at R0=8nm, V0=50meV for zero electric field η=0R*. 

In figure (3.3) and (3.4), we have shown the effects of the electric field on 

the energy of the electron with and without donor impurity. The figures 

show a significant reduction in the energy of the confined electron in the 

QPD. This energy reduction is due to the attractive coulomb energy since 

the electric field displaces the electron far away from the donor impurity.  
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Figure (3.3): The ground state energy as a functions of magnetic field ωc with (solid 

line)/without (dashed line) impurity, at R0=8nm, V0=50meV  and η=2R*. 

 

Figure (3.4): The ground state energy as a functions of magnetic field ωc  at V0=50meV,  

R0=8nm for different values of η. 



 

18 

 
 

Figure (3.5) shows the effects of the confinement V0 on the electron energy 

spectra. As the confinement strength V0 increases (from 20 to 50 meV), this 

leads to stronger confinement potential of the electron which enhances the 

electron energy in QD. In figure (3.6) we have shown the effects of the QD 

zero point R0 increases. As R0 decreases the electron becomes more 

confined and thus the energy enhanced. Whereas, at very strong magnetic 

field (ωc = 8.5R*) as shown in table (3.1), the energy increases as the zero 

point R0 increases.  

 

Figure (3.5): The ground state energy as a functions of magnetic field ωc , at R0=8nm, η=2R* 

for different values of V0 .                                
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Figure (3.6): The ground state energy as a functions of magnetic field ωc , at V0=50meV,  

η=2R* for different values of R0.    

Table (3.1):. The ground state energy as a functions of magnetic field 

ωc , at V0=50 meV,  η=2R* for different values of R0.        

E(meV)  

ωc(R*) 
R0 =8 nm R0 = 10 nm 

28.5785 26.6617 7.0 

30.6364 29.5924 7.5 

32.8059 32.6634 8.0 

35.0821 35.8665 8.5 

37.4606 39.1937 9.0 

39.9367 42.6376 9.5 

42.5061 46.1907 10 

In figure (3.7), we have shown the energy against the magnetic field 

strength for electric field strength η=2R*. The plot shows the energy 

splitting for positive and negative angular momenta values, due to the 
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magnetic field effect. The computed eigenenergies of the QDs against the 

magnetic field are also listed in table (3.2) .   

 

Figure (3.7): The energy for low lying excited states of the donor impurity as a function of the 

magnetic field strength ωc  calculated at R0=8nm, V0=50meV and η=2R*.  

In table (3.2) we computed the energy spectra with magnetic field strength 

ωc , at R0=8nm, V0=50meV and zero electric field (η=0R*),  without 

impurity, and plotted the results in figure (3.8). We note that the state of E 

(0,-1) crossing with the ground state at ωc=3R*, the state of E (0,-2) crosses 

with the ground state aT  ωc=6R*,  the state of E (0,-3) crosses with the 

ground state at  ωc=  8.5R*, and the state of E (0,-4) crosses with the 

ground state at  ωc= 10.5R*.  

 



 

21 

 
 

Table(3.2): The energy spectra and the level crossings versus magnetic 

field strength ωc calculated at R0=8nm, V0=50meV and zero electric 

field η=0R*,  without impurity. 

     
ωc (R*) E(0,0) (meV) E(0,-1) (meV) E(0,-2) (meV) E(0,-3) (meV) E(0,-4) (meV) 

0.0 41.7759 50.1035 72.5068 102.918 137.649 

0.5 41.8548 48.7845 69.7978 98.8230 132.171 

1.0 42.0911 47.6322 67.2804 94.9539 126.957 

1.5 42.4842 46.6459 64.9537 91.3090 122.006 

2.0 43.0328 45.8242 62.8162 87.8866 117.316 

2.5 43.7349 45.1651 60.8655 84.6841 112.883 

3.0 44.5885 44.6663 59.0991 81.6982 108.703 

3.5 45.5908 44.3250 57.5137 78.9253 104.774 

4.0 46.7389 44.1380 56.1056 76.3609 101.088 

4.5 48.0292 44.1016 54.8706 74.0002 97.6407 

5.0 49.4581 44.2119 53.8043 71.8379 94.4260 

5.5 51.0218 44.4649 52.9018 69.8684 91.4370 

6.0 52.7159 44.8561 52.1582 68.0857 88.6668 

6.5 54.5364 45.3810 51.5682 66.4837 86.1083 

7.0 56.4786 46.0348 51.1265 65.0561 83.7540 

7.5 58.5383 46.8130 50.8276 63.7965 81.5964 

8.0 60.7108 47.7106 50.6660 62.6984 79.6281 

8.5 62.9917 48.7229 50.6363 61.7554 77.8413 

9.0 65.3764 49.8452 50.7329 60.9610 76.2286 

9.5 67.8605 51.0728 50.9505 60.3090 74.7826 

10.0 70.4398 52.4010 51.2838 59.7930 73.4960 

10.5 73.1099 53.8254 51.7277 59.4071 72.3617 

11.0 75.8666 55.3417 52.2770 59.1453 71.3727 

11.5 78.7061 56.9454 52.9270 59.0018 70.5223 

12.0 81.6244 58.6326 53.6728 58.9711 69.8040 

12.5 84.6178 60.3993 54.5100 59.0478 69.2116 

13.0 87.6826 62.2416 55.4341 59.2269 68.7389 

13.5 90.8155 64.1560 56.4411 59.5033 68.3803 

14.0 94.0131 66.1389 57.5268 59.8724 68.1303 

14.5 97.2723 68.1871 58.6875 60.3297 67.9834 

15.0 100.590 70.2973 59.9194 60.8708 67.9348 
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Figure (3.8): The energy and the level crossings for low lying excited states as a function of the 

magnetic field strength ωc  , at R0=8nm, V0=50meV and η=0R*, without impurity. 

In table (3.3) we computed the energy spectra with magnetic field strength 

ωc , at R0=8nm, V0=50meV and  η=2R*,  with impurity, and plotted this in 

figure (3.9), The figure clearly shows the energy level crossing at different 

values of magnetic field strength. For example,  the state of E (0,-1) crosses 

the ground state at ωc=3R*;  the state of E (0,-2) crosses the ground state at  

ωc=6R*;  the state of E (0,-3) crosses the ground state at  ωc=  8.5R*;  and 

the state of E (0,-4) crosses the ground state at  ωc=  10.5R*.  
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Table (3.3): The energy spectra and the level crossings versus magnetic 

field strength ωc , at R0=8nm, V0=50meV and η=2R*,  with impurity. 

ωc  

(R*) 

E(0,0) (meV) E(0,-1) 

(meV) 

E(0,-2) 

(meV) 

E(0,-3) 

(meV) 

E(0,-4) 

(meV) 

0.0 13.8481 22.2096 44.5316 74.5881 108.734 

0.5 13.9274 20.8913 41.8239 70.4955 103.259 

1.0 14.1648 19.7408 39.3102 66.6322 98.0534 

1.5 14.5596 18.7574 36.9896 62.9971 93.1156 

2.0 15.1104 17.9397 34.8604 59.5881 88.4434 

2.5 15.8153 17.2855 32.9203 56.4026 84.0336 

3.0 16.6270 16.7924 31.1664 53.4370 79.8821 

3.5 17.6776 16.4574 29.5953 50.6875 75.9843 

4.0 18.8289 16.2771 28.2029 48.1492 72.3347 

4.5 20.1223 16.2477 26.9849 45.8170 68.9272 

5.0 21,5540 16.3651 25.9367 43.6853 65.7552 

5.5 23.1199 16.6249 25.0530 41.7482 62.8117 

6.0 24.8156 17.0226 24.3286 39.9993 60.0894 

6.5 26.6366 17.5533 23.7581 38.4323 57.5807 

7.0 28.5785 18.2123 23.3358 37.0404 55.2777 

7.5 30.6364 18.9945 23.0559 35.8169 53.1727 

8.0 32.8059 19.8951 22.9128 34.7551 51.2576 

8.5 35.0821 20.9090 22.9008 33.8481 49.5245 

9.0 37.4606 22.0315 23.0142 33.0895 47.9656 

9.5 39.9367 23.2576 23.2474 32.4724 46.5732 

10.0 42.5061 24.5828 23.5951 31.9906 45.3396 

10.5 45.1644 26.0023 24.0518 31.6377 44.2576 

11.0 47.9074 27.5118 24.6124 31.4076 43.3199 

11.5 50.7311 29.1069 25.2719 31.2945 42.5197 

12.0 53.6315 30.7834 26.0256 31.2926 41.8503 

12.5 56.6050 32.5375 26.8688 31.3966 41.3051 

13.0 59.6478 34.3651 27.7971 31.6011 40.8782 

13.5 62.7566 36.2628 28.8063 31.9011 40.5636 

14.0 65.9281 38.2270 29.8922 32.2919 40.3556 

14.5 69.1591 40.2544 31.0512 32.769 40.2491 

15.0 72.4467 42.3418 32.2794 33.3279 40.2387 
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Figure (3.9): The energy level crossing for low lying excited states of the donor impurity  as a 

function of the magnetic field strength ωc  , at R0=8nm, V0=50meV and η=2R*. 

By comparison figure (3.8) with figure (3.9), it is clear that the presence of 

the impurity and the electric field decreases the energy state and the 

crossing of the state energy with the ground state energy at the same points 

of the magnetic field strength ωc regardless of the donor impurity and the 

electric field. The crossing levels of the energy explains the oscillator in the 

figure of the statistical energy with magnetic field strength ωc  in        

section 3.3. 
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3.2 Binding energy 

In this section we will present our computed results for the binding energy 

of donor impurity in QPD with different physical parameters. 

The donor binding energy (B.E) is defined as the energy difference of the 

Hamiltonian without and with donor impurity, 

  B.E = <H>impurity=0 - <H>impurity=1                                                       (3.1) 

 In figure (3.10), we have shown the effects of the magnetic and electric 

fields on the binding energy of donor impurity of the electron confined in 

QPD. As the strength of the electric field increases, the binding energy 

decreases, as expected and explained previously in figure (3.4). The 

binding energy enhances as the magnetic field strength becomes stronger. 

This is because the increasing of the electric field causes the electron to be 

less confined to the impurity so it reduces the binding energy. In addition, 

the magnetic field increases the confinement of electron which in turn leads 

to increasing the binding energy. We note that at high magnetic field the 

effects of the electric field on the binding energy is small, as shown in  

table (3.4). 
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Table (3.4): The binding energy verses the magnetic field strength ωc 

calculated at  R0 =8nm, V0 =50meV, for different values of electric field 

strength η. 

B.E (meV)  

ωC (R*) 
η =0R* η =2R* η =5R* 

   
0 

  
7 2 

   
4 

   
6 

  
0.37801 8 

  
0.42029 10 

 

 

Figure(3.10): The binding energy for ground state of the donor impurity as a function of 

magnetic field strength ωc, calculated at: V0=50mev, R0=8nm  for various values of electric field 

η.  
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Figure (3.11) shows the dependence of the binding energy against the 

magnetic field strength for various R0 , as the R0 decreases, the donor 

binding energy increases. This is due to the fact that as the value of R0 

increases the binding of the electron to the donor impurity parent decreases.  

 

Figure (3.11): The binding energy for ground state of the donor impurity as a function of 

magnetic field strength ωc  for η=2R* and V0=50 meV, for different values R0 .  

We show the variation of donor binding energy with the confinement 

potential V0 in figure (3.12). By increasing the potential confinement V0 

the electron becomes more confined and therefore the binding energy 

increases. While, at middle and high magnetic field strengths, the binding 

energy decreases as we increase the potential strength V0 . The data shown 

in table (3.5), at ωc = 1.7 R * reflects also the relation between the binding 

energy and the potential strength V0 . 
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Table (3.5): The binding energy versus the magnetic field strength ωc 

calculated at R0 =8nm, η=2R*, for different values of V0. 

B.E (meV)  

ωC (R*) 
V0=10meV 

 

V0=30meV 

 

V0=50meV 

 

   
0.0 

   
0.5 

   
1.0 

   
1.5 

   
1.7 

   
1.9 

   
2.0 

   
2.2 

 

 

Figure (3.12): The binding energy for the ground state of the donor impurity  as a function of 

magnetic field strength ωc, at η=2R* and R0=8 nm, for different values V0.   

 



 

29 

 
 

3.3  Statistical energy 

To ensure the accuracy of the presented computed  results, we vary the 

number of states, until we achieve the numerical stability in the statistical 

energy of the QPD, as shown in figures (3.13), (3.14) and (3.15). Figures 

(3.13.a) and (3.13.b) show the statistical energy as a function of the 

magnetic field strength calculated at zero electric field with different 

quantum states. These figures show that the number of states has no effects 

on the statistical energy.  

In figure (3.14), we test the convergency issue of the computed data for 

finite electric field strength η =2R*. We achieve again a very good 

convergency behavior in the computed statistical energy calculations. 

In figure (3.15), show the statistical energy as a function of the magnetic 

field strength as we decrease the potential strength V0 from 50 meV to 30 

meV, with vary the number of state, the statistical energy as a function of 

the magnetic field decreases due to reduction of the potential strength V0. 

We achieve again that the number of states has no effects on the statistical 

energy. 
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Figure(3.13): The statistical energy as a function of the magnetic field strength ωc , at: η=0R*, 

V0=50 meV, T=10 K, R0 =8 nm, for different quantum number. a) The radial quantum number n 

(0,2) and the angular quantum number m (-2,2). b)  The radial quantum number n (0,4) and the 

angular quantum number m (-4,4). 
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Figure (3.14): The statistical energy as a function of the magnetic field strength ωc , at: η=2R*, 

V0=50 meV, T=10 K, R0 =8 nm, for different quantum number. a) The radial quantum number n 

(0,2) and the angular quantum number m (-2,2). b)  The radial quantum number n (0,4) and the 

angular quantum number m (-4,4). 
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Figure (3.15): The statistical energy as a function of the magnetic field strength ωc , at: η=2R*, 

V0=30 meV, T=10 K, R0 =8 nm, for different quantum number. a) The radial quantum number n 

(0,2) and the angular quantum number m (-2,2). b)  The radial quantum number n (0,4) and the 

angular quantum number m (-4,4). 
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After achieving a high convergence in the statistical energy, we turn now to 

calculate the magnetic quantities: magnetization (M) and susceptibility (χ) .  

To obtain our required results for the magnetic properties of the QPD, we 

have presented our calculated statistical energy as shown in figure(3.16), 

figure(3.17) and figure(3.18) for different QPD physical parameters. The 

figures show the dependencies of the statistical energy on (ωc) for different 

values of (η) and (V0 ).  

The effects of the η on the statistical energy is plotted in figure (3.16). The 

plot shows that for fixed value of the electric field, the statistical energy 

increases as the ωc increases. It is clear that when the electric field strength 

gets higher the statistical energy gets lower for fixed magnetic field values. 

 

Figure (3.16): The statistical energy as a function of the magnetic field strength ωc , at: R0=8 

nm, V0=50 meV, T=10 K, for different values of η.   
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The effect of the zero points R0 and the confinement potential V0 on the 

statistical energy  against the magnetic field strength is presented in figures 

(3.17) and (3.18), respectively. Figure (3.17) presents the variation of the 

statistical energy against R0. The statistical energy increases as we decrease 

R0,  while ωc is kept constant. Figure (3.18) shows the effect of the 

confinement potential V0 on the statistical energy. As the confinement 

potential V0 increases the statistical energy enhances. 

 

 

Figure (3.17): The statistical energy as a function of the magnetic field strength ωc , at: η=2R*, 

V0=50 meV, T=10 K, for different values of R0 .  

To investigate the effect of the donor impurity on the statistical energy, we 

have plotted in figure (3.19), the statistical energy for zero and non-zero 

impurity cases. We can see the reduction in the statistical energy as we 
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include the impurity in the QPD due to its negative attractive energy in the 

QD Hamiltonians. 

 

Figure (3.18): The statistical energy as a function of the magnetic field strength ωc , at: 

R0=8nm, η=2R*, T=10K, for different values of V0 .   

 

Figure (3.19): The statistical energy as a function of the magnetic field strength  ωc with (solid 

line)/ without (dashed line) impurity, at : R0=8 nm, V0=50 meV, η=2R*, T=10K.  
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3.4 Magnetization and Susceptibility 

In this section, we present magnetization(M) and susceptibility (χ) of the 

QD as a function of different physical parameters. We calculate 

magnetization in unit of effective Bohr magneton μB =   =0.862 meV/T 

for GaAs. 

 Figures (3.20), (3.22), (3.24) and (3.26), show the magnetization behavior, 

as ωc increases, the M decreases until it reaches a minimum value, after that 

it increases until reaches maximum value then it decreases again, this 

oscillating behavior is due to the QD energy level crossing crossings in 

figures (3.8) and (3.9). In figure (3.21), (3.23), (3.25) and (3.27) the curves 

clearly show that two magnetic phase transition; diamagnetic to 

paramagnetic and then to diamagnetic, at low magnetic field where the 

susceptibility is negative, and in this case the system is diamagnetic. As the 

ωc increases the χ becomes positive, where the system turns to 

paramagnetic type.  

The influence of absence or presence of the impurity on the M and χ 

appears in figure (3.20) and (3.21), respectively.  

Figure (3.20) shows that the height of the peak is reduced and shifted 

towards a strong magnetic field value due to the donor of impurity which 

lowers the statistical energy in figure (3.19). Figure (3.20.a) and (3.20.b), 

show the behavior of the QD  magnetization for different values of low      

V0 = 10 meV and high V0 = 50 meV, while the rest of the parameters are 
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kept unchanged. We can observe that the sign of  M for V0 = 10 meV is 

negative for all ωc range, while M changes it sign from negative to positive 

and again to negative for the same ωc  range for high confining potential V0 

= 50 meV. In addition, the peaks are high and coincide and shifted to the 

right, high magnetic field, for V0 = 50 meV, while they appear as two small 

separated ones for V0 = 10 meV. For low confinement, V0 = 10 meV, the 

impurity has a clear significant effect on M spectra. The impurity, with its 

negative energy contribution, shifted the peaks towards a high magnetic 

field range. 

Figure (3.21.a) show that as the confinement potential V0 loweres (V0 = 10 

meV), the effects of the donor impurity on the magnetic susceptibility the 

height of the peaks lowers and shifted to higher magnetic field value, and 

the peak are small when the magnetic field stronger, we note that at ωc = 0, 

the presence of the impurity decreases the amplitude of the magnetic 

susceptibility. In figure (3.21.b) show that as the confinement potential V0 

increases (from 10 meV to  50 meV), at ωc=0, the magnetic susceptibility 

nearly is equals, and the first peak almost overlapped high , whereas as 

magnetic field stronger the peak is separated and becomes small.  
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Figure(3.20): The magnetization M  against the magnetic field strength ωc  with (solid line)/ 

without (dashed line) impurity, at R0=8nm, T=10K, η=3R*,  a) V0=10 meV, b) V0=50 meV. 
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Figure(3.21): The susceptibility χ against the magnetic field strength ωc with (solid line)/ 

without (dashed line) impurity, at R0=8nm, T=10K, η=3R*,  a) V0= 10 meV, b) V0= 50 meV. 
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In figure (3.22.a) and (3.22.b),  we have shown the variation of the 

magnetization of the QD with the electric field strength (η=3R* and η= 

5R). For low confinement potential (V0=10 meV), the electric field shifts 

the two well separated peaks to left side, low magnetic field strength, and 

the magnetization is negative always. However, the peaks are coincide at 

high confinement, V0=50 meV, and the magnetization has oscillating signs. 

The electric field turns the sign of the magnetization.  

Figure (3.23)  reflects the effect of the electric field on the magnetic 

susceptibility. From figure (3.23.a), for low value of the confinement 

potential V0 (V0= 10 meV), as the electric field strength (η) increases the 

height of peak is small and shifted to a lower  magnetic field strength (ωc). 

Whereas, the magnetic field strength (ωc) is stronger the peak is small and 

large separated, at ωc =0, the amplitude of the magnetic susceptibility 

increases as the electric field increase. In figure (3.23.b), as the 

confinement potential V0 increases (V0=5 0 meV), the influence of the 

electric field becomes small, and at ωc =0, the magnetic susceptibilities 

nearly are equal. The first two peaks are coincide, while the second peaks is 

separated as the electric field changes. 
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Figure (3.22): The magnetization M against the magnetic field strength ωc , at R0=8nm, T=10K, 

and various electric field strength η, a) V0= 10 meV, b) V0= 50 meV. 
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Figure(3.23): The susceptibility χ against the magnetic field strength ωc , at R0=8nm, 

V0=10meV, T=10K, and various electric field strength η, a) V0= 10 meV, b) V0= 50 meV.  
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Figure (3.24) displays  the effects of the potential strength V0 on the 

magnetization, the magnetization curves show that, the height of the peak 

increases as the potential strength V0 increases. 

 

Figure (3.24): The magnetization M  against the magnetic field strength ωc , at R0=8nm, 

T=10K, η=3R*,with different values V0.  

Figure (3.25) shows the effects of the potential strength V0 on the 

susceptibility, as the potential strength V0 increase the high of peaks 

increases. The small peak is shifted toward a high magnetic field strength 

as V0 enhances. 
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Figure(3.25): The susceptibility χ  against the magnetic field strength ωc , at R0=8nm, T=10K, 

η=3R*, with different values V0 . 

Figure (3.26.a) and (3.26.b), shows the effect of the zero points (R0) 

distance on the magnetization curves for V0= 10 meV and V0= 50 meV.  

For low confinement potential (V0= 10 meV). Figure (3.26.a) shows a rapid 

oscillations and the peak shifts to low magnetic field range at high R0 value 

(R0 = 10nm), and the magnetization is negative for all magnetic field range. 

However, the sign of magnetization oscillates for high confinement 

potential and different zero points R0. 

Figure (3.27.a) and (3.27.b), show  the effects of the zero points (R0) on   

the susceptibility curves. As R0 increases, the susceptibility curves shows 

more rapid oscillations,  and at ωc=0, the separation in susceptibility values 

increases for low confinement potential (V0 = 10 meV), figure (3.27.a). For 

high confinement potential (V0 = 50 meV), figure (3.27.b), the second 
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peaks becomes more well separated and susceptibility values has small 

variation at ωc=0. 

 

 

 

Figure(3.26): The magnetization M  against the magnetic field strength ωc , at V0=10meV, 

T=10K, η=3R*, for different values R0 , a) V0= 10 meV, b) V0= 50 meV.  
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Figure (3.27): The susceptibility χ against the magnetic field strength ωc , at V0=10meV, 

T=10K, η=3R*,for different values R0 .  
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The effects of the temperature on the magnetization of the QPD is shown in 

figure (3.28.a) and (3.28.b). As the temperature increases the hight of peaks 

are reduced and shifted towards a high magnetic field value, for low 

confinement potential (V0= 10 meV), figure (3.28.a), the magnetization is 

negative also. However, for high confinement potential (V0= 50 meV), 

figure (3.28.b),  the sign of  magnetizations oscillates between negative and 

positive.  

In figure (3.29.a) and (3.29.b), we have displayed the effect of the 

temperature on the susceptibility similar to magnetization curves. The 

figures show significant changes in the behavior of the susceptibility for 

different confinements potential. For V0 =10 meV, the first peak is high 

and the second peak is low. This order is reversed for high confinement, 

(V0 =50 meV).  
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Figure (3.28): The magnetization M   against the magnetic field strength ωc , at V0=10meV, 

R0=8nm, η=3R*, for different values T, a) V0= 10 meV, b) V0= 50 meV.  
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Figure (3.29): The susceptibility χ against the magnetic field strength ωc , at V0=10meV, 

R0=8nm, η=3R*,for different values T, a) V0= 10 meV, b) V0= 50 meV.  
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Chapter Four 

Conclusions 

In this work, we have studied the effects of electric and magnetic fields and 

temperature on magnetic properties of the QPD in the presence of donor 

impurity. Using the shifted 1/N expansion method, we have calculated the 

energy eigenvalue of the ground state and low lying state as a function of 

different physical parameters; magnetic field strength ωc, electric field 

strength η, the potential confinement R0 ,V0 and the presence or absence of 

impurity. Our results show that the magnetic field strength ωc , electric 

field strength η, the potential confinement R0 ,V0 and the donor impurity 

have great effects on the average statistical energy and binding energy. The 

presence of the impurity and increasing in η and R0 reduces in the average 

energy and binding energy. While, the increasing in V0 and ωc 

enhancement of the  average energy and binding energy.  In addition, we 

have displayed the dependence of magnetization and magnetic 

susceptibility of donor impurity in QPD with various physical parameters 

(ωc, η, T, R0 , V0).  

In summary, the statistical energy, magnetization and magnetic 

susceptibility show an oscillating behavior due to the energy level crossing 

of the QPD. It is found that as we increase the electric, magnetic fields it 

varies the values of the statistical energy , which in turn effects on 

magnetization and susceptibility curves of the QPD. The GaAs QPD 

material shows a magnetic phase transition, from diamagnetic to 



 

51 

 
 

paramagnetic type, under the influence of the magnetic and electric  

applied  fields.    
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كمية ب ،لمتطمبات الحصول عمى درجة الماجستير في الفيزياء استكمالاا  قدمت ىذه الأطروحة
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 الخصائص المغناطيسية لشائبة مانحة في نقطة كمية شبو موصل من مادة
(GaAS) 
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 إشراف
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 الممخص

لشائبة مانحة في نقطة كمية  المغناطيسية والقابمية مثل التمغنط المغناطيسيةتم دراسة الخواص 
حل  تم N / 1  باستخدام طريقة مفكوك المجالات المغناطيسية والكيربائية, وجودب شبو موصل

حساب الطاقة   ائجنت أظيرت .دالة ىاممتون لحساب الطاقة لعدة مستويات بدلالة متغيرات فيزيائية
المتغيرات و  .توافقا جيدا مقارنة بنتائج مماثمة منشورةصل  لشائبة مانحة في نقطة كمية شبو مو 

, وقوة حصر الالكترون. تأثير الكيربائيو  ين المغناطيسي, شدة المجالوجود الشوائب: ىي فيزيائية
طاقة الربط ومعدل الطاقة وعمى الخواص  كل من: عمى ا  واضح المتغيرات الفيزيائية بدا

زى عي امتذبذب اسموك , حيث تظير منحنيات ىذه الخواصغناطيسيةالم التمغنط والقابمية المغناطيسية
  .   إلى تقاطع مستوى الطاقة



 

 


