An-Najah National University

Faculty of Engineering and Information Technology

جامعة النجاح الوطنية كلية الهندسة و تكنولوجيا المعلومات

Graduation Project Report II

Foundation Design For Al-Hurrieh Bridge

By

Hassan Aqqad– Reg. No: 11541841

Majd Qadah– Reg. No: 11525773

Fadi Nasharti- Reg. No: 11541379

Lujain Assi– Reg. No: 11643131

Under supervision of: Dr. Mohammad ghazal

Submitted in partial fulfillment of the requirements for Bachelor degree in Civil Engineering

Summer-2020

TABLE OF CONTENTS

LIST O	OF FIGURES	2
LIST O	OF TABLES	5
СН	IAPTER SIX: BRIDGE DESIGN	6
6.1	Bridge drawings and site plans	6
6.2	Vertical scale of bridge	7
6.3	Bridge structure	8
6.4	Sap modeling	
6.5	Load analysis on bridge	

APTER SEVEN: FOUNDATION DESIGN AND REINFORCEMENT	23
Piles introduction	23
Design and reinforcement of foundation	28
Footings design	28
Reinforcement of piles	65
	APTER SEVEN: FOUNDATION DESIGN AND REINFORCEMENT Piles introduction Design and reinforcement of foundation Footings design Reinforcement of piles

FERENCES

LIST OF FIGURES

Figure 6.1 Bridge layout6
Figure 6.2 AutoCAD Layout6
Figure 6.3 Vertical cross-section layout7
Figure 6.4 Girder bridge8
Figure 6.5 Solid slab bridge8
Figure 6.6 Voided slab bridge9
Figure 6.7 Box girder bridge9
Figure 6.8 Bridge model 110
Figure 6.9 Bridge model 210
Figure 6.10 Material property data11
Figure 6.11 External shear wall12
Figure 6.12 internal shear wall
Figure 6.13 Bridge section 114
Figure 6.14 Bridge section 215
Figure 6.15 Column design16
Figure 6.16 Beam design17
Figure 6.17 Load patterns18
Figure 6.18 Path data 118
Figure 6.19 Path data 219
Figure 6.20 Path data 319
Figure 6.21 Seismic load pattern20
Figure 6.22 Moment at serves load21
Figure 6.23 Joint reactions

Figure 6.24 Check design the bridge22
Figure 7.1 Pile image 123
Figure 7.2 Piles image 224
Figure 7.3 End bearing piles
Figure 7.4 Friction piles 25
Figure 7.5 Types of materials25
Figure 7.6 Timber piles26
Figure 7.7 Steel piles
Figure 7.8 Precast piles
Figure 7.9 Piles drilling
Figure 7.10 Footing 1a
Figure 7.11 Footing 1b29
Figure 7.12 Cap-section define by safe
Figure 7.13 Shear walls and piles for footing1
Figure 7.14 Footing1 stiff-section define by safe
Figure 7.15 Footing1 point spring define by safe
Figure 7.16 Load patterns and load combination defined by safe
Figure 7.17 Compatibility
Figure 7.18 Footing 1 dimensions
Figure 7.19 Footing 1 displacement
Figure 7.20 Footing 1 punching shear ratio given by safe
Figure 7.21 Total bottom number of bars in Y (short) direction
Figure 7.22 Total top number of bars in Y (short) direction
Figure 7.23 Total bottom number of bars in X (long) direction
Figure 7.24 Total top number of bars in X (long) direction

Figure 7.25 Footing 2
Figure 7.26 Cap-section define by safe40
Figure 7.27 Footing2 stiff-section define by safe41
Figure 7.28 Load patterns and load combination defined by safe42
Figure 7.29 Loads of footing 243
Figure 7.30 Footing 345
Figure 7.31 Cap-section define by safe46
Figure 7.32 Footing3 stiff-section define by safe47
Figure 7.33 Load patterns and load combination defined by safe
Figure 7.34 Loads of footing 349
Figure 7.35 Footing 4
Figure 7.36 Cap-section define by safe53
Figure 7.37 Footing 4 stiff-section define by safe
Figure 7.38 Load patterns and load combination defined by safe55
Figure 7.39 Loads of footing 456
Figure 7.40 Footing 5
Figure 7.41 Cap-section define by safe59
Figure 7.42 Footing 5 stiff-section define by safe60
Figure 7.43 Load patterns and load combination defined by safe
Figure 7.44 Loads of footing 562
Figure 7.45 Column interaction diagrams for circulars spiral columns

LIST OF TABLES

Table 7.1: Define materials
Table 7.2: Shear walls and piles (F1)
Table 7.3: Assign load on model (F1)
Table 7.4: Bottom and top reinforcement (F1)
Table 7.5: Column and piles (F2)41
1 able 7.6: Assign load on model (F2)43
Table 7.7: Bottom and top reinforcement (F2)
Table 7.8: Column and piles (F3)
Table 7.9: Assign load on model (F3)
Table 7.10: Bottom and top reinforcement (F3)
Table 7.11: Shear walls and piles (F4)
Table 7.12: Assign load on model (F4)
Table 7.13: Bottom and top reinforcement (F4)
Table 7.14: Shear walls and piles (F5)
Table 7.15: Assign load on model (F5)
Table 7.16: Bottom and top reinforcement (F5)

Chapter Six

Bridge Design

6.1 Bridge Drawings and site plans:

These are photos made to show the layout out and the location of the bridge:

Figure 6.1: Bridge Layout.

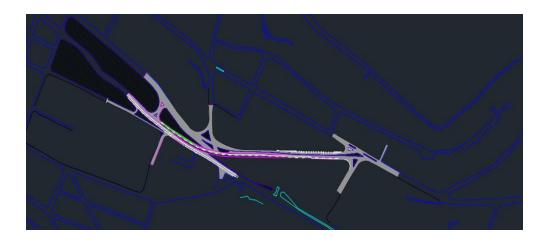
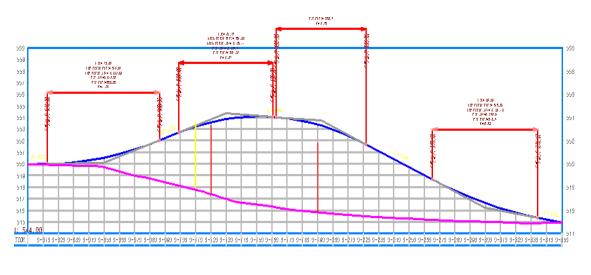



Figure 6.2: Auto cad layout.

6.2 Vertical scale of bridge:

CL-BRIDGE, STA 0+000 TO 0+351

Figure 6.3: Vertical Cross-section layout.

Y-axis: shows the elevations.

X-axis: shows the distance.

Blue Color: shows the bridge level.

Pink Color: shows the street level.

6.3 Bridge Structure:

Our bridge classification goes under these types:

1. **Girder Bridge:** It is a bridge that use girders as the means of supporting its deck, the most common types of girders are plate and box.

Figure 6.4: Girder bridge

2. **Solid Slab Bridge:** It is the simplest form of reinforced concrete bridge deck. It cost less than other types, has a smaller thickness of deck, more simple arrangement of reinforcement and no stirrups or web reinforcement are required in this type.

Figure 6.5: solid slab bridge

3. Voided Slab Bridge: Voided slabs are a precast pre-stressed concrete slab mostly used for bridges deck. Voided slabs are available in various thickness and the slabs have a very popular design because of its rapid construction and cost saving.

Figure 6.6: voided slab bridge

4. **Box girder bridges:** A box girder bridge is a bridge that the main beams comprise girders in the shape of a hollow box.

Figure 6.7: box girder bridges.

6.4 Sap Modeling:

The sap model for the bridge: These pictures show the model in 3D.

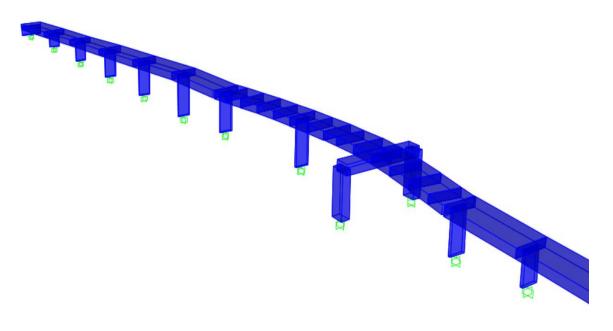


Figure 6.8: Bridge model 1.

Figure 6.9: Bridge model 2.

The material used for the bridge:

Material Property Data

General Data	
Material Name and Display Color	con40Mpa
Material Type	Concrete
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 25.	KN, m, C
Mass per Unit Volume 2.54	93
Isotropic Property Data	
Modulus of Elasticity, E	29725410
Poisson's Ratio, U	0.2
Coefficient of Thermal Expansion, A	9.900E-06
Shear Modulus, G	12385588
Other Properties for Concrete Material	\$
Specified Concrete Compressive Stre	ngth, f'c 40000.
Lightweight Concrete	
Shear Strength Reduction Factor	
Switch To Advanced Property Displ	ay

Figure 6.10: Material Property Data.

Sections:

1. external shear wall:

Section Name	shear w	al
Section Notes		Modify/Show Notes
Properties Section Properties	Property Modifiers Set Modifiers	Material + con40Mpa
Dimensions		
Depth (t3)	0.4	2
Width (t2)	6.25	
		Display Color
Concrete Reinforcen	nent	

Figure 6.11: External shear wall.

2. internal shear wall:

Section Name	int.shear	wall
Section Notes		Modify/Show Notes
Properties	Property Modifiers	Material
Section Properties	Set Modifiers	+ con40Mpa 🔹
Dimensions		
Depth (t3)	0.5	2
Width (t2)	3.	
		3.
		Display Color
Concrete Reinforcement.		1

Figure 6.12: internal shear wall.

3. Bridge Section:

The section of the bridge is a hollow section, but for ease of reinforcement the Sections are defined as solid slabs, and modification the modifiers the section.

Section Name	BRIDGE	E-SECTION-1
Section Notes		Modify/Show Notes
Properties Section Properties	Property Modifiers Set Modifiers	Material + con40Mpa -
Dimensions Depth (t3) Width (t2)	1.3 6.5	
Concrete Reinforcem	ient	Display Color

Figure 6.13: Bridge Section 1.

teetangalar beetion

Section Name		BRIDGE-SECTION-1 Modify/Show Notes	
oper Fr	ame Property/Stiffness Modifica		
Se	Property/Stiffness Modifiers for Ar	nalysis	
imen:	Cross-section (axial) Area	0.8	
Dep	Shear Area in 2 direction	0.8	
Wid	Shear Area in 3 direction	0.8	
	Torsional Constant	0.0001	
	Moment of Inertia about 2 axis	0.8	
	Moment of Inertia about 3 axis	0.8	
	Mass	0.55	
_	Weight	0.55	

Figure 6.14: Bridge Section 2.

4. Column:

There are two column designs in the middle of the bridge to avoid obstructing the road.

Section Name	COULM	IN
Section Notes		Modify/Show Notes
Properties Section Properties	Property Modifiers Set Modifiers	Material + con40Mpa •
Dimensions Depth (t3) Width (t2)	1.7 2.5	
Concrete Reinforcem	ent	Display Color

Figure 6.15: Column Design.

5. **Beam:**

To reduce the distance between the shear walls and help with carrying the bridge.

Dectoroul	an Contion
Rectangui	ar Section

Section Name	B-1500>	<2500
Section Notes		Modify/Show Notes
Properties Section Properties	Property Modifiers Set Modifiers	Material + con40Mpa
Dimensions Depth (t3)	1.5	
Width (t2)	2.5	
Courses to Delin former		Display Color
Concrete Reinforcer	ment	

Figure 6.16: Beam Design.

6.5 Load Analysis on Bridge:

There are several loads acting on the bridge.

ad Patterns		Self Weight	Auto Lateral	Click To: Add New Load Pattern
Load Pattern Name	Type DEAD	Multiplier	Load Pattern	Modify Load Pattern
EAD (ehicle load	DEAD VEHICLE LIVE	1 0		Show Lateral Load Pattern
Q.x Q.y IR	QUAKE QUAKE OTHER		IBC 2012 IBC 2012	Delete Load Pattern
'n				Show Load Pattern Notes
				OK

1. Defining load patterns:

Figure 6.17: Load Patterns.

2. Vehicle load:

To consider loads scenarios load paths are defined by using SAP2000 program.

Path Name	PATH1		Display Color
Frame	Centerline Off	set	
23	1.6		- A 44
23	▲ 1.6	^	Add
61 169	1.6		Insert
163	1.6		Modify
164 165	1.6 1.6		Modily
166	✓ 1.6	~	Delete
Reverse Order	Reverse Sign	Move Path	•
Maximum Discretization	Length	3.048	
Z Discretization Length	Not Greater Than 1	/ 10.	of Path Length

Figure 6.18: Path Data 1.

Path Name	PATH2		Display Color
Frame	Centerline Offse	et	
23	-1.6		Add
23 61	▲ -1.6 -1.6	^	Insert
169 163	-1.6		
164	-1.6		Modify
166	✓ -1.6	~	Delete
Reverse Order	Reverse Sign	Move Path	
)iscretization		0.040	-
Maximum Discretization	Length	3.048	_
 Discretization Length 	n Not Greater Than 17	10.	of Path Length

Figure 6.19: Path Data 2.

ehicle name			Units	
NATIONAL VEH			KN, m,	С
oad Elevation				
w.				
oads				
Load Length Type	Minimum Distance	Maximum Distance	Uniform Load	Axle Load
Fixed Length 💌	1.		9.2	35.
Fixed Length	1.		9.2	35.
Fixed Length Fixed Length	4.2 4.2		9.2 9.2	142. 142.
_				
		1	1	
Add	Insert	Mod	ify	Delete
Vehicle Remains Fu	lly In Path			

Figure 6.20: Path Data 3.

3. Seismic load:

According to the seismicity of the site report and area classification in the seismic map issued by the Center for Earth Sciences and Seismic Engineering at An-Najah National University, Seismic load was found in the X-axis and Y-axis Directions.

Load Direction and Diaphragm Eccentricity	Seismic Coefficients
Global X Direction	C Ss and S1 from USGS - by Lat./Long.
C Global Y Direction	C Ss and S1 from USGS - by Zip Code
	Ss and S1 User Specified
Ecc. Ratio (All Diaph.) 0.05	Site Latitude (degrees)
Override Diaph. Eccen. Override	Site Longitude (degrees)
_ Time Period	Site Zip Code (5-Digits)
C Approx. Period Ct (ft), x =	0.2 Sec Spectral Accel, Ss 1.5
C Program Calc Ct (ft), x =	1 Sec Spectral Accel, S1 0.75
© User Defined T = 0.225	Long-Period Transition Period 8.
Lateral Load Elevation Range	
Program Calculated	Site Class
C User Specified Reset Defaults	Site Coefficient, Fa 0.9
MaxZ	Site Coefficient, Fv 2.4
MinZ	Calculated Coefficients
Factors	SDS = (2/3) * Fa * Ss 0.9
Response Modification, R 5.	SD1 = (2/3) * Fv * S1 1.2
System Overstrength, Omega 3.	301-(2/3) 14 31 [10
Deflection Amplification, Cd 5.5	Update Data
Occupancy Importance, I 1.25	OK Cancel

Figure 6.21: Seismic Load Pattern.

4. Moment at serves load:

Figure 6.22: Moment at serves load.

5. Joint Reactions:

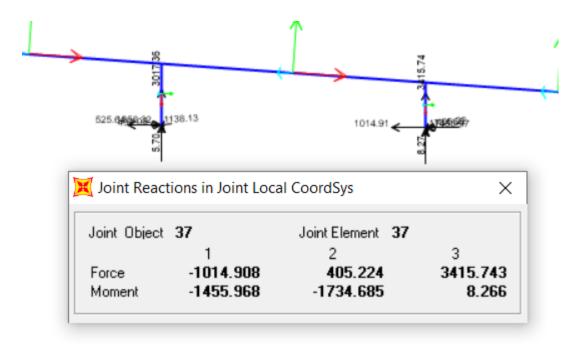


Figure 6.23: Joint reactions.

6. Check design the Bridge:

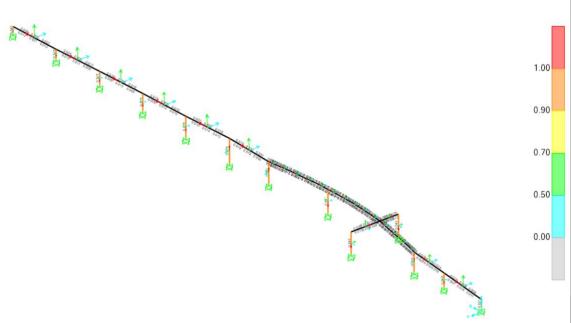


Figure 6.24: Check design the Bridge.

Chapter Seven

Foundation Design and Reinforcement

7.1 Piles Introduction:

Introduction:

Piles are columnar elements in a foundation which have the function of transferring load from the superstructure through weak compressible strata or through water, onto stiffer or more compact and less compressible soils or onto rock. They may be required to carry uplift loads when used to support tall structures subjected to overturning forces from winds or waves. Piles used in marine structures are subjected to lateral loads from the impact of berthing ships and from waves. Combinations of vertical and horizontal loads are carried where piles are used to support retaining walls, bridge piers and abutments, and machinery foundations.

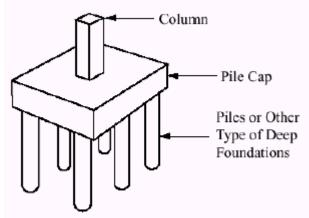


Figure 7.1: Piles image 1.

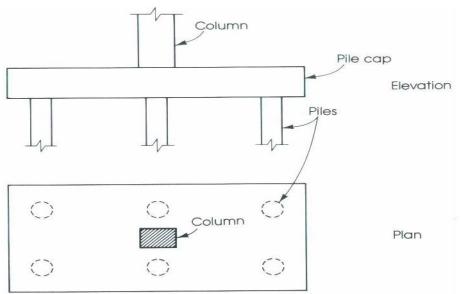


Figure 7.2: Piles image 2.

Main reasons for using piles:

1. In case of the top layers are so weak that they could not bear the structure, the piles transfer loads to a good layer at reasonable depth.

- 2. In order to resist uplift pressure.
- 3. In case of structure in water.
- 4. In order to densify the soil as in case of short stone piles.

Types of piles:

- 1. With respect to the method of transform loads:
- A. End Bearing piles.
- B. Friction piles.
- C. End Bearing + Friction piles.

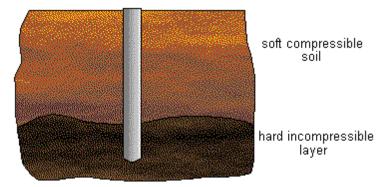
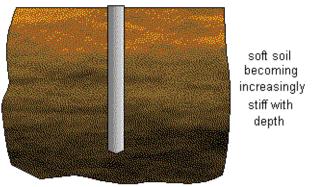



Figure 7.3: End Bearing Piles.

Figure 7.4: Friction Piles.

2. With respect to material:

The main types of materials used for piles are wood, steel and concrete.

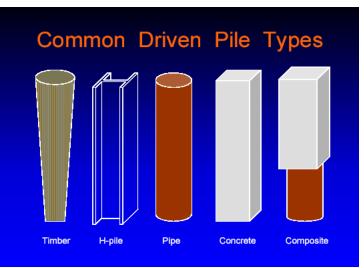


Figure 7.5: Types of Materials.

Materials used for piles:

1. Timber Piles:

Timber piles are used in temporary works. Length: $9 \rightarrow 15$ m, Max load: 45 Ton.

Figure 7.6: Timber Piles.

2. Steel Piles:

Steel piles are used when the pile crosses hard layers. Length: 12 \rightarrow 50 m, Max load: 35 \rightarrow 100 Ton.

Figure 7.7: Steel Piles.

3. Concrete piles:

Concrete piles are divided into two types:

A. Pre cast: Driven:

Precast concrete units placed in drilled hole.

B. Cast in place: Driven (poured)

Fresh concrete poured in hole.

Figure 7.8: Pre cast piles.

Figure 7.9: Piles drilling.

7.2 Design and reinforcement of Foundation:

7.2.1 Footings design:

1. Define material:

Table 7	.1: Defi	ine mate	erials
---------	----------	----------	--------

Type of frame or shells	Compressive strength of Concrete "f'c".
Сар	28
Column	28
Pile	28

2. Define shells:

• Footing (1):

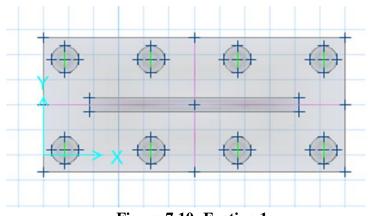
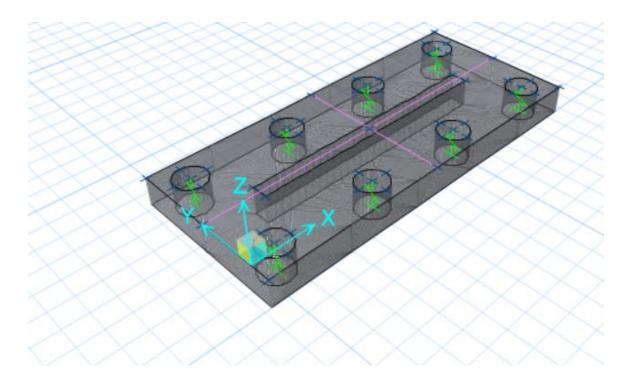



Figure 7.10: Footing 1a.

Figure 7.11: Footing 1b.

1. The Cap.

According to ACI318, the approximate depth of the Cap controlled by Punching Shear.

Assume h = 70cm.

Define Cap section by SAFE as shown in the figure:

Property Name	Cap
Slab Material	B350 💌
Display Color	Change
Property Notes	Modify/Show
Analysis Property Data	
Туре	Slab 💌
Thickness	700 mm

Figure 7.12: Cap-section define by SAFE.

2. Shear walls and piles:

Member type	Dimensions
Piles	Diameter = 80cm.
Shear walls	6.25m*0.4m

Table 7.2: Shear walls and piles (F.1)

Define piles and shear wall sections by SAFE as shown in the figure:

General Data Property Name Slab Material Display Color Property Notes	Stiff B350 Change Modify/Show
Analysis Property Data Type Thickness	Stiff ▼ 700 mm
V Thick Plate	Crthotropic

Figure 7.13: Footing (1) Stiff-section defines by SAFE.

Stiff property data gives a realistic deflection, and realistic moments.

3. Define point spring (Spring Stiffness):

A point spring added under all piles to demonstrate the allowable piles settlement which given from soil reports which equal 10mm.

From foundation equations:

Minimum number of piles = 8piles.

 $Q_{All comp} = 950 KN.$

 $Q_{All tens} = 750 KN.$

Spring Stiffness = 950/10 = 95KN/mm.

General Data		
Property Name pile		
Display Color	Change	
Property Notes	Modify/Show Notes	
Spring Stiffness in Global Directions		
Translation X	0	kN/mm
Translation Y	0	kN/mm
Translation Z (Compression Only)) 95	kN/mm
Rotation about X-Axis	0	kN-mm/rad
Rotation about Y-Axis	0	kN-mm/rad
Rotation about Z-Axis	0	kN-mm/rad
Nonlinear Option (Translation Z Only	/) (Nonlinear Cases On	lv)
None (Linear)	, ,	
Tension Only		
Compression Only		
Elasto-Plastic		
-		

Figure 7.14: Footing (1) point spring define by SAFE.

4. Define of load patterns and load combination:

All load patterns defined by SAP, only dead load defined by SAFE. Services load taken by SAP and added as a dead load by SAFE. Ultimate and service combinations added by SAFE.

	oad	Тур	e	N	f Weight Iultiplier	
DEAD		DEAD		0.0000)	
eral Data .oad Combination Name Combination Type	Service Linear Add	- G	Combinatio	bination Name	Ultimate Linear /	-
Notes Auto Combination	No	iow Notes	Notes Auto Coml efine Comb	pination ination of Load Case	No	odify/Show Notes
ine Combination of Load (Case/Combo Results			ad Name		Scale Factor
Load Name DEAD	Scale 1.0000	Factor	> DE	AD	▼	1.3000

Figure 7.15: load patterns and load combination defined by SAFE.

5. Assign load on model:

A point Load added as a dead load on the center of shear wall.

Type of load	Direction	Magnitude
Vertical load	Z-direction	2070KN.
	X-direction	570KN.m
Moments		
	Y-direction	1855KN.m

Load Pattern	DEAD
Point Loads	
Force in Gravity Dir (-Global Z) (kN)	2070
Moment about Global X Axis (kN-m)	-570
Moment about Global Y Axis (kN-m)	1855
Load Size X Dimension (mm)	6250
Load Size Y Dimension (mm)	400

Figure 7.16: loads of footing.

6. Analysis the model and checks:

The following checks are important to be taken in consideration:

• Compatibility:

To make sure that all the structural elements are compatible with each other. This can be achieved and approved by noticing and analyzing the deformed shape animation of the model by SAFE.

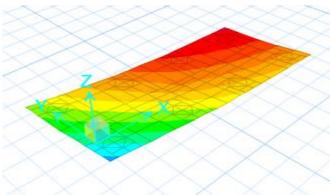


Figure 7.17: Compatibility.

• Dimensions check based on soil failure:

 $R_{max} \ \leq \ q_{all \ comp}$

$$R_{max} = P/N + (M_x * Y_{com} / \Sigma y^2) + (M_y * X_{comp} / \Sigma X^2)$$

= 2070/8 +(570*1.35/8*1.35²) + (1855*3.85/ (4*3.85²+4*1.28²)
=421KN< Qall comp

$$\begin{split} R_{min} &\leq q_{all \ tens} \\ R_{min} &= P/N \text{-} (M_x * Y_{com} / \Sigma y^2) \text{-} (M_y * X_{comp} / \Sigma X^2) \\ &= 2070/8 \text{-} (570 * 1.35 / 8 * 1.35^2) \text{-} (1855 * 3.85 / (4 * 3.85^2 + 4 * 1.28^2)) \\ &= 97KN \text{-} \text{Qall tens} \end{split}$$

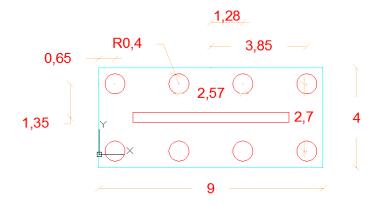


Figure 7.18: Footing (1) dimensions.

Space between piles should be > 3*dpile = 3*0.8=2.4m.

- Figure 7.19: Footing (1) displacement.
- Displacement check:

Figure 7.19: Footing (1) displacement

The displacement under footing should be < 10mm.

• Punching Shear check:

Punching Shear ratio = max shear applied /max shear capacity.

- a) If punching shear ratio > 1, the design is not ok.
- b) If punching shear ratio < 1, the design is ok.

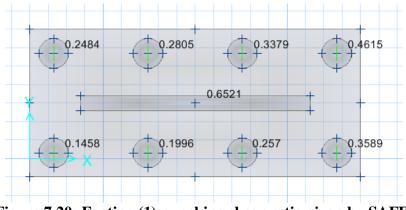


Figure 7.20: Footing (1) punching shear ratio given by SAFE.

From the figure punching check is ok.

7. Footing Reinforcement:

First of all, as min should be calculated.

As min = AS shrinking= 0.0018 *b *h

Footing thickness =h =700mm

As min = 0.0018*1000*700 =1260mm2/m.

So use 7 \oint 16/m if footing needs minimum reinforcing.

The following figures give the bottom and top reinforcement in all directions.

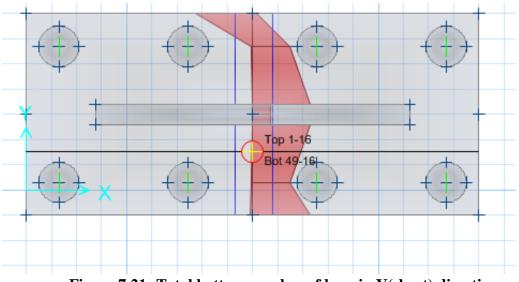


Figure 7.21: Total bottom number of bars in Y(short) direction.

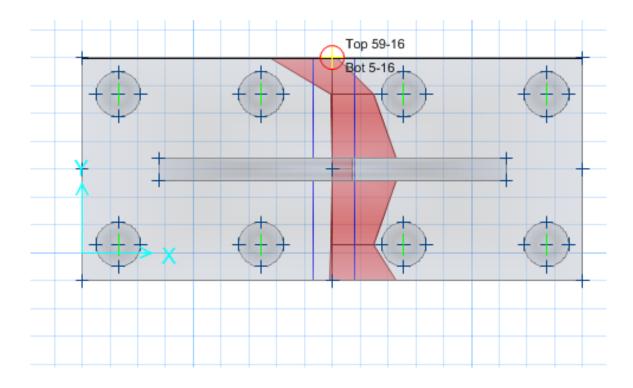


Figure 7.22: Total Top number of bars in Y(short) direction.

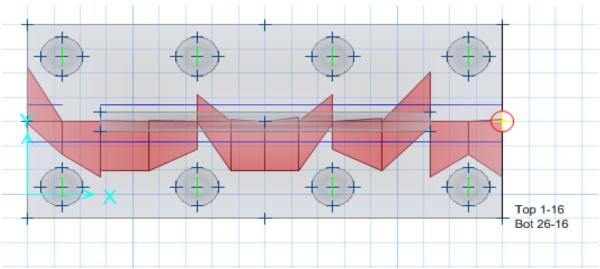


Figure 7.23: Total bottom number of bars in X(Long) direction.

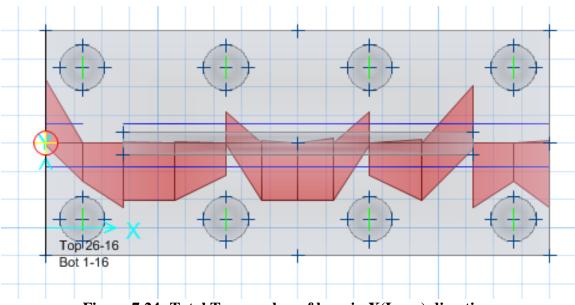


Figure 7.24: Total Top number of bars in X(Long) direction.

Reinforcement	Long direction	Short direction
Тор	7Φ16/m	7Φ16/m
Bottom	7Φ16/m	7Φ16/m

• Footing (2):

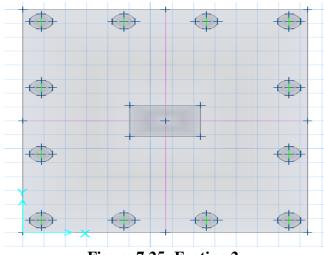


Figure 7.25: Footing 2.

1. The Cap:

According to ACI318, the approximate depth of the Cap controlled by Punching Shear.

Assume h = 110cm.

Define Cap section by SAFE as shown in the figure:

Property Name	Cap	
Slab Material	B350 ~	
Display Color	Change	
Property Notes	Modify/Show	
nalysis Property Data		
Туре	Slab 🗸	
Thickness	1100 mm	

Figure 7.26: Cap-section define by SAFE.

2. Column and piles:

Member type	Dimensions
Piles	Diameter = 80cm.
column	1.7m*2.5m

Table 7.5: Column and piles (F.2)

Define piles and shear wall sections by SAFE as shown in the figure:

General Data	
Property Name	Stiff
Slab Material	B350 ~
Display Color	Change
Property Notes	Modify/Show
Analysis Property Data	
Туре	Stiff ~
Thickness	1100 mm

Figure 7.27: Footing (2) Stiff-section defines by SAFE.

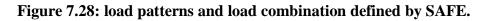
3. Define point spring (Spring Stiffness):

A point spring added under all piles to demonstrate the allowable piles settlement which given from soil reports which equal 10mm.

From foundation equations:

Minimum number of piles = 8piles.

 $Q_{All comp} = 950 KN.$


 $Q_{All tens} = 750 KN.$

Spring Stiffness = 950/10 = 95KN/mm.

4. Define of load patterns and load combination:

All load patterns defined by SAP, only dead load defined by SAFE. Services load taken by SAP and added as a dead load by SAFE. Ultimate and service combinations added by SAFE.

Load	1	Туре	Self Weight Multiplier	
DEAD	DEAD		0.0000	
eral Data oad Combination Name combination Type lotes uto Combination	Service Linear Add Modify/Show Notes No	General Data Load Combination Combination Typ Notes Auto Combination	De Linea	
Ine Combination of Load Case	/Combo Results Scale Factor ▼ 1.0000 ▼	Define Combination	n of Load Case/Combo Re ame	Scale Factor 1.3000

5. Assign load on model:

A point Load added as a dead load on the center of shear wall.

Table '	7.6:	Assign	load	on	model	(F.2)
---------	------	--------	------	----	-------	----------------

Type of load	Direction	Magnitude
Vertical load	Z-direction	6971KN.
	X-direction	4612KN.m

Moments	Y-direction	9063KN.m

Load Pattern	DEAD
Point Loads	
Force in Gravity Dir (-Global Z) (kN)	6971
Moment about Global X Axis (kN-m)	-4612
Moment about Global Y Axis (kN-m)	-9063
Load Size X Dimension (mm)	2500
Load Size Y Dimension (mm)	1700

Figure 7.29: loads of footing

6. Analysis the model and checks:

The following checks are important to be taken in consideration:

• Compatibility:

To make sure that all the structural elements are compatible with each other. This can be achieved and approved by noticing and analyzing the deformed shape animation of the model by SAFE.

• Dimensions check based on soil failure:

$$\begin{split} R_{max} &\leq q_{all\ comp} \\ R_{max} &= P/N + (M_x * Y_{com} / \Sigma y^2) + (M_y * X_{comp} / \Sigma X^2) = 6971 / 12 + \\ (4612 * 5.35 / (8 * 5.35^2) + (4 * 1.78^2)) + (9063 * 4.35 / (8 * 4.35^2 + 4 * 1.45^2)) \\ &= 930 < Qall\ comp \\ R_{min} &\leq q_{all\ tens} \\ R_{min} &= 581 - 103 - 246 \\ &= 232 KN < Qall\ tens \end{split}$$

• Displacement check:

The displacement under footing should be < 10mm.

• Punching Shear check:

Punching Shear ratio = max shear applied /max shear capacity

- a) If punching shear ratio >1, the design is not ok
- b) If punching shear ratio <1, the design is ok

Punching check is ok.

7. Footing Reinforcement:

Table 7.7: Bottom and top reinforcement (F.2)	ole 7.7: Bottom and t	op reinforcement (F.2)
---	-----------------------	------------------------

Reinforcement	Long direction	Short direction
Тор	10Φ16/m	10Ф16/m
Bottom	10Φ25/m	7Φ25/m

Footing (3): •

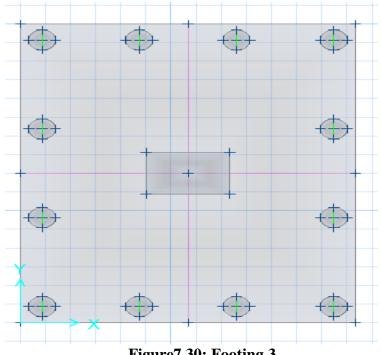


Figure7.30: Footing 3.

1. The Cap.

According to ACI318, the approximate depth of the Cap controlled by Punching Shear.

Assume h = 110cm.

Define Cap section by SAFE as shown in the figure:

Slab Material Display Color Property Notes	B350 ~ Change
	Change
Property Notes	
	Modify/Show
Analysis Property Data	
Туре	Slab 🗸
Thickness	1100 mm

Figure 7.31: Cap-section define by SAFE.

2. Column and piles:

Table 7.8: Column	and piles (F.3)
-------------------	-----------------

Member type	Dimensions
Piles	Diameter = 80cm.
Column	1.7m*2.5m

Define piles and shear wall sections by SAFE as shown in the figure:

General Data	
Property Name	Stiff
Slab Material	B350 ~
Display Color	Change
Property Notes	Modify/Show
Analysis Property Data	
Туре	Stiff ~
Thickness	1100 mm

Figure 7.32: Footing (3) Stiff-section defines by SAFE.

3. Define point spring (Spring Stiffness):

A point spring added under all piles to demonstrate the allowable piles settlement which given from soil reports which equal 10mm.

From foundation equations:

Minimum number of piles = 8piles.

 $Q_{All comp} = 950 KN.$

 $Q_{All tens} = 750 KN.$

Spring Stiffness = 950/10 = 95KN/mm.

4. Define of load patterns and load combination:

All load patterns defined by SAP, only dead load defined by SAFE. Services load taken by SAP and added as a dead load by SAFE. Ultimate and service combinations added by SAFE.

L	oad		Туре		Weight Itiplier	
DEAD		DEAD		0.0000		
neral Data Load Combination Name Combination Type Notes Auto Combination fine Combination of Load Load Name DEAD	No Case/Combo Results	Show Notes	General Data Load Combination Combination Typ Notes Auto Combination Define Combination Load Na DEAD • DEAD	oe on n of Load Case/(No Combo Resu	dify/Show Notes

Figure 7.33: load patterns and load combination defined by SAFE.

5. Assign load on model:

A point Load added as a dead load on the center of shear wall.

Type of load	Direction	С
Vertical load	Z-direction	6138KN.
Moments	X-direction	6899KN.m
Woments	Y-direction	6535KN.m

Table 7.9: Assign load on model (F.3)

bad Pattern	DEAD
Point Loads	
Force in Gravity Dir (-Global Z) (kN)	6138
Moment about Global X Axis (kN-m)	6899
Moment about Global Y Axis (kN-m)	-6535
Load Size X Dimension (mm)	2500
Load Size Y Dimension (mm)	1700

Figure 7.34: loads of footing

6. Analysis the model and checks:

The following checks are important to be taken in consideration:

• Compatibility:

To make sure that all the structural elements are compatible with each other. This can be achieved and approved by noticing and analyzing the deformed shape animation of the model by SAFE. • Dimensions check based on soil failure:

$$\begin{split} R_{max} &\leq q_{all \ comp} \\ R_{max} &= P/N + (M_x * Y_{com} / \Sigma y^2) + (M_y * X_{comp} / \Sigma X^2) \\ &= 6138/12 \\ &+ (6899 * 5.35 / (8 * 5.35^2) + (4 * 1.78^2)) + (6535 * 4.35 / (8 * 4.35^2 + 4 * 1.45^2)) \\ &= 844 < Qall \ comp \\ R_{min} &\leq q_{all \ tens} \\ R_{min} &= 512 - 154 - 178 \\ &= 180 KN < Qall \ tens. \end{split}$$

• Displacement check:

The displacement under footing should be < 10mm.

• Punching Shear check:

Punching Shear ratio = max shear applied /max shear capacity

- a) If punching shear ratio > 1, the design is not ok
- b) If punching shear ratio < 1, the design is ok

Punching check is ok.

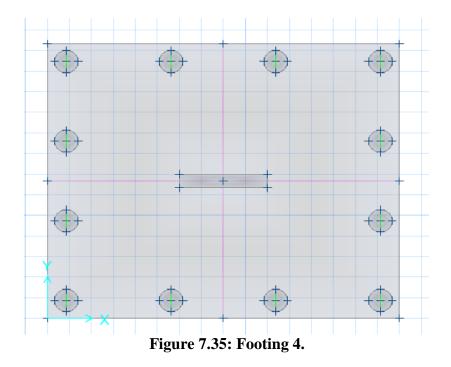

7. Footing Reinforcement:

Table 7.10: Bottom and top reinforcement (F.3)

Reinforcement	Long direction	Short direction
Тор	9Φ16/m	8Φ16/m

Bottom 10Ф25/m 6Ф25/m

• Footing (4):

1. The Cap:

According to ACI318, the approximate depth of the Cap controlled by Punching Shear.

Assume h = 1.5m.

General Data	
Property Name	Cap
Slab Material	B350 ~
Display Color	Change
Property Notes	Modify/Show
Analysis Property Data	
Туре	Slab 🗸
Thickness	1500 mm

Figure 7.36: Cap-section define by SAFE.

2. Shear walls and piles:

 Table 7.11: Shear walls and piles (F.4)

Member type	Dimensions
Piles	Diameter = 80cm.
Shear walls	3m*0.5m

Define piles and shear wall sections by SAFE as shown in the figure:

General Data	
Property Name	Stiff
Slab Material	вз50 🗸
Display Color	Change
Property Notes	Modify/Show
Analysis Property Data	
Туре	Stiff ~
Thickness	1500 mm

Figure 7.37: Footing (4) Stiff-section defines by SAFE.

3. Define point spring (Spring Stiffness):

A point spring added under all piles to demonstrate the allowable piles settlement which given from soil reports which equal 10mm.

From foundation equations:

Minimum number of piles = 8piles.

 $Q_{All comp} = 950 KN.$

 $Q_{All tens} = 750 KN.$

Spring Stiffness = 950/10 = 95KN/mm.

4. Define of load patterns and load combination:

All load patterns defined by SAP, only dead load defined by SAFE.

Services load taken by SAP and added as a dead load by SAFE.

Ultimate and service combinations added by SAFE.

	DEAD		DEAD		0.000	D	
Load Comb Note Auto	Data Combination Name pination Type s Combination Combination of Load Case	No	Show Notes	Combi Notes Auto C	Combination Name nation Type	No	Add ddfy/Show Notes
_	Load Name	-	ale Factor		Load Name		Scale Factor
*	DEAD	▼ 1.00				•	1.3000

Figure 7.38: load patterns and load combination defined by SAFE.

5. Assign load on model:

A point Load added As a dead load on the center of shear wall.

Type of load	Direction	Magnitude
Vertical load	Z-direction	8709KN.
Moments	X-direction	6424N.m
Woments	Y-direction	740KN.m

 Table 7.12: Assign load on model (F.4)

Load Pattern	DEAD	
Point Loads		
Force in Gravity Dir (-Global Z) (kN)	8709	
Moment about Global X Axis (kN-m)	6424	
Moment about Global Y Axis (kN-m)	-740	
Load Size X Dimension (mm)	3000	
Load Size Y Dimension (mm)	500	

Figure 7.39: loads of footing

6. Analysis the model and checks:

The following checks are important to be taken in consideration:

• Compatibility:

To make sure that all the structural elements are compatible with each other. This can be achieved and approved by noticing and analyzing the deformed shape animation of the model by SAFE.

• Dimensions check based on soil failure:

Rmax < qall comp

Rmax = $P/N+ (Mx*Ycom/\Sigma y2)+(My*Xcomp/\Sigma X2)$

= 8709/12 +(6424*4.35/(8*4.352)+(4*1.452))+(740*5.35/(8*5.352+4*1.782)

=918< Qall comp.

Rmin < qall tens.

Rmin = 726 - 175 - 17

=534KN< Qall tens.

• Displacement check:

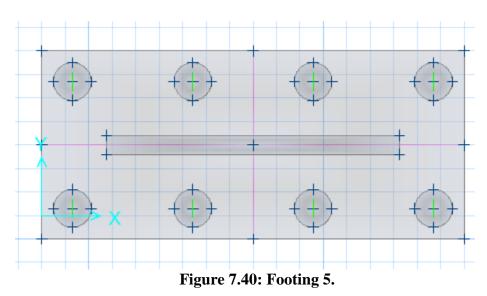
The displacement under footing should be < 10mm.

• Punching Shear check:

Punching Shear ratio = max shear applied /max shear capacity

a) If punching shear ratio > 1, the design is not ok

b) If punching shear ratio < 1, the design is ok


punching check is ok.

7. Footing Reinforcement:

Table 7.13: Bottom and top reinforcement (F.4)

Reinforcement	Long direction	Short direction
Тор	7Ф16/m	8Φ16/m
Bottom	6Φ25/m	9Φ25/m

• Footing (5):

1. The Cap:

According to ACI318, the approximate depth of the Cap controlled by Punching Shear.

Assume h = 70 cm.

Define Cap section by SAFE as shown in the figure:

General Data	
Property Name	Сар
Slab Material	B350 ~
Display Color	Change
Property Notes	Modify/Show
Analysis Property Data	
Туре	Slab 🗸 🗸
Thickness	700 mm

Figure 7.41: Cap-section define by SAFE.

2. Shear walls and piles:

 Table 7.14: Shear walls and piles (F.5)

Member type	Dimensions
Piles	Diameter = 80cm.
Shear walls	6.25m*0.4m

eneral Data Property Name	Stiff	
Slab Material	B350	~
Display Color	C	hange
Property Notes	Modify/Show	
Туре	Stiff	~
Thickness	700	mm

Define piles and shear wall sections by SAFE as shown in the figure:

Figure 7.42: Footing (5) Stiff-section defines by SAFE.

3. Define point spring (Spring Stiffness):

A point spring added under all piles to demonstrate the allowable piles settlement which given from soil reports which equal 10mm.

From foundation equations:

Minimum number of piles = 8piles.

 $Q_{All comp} = 950 KN.$

 $Q_{All tens} = 750 KN.$

Spring Stiffness = 950/10 = 95KN/mm.

4. Define of load patterns and load combination:

All load patterns defined by SAP, only dead load defined by SAFE.

Services load taken by SAP and added as a dead load by SAFE.

	Load	Load		Туре		elf Weight Multiplier	
1	DEAD		DEAD		0.0000		
Combi Notes Nuto C	Combination Name ination Type	No	fy/Show Notes	General Data Load Combin Combination Notes Auto Combina Define Combina	Туре	No	Add odify/Show Notes
	Load Name	Ş	Scale Factor		Name		Scale Factor 1.3000
*	DEAD	▼ 1.	0000	DEAD		▼	1.5000

Ultimate and service combinations added by SAFE.

Figure 7.43: load patterns and load combination defined by SAFE.

5. Assign load on model:

A point Load added as a dead load on the center of shear wall.

Table 7.15:	Assign	load on	model	(F.5)
1 abic 7.12.	1100161	iouu on	mouci	$(\mathbf{I} \cdot \mathbf{v})$

Type of load	Direction	Magnitude
Vertical load	Z-direction	2110KN.
Moments	X-direction	875N.m
Moments	Y-direction	2354KN.m

.oad Pattern	DEAD	
Point Loads		
Force in Gravity Dir (-Global Z) (kN)	2110	
Moment about Global X Axis (kN-m)	875	
Moment about Global Y Axis (kN-m)	-2354	
Load Size X Dimension (mm)	6250	
Load Size Y Dimension (mm)	400	

Figure 7.44: loads of footing

6. Analysis the model and checks:

The following checks are important to be taken in consideration:

• Compatibility:

To make sure that all the structural elements are compatible with each other. This can be achieved and approved by noticing and analyzing the deformed shape animation of the model by SAFE.

• Dimensions check based on soil failure:

$$\begin{split} R_{max} &\leq q_{all\ comp} \\ R_{max} &= P/N + (M_x * Y_{com} / \Sigma y^2) + (M_y * X_{comp} / \Sigma X^2) \\ &= 2110/8 + (875 * 1.35 / (8 * 1.35^2) + (2354 * 3.85 / (4 * 3.85^2 + 4 * 1.28^2)) \\ &= 483 KN < Qall\ comp \\ R_{min} &\leq q_{all\ tens} \\ R_{min} &= 264 - 81 - 138 \end{split}$$

- = 45 KN < Qall tens.
- Displacement check:

The displacement under footing should be ≤ 10 mm.

• Punching Shear check

Punching Shear ratio = max shear applied /max shear capacity

a) If punching shear ratio > 1, the design is not ok

b) If punching shear ratio < 1, the design is ok

Punching check is ok.

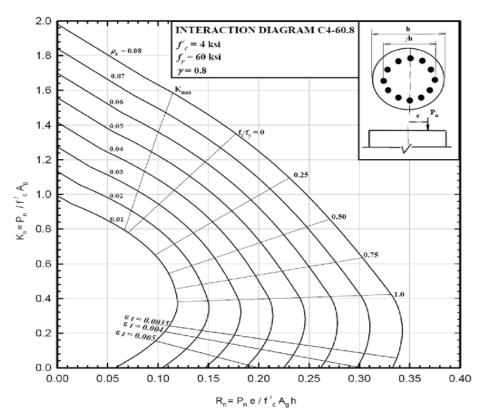
8. Footing Reinforcement:

Reinforcement	Long direction	Short direction
Тор	7Φ16/m	4Φ16/m
Bottom	7Φ16/m	7Φ16/m

 Table 7.16: Bottom and top reinforcement (F.5)

7.2.2 Reinforcement of piles:

$$Pu = 1330$$


$$Ag = 800^{2} * 3.14/4 = 502400$$

$$Kn = 1330 * 10^{3}/28 * (502400) * 7 = 0.0135$$

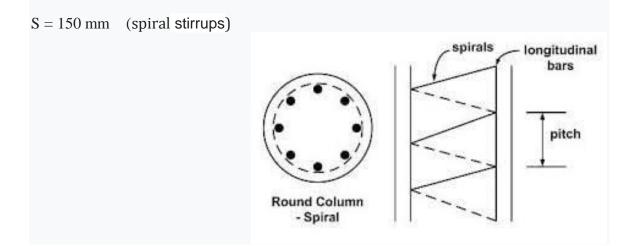
$$e = 0.015 + 0.03h = 0.039$$

$$Rn = 1330 * 10^{3} * 0.039/28 * 7 * 800 * 502400 = 6.5 * 10^{-7}$$

And from the figure:

COLUMNS 3.14.3 - Nominal load-moment strength interaction diagram, C4-60.8

Graph 12 Column interaction diagrams for circular spiral columns.


• Shear check of piles:

 $Vc = \frac{1}{6} \times \sqrt{28} \times \frac{\mu}{4} \times 800^{2} = 433 \text{ Kn}$ $Vs = Vu \cdot Vc$ $\frac{Av}{s} = \frac{vs}{fy \times d}$

All pile have Vu < Vc then:

 $\frac{Av}{S} = 0.33$

Use Ø =8

REFERENCES

1- American Association of State Highway and Transportation Officials. AASHTO, *LRFD Bridge Design Specifications.3rd Edition*, Washington, D.C., 2005.

2- American Association of State Highway and Transportation Officials. AASHTO, *A policy in the geometric design of highways and streets. 6th Edition*, Washington, D.C., 2011.

3- Garber, N. and Helms. "*Traffic and Highway Engineering*", Fourth Edition University of Virginia, 2010.

4- Nablus Municipality- Nablus city.

5- Transportation Research Board, "Highway Capacity Manual 2010", 2010.

6- Husch, David "Intersection Capacity Utilization", Trafficware, 2003.

7- Historyofbridges.com. (2019). Bridge Types - Different Types of Bridges. [online] Available at: http://www.historyofbridges.com/facts-about-bridges/types-ofbridges/ [Accessed 18 Nov. 2019].

8- Types of Bridges Based on Span, U. (2019). Types of Bridges Based on Span, Materials, Structures, Functions, Utility. [online] The Constructor. Available at: https://theconstructor.org/structural-engg/types-of-bridges/13195/ [Accessed 18 Nov. 2019].

9- Google images. (n.d.). Retrieved 18 Nov.2019.

10- https://en.wikipedia.org/wiki/Foundation (engineering).

11- http://www.historyofbridges.com/facts-about-bridges/types-of-bridges/ [Accessed 18 Nov. 2019].

12- <u>https://theconstructor.org/geotechnical/factors-affecting-selection-of-foundation-for-buildings/10504/</u>

13- https://theconstructor.org/geotechnical/shallow-foundations-types/5308/

14- Nicholas J. Garber & Lester A. Hoel, Traffic And Highway Engineering, University Of Virginia, 2010.

15- http://cutt.us/uYMng,11,2019.

16- Federal Highway Administration, Load Resistance Factor Design For Highway Bridges Superstructure, USA Department Of Transportation, 2015.

17- Google Images, 11, 2019

- AASHTO LRFD Code.
- ACI-318 Code.
- ASCE 7-10 Code.
- SAP 2000, version 20.0 Program
- Auto Cad, version 2017 Program.
- Safe, version 2016 program.